TW202145692A - Self-driving power supply based on resonance energy recycling - Google Patents
Self-driving power supply based on resonance energy recycling Download PDFInfo
- Publication number
- TW202145692A TW202145692A TW109117416A TW109117416A TW202145692A TW 202145692 A TW202145692 A TW 202145692A TW 109117416 A TW109117416 A TW 109117416A TW 109117416 A TW109117416 A TW 109117416A TW 202145692 A TW202145692 A TW 202145692A
- Authority
- TW
- Taiwan
- Prior art keywords
- switch
- side winding
- coupled
- voltage
- power supply
- Prior art date
Links
- 238000004064 recycling Methods 0.000 title 1
- 238000007599 discharging Methods 0.000 claims abstract 4
- 238000004804 winding Methods 0.000 claims description 74
- 239000003990 capacitor Substances 0.000 claims description 19
- 230000003071 parasitic effect Effects 0.000 claims description 17
- 238000004146 energy storage Methods 0.000 claims description 6
- 238000011084 recovery Methods 0.000 claims description 6
- 238000013016 damping Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 12
- 101100545228 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ZDS1 gene Proteins 0.000 description 8
- 101100489713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND1 gene Proteins 0.000 description 6
- 101100489717 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND2 gene Proteins 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明相關於一種具諧振能量回收自給驅動設計之電源供應器,尤指一種可兼顧電源轉換效率、元件安全性和輸出電壓穩定度之電源供應器。The present invention relates to a power supply with self-sustained driving design of resonant energy recovery, in particular to a power supply that can take into account power conversion efficiency, component safety and output voltage stability.
電腦系統中不同組件所需的操作電壓不同,因此普遍採用電源供應器(power supply)以通過變壓、整流與濾波的方式,將交流電(AC)室內電源轉換為直流電(DC)以驅動不同零組件。傳統馳返式架構下的電源供應器會使用一功率開關來控制變壓器的初級側路徑,並使用一輸出二極體來控制變壓器的次級側路徑。當功率開關導通時,輸入電能會轉換而磁能而儲存在變壓器中,此時反向偏壓的輸出二極體會隔絕輸出路徑;當功率開關截止時,變壓器內存能量會經由正向偏壓的輸出二極體釋放至輸出端,並藉由一輸出電容來平滑電量輸出。Different components in a computer system require different operating voltages, so a power supply is generally used to convert alternating current (AC) indoor power into direct current (DC) by means of voltage transformation, rectification and filtering to drive different zeroes. components. A power supply in a traditional flyback architecture uses a power switch to control the primary-side path of the transformer and an output diode to control the secondary-side path of the transformer. When the power switch is turned on, the input electric energy will be converted and the magnetic energy will be stored in the transformer. At this time, the output diode of the reverse bias voltage will isolate the output path; when the power switch is turned off, the energy stored in the transformer will be output through the forward bias voltage. The diode is released to the output terminal, and the power output is smoothed by an output capacitor.
由於輸出二極體功率損失較大,另一種先前技術之電源供應器會採用整流開關來控制變壓器的次級側路徑,進而提昇電源轉換效率。然而,此種架構需額外使用一驅動積體電路來同步控制整流開關,使得整流開關在功率開關呈導通時被截止,而在功率開關被截止時呈導通。上述驅動積體電路設置在次級側,電源供應器之高溫或高頻切換運作容易縮短驅動積體電路之壽命,一旦損毀會使得電源供應器無法順利輸出。此外,整流開關的非理想特性(例如寄生電容)會在其導通時儲存電量,上述儲存電量會影響電源供應器之輸出穩定度,嚴重時也會造成電源供應器無法順利輸出。Due to the large power loss of the output diode, another prior art power supply uses a rectifier switch to control the secondary-side path of the transformer, thereby improving the power conversion efficiency. However, this structure requires an additional driving IC to control the rectifier switch synchronously, so that the rectifier switch is turned off when the power switch is turned on, and turned on when the power switch is turned off. The above-mentioned driving integrated circuit is arranged on the secondary side, and the high temperature or high frequency switching operation of the power supply can easily shorten the life of the driving integrated circuit, and once damaged, the power supply will not be able to output smoothly. In addition, the non-ideal characteristics of the rectifier switch (such as parasitic capacitance) will store power when it is turned on. The stored power will affect the output stability of the power supply, and in severe cases, the power supply may not be able to output smoothly.
因此,需要一種可兼顧電源轉換效率、元件安全性和輸出電壓穩定度之電源供應器。Therefore, there is a need for a power supply that can take into account power conversion efficiency, device safety and output voltage stability.
本發明提供一種具諧振能量回收自給驅動設計之電源供應器,其包含一第一變壓器、一第一開關、一第二變壓器、一第二開關、一第一諧振電壓供應電路,以及一第二諧振電壓供應電路。該第一變壓器包含一第一初級側繞組和一第一次級側繞組,用來將一輸入電壓轉換成一輸出電壓。該第一開關包含一第一端,耦接至該輸入電壓;一第二端,耦接至一第一接地電位;以及一控制端,用來接收一第一控制訊號。該第二變壓器包含一第二初級側繞組和一第二次級側繞組,用來將一第一諧振電壓能量或一第二諧振電壓能量轉換成一第二控制訊號。該第二開關包含一第一端,耦接至該第一次級側繞組;一第二端,選擇性地耦接至一第二接地電位;以及一控制端,用來接收該第二控制訊號。該第一諧振電壓供應電路耦接於該第一開關和該第二次級側繞組,用來和該第一開關之寄生電容發生諧振以提供該第一諧振電壓能量。該第二諧振電壓供應電路耦接於該第一開關和該第一初級側繞組,用來分壓該第一開關之跨壓以提供該第二諧振電壓能量。The present invention provides a power supply with resonant energy recovery self-driving design, which includes a first transformer, a first switch, a second transformer, a second switch, a first resonant voltage supply circuit, and a second Resonant voltage supply circuit. The first transformer includes a first primary side winding and a first secondary side winding for converting an input voltage into an output voltage. The first switch includes a first terminal coupled to the input voltage; a second terminal coupled to a first ground potential; and a control terminal for receiving a first control signal. The second transformer includes a second primary side winding and a second secondary side winding for converting a first resonant voltage energy or a second resonant voltage energy into a second control signal. The second switch includes a first end coupled to the first secondary side winding; a second end selectively coupled to a second ground potential; and a control end for receiving the second control signal. The first resonant voltage supply circuit is coupled to the first switch and the second secondary side winding for resonating with the parasitic capacitance of the first switch to provide the first resonant voltage energy. The second resonant voltage supply circuit is coupled to the first switch and the first primary side winding for dividing the voltage across the first switch to provide the second resonant voltage energy.
第1圖為本發明實施例中一種具諧振能量回收自給驅動設計之電源供應器100之功能方塊圖。電源供應器100包含一主變壓器TR1、一輔助變壓器TR2、一激磁電感Lm、一功率開關Q1、一整流開關Q2、一輸出電容COUT
、一第一諧振電壓供應電路10、一第二諧振電壓供應電路20,以及一放電電路30。電源供應器100可將由市電供應之一輸入電壓VIN
轉換成一輸出電壓VOUT
,進而驅動一負載(未顯示於第1圖)。FIG. 1 is a functional block diagram of a power supply 100 with resonant energy recovery self-driving design according to an embodiment of the present invention. The power supply 100 includes a main transformer TR1, an auxiliary transformer TR2, a magnetizing inductor Lm, a power switch Q1, a rectifier switch Q2, an output capacitor C OUT , a first resonant
第2圖為本發明實施例中電源供應器100實作方式之示意圖。主變壓器TR1包含一初級側繞組(由匝數NP1來表示)和一次級側繞組(由匝數NS1來表示)。初級側繞組NP1耦接於輸入電壓VIN ,而次級側繞組NS1透過整流開關Q2耦接至電源供應器100之輸出端。在主變壓器TR1之運作中,相關電壓之關係為VIN /VOUT =NP1/NS1。在升壓應用中,次級側繞組之匝數NS1大於初級側繞組之匝數NP1;在降壓應用中,次級側繞組之匝數NS1小於初級側繞組之匝數NP1。在本發明一實施例中,NP1和NS1之值的比例可為36:6,然而主變壓器TR1中初級側繞組之匝數NP1和次級側繞組之匝數NS1並不限定本發明之範疇。FIG. 2 is a schematic diagram of the implementation of the power supply 100 according to the embodiment of the present invention. The main transformer TR1 includes a primary side winding (represented by the number of turns NP1) and a secondary side winding (represented by the number of turns NS1). The primary side winding NP1 is coupled to the input voltage V IN , and the secondary side winding NS1 is coupled to the output terminal of the power supply 100 through the rectifier switch Q2. In the operation of the main transformer TR1, the relationship of the related voltages is V IN /V OUT =NP1/NS1. In boost applications, the number of turns NS1 of the secondary winding is greater than the number of turns NP1 of the primary winding; in buck applications, the number of turns NS1 of the secondary winding is smaller than the number of turns NP1 of the primary winding. In an embodiment of the present invention, the ratio of the values of NP1 and NS1 may be 36:6. However, the number of turns NP1 of the primary winding and the number of turns NS1 of the secondary winding in the main transformer TR1 do not limit the scope of the present invention.
輔助變壓器TR2包含一初級側繞組(由匝數NP2來表示)和一次級側側繞組(由匝數NS2來表示)。初級側繞組NP2透過諧振電壓供應電路10和諧振能量供應電路20耦接至功率開關Q1,而次級側繞組NS2耦接至整流開關Q2之控制端。輔助變壓器TR2用來感應相關於功率開關Q1在導通/截止時的能量,並依此提供控制訊號GD2以同步控制輔助開關Q2之導通/截止狀態,使得輔助開關Q2在功率開關Q1呈導通時被截止,而在功率開關Q1被截止時呈導通。The auxiliary transformer TR2 includes a primary side winding (represented by the number of turns NP2) and a secondary side winding (represented by the number of turns NS2). The primary side winding NP2 is coupled to the power switch Q1 through the resonant
在本發明之主變壓器TR1和輔助變壓器TR2中,初級側繞組NP1~NP2和次級側繞組NS1~NS2皆纏繞在同一磁芯15上,其中初級側繞組NP1和次級側繞組NS1形成一電壓感應單元,而初級側繞組NP2和次級側繞組NS2形成一電壓感應單元。在本發明一實施例中,NP1、NS1、NP2和NS2之值的比例可為36:6:6:4,然而主變壓器TR1和輔助變壓器TR2中初級側繞組之匝數NP1~NP2和次級側繞組之匝數NS1~NS2並不限定本發明之範疇。In the main transformer TR1 and the auxiliary transformer TR2 of the present invention, the primary side windings NP1~NP2 and the secondary side windings NS1~NS2 are wound on the same
激磁電感Lm和功率開關Q1設置在主變壓器TR之初級側,且串聯於輸入電壓VIN 和一接地電位GND1之間,其中激磁電感Lm並聯於主變壓器TR1之初級側繞組NP1。功率開關Q1之第一端透過激磁電感Lm耦接至輸入電壓VIN ,第二端耦接至接地電位GND1,而控制端用來接收一控制訊號GD1。上述控制訊號GD1可由一脈衝寬度調變(pulse width modulation, PWM)積體電路來提供,其可為具特定責任週期(duty cycle)之脈衝訊號,因此能選擇性地導通或截止功率開關Q1。功率開關Q1第一端和第二端之間的寄生電容由COSS1 來表示,功率開關Q1第一端和第二端之間的跨壓由VDS1 來表示,而功率開關Q1控制端和第二端之間的偏壓由VGS1 來表示。The magnetizing inductance Lm and the power switch Q1 are disposed on the primary side of the main transformer TR, and are connected in series between the input voltage V IN and a ground potential GND1, wherein the magnetizing inductance Lm is connected in parallel with the primary side winding NP1 of the main transformer TR1. The first terminal of the power switch Q1 is coupled to the input voltage V IN through the magnetizing inductor Lm, the second terminal is coupled to the ground potential GND1, and the control terminal is used for receiving a control signal GD1. The control signal GD1 can be provided by a pulse width modulation (PWM) integrated circuit, which can be a pulse signal with a specific duty cycle, so that the power switch Q1 can be selectively turned on or off. The parasitic capacitance between the first terminal and the second terminal of the power switch Q1 is represented by C OSS1 , the voltage across the first terminal and the second terminal of the power switch Q1 is represented by V DS1 , and the control terminal of the power switch Q1 and the first terminal are represented by V DS1. The bias voltage between the two terminals is represented by V GS1.
整流開關Q2之第一端耦接至主變壓器TR1之次級側繞組NS1,第二端選擇性地透過放電電路30耦接至接地電位GND,而控制端用來接收控制訊號GD2。上述控制訊號GD2可由輔助變壓器TR2之次級側繞組NS2來提供。整流開關Q2第一端和第二端之間的寄生電容由COSS2
來表示,整流開關Q2第一端和第二端之間的跨壓由VDS2
來表示,而整流開關Q2控制端和第二端之間的偏壓由VGS2
來表示。The first terminal of the rectifier switch Q2 is coupled to the secondary side winding NS1 of the main transformer TR1, the second terminal is selectively coupled to the ground potential GND through the
諧振電壓供應電路10設置在主變壓器TR1和輔助變壓器TR2之初級側,其包含一二極體D1和一諧振電感Lx。二極體D1之陽極耦接至功率開關Q1之第一端,二極體D1之陰極耦接至輔助變壓器TR2之初級側繞組NP2和諧振電感Lx,而諧振電感Lx並聯於輔助變壓器TR2之初級側繞組NP2。The resonant
諧振能量供應電路20設置在主變壓器TR1和輔助變壓器TR2之初級側,其包含一輔助開關Q3、分壓電阻R1~R2、一儲能電容C1,以及一二極體D2。輔助開關Q3之第一端透過分壓電阻R1耦接至功率開關Q1之第一端,第二端耦接至輔助變壓器TR2之初級側繞組NP2且透過分壓電阻R2耦接至接地電位GND1,而控制端透過儲能電容C1耦接至接地電位GND。儲能電容C1之內存能量可提供一控制訊號GD3至輔助開關Q3之控制端,因此能選擇性地導通或截止輔助開關Q3。二極體D2之陽極耦接至輔助變壓器TR2之初級側繞組NP2,二極體D1之陰極耦接於輔助開關Q3之控制端和儲能電容C1之間,而電阻R2耦接於輔助開關Q3之第二端和接地電位GND1之間。The resonant
放電電路30設置在主變壓器TR1和輔助變壓器TR2之次級側,其包含一二極體D3和一緩振電阻Rx。二極體D3之陽極耦接至整流開關Q2之第二端,而二極體D1之陰極耦接至輔助變壓器TR2之次級側繞組NS2,且透過緩振電阻Rx耦接於一接地電位GND2。The
第3圖為本發明實施例電源供應器100在運作時相關訊號之示意圖。如相關領域具備通常知識者皆知,電子裝置的運作依序包含未開機狀態、半啟動狀態(亦稱為暫態),和完全啟動狀態(亦稱為穩態)。為了說明目的,第3圖將電源供應器100之運作分為五個狀態S0~S4來作說明,其中狀態S0為在交流市電未通電時的初始未開機狀態,交流市電剛通電後剛離開未開機狀態S0而進入的狀態S1-S3為半啟動狀態,狀態S4為在交流市電通電一段時間後的完全啟動狀態。在電源供應器100第一次進入狀態S4之後,接下來就會在穩態下運作。更詳細地說,在開機後電源供應器100只會進入一次暫態的狀態S1,接下來會依序以狀態S2、狀態S3和狀態S4的順序做切換。下列表一顯示了在狀態S0~S4下電源供應器100中各元件的狀態。
如第3圖和表一所示,在狀態S0下電源供應器100並未接上電源,此時功率開關Q1、整流開關Q2、輔助開關Q3皆為截止(VGS1 =VDS1 =VGS2 =VDS2 =0),二極體D1~D3也皆為截止,因此電源供應器100無電壓輸出。As shown in FIG. 3 and Table 1, in the state S0, the power supply 100 is not connected to the power supply, at this time, the power switch Q1, the rectifier switch Q2, and the auxiliary switch Q3 are all turned off (V GS1 =V DS1 =V GS2 = V DS2 =0), the diodes D1 ˜ D3 are also turned off, so the power supply 100 has no voltage output.
在電源供應器100接上電源後之狀態S1~S4下,功率開關Q1之控制端電位會隨著控制訊號GD1而變化,也就是說偏壓VGS1 之波形和控制訊號GD0具相同責任週期,其中狀態S1和S4對應至控制訊號GD1和偏壓VGS1 具致能電位的時段,而狀態S2和S3對應至控制訊號GD1和偏壓VGS1 具除能電位的時段。In the states S1-S4 after the power supply 100 is connected to the power supply, the potential of the control terminal of the power switch Q1 will change with the control signal GD1, that is to say, the waveform of the bias voltage V GS1 and the control signal GD0 have the same duty cycle. The states S1 and S4 correspond to the period during which the control signal GD1 and the bias voltage V GS1 have the enabling potential, and the states S2 and S3 correspond to the period during which the control signal GD1 and the bias voltage V GS1 have the disabling potential.
如第3圖和表一所示,在接上電源後且偏壓VGS1
具致能電位時,電源供應器100首先會進入半啟動狀態的狀態S1,此時功率開關Q1會被導通而建立輸入端迴路,使得激磁電感Lm開始儲存輸入電壓VIN
之能量。由於功率開關Q1呈導通時其第一端會被拉至接地電位GND(VDS1
=0),諧振電壓供應電路10中的二極體D1會被截止,此時輔助變壓器TR2之初級側繞組NP2和次級側繞組NS2皆無感應能量,因此整流開關Q2和二極體D2~D3也會被截止。As shown in FIG. 3 and Table 1, after the power supply is connected and the bias voltage V GS1 has an enabling potential, the power supply 100 will first enter the half-start state S1, at which time the power switch Q1 will be turned on to establish The input loop makes the magnetizing inductor Lm begin to store the energy of the input voltage V IN. Since the first terminal of the power switch Q1 is pulled to the ground potential GND (V DS1 =0) when the power switch Q1 is turned on, the diode D1 in the resonant
針對在電源供應器100接上電源且偏壓VGS1 具除能電位的狀態S2和S3,第4圖為本發明實施例電源供應器100在狀態S2下運作時之等效電路示意圖,而第5圖為本發明實施例電源供應器100在狀態S3下運作時之等效電路示意圖。針對在電源供應器100接上電源且偏壓VGS1 具致能電位的狀態S4,第6圖為本發明實施例電源供應器100在狀態S4下運作時之等效電路示意圖。For the states S2 and S3 when the power supply 100 is connected to the power supply and the bias voltage V GS1 has a disabling potential, FIG. 4 is a schematic diagram of an equivalent circuit of the power supply 100 when the power supply 100 operates in the state S2 according to the embodiment of the present invention. FIG. 5 is a schematic diagram of an equivalent circuit of the power supply 100 operating in the state S3 according to the embodiment of the present invention. For the state S4 when the power supply 100 is powered on and the bias voltage V GS1 has an enabling potential, FIG. 6 is a schematic diagram of an equivalent circuit of the power supply 100 operating in the state S4 according to the embodiment of the present invention.
如第3~4圖和表一所示,在接上電源後當偏壓VGS1
具從致能電位切換至除能電位時,電源供應器100會從半啟動狀態的狀態S1切換至半啟動狀態的狀態S2,此時功率開關Q1會被截止,而二極體D1會因正向偏壓而呈導通。在這種情況下,功率開關Q1之寄生電容COSS1
會經由諧振電壓供應電路10中的二極體D1來和諧振電感Lx發生諧振,進而產生一諧振電壓能量以拉高功率開關Q1之跨壓VDS1
。上述諧振電壓能量再由輔助變壓器TR2之初級側繞組NP2感應至次級側繞組NS2以提供控制訊號GD2,進而拉高整流開關Q2之偏壓VGS2
。在狀態S2下偏壓VGS2
之值尚不足以導通整流開關Q2,因此開關Q2之跨壓VDS2
之值為-(VNS1
+VOUT
),其中VNS1
為主變壓器TR1之次級側繞組NS1上之跨壓。此時,諧振能量供應電路20之二極體D2和放電電路30之二極體D3也會被截止。在這種狀況下,透過輔助變壓器TR2的電壓感應和導通之二極體D1,放電電路30之緩振電阻Rx、功率開關Q1之寄生電容COSS1
以及諧振電感Lx會形成一電阻-電感-電容(RLC)緩振電路。當從輔助變壓器TR2之初級側繞組NP2感應至次級側繞組NS2之諧振能量過大時,上述RLC緩振電路可提供過電壓保護以避免整流開關Q2的損毀。As shown in FIGS. 3 to 4 and Table 1, when the bias voltage V GS1 is switched from the enable potential to the disable potential after the power is connected, the power supply 100 will switch from the half-on state S1 to the half-on state In state S2, the power switch Q1 is turned off and the diode D1 is turned on due to the forward bias. In this case, the parasitic capacitance C OSS1 of the power switch Q1 will resonate with the resonant inductance Lx via the diode D1 in the resonant
如第3、5圖和表一所示,在狀態S2下當輔助變壓器TR2從初級側繞組NP2感應足夠諧振電壓能量至次級側繞組NS2時,偏壓VGS2
會達到足以導通整流開關Q2之電位,此時電源供應器100會從半啟動狀態的狀態S2切換至半啟動狀態的狀態S3,而導通的整流開關Q2會建立輸出端迴路,使得整流開關Q2之寄生電容COSS2
和輸出電容COUT
開始被充電,而整流開關Q2之跨壓VDS2
會被寄生電容COSS2
之內存能量限制在一正向電壓VF
。在這種狀況下,諧振電感Lx上的電壓能量會大於功率開關Q1之寄生電容COSS1
上的電壓能量,因此諧振電壓供應電路10中的二極體D1會被截止,而諧振能量供應電路20中的二極體D2會呈導通,使得諧振電感Lx上的電壓能量能傳遞至儲能電容C1。當儲能電容C1提供之控制訊號GD3足以導通輔助開關Q3時,功率開關Q1之寄生電容COSS1
上的電壓能量會被分壓電阻R1和R2分壓,並在分壓電阻R2上建立一分壓電壓VR
。上述分壓電壓VR
會由輔助變壓器TR2從其初級側繞組NP2感應至次級側繞組NS2,進而持續地讓整流開關Q2維持在導通狀態。As shown in Figures 3 and 5 and Table 1, in the state S2, when the auxiliary transformer TR2 induces sufficient resonant voltage energy from the primary side winding NP2 to the secondary side winding NS2, the bias voltage V GS2 will reach enough to turn on the rectifier switch Q2. At this time, the power supply 100 will switch from the state S2 of the half-start state to the state S3 of the half-start state, and the turned-on rectifier switch Q2 will establish an output end loop, so that the parasitic capacitance C OSS2 of the rectifier switch Q2 and the output capacitance C OUT begins to be charged, and the voltage V DS2 across the rectifier switch Q2 is limited to a forward voltage V F by the internal energy of the parasitic capacitor C OSS2 . Under this condition, the voltage energy on the resonant inductance Lx will be greater than the voltage energy on the parasitic capacitance C OSS1 of the power switch Q1 , so the diode D1 in the resonant
如第3、6圖和表一所示,在經歷過狀態S0-S3後當偏壓VGS1
再次切換成致能電位時,電源供應器100會進入狀態S4,此時功率開關Q1會再次被導通,輸入電壓VIN
之能量會從主變壓器TR1之初級側繞組NP1感應至次級側繞組NS1,而輔助變壓器TR2之初級側繞組NP2和次級側繞組NS2皆無感應能量,因此整流開關Q2會再次被截止。此時,先前在狀態S3下存入整流開關Q2之寄生電容COSS2
上的電壓能量會經由放電電路30之二極體D3和緩振電阻Rx快速地放電至接地電位GND2,因此不會影響輸出電壓VOUT
的穩定度。As shown in Figs. 3 and 6 and Table 1, when the bias voltage V GS1 is switched to the enabling level again after going through the states S0-S3, the power supply 100 will enter the state S4, at which time the power switch Q1 will be activated again. On, the energy of the input voltage V IN will be induced from the primary side winding NP1 of the main transformer TR1 to the secondary side winding NS1, while the primary side winding NP2 and the secondary side winding NS2 of the auxiliary transformer TR2 have no induced energy, so the rectifier switch Q2 will was cut off again. At this time, the voltage energy previously stored in the parasitic capacitance C OSS2 of the rectifier switch Q2 in the state S3 will be rapidly discharged to the ground potential GND2 through the diode D3 and the snubber resistor Rx of the
在本發明中,激磁電感Lm之值可為500μH (誤差±5%),功率開關Q1寄生電容COSS1 之值可為100pF(誤差±20%),整流開關Q2寄生電容COSS2 之值可為100pF(誤差±20%),分壓電阻R1之值可為19KΩ(誤差±1%),分壓電阻R2之值可為1KΩ(誤差±1%),儲能電容COUT 之值可為47μF(誤差±5%),諧振電感Lx之值可為28μH (誤差±5%),緩振電阻Rx之值可為26Ω(誤差±5%),而輸出電容COUT 之值可為680μF(誤差±10%)。然而,上述元件之實作方式並不限定本發明之範疇。In the present invention, the value of the magnetizing inductance Lm can be 500μH (error ±5%), the value of the parasitic capacitance C OSS1 of the power switch Q1 can be 100pF (error ± 20%), the value of the parasitic capacitance C OSS2 of the rectifier switch Q2 can be 100pF (error ±20%), the value of voltage dividing resistor R1 can be 19KΩ (error ±1%), the value of voltage dividing resistor R2 can be 1KΩ (error ±1%), the value of energy storage capacitor C OUT can be 47μF (error ±5%), the value of resonant inductance Lx can be 28μH (error ±5%), the value of snubber resistor Rx can be 26Ω (error ±5%), and the value of output capacitor C OUT can be 680μF (error ±5%) ±10%). However, the implementation of the above elements does not limit the scope of the present invention.
在本發明實施例中,功率開關Q1、整流開關Q2和輔助開關Q3可為金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor, MOSFET)、雙極性接面型電晶體(bipolar junction transistor, BJT),或其它具類似功能的元件。對N型電晶體來說,致能電位為高電位,而除能電位為低電位;對P型電晶體來說,致能電位為低電位,而除能電位為高電位。然而,功率開關Q1、整流開關Q2和輔助開關Q3之種類並不限定本發明之範疇。In the embodiment of the present invention, the power switch Q1, the rectifier switch Q2 and the auxiliary switch Q3 may be metal-oxide-semiconductor field-effect transistors (MOSFETs), bipolar junction transistors ( bipolar junction transistor, BJT), or other components with similar functions. For N-type transistors, the enable potential is high and the disable potential is low; for P-type transistors, the enable potential is low and the disable potential is high. However, the types of the power switch Q1, the rectifier switch Q2 and the auxiliary switch Q3 do not limit the scope of the present invention.
第一變壓器可將輸入電壓轉換成輸出電壓。設置在初級側的兩諧振電壓供應電路可提供相關功率開導通/截止狀態之諧振電壓能量,再由第二變壓器感應至次級側以同步控制整流開關。放電電路設置在次級側,用來在整流開關被截止時提供放電路徑。The first transformer can convert the input voltage to an output voltage. The two resonant voltage supply circuits arranged on the primary side can provide the resonant voltage energy in the on/off state of the relevant power, and then are induced to the secondary side by the second transformer to control the rectifier switch synchronously. The discharge circuit is arranged on the secondary side to provide a discharge path when the rectifier switch is turned off.
綜上所述,本發明之電源供應器可達成諧振能量回收自給驅動的功能,透過設置在初級側的兩諧振電壓供應電路來提供相關功率開導通/截止狀態之諧振電壓能量,再將上述初級側諧振電壓能量傳送至次級側以來提供開關控制訊號,進而同步控制初級側之功率開關和次級側之整流開關。相較於先前技術以設置在次級側之驅動積體電路來控制整流開關,本發明之諧振電壓供應電路不會因高溫或高頻切換而容易損毀,且在次級側整流開關被截止時能提供放電路徑。因此,本發明之電源供應器可兼顧電源轉換效率、元件安全性和輸出電壓穩定度。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。To sum up, the power supply of the present invention can achieve the function of resonant energy recovery and self-sufficiency driving. The two resonant voltage supply circuits arranged on the primary side are used to provide the resonant voltage energy in the on/off state of the relevant power, and then the above-mentioned primary The side resonant voltage energy is transmitted to the secondary side to provide a switch control signal, thereby synchronously controlling the power switch on the primary side and the rectifier switch on the secondary side. Compared with the prior art, the rectifier switch is controlled by a driving integrated circuit arranged on the secondary side, the resonant voltage supply circuit of the present invention is not easily damaged due to high temperature or high frequency switching, and when the secondary side rectifier switch is turned off A discharge path can be provided. Therefore, the power supply of the present invention can take into account the power conversion efficiency, component safety and output voltage stability. The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
10、20:諧振電壓供應電路 15:磁芯 30:放電電路 COUT :輸出電容 TR1:主變壓器 TR2:輔助變壓器 NP1、NP2:初級側繞組和匝數 NS1、NS2:次級側繞組和匝數 Lm:激磁電感 Lx:諧振電感 R1、R2:分壓電阻 Rx:緩振電阻 D1~D3:二極體 Q1:功率開關 Q2:整流開關 Q3:輔助開關 COSS1 、COSS2 :寄生電容 C1:儲能電容 VIN :輸入電壓 VOUT :輸出電壓 VDS1 、VDS2 :跨壓 VGS1 、VGS2 :偏壓 GND1、GND2:接地電位 GD1、GD2:控制訊號10, 20: Resonant voltage supply circuit 15: Magnetic core 30: Discharge circuit C OUT : Output capacitor TR1: Main transformer TR2: Auxiliary transformer NP1, NP2: Primary side winding and number of turns NS1, NS2: Secondary side winding and number of turns Lm: magnetizing inductance Lx: resonant inductance R1, R2: voltage dividing resistor Rx: snubber resistor D1~D3: diode Q1: power switch Q2: rectifier switch Q3: auxiliary switch C OSS1 , C OSS2 : parasitic capacitance C1: storage Capacitance V IN : Input voltage V OUT : Output voltage V DS1 , V DS2 : Cross voltage V GS1 , V GS2 : Bias voltage GND1 , GND2 : Ground potential GD1 , GD2 : Control signal
第1圖為本發明實施例中一種具諧振能量回收自給驅動設計之電源供應器功能方塊圖。 第2圖為本發明實施例中一種電源供應器實作方式之示意圖。 第3圖為本發明實施例中一種電源供應器在運作時相關訊號之示意圖。 第4圖為本發明實施例中一種電源供應器在特定狀態下運作時之等效電路示意圖。 第5圖為本發明實施例中一種電源供應器在特定狀態下運作時之等效電路示意圖。 第6圖為本發明實施例中一種電源供應器在特定狀態下運作時之等效電路示意圖。FIG. 1 is a functional block diagram of a power supply with resonant energy recovery self-sustaining drive design according to an embodiment of the present invention. FIG. 2 is a schematic diagram of an implementation manner of a power supply according to an embodiment of the present invention. FIG. 3 is a schematic diagram of related signals during operation of a power supply according to an embodiment of the present invention. FIG. 4 is a schematic diagram of an equivalent circuit of a power supply operating in a specific state according to an embodiment of the present invention. FIG. 5 is a schematic diagram of an equivalent circuit of a power supply operating in a specific state according to an embodiment of the present invention. FIG. 6 is a schematic diagram of an equivalent circuit of a power supply operating in a specific state according to an embodiment of the present invention.
10、20:諧振電壓供應電路10, 20: Resonant voltage supply circuit
15:磁芯15: Magnetic core
30:放電電路30: Discharge circuit
COUT :輸出電容C OUT : output capacitor
TR1:主變壓器TR1: Main Transformer
TR2:輔助變壓器TR2: Auxiliary Transformer
NP1、NP2:初級側繞組和匝數NP1, NP2: Primary side winding and number of turns
NS1、NS2:次級側繞組和匝數NS1, NS2: Secondary side winding and number of turns
Lm:激磁電感Lm: magnetizing inductance
Lx:諧振電感Lx: resonant inductance
R1、R2:分壓電阻R1, R2: divider resistors
Rx:緩振電阻Rx: Snubber resistor
D1~D3:二極體D1~D3: Diode
Q1:功率開關Q1: Power switch
Q2:整流開關Q2: Rectifier switch
Q3:輔助開關Q3: Auxiliary switch
COSS1 、COSS2 :寄生電容C OSS1 , C OSS2 : parasitic capacitance
C1:儲能電容C1: Storage capacitor
VIN :輸入電壓V IN : Input voltage
VOUT :輸出電壓V OUT : output voltage
VDS1 、VDS2 :跨壓V DS1 , V DS2 : Overvoltage
VGS1 、VGS2 :偏壓V GS1 , V GS2 : Bias voltage
GND1、GND2:接地電位GND1, GND2: ground potential
GD1、GD2:控制訊號GD1, GD2: control signal
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109117416A TWI745981B (en) | 2020-05-26 | 2020-05-26 | Self-driving power supply based on resonance energy recycling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109117416A TWI745981B (en) | 2020-05-26 | 2020-05-26 | Self-driving power supply based on resonance energy recycling |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI745981B TWI745981B (en) | 2021-11-11 |
TW202145692A true TW202145692A (en) | 2021-12-01 |
Family
ID=79907435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109117416A TWI745981B (en) | 2020-05-26 | 2020-05-26 | Self-driving power supply based on resonance energy recycling |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI745981B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI838133B (en) * | 2023-02-22 | 2024-04-01 | 宏碁股份有限公司 | Power supply device with high output stability |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4473065B2 (en) * | 2004-08-02 | 2010-06-02 | 株式会社フライングモール | Push-pull switching power converter |
JP4525817B2 (en) * | 2008-10-30 | 2010-08-18 | サンケン電気株式会社 | Switching power supply |
TWM453303U (en) * | 2012-11-08 | 2013-05-11 | Chung Shan Inst Of Science | Half bridge dual output LLC series resonant converter |
CN204578376U (en) * | 2015-04-16 | 2015-08-19 | 陕西科技大学 | There is the LLC resonant converter of current-limiting function |
TWI669898B (en) * | 2018-09-12 | 2019-08-21 | 林景源 | Interleaved llc half-bridge series resonant converter having integrated transformer |
-
2020
- 2020-05-26 TW TW109117416A patent/TWI745981B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI745981B (en) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI578685B (en) | A dual mode operation controller for flyback converters with primary side adjustment | |
US20040208023A1 (en) | Switched mode power supply responsive to current derived from voltage across energy transfer element input | |
TW201929404A (en) | Adjustable frequency curve for flyback converter at green mode | |
CN106411135A (en) | Flyback converter with secondary side regulation | |
WO2016028942A1 (en) | Driving circuit, lighting device and method of reducing power dissipation | |
US9602009B1 (en) | Low voltage, closed loop controlled energy storage circuit | |
JP7000014B2 (en) | AC / DC converter, drive circuit | |
TWI589109B (en) | Fly-back converter without auxiliary winding | |
Boonyaroonate et al. | A new ZVCS resonant push-pull DC/DC converter topology | |
US12355345B2 (en) | Power supply capable of stabilizing and compensating resonant voltages | |
KR102652342B1 (en) | High performance two stage power converter with enhanced light load management | |
TWI745981B (en) | Self-driving power supply based on resonance energy recycling | |
TW202209799A (en) | Power supply with reduced power consumption and related electronic system | |
CN115473438B (en) | Isolation Switch Power Converter | |
KR100387381B1 (en) | Switching mode power supply with high efficiency | |
TWI726465B (en) | Power supply capable of reducing hold up time of output capacitor | |
TWI857581B (en) | Power supply with over-current protection during start-up | |
JP2011030379A (en) | Switching power supply device | |
TWI871880B (en) | Power supply with dynamic control of resonant mode | |
TWI865082B (en) | Power supply having adaptive voltage compensation loop and related system | |
TWI865051B (en) | Power supply providing synchronous rectification control with high resonant efficiency | |
GB2446899A (en) | Push-pull type self-oscillating power converter | |
TWI879322B (en) | Power supply with reverse curremt compensation mechanism | |
TWI839776B (en) | Power supply circuit with sufficient hold time in high-power application | |
TWI746174B (en) | Resonant converter and related electronic system capable of improving device loss and efficiency |