[go: up one dir, main page]

CN102637726A - MS (Metal-Semiconductor)-grid GaN-based enhanced transistor with high electron mobility and manufacture method thereof - Google Patents

MS (Metal-Semiconductor)-grid GaN-based enhanced transistor with high electron mobility and manufacture method thereof Download PDF

Info

Publication number
CN102637726A
CN102637726A CN2012101310275A CN201210131027A CN102637726A CN 102637726 A CN102637726 A CN 102637726A CN 2012101310275 A CN2012101310275 A CN 2012101310275A CN 201210131027 A CN201210131027 A CN 201210131027A CN 102637726 A CN102637726 A CN 102637726A
Authority
CN
China
Prior art keywords
gan
groove
layer
algan
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101310275A
Other languages
Chinese (zh)
Inventor
张进成
张琳霞
郝跃
王冲
马晓华
孟凡娜
侯耀伟
党李莎
艾姗
李小刚
鲁明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN2012101310275A priority Critical patent/CN102637726A/en
Publication of CN102637726A publication Critical patent/CN102637726A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种金属半导体MS栅GaN基增强型高电子迁移率晶体管及制作方法,主要解决现有GaN基增强型器件的阈值电压低及其可控行性差以及可靠性低的问题。该器件包括:衬底(1)、过渡层(2)、GaN主缓冲层(3)、N型AlGaN主势垒层(4),N型AlGaN主势垒层(4)顶端两侧为源极(9)和漏极(10),GaN主缓冲层(3)的中间刻蚀有凹槽(5),该凹槽(5)的内壁上依次设有GaN次缓冲层(6)、AlGaN次势垒层(7)和栅极(13),凹槽(5)两侧的N型AlGaN主势垒层(4)上方的源、漏极之外设有介质(8)。本发明具有阈值电压高、调控性好、电流密度大、夹断特性优良,且工艺成熟,重复性好,可靠性高的优势,可用于大功率开关以及数字电路中。

Figure 201210131027

The invention discloses a metal-semiconductor MS gate GaN-based enhanced high electron mobility transistor and a manufacturing method, which mainly solve the problems of low threshold voltage, poor controllability and low reliability of the existing GaN-based enhanced device. The device includes: a substrate (1), a transition layer (2), a GaN main buffer layer (3), an N-type AlGaN main barrier layer (4), and both sides of the top of the N-type AlGaN main barrier layer (4) are sources pole (9) and drain (10), a groove (5) is etched in the middle of the GaN main buffer layer (3), and the inner wall of the groove (5) is successively provided with a GaN sub-buffer layer (6), an AlGaN A dielectric (8) is provided outside the source and drain above the N-type AlGaN main barrier layer (4) on both sides of the sub-potential barrier layer (7) and the grid (13). The invention has the advantages of high threshold voltage, good controllability, high current density, excellent pinch-off characteristics, mature technology, good repeatability and high reliability, and can be used in high-power switches and digital circuits.

Figure 201210131027

Description

MS栅GaN基增强型高电子迁移率晶体管及制作方法MS gate GaN-based enhancement-type high electron mobility transistor and manufacturing method

技术领域 technical field

本发明属于微电子技术领域,涉及半导体器件,具体的说是一种金属半导体MS栅GaN基增强型高电子迁移率晶体管及制造,可用于制作高温大功率器件以及作为数字集成电路的基本单元。The invention belongs to the technical field of microelectronics and relates to semiconductor devices, specifically a metal semiconductor MS gate GaN-based enhanced high electron mobility transistor and its manufacture, which can be used to make high-temperature and high-power devices and as the basic unit of digital integrated circuits.

背景技术 Background technique

随着现代武器装备和航空航天、核能、通信技术、汽车电子、开关电源的发展,对半导体器件的性能提出了更高的要求。作为宽禁带半导体材料的典型代表,GaN基材料具有禁带宽度大、电子饱和漂移速度高、临界击穿场强高、热导率高、稳定性好、耐腐蚀、抗辐射等特点,可用于制作高温、高频及大功率电子器件。另外,GaN还具有优良的电子特性,可以和AlGaN形成调制掺杂的AlGaN/GaN异质结构,该结构在室温下可以获得高于1500cm2/Vs的电子迁移率,以及高达3×107cm/s的峰值电子速度和2×107cm/s的饱和电子速度,并获得比第二代化合物半导体异质结构更高的二维电子气密度,被誉为是研制微波功率器件的理想材料。因此,基于AlGaN/GaN异质结的高电子迁移率晶体管HEMT在微波大功率器件方面具有非常好的应用前景。With the development of modern weaponry and aerospace, nuclear energy, communication technology, automotive electronics, and switching power supplies, higher requirements are placed on the performance of semiconductor devices. As a typical representative of wide bandgap semiconductor materials, GaN-based materials have the characteristics of large bandgap width, high electron saturation drift velocity, high critical breakdown field strength, high thermal conductivity, good stability, corrosion resistance, and radiation resistance. Used in the production of high temperature, high frequency and high power electronic devices. In addition, GaN also has excellent electronic properties, and can form a modulation-doped AlGaN/GaN heterostructure with AlGaN. This structure can obtain an electron mobility higher than 1500 cm 2 /Vs at room temperature, and a maximum of 3×10 7 cm /s peak electron velocity and 2×10 7 cm/s saturation electron velocity, and obtained a two-dimensional electron gas density higher than that of the second-generation compound semiconductor heterostructure, known as an ideal material for the development of microwave power devices . Therefore, the high electron mobility transistor HEMT based on AlGaN/GaN heterojunction has a very good application prospect in microwave high-power devices.

由于AlGaN/GaN异质结得天独厚的优势,AlGaN/GaN异质结材料的生长和AlGaN/GaN HEMT器件的研制始终占据着GaN电子器件研究的主要地位。然而十几年来针对GaN基电子器件研究的大部分工作集中在耗尽型AlGaN/GaN HEMT器件上,这是因为AlGaN/GaN异质结构中较强极化电荷的存在,使得制造基于GaN的增强型器件变得十分困难,因此高性能AlGaN/GaN增强型HEMT的研究具有非常重要的意义。Due to the unique advantages of AlGaN/GaN heterojunction, the growth of AlGaN/GaN heterojunction materials and the development of AlGaN/GaN HEMT devices have always occupied the main position in the research of GaN electronic devices. However, most of the research work on GaN-based electronic devices in the past decade has focused on depletion-mode AlGaN/GaN HEMT devices. Type devices become very difficult, so the study of high-performance AlGaN/GaN enhancement-mode HEMTs is of great significance.

AlGaN/GaN增强型HEMT具有广阔的应用前景。首先,GaN基材料被誉为是研制微波功率器件的理想材料,而增强型器件在微波功率放大器和低噪声放大器等电路中由于减少了负电压源,从而大大降低了电路的复杂性以及成本,且AlGaN/GaN增强型HEMT器件在微波大功率器件和电路具有很好的电路兼容性。同时,增强型器件的研制使单片集成耗尽型/增强型器件的数字电路成为可能。而且,在功率开光应用方面,AlGaN/GaN增强型HEMT也有很大的应用前景。因而高性能AlGaN/GaN增强型HEMT器件的研究得到了极大的重视。AlGaN/GaN enhanced HEMT has broad application prospects. First of all, GaN-based materials are known as ideal materials for the development of microwave power devices, and enhanced devices can greatly reduce the complexity and cost of circuits due to the reduction of negative voltage sources in circuits such as microwave power amplifiers and low-noise amplifiers. And the AlGaN/GaN enhanced HEMT device has good circuit compatibility in microwave high-power devices and circuits. At the same time, the development of enhanced devices makes it possible to monolithically integrate digital circuits of depletion-mode/enhanced devices. Moreover, in terms of power switching applications, AlGaN/GaN enhanced HEMTs also have great application prospects. Therefore, research on high-performance AlGaN/GaN enhancement-mode HEMT devices has received great attention.

目前,不论是国内还是国际上,都有不少关于AlGaN/GaN增强型HEMT的报道。由于P型Mg掺杂工艺技术尚不成熟,GaN基材料中的Mg激活能高而电离率低,导致器件空穴浓度低且迁移率大,因此当前国际上对AlGaN/GaN增强型HEMT的研究并不在P型Mg掺杂这一方法上,而是采用了其他的新技术,目前报道的主要有以下几种技术:At present, there are many reports on AlGaN/GaN enhanced HEMTs both domestically and internationally. Due to the immature P-type Mg doping process technology, the Mg activation energy in GaN-based materials is high and the ionization rate is low, resulting in low hole concentration and high mobility in the device. Therefore, the current international research on AlGaN/GaN enhanced HEMT It is not based on the method of P-type Mg doping, but other new technologies are used. Currently, the following technologies are mainly reported:

1.F离子注入技术,即基于氟化物CF4的等离子体注入技术,香港科技大学的Yong Cai等人成功研制了基于F离子注入技术的增强型HEMT器件,该器件通过在AlGaN/GaN HEMT栅下的AlGaN势垒层中注入F离子,由于F离子的强负电性,势垒层中的F离子可以提供稳定的负电荷,因而可以有效的耗尽沟道区的强二维电子气,当AlGaN势垒层中的F离子数达到一定数量时,栅下沟道处的二维电子气完全耗尽,从而实现增强型HEMT器件。但是F注入技术不可避免的会引入材料的损伤,且器件阈值电压的可控性不高。该器件在室温下薄层载流子浓度高达1.3×1013cm-2,迁移率为1000cm2/Vs,阈值电压达到0.9V,最大漏极电流达310mA/mm。参见文献Yong Cai,Yugang Zhou,Kevin J.Chen and Kei May Lau,“High-performanceenhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment”,IEEEElectron Device Lett,Vol.26,No.7,JULY 2005。1. F ion implantation technology, that is, plasma implantation technology based on fluoride CF4. Yong Cai et al. of Hong Kong University of Science and Technology successfully developed an enhanced HEMT device based on F ion implantation technology. The device passes through the AlGaN/GaN HEMT gate F ions are implanted into the AlGaN barrier layer. Due to the strong negative charge of F ions, the F ions in the barrier layer can provide stable negative charges, and thus can effectively deplete the strong two-dimensional electron gas in the channel region. When AlGaN When the number of F ions in the barrier layer reaches a certain amount, the two-dimensional electron gas in the channel under the gate is completely exhausted, thereby realizing an enhanced HEMT device. However, the F-implantation technology will inevitably introduce material damage, and the controllability of the device threshold voltage is not high. The thin layer carrier concentration of the device is as high as 1.3×10 13 cm -2 at room temperature, the mobility is 1000cm 2 /Vs, the threshold voltage reaches 0.9V, and the maximum drain current reaches 310mA/mm. See Yong Cai, Yugang Zhou, Kevin J. Chen and Kei May Lau, "High-performanceenhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment", IEEE Electron Device Lett, Vol.26, No.7, JULY 2005.

2.非极性或半极性GaN材料实现增强型器件,Masayuki Kuroda等人成功用r面

Figure BDA0000159272350000021
蓝宝石上的a面
Figure BDA0000159272350000022
n-AlGaN/GaNHEMT实现了器件的增强,由于非极性或半极性材料由于缺少极化效应,因此其二维电子气浓度很小甚至没有,所以基于非极性或半极性材料的AlGaN/GaN HEMT器件具有增强特性。其报道的阈值电压为-0.5V,通过降低参杂浓度可进一步增大器件阈值电压,但其器件特性并不好,其电子迁移率只有5.14cm2/Vs,室温下方块电阻很大。且其栅漏电大小在Vgs=-10V时达到了1.1×10-5A/mm。参见文献Masayuki Kuroda,Hidetoshi Ishida,Tetsuzo Ueda,and Tsuyoshi Tanaka,“Nonpolar(11-20)plane AlGaN/GaN heterojunction field effecttransistors on(1-102)plane sapphire”,Journal of Aplied Phisics,Vol.102,No.9,November2007。2. Non-polar or semi-polar GaN materials realize enhancement devices, and Masayuki Kuroda et al. successfully used r-plane
Figure BDA0000159272350000021
side a on sapphire
Figure BDA0000159272350000022
n-AlGaN/GaNHEMT realizes the enhancement of the device. Due to the lack of polarization effect of non-polar or semi-polar materials, its two-dimensional electron gas concentration is small or even non-existent. Therefore, AlGaN based on non-polar or semi-polar materials /GaN HEMT devices have enhanced characteristics. The reported threshold voltage is -0.5V, and the threshold voltage of the device can be further increased by reducing the dopant concentration, but the device characteristics are not good, the electron mobility is only 5.14cm 2 /Vs, and the sheet resistance at room temperature is very large. And its gate leakage reaches 1.1×10 -5 A/mm when Vgs=-10V. See literature Masayuki Kuroda, Hidetoshi Ishida, Tetsuzo Ueda, and Tsuyoshi Tanaka, "Nonpolar (11-20) plane AlGaN/GaN heterojunction field effect transistors on (1-102) plane sapphire", Journal of Aplied Phisics, Vol.102, No. 9, November 2007.

3.薄势垒层技术,1996年,M.Asif Khan等人首先用10nm的AlGaN薄势垒层技术实现了AlGaN/GaN增强型HEMT器件,薄势垒层AlGaN/GaN增强型HEMT器件由于势垒层厚度减薄,其极化效应减弱,由极化效应引起的沟道处二维电子气浓度减小,从而实现器件阈值电压的右移。但是他们获得的结果并不理想,其峰值跨导只有23mS/mm。参见文献M.Asif Khan,Q.Chen,C.J.Sun,J.W.Yang,and M.Blasingame,“Enhancement and depletion mode GaN/AlGaN heterostructure field effecttransistors”,Appl.Phys.Lett,Vol.68,No.4,January 1996。3. Thin barrier layer technology. In 1996, M.Asif Khan and others first realized the AlGaN/GaN enhanced HEMT device with 10nm AlGaN thin barrier layer technology. The thin barrier layer AlGaN/GaN enhanced HEMT device is due to the potential The thickness of the barrier layer is thinned, its polarization effect is weakened, and the concentration of two-dimensional electron gas in the channel caused by the polarization effect is reduced, so that the threshold voltage of the device is shifted to the right. But the results they obtained are not ideal, the peak transconductance is only 23mS/mm. See M.Asif Khan, Q.Chen, C.J.Sun, J.W.Yang, and M.Blasingame, "Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors", Appl.Phys.Lett, Vol.68, No.4, January 1996.

4.槽栅技术,W.B.Lanford等人通过MOCVD利用槽栅技术制得了阈值电压达0.47V的增强型器件,该器件结构自下而上包括:SiC衬底,成核层,2um厚的GaN,3nm厚的AlGaN,10nm厚的n-AlGaN,10nm厚的AlGaN。在欧姆退火之后,不直接蒸发栅金属电极,而是先在预生长栅极区域用干法ICP-RIE方法刻蚀一个凹槽,然后在700℃的氮气氛围下进行快速热退火,之后在凹栅窗口上制作Ni/Au肖特基接触栅电极。槽栅技术通过将栅下的势垒层刻蚀一定深度,使得栅下势垒层变薄,从而使栅下2DEG浓度降低,而源漏区的载流子浓度保持较大值不变,这样既可实现器件的增强特性,又可保证一定的电流密度。利用槽栅技术实现的增强型器件其外延生长容易控制,但其调控性较差,且刻蚀过程会形成损伤。参见文献W.B.Lanford,T.Tanaka,Y.Otoki and I.Adesida,“Recessed-gate enhancement-mode GaN HEMT with highthreshold voltage”,Electronics Letrers,Vol.41,No.7,March 2005。4. Groove gate technology, W.B.Lanford et al. used groove gate technology to make an enhanced device with a threshold voltage of 0.47V through MOCVD. The device structure includes from bottom to top: SiC substrate, nucleation layer, 2um thick GaN, 3nm thick AlGaN, 10nm thick n-AlGaN, 10nm thick AlGaN. After ohmic annealing, instead of directly evaporating the gate metal electrode, a groove is etched in the pre-grown gate area by dry ICP-RIE method, and then rapid thermal annealing is performed in a nitrogen atmosphere at 700 °C, and then the groove is etched. A Ni/Au Schottky contact gate electrode is made on the gate window. The trench gate technology makes the barrier layer under the gate thinner by etching the barrier layer under the gate to a certain depth, thereby reducing the concentration of 2DEG under the gate, while the carrier concentration in the source and drain regions remains unchanged at a relatively large value. It can not only realize the enhanced characteristics of the device, but also ensure a certain current density. The epitaxial growth of enhancement-mode devices realized by trench gate technology is easy to control, but its controllability is poor, and the etching process will cause damage. See W.B.Lanford, T.Tanaka, Y.Otoki and I.Adesida, "Recessed-gate enhancement-mode GaN HEMT with highthreshold voltage", Electronics Letrers, Vol.41, No.7, March 2005.

5.AlGaN/GaN刻槽MIS栅HFET结构,Tohru Oka等人利用刻槽MIS栅HFET结构实现了高达5.2V的阈值电压,该外延层结构从下至上为:Si衬底,缓冲层,800nm后的Al0.05Ga0.95N缓冲层,40nm厚的GaN沟道层,34nm厚的Al0.25Ga0.75N,1nm厚的AlN势垒层,1nm厚的GaN帽层。器件工艺制造过程中,栅窗口下的势垒层经基于SiCl4/Cl2的感应耦合等离子体ICP全部刻蚀后,在500℃的N2氛围下经过五分钟的退火之后通过等离子增强化学气相淀积PECVD刻蚀一层厚为20nm的SiN作为栅介质,同时也是钝化层,然后再淀积W基金属作为栅金属。这样形成MIS栅器件,因为栅下区域无异质结结构,因而无二维电子气,因此可以实现高阈值增强型,但这种结构也存在在一定的问题,由于栅下异质结被全部刻蚀掉了,导致器件迁移率低,电流密度较低,导通电阻大。参考文献Tohru Oka,To mohiro Nozawa,“AlGaN/GaNRecessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation forPower Electronics Applications”,IEEE Electron Device Lett,VOL.29,NO.7,JULY2008。5. AlGaN/GaN grooved MIS gate HFET structure, Tohru Oka et al. used the grooved MIS gate HFET structure to achieve a threshold voltage up to 5.2V. The epitaxial layer structure is from bottom to top: Si substrate, buffer layer, after 800nm Al 0.05 Ga 0.95 N buffer layer, 40nm thick GaN channel layer, 34nm thick Al 0.25 Ga 0.75 N, 1nm thick AlN barrier layer, 1nm thick GaN cap layer. During the manufacturing process of the device, the barrier layer under the gate window is completely etched by the inductively coupled plasma ICP based on SiCl 4 /Cl 2 , and after five minutes of annealing in the N 2 atmosphere at 500 ° C, the plasma-enhanced chemical vapor phase is used to Deposit PECVD to etch a layer of SiN with a thickness of 20nm as the gate dielectric, which is also a passivation layer, and then deposit W-based metal as the gate metal. In this way, the MIS gate device is formed, because there is no heterojunction structure in the region under the gate, so there is no two-dimensional electron gas, so a high threshold enhancement type can be realized, but this structure also has certain problems, because the heterojunction under the gate is completely covered Etched away, resulting in low device mobility, low current density, and high on-resistance. References Tohru Oka, To mohiro Nozawa, "AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications", IEEE Electron Device Lett, VOL.29, NO.7, JULY2008.

综上所述,目前国际上AlGaN/GaN HEMT增强型器件主要采用基于槽栅技术和基于氟离子注入技术形成,其均存在如下不足:To sum up, at present, AlGaN/GaN HEMT enhancement devices in the world are mainly formed based on trench gate technology and fluorine ion implantation technology, which have the following shortcomings:

(一)由于阈值电压和电流密度存在着此消彼长的关系,难以做到高阈值电压和高电流密度共存,且阈值电压的调控性较差;(1) Due to the trade-off relationship between threshold voltage and current density, it is difficult to achieve coexistence of high threshold voltage and high current density, and the regulation of threshold voltage is poor;

(二)无论刻蚀形成槽栅还是氟离子注入都会对材料造成损伤,虽然经过退火可以消除一定损伤,但是残留的损伤仍然会对器件性能和可靠性造成影响,同时目前这种工艺的重复性还不高;(2) Both etching to form trench gates and fluorine ion implantation will cause damage to the material. Although a certain amount of damage can be eliminated after annealing, the remaining damage will still affect the performance and reliability of the device. At the same time, the current repeatability of this process not high;

(三)形成面向微波应用的短沟道器件时需要采用电子束直写等高档工艺设备来制作短栅长,工艺难度较大。(3) When forming short-channel devices for microwave applications, it is necessary to use high-end process equipment such as electron beam direct writing to produce short gate lengths, and the process is relatively difficult.

发明内容 Contents of the invention

本发明的目的在于克服上述已有技术的缺陷,从器件纵向结构的优化角度提出一种MS栅GaN基增强型高电子迁移率晶体管及制作方法,以降低工艺难度,避免器件制造工艺过程中造成的损伤,增大器件的阈值电压,增强器件阈值电压的可控性,提高器件的可靠性。The purpose of the present invention is to overcome the defects of the above-mentioned prior art, and propose an MS-gate GaN-based enhanced high electron mobility transistor and its manufacturing method from the perspective of optimizing the vertical structure of the device, so as to reduce the difficulty of the process and avoid the damage, increase the threshold voltage of the device, enhance the controllability of the threshold voltage of the device, and improve the reliability of the device.

为实现上述目的,本发明的高电子迁移率晶体管包括:包括:衬底、过渡层、GaN主缓冲层、N型AlGaN主势垒层、源极和漏极;过渡层位于衬底上方;GaN主缓冲层位于过渡层上方;GaN主缓冲层上方两侧为N型AlGaN主势垒层;N型AlGaN主势垒层顶端两侧分别为源极和漏极;其特征在于,GaN主缓冲层的中间刻蚀有凹槽,该凹槽的内壁依次外延有GaN次缓冲层和AlGaN次势垒层;栅电极淀积在AlGaN次势垒层上,并且覆盖整个凹槽区域;凹槽两侧的N型AlGaN主势垒层上方的源、漏极之外设有介质。In order to achieve the above object, the high electron mobility transistor of the present invention includes: comprising: a substrate, a transition layer, a GaN main buffer layer, an N-type AlGaN main barrier layer, a source and a drain; the transition layer is located above the substrate; the GaN The main buffer layer is located above the transition layer; the two sides above the GaN main buffer layer are N-type AlGaN main barrier layers; the top sides of the N-type AlGaN main barrier layer are respectively source and drain; it is characterized in that the GaN main buffer layer A groove is etched in the middle of the groove, and the inner wall of the groove is successively epitaxial with a GaN sub-buffer layer and an AlGaN sub-barrier layer; the gate electrode is deposited on the AlGaN sub-barrier layer and covers the entire groove area; both sides of the groove A dielectric is provided outside the source and drain above the N-type AlGaN main barrier layer.

所述凹槽的底面为0001极性面,凹槽侧面为非0001面。The bottom surface of the groove is a 0001 polar surface, and the side surface of the groove is a non-0001 surface.

所述GaN主缓冲层与AlGaN主势垒层的界面处形成主二维电子气2DEG沟道,该沟道位于凹槽的两侧;凹槽内外延的GaN次缓冲层与AlGaN次势垒层界面形成辅二维电子气2DEG沟道。The main two-dimensional electron gas 2DEG channel is formed at the interface between the GaN main buffer layer and the AlGaN main barrier layer, and the channel is located on both sides of the groove; the GaN sub-buffer layer and the AlGaN sub-barrier layer in the groove The interface forms an auxiliary two-dimensional electron gas 2DEG channel.

所述辅二维电子气2DEG沟道的水平位置低于主二维电子气2DEG沟道的水平位置。The horizontal position of the auxiliary two-dimensional electron gas 2DEG channel is lower than the horizontal position of the main two-dimensional electron gas 2DEG channel.

所述主势垒层为掺杂浓度为5×1019cm-3的N型掺杂。The main barrier layer is N-type doped with a doping concentration of 5×10 19 cm −3 .

为实现上述目的,本发明的金属半导体MS栅GaN基增强型高电子迁移率晶体管的制作方法,包括如下步骤:In order to achieve the above object, the fabrication method of the metal-semiconductor MS gate GaN-based enhanced high electron mobility transistor of the present invention comprises the following steps:

1)在金属有机物化学气相淀积MOCVD反应室中对衬底表面进行预处理;1) Pretreating the surface of the substrate in the metal organic chemical vapor deposition MOCVD reaction chamber;

2)在衬底上外延生长AlGaN/GaN外延层,其中GaN厚度为1um~4um,N型掺杂的AlxGa1-xN势垒层厚度为16nm~36nm,其中Al元素的摩尔含量x为20%-30%;2) Epitaxial growth of AlGaN/GaN epitaxial layer on the substrate, in which the thickness of GaN is 1um-4um, the thickness of N-type doped Al x Ga 1-x N barrier layer is 16nm-36nm, and the molar content of Al element x 20%-30%;

3)在外延层上淀积一层掩膜介质层,再进行光刻,并采用湿法刻蚀方法对外延层上的介质层进行刻蚀,在外延层上形成长为0.5um的凹槽;3) Deposit a mask dielectric layer on the epitaxial layer, then perform photolithography, and etch the dielectric layer on the epitaxial layer by wet etching, and form a groove with a length of 0.5um on the epitaxial layer ;

4)光刻出凹槽区域,并采用反应离子刻蚀RIE方法对凹槽区域中的AlGaN/GaN外延层进行刻蚀,刻蚀深度为40nm~150nm;4) Photoetching out the groove area, and using the reactive ion etching RIE method to etch the AlGaN/GaN epitaxial layer in the groove area, the etching depth is 40nm-150nm;

5)保留凹槽之外的掩膜介质层,将刻蚀后的外延层通过金属有机物化学气相淀积MOCVD反应室,沿凹槽底面垂直向上的方向上生长20nm~110nm厚的GaN层和16nm~36nm厚的AlGaN层,沿凹槽侧面方向生长10nm~55nm厚的GaN层和8nm~18nm厚的AlGaN层;5) Keep the mask dielectric layer outside the groove, pass the etched epitaxial layer through the metal organic chemical vapor deposition MOCVD reaction chamber, and grow a 20nm-110nm thick GaN layer and a 16nm thick GaN layer in the direction vertically upward along the bottom of the groove. ~36nm thick AlGaN layer, grow 10nm~55nm thick GaN layer and 8nm~18nm thick AlGaN layer along the groove side direction;

6)去除掩膜介质层;6) removing the mask dielectric layer;

7)在去除掩膜介质层的外延层上,采用化学气相淀积CVD或者物理气相淀积PVD方法淀积厚度为10nm~60nm的介质层;7) On the epitaxial layer from which the mask dielectric layer has been removed, a dielectric layer with a thickness of 10 nm to 60 nm is deposited by chemical vapor deposition CVD or physical vapor deposition PVD;

8)在介质层上,先光刻出源、漏、栅区域,再刻蚀出源、漏、栅窗口;8) On the dielectric layer, the source, drain, and gate regions are first photoetched, and then the source, drain, and gate windows are etched;

9)光刻出源、漏区域,再在光刻后的外延层上,采用电子束蒸发厚度为30nm/180nm/40nm/60nm的Ti/Al/Ni/Au四层金属作为欧姆接触金属,经剥离、退火后形成源、漏接触电极;9) Lithograph the source and drain regions, and then on the epitaxial layer after photolithography, use Ti/Al/Ni/Au four-layer metal with an electron beam evaporation thickness of 30nm/180nm/40nm/60nm as the ohmic contact metal. Form source and drain contact electrodes after stripping and annealing;

10)光刻出栅区域,并在光刻后的外延层上采用电子束蒸发厚度为30nm/200nm的Ni/Au两层金属作为栅极金属,经剥离后形成金属半导体MS的栅极;10) Photoetching out the gate area, and using electron beam evaporation of Ni/Au two-layer metal with a thickness of 30nm/200nm on the epitaxial layer after photolithography as the gate metal, and forming the gate of the metal semiconductor MS after stripping;

11)光刻已形成源、漏、栅极的器件表面,获得加厚电极图形,并采用电子束蒸发技术加厚电极,完成器件制作。11) Photolithography has formed the device surface of source, drain and gate, obtained thickened electrode pattern, and used electron beam evaporation technology to thicken the electrode to complete the device production.

所述步骤9)和步骤10)电子束蒸发的工艺条件为:真空度小于2.0×10-6Pa,功率为200W,蒸发速率小于等于埃/秒。The process conditions for the electron beam evaporation in step 9) and step 10) are: the degree of vacuum is less than 2.0×10 -6 Pa, the power is 200W, and the evaporation rate is less than or equal to angstroms/second.

所述步骤4)刻蚀AlGaN/GaN外延层的工艺条件为:氯气Cl2流量为15sccm的,功率为200W,压强为10mT。The process conditions of step 4) etching the AlGaN/GaN epitaxial layer are: the flow rate of chlorine Cl 2 is 15 sccm, the power is 200W, and the pressure is 10mT.

本发明具有如下优点:The present invention has the following advantages:

(1)具有良好的增强型特性以及高阈值电压。(1) It has good enhancement characteristics and high threshold voltage.

本发明由于采用的器件结构中AlGaN/GaN异质结界面为非平面结构,凹槽底面是0001极性面,而凹槽侧面为非0001面,沿凹槽侧面方向上外延的非0001面AlGaN/GaN异质结降低甚至消除了极化效应,使该异质结界面处形成的二维电子气浓度很低,甚至没有二维电子气,因此只有对栅极施加足够高的正电压,才能在凹槽侧面方向上外延的非0001面异质结沟道中感应出足够多的二维电子气,且施加的较高栅压能够在凹槽侧面的次GaN缓冲层中形成较高的水平漂移电场,使电子经由凹槽两侧的主2DEG沟道层、凹槽侧面的二维电子气沟道以及凹槽底面上的辅2DEG沟道层进行导电,实现了器件的增强型工作方式,并获得高阈值电压。Since the AlGaN/GaN heterojunction interface in the device structure adopted by the present invention is a non-planar structure, the bottom surface of the groove is a 0001 polar surface, and the side surface of the groove is a non-0001 surface, and the non-0001 surface AlGaN epitaxial along the groove side direction /GaN heterojunction reduces or even eliminates the polarization effect, so that the concentration of two-dimensional electron gas formed at the interface of the heterojunction is very low, or even no two-dimensional electron gas, so only a sufficiently high positive voltage is applied to the gate. Sufficient two-dimensional electron gas is induced in the non-0001-plane heterojunction channel epitaxial in the direction of the groove side, and the applied higher gate voltage can form a higher horizontal drift in the sub-GaN buffer layer on the side of the groove The electric field enables electrons to conduct electricity through the main 2DEG channel layer on both sides of the groove, the two-dimensional electron gas channel on the side of the groove, and the auxiliary 2DEG channel layer on the bottom surface of the groove, realizing the enhanced working mode of the device, and obtain a high threshold voltage.

(2)阈值电压具有良好的调控性。(2) The threshold voltage has good controllability.

本发明的器件由于在工艺的实现过程中,可以利用不同的工艺条件在凹槽侧面方向上外延不同厚度的GaN次缓冲层,而不同的GaN次缓冲层厚度引起的该缓冲层中的电场强度的差异在很大程度上决定了器件的阈值电压,因此设计中可以根据需要通过改变GaN次缓冲层厚度来调控器件的阈值电压,比如增大GaN次缓冲层厚度,使得在相等栅压下,GaN次缓冲层中的电场强度减小,从而提高器件阈值电压。The device of the present invention can use different process conditions to epitaxially GaN sub-buffer layers with different thicknesses in the groove side direction during the realization of the process, and the electric field strength in the buffer layer caused by different GaN sub-buffer layer thicknesses The difference of the difference determines the threshold voltage of the device to a large extent, so the threshold voltage of the device can be adjusted by changing the thickness of the GaN sub-buffer layer in the design, such as increasing the thickness of the GaN sub-buffer layer, so that under the same gate voltage, The electric field strength in the GaN subbuffer layer is reduced, thereby increasing the device threshold voltage.

(3)具有高的电流密度。(3) Has a high current density.

由于本发明器件凹槽内壁的AlGaN势垒层和凹槽以外的AlGaN势垒层不是同时生长,凹槽以外的AlGaN势垒层采用N型甚至N+型掺杂,不仅可大大减小器件的欧姆接触电阻,而且可大大降低源极和漏极的串联电阻,因此提高了器件的电流密度。Since the AlGaN barrier layer on the inner wall of the groove of the device of the present invention and the AlGaN barrier layer outside the groove are not grown at the same time, the AlGaN barrier layer outside the groove is doped with N-type or even N+ type, which can not only greatly reduce the ohmic resistance of the device Contact resistance, and can greatly reduce the series resistance of the source and drain, thus increasing the current density of the device.

(4)具有很好的夹断特性。(4) It has good pinch-off characteristics.

本发明器件由于在栅极电压为零时,凹槽侧面的GaN次缓冲层可以阻挡电子在沟道中的流动,因此可以实现极低的关态电流。Because the GaN sub-buffer layer on the side of the groove can block the flow of electrons in the channel when the gate voltage is zero, the device of the present invention can realize extremely low off-state current.

(5)工艺简单、成熟,重复性好,器件可靠性高。(5) The process is simple and mature, the repeatability is good, and the reliability of the device is high.

本发明器件制作方法中的工艺步骤均是目前国内外相对比较成熟的,而且工艺流程也相对简单,成本低,能完全与成熟的耗尽型AlGaN/GaN HEMT器件制备工艺兼容。另外,本发明采用了干法刻蚀方法进行槽栅刻蚀,并且在后续的高温二次生长中,可在一定程度上对刻蚀形成的表面损伤进行修复,以减少刻蚀损伤对器件性能和可靠性的影响。与目前国内外常用的槽栅刻蚀方法相比,本发明能更有效的避免了刻蚀引起的材料损伤,器件可靠性更高。The process steps in the device manufacturing method of the present invention are relatively mature at home and abroad, and the process flow is relatively simple, low in cost, and fully compatible with the mature depletion-type AlGaN/GaN HEMT device manufacturing process. In addition, the present invention adopts a dry etching method for groove gate etching, and in the subsequent high-temperature secondary growth, the surface damage caused by etching can be repaired to a certain extent, so as to reduce the impact of etching damage on device performance. and reliability effects. Compared with the currently commonly used groove gate etching method at home and abroad, the invention can more effectively avoid material damage caused by etching, and the reliability of the device is higher.

附图说明 Description of drawings

图1是本发明MS栅AlGaN/GaN增强型HEMT器件结构图;Fig. 1 is the structural diagram of MS gate AlGaN/GaN enhanced HEMT device of the present invention;

图2是本发明制备MS栅增强型HEMT器件工艺流程图。Fig. 2 is a flow chart of the process for preparing MS gate enhanced HEMT devices according to the present invention.

具体实施方式 Detailed ways

参照图1,本发明的MS栅GaN基增强型高电子迁移率晶体管,包括:衬底1、过渡层2、GaN主缓冲层3、N型AlGaN主势垒层4、凹槽5、GaN次缓冲层6、AlxGa1-xN次势垒层7、介质8、源极9和漏极10和栅电极13;过渡层2位于衬底1的上方;GaN主缓冲层3位于过渡层2的上方,该GaN主缓冲层3的厚度为1um~4um;GaN主缓冲层3上方的两侧为N型AlGaN主势垒层4,该N型AlxGa1-xN主势垒层4的厚度为16nm~36nm,且0.2≤x≤0.3,掺杂浓度为5×1019cm-3;N型AlxGa1-xN主势垒层4顶端两侧分别为源极9和漏极10,该源极9和漏极10采用的Ti、Al、Ni、Au四层金属,且Ti、Al、Ni、Au的厚度分别为30nm、180nm、40nm、60nm;凹槽5刻蚀在GaN主缓冲层3的中间,凹槽深度为40nm~150nm,刻蚀后的凹槽底面为GaN主缓冲层3,它为0001极性面,凹槽侧面为非0001面;GaN次缓冲层6位于凹槽5上;AlxGa1-xN次势垒层7位于GaN次缓冲层6上方,且0.2≤x≤0.3;GaN次缓冲层6在不同的方位其厚度不同,即在凹槽5底面向上的方向上厚度为20nm~110nm,在凹槽5侧壁的水平方向上厚度为10nm~55nm;AlxGa1-xN次势垒层7在不同的方位其厚度也不同,即在凹槽5底面向上的方向上厚度为16nm~36nm,在凹槽5侧壁的水平方向上厚度为8nm~18nm;栅电极13淀积在AlGaN次势垒层7上,并且覆盖整个凹槽5区域,该栅电极13采用的Ni和Au两层金属,Ni和Au为的厚度分别为30nm和200nm;介质8分布在凹槽5两侧的N型AlGaN主势垒层4上方的源、漏极之外,其厚度为10nm~60nm。GaN主缓冲层3与AlxGa1-xN主势垒层4的界面处形成主二维电子气2DEG沟道11,该沟道11位于凹槽5的两侧;凹槽内外延的GaN次缓冲层6与AlxGa1-xN次势垒层7界面形成辅二维电子气2DEG沟道12,且辅二维电子气2DEG沟道12的水平位置低于主二维电子气2DEG沟道11的水平位置。Referring to Fig. 1, the MS gate GaN-based enhanced high electron mobility transistor of the present invention includes: a substrate 1, a transition layer 2, a GaN main buffer layer 3, an N-type AlGaN main barrier layer 4, a groove 5, and a GaN secondary Buffer layer 6, Al x Ga 1-x N sub-barrier layer 7, dielectric 8, source 9, drain 10 and gate electrode 13; transition layer 2 is located above substrate 1; GaN main buffer layer 3 is located in transition layer 2, the GaN main buffer layer 3 has a thickness of 1um to 4um; the two sides above the GaN main buffer layer 3 are N-type AlGaN main barrier layers 4, and the N-type AlxGa1 -xN main barrier layer The thickness of 4 is 16nm-36nm, and 0.2≤x≤0.3, and the doping concentration is 5×10 19 cm -3 ; the two sides of the top of the N-type Al x Ga 1-x N main barrier layer 4 are the source 9 and the The drain 10, the source 9 and the drain 10 are made of Ti, Al, Ni, and Au four-layer metal, and the thicknesses of Ti, Al, Ni, and Au are 30nm, 180nm, 40nm, and 60nm respectively; the groove 5 is etched In the middle of the GaN main buffer layer 3, the depth of the groove is 40nm-150nm, and the bottom surface of the etched groove is the GaN main buffer layer 3, which is a 0001 polar plane, and the side of the groove is a non-0001 plane; the GaN sub-buffer layer 6 is located on the groove 5; the Al x Ga 1-x N sub-barrier layer 7 is located above the GaN sub-buffer layer 6, and 0.2≤x≤0.3; the thickness of the GaN sub-buffer layer 6 is different in different directions, that is, in the concave The groove 5 has a thickness of 20 nm to 110 nm in the upward direction of the bottom surface, and a thickness of 10 nm to 55 nm in the horizontal direction of the side wall of the groove 5; the thickness of the AlxGa1 -xN sub-barrier layer 7 is also different in different directions, That is, the thickness in the upward direction of the bottom of the groove 5 is 16 nm to 36 nm, and the thickness in the horizontal direction of the side wall of the groove 5 is 8 nm to 18 nm; the gate electrode 13 is deposited on the AlGaN sub-barrier layer 7 and covers the entire concave In the region of the groove 5, the gate electrode 13 uses two layers of metal, Ni and Au, and the thicknesses of Ni and Au are 30nm and 200nm respectively; the medium 8 is distributed on the source of the N-type AlGaN main barrier layer 4 on both sides of the groove 5 , Except for the drain electrode, its thickness is 10nm-60nm. The main two-dimensional electron gas 2DEG channel 11 is formed at the interface between the GaN main buffer layer 3 and the AlxGa1 -xN main barrier layer 4, and the channel 11 is located on both sides of the groove 5; the GaN epitaxial inside the groove The interface between the sub-buffer layer 6 and the Al x Ga 1-x N sub-barrier layer 7 forms an auxiliary two-dimensional electron gas 2DEG channel 12, and the horizontal position of the auxiliary two-dimensional electron gas 2DEG channel 12 is lower than the main two-dimensional electron gas 2DEG The horizontal position of channel 11.

参照图2,本发明制作MS栅GaN基增强型高电子迁移率晶体管的方法,给出以下三种实施例。Referring to FIG. 2 , the method for manufacturing MS-gate GaN-based enhancement-type high electron mobility transistors according to the present invention provides the following three embodiments.

实施例1Example 1

制作过渡层为AlN,GaN主缓冲层厚度为1um,Al0.3Ga0.7N主势垒层厚度为16nm,凹槽刻蚀深度为40nm,GaN次缓冲层在凹槽底面向上方向上厚度为20nm、在凹槽侧面水平方向上厚度为10nm,Al0.3Ga0.7N次势垒层为在凹槽底面向上方向上厚度为16nm,在凹槽侧面水平方向上厚度为8nm,介质层厚度为10nm的MS栅GaN基增强型高电子迁移率晶体管,其步骤是:The transition layer is made of AlN, the thickness of the GaN main buffer layer is 1um, the thickness of the Al 0.3 Ga 0.7 N main barrier layer is 16nm, the groove etching depth is 40nm, and the thickness of the GaN secondary buffer layer is 20nm in the upward direction of the bottom of the groove. The thickness in the horizontal direction of the side of the groove is 10nm, the thickness of the Al 0.3 Ga 0.7 N sub-barrier layer is 16nm in the upward direction of the bottom of the groove, the thickness in the horizontal direction of the side of the groove is 8nm, and the thickness of the dielectric layer is 10nm. Gate GaN-based enhancement-mode high electron mobility transistor, the steps of which are:

步骤一,把C面蓝宝石衬底置于MOCVD设备的反应室中,将反应室的真空度抽至1×10-2Torr之下,在氢气与氨气的混合气体保护下对蓝宝石衬底进行热处理和表面氮化,加热温度为1050℃,压力为20Torr,氢气流量为1500sccm,氨气流量为1500sccm。Step 1: Place the C-plane sapphire substrate in the reaction chamber of the MOCVD equipment, evacuate the vacuum of the reaction chamber to below 1×10 -2 Torr, and process the sapphire substrate under the protection of the mixed gas of hydrogen and ammonia. For heat treatment and surface nitriding, the heating temperature is 1050° C., the pressure is 20 Torr, the flow rate of hydrogen gas is 1500 sccm, and the flow rate of ammonia gas is 1500 sccm.

步骤二,采用MOCVD技术在温度为980℃,压力为20Torr,氢气流量为300sccm,氨气流量为1500sccm,铝源流量为30sccm的工艺条件下,对蓝宝石衬底进行厚度为150nm的AlN过渡层外延生长,如图2(a)。Step 2: Using MOCVD technology at a temperature of 980°C, a pressure of 20 Torr, a flow rate of hydrogen gas of 300 sccm, a flow rate of ammonia gas of 1500 sccm, and a flow rate of aluminum source of 30 sccm, the epitaxy of an AlN transition layer with a thickness of 150 nm is carried out on the sapphire substrate Growth, as shown in Figure 2(a).

步骤三,采用MOCVD技术在温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,镓源流量为220sccm的工艺条件下,在过渡层上外延生长厚度为1um的GaN主缓冲层,如图2(b)。Step 3: Use MOCVD technology to epitaxially grow a GaN main buffer with a thickness of 1um on the transition layer under the process conditions of temperature 920°C, pressure 40Torr, hydrogen gas flow rate 500 sccm, ammonia gas flow rate 5000 sccm, and gallium source flow rate 220 sccm layer, as shown in Figure 2(b).

步骤四,采用MOCVD技术在温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm的工艺条件下,在主缓冲层上,通过通入硅烷SiH4外延生长掺杂浓度为5×1019cm-3、厚度为16nm的N型掺杂Al0.3Ga0.7N主势垒层,以在AlN过渡层上形成AlGaN/GaN异质结,在AlGaN/GaN异质结界面靠向GaN一侧就形成了主二维电子气2DEG,在AlN过渡层上外延AlGaN/GaN异质结形成的外延片结构如图2(c)。Step 4, using MOCVD technology under the process conditions of temperature 920°C, pressure 40 Torr, hydrogen gas flow rate 500 sccm, ammonia gas flow rate 5000 sccm, aluminum source flow rate 10 sccm, gallium source flow rate 40 sccm, on the main buffer layer, through The N-type doped Al 0.3 Ga 0.7 N main barrier layer with a doping concentration of 5×10 19 cm -3 and a thickness of 16 nm is epitaxially grown through silane SiH 4 to form an AlGaN/GaN heterojunction on the AlN transition layer , the main two-dimensional electron gas 2DEG is formed at the AlGaN/GaN heterojunction interface close to the GaN side, and the epitaxial wafer structure formed by epitaxial AlGaN/GaN heterojunction on the AlN transition layer is shown in Figure 2(c).

步骤五,对上述外延片进行清洗后,利用等离子增强化学气相淀积PECVD技术在外延片表面淀积一层SiN掩膜介质层,如图2(d)。Step 5, after cleaning the above-mentioned epitaxial wafer, a layer of SiN mask dielectric layer is deposited on the surface of the epitaxial wafer by using plasma enhanced chemical vapor deposition PECVD technology, as shown in Fig. 2(d).

步骤六,在淀积了掩膜介质层的外延片表面上,首先进行甩正胶、软烘;再通过曝光以及显影形成刻蚀所需的凹槽窗口,最后采用湿法刻蚀方法刻去凹槽窗口下的SiN掩膜介质层,并用丙酮去除SiN掩膜介质层上残余的光刻胶。Step 6: On the surface of the epitaxial wafer on which the mask dielectric layer is deposited, firstly carry out positive resist and soft baking; then form the groove window required for etching through exposure and development, and finally use wet etching method to etch away SiN mask dielectric layer under the groove window, and remove residual photoresist on the SiN mask dielectric layer with acetone.

步骤七,对去胶后的外延片光刻出凹槽窗口,并采用反应离子刻蚀RIE设备刻蚀凹槽窗口下的AlGaN/GaN异质结,刻蚀采用流量为15sccm的氯气Cl2,功率为200W,压强为10mT,刻蚀深度为40nm,形成凹槽底面为0001极性面,侧面为非0001面的凹槽结构,如图2(e)。Step 7: Photoetch a groove window on the epitaxial wafer after deglue removal, and use reactive ion etching RIE equipment to etch the AlGaN/GaN heterojunction under the groove window. The etching uses chlorine gas Cl 2 with a flow rate of 15 sccm, The power is 200W, the pressure is 10mT, and the etching depth is 40nm to form a groove structure with the bottom surface of the groove being a 0001 polar surface and the side surface being a non-0001 surface, as shown in Figure 2(e).

步骤八,用丙酮去除刻蚀后的正胶,并对外延片表面进行清洗。Step eight, remove the etched positive resist with acetone, and clean the surface of the epitaxial wafer.

步骤九,将反应室的真空度抽至1×10-2Torr之下,在氢气与氨气的混合气体保护下对清洗后的外延片进行热处理,加热温度为1000℃,压力为20Torr,氢气流量为1500sccm,氨气流量为1500sccm。Step 9: Evacuate the vacuum of the reaction chamber to below 1×10 -2 Torr, and heat-treat the cleaned epitaxial wafer under the protection of the mixed gas of hydrogen and ammonia. The heating temperature is 1000°C, the pressure is 20 Torr, and the hydrogen gas The flow rate is 1500 sccm, and the flow rate of ammonia gas is 1500 sccm.

步骤十,重复步骤三,在凹槽内壁二次生长不同厚度的GaN次缓冲层,即在凹槽底面垂直方向上生长的GaN次缓冲层厚度为20nm,在凹槽侧面水平方向上生长的GaN次缓冲层厚度为10nm,如图2(f)。Step 10, repeat step 3, and grow GaN sub-buffer layers of different thicknesses on the inner wall of the groove for the second time, that is, the thickness of the GaN sub-buffer layer grown vertically on the bottom of the groove is 20nm, and the GaN sub-buffer layer grown horizontally on the side of the groove The thickness of the secondary buffer layer is 10nm, as shown in Figure 2(f).

步骤十一,采用MOCVD技术在温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm的工艺条件下,在GaN次缓冲层上二次生长不同厚度的Al0.3Ga0.7N次势垒层,即在凹槽底面垂直方向上生长的Al0.3Ga0.7N次势垒层厚度为16nm,在凹槽侧面水平方向上生长的Al0.3Ga0.7N次势垒层厚度为8nm,这样在次AlGaN势垒层和次GaN缓冲层的界面靠向GaN一侧就形成了辅二维电子气2DEG,并且保证了辅二维电子气2DEG的水平位置低于主二维电子气2DEG的水平位置,如图2(g)。Step 11, using MOCVD technology at a temperature of 920°C, a pressure of 40 Torr, a hydrogen flow rate of 500 sccm, an ammonia gas flow rate of 5000 sccm, an aluminum source flow rate of 10 sccm, and a gallium source flow rate of 40 sccm, on the GaN sub-buffer layer Secondary growth of Al 0.3 Ga 0.7 N sub-barrier layers with different thicknesses, that is, Al 0.3 Ga 0.7 N sub-barrier layers grown vertically on the bottom of the groove with a thickness of 16nm, and Al 0.3 N sub-barrier layers grown horizontally on the groove side The thickness of the Ga 0.7 N sub-barrier layer is 8nm, so that an auxiliary two-dimensional electron gas 2DEG is formed at the interface of the sub-AlGaN barrier layer and the sub-GaN buffer layer on the GaN side, and the auxiliary two-dimensional electron gas 2DEG is guaranteed. The horizontal position is lower than that of the main two-dimensional electron gas 2DEG, as shown in Fig. 2(g).

步骤十二,在二次生长Al0.3Ga0.7N次势垒层后的外延片上,在氨气流量为2.5sccm,氮气流量为900sccm,硅烷流量为200sccm,温度为300℃,压力为900mT,功率为25W的工艺条件下,利用等离子增强化学气相淀积PECVD方法淀积厚度为10nm的SiN介质层,该介质层覆盖次势垒层和凹槽内壁,如图2(h)。Step 12: On the epitaxial wafer after secondary growth of the Al 0.3 Ga 0.7 N sub-barrier layer, the flow rate of ammonia gas is 2.5 sccm, the flow rate of nitrogen gas is 900 sccm, the flow rate of silane gas is 200 sccm, the temperature is 300°C, the pressure is 900mT, and the power Under the process condition of 25W, a SiN dielectric layer with a thickness of 10nm was deposited by the plasma enhanced chemical vapor deposition PECVD method, and the dielectric layer covered the sub-barrier layer and the inner wall of the groove, as shown in Figure 2(h).

步骤十三,光刻并去除源、漏、栅区域下的SiN介质层:Step 13, photolithography and removal of the SiN dielectric layer under the source, drain and gate regions:

首先,在SiN介质层上按5000转/min转速甩正胶,,并在温度为80℃的高温烘箱中烘10min;First, spin the positive glue on the SiN dielectric layer at a speed of 5000 rpm, and bake it in a high-temperature oven at a temperature of 80°C for 10 minutes;

接着,通过曝光以及显影形成源、漏、栅区域;Next, forming source, drain and gate regions by exposure and development;

最后,采用湿法刻蚀去除源、漏、栅区域下的SiN介质薄膜。Finally, wet etching is used to remove the SiN dielectric film under the source, drain and gate regions.

步骤十四,对去除了源、漏、栅区域的SiN介质层的外延片按5000转/min转速甩正胶,并在温度为80℃的高温烘箱中烘10min,最后通过曝光以及显影获得源、漏窗口。Step 14, the epitaxial wafer with the SiN dielectric layer removed from the source, drain, and gate regions is shaken at a speed of 5000 rpm, and baked in a high-temperature oven at a temperature of 80°C for 10 minutes, and finally the source is obtained through exposure and development. , Leaky window.

步骤十五,利用等离子去胶机去除窗口区域未显影干净的光刻胶薄层,以提高金属剥离的成品率。Step fifteen, using a plasma stripper to remove the undeveloped photoresist thin layer in the window area, so as to improve the yield of metal stripping.

步骤十六,采用电子束蒸发仪器在真空度小于2.0×10-6Pa,功率为200W,蒸发速率不大于3埃/秒的条件下,淀积Ti、Al、Ni和Au四层欧姆接触金属,且Ti的厚度为30nm,Al的厚度为180nm,Ni的厚度为40nm,Au的厚度为60nm。Step 16: Deposit four layers of Ti, Al, Ni and Au ohmic contact metals using an electron beam evaporation instrument under the conditions of a vacuum degree of less than 2.0×10 -6 Pa, a power of 200 W, and an evaporation rate of no more than 3 angstroms/second , and the thickness of Ti is 30nm, the thickness of Al is 180nm, the thickness of Ni is 40nm, and the thickness of Au is 60nm.

步骤十七,将蒸发金属后的外延片在丙酮溶液中浸泡20min,然后进行超声清洗,并用超纯水冲洗和氮气吹干,以剥离掉源、漏窗口以外的金属。Step seventeen, soak the evaporated epitaxial wafer in acetone solution for 20 minutes, then perform ultrasonic cleaning, rinse with ultrapure water and blow dry with nitrogen, so as to peel off the metal outside the source and drain windows.

步骤十八,将剥离金属后的外延片在温度为850℃的氮气气氛中进行30s的欧姆接触退火,形成源、漏接触电极,如图2(i)。Step 18: Perform ohmic contact annealing on the epitaxial wafer after metal stripping in a nitrogen atmosphere at a temperature of 850° C. for 30 seconds to form source and drain contact electrodes, as shown in FIG. 2( i ).

步骤十九,在已形成源、漏接触电极的外延片上进行甩正胶、软烘,通过曝光以及显影获得栅窗口。In step nineteen, on the epitaxial wafer on which the source and drain contact electrodes have been formed, the resist is cast, soft baked, and a gate window is obtained through exposure and development.

步骤二十,对光刻出栅窗口的外延片采用电子束蒸发仪器淀积Ni/Au两层金属,Ni的厚度为30nm,Au的厚度为200nm;随后将外延片浸泡在剥离液中进行金属剥离,用超纯水冲洗2min,并用氮气吹干,最终获得栅电极,如图2(j)。Step 20: Deposit Ni/Au two-layer metal on the epitaxial wafer with the gate window by photolithography, the thickness of Ni is 30nm, and the thickness of Au is 200nm; Peel off, rinse with ultrapure water for 2 minutes, and blow dry with nitrogen to finally obtain the gate electrode, as shown in Figure 2(j).

步骤二十一,光刻已形成源、漏、栅极结构的外延片,获得加厚电极图形,采用电子束蒸发技术加厚电极,完成如图1所示的器件制作。Step 21: Photolithography has formed the epitaxial wafer with source, drain, and gate structures to obtain thickened electrode patterns, and electron beam evaporation technology is used to thicken the electrodes to complete the fabrication of the device as shown in Figure 1.

实施例2Example 2

制作过渡层为AlN,GaN主缓冲层厚度为2.5um,Al0.25Ga0.75N主势垒层厚度为26nm,凹槽刻蚀深度为90nm,GaN次缓冲层在凹槽底面向上方向上厚度为60nm、在凹槽侧面水平方向上厚度为30nm,Al0.25Ga0.75N次势垒层为在凹槽底面向上方向上厚度为26nm,在凹槽侧面水平方向上厚度为13nm,介质层厚度为40nm的MS栅GaN基增强型高电子迁移率晶体管,其步骤是:The transition layer is made of AlN, the thickness of the GaN main buffer layer is 2.5um, the thickness of the Al 0.25 Ga 0.75 N main barrier layer is 26nm, the groove etching depth is 90nm, and the thickness of the GaN sub-buffer layer is 60nm in the upward direction of the bottom of the groove 1. The thickness in the horizontal direction of the side of the groove is 30nm, the thickness of the Al 0.25 Ga 0.75 N sub-barrier layer is 26nm in the upward direction of the bottom of the groove, the thickness in the horizontal direction of the side of the groove is 13nm, and the thickness of the dielectric layer is 40nm MS gate GaN-based enhancement-mode high electron mobility transistor, the steps of which are:

步骤1,与实施例1的步骤一相同。Step 1 is the same as Step 1 of Embodiment 1.

步骤2,与实施例1的步骤二相同。Step 2 is the same as Step 2 of Example 1.

步骤3,采用MOCVD技术在温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,镓源流量为220sccm的工艺条件下,在过渡层上外延生长厚度为2.5um的GaN主缓冲层,如图2(b)。Step 3, using MOCVD technology under the process conditions of temperature 920°C, pressure 40Torr, hydrogen gas flow rate 500 sccm, ammonia gas flow rate 5000 sccm, gallium source flow rate 220 sccm, epitaxially grow a GaN main body with a thickness of 2.5um on the transition layer Buffer layer, as shown in Figure 2(b).

步骤4,采用MOCVD技术在温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm的工艺条件下,在主缓冲层上,通过通入硅烷SiH4外延生长掺杂浓度为5×1019cm-3、厚度为26nm的N型掺杂Al0.25Ga0.75N主势垒层,以在AlN过渡层上形成AlGaN/GaN异质结,在AlGaN/GaN异质结界面靠向GaN一侧就形成了主二维电子气2DEG,在AlN过渡层上外延AlGaN/GaN异质结形成的外延片结构如图2(c)。Step 4, using MOCVD technology at a temperature of 920°C, a pressure of 40 Torr, a hydrogen flow of 500 sccm, an ammonia flow of 5000 sccm, an aluminum source flow of 10 sccm, and a gallium source flow of 40 sccm, on the main buffer layer, through The N-type doped Al 0.25 Ga 0.75 N main barrier layer with a doping concentration of 5×10 19 cm -3 and a thickness of 26 nm is epitaxially grown through silane SiH 4 to form an AlGaN/GaN heterojunction on the AlN transition layer , the main two-dimensional electron gas 2DEG is formed at the AlGaN/GaN heterojunction interface close to the GaN side, and the epitaxial wafer structure formed by epitaxial AlGaN/GaN heterojunction on the AlN transition layer is shown in Figure 2(c).

步骤5,与实施例1的步骤五相同。Step 5 is the same as Step 5 of Embodiment 1.

步骤6,与实施例1的步骤六相同。Step 6 is the same as Step 6 of Embodiment 1.

步骤7,对去胶后的外延片光刻出凹槽窗口,并采用反应离子刻蚀RIE设备刻蚀凹槽窗口下的AlGaN/GaN异质结,刻蚀采用流量为15sccm的氯气Cl2,功率为200W,压强为10mT,刻蚀深度为90nm,形成凹槽底面为0001极性面,侧面为非0001面的凹槽结构,如图2(e)。Step 7, photoetch the groove window on the epitaxial wafer after deglue, and use reactive ion etching RIE equipment to etch the AlGaN/GaN heterojunction under the groove window, and use chlorine gas Cl 2 with a flow rate of 15 sccm for etching, The power is 200W, the pressure is 10mT, and the etching depth is 90nm to form a groove structure with a 0001 polar surface on the bottom surface and a non-0001 surface on the side surface, as shown in Figure 2(e).

步骤8,与实施例1的步骤八相同。Step 8 is the same as Step 8 of Embodiment 1.

步骤9,与实施例1的步骤九相同。Step 9 is the same as Step 9 in Embodiment 1.

步骤10,重复步骤三,在凹槽内壁二次生长不同厚度的GaN次缓冲层,即在凹槽底面垂直方向上生长的GaN次缓冲层厚度为60nm,在凹槽侧面水平方向上生长的GaN次缓冲层厚度为30nm,如图2(f)。Step 10, repeat step 3, and grow GaN sub-buffer layers with different thicknesses on the inner wall of the groove for the second time, that is, the thickness of the GaN sub-buffer layer grown vertically on the bottom of the groove is 60nm, and the GaN sub-buffer layer grown horizontally on the side of the groove The thickness of the secondary buffer layer is 30nm, as shown in Figure 2(f).

步骤11,采用MOCVD技术在温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm的工艺条件下,在GaN次缓冲层上二次生长不同厚度的Al0.25Ga0.75N次势垒层,即在凹槽底面垂直方向上生长的Al0.25Ga0.75N次势垒层厚度为26nm,在凹槽侧面水平方向上生长的Al0.25Ga0.75N次势垒层厚度为13nm,这样在次AlGaN势垒层和次GaN缓冲层的界面靠向GaN一侧就形成了辅二维电子气2DEG,并且保证了辅二维电子气2DEG的水平位置低于主二维电子气2DEG的水平位置,如图2(g)。Step 11, using MOCVD technology under the process conditions of temperature 920°C, pressure 40 Torr, hydrogen gas flow rate 500 sccm, ammonia gas flow rate 5000 sccm, aluminum source flow rate 10 sccm, gallium source flow rate 40 sccm, on the GaN sub-buffer layer two Sub-growth Al 0.25 Ga 0.75 N sub-barrier layers with different thicknesses, that is, the thickness of the Al 0.25 Ga 0.75 N sub-barrier layer grown in the vertical direction on the bottom of the groove is 26nm, and the thickness of the Al 0.25 Ga 0.75 N sub-barrier layer grown in the horizontal direction on the groove side The thickness of the 0.75 N sub-barrier layer is 13nm, so that an auxiliary two-dimensional electron gas 2DEG is formed at the interface of the sub-AlGaN barrier layer and the sub-GaN buffer layer on the GaN side, and the level of the auxiliary two-dimensional electron gas 2DEG is guaranteed The position is lower than the horizontal position of the main two-dimensional electron gas 2DEG, as shown in Figure 2(g).

步骤12,在二次生长Al0.25Ga0.75N次势垒层后的外延片上,在氨气流量为2.5sccm,氮气流量为900sccm,硅烷流量为200sccm,温度为300℃,压力为900mT,功率为25W的工艺条件下,利用等离子增强化学气相淀积PECVD方法淀积厚度为40nm的SiN介质层,该介质层覆盖次势垒层和凹槽内壁,如图2(h)。Step 12, on the epitaxial wafer after secondary growth of the Al 0.25 Ga 0.75 N sub-barrier layer, the flow rate of ammonia gas is 2.5 sccm, the flow rate of nitrogen gas is 900 sccm, the flow rate of silane gas is 200 sccm, the temperature is 300°C, the pressure is 900mT, and the power is Under the process condition of 25W, a SiN dielectric layer with a thickness of 40nm was deposited by plasma-enhanced chemical vapor deposition PECVD method, and the dielectric layer covered the sub-barrier layer and the inner wall of the groove, as shown in Figure 2(h).

步骤13,与实施例1的步骤十三相同。Step 13 is the same as Step 13 in Embodiment 1.

步骤14,与实施例1的步骤十四相同。Step 14 is the same as Step 14 in Embodiment 1.

步骤15,与实施例1的步骤十五相同。Step 15 is the same as Step 15 of Embodiment 1.

步骤16,与实施例1的步骤十六相同。Step 16 is the same as Step 16 in Embodiment 1.

步骤17,与实施例1的步骤十七相同。Step 17 is the same as Step 17 in Embodiment 1.

步骤18,与实施例1的步骤十八相同。Step 18 is the same as Step 18 in Embodiment 1.

步骤19,与实施例1的步骤十九相同。Step 19 is the same as Step 19 in Embodiment 1.

步骤20,与实施例1的步骤二十相同。Step 20 is the same as Step 20 of Embodiment 1.

步骤21,与实施例1的步骤二十一相同。Step 21 is the same as Step 21 of Embodiment 1.

实施例3Example 3

制作过渡层为AlN,GaN主缓冲层厚度为4um,Al0.2Ga0.8N主势垒层厚度为36nm,凹槽刻蚀深度为150nm,GaN次缓冲层在凹槽底面向上方向上厚度为110nm、在凹槽侧面水平方向上厚度为55nm,Al0.2Ga0.8N次势垒层为在凹槽底面向上方向上厚度为36nm,在凹槽侧面水平方向上厚度为18nm,介质层厚度为60nm的MS栅GaN基增强型高电子迁移率晶体管,其步骤是:The transition layer is made of AlN, the thickness of the GaN main buffer layer is 4um, the thickness of the Al 0.2 Ga 0.8 N main barrier layer is 36nm, the groove etching depth is 150nm, and the thickness of the GaN secondary buffer layer is 110nm in the upward direction of the bottom of the groove. The thickness in the horizontal direction of the side of the groove is 55nm, the thickness of the Al 0.2 Ga 0.8 N sub-barrier layer is 36nm in the upward direction of the bottom of the groove, the thickness in the horizontal direction of the side of the groove is 18nm, and the thickness of the dielectric layer is 60nm. Gate GaN-based enhancement-mode high electron mobility transistor, the steps of which are:

步骤A,与实施例1的步骤一相同。Step A is the same as step one of embodiment 1.

步骤B,与实施例1的步骤二相同。Step B is the same as Step 2 of Example 1.

步骤C,采用MOCVD技术在温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,镓源流量为220sccm的工艺条件下,在过渡层上外延生长厚度为4um的GaN主缓冲层,如图2(b)。Step C, using MOCVD technology to epitaxially grow a GaN main buffer with a thickness of 4um on the transition layer under the process conditions of a temperature of 920°C, a pressure of 40Torr, a flow rate of hydrogen gas of 500 sccm, a flow rate of ammonia gas of 5000 sccm, and a flow rate of gallium source of 220 sccm layer, as shown in Figure 2(b).

步骤D,采用MOCVD技术在温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm的工艺条件下,在主缓冲层上,通过通入硅烷SiH4外延生长掺杂浓度为5×1019cm-3、厚度为36nm的N型掺杂Al0.2Ga0.8N主势垒层,以在AlN过渡层上形成AlGaN/GaN异质结,在AlGaN/GaN异质结界面靠向GaN一侧就形成了主二维电子气2DEG,在AlN过渡层上外延AlGaN/GaN异质结形成的外延片结构如图2(c)。Step D, using MOCVD technology at a temperature of 920°C, a pressure of 40 Torr, a hydrogen flow of 500 sccm, an ammonia flow of 5000 sccm, an aluminum source flow of 10 sccm, and a gallium source flow of 40 sccm, on the main buffer layer, through The N-type doped Al 0.2 Ga 0.8 N main barrier layer with a doping concentration of 5×10 19 cm -3 and a thickness of 36nm is epitaxially grown through silane SiH 4 to form an AlGaN/GaN heterojunction on the AlN transition layer , the main two-dimensional electron gas 2DEG is formed at the AlGaN/GaN heterojunction interface close to the GaN side, and the epitaxial wafer structure formed by epitaxial AlGaN/GaN heterojunction on the AlN transition layer is shown in Figure 2(c).

步骤E,与实施例1的步骤五相同。Step E is the same as Step 5 of Example 1.

步骤F,与实施例1的步骤六相同。Step F is the same as Step 6 of Embodiment 1.

步骤G,对去胶后的外延片光刻出凹槽窗口,并采用反应离子刻蚀RIE设备刻蚀凹槽窗口下的AlGaN/GaN异质结,刻蚀采用流量为15sccm的氯气Cl2,功率为200W,压强为10mT,刻蚀深度为150nm,形成凹槽底面为0001极性面,侧面为非0001面的凹槽结构,如图2(e)。Step G, photoetching a groove window on the epitaxial wafer after degelling, and using reactive ion etching RIE equipment to etch the AlGaN/GaN heterojunction under the groove window, using chlorine gas Cl 2 with a flow rate of 15 sccm for etching, The power is 200W, the pressure is 10mT, and the etching depth is 150nm to form a groove structure with a 0001 polar surface on the bottom surface and a non-0001 surface on the side surface, as shown in Figure 2(e).

步骤H,与实施例1的步骤八相同。Step H is the same as Step 8 of Example 1.

步骤I,与实施例1的步骤九相同。Step 1 is the same as Step 9 of Embodiment 1.

步骤J,重复步骤三,在凹槽内壁二次生长不同厚度的GaN次缓冲层,即在凹槽底面垂直方向上生长的GaN次缓冲层厚度为110nm,在凹槽侧面水平方向上生长的GaN次缓冲层厚度为55nm,如图2(f)。Step J, repeat step 3, and grow GaN sub-buffer layers with different thicknesses on the inner wall of the groove for the second time, that is, the thickness of the GaN sub-buffer layer grown vertically on the bottom of the groove is 110 nm, and the GaN sub-buffer layer grown horizontally on the side of the groove The thickness of the secondary buffer layer is 55nm, as shown in Figure 2(f).

步骤K,采用MOCVD技术在温度为920℃,压力为40Torr,氢气流量为500sccm,氨气流量为5000sccm,铝源流量为10sccm,镓源流量为40sccm的工艺条件下,在GaN次缓冲层上二次生长不同厚度的Al0.2Ga0.8N次势垒层,即在凹槽底面垂直方向上生长的Al0.2Ga0.8N次势垒层厚度为36nm,在凹槽侧面水平方向上生长的Al0.2Ga0.8N次势垒层厚度为18nm,这样在次AlGaN势垒层和次GaN缓冲层的界面靠向GaN一侧就形成了辅二维电子气2DEG,并且保证了辅二维电子气2DEG的水平位置低于主二维电子气2DEG的水平位置,如图2(g)。In step K, using MOCVD technology at a temperature of 920° C., a pressure of 40 Torr, a hydrogen gas flow rate of 500 sccm, an ammonia gas flow rate of 5000 sccm, an aluminum source flow rate of 10 sccm, and a gallium source flow rate of 40 sccm, on the GaN sub-buffer layer two Sub-growth Al 0.2 Ga 0.8 N sub-barrier layers with different thicknesses, that is, the thickness of the Al 0.2 Ga 0.8 N sub-barrier layer grown in the vertical direction on the bottom of the groove is 36nm, and the Al 0.2 Ga 0.8 N sub-barrier layer grown in the horizontal direction on the groove side The thickness of the 0.8 N sub-barrier layer is 18nm, so that an auxiliary two-dimensional electron gas 2DEG is formed at the interface of the sub-AlGaN barrier layer and the sub-GaN buffer layer on the GaN side, and the level of the auxiliary two-dimensional electron gas 2DEG is guaranteed The position is lower than the horizontal position of the main two-dimensional electron gas 2DEG, as shown in Figure 2(g).

步骤L,在二次生长Al0.2Ga0.8N次势垒层后的外延片上,在氨气流量为2.5sccm,氮气流量为900sccm,硅烷流量为200sccm,温度为300℃,压力为900mT,功率为25W的工艺条件下,利用等离子增强化学气相淀积PECVD方法淀积厚度为60nm的SiN介质层,该介质层覆盖次势垒层和凹槽内壁,如图2(h)。In step L, on the epitaxial wafer after secondary growth of the Al 0.2 Ga 0.8 N sub-barrier layer, the flow rate of ammonia gas is 2.5 sccm, the flow rate of nitrogen gas is 900 sccm, the flow rate of silane gas is 200 sccm, the temperature is 300°C, the pressure is 900mT, and the power is Under the process condition of 25W, a SiN dielectric layer with a thickness of 60nm was deposited by plasma-enhanced chemical vapor deposition PECVD method, and the dielectric layer covered the sub-barrier layer and the inner wall of the groove, as shown in Figure 2(h).

步骤M,与实施例1的步骤十三相同。Step M is the same as Step 13 of Embodiment 1.

步骤N,与实施例1的步骤十四相同。Step N is the same as Step 14 of Embodiment 1.

步骤O,与实施例1的步骤十五相同。Step 0 is the same as Step 15 of Embodiment 1.

步骤P,与实施例1的步骤十六相同。Step P is the same as Step 16 of Embodiment 1.

步骤Q,与实施例1的步骤十七相同。Step Q is the same as Step 17 of Embodiment 1.

步骤R,与实施例1的步骤十八相同。Step R is the same as Step 18 of Embodiment 1.

步骤S,与实施例1的步骤十九相同。Step S is the same as Step 19 of Embodiment 1.

步骤T,与实施例1的步骤二十相同。Step T is the same as Step 20 of Embodiment 1.

步骤U,与实施例1的步骤二十一相同。Step U is the same as Step 21 of Embodiment 1.

上述实施例仅本发明的几个优选实例,不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,能够在不背离本发明的原理和范围的情况下,根据本发明的方法进行形式和细节上的各种修正和改变,但是这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。The above-described embodiments are only several preferred examples of the present invention, and do not constitute any limitation to the present invention. Obviously, for those skilled in the art, after understanding the contents and principles of the present invention, they can Under the circumstances of the invention, various amendments and changes in form and details are made according to the method of the present invention, but these amendments and changes based on the present invention are still within the protection scope of the claims of the present invention.

Claims (8)

1. a metal semiconductor MS grid GaN base enhancement type high electron mobility transistor comprises: substrate (1), transition zone (2), GaN host buffer layer (3), N type AlGaN master barrier layer (4), source electrode (9) and drain electrode (10); Transition zone (2) is positioned at substrate (1) top; GaN host buffer layer (3) is positioned at transition zone (2) top; Both sides, GaN host buffer layer (3) top are N type AlGaN master barrier layer (4); N type AlGaN master barrier layer (4) both sides, top are respectively source electrode (9) and drain electrode (10); It is characterized in that the centre of GaN host buffer layer (3) is etched with groove (5), the inwall of this groove (5) extension successively has GaN resilient coating (6) and AlGaN barrier layer (7); Gate electrode is deposited on AlGaN the barrier layer (7), and covers whole groove (5) zone; Be provided with medium (8) outside the source of N type AlGaN master barrier layer (4) top of groove (5) both sides, the drain electrode.
2. HEMT according to claim 1, the bottom surface of groove (5) is 0001 polar surface, the groove side is non-0001.
3. HEMT according to claim 1 is characterized in that, the main two-dimensional electron gas 2DEG of the formation at the interface raceway groove (11) of GaN host buffer layer (3) and AlGaN master's barrier layer (4), and this raceway groove (11) is positioned at the both sides of groove (5); GaN the resilient coating (6) of extension forms auxilliary two-dimensional electron gas 2DEG raceway groove (12) with AlGaN barrier layer (7) interface in the groove.
4. HEMT according to claim 1 is characterized in that, the horizontal level of auxilliary two-dimensional electron gas 2DEG raceway groove (12) is lower than the horizontal level of main two-dimensional electron gas 2DEG raceway groove (11).
5. HEMT according to claim 1 is characterized in that, AlGaN master's barrier layer (4) is 5 * 10 for doping content 19Cm -3The N type mix.
6. the manufacture method of metal semiconductor MS grid GaN base enhancement type high electron mobility transistor may further comprise the steps:
1) in metal organic chemical vapor deposition MOCVD reative cell, substrate surface is carried out preliminary treatment;
2) epitaxial growth AlGaN/GaN epitaxial loayer on substrate, wherein GaN thickness is 1um~4um, the Al that the N type mixes xGa 1-xThe N barrier layer thickness is 16nm~36nm, and wherein the molar content x of Al element is 20%-30%;
3) deposit one deck mask dielectric layer on epitaxial loayer carries out photoetching again, and adopts wet etching method that the dielectric layer on the epitaxial loayer is carried out etching, and shape is grown into the groove of 0.5um on epitaxial loayer;
4) make grooved area by lithography, and adopt reactive ion etching RIE method that the AlGaN/GaN epitaxial loayer in the grooved area is carried out etching, etching depth is 40nm~150nm;
5) the mask dielectric layer outside the reservation groove; Epitaxial loayer after the etching is passed through metal organic chemical vapor deposition MOCVD reative cell; Along the 20nm~110nm that grows on the groove floor direction vertically upward thick GaN layer and the thick AlGaN layer of 16nm~36nm, along thick GaN layer and the thick AlGaN layer of 8nm~18nm of groove side surface direction growth 10nm~55nm;
6) remove the mask dielectric layer;
7) on the epitaxial loayer of removing the mask dielectric layer, adopting chemical vapor deposition CVD or physical vapor deposition PVD method deposition thickness is the dielectric layer of 10nm~60nm;
8) on dielectric layer, make source, leakage, gate region earlier by lithography, etch source, leakage, grid window again;
9) make source, drain region by lithography, again on the epitaxial loayer after the photoetching, adopt electron beam evaporation thickness be four layers of metal of Ti/Al/Ni/Au of 30nm/180nm/40nm/60nm as metal ohmic contact, formation source, drain contact electrode after peeling off, annealing;
10) make gate region by lithography, and on the epitaxial loayer after the photoetching, adopt electron beam evaporation thickness be the Ni/Au double layer of metal of 30nm/200nm as gate metal, the grid of formation metal semiconductor MS through peeling off after;
11) photoetching has formed the device surface of source, leakage, grid, obtains the thickening electrode pattern, and adopts electron beam evaporation technique to add thick electrode, accomplishes element manufacturing.
7. HEMT according to claim 6 is characterized in that, the process conditions of step 9) and step 10) electron beam evaporation are: vacuum degree is less than 2.0 * 10 -6Pa, power are 200W, and evaporation rate is smaller or equal to dust/second.
8. HEMT according to claim 6 is characterized in that, the process conditions of step 4) etching AlGaN/GaN epitaxial loayer are: chlorine Cl 2Flow is 15sccm's, and power is 200W, and pressure is 10mT.
CN2012101310275A 2012-04-29 2012-04-29 MS (Metal-Semiconductor)-grid GaN-based enhanced transistor with high electron mobility and manufacture method thereof Pending CN102637726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101310275A CN102637726A (en) 2012-04-29 2012-04-29 MS (Metal-Semiconductor)-grid GaN-based enhanced transistor with high electron mobility and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101310275A CN102637726A (en) 2012-04-29 2012-04-29 MS (Metal-Semiconductor)-grid GaN-based enhanced transistor with high electron mobility and manufacture method thereof

Publications (1)

Publication Number Publication Date
CN102637726A true CN102637726A (en) 2012-08-15

Family

ID=46622050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101310275A Pending CN102637726A (en) 2012-04-29 2012-04-29 MS (Metal-Semiconductor)-grid GaN-based enhanced transistor with high electron mobility and manufacture method thereof

Country Status (1)

Country Link
CN (1) CN102637726A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201202A (en) * 2014-09-17 2014-12-10 电子科技大学 Gallium-nitride-based heterostructure field effect transistor with composite barrier layers
CN104916684A (en) * 2015-06-11 2015-09-16 大连理工大学 Longitudinal short-opening grid channel-type HEMT device and preparation method thereof
CN105977294A (en) * 2016-05-06 2016-09-28 杭州电子科技大学 Novel normally-closed III-V heterojunction field effect transistor
EP3252825A1 (en) * 2016-05-30 2017-12-06 STMicroelectronics Srl Double-channel hemt device and manufacturing method thereof
CN108389904A (en) * 2018-03-06 2018-08-10 中国电子科技集团公司第十三研究所 A kind of GaN HEMT devices and preparation method
CN110504301A (en) * 2019-09-09 2019-11-26 南方科技大学 III-nitride transistor epitaxial structure and transistor device
CN111682064A (en) * 2020-06-02 2020-09-18 华南师范大学 High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof
WO2021102683A1 (en) * 2019-11-26 2021-06-03 苏州晶湛半导体有限公司 Semiconductor structure and manufacturing method therefor
US11316038B2 (en) 2018-11-20 2022-04-26 Stmicroelectronics S.R.L. HEMT transistor with adjusted gate-source distance, and manufacturing method thereof
CN115799332A (en) * 2023-02-13 2023-03-14 江西兆驰半导体有限公司 Polar silicon-based high electron mobility transistor and preparation method thereof
WO2023109277A1 (en) * 2021-12-13 2023-06-22 中国科学院苏州纳米技术与纳米仿生研究所 High electron mobility transistor structure and manufacturing method therefor and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252088A (en) * 2008-03-28 2008-08-27 西安电子科技大学 A Realization Method of a Novel Enhanced AlGaN/GaN HEMT Device
CN102130160A (en) * 2011-01-06 2011-07-20 西安电子科技大学 Trench channel AlGaN/GaN enhanced HEMT device and manufacturing method
CN102203936A (en) * 2009-07-30 2011-09-28 住友电气工业株式会社 Semiconductor device and method for manufacturing same
CN102237454A (en) * 2010-04-29 2011-11-09 展晶科技(深圳)有限公司 Semiconductor photoelectric element and manufacturing method thereof
CN102339891A (en) * 2011-09-29 2012-02-01 西安电子科技大学 A p-i-n sandwich structure InGaN solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252088A (en) * 2008-03-28 2008-08-27 西安电子科技大学 A Realization Method of a Novel Enhanced AlGaN/GaN HEMT Device
CN102203936A (en) * 2009-07-30 2011-09-28 住友电气工业株式会社 Semiconductor device and method for manufacturing same
CN102237454A (en) * 2010-04-29 2011-11-09 展晶科技(深圳)有限公司 Semiconductor photoelectric element and manufacturing method thereof
CN102130160A (en) * 2011-01-06 2011-07-20 西安电子科技大学 Trench channel AlGaN/GaN enhanced HEMT device and manufacturing method
CN102339891A (en) * 2011-09-29 2012-02-01 西安电子科技大学 A p-i-n sandwich structure InGaN solar cell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201202B (en) * 2014-09-17 2017-01-25 电子科技大学 Gallium-nitride-based heterostructure field effect transistor with composite barrier layers
CN104201202A (en) * 2014-09-17 2014-12-10 电子科技大学 Gallium-nitride-based heterostructure field effect transistor with composite barrier layers
CN104916684B (en) * 2015-06-11 2018-04-27 大连理工大学 A kind of longitudinal direction is short to open grid groove type HEMT device and preparation method thereof
CN104916684A (en) * 2015-06-11 2015-09-16 大连理工大学 Longitudinal short-opening grid channel-type HEMT device and preparation method thereof
CN105977294A (en) * 2016-05-06 2016-09-28 杭州电子科技大学 Novel normally-closed III-V heterojunction field effect transistor
US11489068B2 (en) 2016-05-30 2022-11-01 Stmicroelectronics S.R.L. Double-channel HEMT device and manufacturing method thereof
US10381470B2 (en) 2016-05-30 2019-08-13 Stmicroelectronics S.R.L. Double-channel HEMT device and manufacturing method thereof
US12148823B2 (en) 2016-05-30 2024-11-19 Stmicroelectronics S.R.L. Double-channel HEMT device and manufacturing method thereof
US10892357B2 (en) 2016-05-30 2021-01-12 Stmicroelectronics S.R.L. Double-channel HEMT device and manufacturing method thereof
EP3252825A1 (en) * 2016-05-30 2017-12-06 STMicroelectronics Srl Double-channel hemt device and manufacturing method thereof
CN108389904B (en) * 2018-03-06 2020-09-01 中国电子科技集团公司第十三研究所 A kind of GaN HEMT device and preparation method
CN108389904A (en) * 2018-03-06 2018-08-10 中国电子科技集团公司第十三研究所 A kind of GaN HEMT devices and preparation method
US12062715B2 (en) 2018-11-20 2024-08-13 Stmicroelectronics S.R.L. HEMT transistor with adjusted gate-source distance, and manufacturing method thereof
US11316038B2 (en) 2018-11-20 2022-04-26 Stmicroelectronics S.R.L. HEMT transistor with adjusted gate-source distance, and manufacturing method thereof
CN110504301A (en) * 2019-09-09 2019-11-26 南方科技大学 III-nitride transistor epitaxial structure and transistor device
WO2021102683A1 (en) * 2019-11-26 2021-06-03 苏州晶湛半导体有限公司 Semiconductor structure and manufacturing method therefor
CN111682064B (en) * 2020-06-02 2022-06-07 华南师范大学 High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof
CN111682064A (en) * 2020-06-02 2020-09-18 华南师范大学 High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof
WO2023109277A1 (en) * 2021-12-13 2023-06-22 中国科学院苏州纳米技术与纳米仿生研究所 High electron mobility transistor structure and manufacturing method therefor and application thereof
JP7638024B2 (en) 2021-12-13 2025-03-03 中国科学院蘇州納米技術与納米▲ファン▼生研究所 High electron mobility transistor structure, its manufacturing method and use
CN115799332B (en) * 2023-02-13 2023-04-21 江西兆驰半导体有限公司 Polar silicon-based high electron mobility transistor and preparation method thereof
CN115799332A (en) * 2023-02-13 2023-03-14 江西兆驰半导体有限公司 Polar silicon-based high electron mobility transistor and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102629624B (en) Metal-insulator-semiconductor (MIS) grid enhanced high electron mobility transistor (HEMT) device based on gallium nitride (GaN) and manufacture method of MIS grid enhanced HEMT device
CN102637726A (en) MS (Metal-Semiconductor)-grid GaN-based enhanced transistor with high electron mobility and manufacture method thereof
CN102683406B (en) GaN-based MS grid enhancement type high electron mobility transistor and manufacture method thereof
CN101252088B (en) A Realization Method of Enhanced AlGaN/GaN HEMT Device
US20160218204A1 (en) Enhancement Mode High Electron Mobility Transistor and Manufacturing Method Thereof
CN102130160A (en) Trench channel AlGaN/GaN enhanced HEMT device and manufacturing method
WO2020228352A1 (en) Semiconductor device and manufacturing method therefor
JP2021510461A (en) Group III nitride enhancement type HEMT based on the composite barrier layer structure and its manufacturing method
CN102646705A (en) MIS gate GaN-based enhanced HEMT device and manufacturing method
CN101465372A (en) AlN/GaN enhancement type metal-insulator-semiconductor field effect transistor and method of producing the same
CN112968059B (en) A Novel Enhancement Mode GaN HEMT Device Structure
US12087855B2 (en) Vertical UMOSFET device with high channel mobility and preparation method thereof
CN106229345A (en) Laminated gate medium GaN base insulated gate HEMT and manufacture method
CN113889531A (en) Semiconductor device and application and manufacturing method thereof
CN108962752A (en) Enhanced HEMT device of p-type grid and preparation method thereof
CN105355659A (en) Trench-gate AlGaN/GaN HEMT device structure and manufacturing method
CN114899227A (en) Enhanced gallium nitride-based transistor and preparation method thereof
CN116013989A (en) With SiO 2 Vertical structure Ga of barrier layer 2 O 3 Transistor and preparation method
CN108598000B (en) Fabrication method and device of GaN-based enhancement mode MISHEMT device
CN111682064B (en) High-performance MIS gate enhancement mode GaN-based high electron mobility transistor and preparation method thereof
CN109950323B (en) Polarized superjunction III-nitride diode device and method of making the same
CN112599603A (en) Quasi-vertical field effect transistor based on longitudinal Schottky source tunneling junction and method
CN106571387A (en) High K material-based stacked-gate AlGaN/GaN high-electron mobility MOS device
CN106449737A (en) Low-contact resistor type GaN-based device and manufacturing method thereof
CN104037222B (en) High-voltage trench gate AlGaN/GaN HEMT device structure based on organic polymer polarization effect and manufacturing method of high-voltage trench gate AlGaN/GaN HEMT device structure based on organic polymer polarization effect

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120815