[go: up one dir, main page]

CN102646705A - MIS gate GaN-based enhanced HEMT device and manufacturing method - Google Patents

MIS gate GaN-based enhanced HEMT device and manufacturing method Download PDF

Info

Publication number
CN102646705A
CN102646705A CN2012101310453A CN201210131045A CN102646705A CN 102646705 A CN102646705 A CN 102646705A CN 2012101310453 A CN2012101310453 A CN 2012101310453A CN 201210131045 A CN201210131045 A CN 201210131045A CN 102646705 A CN102646705 A CN 102646705A
Authority
CN
China
Prior art keywords
gan
layer
groove
algan
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101310453A
Other languages
Chinese (zh)
Inventor
张进成
张琳霞
郝跃
王冲
马晓华
党李莎
鲁明
周昊
孟凡娜
侯耀伟
姜腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN2012101310453A priority Critical patent/CN102646705A/en
Publication of CN102646705A publication Critical patent/CN102646705A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

The invention discloses a metal insulated semi-conductor (MIS) grid GaN base enhancing high electro mobility transistor (HEMT) device and a manufacture method, which mainly solve the problems that the existing GaN base enhancing device is low in threshold voltage, poor in controllability and low in reliability. The device comprises a substrate (1), a transition layer (2), a GaN main buffering layer (3) and an N-type AlGaN main barrier layer (4). A source (9) and a drain (10) are arranged on two sides of the top end of the N-type AlGaN main barrier layer (4), a grid (13) is arranged in the middle of the top end of the source (9) and the drain (10), a groove (5) is etched in the middle of the GaN main buffering layer (3), the bottom of the groove is a 0001 polarity plane, a lateral side of the groove is a non-0001 plane, and an inner wall of the groove extends outwards to form a GaN auxiliary buffering layer (6), a AlGaN auxiliary barrier layer (7) and a medium layer (8). The grid (13) is deposited on the medium layer (8). The MIS grid GaN base enhancing HEMT device and the manufacture method have the advantages of being high in threshold voltage, good in regulation performance, high in current density, good in pinching-off performance, simple and mature in manufacture process and good in repeatability and can be used for high temperature high power application situations and digital circuits.

Description

MIS栅GaN基增强型HEMT器件及制作方法MIS gate GaN-based enhanced HEMT device and manufacturing method

技术领域 technical field

本发明属于微电子技术领域,涉及半导体器件,具体的说是一种MIS栅GaN基增强型HEMT器件及制作方法,可用于高温大功率应用场合以及构成数字电路基本单元。The invention belongs to the technical field of microelectronics and relates to a semiconductor device, in particular to an MIS gate GaN-based enhanced HEMT device and a manufacturing method, which can be used in high-temperature and high-power applications and form basic units of digital circuits.

背景技术 Background technique

随着现代武器装备和航空航天、核能、通信技术、汽车电子、开关电源的发展,对半导体器件的性能提出了更高的要求。作为宽禁带半导体材料的典型代表,GaN基材料具有禁带宽度大、电子饱和漂移速度高、临界击穿场强高、热导率高、稳定性好、耐腐蚀、抗辐射等特点,可用于制作高温、高频及大功率电子器件。另外,GaN还具有优良的电子特性,可以和AlGaN形成调制掺杂的AlGaN/GaN异质结构,该结构在室温下可以获得高于1500cm2/Vs的电子迁移率,以及高达3×107cm/s的峰值电子速度和2×107cm/s的饱和电子速度,并获得比第二代化合物半导体异质结构更高的二维电子气密度,被誉为是研制微波功率器件的理想材料。因此,基于AlGaN/GaN异质结的高电子迁移率晶体管HEMT在微波大功率器件方面具有非常好的应用前景。With the development of modern weaponry and aerospace, nuclear energy, communication technology, automotive electronics, and switching power supplies, higher requirements are placed on the performance of semiconductor devices. As a typical representative of wide bandgap semiconductor materials, GaN-based materials have the characteristics of large bandgap width, high electron saturation drift velocity, high critical breakdown field strength, high thermal conductivity, good stability, corrosion resistance, and radiation resistance. Used in the production of high temperature, high frequency and high power electronic devices. In addition, GaN also has excellent electronic properties, and can form a modulation-doped AlGaN/GaN heterostructure with AlGaN. This structure can obtain an electron mobility higher than 1500 cm 2 /Vs at room temperature, and up to 3×10 7 cm /s peak electron velocity and 2×10 7 cm/s saturation electron velocity, and obtains a two-dimensional electron gas density higher than that of the second-generation compound semiconductor heterostructure, and is known as an ideal material for the development of microwave power devices . Therefore, the high electron mobility transistor HEMT based on AlGaN/GaN heterojunction has a very good application prospect in microwave high-power devices.

由于AlGaN/GaN异质结得天独厚的优势,AlGaN/GaN异质结材料的生长和AlGaN/GaN HEMT器件的研制始终占据着GaN电子器件研究的主要地位。然而十几年来针对GaN基电子器件研究的大部分工作集中在耗尽型AlGaN/GaN HEMT器件上,这是因为AlGaN/GaN异质结构中较强极化电荷的存在,使得制造基于GaN的增强型器件变得十分困难,因此高性能AlGaN/GaN增强型HEMT的研究具有非常重要的意义。Due to the unique advantages of AlGaN/GaN heterojunction, the growth of AlGaN/GaN heterojunction materials and the development of AlGaN/GaN HEMT devices have always occupied the main position in the research of GaN electronic devices. However, most of the research work on GaN-based electronic devices in the past decade has focused on depletion-mode AlGaN/GaN HEMT devices. Type devices become very difficult, so the study of high-performance AlGaN/GaN enhancement-mode HEMTs is of great significance.

AlGaN/GaN增强型HEMT具有广阔的应用前景。首先,GaN基材料被誉为是研制微波功率器件的理想材料,而增强型器件在微波功率放大器和低噪声放大器等电路中由于减少了负电压源,从而大大降低了电路的复杂性以及成本,且AlGaN/GaN增强型HEMT器件在微波大功率器件和电路具有很好的电路兼容性。同时,增强型器件的研制使单片集成耗尽型/增强型器件的数字电路成为可能。而且,在功率开光应用方面,AlGaN/GaN增强型HEMT也有很大的应用前景。因而高性能AlGaN/GaN增强型HEMT器件的研究得到了极大的重视。AlGaN/GaN enhanced HEMT has broad application prospects. First of all, GaN-based materials are known as ideal materials for the development of microwave power devices, and enhanced devices can greatly reduce the complexity and cost of circuits due to the reduction of negative voltage sources in circuits such as microwave power amplifiers and low-noise amplifiers. And the AlGaN/GaN enhanced HEMT device has good circuit compatibility in microwave high-power devices and circuits. At the same time, the development of enhanced devices makes it possible to monolithically integrate digital circuits of depletion-mode/enhanced devices. Moreover, in terms of power switching applications, AlGaN/GaN enhanced HEMTs also have great application prospects. Therefore, research on high-performance AlGaN/GaN enhancement-mode HEMT devices has received great attention.

目前,不论是国内还是国际上,都有不少关于AlGaN/GaN增强型HEMT的报道。由于P型Mg掺杂工艺技术尚不成熟,GaN基材料中的Mg激活能高而电离率低,导致器件空穴浓度低且迁移率大,因此当前国际上对AlGaN/GaN增强型HEMT的研究并不在P型Mg掺杂这一方法上,而是采用了其他的新技术,目前报道的主要有以下几种技术:At present, there are many reports on AlGaN/GaN enhanced HEMTs both domestically and internationally. Due to the immature P-type Mg doping process technology, the Mg activation energy in GaN-based materials is high and the ionization rate is low, resulting in low hole concentration and high mobility in the device. Therefore, the current international research on AlGaN/GaN enhanced HEMT It is not based on the method of P-type Mg doping, but other new technologies are used. Currently, the following technologies are mainly reported:

1.F离子注入技术,即基于氟化物CF4的等离子体注入技术,香港科技大学的Yong Cai等人成功研制了基于F离子注入技术的增强型HEMT器件,该器件通过在AlGaN/GaN HEMT栅下的AlGaN势垒层中注入F离子,由于F离子的强负电性,势垒层中的F离子可以提供稳定的负电荷,因而可以有效的耗尽沟道区的强二维电子气,当AlGaN势垒层中的F离子数达到一定数量时,栅下沟道处的二维电子气完全耗尽,从而实现增强型HEMT器件。但是F注入技术不可避免的会引入材料的损伤,且器件阈值电压的可控性不高。该器件在室温下薄层载流子浓度高达1.3×1013cm-2,迁移率为1000cm2/Vs,阈值电压达到0.9V,最大漏极电流达310mA/mm。参见文献Yong Cai,Yugang Zhou,Kevin J.Chen and Kei May Lau,“High-performanceenhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment”,IEEEElectron Device Lett,Vol.26,No.7,JULY 2005。1. F ion implantation technology, that is, plasma implantation technology based on fluoride CF4. Yong Cai et al. of Hong Kong University of Science and Technology successfully developed an enhanced HEMT device based on F ion implantation technology. The device passes through the AlGaN/GaN HEMT gate F ions are implanted into the AlGaN barrier layer. Due to the strong negative charge of F ions, the F ions in the barrier layer can provide stable negative charges, and thus can effectively deplete the strong two-dimensional electron gas in the channel region. When AlGaN When the number of F ions in the barrier layer reaches a certain amount, the two-dimensional electron gas in the channel under the gate is completely exhausted, thereby realizing an enhanced HEMT device. However, the F-implantation technology will inevitably introduce material damage, and the controllability of the device threshold voltage is not high. The thin layer carrier concentration of the device is as high as 1.3×10 13 cm -2 at room temperature, the mobility is 1000cm 2 /Vs, the threshold voltage reaches 0.9V, and the maximum drain current reaches 310mA/mm. See Yong Cai, Yugang Zhou, Kevin J. Chen and Kei May Lau, "High-performanceenhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment", IEEE Electron Device Lett, Vol.26, No.7, JULY 2005.

2.非极性或半极性GaN材料实现增强型器件,Masayuki Kuroda等人成功用r面(1102)蓝宝石上的a面(1120)n-AlGaN/GaN HEMT实现了器件的增强,由于非极性或半极性材料由于缺少极化效应,因此其二维电子气浓度很小甚至没有,所以基于非极性或半极性材料的AlGaN/GaN HEMT器件具有增强特性。其报道的阈值电压为-0.5V,通过降低参杂浓度可进一步增大器件阈值电压,但其器件特性并不好,其电子迁移率只有5.14cm2/Vs,室温下方块电阻很大。且其栅漏电大小在Vgs=-10V时达到了1.1×10-5A/mm。参见文献Masayuki Kuroda,Hidetoshi Ishida,Tetsuzo Ueda,and Tsuyoshi Tanaka,“Nonpolar(11-20)plane AlGaN/GaN heterojunction field effecttransistors on(1-102)plane sapphire”,Journal of Aplied Phisics,Vol.102,No.9,November2007。2. Non-polar or semi-polar GaN materials realize enhanced devices. Masayuki Kuroda et al. successfully used a-plane (1120) n-AlGaN/GaN HEMTs on r-plane (1102) sapphire to achieve device enhancement. Due to non-polar Due to the lack of polarization effect of polar or semi-polar materials, the two-dimensional electron gas concentration is small or even non-existent, so AlGaN/GaN HEMT devices based on non-polar or semi-polar materials have enhanced characteristics. The reported threshold voltage is -0.5V, and the threshold voltage of the device can be further increased by reducing the dopant concentration, but the device characteristics are not good, the electron mobility is only 5.14cm 2 /Vs, and the sheet resistance at room temperature is very large. And its gate leakage reaches 1.1×10 -5 A/mm when Vgs=-10V. See literature Masayuki Kuroda, Hidetoshi Ishida, Tetsuzo Ueda, and Tsuyoshi Tanaka, "Nonpolar (11-20) plane AlGaN/GaN heterojunction field effect transistors on (1-102) plane sapphire", Journal of Aplied Phisics, Vol.102, No. 9, November 2007.

3.薄势垒层技术,1996年,M.Asif Khan等人首先用10nm的AlGaN薄势垒层技术实现了AlGaN/GaN增强型HEMT器件,薄势垒层AlGaN/GaN增强型HEMT器件由于势垒层厚度减薄,其极化效应减弱,由极化效应引起的沟道处二维电子气浓度减小,从而实现器件阈值电压的右移。但是他们获得的结果并不理想,其峰值跨导只有23mS/mm。参见文献M.Asif Khan,Q.Chen,C.J.Sun,J.W.Yang,and M.Blasingame,“Enhancement and depletion mode GaN/AlGaN heterostructure field effecttransistors”,Appl.Phys.Lett.Vol.68,No.4,January 1996。3. Thin barrier layer technology. In 1996, M.Asif Khan and others first realized the AlGaN/GaN enhanced HEMT device with 10nm AlGaN thin barrier layer technology. The thin barrier layer AlGaN/GaN enhanced HEMT device is due to the potential The thickness of the barrier layer is thinned, its polarization effect is weakened, and the concentration of two-dimensional electron gas in the channel caused by the polarization effect is reduced, so that the threshold voltage of the device is shifted to the right. But the results they obtained are not ideal, the peak transconductance is only 23mS/mm. See M.Asif Khan, Q.Chen, C.J.Sun, J.W.Yang, and M.Blasingame, "Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors", Appl.Phys.Lett.Vol.68, No.4, January 1996.

4.槽栅技术,W.B.Lanford等人通过MOCVD利用槽栅技术制得了阈值电压达0.47V的增强型器件,该器件结构自下而上包括:SiC衬底,成核层,2um厚的GaN,3nm厚的AlGaN,10nm厚的n-AlGaN,10nm厚的AlGaN。在欧姆退火之后,不直接蒸发栅金属电极,而是先在预生长栅极区域用干法ICP-RIE方法刻蚀一个凹槽,然后在700℃的氮气氛围下进行快速热退火,之后在凹栅窗口上制作Ni/Au肖特基接触栅电极。槽栅技术通过将栅下的势垒层刻蚀一定深度,使得栅下势垒层变薄,从而使栅下2DEG浓度降低,而源漏区的载流子浓度保持较大值不变,这样既可实现器件的增强特性,又可保证一定的电流密度。利用槽栅技术实现的增强型器件其外延生长容易控制,但其调控性较差,且刻蚀过程会形成损伤。参见文献W.B.Lanford,T.Tanaka,Y.Otoki and I.Adesida,“Recessed-gate enhancement-mode GaN HEMT with highthreshold voltage”,Electronics Letrers,Vol.41,No.7,March 2005。4. Groove gate technology, W.B.Lanford et al. used groove gate technology to make an enhanced device with a threshold voltage of 0.47V through MOCVD. The device structure includes from bottom to top: SiC substrate, nucleation layer, 2um thick GaN, 3nm thick AlGaN, 10nm thick n-AlGaN, 10nm thick AlGaN. After ohmic annealing, instead of directly evaporating the gate metal electrode, a groove is etched in the pre-grown gate area by dry ICP-RIE method, and then rapid thermal annealing is performed in a nitrogen atmosphere at 700 °C, and then the groove is etched. A Ni/Au Schottky contact gate electrode is made on the gate window. The trench gate technology makes the barrier layer under the gate thinner by etching the barrier layer under the gate to a certain depth, thereby reducing the concentration of 2DEG under the gate, while the carrier concentration in the source and drain regions remains unchanged at a relatively large value. It can not only realize the enhanced characteristics of the device, but also ensure a certain current density. The epitaxial growth of enhancement-mode devices realized by trench gate technology is easy to control, but its controllability is poor, and the etching process will cause damage. See W.B.Lanford, T.Tanaka, Y.Otoki and I.Adesida, "Recessed-gate enhancement-mode GaN HEMT with highthreshold voltage", Electronics Letrers, Vol.41, No.7, March 2005.

5.AlGaN/GaN刻槽MIS栅HFET结构,Tohru Oka等人利用刻槽MIS栅HFET结构实现了高达5.2V的阈值电压,该外延层结构从下至上为:Si衬底,缓冲层,800nm后的Al0.05Ga0.95N缓冲层,40nm厚的GaN沟道层,34nm厚的Al0.25Ga0.75N,1nm厚的AlN势垒层,1nm厚的GaN帽层。器件工艺制造过程中,栅窗口下的势垒层经基于SiCl4/Cl2的感应耦合等离子体ICP全部刻蚀后,在500℃的N2氛围下经过五分钟的退火之后通过等离子增强化学气相淀积PECVD刻蚀一层厚为20nm的SiN作为栅介质,同时也是钝化层,然后再淀积W基金属作为栅金属。这样形成MIS栅器件,因为栅下区域无异质结结构,因而无二维电子气,因此可以实现高阈值增强型,但这种结构也存在在一定的问题,由于栅下异质结被全部刻蚀掉了,导致器件迁移率低,电流密度较低,导通电阻大。参考文献Tohru Oka,To mohiro Nozawa,“AlGaN/GaNRecessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation forPower Electronics Applications”,IEEE Electron Device Lett,VOL.29,NO.7,JULY 2008。5. AlGaN/GaN grooved MIS gate HFET structure, Tohru Oka et al. used the grooved MIS gate HFET structure to achieve a threshold voltage up to 5.2V. The epitaxial layer structure is from bottom to top: Si substrate, buffer layer, after 800nm Al 0.05 Ga 0.95 N buffer layer, 40nm thick GaN channel layer, 34nm thick Al 0.25 Ga 0.75 N, 1nm thick AlN barrier layer, 1nm thick GaN cap layer. During the manufacturing process of the device, the barrier layer under the gate window is completely etched by the inductively coupled plasma ICP based on SiCl 4 /Cl 2 , and after five minutes of annealing in the N 2 atmosphere at 500 ° C, the plasma-enhanced chemical vapor phase is used to Deposit PECVD to etch a layer of SiN with a thickness of 20nm as the gate dielectric, which is also a passivation layer, and then deposit W-based metal as the gate metal. In this way, the MIS gate device is formed, because there is no heterojunction structure in the region under the gate, so there is no two-dimensional electron gas, so a high threshold enhancement type can be realized, but this structure also has certain problems, because the heterojunction under the gate is completely covered Etched away, resulting in low device mobility, low current density, and high on-resistance. References Tohru Oka, To mohiro Nozawa, "AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications", IEEE Electron Device Lett, VOL.29, NO.7, JULY 2008.

综上所述,目前国际上AlGaN/GaN增强型HEMT器件主要采用基于槽栅技术和基于氟离子注入技术形成,其均存在如下不足:To sum up, at present, AlGaN/GaN enhancement mode HEMT devices in the world are mainly formed based on trench gate technology and fluorine ion implantation technology, which have the following shortcomings:

一是阈值电压和电流密度存在着此消彼长的关系,难以做到高阈值电压和高电流密度共存,且阈值电压的调控性较差;First, there is a trade-off relationship between threshold voltage and current density, and it is difficult to achieve coexistence of high threshold voltage and high current density, and the regulation of threshold voltage is poor;

二是无论刻蚀形成槽栅还是氟离子注入都会对材料造成损伤,虽然经过退火可以消除一定损伤,但是残留的损伤仍然会对器件性能和可靠性造成影响,同时目前这种工艺的重复性还不高;Second, whether etching to form trench gates or fluorine ion implantation will cause damage to the material, although a certain amount of damage can be eliminated after annealing, the remaining damage will still affect device performance and reliability. At the same time, the repeatability of this process is still low. not tall;

三是形成面向微波应用的短沟道器件时需要采用电子束直写等高档工艺设备来制作短栅长,工艺难度较大。Third, when forming short-channel devices for microwave applications, it is necessary to use high-end process equipment such as electron beam direct writing to produce short gate lengths, and the process is relatively difficult.

发明内容 Contents of the invention

本发明的目的在于克服上述已有技术的缺陷,从器件纵向结构的优化角度提出一种金属绝缘体半导体MIS栅GaN基增强型高电子迁移率晶体管HEMT器件及制作方法,以降低工艺难度,避免器件制造工艺过程中造成的损伤,增大器件的阈值电压,增强器件阈值电压的可控性,提高器件的可靠性。The purpose of the present invention is to overcome the defects of the above-mentioned prior art, and propose a metal insulator semiconductor MIS gate GaN-based enhanced high electron mobility transistor HEMT device and its manufacturing method from the perspective of device vertical structure optimization to reduce process difficulty and avoid device The damage caused during the manufacturing process increases the threshold voltage of the device, enhances the controllability of the threshold voltage of the device, and improves the reliability of the device.

为实现上述目的,本发明的器件包括:衬底、过渡层、GaN主缓冲层、N型AlGaN主势垒层、N型AlGaN主势垒层顶端两侧为源极、漏极,中间为栅电极,其特征为:GaN主缓冲层中间刻蚀有凹槽,该凹槽的底面为0001极性面,凹槽侧面为非0001面,该凹槽的内壁依次外延有GaN次缓冲层、AlGaN次势垒层和介质层,栅电极淀积在介质层上。In order to achieve the above object, the device of the present invention includes: a substrate, a transition layer, a GaN main buffer layer, an N-type AlGaN main barrier layer, a source and a drain on both sides of the top of the N-type AlGaN main barrier layer, and a gate in the middle. The electrode is characterized by: a groove is etched in the middle of the GaN main buffer layer, the bottom surface of the groove is a 0001 polar surface, the side of the groove is a non-0001 surface, and the inner wall of the groove is epitaxially formed with a GaN sub-buffer layer, AlGaN The sub-barrier layer and the dielectric layer, and the gate electrode is deposited on the dielectric layer.

所述GaN主缓冲层与AlGaN主势垒层的界面处形成主二维电子气2DEG沟道,该沟道位于凹槽的两侧;凹槽内外延的GaN次缓冲层与AlGaN次势垒层界面形成次二维电子气2DEG沟道。The main two-dimensional electron gas 2DEG channel is formed at the interface between the GaN main buffer layer and the AlGaN main barrier layer, and the channel is located on both sides of the groove; the GaN sub-buffer layer and the AlGaN sub-barrier layer in the groove The interface forms a sub-two-dimensional electron gas 2DEG channel.

所述次二维电子气2DEG沟道的水平位置低于主二维电子气2DEG沟道的水平位置。The horizontal position of the secondary 2DEG channel is lower than the horizontal position of the main 2DEG channel.

所述主势垒层为N型掺杂,掺杂浓度为6×1019cm-3The main barrier layer is N-type doped with a doping concentration of 6×10 19 cm -3 .

为实现上述目的,本发明的金属绝缘体半导体MIS栅GaN基增强型HEMT器件及制作方法,包括如下步骤:In order to achieve the above object, the metal insulator semiconductor MIS gate GaN-based enhanced HEMT device and its manufacturing method of the present invention comprise the following steps:

(1)在反应室中对衬底表面进行预处理;(1) Pretreating the substrate surface in the reaction chamber;

(2)在衬底上外延生长AlGaN/GaN外延层,其中GaN厚度为1um~3um,N型掺杂的AlxGa1-xN势垒层厚度为14nm~30nm,其中Al元素的摩尔含量x为20%-35%;(2) Epitaxial growth of AlGaN/GaN epitaxial layer on the substrate, in which the thickness of GaN is 1um~3um, the thickness of N-type doped Al x Ga 1-x N barrier layer is 14nm~30nm, and the molar content of Al element x is 20%-35%;

(3)在外延层上淀积一层掩膜介质层,再进行光刻,并采用湿法刻蚀方法对外延层上的介质层进行刻蚀,在外延层上形成长为0.5um的凹槽;(3) Deposit a mask dielectric layer on the epitaxial layer, then perform photolithography, and etch the dielectric layer on the epitaxial layer by wet etching, and form a 0.5um-long concave on the epitaxial layer groove;

(4)光刻出凹槽区域,并采用反应离子刻蚀RIE方法对凹槽区域中的AlGaN/GaN外延层进行刻蚀,刻蚀深度为35nm~140nm;(4) Photoetch the groove area, and use the reactive ion etching RIE method to etch the AlGaN/GaN epitaxial layer in the groove area, and the etching depth is 35nm-140nm;

(5)保留凹槽之外的掩膜介质层,将刻蚀后的外延层通过金属有机物化学气相淀积MOCVD反应室,沿凹槽底面垂直向上的方向上生长20nm~100nm厚的GaN层和14nm~30nm厚的AlGaN层,沿凹槽侧面方向生长10nm~50nm厚的GaN层和7nm~15nm厚的AlGaN层;(5) Keep the mask dielectric layer outside the groove, pass the etched epitaxial layer through the metal organic chemical vapor deposition MOCVD reaction chamber, and grow a 20nm-100nm thick GaN layer and A 14nm-30nm thick AlGaN layer, a 10nm-50nm thick GaN layer and a 7nm-15nm thick AlGaN layer are grown along the side of the groove;

(6)去除掩膜介质层;(6) removing the mask dielectric layer;

(7)在去除掩膜介质层的材料表面上,采用化学气相淀积CVD或者物理气相淀积PVD方法淀积厚度为20nm~60nm的栅介质层;(7) Depositing a gate dielectric layer with a thickness of 20nm to 60nm by chemical vapor deposition CVD or physical vapor deposition PVD on the surface of the material from which the mask dielectric layer has been removed;

(8)在栅介质层上,先光刻出源、漏区域,再刻蚀出源、漏窗口;(8) On the gate dielectric layer, the source and drain regions are first photoetched, and then the source and drain windows are etched;

(9)在光刻后的材料表面上,采用电子束蒸发技术蒸发欧姆接触的金属,并通过剥离、退火后,形成源、漏接触电极;(9) On the surface of the material after photolithography, the metal in ohmic contact is evaporated by electron beam evaporation technology, and the source and drain contact electrodes are formed after stripping and annealing;

(10)在栅介质上光刻栅区域,并采用电子束蒸发技术蒸发栅极金属,经剥离后,形成金属绝缘体半导体MIS栅极;(10) Lithographically etch the gate area on the gate dielectric, and use electron beam evaporation technology to evaporate the gate metal, and form a metal insulator semiconductor MIS gate after stripping;

(11)光刻已形成源、漏、栅极的器件表面,获得加厚电极图形,并采用电子束蒸发技术加厚电极,完成器件制作。(11) Photolithography has formed the device surface of the source, drain and gate, obtained thickened electrode patterns, and used electron beam evaporation technology to thicken the electrodes to complete the device production.

本发明具有如下优点:The present invention has the following advantages:

1)具有良好的增强型特性以及高阈值电压。1) It has good enhancement characteristics and high threshold voltage.

本发明由于采用的器件结构中AlGaN/GaN异质结界面为非平面结构,凹槽底面是0001极性面,而凹槽侧面为非0001面,沿凹槽侧面方向上外延的非0001面AlGaN/GaN异质结降低甚至消除了极化效应,使该异质结界面处形成的二维电子气浓度很低,甚至没有二维电子气,因此只有对栅极施加足够高的正电压,才能在凹槽侧面方向上外延的非0001面异质结沟道中感应出足够多的二维电子气,且施加的较高栅压能够在凹槽侧面的次GaN缓冲层中形成较高的水平漂移电场,使电子经由凹槽两侧的主2DEG沟道层、凹槽侧面的二维电子气沟道以及凹槽底面上的次2DEG沟道层进行导电,实现了器件的增强型工作方式,并获得高阈值电压。Since the AlGaN/GaN heterojunction interface in the device structure adopted by the present invention is a non-planar structure, the bottom surface of the groove is a 0001 polar surface, and the side surface of the groove is a non-0001 surface, and the non-0001 surface AlGaN epitaxial along the groove side direction /GaN heterojunction reduces or even eliminates the polarization effect, so that the concentration of two-dimensional electron gas formed at the interface of the heterojunction is very low, or even no two-dimensional electron gas, so only a sufficiently high positive voltage is applied to the gate. Sufficient two-dimensional electron gas is induced in the non-0001-plane heterojunction channel epitaxial in the direction of the groove side, and the applied higher gate voltage can form a higher horizontal drift in the sub-GaN buffer layer on the side of the groove The electric field enables electrons to conduct electricity through the main 2DEG channel layer on both sides of the groove, the two-dimensional electron gas channel on the side of the groove, and the secondary 2DEG channel layer on the bottom surface of the groove, realizing the enhanced working mode of the device, and obtain a high threshold voltage.

2)阈值电压具有良好的调控性。2) The threshold voltage has good controllability.

本发明的器件由于在工艺的实现过程中,可以利用不同的工艺条件在凹槽侧面方向上外延不同厚度的GaN次缓冲层,而不同的GaN次缓冲层厚度引起的该缓冲层中的电场强度的差异在很大程度上决定了器件的阈值电压,因此设计中可以根据需要通过改变GaN次缓冲层厚度来调控器件的阈值电压,比如增大GaN次缓冲层厚度,使得在相等栅压下,GaN次缓冲层中的电场强度减小,从而提高器件阈值电压。The device of the present invention can use different process conditions to epitaxially GaN sub-buffer layers with different thicknesses in the groove side direction during the realization of the process, and the electric field strength in the buffer layer caused by different GaN sub-buffer layer thicknesses The difference of the difference determines the threshold voltage of the device to a large extent, so the threshold voltage of the device can be adjusted by changing the thickness of the GaN sub-buffer layer in the design, such as increasing the thickness of the GaN sub-buffer layer, so that under the same gate voltage, The electric field strength in the GaN subbuffer layer is reduced, thereby increasing the device threshold voltage.

3)具有高的电流密度。3) It has a high current density.

由于本发明器件凹槽内壁的AlGaN势垒层和凹槽以外的AlGaN势垒层不是同时生长,凹槽以外的AlGaN势垒层采用N型甚至N+型掺杂,不仅可大大减小器件的欧姆接触电阻,而且可大大降低源极和漏极的串联电阻,因此提高了器件的电流密度。Since the AlGaN barrier layer on the inner wall of the groove of the device of the present invention and the AlGaN barrier layer outside the groove are not grown at the same time, the AlGaN barrier layer outside the groove is doped with N-type or even N+ type, which can not only greatly reduce the ohmic resistance of the device Contact resistance, and can greatly reduce the series resistance of the source and drain, thus increasing the current density of the device.

4)具有很好的夹断特性。4) It has good pinch-off characteristics.

本发明器件由于在栅极电压为零时,凹槽侧面的GaN次缓冲层可以阻挡电子在沟道中的流动,因此可以实现极低的关态电流。Because the GaN sub-buffer layer on the side of the groove can block the flow of electrons in the channel when the gate voltage is zero, the device of the present invention can realize extremely low off-state current.

5)本发明的栅极由于采用金属绝缘体半导体MIS栅,可以在提高击穿电压的同时,减小栅泄露电流,并且能获得更高的栅压摆幅。5) Since the gate of the present invention adopts the metal insulator semiconductor MIS gate, the breakdown voltage can be increased while the gate leakage current can be reduced, and a higher gate voltage swing can be obtained.

6)工艺简单、成熟,重复性好,器件可靠性高。6) The process is simple and mature, the repeatability is good, and the reliability of the device is high.

本发明器件制作方法中的工艺步骤均是目前国内外相对比较成熟的,而且工艺流程也相对简单,成本低,能完全与成熟的耗尽型AlGaN/GaN HEMT器件制备工艺兼容。另外,本发明采用了干法刻蚀方法进行槽栅刻蚀,并且在后续的高温二次生长中,可在一定程度上对刻蚀形成的表面损伤进行修复,以减少刻蚀损伤对器件性能和可靠性的影响。与目前国内外常用的槽栅刻蚀方法相比,本发明能更有效的避免了刻蚀引起的材料损伤,器件可靠性更高。The process steps in the device manufacturing method of the present invention are relatively mature at home and abroad, and the process flow is relatively simple, low in cost, and fully compatible with the mature depletion-type AlGaN/GaN HEMT device manufacturing process. In addition, the present invention adopts a dry etching method for groove gate etching, and in the subsequent high-temperature secondary growth, the surface damage caused by etching can be repaired to a certain extent, so as to reduce the impact of etching damage on device performance. and reliability effects. Compared with the currently commonly used groove gate etching method at home and abroad, the invention can more effectively avoid material damage caused by etching, and the reliability of the device is higher.

附图说明 Description of drawings

图1是本发明MIS栅GaN基增强型HEMT器件及制作方法;Fig. 1 is MIS gate GaN-based enhancement mode HEMT device and manufacturing method of the present invention;

图2是本发明制备MIS栅GaN基增强型HEMT器件及制作方法。Fig. 2 is the preparation and fabrication method of MIS gate GaN-based enhanced HEMT device according to the present invention.

具体实施方式 Detailed ways

参照图1,本发明的MIS栅GaN基增强型HEMT器件,包括:衬底1、AlN过渡层2、GaN主缓冲层3、N型AlxGa1-xN主势垒层4、凹槽5、GaN次缓冲层6、AlxGa1-xN次势垒层7、介质层8、源极9、漏极10和栅极13;AlN过渡层2外延在衬底1上;GaN主缓冲层3在AlN过渡层上;N型AlxGa1-xN主势垒层4在GaN主缓冲层3上,且0≤x≤1,掺杂浓度为6×1019cm-3;N型AlGaN主势垒层4的顶端两侧为源极9、漏极10,中间为栅极13;N型AlxGa1-xN主势垒层4上方为介质层8,介质层厚度为20nm~60nm;凹槽5刻蚀在GaN主缓冲层3的中间,凹槽深度为35nm~140nm,刻蚀后的凹槽底面为GaN主缓冲层3,它为0001极性面,凹槽侧面为非0001面;GaN次缓冲层6位于凹槽5上;AlxGa1-xN次势垒层7位于GaN次缓冲层6上方;GaN次缓冲层6的厚度在凹槽5底面向上的方向上为20nm~100nm,在凹槽5侧壁的水平方向上为10nm~50nm;AlxGa1-xN次势垒层7的厚度在凹槽5底面向上的方向上为14nm~30nm,在凹槽5侧壁的水平方向上为7nm~15nm;AlxGa1-xN次势垒层7上方为介质层8;栅电极13在介质层8上;GaN主缓冲层3与AlxGa1-xN主势垒层4的界面处形成主二维电子气2DEG沟道11,该沟道11位于凹槽5的两侧;凹槽内外延的GaN次缓冲层6与AlxGa1-xN次势垒层7界面形成次二维电子气2DEG沟道12,且次二维电子气2DEG沟道12的水平位置低于主二维电子气2DEG沟道11的水平位置。Referring to Fig. 1, the MIS gate GaN-based enhanced HEMT device of the present invention includes: substrate 1, AlN transition layer 2, GaN main buffer layer 3, N-type AlxGa1 -xN main barrier layer 4, groove 5. GaN sub-buffer layer 6, Al x Ga 1-x N sub-barrier layer 7, dielectric layer 8, source 9, drain 10 and gate 13; AlN transition layer 2 epitaxially on substrate 1; GaN main The buffer layer 3 is on the AlN transition layer; the N-type Al x Ga 1-x N main barrier layer 4 is on the GaN main buffer layer 3, and 0≤x≤1, and the doping concentration is 6×10 19 cm -3 ; On both sides of the top of the N-type AlGaN main barrier layer 4 are the source 9 and the drain 10, and the middle is the gate 13; above the N-type AlxGa1 -xN main barrier layer 4 is a dielectric layer 8, and the thickness of the dielectric layer is 20nm to 60nm; the groove 5 is etched in the middle of the GaN main buffer layer 3, the depth of the groove is 35nm to 140nm, the bottom of the groove after etching is the GaN main buffer layer 3, which is a 0001 polar plane, and the groove The side is a non-0001 plane; the GaN sub-buffer layer 6 is located on the groove 5; the Al x Ga 1-x N sub-barrier layer 7 is located above the GaN sub-buffer layer 6; the thickness of the GaN sub-buffer layer 6 is above the bottom of the groove 5 20nm-100nm in the direction of the groove 5, 10nm-50nm in the horizontal direction of the side wall of the groove 5; the thickness of the AlxGa1 -xN sub-barrier layer 7 is 14nm-30nm in the upward direction of the bottom of the groove 5 , 7nm-15nm in the horizontal direction of the side wall of the groove 5; the dielectric layer 8 is above the Al x Ga 1-x N sub-barrier layer 7; the gate electrode 13 is on the dielectric layer 8; the GaN main buffer layer 3 and the Al The main two-dimensional electron gas 2DEG channel 11 is formed at the interface of the x Ga 1-x N main barrier layer 4, and the channel 11 is located on both sides of the groove 5; the epitaxial GaN sub-buffer layer 6 and the Al x The interface of the Ga 1-x N sub-barrier layer 7 forms a secondary 2DEG channel 12 , and the horizontal position of the secondary 2DEG channel 12 is lower than the horizontal position of the main 2DEG channel 11 .

参照图2,本发明制作MIS栅GaN基增强型HEMT器件的方法,给出以下三种实施例。Referring to FIG. 2 , the method for fabricating a MIS gate GaN-based enhancement HEMT device according to the present invention provides the following three embodiments.

实施例1Example 1

制作过渡层为AlN,GaN主缓冲层厚度为1um,Al0.35Ga0.65N主势垒层厚度为14nm,凹槽刻蚀深度为35nm,GaN次缓冲层在凹槽底面向上方向上厚度为20nm、在凹槽侧面水平方向上厚度为10nm,Al0.35Ga0.65N次势垒层为在凹槽底面向上方向上厚度为14nm,在凹槽侧面水平方向上厚度为7nm,栅介质层厚度为20nm的MIS栅GaN基增强型HEMT器件,其步骤是:The transition layer is made of AlN, the thickness of the GaN main buffer layer is 1um, the thickness of the Al 0.35 Ga 0.65 N main barrier layer is 14nm, the groove etching depth is 35nm, and the thickness of the GaN secondary buffer layer is 20nm in the upward direction of the bottom of the groove. The thickness in the horizontal direction on the side of the groove is 10nm, the thickness of the Al 0.35 Ga 0.65 N sub-barrier layer is 14nm in the upward direction on the bottom of the groove, the thickness in the horizontal direction on the side of the groove is 7nm, and the thickness of the gate dielectric layer is 20nm MIS gate GaN-based enhancement mode HEMT device, the steps are:

步骤一,把C面蓝宝石衬底置于MOCVD设备的反应室中,将反应室的真空度抽至1×10-2Torr之下,在氢气与氨气的混合气体保护下对蓝宝石衬底进行热处理和表面氮化,加热温度为1050℃,压力为20Torr,氢气流量为1500sccm,氨气流量为1500sccm。Step 1: Place the C-plane sapphire substrate in the reaction chamber of the MOCVD equipment, evacuate the vacuum of the reaction chamber to below 1×10 -2 Torr, and process the sapphire substrate under the protection of the mixed gas of hydrogen and ammonia. For heat treatment and surface nitriding, the heating temperature is 1050° C., the pressure is 20 Torr, the flow rate of hydrogen gas is 1500 sccm, and the flow rate of ammonia gas is 1500 sccm.

步骤二,采用MOCVD技术在蓝宝石衬底上外延生长厚度为150nm的AlN过渡层,如图2(a)。In step 2, an AlN transition layer with a thickness of 150 nm is epitaxially grown on the sapphire substrate by MOCVD technology, as shown in FIG. 2( a ).

外延AlN过渡层采用的工艺条件是:温度为980℃,压力为20Torr,氢气流量为300sccm,氨气流量为1500sccm,铝源流量为30sccm。The process conditions used for the epitaxial AlN transition layer are: temperature 980° C., pressure 20 Torr, hydrogen gas flow 300 sccm, ammonia gas flow 1500 sccm, aluminum source flow 30 sccm.

步骤三,采用MOCVD技术在过渡层上外延生长厚度为1um的GaN主缓冲层,如图2(b)。Step 3, using MOCVD technology to epitaxially grow a GaN main buffer layer with a thickness of 1um on the transition layer, as shown in Figure 2(b).

外延采用的工艺条件是:温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,镓源流量为220sccm。The process conditions adopted for the epitaxy are: the temperature is 920° C., the pressure is 40 Torr, the hydrogen gas flow rate is 500 sccm, the ammonia gas flow rate is 5000 sccm, and the gallium source flow rate is 220 sccm.

步骤四,采用MOCVD技术在主缓冲层上外延厚度为14nm的N型掺杂Al0.35Ga0.65N主势垒层,通过在生长过程中通入硅烷SiH4实现掺杂浓度为6×1019cm-3的N型掺杂,这样在AlN过渡层上形成了AlGaN/GaN异质结,在AlGaN/GaN异质结界面靠向GaN一侧就形成了主二维电子气2DEG,形成的外延片结构如图2(c)。Step 4: epitaxial N-type doped Al 0.35 Ga 0.65 N main barrier layer with a thickness of 14nm on the main buffer layer by MOCVD technology, and achieved a doping concentration of 6×10 19 cm by injecting silane SiH 4 during the growth process -3 N-type doping, so that the AlGaN/GaN heterojunction is formed on the AlN transition layer, and the main two-dimensional electron gas 2DEG is formed on the GaN side of the AlGaN/GaN heterojunction interface, forming an epitaxial wafer The structure is shown in Figure 2(c).

外延采用的工艺条件是:温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm。The process conditions used for epitaxy are: temperature 920°C, pressure 40 Torr, hydrogen gas flow 500 sccm, ammonia gas flow 5000 sccm, aluminum source flow 10 sccm, gallium source flow 40 sccm.

步骤五,对上述外延片进行清洗后,利用等离子增强化学气相淀积PECVD技术在表面淀积一层SiN掩膜介质层,如图2(d)。Step five, after cleaning the above-mentioned epitaxial wafer, deposit a layer of SiN mask dielectric layer on the surface by using plasma enhanced chemical vapor deposition PECVD technology, as shown in Fig. 2(d).

步骤六,在淀积了掩膜介质层的外延片表面上,首先进行甩正胶、软烘;再通过曝光以及显影形成刻蚀所需的凹槽窗口,最后采用湿法刻蚀方法刻去凹槽窗口下的SiN掩膜介质层,并用丙酮去除SiN掩膜介质层上残余的光刻胶。Step 6: On the surface of the epitaxial wafer on which the mask dielectric layer is deposited, firstly carry out positive resist and soft baking; then form the groove window required for etching through exposure and development, and finally use wet etching method to etch away SiN mask dielectric layer under the groove window, and remove residual photoresist on the SiN mask dielectric layer with acetone.

步骤七,对去胶后的外延片光刻出凹槽窗口,并采用反应离子刻蚀RIE设备刻蚀凹槽窗口下的AlGaN/GaN异质结,形成底面为0001极性面,侧面为非0001面的凹槽结构,如图2(e)。Step 7: Photo-etch the groove window on the epitaxial wafer after deglue, and use reactive ion etching RIE equipment to etch the AlGaN/GaN heterojunction under the groove window to form a 0001 polar surface on the bottom surface and a non-polar surface on the side surface. The groove structure of the 0001 plane is shown in Fig. 2(e).

刻蚀采用流量为15sccm的氯气Cl2,功率为200W,压强为10mT,刻蚀深度为35nm。The etching uses chlorine gas Cl 2 with a flow rate of 15 sccm, a power of 200 W, a pressure of 10 mT, and an etching depth of 35 nm.

步骤八,用丙酮去除刻蚀后的正胶,并对外延片表面进行清洗。Step eight, remove the etched positive resist with acetone, and clean the surface of the epitaxial wafer.

步骤九,将反应室的真空度抽至1×10-2Torr之下,在氢气与氨气的混合气体保护下对清洗后的外延片进行热处理,加热温度为1000℃,压力为20Torr,氢气流量为1500sccm,氨气流量为1500sccm。Step 9: Evacuate the vacuum of the reaction chamber to below 1×10 -2 Torr, and heat-treat the cleaned epitaxial wafer under the protection of the mixed gas of hydrogen and ammonia. The heating temperature is 1000°C, the pressure is 20 Torr, and hydrogen The flow rate is 1500 sccm, and the flow rate of ammonia gas is 1500 sccm.

步骤十,重复步骤三,在凹槽内壁二次生长不同厚度的GaN次缓冲层,即在凹槽底面垂直方向上生长的GaN次缓冲层厚度为20nm,在凹槽侧面水平方向上生长的GaN次缓冲层厚度为10nm,如图2(f)。Step 10, repeat step 3, and grow GaN sub-buffer layers of different thicknesses on the inner wall of the groove for the second time, that is, the thickness of the GaN sub-buffer layer grown vertically on the bottom of the groove is 20nm, and the GaN sub-buffer layer grown horizontally on the side of the groove The thickness of the secondary buffer layer is 10nm, as shown in Figure 2(f).

步骤十一,采用MOCVD技术在GaN次缓冲层上二次生长不同厚度的Al0.35Ga0.65N次势垒层,即在凹槽底面垂直方向上生长的Al0.35Ga0.65N次势垒层厚度为14nm,在凹槽侧面水平方向上生长的Al0.35Ga0.65N次势垒层厚度为7nm,这样在次AlGaN势垒层和次GaN缓冲层的界面靠向GaN一侧就形成了次二维电子气2DEG,并且保证了次二维电子气2DEG的水平位置低于主二维电子气2DEG的水平位置,如图2(g)。Step 11: Secondary growth of Al 0.35 Ga 0.65 N sub-barrier layers with different thicknesses on the GaN sub-buffer layer using MOCVD technology, that is, the thickness of the Al 0.35 Ga 0.65 N sub-barrier layer grown vertically on the bottom of the groove is The thickness of the Al 0.35 Ga 0.65 N sub-barrier layer grown on the side of the groove in the horizontal direction is 7nm, so that the interface of the sub-AlGaN barrier layer and the sub-GaN buffer layer near the GaN side forms a sub-two-dimensional electron gas 2DEG, and ensure that the horizontal position of the secondary two-dimensional electron gas 2DEG is lower than that of the main two-dimensional electron gas 2DEG, as shown in Figure 2(g).

生长的工艺条件是:温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm。The growth process conditions are as follows: a temperature of 920° C., a pressure of 40 Torr, a hydrogen gas flow of 500 sccm, an ammonia gas flow of 5000 sccm, an aluminum source flow of 10 sccm, and a gallium source flow of 40 sccm.

步骤十二,在二次生长Al0.35Ga0.65N次势垒层后的外延片上,利用等离子增强化学气相淀积PECVD方法淀积厚度为20nm的SiN介质层,该介质层覆盖次势垒层和凹槽内壁,如图2(h)。Step 12, on the epitaxial wafer after secondary growth of the Al 0.35 Ga 0.65 N sub-barrier layer, deposit a SiN dielectric layer with a thickness of 20 nm by using plasma enhanced chemical vapor deposition PECVD method, the dielectric layer covers the sub-barrier layer and The inner wall of the groove, as shown in Figure 2(h).

淀积该介质层的工艺条件为:氨气流量为2.5sccm,氮气流量为900sccm,硅烷流量为200sccm,温度为300℃,压力为900mT,功率为25W。The process conditions for depositing the dielectric layer are as follows: the flow rate of ammonia gas is 2.5 sccm, the flow rate of nitrogen gas is 900 sccm, the flow rate of silane gas is 200 sccm, the temperature is 300° C., the pressure is 900 mT, and the power is 25 W.

步骤十三,去除源漏区域的SiN介质薄膜Step 13, remove the SiN dielectric film in the source and drain regions

首先,在SiN介质层上甩正胶、软烘;First, throw the positive glue on the SiN dielectric layer and soft bake;

接着,通过曝光以及显影形成源、漏区域;Next, source and drain regions are formed by exposure and development;

最后,采用湿法刻蚀方法去除源漏区域的SiN介质薄膜。Finally, the SiN dielectric film in the source and drain regions is removed by wet etching.

步骤十四,对去除了源、漏区域的SiN介质层的外延片进行甩正胶、软烘,并通过曝光以及显影获得源漏窗口。In step fourteen, the epitaxial wafer from which the SiN dielectric layer in the source and drain regions has been removed is subjected to correcting and soft baking, and the source and drain windows are obtained through exposure and development.

步骤十五,利用等离子去胶机去除源、漏窗口未显影干净的光刻胶薄层,可以提高金属剥离的成品率。Step fifteen, using a plasma stripping machine to remove the undeveloped photoresist thin layer in the source and drain windows, which can improve the yield of metal stripping.

步骤十六,采用电子束蒸发仪器淀积Ti/Al/Ni/Au四层欧姆接触金属,其中Ti的厚度为30nm,Al的厚度为180nm,Ni的厚度为40nm,Au的厚度为60nm。Step sixteen, depositing Ti/Al/Ni/Au four-layer ohmic contact metal by electron beam evaporation equipment, wherein the thickness of Ti is 30nm, the thickness of Al is 180nm, the thickness of Ni is 40nm, and the thickness of Au is 60nm.

淀积的工艺条件为:真空度小于2.0×10-6Pa,功率为200W,蒸发速率不大于3埃/秒。The process conditions for deposition are: the degree of vacuum is less than 2.0×10 -6 Pa, the power is 200W, and the evaporation rate is not greater than 3 angstroms/second.

步骤十七,将蒸发金属后的外延片在丙酮溶液中浸泡20min,然后进行超声清洗,并用超纯水冲洗和氮气吹干,此步骤将源、漏窗口以外的金属剥离掉。Step seventeen, soak the evaporated epitaxial wafer in acetone solution for 20 minutes, then perform ultrasonic cleaning, rinse with ultrapure water and blow dry with nitrogen. This step peels off the metal outside the source and drain windows.

步骤十八,将剥离金属后的外延片在温度为850℃的氮气气氛中进行30s的欧姆接触退火,形成源、漏接触电极,如图2(i)。Step 18: Perform ohmic contact annealing on the epitaxial wafer after metal stripping in a nitrogen atmosphere at a temperature of 850° C. for 30 seconds to form source and drain contact electrodes, as shown in FIG. 2( i ).

步骤十九,在已形成源、漏接触电极的外延片上进行甩正胶、软烘,通过曝光以及显影获得栅窗口。In step nineteen, on the epitaxial wafer on which the source and drain contact electrodes have been formed, the resist is cast, soft baked, and a gate window is obtained through exposure and development.

步骤二十,对光刻出栅窗口的外延片采用电子束蒸发仪器淀积Ni/Au两层金属,Ni的厚度为30nm,Au的厚度为200nm;随后将外延片浸泡在剥离液中进行金属剥离,用超纯水冲洗2min,并用氮气吹干,最终获得栅电极,如图2(j)。Step 20: Deposit Ni/Au two-layer metal on the epitaxial wafer with the gate window by photolithography, the thickness of Ni is 30nm, and the thickness of Au is 200nm; Peel off, rinse with ultrapure water for 2 minutes, and blow dry with nitrogen to finally obtain the gate electrode, as shown in Figure 2(j).

步骤二十一,光刻已形成源、漏、栅极结构的外延片,获得加厚电极图形,采用电子束蒸发技术加厚电极,完成如图1所示的器件制作。Step 21: Photolithography has formed the epitaxial wafer with source, drain, and gate structures to obtain thickened electrode patterns, and electron beam evaporation technology is used to thicken the electrodes to complete the fabrication of the device as shown in Figure 1.

实施例2Example 2

制作过渡层为AlN,GaN主缓冲层厚度为2um,Al0.27Ga0.73N主势垒层厚度为24nm,凹槽刻蚀深度为80nm,GaN次缓冲层在凹槽底面向上方向上厚度为50nm、在凹槽侧面水平方向上厚度为25nm,Al0.27Ga0.73N次势垒层为在凹槽底面向上方向上厚度为24nm,在凹槽侧面水平方向上厚度为12nm,栅介质层厚度为40nm的MIS栅GaN基增强型HEMT器件,其步骤是:The transition layer is made of AlN, the thickness of the GaN main buffer layer is 2um, the thickness of the Al 0.27 Ga 0.73 N main barrier layer is 24nm, the groove etching depth is 80nm, and the thickness of the GaN secondary buffer layer is 50nm in the upward direction of the bottom of the groove. The thickness in the horizontal direction of the side of the groove is 25nm, the thickness of the Al 0.27 Ga 0.73 N sub-barrier layer is 24nm in the upward direction of the bottom of the groove, the thickness in the horizontal direction of the side of the groove is 12nm, and the thickness of the gate dielectric layer is 40nm MIS gate GaN-based enhancement mode HEMT device, the steps are:

步骤1,与实施例1的步骤一相同。Step 1 is the same as Step 1 of Embodiment 1.

步骤2,与实施例1的步骤二相同。Step 2 is the same as Step 2 of Example 1.

步骤3,采用MOCVD技术在过渡层上外延生长厚度为2um的GaN主缓冲层,如图2(b)。In step 3, a GaN main buffer layer with a thickness of 2um is epitaxially grown on the transition layer by MOCVD technology, as shown in Fig. 2(b).

外延采用的工艺条件是:温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,镓源流量为220sccm。The process conditions adopted for the epitaxy are: the temperature is 920° C., the pressure is 40 Torr, the hydrogen gas flow rate is 500 sccm, the ammonia gas flow rate is 5000 sccm, and the gallium source flow rate is 220 sccm.

步骤4,采用MOCVD技术在主缓冲层上外延厚度为24nm的N型掺杂Al0.27Ga0.73N主势垒层,通过在生长过程中通入硅烷SiH4实现掺杂浓度为6×1019cm-3的N型掺杂,这样在AlN过渡层上形成了AlGaN/GaN异质结,在AlGaN/GaN异质结界面靠向GaN一侧就形成了主二维电子气2DEG,形成的外延片结构如图2(c)。Step 4: epitaxial N-type doped Al 0.27 Ga 0.73 N main barrier layer with a thickness of 24nm on the main buffer layer by MOCVD technology, and achieved a doping concentration of 6×10 19 cm by injecting silane SiH 4 during the growth process -3 N-type doping, so that the AlGaN/GaN heterojunction is formed on the AlN transition layer, and the main two-dimensional electron gas 2DEG is formed on the GaN side of the AlGaN/GaN heterojunction interface, forming an epitaxial wafer The structure is shown in Figure 2(c).

外延采用的工艺条件是:温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm。The process conditions used for epitaxy are: temperature 920°C, pressure 40 Torr, hydrogen gas flow 500 sccm, ammonia gas flow 5000 sccm, aluminum source flow 10 sccm, gallium source flow 40 sccm.

步骤5,与实施例1的步骤五相同。Step 5 is the same as Step 5 of Embodiment 1.

步骤6,与实施例1的步骤六相同。Step 6 is the same as Step 6 of Embodiment 1.

步骤7,对去胶后的外延片光刻出凹槽窗口,并采用反应离子刻蚀RIE设备刻蚀凹槽窗口下的AlGaN/GaN异质结,形成底面为0001极性面,侧面为非0001面的凹槽结构,如图2(e)。Step 7: Photoetch a groove window on the epitaxial wafer after deglue, and use reactive ion etching RIE equipment to etch the AlGaN/GaN heterojunction under the groove window to form a 0001 polar surface on the bottom surface and a non-polar surface on the side surface. The groove structure of the 0001 plane is shown in Fig. 2(e).

刻蚀采用流量为15sccm的氯气Cl2,功率为200W,压强为10mT,刻蚀深度为80nm。The etching uses chlorine Cl 2 with a flow rate of 15 sccm, a power of 200 W, a pressure of 10 mT, and an etching depth of 80 nm.

步骤8,与实施例1的步骤八相同。Step 8 is the same as Step 8 of Embodiment 1.

步骤9,与实施例1的步骤九相同。Step 9 is the same as Step 9 in Embodiment 1.

步骤10,重复步骤三,在凹槽内壁二次生长不同厚度的GaN次缓冲层,即在凹槽底面垂直方向上生长的GaN次缓冲层厚度为50nm,在凹槽侧面水平方向上生长的GaN次缓冲层厚度为25nm,如图2(f)。Step 10, repeat step 3, and grow GaN sub-buffer layers with different thicknesses on the inner wall of the groove for the second time, that is, the thickness of the GaN sub-buffer layer grown vertically on the bottom of the groove is 50 nm, and the GaN sub-buffer layer grown horizontally on the side of the groove The thickness of the secondary buffer layer is 25nm, as shown in Figure 2(f).

步骤11,采用MOCVD技术在GaN次缓冲层上二次生长不同厚度的Al0.27Ga0.73N次势垒层,即在凹槽底面垂直方向上生长的Al0.27Ga0.73N次势垒层厚度为24nm,在凹槽侧面水平方向上生长的Al0.27Ga0.73N次势垒层厚度为12nm,这样在次AlGaN势垒层和次GaN缓冲层的界面靠向GaN一侧就形成了次二维电子气2DEG,并且保证了次二维电子气2DEG的水平位置低于主二维电子气2DEG的水平位置,如图2(g)。Step 11, using MOCVD technology to re-grow Al 0.27 Ga 0.73 N sub-barrier layers with different thicknesses on the GaN sub-buffer layer, that is, the thickness of the Al 0.27 Ga 0.73 N sub-barrier layer grown vertically on the bottom of the groove is 24nm , the thickness of the Al 0.27 Ga 0.73 N sub-barrier layer grown in the horizontal direction on the side of the groove is 12nm, so that a sub-two-dimensional electron gas is formed at the interface between the sub-AlGaN barrier layer and the sub-GaN buffer layer near the GaN side 2DEG, and ensure that the horizontal position of the secondary two-dimensional electron gas 2DEG is lower than that of the main two-dimensional electron gas 2DEG, as shown in Figure 2(g).

生长的工艺条件是:温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm。The growth process conditions are as follows: a temperature of 920° C., a pressure of 40 Torr, a hydrogen gas flow of 500 sccm, an ammonia gas flow of 5000 sccm, an aluminum source flow of 10 sccm, and a gallium source flow of 40 sccm.

步骤12,在二次生长Al0.27Ga0.73N次势垒层后的外延片上,利用等离子增强化学气相淀积PECVD方法淀积厚度为40nm的SiN介质层,该介质层覆盖次势垒层和凹槽内壁,如图2(h)。Step 12, on the epitaxial wafer after secondary growth of the Al 0.27 Ga 0.73 N sub-barrier layer, deposit a SiN dielectric layer with a thickness of 40 nm by using the plasma enhanced chemical vapor deposition PECVD method, and the dielectric layer covers the sub-barrier layer and the concave The inner wall of the groove, as shown in Figure 2(h).

淀积该介质层的工艺条件为:氨气流量为2.5sccm,氮气流量为900sccm,硅烷流量为200sccm,温度为300℃,压力为900mT,功率为25W。The process conditions for depositing the dielectric layer are as follows: the flow rate of ammonia gas is 2.5 sccm, the flow rate of nitrogen gas is 900 sccm, the flow rate of silane gas is 200 sccm, the temperature is 300° C., the pressure is 900 mT, and the power is 25 W.

步骤13,与实施例1的步骤十三相同。Step 13 is the same as Step 13 in Embodiment 1.

步骤14,与实施例1的步骤十四相同。Step 14 is the same as Step 14 in Embodiment 1.

步骤15,与实施例1的步骤十五相同。Step 15 is the same as Step 15 of Embodiment 1.

步骤16,与实施例1的步骤十六相同。Step 16 is the same as Step 16 in Embodiment 1.

步骤17,与实施例1的步骤十七相同。Step 17 is the same as Step 17 in Embodiment 1.

步骤18,与实施例1的步骤十八相同。Step 18 is the same as Step 18 in Embodiment 1.

步骤19,与实施例1的步骤十九相同。Step 19 is the same as Step 19 in Embodiment 1.

步骤20,与实施例1的步骤二十相同。Step 20 is the same as Step 20 of Embodiment 1.

步骤21,与实施例1的步骤二十一相同。Step 21 is the same as Step 21 of Embodiment 1.

实施例3Example 3

制作过渡层为AlN,GaN主缓冲层厚度为3um,Al0.2Ga0.8N主势垒层厚度为30nm,凹槽刻蚀深度为140nm,GaN次缓冲层在凹槽底面向上方向上厚度为100nm、在凹槽侧面水平方向上厚度为50nm,Al0.2Ga0.8N次势垒层为在凹槽底面向上方向上厚度为30nm,在凹槽侧面水平方向上厚度为15nm,栅介质层厚度为60nm的MIS栅GaN基增强型HEMT器件,其步骤是:The transition layer is made of AlN, the thickness of the GaN main buffer layer is 3um, the thickness of the Al 0.2 Ga 0.8 N main barrier layer is 30nm, the groove etching depth is 140nm, and the thickness of the GaN secondary buffer layer is 100nm in the upward direction of the bottom of the groove. The thickness in the horizontal direction of the side of the groove is 50nm, the thickness of the Al 0.2 Ga 0.8 N sub-barrier layer is 30nm in the upward direction of the bottom of the groove, the thickness in the horizontal direction of the side of the groove is 15nm, and the thickness of the gate dielectric layer is 60nm MIS gate GaN-based enhancement mode HEMT device, the steps are:

步骤A,与实施例1的步骤一相同。Step A is the same as step one of embodiment 1.

步骤B,与实施例1的步骤二相同。Step B is the same as Step 2 of Example 1.

步骤C,采用MOCVD技术在过渡层上外延生长厚度为3um的GaN主缓冲层,如图2(b)。In step C, a GaN main buffer layer with a thickness of 3 μm is epitaxially grown on the transition layer by MOCVD technology, as shown in FIG. 2( b ).

外延采用的工艺条件是:温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,镓源流量为220sccm。The process conditions adopted for the epitaxy are: the temperature is 920° C., the pressure is 40 Torr, the hydrogen gas flow rate is 500 sccm, the ammonia gas flow rate is 5000 sccm, and the gallium source flow rate is 220 sccm.

步骤D,采用MOCVD技术在主缓冲层上外延厚度为30nm的N型掺杂Al0.2Ga0.8N主势垒层,通过在生长过程中通入硅烷SiH4实现掺杂浓度为6×1019cm-3的N型掺杂,这样在AlN过渡层上形成了AlGaN/GaN异质结,在AlGaN/GaN异质结界面靠向GaN一侧就形成了主二维电子气2DEG,形成的外延片结构如图2(c)。Step D, use MOCVD technology to epitaxially N-type doped Al 0.2 Ga 0.8 N main barrier layer with a thickness of 30nm on the main buffer layer, and achieve a doping concentration of 6×10 19 cm by injecting silane SiH 4 during the growth process -3 N-type doping, so that the AlGaN/GaN heterojunction is formed on the AlN transition layer, and the main two-dimensional electron gas 2DEG is formed on the GaN side of the AlGaN/GaN heterojunction interface, forming an epitaxial wafer The structure is shown in Figure 2(c).

外延采用的工艺条件是:温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm。The process conditions used for epitaxy are: temperature 920°C, pressure 40 Torr, hydrogen gas flow 500 sccm, ammonia gas flow 5000 sccm, aluminum source flow 10 sccm, gallium source flow 40 sccm.

步骤E,与实施例1的步骤五相同。Step E is the same as Step 5 of Example 1.

步骤F,与实施例1的步骤六相同。Step F is the same as Step 6 of Embodiment 1.

步骤G,对去胶后的外延片光刻出凹槽窗口,并采用反应离子刻蚀RIE设备刻蚀凹槽窗口下的AlGaN/GaN异质结,形成底面为0001极性面,侧面为非0001面的凹槽结构,如图2(e)。Step G, photoetch a groove window on the epitaxial wafer after degelling, and use reactive ion etching RIE equipment to etch the AlGaN/GaN heterojunction under the groove window to form a 0001 polar surface on the bottom surface and a non-polar surface on the side surface. The groove structure of the 0001 plane is shown in Fig. 2(e).

刻蚀采用流量为15sccm的氯气Cl2,功率为200W,压强为10mT,刻蚀深度为140nm。The etching adopts chlorine gas Cl 2 with a flow rate of 15 sccm, a power of 200 W, a pressure of 10 mT, and an etching depth of 140 nm.

步骤H,与实施例1的步骤八相同。Step H is the same as Step 8 of Embodiment 1.

步骤I,与实施例1的步骤九相同。Step 1 is the same as Step 9 of Embodiment 1.

步骤J,重复步骤三,在凹槽内壁二次生长不同厚度的GaN次缓冲层,即在凹槽底面垂直方向上生长的GaN次缓冲层厚度为100nm,在凹槽侧面水平方向上生长的GaN次缓冲层厚度为50nm,如图2(f)。Step J, repeating Step 3, growing GaN sub-buffer layers with different thicknesses on the inner wall of the groove for the second time, that is, the thickness of the GaN sub-buffer layer grown vertically on the bottom of the groove is 100 nm, and the GaN sub-buffer layer grown horizontally on the side of the groove The thickness of the secondary buffer layer is 50nm, as shown in Figure 2(f).

步骤K,采用MOCVD技术在GaN次缓冲层上二次生长不同厚度的Al0.35Ga0.65N次势垒层,即在凹槽底面垂直方向上生长的Al0.2Ga0.8N次势垒层厚度为30nm,在凹槽侧面水平方向上生长的Al0.2Ga0.8N次势垒层厚度为15nm,这样在次AlGaN势垒层和次GaN缓冲层的界面靠向GaN一侧就形成了次二维电子气2DEG,并且保证了次二维电子气2DEG的水平位置低于主二维电子气2DEG的水平位置,如图2(g)。Step K, secondary growth of Al 0.35 Ga 0.65 N sub-barrier layers with different thicknesses on the GaN sub-buffer layer by MOCVD technology, that is, the thickness of the Al 0.2 Ga 0.8 N sub-barrier layer grown vertically on the bottom of the groove is 30nm , the thickness of the Al 0.2 Ga 0.8 N sub-barrier layer grown on the side of the groove in the horizontal direction is 15nm, so that a sub-two-dimensional electron gas is formed at the interface between the sub-AlGaN barrier layer and the sub-GaN buffer layer near the GaN side 2DEG, and ensure that the horizontal position of the secondary two-dimensional electron gas 2DEG is lower than that of the main two-dimensional electron gas 2DEG, as shown in Figure 2(g).

生长的工艺条件是:温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm。The growth process conditions are as follows: a temperature of 920° C., a pressure of 40 Torr, a hydrogen gas flow of 500 sccm, an ammonia gas flow of 5000 sccm, an aluminum source flow of 10 sccm, and a gallium source flow of 40 sccm.

步骤L,在二次生长Al0.2Ga0.8N次势垒层后的外延片上,利用等离子增强化学气相淀积PECVD方法淀积厚度为60nm的SiN介质层,该介质层覆盖次势垒层和凹槽内壁,如图2(h)。Step L, on the epitaxial wafer after secondary growth of the Al 0.2 Ga 0.8 N sub-barrier layer, deposit a SiN dielectric layer with a thickness of 60 nm by using the plasma-enhanced chemical vapor deposition PECVD method, and the dielectric layer covers the sub-barrier layer and the concave The inner wall of the groove, as shown in Figure 2(h).

淀积该介质层的工艺条件为:氨气流量为2.5sccm,氮气流量为900sccm,硅烷流量为200sccm,温度为300℃,压力为900mT,功率为25W。The process conditions for depositing the dielectric layer are as follows: the flow rate of ammonia gas is 2.5 sccm, the flow rate of nitrogen gas is 900 sccm, the flow rate of silane gas is 200 sccm, the temperature is 300° C., the pressure is 900 mT, and the power is 25 W.

步骤M,与实施例1的步骤十二相同。Step M is the same as Step 12 of Embodiment 1.

步骤N,与实施例1的步骤十三相同。Step N is the same as Step 13 of Embodiment 1.

步骤O,与实施例1的步骤十四相同。Step 0 is the same as Step 14 of Embodiment 1.

步骤P,与实施例1的步骤十五相同。Step P is the same as Step 15 of Embodiment 1.

步骤Q,与实施例1的步骤十六相同。Step Q is the same as Step 16 of Embodiment 1.

步骤R,与实施例1的步骤十七相同。Step R is the same as Step 17 of Embodiment 1.

步骤S,与实施例1的步骤十八相同。Step S is the same as Step 18 of Embodiment 1.

步骤T,与实施例1的步骤十九相同。Step T is the same as Step 19 of Embodiment 1.

步骤U,与实施例1的步骤二十相同。Step U is the same as Step 20 of Embodiment 1.

步骤v,与实施例1的步骤二十一相同。Step v is the same as Step 21 of Embodiment 1.

上述实施例仅本发明的几个优选实例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,能够在不背离本发明的原理和范围的情况下,根据本发明的方法进行形式和细节上的各种修正和改变,但是这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。The above-described embodiments are only several preferred examples of the present invention, and do not constitute any limitation to the present invention. Obviously, for those skilled in the art, after understanding the contents and principles of the present invention, they can Under the circumstances of the invention, various amendments and changes in form and details are made according to the method of the present invention, but these amendments and changes based on the present invention are still within the protection scope of the claims of the present invention.

Claims (5)

1.一种金属绝缘体半导体MIS栅GaN基增强型高电子迁移率晶体管HEMT器件,包括:衬底(1)、过渡层(2)、GaN主缓冲层(3)、N型AlGaN主势垒层(4)、N型AlGaN主势垒层(4)顶端两侧为源极(9)和漏极(10),中间为栅电极(13),其特征在于,GaN主缓冲层(3)中间刻蚀有凹槽(5),该凹槽的底面为0001极性面,凹槽侧面为非0001面,该凹槽的内壁依次外延有GaN次缓冲层(6)、AlGaN次势垒层(7)和介质层(8);栅电极(13)淀积在介质层(8)上。1. A metal insulator semiconductor MIS gate GaN-based enhanced high electron mobility transistor HEMT device, comprising: substrate (1), transition layer (2), GaN main buffer layer (3), N-type AlGaN main barrier layer (4), the source (9) and the drain (10) are on both sides of the top of the N-type AlGaN main barrier layer (4), and the gate electrode (13) is in the middle, and it is characterized in that the middle of the GaN main buffer layer (3) A groove (5) is etched, the bottom surface of the groove is a 0001 polar surface, and the side surface of the groove is a non-0001 surface, and the inner wall of the groove is successively epitaxially provided with a GaN sub-buffer layer (6), an AlGaN sub-barrier layer ( 7) and a dielectric layer (8); the gate electrode (13) is deposited on the dielectric layer (8). 2.根据权利要求1所述的器件,其特征在于,GaN主缓冲层(3)与AlGaN主势垒层(4)的界面处形成主二维电子气2DEG沟道(11),该沟道(11)位于凹槽(5)的两侧;凹槽内外延的GaN次缓冲层(6)与AlGaN次势垒层(7)界面形成次二维电子气2DEG沟道(12)。2. The device according to claim 1, characterized in that a main two-dimensional electron gas 2DEG channel (11) is formed at the interface of the GaN main buffer layer (3) and the AlGaN main barrier layer (4), and the channel (11) located on both sides of the groove (5); the interface of the epitaxial GaN sub-buffer layer (6) and the AlGaN sub-barrier layer (7) in the groove forms a sub-two-dimensional electron gas 2DEG channel (12). 3.根据权利要求1所述的器件,其特征在于,次二维电子气2DEG沟道(12)的水平位置低于主二维电子气2DEG沟道(11)的水平位置。3. The device according to claim 1, characterized in that the horizontal position of the secondary two-dimensional electron gas 2DEG channel (12) is lower than the horizontal position of the main two-dimensional electron gas 2DEG channel (11). 4.根据权利要求1所述的器件,其特征在于,主势垒层(4)为N型掺杂,掺杂浓度为6×1019cm-34. The device according to claim 1, characterized in that the main barrier layer (4) is N-type doped with a doping concentration of 6×10 19 cm -3 . 5.一种金属绝缘体半导体MIS栅GaN基增强型高电子迁移率晶体管HEMT器件的制作方法,包括以下步骤:5. A method for making a metal insulator semiconductor MIS gate GaN-based enhancement mode high electron mobility transistor HEMT device, comprising the following steps: (1)在反应室中对衬底表面进行预处理;(1) Pretreating the substrate surface in the reaction chamber; (2)在衬底上外延生长AlGaN/GaN外延层,其中GaN厚度为1um~3um,N型掺杂的AlxGa1-xN势垒层厚度为14nm~30nm,其中Al元素的摩尔含量x为20%-35%;(2) Epitaxial growth of AlGaN/GaN epitaxial layer on the substrate, in which the thickness of GaN is 1um~3um, the thickness of N-type doped Al x Ga 1-x N barrier layer is 14nm~30nm, and the molar content of Al element x is 20%-35%; (3)在外延层上淀积一层掩膜介质层,再进行光刻,并采用湿法刻蚀方法对外延层上的介质层进行刻蚀,在外延层上形成长为0.5um的凹槽;(3) Deposit a mask dielectric layer on the epitaxial layer, then perform photolithography, and etch the dielectric layer on the epitaxial layer by wet etching, and form a 0.5um-long concave on the epitaxial layer groove; (4)光刻出凹槽区域,并采用反应离子刻蚀RIE方法对凹槽区域中的AlGaN/GaN外延层进行刻蚀,刻蚀深度为35nm~140nm;(4) Photoetch the groove area, and use the reactive ion etching RIE method to etch the AlGaN/GaN epitaxial layer in the groove area, and the etching depth is 35nm-140nm; (5)保留凹槽之外的掩膜介质层,将刻蚀后的外延层通过金属有机物化学气相淀积MOCVD反应室,沿凹槽底面垂直向上的方向上生长20nm~100nm厚的GaN层和14nm~30nm厚的AlGaN层,沿凹槽侧面方向生长10nm~50nm厚的GaN层和7nm~15nm厚的AlGaN层;(5) Keep the mask dielectric layer outside the groove, pass the etched epitaxial layer through the metal organic chemical vapor deposition MOCVD reaction chamber, and grow a 20nm-100nm thick GaN layer and A 14nm-30nm thick AlGaN layer, a 10nm-50nm thick GaN layer and a 7nm-15nm thick AlGaN layer are grown along the side of the groove; (6)去除掩膜介质层;(6) removing the mask dielectric layer; (7)在去除掩膜介质层的材料表面上,采用化学气相淀积CVD或者物理气相淀积PVD方法淀积厚度为20nm~60nm的栅介质层;(7) Depositing a gate dielectric layer with a thickness of 20nm to 60nm by chemical vapor deposition CVD or physical vapor deposition PVD on the surface of the material from which the mask dielectric layer has been removed; (8)在栅介质层上,先光刻出源、漏区域,再刻蚀出源、漏窗口;(8) On the gate dielectric layer, the source and drain regions are first photoetched, and then the source and drain windows are etched; (9)在光刻后的材料表面上,采用电子束蒸发技术蒸发欧姆接触的金属,并通过剥离、退火后,形成源、漏接触电极;(9) On the surface of the material after photolithography, the metal in ohmic contact is evaporated by electron beam evaporation technology, and the source and drain contact electrodes are formed after stripping and annealing; (10)在栅介质上光刻栅区域,并采用电子束蒸发技术蒸发栅极金属,经剥离后,形成金属绝缘体半导体MIS栅极;(10) Lithographically etch the gate area on the gate dielectric, and use electron beam evaporation technology to evaporate the gate metal, and form a metal insulator semiconductor MIS gate after stripping; (11)光刻已形成源、漏、栅极的器件表面,获得加厚电极图形,并采用电子束蒸发技术加厚电极,完成器件制作。(11) Photolithography has formed the device surface of the source, drain and gate, obtained thickened electrode patterns, and used electron beam evaporation technology to thicken the electrodes to complete the device production.
CN2012101310453A 2012-04-29 2012-04-29 MIS gate GaN-based enhanced HEMT device and manufacturing method Pending CN102646705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101310453A CN102646705A (en) 2012-04-29 2012-04-29 MIS gate GaN-based enhanced HEMT device and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101310453A CN102646705A (en) 2012-04-29 2012-04-29 MIS gate GaN-based enhanced HEMT device and manufacturing method

Publications (1)

Publication Number Publication Date
CN102646705A true CN102646705A (en) 2012-08-22

Family

ID=46659416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101310453A Pending CN102646705A (en) 2012-04-29 2012-04-29 MIS gate GaN-based enhanced HEMT device and manufacturing method

Country Status (1)

Country Link
CN (1) CN102646705A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715244A (en) * 2012-09-28 2014-04-09 富士通株式会社 Semiconductor device and manufacturing method of semiconductor device
CN104916684A (en) * 2015-06-11 2015-09-16 大连理工大学 Longitudinal short-opening grid channel-type HEMT device and preparation method thereof
CN107302022A (en) * 2017-07-07 2017-10-27 西安电子科技大学 Low injured surface processing high efficiency device and preparation method thereof
CN110504316A (en) * 2019-07-19 2019-11-26 中国电子科技集团公司第五十五研究所 A GaN high electron mobility transistor with split sub-devices and method of making the same
CN110875382A (en) * 2018-08-29 2020-03-10 苏州捷芯威半导体有限公司 Semiconductor device and method of manufacturing the same
CN111834439A (en) * 2019-04-22 2020-10-27 珠海格力电器股份有限公司 A high electron mobility transistor, its preparation method and electronic device
CN117790563A (en) * 2023-12-14 2024-03-29 湖北九峰山实验室 Enhancement type GaN high electron mobility transistor and preparation method thereof
WO2025020428A1 (en) * 2023-07-24 2025-01-30 中国科学院苏州纳米技术与纳米仿生研究所 Enhanced field effect transistor and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050189559A1 (en) * 2004-02-27 2005-09-01 Kabushiki Kaisha Toshiba Semiconductor device
US20050236365A1 (en) * 2004-04-27 2005-10-27 Eudyna Devices, Inc. Dry etching method and semiconductor device
CN102148244A (en) * 2009-12-28 2011-08-10 住友电气工业株式会社 Semiconductor device and method for producing the same
CN102386223A (en) * 2011-11-01 2012-03-21 中山大学 High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050189559A1 (en) * 2004-02-27 2005-09-01 Kabushiki Kaisha Toshiba Semiconductor device
US20050236365A1 (en) * 2004-04-27 2005-10-27 Eudyna Devices, Inc. Dry etching method and semiconductor device
CN102148244A (en) * 2009-12-28 2011-08-10 住友电气工业株式会社 Semiconductor device and method for producing the same
CN102386223A (en) * 2011-11-01 2012-03-21 中山大学 High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9818840B2 (en) 2012-09-28 2017-11-14 Transphorm Japan, Inc. Semiconductor device and manufacturing method of semiconductor device
US9299822B2 (en) 2012-09-28 2016-03-29 Transphorm Japan, Inc. Semiconductor device and manufacturing method of semiconductor device
CN103715244B (en) * 2012-09-28 2017-03-01 创世舫电子日本株式会社 Semiconductor device and the manufacture method of semiconductor device
US9640648B2 (en) 2012-09-28 2017-05-02 Transphorm Japan, Inc. Semiconductor device and manufacturing method of semiconductor device
CN103715244A (en) * 2012-09-28 2014-04-09 富士通株式会社 Semiconductor device and manufacturing method of semiconductor device
CN104916684B (en) * 2015-06-11 2018-04-27 大连理工大学 A kind of longitudinal direction is short to open grid groove type HEMT device and preparation method thereof
CN104916684A (en) * 2015-06-11 2015-09-16 大连理工大学 Longitudinal short-opening grid channel-type HEMT device and preparation method thereof
CN107302022A (en) * 2017-07-07 2017-10-27 西安电子科技大学 Low injured surface processing high efficiency device and preparation method thereof
CN110875382A (en) * 2018-08-29 2020-03-10 苏州捷芯威半导体有限公司 Semiconductor device and method of manufacturing the same
CN111834439A (en) * 2019-04-22 2020-10-27 珠海格力电器股份有限公司 A high electron mobility transistor, its preparation method and electronic device
CN110504316A (en) * 2019-07-19 2019-11-26 中国电子科技集团公司第五十五研究所 A GaN high electron mobility transistor with split sub-devices and method of making the same
WO2025020428A1 (en) * 2023-07-24 2025-01-30 中国科学院苏州纳米技术与纳米仿生研究所 Enhanced field effect transistor and manufacturing method therefor
CN117790563B (en) * 2023-12-14 2024-11-19 湖北九峰山实验室 An enhanced GaN high electron mobility transistor and a method for preparing the same
CN117790563A (en) * 2023-12-14 2024-03-29 湖北九峰山实验室 Enhancement type GaN high electron mobility transistor and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102629624B (en) Metal-insulator-semiconductor (MIS) grid enhanced high electron mobility transistor (HEMT) device based on gallium nitride (GaN) and manufacture method of MIS grid enhanced HEMT device
CN107946358B (en) An AlGaN/GaN heterojunction HEMT device compatible with Si-CMOS process and a manufacturing method thereof
US11888052B2 (en) Semiconductor device and manufacturing method thereof employing an etching transition layer
CN102683406B (en) GaN-based MS grid enhancement type high electron mobility transistor and manufacture method thereof
CN102637726A (en) MS (Metal-Semiconductor)-grid GaN-based enhanced transistor with high electron mobility and manufacture method thereof
CN101252088B (en) A Realization Method of Enhanced AlGaN/GaN HEMT Device
US20160218204A1 (en) Enhancement Mode High Electron Mobility Transistor and Manufacturing Method Thereof
CN102646705A (en) MIS gate GaN-based enhanced HEMT device and manufacturing method
US20110241017A1 (en) Field effect transistor
JP2021510461A (en) Group III nitride enhancement type HEMT based on the composite barrier layer structure and its manufacturing method
CN101465372A (en) AlN/GaN enhancement type metal-insulator-semiconductor field effect transistor and method of producing the same
CN102130160A (en) Trench channel AlGaN/GaN enhanced HEMT device and manufacturing method
CN108155099A (en) A kind of p-type grid HEMT device comprising dielectric layer and preparation method thereof
CN112968059B (en) A Novel Enhancement Mode GaN HEMT Device Structure
CN102386223A (en) High-threshold voltage gallium nitride (GaN) enhancement metal oxide semiconductor heterostructure field effect transistor (MOSHFET) device and manufacturing method
US12087855B2 (en) Vertical UMOSFET device with high channel mobility and preparation method thereof
CN106033724A (en) Group III nitride enhanced HEMT and its preparation method
CN106229345A (en) Laminated gate medium GaN base insulated gate HEMT and manufacture method
JP2011082415A (en) Group iii nitride-based field effect transistor and method of manufacturing the same
CN108962752A (en) Enhanced HEMT device of p-type grid and preparation method thereof
JP2010166027A (en) GaN-BASED FIELD-EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE SAME
CN102945859A (en) GaN heterojunction HEMT (High Electron Mobility Transistor) device
CN114899227A (en) Enhanced gallium nitride-based transistor and preparation method thereof
CN109037326A (en) A kind of enhanced HEMT device and preparation method thereof with p type buried layer structure
Huang et al. AlGaN/GaN high electron mobility transistors with selective area grown p-GaN gates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120822