TW202249092A - Ohmic contact manufacturing method of group III-nitride semiconductor component characterized by reducing the contact resistance of the group III-nitride semiconductor component - Google Patents
Ohmic contact manufacturing method of group III-nitride semiconductor component characterized by reducing the contact resistance of the group III-nitride semiconductor component Download PDFInfo
- Publication number
- TW202249092A TW202249092A TW110120474A TW110120474A TW202249092A TW 202249092 A TW202249092 A TW 202249092A TW 110120474 A TW110120474 A TW 110120474A TW 110120474 A TW110120474 A TW 110120474A TW 202249092 A TW202249092 A TW 202249092A
- Authority
- TW
- Taiwan
- Prior art keywords
- nitride semiconductor
- layer
- iii
- semiconductor device
- group iii
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 44
- 238000000137 annealing Methods 0.000 claims abstract description 31
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 20
- 238000005530 etching Methods 0.000 claims abstract description 9
- 238000004381 surface treatment Methods 0.000 claims abstract description 7
- 239000010410 layer Substances 0.000 claims description 142
- 230000004888 barrier function Effects 0.000 claims description 38
- 150000004767 nitrides Chemical class 0.000 claims description 29
- 239000011241 protective layer Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 16
- 239000011265 semifinished product Substances 0.000 claims description 11
- 229910002704 AlGaN Inorganic materials 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 2
- 229910004205 SiNX Inorganic materials 0.000 claims 1
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 239000007789 gas Substances 0.000 description 15
- 108091006146 Channels Proteins 0.000 description 12
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 11
- 229910002601 GaN Inorganic materials 0.000 description 10
- 230000005533 two-dimensional electron gas Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 7
- 230000006911 nucleation Effects 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000009832 plasma treatment Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 3
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- -1 fluorine ions Chemical class 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/473—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT
- H10D30/4732—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having confinement of carriers by multiple heterojunctions, e.g. quantum well HEMT using Group III-V semiconductor material
Landscapes
- Junction Field-Effect Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本發明是有關於一種III族氮化物半導體元件,且特別是有關於一種III族氮化物半導體元件之歐姆接觸的製造方法。The present invention relates to a III-nitride semiconductor device, and in particular to a method for manufacturing an ohmic contact of the III-nitride semiconductor device.
現今在電力電子領域中,導入寬帶隙半導體元件以提升設備和模組能效並降低能耗,已是未來趨勢。特別是氮化鎵高頻功率元件,由於其優異的性能而成為下一代高功率和高頻器件中,最有希望超越矽材料極限的半導體元件。III族氮化物半導體元件,例如,氮化鎵(GaN)半導體高電子遷移率電晶體(HEMTs),通常會形成二維電子氣(2DEG,two-dimensional electron gas),以藉此達到高頻操作與高功率輸出。Nowadays, in the field of power electronics, it is a future trend to introduce wide bandgap semiconductor components to improve the energy efficiency of equipment and modules and reduce energy consumption. In particular, gallium nitride high-frequency power components, due to their excellent performance, have become the most promising semiconductor components in the next generation of high-power and high-frequency devices that exceed the limit of silicon materials. Group III nitride semiconductor devices, such as gallium nitride (GaN) semiconductor high electron mobility transistors (HEMTs), usually form a two-dimensional electron gas (2DEG, two-dimensional electron gas) to achieve high frequency operation with high power output.
以金屬-絕緣-半導體(MIS)結構的高電子遷移(HEMT)的III族氮化物半導體元件為例,其開啟電阻大致上會相關於接觸電阻、二維電子氣的源極與閘極間電阻、二維電子氣的閘極與汲極間電阻以及通道電阻,其中接觸電阻佔開啟電阻的最大部分,故在設計上需要降低其電阻值成為歐姆接觸,以藉此達到高開啟狀態電流、低功率損耗、低熱量產生與長生命週期。Taking metal-insulator-semiconductor (MIS) high electron mobility (HEMT) group III nitride semiconductor devices as an example, the turn-on resistance is roughly related to the contact resistance, the resistance between the source and gate of the two-dimensional electron gas , the resistance between the gate and the drain of the two-dimensional electron gas and the channel resistance, among which the contact resistance accounts for the largest part of the turn-on resistance, so it is necessary to reduce its resistance value in the design to become an ohmic contact, so as to achieve high on-state current and low Power loss, low heat generation and long life cycle.
已知在形成歐姆接觸的降低接觸電阻的作法有兩種,並說明如下。其中一種是蝕刻阻障層的接觸電極區域後重新長出重摻雜N型通道層(例如,N+ GaN層)於阻障層的兩側以及於通道層之上,並接著形成Ti/Au金屬的源極與汲極,以在N型通道層上形成歐姆接觸。然而,此種作法可能有下面的缺點:良率不高;製造成本高;蝕刻後造成阻障層內側損傷導致缺陷並容易引發漏電;以及需要複雜且昂貴的分子束磊晶(MBE)來重新長出重摻雜N型通道層。There are two known methods of reducing contact resistance in the formation of ohmic contacts, which are described below. One of them is to etch the contact electrode region of the barrier layer and re-grow heavily doped N-type channel layer (for example, N+ GaN layer) on both sides of the barrier layer and on the channel layer, and then form Ti/Au metal source and drain to form ohmic contacts on the N-type channel layer. However, this method may have the following disadvantages: low yield rate; high manufacturing cost; damage to the inside of the barrier layer after etching causes defects and easily causes leakage; and requires complex and expensive molecular beam epitaxy (MBE) to re- A heavily doped N-type channel layer is grown.
其中另一種降低接觸電阻的作法是選擇讓Ti/Au金屬的源極與閘極部分埋入阻障層中。然而,此種作法可能有下面的缺點:難以控制蝕刻深度與側牆斜率精度;在晶圓等級(wafer-scale)的晶片製程可能有不均勻問題;可能有殘留物與蝕刻損害;以及非常難以實現具有超薄的AlN或Al(Ga)N的阻障層的HEMT III族氮化物半導體元件(註:因為不易控制蝕刻深度)。據此,對於低複雜度、低成本與高良率的低接觸電阻的歐姆接觸的製造方法,業界仍有迫切需求。Another approach to reduce contact resistance is to selectively bury the source and gate portions of the Ti/Au metal in the barrier layer. However, this approach may have the following disadvantages: it is difficult to control the etch depth and sidewall slope accuracy; there may be non-uniformity in the wafer-scale wafer process; there may be residue and etch damage; and it is very difficult A HEMT group III nitride semiconductor element with an ultra-thin AlN or Al(Ga)N barrier layer is realized (note: because it is not easy to control the etching depth). Accordingly, there is still an urgent need in the industry for a low-complexity, low-cost and high-yield ohmic contact manufacturing method with low contact resistance.
根據本發明之目的,提供一種III族氮化物半導體元件之歐姆接觸的製造方法,且此III族氮化物半導體元件包括電晶體以及二極體。此III族氮化物半導體元件之歐姆接觸的製造方法包括:提供未形成源極及汲極的III族氮化物半導體結構;於III族氮化物半導體結構的阻障層上形成保護層;在保護層形成具有圖案的遮罩層(例如,光阻層或其他可以抵抗氟化物氣體電漿腐蝕的材料層),以定義出源極及汲極的位置;使用氟化物氣體電漿對III族氮化物半導體結構的保護層進行蝕刻處理,其中保護層對應於源極與汲極的位置處的部分至少被蝕刻至阻障層的表面;使用氟化物氣體電漿對III族氮化物半導體結構裸露的阻障層進行表面處理;移除遮罩層,並進行退火處理;在退火處理後,於源極與汲極的位置處植入金屬,以形成源極與汲極;以及對形成有源極與汲極的III族氮化物半導體結構進行快速退火處理。According to the object of the present invention, a method for manufacturing an ohmic contact of a III-nitride semiconductor device is provided, and the III-nitride semiconductor device includes a transistor and a diode. The manufacturing method of the ohmic contact of the group III nitride semiconductor device includes: providing a group III nitride semiconductor structure without forming source and drain electrodes; forming a protective layer on the barrier layer of the group III nitride semiconductor structure; Form a mask layer with a pattern (for example, a photoresist layer or other material layer that can resist fluoride gas plasma corrosion) to define the position of the source and drain; use fluoride gas plasma to III-nitride The protective layer of the semiconductor structure is etched, wherein the part of the protective layer corresponding to the position of the source and the drain is etched at least to the surface of the barrier layer; using fluoride gas plasma to expose the barrier of the Group III nitride semiconductor structure Surface treatment of the barrier layer; removal of the mask layer, and annealing; after the annealing, implanting metal at the position of the source and the drain to form the source and the drain; and forming the source and the drain Rapid annealing is performed on the III-nitride semiconductor structure of the drain.
根據本發明之目的,提供一種III族氮化物半導體元件半成品,係使用前述III族氮化物半導體元件之歐姆接觸的製造方法所製造,包括:III族氮化物半導體結構;以及保護層、源極與汲極,形成於III族氮化物半導體結構的阻障層之上。According to the purpose of the present invention, there is provided a semi-finished product of a group III nitride semiconductor element, which is manufactured by using the ohmic contact manufacturing method of the aforementioned group III nitride semiconductor element, including: a group III nitride semiconductor structure; and a protective layer, source and The drain is formed on the barrier layer of the III-nitride semiconductor structure.
根據本發明之目的,提供一種III族氮化物半導體元件,系包括將上述之III族氮化物半導體元件半成品的部分該保護層去除後所形成的另一III族氮化物半導體元件半成以及閘極,其中閘極形成在阻障層之上,且於水平方向上,係位於源極與汲極之間。According to the purpose of the present invention, there is provided a III-nitride semiconductor device, which includes another III-nitride semiconductor device semi-finished and a gate formed by removing part of the protective layer of the above-mentioned III-nitride semiconductor device semi-finished product , wherein the gate is formed on the barrier layer and is located between the source and the drain in the horizontal direction.
總而言之,相對於先前技術,本發明實施例提供的III族氮化物半導體元件之歐姆接觸製造方法具有低製造成本、高生產良率與製程簡單等技術效果。In a word, compared with the prior art, the ohmic contact manufacturing method of the III-nitride semiconductor device provided by the embodiment of the present invention has technical effects such as low manufacturing cost, high production yield and simple manufacturing process.
為利 貴審查員瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。For the benefit of the examiner to understand the technical features, content and advantages of the present invention and the effects that can be achieved, the present invention is hereby described in detail in the form of embodiments in conjunction with the accompanying drawings, and the drawings used therein, its The subject matter is only for illustration and auxiliary instructions, and not necessarily the true proportion and precise configuration of the present invention after implementation, so it should not be interpreted based on the proportion and configuration relationship of the attached drawings, and limit the scope of rights of the present invention in actual implementation. Together first describe.
為了解決先前技術之III族氮化物半導體元件之歐姆接觸其製造良率低與製造成本高的技術問題,本發明提出一種新穎可行的降低III族氮化物半導體元件之歐姆接觸製造方法,其不會造成半導體通道表面損傷,整體製程相對簡單,且製造出的III族氮化物半導體元件的可靠度佳,甚至,接觸電阻的電阻率最低可達0.1歐姆·公釐。進一步地說,本發明的降低III族氮化物半導體元件之接觸電阻的歐姆接觸製造方法主要是在未形成源極及汲極的III族氮化物半導體結構形成保護層於阻障層上,接著,透過遮罩材料(例如,光阻)定義出圖案後,使用氟化物氣體電漿進行對未被遮罩材料遮蔽的保護層進行蝕刻與表面處理, 然後移除光阻,並進行退火處理後,才植入金屬以形成源極與閘極,最後再進行快速退火處理,以達到超低接觸電阻之歐姆接觸。In order to solve the technical problems of low manufacturing yield and high manufacturing cost of the ohmic contact of the III-nitride semiconductor device in the prior art, the present invention proposes a novel and feasible manufacturing method for reducing the ohmic contact of the III-nitride semiconductor device, which will not The surface damage of the semiconductor channel is caused, the overall manufacturing process is relatively simple, and the reliability of the manufactured III-nitride semiconductor device is good, and even the resistivity of the contact resistance can reach as low as 0.1 ohm·mm. Further, the ohmic contact manufacturing method for reducing the contact resistance of the III-nitride semiconductor device of the present invention is mainly to form a protective layer on the barrier layer on the III-nitride semiconductor structure without the source electrode and the drain electrode, and then, After defining a pattern through a mask material (for example, photoresist), use fluoride gas plasma to perform etching and surface treatment on the protective layer not covered by the mask material, then remove the photoresist, and perform annealing treatment, Metal is implanted to form the source and gate, and finally rapid annealing is performed to achieve ohmic contact with ultra-low contact resistance.
於本發明的III族氮化物半導體元件之歐姆接觸的製作方法中,由於存在著保護層,因此氟化物氣體電漿處理不會傷害到通道層表面,且透過控制功率與處理時間,氟離子不會穿透到通道層。另外,退火處理更可將殘留的氟離子移除。據此,本發明實施例的降低III族氮化物半導體元件之接觸電阻的歐姆接觸製造方法具有低製造成本、高生產良率與製程簡單等技術效果。另外,本發明實施例還提供了一種使用上述III族氮化物半導體元件之歐姆接觸的製造方法所製造出來的III族氮化物半導體元件與其半成品。In the manufacturing method of the ohmic contact of the group III nitride semiconductor device of the present invention, due to the existence of the protective layer, the fluoride gas plasma treatment will not damage the surface of the channel layer, and by controlling the power and processing time, the fluorine ions will not will penetrate to the channel layer. In addition, the annealing treatment can remove residual fluoride ions. Accordingly, the ohmic contact manufacturing method for reducing the contact resistance of III-nitride semiconductor devices according to the embodiment of the present invention has technical effects such as low manufacturing cost, high production yield and simple manufacturing process. In addition, an embodiment of the present invention also provides a III-nitride semiconductor device and a semi-finished product manufactured by using the method for manufacturing an ohmic contact of the III-nitride semiconductor device.
請參照圖2H,本發明實施例III族氮化物半導體元件半成品的剖面示意圖如圖2H。III族氮化物半導體結構11包括未形成源極12及汲極13的III族氮化物半導體結構11、源極12、汲極13與保護層14,其中源極12、汲極13與保護層14位於III族氮化物半導體結構11的阻障層115的表面上,且於水平方上,部分保護層14位於源極12的側牆與汲極13的側牆之間。由於經過氟化物氣體電漿進行蝕刻與表面處理,並經過真空退火處理與快速退火處理,源極12與汲極13相對於阻障層115的接觸電阻的電阻率可達到0.1至0.2歐姆·公釐(包括0.1與0.2歐姆·公釐)。Please refer to FIG. 2H , a schematic cross-sectional view of a semi-finished Group III nitride semiconductor device according to an embodiment of the present invention is shown in FIG. 2H . The III-
於本發明實施例中,保護層14為介電材質,且可以是SiN
x層、SiO
2層或Si層,其中x表示大於0的任意數。保護層14的厚度原則可以選自5至100奈米之間(包括5奈米與100奈米),較佳地,選自5至40奈米之間 (包括5奈米與40奈米)。另外,保護層14的厚度選擇與材料與氟化物氣體電漿功率與處理時間相關,其主要目的是為了保護二維電子氣(2DEG)層1141在氟化物氣體電漿處理時不會損傷。源極12與汲極13的每一者可以是金屬堆疊結構,其包括由下往上排序的第一結構層與第二結構層,第一結構層可以是Ti/Al雙層結構,而第二結構層可以是Ni/Au雙層結構、Ti/Ta雙層結構、Ti層、TiN層、Cu層或W層,且本發明不以此為限制。
In the embodiment of the present invention, the
於圖1與圖2A至圖2H的實施例中, III族氮化物半導體結構11為HEMT半導體結構,且最後的III族氮化物半導體元件半成品1不具有閘極,故可以作為HEMT二極體使用,但本發明不以此為限制,且在其他實施例中,III族氮化物半導體元件半成品1可以形成有閘極,且於水平方向上,閘極位於源極12的側牆與汲極13的側牆之間。III族氮化物半導體結構11包括基板111、成核層(nucleation layer)112、緩衝層113、通道層114與阻障層115,其中成核層112形成於基板111的表面上,緩衝層113形成於成核層112的表面上,通道層114形成於緩衝層113的表面上,以及阻障層115形成於通道層114的表面上。於III族氮化物半導體結構11,二維電子氣層1141形成通道層114與阻障層115之間的界面中。In the embodiment of FIG. 1 and FIG. 2A to FIG. 2H, the III-
基板111例如為矽、絕緣層上覆矽(SOI)、碳化矽(SiC)、藍寶石基板或其他能夠讓III族氮化物半導體磊晶的基板,且本發明不以此為限制。成核層112例如為低溫的GaN層、低溫的AlN層、高溫的GaN層或高溫的AlN層,且本發明不以此為限制。緩衝層113可以例如為AlN層、AlGaN層、InGaN層、超晶體(super lattice) AlN/GaN層、超晶體AlGaN/GaN層、超晶體AlN/AlGaN、碳摻雜GaN層、鐵摻雜GaN層或無摻雜GaN層,且本發明不以此為限制。在緩衝層113選用AlGaN層時,AlGaN的化學組成式為的化學組成式為Al
yGa
1-yN,5%<=y。通道層114可以例如為GaN層、AlGaN層、InN層或InGaN層,且本發明不以此為限制。阻障層115可以例如為AlGaN層、InAlN層、InAlGaN層、InGaN層或AlN層,且本發明不以此為限制。在阻障層115選用AlGaN層時,AlGaN的化學組成式為Al
xGa
1-xN,0<=x <=40%,例如,x可以是20%,阻障層115的厚度為20奈米,且此時二維電子氣層1141的片電阻值為<450歐姆/□。
The
請接著參照圖1,圖2A至圖2H,圖1是本發明實施例的降低III族氮化物半導體元件之歐姆接觸的製造方法的流程圖,以及圖2A至圖2H是本發明實施例的III族氮化物半導體元件之歐姆接觸製造方法之各步驟成品的剖面示意圖。Please refer to Fig. 1, Fig. 2A to Fig. 2H, Fig. 1 is the flow chart of the manufacturing method of reducing the ohmic contact of Group III nitride semiconductor device of the embodiment of the present invention, and Fig. 2A to Fig. 2H is the III of the embodiment of the present invention Schematic cross-sectional view of each step of the ohmic contact manufacturing method of the group nitride semiconductor device.
首先,在步驟S31中,提供一個如圖2A之未形成源極12及汲極13且具有二維電子氣的III族氮化物半導體結構11,其結構上類似於圖1的III族氮化物半導體結構11。接著,於步驟S32中,在III族氮化物半導體結構11的阻障層115上形成保護層14',如圖2B所示,其中形成保護層14'的方式例如透過電漿增強化學氣相沉積 (PECVD)的方式來沉積形成,保護層14'的材質如前面所述,且厚度選擇自40奈米以下,例如,10、20或40奈米。另外,沉積保護層14'的方式更可以是原位金屬有機氣相外延(in-situ MOCVD)、任一種化學氣相沉積(CVD)、任一種物理氣相沉積(PVD)或任一種原子層沉積(ALD)。之後,在步驟S33,在保護層14'形成具有圖案的遮罩層17,以定義出源極12與汲極13的位置,如圖2C。First, in step S31, a III-
接著,在步驟S34中,以乾蝕刻方式使用氟化物氣體電漿對III族氮化物半導體結構11的保護層14'進行蝕刻處理,如圖2D所示;在步驟S35中,使用氟化物氣體電漿進行表面處理,如圖2E所示。蝕刻與表面處理例如可以透過感應耦合電漿(ICP)系統產生CF
4電漿,其中保護層14對應於源極12與汲極13的位置處的部分會被蝕刻至阻障層115的表面而形成保護層14與實現歐姆區的處理。氟化物氣體電漿的功率選自50至300瓦特之間(包括50與300瓦特),以及處理時間選自5至300秒之間(包括5與300秒),較佳地是選自5至50秒之間(包括5與50秒)。當保護層14’的厚度為10至40奈米間,處理時間可以是50秒,且保護層14'的最佳厚度為30奈米。另外,除了CF
4電漿之外,也可以選用SF
6、CHF
3或C
4F
8電漿,且更能選擇性地混入Ar電漿。再者,除了選用感應耦合電漿系統外,也可以選用反應離子刻蝕(RIE)或電感耦合等離子體-反應離子刻蝕(ICP-RIE)系統。在保護層14'大概是20奈米時,使用氟化物氣體電漿的處理大概30與50秒,能夠將原來接觸電阻的電阻率從0.8分別降低至0.44與0.2歐姆·公釐。附帶一提的是,蝕刻與表面處理的氟化物氣體電漿之種類、功率與處理時間等可以彼此相同或不同。
Next, in step S34, the protective layer 14' of the group III
接著,在步驟S36中,移除遮罩層17,並以真空退火處理進行表面熱處理去除氟離子鍵結,如圖2F所示。此處的退火處理可以是多步階退火處理或單步階退火處理,例如,退火處理的步階數較佳地是1至4(包括1與4)。然後,在進行退火處理後,於步驟S37中,才將金屬植入,如圖2G。金屬植入方式可以例如是透過電子束槍沉積,以形成源極12與汲極13。退火處理可以是真空腔室內進行或在Ar環境下進行,且在Ar環境下更可以導入其他氣體。退火處理可以是快速退火處理或其他類型的退火處理,退火處理的溫度大致在攝氏450度到650度之間(包括450與650度),退火處理的總時間大概在30至240秒之間(包括30與240秒),若是進行多步階退火處理,則每個步階的時間在15至60秒之間(包括15與60秒)。Next, in step S36 , the
然後,在步驟S38中,進行快速退火處理以達到超低接觸電阻,如圖2H,其中快速退火處理的溫度是攝氏750至850度(包括750與850度),快速退火處理的總時間大概在10至60秒之間(包括10與60秒,較佳地是30秒),而且接觸電阻的電阻率更可以降低至0.1至0.15歐姆·公釐。Then, in step S38, rapid annealing is performed to achieve ultra-low contact resistance, as shown in Figure 2H, wherein the temperature of rapid annealing is 750 to 850 degrees Celsius (including 750 and 850 degrees), and the total time of rapid annealing is about 10 to 60 seconds (including 10 and 60 seconds, preferably 30 seconds), and the resistivity of the contact resistance can be reduced to 0.1 to 0.15 ohm·mm.
請參照圖3A,圖3A是本發明實施例之III族氮化物半導體元件的剖面示意圖。於圖3A中,III族氮化物半導體元件3為HEMT的III族氮化物半導體元件。III族氮化物半導體元件3的實現方式如下。首先,將圖2H的III族氮化物半導體元件半成品1進行檯面蝕刻,定義出隔離區域RI後。接著,去除水平方向中介於源極12與汲極13之間的部分保護層14,以定義出閘極區域。接著,在閘極區域處形成位於阻障層115之上的閘極15。Please refer to FIG. 3A . FIG. 3A is a schematic cross-sectional view of a III-nitride semiconductor device according to an embodiment of the present invention. In FIG. 3A , the III-
請參照圖3B,圖3B是本發明另一實施例之III族氮化物半導體元件的剖面示意圖。不同於圖3A的實施例,III族氮化物半導體元件4去除部分保護層14之後,還沉積了厚度大概是1至10奈米(包括1與10奈米的兩個端點值)的介電層88於保護層14與閘極區域處的阻障層115之上,然後,閘極15形成於閘極區域處的介電層88之上。Please refer to FIG. 3B . FIG. 3B is a schematic cross-sectional view of a III-nitride semiconductor device according to another embodiment of the present invention. Different from the embodiment shown in FIG. 3A , after the group III
請參照圖3C,圖3C是本發明再一實施例之III族氮化物半導體元件的剖面示意圖。不同於圖3B的實施例,III族氮化物半導體元件5去除部分保護層14時,更將部分阻障層115去除,
因此閘極 15 位於阻障層115的凹槽(recess)之上。
Please refer to FIG. 3C . FIG. 3C is a schematic cross-sectional view of a III-nitride semiconductor device according to another embodiment of the present invention. Different from the embodiment shown in FIG. 3B , when the III-nitride semiconductor device 5 removes part of the
具體而言,本發明實施例的降低III族氮化物半導體元件之接觸電阻的歐姆接觸製造方法要使用搭配保護層的氟化物氣體電漿處理以及退火處理共兩次地降低接觸電阻,故接觸電阻的電阻率可以有效降低。再者,相對於先前技術,本發明實施例的III族氮化物半導體元件之歐姆接觸製造方法具有低製造成本、高生產良率與製程簡單等技術效果。Specifically, the ohmic contact manufacturing method for reducing the contact resistance of III-nitride semiconductor devices according to the embodiment of the present invention uses fluoride gas plasma treatment and annealing treatment with a protective layer to reduce the contact resistance twice, so the contact resistance The resistivity can be effectively reduced. Furthermore, compared with the prior art, the ohmic contact manufacturing method of the III-nitride semiconductor device according to the embodiment of the present invention has technical effects such as low manufacturing cost, high production yield and simple manufacturing process.
綜觀上述,可見本發明在突破先前之技術下,確實已達到所欲增進之功效,且也非熟悉該項技藝者所易於思及,再者,本發明申請前未曾公開,且其所具之進步性、實用性,顯已符合專利之申請要件,爰依法提出專利申請,懇請 貴局核准本件發明專利申請案,以勵發明,至感德便。Looking at the above, it can be seen that the present invention has indeed achieved the effect of the desired enhancement under the breakthrough of the previous technology, and it is not easy for those who are familiar with the art to think about it. Moreover, the present invention has not been disclosed before the application, and its features Progressiveness and practicability have obviously met the requirements for patent application. I file a patent application in accordance with the law. I sincerely request your office to approve this invention patent application to encourage inventions. I am very grateful.
以上所述之實施例僅係為說明本發明之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍內。The above-described embodiments are only to illustrate the technical ideas and characteristics of the present invention, and its purpose is to enable those skilled in this art to understand the content of the present invention and implement it accordingly, and should not limit the patent scope of the present invention. That is to say, all equivalent changes or modifications made according to the spirit disclosed in the present invention should still be covered by the patent scope of the present invention.
1:III族氮化物族半導體元件半成品
3~5:III族氮化物族半導體元件
11:III族氮化物半導體結構
111:基板
112:成核層
113:緩衝層
114:通道層
115:阻障層
12:源極
13:汲極
14、14':保護層
15:閘極
88:介電層
17:遮罩層
S31~S38:步驟
RI:隔離區域
1141:二維電子氣層
1: Semi-finished products of III-
本發明之多個附圖僅是用於使本發明所屬技術領域的通常知識者易於了解本發明,其尺寸與配置關係僅為示意,且非用於限制本發明,其中各附圖簡要說明如下: 圖1是本發明實施例的III族氮化物半導體元件之歐姆接觸電阻的製造方法的流程圖; 圖2A至圖2H是本發明實施例的III族氮化物半導體元件之歐姆接觸電阻的製造方法其各步驟成品的剖面示意圖; 圖3A是本發明實施例之III族氮化物半導體元件的剖面示意圖; 圖3B是本發明另一實施例之III族氮化物半導體元件的剖面示意圖; 圖3C是本發明再一實施例之III族氮化物半導體元件的剖面示意圖。 The multiple drawings of the present invention are only used to make the present invention easy to be understood by those skilled in the art to which the present invention belongs, and the dimensions and configuration relationships thereof are only for illustration, and are not used to limit the present invention. A brief description of each of the drawings is as follows : Fig. 1 is the flow chart of the manufacturing method of the ohmic contact resistance of the group III nitride semiconductor element of the embodiment of the present invention; 2A to 2H are schematic cross-sectional views of each step of the method for manufacturing the ohmic contact resistance of the III-nitride semiconductor device according to the embodiment of the present invention; 3A is a schematic cross-sectional view of a III-nitride semiconductor device according to an embodiment of the present invention; 3B is a schematic cross-sectional view of a III-nitride semiconductor device according to another embodiment of the present invention; 3C is a schematic cross-sectional view of a III-nitride semiconductor device according to yet another embodiment of the present invention.
1:III族氮化物半導體元件半成品 1: Semi-finished products of III-nitride semiconductor components
11:III族氮化物半導體結構 11: III-nitride semiconductor structure
111:基板 111: Substrate
112:成核層 112: nucleation layer
113:緩衝層 113: buffer layer
114:通道層 114: Channel layer
115:阻障層 115: barrier layer
12:源極 12: source
13:汲極 13: drain
14:保護層 14: Protective layer
1141:二維電子氣層 1141: Two-dimensional electron gas layer
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110120474A TWI762346B (en) | 2021-06-04 | 2021-06-04 | A kind of ohmic contact manufacturing method of group III nitride semiconductor element |
CN202210049485.8A CN115440591A (en) | 2021-06-04 | 2022-01-17 | Method for manufacturing ohmic contact of group III nitride semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110120474A TWI762346B (en) | 2021-06-04 | 2021-06-04 | A kind of ohmic contact manufacturing method of group III nitride semiconductor element |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI762346B TWI762346B (en) | 2022-04-21 |
TW202249092A true TW202249092A (en) | 2022-12-16 |
Family
ID=82199068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110120474A TWI762346B (en) | 2021-06-04 | 2021-06-04 | A kind of ohmic contact manufacturing method of group III nitride semiconductor element |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115440591A (en) |
TW (1) | TWI762346B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI850962B (en) * | 2023-01-10 | 2024-08-01 | 瑞礱科技股份有限公司 | Single chip integrating enhanced aluminum gallium nitride/gallium nitride high electron mobility transistor and low on-voltage diode using regrowth technology and its manufacturing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7649215B2 (en) * | 2003-12-05 | 2010-01-19 | International Rectifier Corporation | III-nitride device passivation and method |
US7045404B2 (en) * | 2004-01-16 | 2006-05-16 | Cree, Inc. | Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof |
US7399692B2 (en) * | 2005-10-03 | 2008-07-15 | International Rectifier Corporation | III-nitride semiconductor fabrication |
CN101440498A (en) * | 2007-11-19 | 2009-05-27 | 中芯国际集成电路制造(上海)有限公司 | Method for precleaning thin film surface oxide before deposition |
JP5564815B2 (en) * | 2009-03-31 | 2014-08-06 | サンケン電気株式会社 | Semiconductor device and manufacturing method of semiconductor device |
CN102097483B (en) * | 2010-12-31 | 2012-08-29 | 中山大学 | GaN-based heterostructure enhancement type insulated gate field effect transistor and preparation method thereof |
US8928037B2 (en) * | 2013-02-28 | 2015-01-06 | Power Integrations, Inc. | Heterostructure power transistor with AlSiN passivation layer |
US20160013305A1 (en) * | 2013-03-19 | 2016-01-14 | Sharp Kabushiki Kaisha | Nitride semiconductor device and method for manufacturing nitride semiconductor device |
CN107230617A (en) * | 2016-03-25 | 2017-10-03 | 北京大学 | The preparation method of gallium nitride semiconductor device |
-
2021
- 2021-06-04 TW TW110120474A patent/TWI762346B/en active
-
2022
- 2022-01-17 CN CN202210049485.8A patent/CN115440591A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI850962B (en) * | 2023-01-10 | 2024-08-01 | 瑞礱科技股份有限公司 | Single chip integrating enhanced aluminum gallium nitride/gallium nitride high electron mobility transistor and low on-voltage diode using regrowth technology and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN115440591A (en) | 2022-12-06 |
TWI762346B (en) | 2022-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107946358B (en) | An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and a manufacturing method thereof | |
CN113889531B (en) | A semiconductor device and its application and manufacturing method | |
CN111682064B (en) | High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof | |
US10707322B2 (en) | Semiconductor devices and methods for fabricating the same | |
CN108565283A (en) | GaN base T-type grid high-frequency element and its preparation method and application | |
CN111223777B (en) | GaN-based HEMT device and manufacturing method thereof | |
CN103745992B (en) | AlGaN/GaN MISHEMT high voltage device based on composite drain and its fabrication method | |
CN110429127B (en) | Gallium nitride transistor structure and preparation method thereof | |
CN102646705A (en) | MIS gate GaN-based enhanced HEMT device and manufacturing method | |
CN103745990B (en) | Depletion-mode AlGaN/GaN MISHEMT high tension apparatus and preparation method thereof | |
CN110690275B (en) | Semiconductor device and method for manufacturing the same | |
CN111584628B (en) | Enhanced GaN HEMT device and preparation method thereof | |
CN109950323B (en) | Polarized superjunction III-nitride diode device and method of making the same | |
CN108346695A (en) | Based on P-GaN HEMT T-type grid high-frequency element structures and its preparation method and application | |
TWI670855B (en) | Hemt-compatible lateral rectifier structure | |
CN115020490A (en) | Enhanced GaN-based HEMT device with nonpolar channel and preparation method thereof | |
TWI762346B (en) | A kind of ohmic contact manufacturing method of group III nitride semiconductor element | |
CN107623030B (en) | Manufacturing method of high electron mobility transistor and high electron mobility transistor | |
CN103762234B (en) | Based on the AlGaN/GaN MISHEMT high tension apparatus and preparation method thereof of super junction leakage field plate | |
TWI779612B (en) | Enhancement-mode III-V semiconductor device with good lattice matching and method of making the same | |
CN117133806A (en) | A natural superjunction GaN HEMT device and its preparation method | |
CN114521293B (en) | Semiconductor device and method for manufacturing semiconductor device | |
CN118630048A (en) | An enhanced HEMT device and a method for preparing the same | |
CN104538302A (en) | Manufacturing method for enhanced HEMT component | |
CN116092935A (en) | A kind of fabrication method of AlGaN/GaN HEMT device |