[go: up one dir, main page]

TWI865051B - Power supply providing synchronous rectification control with high resonant efficiency - Google Patents

Power supply providing synchronous rectification control with high resonant efficiency Download PDF

Info

Publication number
TWI865051B
TWI865051B TW112135586A TW112135586A TWI865051B TW I865051 B TWI865051 B TW I865051B TW 112135586 A TW112135586 A TW 112135586A TW 112135586 A TW112135586 A TW 112135586A TW I865051 B TWI865051 B TW I865051B
Authority
TW
Taiwan
Prior art keywords
voltage
output
pin
control signal
switch
Prior art date
Application number
TW112135586A
Other languages
Chinese (zh)
Other versions
TW202515110A (en
Inventor
詹子增
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW112135586A priority Critical patent/TWI865051B/en
Application granted granted Critical
Publication of TWI865051B publication Critical patent/TWI865051B/en
Publication of TW202515110A publication Critical patent/TW202515110A/en

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power supply includes an active power factor correction circuit, a resonant conversion circuit, a voltage detecting circuit, and a control circuit. The active power factor correction circuit and the resonant conversion circuit convert an AC voltage into an output voltage for driving a load. The voltage detecting circuit monitors the status of the output voltage. When the output voltage does not exceeds a reference voltage, the control circuit instructs the resonant conversion circuit to operate with full synchronous rectification. When the output voltage exceeds the reference voltage, the control circuit instructs the resonant conversion circuit to operate with complimentary synchronous rectification. There present power supply provides synchronous rectification control with high resonant efficiency.

Description

具高諧振效率之同步整流控制的電源供應器 Power supply with synchronous rectification control and high resonance efficiency

本發明相關於一種電源供應器,尤指一種具高諧振效率之同步整流控制的電源供應器。 The present invention relates to a power supply, in particular to a power supply with synchronous rectification control and high resonance efficiency.

電腦系統中不同組件所需的操作電壓不同,因此普遍採用電源供應器以通過變壓、整流與濾波的方式,將交流電室內電源轉換為直流電(DC)以驅動不同零組件。隨著環保意識的抬頭,各國針對消費性電子產品、辦公設備、家電製品和外接電源供應器的節能規格都有所規範。舉例來說,美國能源之星是由美國能源部和環境保護署共同贊助的認證計畫,其針對不同額定輸出功率之電源供應器在各狀態和不同負載操作下所消耗功率都有明確的定義及節能規格要求 Different components in a computer system require different operating voltages, so power supplies are commonly used to convert AC indoor power into direct current (DC) to drive different components through transformation, rectification and filtering. With the rise of environmental awareness, countries have energy-saving specifications for consumer electronic products, office equipment, home appliances and external power supplies. For example, the US Energy Star is a certification program jointly sponsored by the US Department of Energy and the Environmental Protection Agency. It has clear definitions and energy-saving specification requirements for power supplies with different rated output power in various states and under different load operations.

舉例來說,針對輸出功率大於7OW的電源供應器和其整體系統配置,美國能源之星規範其額定功率因數需大於0.9。因此,大功率電源供應器之設計架構通常會分為升壓型的前級電路與降壓型後級電路。大功率電源供應器之前級電路可為升壓型功率因數校正器,負責提升交流電源端之功率因數;大功率電源供應器之後級電路可採用降 壓型電感-電感-電容(LCC)諧振轉換器,負責將升壓型功率因數校正器輸出之高電壓(例如400V)轉為低電壓(例如19.5V)以供應筆電等負載裝置。 For example, for power supplies with an output power greater than 70W and their overall system configuration, the US Energy Star stipulates that the rated power factor must be greater than 0.9. Therefore, the design architecture of high-power power supplies is usually divided into a boost-type front-stage circuit and a buck-type back-stage circuit. The front-stage circuit of a high-power power supply can be a boost-type power factor corrector, which is responsible for improving the power factor of the AC power supply end; the back-stage circuit of a high-power power supply can use a buck-type inductor-inductor-capacitor (LCC) resonant converter, which is responsible for converting the high voltage (e.g. 400V) output by the boost-type power factor corrector into a low voltage (e.g. 19.5V) to supply load devices such as laptops.

功率開關在硬性切換時,其跨壓與通過功率開關的電流兩者之乘積會造成功率開關的切換損失,而導致整體電路效率降低。諧振轉換器是一種利用諧振轉換電能的切換式電源供應器,其包含由電感元件及電容器形成的諧振電路。在功率開關切換時,透過電感和電容所產生的LLC諧振來將功率開關兩端之電壓轉換為正弦波的電壓或電流,以達到零電壓或零電流之柔性切換,進而解決高頻切換所產生之問題。因此,需要一種具高諧振效率之同步整流控制的電源供應器。 When the power switch is hard switched, the product of its cross-voltage and the current passing through the power switch will cause switching loss of the power switch, resulting in reduced overall circuit efficiency. A resonant converter is a switching power supply that uses resonance to convert electrical energy, and includes a resonant circuit formed by an inductor and a capacitor. When the power switch is switched, the LLC resonance generated by the inductor and capacitor is used to convert the voltage at both ends of the power switch into a sinusoidal voltage or current to achieve flexible switching of zero voltage or zero current, thereby solving the problems caused by high-frequency switching. Therefore, a power supply with synchronous rectification control and high resonance efficiency is needed.

本發明提供一種具高諧振效率之同步整流控制的電源供應器,其包含用來接收一交流電壓之一輸入端、用來輸出一輸出電壓之一輸出端、一升壓型主動功率因數校正電路、一諧振轉換電路、一電壓偵測電路,和一控制電路。該升壓型主動功率因數校正電路包含一第一開關,用來將該交流電壓轉換成一直流電壓,再將該直流電壓換成一第一脈動直流電壓。該諧振轉換電路用來將該第一脈動直流電壓轉換成該輸出電壓,其包含一變壓器和第二至第七開關。該變壓器用來將該第一脈動直流電壓從一初級側感應至一次級側以供應該輸出電壓,其包含一初級側繞組和第一至第四同步整流繞組。該第二開關和該第三開關設置在該初級側,用來控制該諧振電路之運作。該第四開關選擇性地將該第一同步整流繞組內存能量傳送至該輸出端以提供一 第二脈動直流電壓。該第五開關設置選擇性地將該第二同步整流繞組內存能量傳送至該輸出端以提供該第二脈動直流電壓。該第六開關選擇性地將該第三同步整流繞組內存能量傳送至該輸出端以提供一第三脈動直流電壓。該第七開關選擇性地將該第四同步整流繞組內存能量傳送至該輸出端以提供該第三脈動直流電壓。該電壓偵測電路用來偵測該輸出電壓之狀態,並輸出相對應之一判斷電壓。當依據該判斷電壓判定該輸出電壓之值小於一參考電壓時,該控制電路輸出具致能電位之第四至第七控制訊號以分別導通該第四至第七開關。當依據該判斷電壓判定該輸出電壓之值不小於該參考電壓時,該控制電路在一第一週期內輸出第四至第七控制訊號以導通該第五和第七開關並截止該第四和第六開關,並在一第二週期內輸出第四至第七控制訊號以截止該第五和第七開關並導通該第四和第六開關。 The present invention provides a power supply with synchronous rectification control and high resonance efficiency, which includes an input terminal for receiving an AC voltage, an output terminal for outputting an output voltage, a boost type active power factor correction circuit, a resonance conversion circuit, a voltage detection circuit, and a control circuit. The boost type active power factor correction circuit includes a first switch for converting the AC voltage into a DC voltage, and then converting the DC voltage into a first pulsed DC voltage. The resonance conversion circuit is used to convert the first pulsed DC voltage into the output voltage, and includes a transformer and second to seventh switches. The transformer is used to induce the first pulsed DC voltage from a primary side to a secondary side to supply the output voltage, and includes a primary side winding and first to fourth synchronous rectifier windings. The second switch and the third switch are arranged on the primary side to control the operation of the resonant circuit. The fourth switch selectively transmits the energy stored in the first synchronous rectifier winding to the output end to provide a second pulsed DC voltage. The fifth switch is arranged to selectively transmit the energy stored in the second synchronous rectifier winding to the output end to provide the second pulsed DC voltage. The sixth switch selectively transmits the energy stored in the third synchronous rectifier winding to the output end to provide a third pulsed DC voltage. The seventh switch selectively transmits the energy stored in the fourth synchronous rectifier winding to the output terminal to provide the third pulsed DC voltage. The voltage detection circuit is used to detect the state of the output voltage and output a corresponding judgment voltage. When the value of the output voltage is determined to be less than a reference voltage according to the judgment voltage, the control circuit outputs fourth to seventh control signals with enable potentials to turn on the fourth to seventh switches respectively. When the output voltage is determined to be not less than the reference voltage according to the determination voltage, the control circuit outputs the fourth to seventh control signals in a first cycle to turn on the fifth and seventh switches and turn off the fourth and sixth switches, and outputs the fourth to seventh control signals in a second cycle to turn off the fifth and seventh switches and turn on the fourth and sixth switches.

10:升壓型主動功率因數校正電路 10: Boost type active power factor correction circuit

20:諧振轉換電路 20: Resonance conversion circuit

30:電壓偵測電路 30: Voltage detection circuit

32:誤差放大器 32: Error amplifier

34:邏輯單元 34:Logic unit

40:控制電路 40: Control circuit

100:電源供應器 100: Power supply

TR:變壓器 TR: Transformer

PWMIC1、PWMIC2:脈衝寬度調變積體電路 PWMIC1, PWMIC2: pulse width modulation integrated circuit

SRIC1、SRIC2:同步整流開關控制積體電路 SRIC1, SRIC2: Synchronous rectification switch control integrated circuit

NP:初級側繞組和匝數 NP: Primary side winding set and number of turns

NS1:第一同步整流繞組和匝數 NS1: First synchronous rectifier winding and turns

NS2:第二同步整流繞組和匝數 NS2: Second synchronous rectifier winding and turns

NS3:第三同步整流繞組和匝數 NS3: The third synchronous rectifier winding and turns

NS4:第四同步整流繞組和匝數 NS4: Fourth synchronous rectifier winding and turns

Q1-Q3:功率開關 Q1-Q3: Power switch

Q4-Q7:同步整流開關 Q4-Q7: synchronous rectification switch

CO1-CO3:儲能電容 CO1-CO3: Energy storage capacitor

DO1:升壓二極體 DO1: boost diode

D1~D4:二極體 D1~D4: diode

LM1:升壓電感 LM1: boost inductor

LR:諧振電感 LR: Resonance inductor

LM2:激磁電感 LM2: Magnetizing inductance

CR:諧振電容 CR: Resonance capacitor

VIN:直流電壓 V IN : DC voltage

VOUT:輸出電壓 V OUT : Output voltage

VAC:交流電壓 V AC : Alternating current voltage

VAA:判斷電壓 V AA : Determination voltage

VF:參考電壓 VF: reference voltage

VE:誤差電壓 VE: Error voltage

VO1-VO3:脈動直流電壓 VO1-VO3: Pulsating DC voltage

GND1、GND2:接地電位 GND1, GND2: ground potential

GD1-GD7:控制訊號 GD1-GD7: control signal

CM1:全開訊號 CM1: Fully open signal

CM2:同步互補訊號 CM2: Synchronous complementary signal

P1-P14:腳位 P1-P14: Foot position

第1圖本發明實施例中一種具高諧振效率之同步整流控制的電源供應器的功能方塊圖。 Figure 1 is a functional block diagram of a power supply with synchronous rectification control and high resonance efficiency in an embodiment of the present invention.

第2圖為本發明實施例中電源供應器實作方式之示意圖。 Figure 2 is a schematic diagram of the implementation of the power supply in the embodiment of the present invention.

第3圖為本發明實施例中電源轉換器運作時相關訊號圖。 Figure 3 is a diagram of related signals when the power converter is operating in an embodiment of the present invention.

第1圖本發明實施例中一種具高諧振效率之同步整流控制的電源供應器100的功能方塊圖。電源供應器100包含一升壓型主動功率因數校正電路10、一諧振轉換電路20、一電壓偵測電路30,以及一控 制電路40。升壓型主動功率因數校正電路10可接收市電供應之交流電壓VAC,並將交流電壓VAC轉換成一脈動直流電壓VO1。諧振轉換電路20可將脈動直流電壓VO1轉換為輸出電壓VOUT以供電至負載裝置(未顯示於第1圖)。電壓偵測電路30可偵測輸出電壓VOUT的狀態以提供相對應之一偵測電壓VAA。控制電路40可依據偵測電壓VAA來控制升壓型主動功率因數校正電路10和諧振轉換電路20之運作以進行電壓轉換和穩壓回授補償,以達到具高諧振效率之同步整流控制。 FIG. 1 is a functional block diagram of a power supply 100 with synchronous rectification control and high resonance efficiency in an embodiment of the present invention. The power supply 100 includes a boost type active power factor correction circuit 10, a resonant conversion circuit 20, a voltage detection circuit 30, and a control circuit 40. The boost type active power factor correction circuit 10 can receive an AC voltage V AC supplied by a mains supply and convert the AC voltage V AC into a pulsed DC voltage VO1. The resonant conversion circuit 20 can convert the pulsed DC voltage VO1 into an output voltage V OUT to supply power to a load device (not shown in FIG. 1 ). The voltage detection circuit 30 can detect the state of the output voltage V OUT to provide a corresponding detection voltage V AA . The control circuit 40 can control the operation of the boost active power factor correction circuit 10 and the resonant conversion circuit 20 according to the detection voltage V AA to perform voltage conversion and voltage regulation feedback compensation to achieve synchronous rectification control with high resonant efficiency.

第2圖為本發明實施例中電源供應器100實作方式之示意圖。在第2圖所示之實施例中,升壓型主動功率因數校正電路10包含一整流器12、一功率開關Q1、一升壓二極體DO1、一儲能電容CO1,以及一升壓電感LM1,可將市電供應之交流電壓VAC轉換為脈動直流電壓VO1。在本發明實施例中,整流器12可為一橋式整流器,其包含整流二極體D1-D4,用來將市電供應之交流電壓VAC轉換成一直流電壓VIN。然而,整流器12之實施方式並不限定本發明之範疇。 FIG. 2 is a schematic diagram of the implementation of the power supply 100 in the embodiment of the present invention. In the embodiment shown in FIG. 2, the boost type active power factor correction circuit 10 includes a rectifier 12, a power switch Q1, a boost diode DO1, an energy storage capacitor CO1, and a boost inductor LM1, which can convert the AC voltage V AC supplied by the mains into a pulsed DC voltage VO1. In the embodiment of the present invention, the rectifier 12 can be a bridge rectifier, which includes rectifier diodes D1-D4, and is used to convert the AC voltage V AC supplied by the mains into a DC voltage V IN . However, the implementation of the rectifier 12 does not limit the scope of the present invention.

升壓電感LM1之第一端耦接至整流器12以接收直流電壓VIN,而第二端透過功率開關Q1選擇性地耦接至接地電位GND1,可儲存直流電壓VIN之能量。儲能電容CO1之第一端耦接至脈動直流電壓VO1,而第二端耦接至接地電位GND1,可儲存脈動直流電壓VO1之能量。升壓二極體DO1之陽極耦接至升壓電感LM1之第二端,而陰極耦接至儲能電容CO1之第一端。功率開關Q1之第一端耦接於升壓電感LM1之第二端和升壓二極體DO1之陽極之間,第二端耦接至接地電位GND1,而控制端接收一控制訊號GD1,可依據控制訊號GD1來做高頻 切換而讓升壓電感LM1進行能量儲存與能量釋放,以使輸入電流追隨輸入電壓,進而提高功率因數和降低電流諧波。 The first end of the boost inductor LM1 is coupled to the rectifier 12 to receive the DC voltage V IN , and the second end is selectively coupled to the ground potential GND1 through the power switch Q1 to store the energy of the DC voltage V IN . The first end of the energy storage capacitor CO1 is coupled to the pulse DC voltage VO1 , and the second end is coupled to the ground potential GND1 to store the energy of the pulse DC voltage VO1 . The anode of the boost diode DO1 is coupled to the second end of the boost inductor LM1 , and the cathode is coupled to the first end of the energy storage capacitor CO1 . The first end of the power switch Q1 is coupled between the second end of the boost inductor LM1 and the anode of the boost diode DO1, and the second end is coupled to the ground potential GND1. The control end receives a control signal GD1, and can perform high-frequency switching according to the control signal GD1 to allow the boost inductor LM1 to store and release energy, so that the input current tracks the input voltage, thereby improving the power factor and reducing current harmonics.

在升壓型主動功率因數校正電路10中,升壓電感LM1、升壓二極體DO1、儲能電容CO1和功率開關Q1能實現升壓目的。在市電供應交流電壓VAC的期間當功率開關Q1為導通時,升壓電感LM1之第二端會耦接至接地電位GND1,此時升壓電感LM1會因應直流電壓VIN的變化而產生感應電壓,再把電能轉換為磁能以儲存。當功率開關Q1為截止時,升壓電感LM1的接地迴路被斷開,此時會將其內存的磁能轉換為電能,讓大電流通過升壓二極體DO1來對儲能電容CO1充電。在多次快速切換功率開關Q1後,即可達到升高直流電壓VIN以提供脈動直流電壓VO1的目的。 In the boost type active power factor correction circuit 10, the boost inductor LM1, the boost diode DO1, the energy storage capacitor CO1 and the power switch Q1 can achieve the purpose of boosting. When the power switch Q1 is turned on during the period when the AC voltage V AC is supplied by the mains, the second end of the boost inductor LM1 is coupled to the ground potential GND1. At this time, the boost inductor LM1 will generate an induced voltage in response to the change of the DC voltage V IN , and then convert the electrical energy into magnetic energy for storage. When the power switch Q1 is turned off, the ground loop of the boost inductor LM1 is disconnected, and the magnetic energy stored in it is converted into electrical energy, allowing a large current to pass through the boost diode DO1 to charge the energy storage capacitor CO1. After multiple rapid switching of the power switch Q1, the DC voltage V IN can be increased to provide the pulse DC voltage VO1.

在第2圖所示之實施例中,諧振轉換電路20包含一變壓器TR、功率開關Q2-Q3、同步整流開關Q4-Q7、一諧振電感LR、一激磁電感LM2、一諧振電容CR,以及儲能電容CO2-CO3。諧振轉換電路20可在其輸入端接收脈動直流電壓VO1,並於其輸出端提供輸出電壓VOUT。變壓器TR包含一組初級側繞組(由匝數NP來表示)和四組同步整流繞組(分別由匝數NS1-NS4來表示),其中初級側繞組NP設置在變壓器TR之初級側,而同步整流繞組NS1-NS4設置在變壓器TR之次級側。同步整流繞組NS1之非打點端、同步整流繞組NS2之打點端、同步整流繞組NS3之非打點端和同步整流繞組NS4之打點端耦接至一接地電位GND2。同步整流繞組NS1串聯於同步整流繞組NS2,而同步整流繞組NS3串聯於同步整流繞組NS4。 In the embodiment shown in FIG. 2 , the resonant converter circuit 20 includes a transformer TR, power switches Q2-Q3, synchronous rectifier switches Q4-Q7, a resonant inductor LR, a magnetizing inductor LM2, a resonant capacitor CR, and energy storage capacitors CO2-CO3. The resonant converter circuit 20 can receive a pulsed DC voltage VO1 at its input terminal and provide an output voltage V OUT at its output terminal. The transformer TR includes a primary winding (represented by turns NP) and four synchronous rectifier windings (represented by turns NS1-NS4, respectively), wherein the primary winding NP is disposed on the primary side of the transformer TR, and the synchronous rectifier windings NS1-NS4 are disposed on the secondary side of the transformer TR. The non-striking end of the synchronous rectifier winding NS1, the striking end of the synchronous rectifier winding NS2, the non-striking end of the synchronous rectifier winding NS3 and the striking end of the synchronous rectifier winding NS4 are coupled to a ground potential GND2. The synchronous rectifier winding NS1 is connected in series to the synchronous rectifier winding NS2, and the synchronous rectifier winding NS3 is connected in series to the synchronous rectifier winding NS4.

功率開關Q2之第一端耦接至升壓型主動功率因數校正電路10中升壓電感LM1之陰極以接收脈動直流電壓VO1,第二端耦接至功率開關Q3,而控制端接收一控制訊號GD2。功率開關Q3之第一端耦接至功率開關Q1之第二端,第二端耦接至接地電位GND1,而控制端接收一控制訊號GD3。同步整流開關Q4之第一端耦接至變壓器TR中同步整流繞組NS1之打點端,第二端耦接至電源供應器100之輸出端,而控制端接收一控制訊號GD4。同步整流開關Q5之第一端耦接至變壓器TR中同步整流繞組NS2之非打點端,第二端耦接至電源供應器100之輸出端,而控制端接收一控制訊號GD5。同步整流開關Q6之第一端耦接至變壓器TR中同步整流繞組NS3之打點端,第二端耦接至電源供應器100之輸出端,而控制端接收一控制訊號GD6。同步整流開關Q7之第一端耦接至變壓器TR中同步整流繞組NS4之非打點端,第二端耦接至電源供應器100之輸出端,而控制端接收一控制訊號GD7。 The first end of the power switch Q2 is coupled to the cathode of the boost inductor LM1 in the boost type active power factor correction circuit 10 to receive the pulsed DC voltage VO1, the second end is coupled to the power switch Q3, and the control end receives a control signal GD2. The first end of the power switch Q3 is coupled to the second end of the power switch Q1, the second end is coupled to the ground potential GND1, and the control end receives a control signal GD3. The first end of the synchronous rectification switch Q4 is coupled to the dot terminal of the synchronous rectification winding NS1 in the transformer TR, the second end is coupled to the output end of the power supply 100, and the control end receives a control signal GD4. The first end of the synchronous rectification switch Q5 is coupled to the non-pointing end of the synchronous rectification winding NS2 in the transformer TR, the second end is coupled to the output end of the power supply 100, and the control end receives a control signal GD5. The first end of the synchronous rectification switch Q6 is coupled to the pointing end of the synchronous rectification winding NS3 in the transformer TR, the second end is coupled to the output end of the power supply 100, and the control end receives a control signal GD6. The first end of the synchronous rectification switch Q7 is coupled to the non-pointing end of the synchronous rectification winding NS4 in the transformer TR, the second end is coupled to the output end of the power supply 100, and the control end receives a control signal GD7.

諧振電感LR、激磁電感LM2和諧振電容CR組成一LCC諧振電路,能讓功率開關Q2和Q3達到零電壓或零電流之柔性切換,進而解決高頻切換所產生之問題。諧振電感LR之第一端耦接至變壓器TR中初級側繞組NP之打點端,而其第二端耦接至功率開關Q2之第二端和功率開關Q3之第一端之間。激磁電感LM2之第一端耦接至變壓器TR中初級側繞組NP之打點端,而第二端耦接至變壓器TR中初級側繞組NP之非打點端。諧振電容CR之第一端耦接至變壓器TR中初級側繞組NP1之非打點端,而其第二端耦接至接地電位GND1。儲能電容CO2之第一端耦接至電源供應器100之輸出端,而其第二端耦接至接地電位GND2。儲能電 容CO3之第一端耦接至電源供應器100之輸出端,而其第二端耦接至接地電位GND2。 The resonant inductor LR, the magnetizing inductor LM2 and the resonant capacitor CR form an LCC resonant circuit, which enables the power switches Q2 and Q3 to achieve a flexible switching of zero voltage or zero current, thereby solving the problem caused by high-frequency switching. The first end of the resonant inductor LR is coupled to the tapping end of the primary winding NP in the transformer TR, and the second end thereof is coupled between the second end of the power switch Q2 and the first end of the power switch Q3. The first end of the magnetizing inductor LM2 is coupled to the tapping end of the primary winding NP in the transformer TR, and the second end is coupled to the non-tapping end of the primary winding NP in the transformer TR. The first end of the resonant capacitor CR is coupled to the non-pointing end of the primary winding NP1 in the transformer TR, and the second end thereof is coupled to the ground potential GND1. The first end of the energy storage capacitor CO2 is coupled to the output end of the power supply 100, and the second end thereof is coupled to the ground potential GND2. The first end of the energy storage capacitor CO3 is coupled to the output end of the power supply 100, and the second end thereof is coupled to the ground potential GND2.

升壓型主動功率因數校正電路10所輸出之脈動直流電壓VO1為諧振轉換電路20之輸入電壓,功率開關Q2和Q3可分別依據控制訊號GD2和GD3來做高頻互補式切換,進而使諧振電感LR、激磁電感LM2和諧振電容CR相互諧振,以達到零電壓或零電流之柔性切換以降低切換損失。變壓器TR可將初級側繞組NP所存對應脈動直流電壓VO1之能量感應至同步整流繞組NS1-NS4以提供一脈動直流電壓VO2及/或一脈動直流電壓VO3,進而供應輸出電壓VOUTThe pulsed DC voltage VO1 output by the boost active power factor correction circuit 10 is the input voltage of the resonant conversion circuit 20. The power switches Q2 and Q3 can perform high-frequency complementary switching according to the control signals GD2 and GD3 respectively, thereby making the resonant inductor LR, the excitation inductor LM2 and the resonant capacitor CR resonate with each other to achieve a flexible switching of zero voltage or zero current to reduce the switching loss. The transformer TR can sense the energy of the corresponding pulsed DC voltage VO1 stored in the primary side winding NP to the synchronous rectification winding NS1-NS4 to provide a pulsed DC voltage VO2 and/or a pulsed DC voltage VO3, thereby supplying the output voltage V OUT .

同步整流開關Q4-Q7可在變壓器之次級測實現同步整流之功能:當同步整流開關Q4為導通時,同步整流繞組NS1之能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2;當同步整流開關Q5為導通時,同步整流繞組NS2之能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2;當同步整流開關Q6為導通時,同步整流繞組NS3之能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO3;當同步整流開關Q7為導通時,同步整流繞組NS4之能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO3。儲能電容CO2可儲存同步整流繞組NS1或NS2之能量(脈動直流電壓VO2)以供應輸出電壓VOUT,而儲能電容CO3可儲存同步整流繞組NS3或NS4之能量(脈動直流電壓VO3)以供應輸出電壓VOUT。當同步整流開關Q4-Q7皆為截止時,電源供應器100之電力傳送路徑會被切斷,此時電源供應器100之輸出端無輸出(VOUT=0V)。 The synchronous rectification switches Q4-Q7 can realize the synchronous rectification function at the secondary side of the transformer: when the synchronous rectification switch Q4 is turned on, the energy of the synchronous rectification winding NS1 can be transmitted to the output end of the power supply 100 to provide the pulsed DC voltage VO2; when the synchronous rectification switch Q5 is turned on, the energy of the synchronous rectification winding NS2 can be transmitted to the output end of the power supply 100 to provide the pulsed DC voltage VO2; when the synchronous rectification switch Q6 is turned on, the energy of the synchronous rectification winding NS3 can be transmitted to the output end of the power supply 100 to provide the pulsed DC voltage VO3; when the synchronous rectification switch Q7 is turned on, the energy of the synchronous rectification winding NS4 can be transmitted to the output end of the power supply 100 to provide the pulsed DC voltage VO3. The energy storage capacitor CO2 can store the energy (pulsating DC voltage VO2) of the synchronous rectifier winding NS1 or NS2 to supply the output voltage V OUT , and the energy storage capacitor CO3 can store the energy (pulsating DC voltage VO3) of the synchronous rectifier winding NS3 or NS4 to supply the output voltage V OUT . When the synchronous rectifier switches Q4-Q7 are all turned off, the power transmission path of the power supply 100 will be cut off, and at this time, the output terminal of the power supply 100 has no output (V OUT =0V).

在第2圖所示之實施例中,電壓偵測電路30包含一誤差放大器32和一邏輯單元34,可依據輸出電壓VOUT之狀態來提供判斷電壓VAA。誤差放大器32之正輸入端耦接至一參考電壓VF,其負輸入端耦接至電源供應器100之輸出端以接收輸出電壓VOUT,而其輸出端用來輸出一誤差電壓VE。邏輯單元34之第一輸入端耦接至誤差放大器32之輸出端以接收誤差電壓VE,其第二輸入端耦接至參考電壓VF,而其輸出端用來輸出判斷電壓VAA。在一實施例中,當誤差放大器32判定其正輸入端和負輸入端之間的壓差為0時,會輸出具一第一電位(例如高電位)之誤差電壓VE;當判定其正輸入端和負輸入端之間的壓差不為0時,會輸出具一第二電位(例如低電位)之誤差電壓VE。當邏輯單元34判定其第一輸入端(誤差電壓VE)和第二輸入端(參考電壓VF)皆為高電位時,會輸出具一第三電位(例如高電位)之判斷電壓VAA;判定其第一輸入端(誤差電壓VE)和第二輸入端(參考電壓VF)並非皆為高電位時,會輸出具一第四電位(例如低電位)之判斷電壓VAA。在一實施例中,電壓偵測電路30之邏輯單元34可為一及閘(AND gate),但不侷限於此。 In the embodiment shown in FIG. 2 , the voltage detection circuit 30 includes an error amplifier 32 and a logic unit 34, which can provide a determination voltage V AA according to the state of the output voltage V OUT . The positive input terminal of the error amplifier 32 is coupled to a reference voltage VF, the negative input terminal thereof is coupled to the output terminal of the power supply 100 to receive the output voltage V OUT , and the output terminal thereof is used to output an error voltage VE. The first input terminal of the logic unit 34 is coupled to the output terminal of the error amplifier 32 to receive the error voltage VE, the second input terminal thereof is coupled to the reference voltage VF, and the output terminal thereof is used to output the determination voltage V AA . In one embodiment, when the error amplifier 32 determines that the voltage difference between its positive input terminal and negative input terminal is 0, it will output an error voltage VE with a first potential (e.g., a high potential); when it determines that the voltage difference between its positive input terminal and negative input terminal is not 0, it will output an error voltage VE with a second potential (e.g., a low potential). When the logic unit 34 determines that the first input terminal (error voltage VE) and the second input terminal (reference voltage VF) are both high, it will output a determination voltage V AA having a third potential (e.g., high potential); when it determines that the first input terminal (error voltage VE) and the second input terminal (reference voltage VF) are not both high, it will output a determination voltage V AA having a fourth potential (e.g., low potential). In one embodiment, the logic unit 34 of the voltage detection circuit 30 may be an AND gate, but is not limited thereto.

在第2圖所示之實施例中,控制電路40包含脈衝寬度調變積體電路PWMIC1-PWMIC2和同步整流開關控制積體電路SRIC1-SRIC2。脈衝寬度調變積體電路PWMIC1包含腳位P1、P8和P9,其中腳位P1用來輸出在一第一致能電位和一第一除能電位之間高頻切換之控制訊號GD1至功率開關Q1之控制端,腳位P8耦接至電壓偵測電路30以接收判斷電壓VAA,而腳位P9用來選擇性地輸出一全開訊號CM1或一同步互補訊號CM2至同步整流開關控制積體電路SRIC1和SRIC2。脈衝寬度調變 積體電路PWMIC2包含腳位P2、P3和P14,其中腳位P2用來輸出在一第二致能電位和一第二除能電位之間高頻切換之控制訊號GD2至功率開關Q2之控制端,腳位P3用來輸出在一第三致能電位和一第三除能電位之間高頻切換之控制訊號GD3至功率開關Q3之控制端,而腳位P14用來輸出參考電壓VF至電壓偵測電路30。 In the embodiment shown in FIG. 2 , the control circuit 40 includes pulse width modulation integrated circuits PWMIC1-PWMIC2 and synchronous rectifier switch control integrated circuits SRIC1-SRIC2. The pulse width modulation integrated circuit PWMIC1 includes pins P1, P8 and P9, wherein the pin P1 is used to output a control signal GD1 switching between a first enable potential and a first disable potential at a high frequency to the control terminal of the power switch Q1, the pin P8 is coupled to the voltage detection circuit 30 to receive the determination voltage V AA , and the pin P9 is used to selectively output a full-on signal CM1 or a synchronous complementary signal CM2 to the synchronous rectifier switch control integrated circuits SRIC1 and SRIC2. The pulse width modulation integrated circuit PWMIC2 includes pins P2, P3 and P14, wherein the pin P2 is used to output a control signal GD2 for high-frequency switching between a second enable potential and a second disable potential to the control end of the power switch Q2, the pin P3 is used to output a control signal GD3 for high-frequency switching between a third enable potential and a third disable potential to the control end of the power switch Q3, and the pin P14 is used to output a reference voltage VF to the voltage detection circuit 30.

同步整流開關控制積體電路SRIC1包含腳位P4、P5、P10和P12,其中腳位P4用來選擇性地輸出具一第四致能電位或一第四除能電位之控制訊號GD4至同步整流開關Q4之控制端,腳位P5用來選擇性地輸出具一第五致能電位或一第五除能電位之控制訊號GD5至同步整流開關Q5之控制端,腳位P10耦接至脈衝寬度調變積體電路PWMIC1之腳位P9以接收全開訊號CM1或同步互補訊號CM2,而腳位P12耦接至同步整流開關控制積體電路SRIC2。 The synchronous rectifier switch control integrated circuit SRIC1 includes pins P4, P5, P10 and P12, wherein pin P4 is used to selectively output a control signal GD4 having a fourth enable potential or a fourth disable potential to the control end of the synchronous rectifier switch Q4, pin P5 is used to selectively output a control signal GD5 having a fifth enable potential or a fifth disable potential to the control end of the synchronous rectifier switch Q5, pin P10 is coupled to pin P9 of the pulse width modulation integrated circuit PWMIC1 to receive the full-on signal CM1 or the synchronous complementary signal CM2, and pin P12 is coupled to the synchronous rectifier switch control integrated circuit SRIC2.

同步整流開關控制積體電路SRIC2包含腳位P6、P7、P11和P13,其中腳位P6用來選擇性地輸出具一第六致能電位或一第六除能電位之控制訊號GD6至同步整流開關Q6之控制端,腳位P7用來選擇性地輸出具一第七致能電位或一第七除能電位之控制訊號GD7至同步整流開關Q7之控制端,腳位P11耦接至脈衝寬度調變積體電路PWMIC1之腳位P9以接收全開訊號CM1或同步互補訊號CM2,而腳位P13耦接至同步整流開關控制積體電路SRIC1之腳位P12。 The synchronous rectifier switch control integrated circuit SRIC2 includes pins P6, P7, P11 and P13, wherein pin P6 is used to selectively output a control signal GD6 having a sixth enable potential or a sixth disable potential to the control end of the synchronous rectifier switch Q6, pin P7 is used to selectively output a control signal GD7 having a seventh enable potential or a seventh disable potential to the control end of the synchronous rectifier switch Q7, pin P11 is coupled to pin P9 of the pulse width modulation integrated circuit PWMIC1 to receive the full-on signal CM1 or the synchronous complementary signal CM2, and pin P13 is coupled to pin P12 of the synchronous rectifier switch control integrated circuit SRIC1.

第3圖為本發明實施例中電源轉換器100運作時相關訊號圖。如第2圖和第3圖所示,在時間點T0-T1之間當電源供應器100並未 連接上市電時,所有控制訊號皆為0,而電源供應器100不會有輸出(VOUT=0)。 FIG3 is a diagram of related signals when the power converter 100 is operating in the embodiment of the present invention. As shown in FIG2 and FIG3, when the power supply 100 is not connected to the mains during the time point T0-T1, all control signals are 0, and the power supply 100 has no output (V OUT =0).

如第2圖和第3圖所示,在時間點T1之後電源供應器100連接上市電,升壓型主動功率因數校正電路10之整流器12可將交流電壓VAC轉換成直流電壓VIN,而脈衝寬度調變積體電路PWMIC1會透過腳位P1輸出在第一致能電位和第一除能電位之間高頻切換之控制訊號GD1至功率開關Q1之控制端,使得功率開關Q1能在導通和截止狀態之間相對應地做高頻切換,進而讓升壓電感LM1週期性地進行能量儲存與能量釋放,以在變壓器TR的初級側提供升壓後之脈動直流電壓VO1。接著,在升壓型主動功率因數校正電路10穩定運作後所輸出之脈動直流電壓VO1為諧振轉換電路20之輸入電壓,脈衝寬度調變積體電路PWMIC2會透過腳位P2輸出在第二致能電位和第二除能電位之間高頻切換之控制訊號GD2至功率開關Q2之控制端,並透過腳位P3輸出在第三致能電位和第三除能電位之間高頻切換之控制訊號GD3至功率開關Q3之控制端。控制訊號GD2和GD3為互補訊號,也就是當控制訊號GD2具第二致能電位時控制訊號GD3會具第三除能電位,而當控制訊號GD2具第二除能電位時控制訊號GD3會具第三致能電位,使得功率開關Q2和Q3可分別依據控制訊號GD2和GD3來做高頻互補式切換,進而使諧振電感LR、激磁電感LM2和諧振電容CR相互諧振,以達到零電壓或零電流之柔性切換以降低切換損失。在這種情況下,變壓器TR可將初級側繞組NP所存對應脈動直流電壓VO1之能量感應至同步整流繞組NS1-NS4。 As shown in FIG. 2 and FIG. 3 , after time point T1, the power supply 100 is connected to the mains, and the rectifier 12 of the boost active power factor correction circuit 10 can convert the AC voltage V AC into the DC voltage V IN , and the pulse width modulation integrated circuit PWMIC1 outputs a control signal GD1 that switches between the first enable potential and the first disable potential at a high frequency to the control end of the power switch Q1 through the pin P1, so that the power switch Q1 can switch between the on and off states at a high frequency accordingly, thereby allowing the boost inductor LM1 to periodically store and release energy, so as to provide a boosted pulsed DC voltage VO1 on the primary side of the transformer TR. Next, the pulse DC voltage VO1 outputted after the boost active power factor correction circuit 10 operates stably is the input voltage of the resonant conversion circuit 20, and the pulse width modulation integrated circuit PWMIC2 outputs a control signal GD2 for high-frequency switching between the second enable potential and the second disable potential to the control end of the power switch Q2 through the pin P2, and outputs a control signal GD3 for high-frequency switching between the third enable potential and the third disable potential to the control end of the power switch Q3 through the pin P3. The control signals GD2 and GD3 are complementary signals, that is, when the control signal GD2 has the second enable potential, the control signal GD3 will have the third disable potential, and when the control signal GD2 has the second disable potential, the control signal GD3 will have the third enable potential, so that the power switches Q2 and Q3 can perform high-frequency complementary switching according to the control signals GD2 and GD3 respectively, thereby making the resonant inductor LR, the excitation inductor LM2 and the resonant capacitor CR resonate with each other to achieve a flexible switching of zero voltage or zero current to reduce the switching loss. In this case, the transformer TR can sense the energy of the corresponding pulse DC voltage VO1 stored in the primary side winding NP to the synchronous rectification winding NS1-NS4.

在時間點T1和T2之間輸出電壓VOUT之值尚未達到參考電壓 VF的準位,此時誤差放大器32會輸出具第二電位(例如低電位)之誤差電壓VE。當邏輯單元34判斷其第一輸入端(低電位誤差電壓VE)和第二輸入端(高電位參考電壓VF)並非皆為高電位時,會輸出具第四電位(例如低電位)之判斷電壓VAA。在接收到具第四電位(例如低電位)之判斷電壓VAA後,脈衝寬度調變積體電路PWMIC1會透過腳位P9輸出全開訊號CM1至同步整流開關控制積體電路SRIC1之腳位P10和同步整流開關控制積體電路SRIC2之腳位P11。 Between time points T1 and T2, the value of the output voltage V OUT has not yet reached the level of the reference voltage VF, and the error amplifier 32 will output the error voltage VE with a second potential (e.g., a low potential). When the logic unit 34 determines that its first input terminal (low potential error voltage VE) and the second input terminal (high potential reference voltage VF) are not both high potentials, it will output the determination voltage V AA with a fourth potential (e.g., a low potential). After receiving the determination voltage V AA having a fourth potential (eg, a low potential), the pulse width modulation integrated circuit PWMIC1 outputs a full-on signal CM1 through the pin P9 to the pin P10 of the synchronous rectifier switch control integrated circuit SRIC1 and the pin P11 of the synchronous rectifier switch control integrated circuit SRIC2.

全開訊號CM1對應全開式同步整流運作,也就是說脈衝寬度調變積體電路PWMIC1會指示同步整流開關控制積體電路SRIC1透過其腳位P4輸出具第四致能電位之控制訊號GD4以導通同步整流開關Q4,指示同步整流開關控制積體電路SRIC1透過其腳位P5輸出具第五致能電位之控制訊號GD5以導通同步整流開關Q5,指示同步整流開關控制積體電路SRIC2透過其腳位P6輸出具第六致能電位之控制訊號GD6以導通同步整流開關Q6,並指示同步整流開關控制積體電路SRIC2透過其腳位P7輸出具第七致能電位之控制訊號GD7以導通同步整流開關Q7。在同步整流開關Q4-Q7皆為導通的情況下,同步整流繞組NS1-NS4內存能量皆可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2和脈動直流電壓VO3,使得輸出電壓VOUT之值持續爬升。 The full-on signal CM1 corresponds to the full-on synchronous rectification operation, that is, the pulse width modulation integrated circuit PWMIC1 will instruct the synchronous rectification switch control integrated circuit SRIC1 to output the control signal GD4 with the fourth enable potential through its pin P4 to turn on the synchronous rectification switch Q4, and instruct the synchronous rectification switch control integrated circuit SRIC1 to output the fifth enable potential through its pin P5. The control signal GD5 is used to turn on the synchronous rectifier switch Q5, and the synchronous rectifier switch control integrated circuit SRIC2 is instructed to output the control signal GD6 with the sixth enable potential through its pin P6 to turn on the synchronous rectifier switch Q6, and the synchronous rectifier switch control integrated circuit SRIC2 is instructed to output the control signal GD7 with the seventh enable potential through its pin P7 to turn on the synchronous rectifier switch Q7. When the synchronous rectifier switches Q4-Q7 are all turned on, the energy stored in the synchronous rectifier windings NS1-NS4 can be transmitted to the output end of the power supply 100 to provide the pulsed DC voltage VO2 and the pulsed DC voltage VO3, so that the value of the output voltage V OUT continues to rise.

如第2圖和第3圖所示,在時間點T2時輸出電壓VOUT之值達到參考電壓VF的準位,也就是會讓誤差放大器32之正輸入端和負輸入端之間的壓差為0,此時誤差放大器32會輸出具第一電位(例如高電位)之誤差電壓VE。當邏輯單元34判定其第一輸入端(高電位誤差電壓VE)和 第二輸入端(高電位參考電壓VF)皆為高電位時,會輸出具第三電位(例如高電位)之判斷電壓VAA。在接收到具第三電位(例如高電位)之判斷電壓VAA後,脈衝寬度調變積體電路PWMIC1會透過腳位P9輸出同步互補訊號CM2至同步整流開關控制積體電路SRIC1之腳位P10和同步整流開關控制積體電路SRIC2之腳位P11。 As shown in FIG. 2 and FIG. 3 , at time point T2, the value of the output voltage V OUT reaches the level of the reference voltage VF, that is, the voltage difference between the positive input terminal and the negative input terminal of the error amplifier 32 is 0, and the error amplifier 32 outputs the error voltage VE with a first potential (e.g., a high potential). When the logic unit 34 determines that its first input terminal (high potential error voltage VE) and the second input terminal (high potential reference voltage VF) are both high, it outputs the determination voltage V AA with a third potential (e.g., a high potential). After receiving the determination voltage V AA having a third potential (eg, a high potential), the pulse width modulation integrated circuit PWMIC1 outputs a synchronous complementary signal CM2 through the pin P9 to the pin P10 of the synchronous rectifier switch control integrated circuit SRIC1 and the pin P11 of the synchronous rectifier switch control integrated circuit SRIC2.

同步互補訊號CM2對應互補式同步整流運作,也就是說脈衝寬度調變積體電路PWMIC1在時間點T2後的奇數週期(例如時間點T2-T3、T4-T5)會指示同步整流開關控制積體電路SRIC1透過其腳位P4輸出具第四除能電位之控制訊號GD4以截止同步整流開關Q4,指示同步整流開關控制積體電路SRIC1透過其腳位P5輸出具第五致能電位之控制訊號GD5以導通同步整流開關Q5,指示同步整流開關控制積體電路SRIC2透過其腳位P6輸出具第六除能電位之控制訊號GD6以截止同步整流開關Q6,並指示同步整流開關控制積體電路SRIC2透過其腳位P7輸出具第七致能電位之控制訊號GD7以導通同步整流開關Q7。在同步整流開關Q4和Q6為截止而同步整流開關Q5和Q7為導通的情況下,同步整流繞組NS2和NS4內存能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2和脈動直流電壓VO3,使得輸出電壓VOUT之值維持穩定。 The synchronous complementary signal CM2 corresponds to the complementary synchronous rectification operation, that is, the pulse width modulation integrated circuit PWMIC1 will instruct the synchronous rectification switch control integrated circuit SRIC1 to output the control signal GD4 with the fourth disable potential through its pin P4 in the odd cycle after the time point T2 to turn off the synchronous rectification switch Q4, instructing the synchronous rectification switch control integrated circuit SRIC1. The control signal GD5 having the fifth enable potential is outputted through its pin P5 to turn on the synchronous rectifier switch Q5, the synchronous rectifier switch control integrated circuit SRIC2 is instructed to output the control signal GD6 having the sixth disable potential through its pin P6 to turn off the synchronous rectifier switch Q6, and the synchronous rectifier switch control integrated circuit SRIC2 is instructed to output the control signal GD7 having the seventh enable potential through its pin P7 to turn on the synchronous rectifier switch Q7. When the synchronous rectifier switches Q4 and Q6 are turned off and the synchronous rectifier switches Q5 and Q7 are turned on, the energy stored in the synchronous rectifier windings NS2 and NS4 can be transmitted to the output end of the power supply 100 to provide the pulse DC voltage VO2 and the pulse DC voltage VO3, so that the value of the output voltage V OUT remains stable.

同理,脈衝寬度調變積體電路PWMIC1在時間點T2後偶數週期(例如時間點T3-T4、T5-T6)會指示同步整流開關控制積體電路SRIC1透過其腳位P4輸出具第四致能電位之控制訊號GD4以導通同步整流開關Q4,指示同步整流開關控制積體電路SRIC1透過其腳位P5輸出具第 五除能電位之控制訊號GD5以截止同步整流開關Q5,指示同步整流開關控制積體電路SRIC2透過其腳位P6輸出具第六致能電位之控制訊號GD6以導通同步整流開關Q6,並指示同步整流開關控制積體電路SRIC2透過其腳位P7輸出具第七除能電位之控制訊號GD7以截止同步整流開關Q7。在同步整流開關Q4和Q6為導通而同步整流開關Q5和Q7為截止的情況下,同步整流繞組NS1和NS3內存能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2和脈動直流電壓VO3,使得輸出電壓VOUT之值維持穩定。 Similarly, the pulse width modulation integrated circuit PWMIC1 will instruct the synchronous rectification switch control integrated circuit SRIC1 to output the control signal GD4 with the fourth enable potential through its pin P4 to turn on the synchronous rectification switch Q4 in the even cycle after the time point T2 (for example, the time point T3-T4, T5-T6), and instruct the synchronous rectification switch control integrated circuit SRIC1 to output the control signal GD4 with the fifth enable potential through its pin P5 to turn on the synchronous rectification switch Q4. The control signal GD5 with the disable potential turns off the synchronous rectifier switch Q5, instructs the synchronous rectifier switch control integrated circuit SRIC2 to output the control signal GD6 with the sixth enable potential through its pin P6 to turn on the synchronous rectifier switch Q6, and instructs the synchronous rectifier switch control integrated circuit SRIC2 to output the control signal GD7 with the seventh disable potential through its pin P7 to turn off the synchronous rectifier switch Q7. When the synchronous rectifier switches Q4 and Q6 are turned on and the synchronous rectifier switches Q5 and Q7 are turned off, the energy stored in the synchronous rectifier windings NS1 and NS3 can be transmitted to the output terminal of the power supply 100 to provide the pulsed DC voltage VO2 and the pulsed DC voltage VO3, so that the value of the output voltage V OUT remains stable.

在本發明實施例中,當同步整流開關控制積體電路SRIC1之腳位P10和同步整流開關控制積體電路SRIC2之腳位P11接收到同步互補訊號CM2時,同步整流開關控制積體電路SRIC1可透過腳位P12和同步整流開關控制積體電路SRIC2之腳位P13進行溝通,以確保控制訊號GD4和控制訊號GD6具相同相位且和控制訊號GD7具相反相位,以及確保控制訊號GD5和控制訊號GD7具相同相位且和控制訊號GD6具相反相位。 In the embodiment of the present invention, when the pin P10 of the synchronous rectifier switch control integrated circuit SRIC1 and the pin P11 of the synchronous rectifier switch control integrated circuit SRIC2 receive the synchronous complementary signal CM2, the synchronous rectifier switch control integrated circuit SRIC1 can communicate through the pin P12 and the pin P13 of the synchronous rectifier switch control integrated circuit SRIC2 to ensure that the control signal GD4 and the control signal GD6 have the same phase and the opposite phase to the control signal GD7, and ensure that the control signal GD5 and the control signal GD7 have the same phase and the opposite phase to the control signal GD6.

在本發明實施例中,功率開關Q1-Q3和同步整流開關Q4-Q7可為金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)、雙極性接面型電晶體(bipolar junction transistor,BJT),或其它具類似功能的元件。對N型電晶體來說,致能電位為高電位,而除能電位為低電位;對P型電晶體來說,致能電位為低電位,而除能電位為高電位。然而,上述開關之種類並不限定本發明之範疇。 In the embodiment of the present invention, the power switches Q1-Q3 and the synchronous rectification switches Q4-Q7 can be metal-oxide-semiconductor field-effect transistors (MOSFET), bipolar junction transistors (BJT), or other components with similar functions. For N-type transistors, the enable potential is high and the disable potential is low; for P-type transistors, the enable potential is low and the disable potential is high. However, the types of the above switches do not limit the scope of the present invention.

綜上所述,在本發明之電源供應器100中,升壓型主動功率因數校正電路10可提升交流電源端之功率因數,而諧振轉換電路20可將升壓型主動功率因數校正電路10輸出之電壓轉換成負載裝置運作所需之輸出電壓VOUT。電壓偵測電路30可偵測輸出電壓VOUT之狀態,使得控制電路40能在輸出電壓VOUT之值尚未達到參考電壓時指示諧振轉換電路20進行全開式同步整流運作,並在輸出電壓VOUT之值達到參考電壓時指示諧振轉換電路20進行互補式同步整流運作,進而提供具高諧振效率之同步整流控制。 In summary, in the power supply 100 of the present invention, the boost active power factor correction circuit 10 can improve the power factor of the AC power supply end, and the resonant converter circuit 20 can convert the output voltage of the boost active power factor correction circuit 10 into the output voltage V OUT required for the operation of the load device. The voltage detection circuit 30 can detect the state of the output voltage V OUT , so that the control circuit 40 can instruct the resonant converter circuit 20 to perform a full-open synchronous rectification operation when the value of the output voltage V OUT has not yet reached the reference voltage, and instruct the resonant converter circuit 20 to perform a complementary synchronous rectification operation when the value of the output voltage V OUT reaches the reference voltage, thereby providing synchronous rectification control with high resonance efficiency.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

10:升壓型主動功率因數校正電路 10: Boost type active power factor correction circuit

20:諧振轉換電路 20: Resonance conversion circuit

30:電壓偵測電路 30: Voltage detection circuit

40:控制電路 40: Control circuit

100:電源供應器 100: Power supply

VOUT:輸出電壓 V OUT : Output voltage

VAC:交流電壓 V AC : Alternating current voltage

VAA:判斷電壓 V AA : Determination voltage

VO1:脈動直流電壓 VO1: Pulsating DC voltage

GD1-GD7:控制訊號 GD1-GD7: control signal

P1-P8:腳位 P1-P8: Foot position

Claims (10)

一種具高諧振效率之同步整流控制的電源供應器,其包含:一輸入端,用來接收市電供應之一交流電壓;一輸出端,用來輸出一輸出電壓;一升壓型主動功率因數校正電路,其包含一第一開關,用來將該交流電壓轉換成一直流電壓,再將該直流電壓換成一第一脈動直流電壓;一諧振轉換電路,用來將該第一脈動直流電壓轉換成該輸出電壓,其包含:一變壓器,用來將該第一脈動直流電壓從一初級側感應至一次級側以供應該輸出電壓,其包含:一第一同步整流繞組,設置在該次級側,其包含一第一打點端和一第一非打點端;一第二同步整流繞組,設置在該次級側且串聯於該第一同步整流繞組,其包含一第二打點端和一第二非打點端;一第三同步整流繞組,設置在該次級側,其包含一第三打點端和一第三非打點端;一第四同步整流繞組,設置在該次級側且串聯於該第三同步整流繞組,其包含一第四打點端和一第四非打點端;以及一初級側繞組,設置在該初級側,其包含一第五打點端和一第五非打點端;一諧振電路,設置在該初級側; 一第二開關和一第三開關,設置在該初級側,用來控制該諧振電路之運作;一第四開關,設置在該次級側,用來選擇性地將該第一同步整流繞組內存能量傳送至該輸出端以提供一第二脈動直流電壓;一第五開關,設置在該次級側,用來選擇性地將該第二同步整流繞組內存能量傳送至該輸出端以提供該第二脈動直流電壓;一第六開關,設置在該次級側,用來選擇性地將該第三同步整流繞組內存能量傳送至該輸出端以提供一第三脈動直流電壓;以及一第七開關,設置在該次級側,用來選擇性地將該第四同步整流繞組內存能量傳送至該輸出端以提供該第三脈動直流電壓;一電壓偵測電路,用來偵測該輸出電壓之狀態,並輸出相對應之一判斷電壓;以及一控制電路,用來:輸出在一第一致能電位和一第一除能電位之間週期性切換的一第一控制訊號以控制該第一開關之運作;輸出在一第二致能電位和一第二除能電位之間週期性切換的一第二控制訊號以控制該第二開關之運作;輸出在一第三致能電位和一第三除能電位之間週期性切換的一第三控制訊號以控制該第三開關之運作,其中該第二控制訊號和該第三控制訊號為互補式訊號; 當依據該判斷電壓判定該輸出電壓之值小於一參考電壓時,輸出具一第四致能電位之一第四控制訊號以導通該第四開關,輸出具一第五致能電位之一第五控制訊號以導通該第五開關,輸出具一第六致能電位之一第六控制訊號以導通該第六開關,並輸出具一第七致能電位之一第七控制訊號以導通該第七開關;當依據該判斷電壓判定該輸出電壓之值在一特定時間點不小於該參考電壓時,在該特定時間點之後的一第一週期內輸出具一第四除能電位之該第四控制訊號以截止該第四開關,輸出具該第五致能電位之該第五控制訊號以導通該第五開關,輸出具一第六除能電位之該第六控制訊號以截止該第六開關,並輸出具該第七致能電位之該第七控制訊號以導通該第七開關;且在接續該第一週期之一第二週期內輸出具該第四致能電位之該第四控制訊號以導通該第四開關,輸出具一第五除能電位之該第五控制訊號以截止該第五開關,輸出具該第六致能電位之該第六控制訊號以導通該第六開關,並輸出具一第七除能電位之該第七控制訊號以導通該第七開關。 A power supply with synchronous rectification control and high resonance efficiency, comprising: an input terminal for receiving an AC voltage supplied by a mains; an output terminal for outputting an output voltage; a boost type active power factor correction circuit, comprising a first switch for converting the AC voltage into a DC voltage, and then converting the DC voltage into a first pulsed DC voltage; a resonance conversion circuit for converting the first pulsed DC voltage into the output voltage, comprising: a transformer for The first pulsed DC voltage is induced from a primary side to a secondary side to supply the output voltage, which includes: a first synchronous rectification winding, arranged on the secondary side, including a first dotted end and a first non-dotted end; a second synchronous rectification winding, arranged on the secondary side and connected in series with the first synchronous rectification winding, including a second dotted end and a second non-dotted end; a third synchronous rectification winding, arranged on the secondary side, including a third dotted end and a third non-dotted end; a fourth synchronous rectification winding A current winding, arranged on the secondary side and connected in series with the third synchronous rectifier winding, comprising a fourth dotted end and a fourth non-dotted end; and a primary side winding, arranged on the primary side, comprising a fifth dotted end and a fifth non-dotted end; a resonant circuit, arranged on the primary side; a second switch and a third switch, arranged on the primary side, for controlling the operation of the resonant circuit; a fourth switch, arranged on the secondary side, for selectively transferring the energy stored in the first synchronous rectifier winding to the first synchronous rectifier winding; to the output terminal to provide a second pulsed DC voltage; a fifth switch, arranged on the secondary side, for selectively transmitting the energy stored in the second synchronous rectifier winding to the output terminal to provide the second pulsed DC voltage; a sixth switch, arranged on the secondary side, for selectively transmitting the energy stored in the third synchronous rectifier winding to the output terminal to provide a third pulsed DC voltage; and a seventh switch, arranged on the secondary side, for selectively transmitting the energy stored in the fourth synchronous rectifier winding to the output terminal to provide a third pulsed DC voltage. The invention relates to a circuit for transmitting the output voltage to the output terminal to provide the third pulsed DC voltage; a voltage detection circuit for detecting the state of the output voltage and outputting a corresponding judgment voltage; and a control circuit for: outputting a first control signal that is periodically switched between a first enabling potential and a first disabling potential to control the operation of the first switch; outputting a second control signal that is periodically switched between a second enabling potential and a second disabling potential to control the operation of the second switch; and outputting a first control signal that is periodically switched between a first enabling potential and a second disabling potential to control the operation of the second switch. A third control signal that periodically switches between three enabling potentials and a third disabling potential to control the operation of the third switch, wherein the second control signal and the third control signal are complementary signals; When the output voltage is determined to be less than a reference voltage according to the determination voltage, a fourth control signal with a fourth enabling potential is output to turn on the fourth switch, a fifth control signal with a fifth enabling potential is output to turn on the fifth switch, and a sixth control signal with a sixth enabling potential is output to turn on the fifth switch. The output voltage is determined to be not less than the reference voltage at a specific time point according to the determination voltage, and the fourth control signal with a fourth disable potential is output within a first cycle after the specific time point to turn off the fourth switch, the fifth control signal with the fifth enable potential is output to turn on the fifth switch, and the sixth control signal with a sixth disable potential is output to turn off the fourth switch. The sixth switch is turned off, and the seventh control signal with the seventh enable potential is output to turn on the seventh switch; and in a second cycle following the first cycle, the fourth control signal with the fourth enable potential is output to turn on the fourth switch, the fifth control signal with a fifth disable potential is output to turn off the fifth switch, the sixth control signal with the sixth enable potential is output to turn on the sixth switch, and the seventh control signal with a seventh disable potential is output to turn on the seventh switch. 如請求項1所述之電源供應器,其中:該升壓型主動功率因數校正電路另包含:一整流器,用來將該交流電壓轉換成該直流電壓;一升壓電感,其包含:一第一端,耦接於該整流器以接收該直流電壓;以及 一第二端;一升壓二極體,其包含:一陽極,耦接於該升壓電感之該第二端;以及一陰極,耦接於該第一脈動直流電壓;以及一第一儲能電容,用來儲存該第一脈動直流電壓之能量,其包含:一第一端,耦接至該第一脈動直流電壓;以及一第二端,耦接至一第一接地電位;且該第一開關包含:一第一端,耦接至該升壓電感之該第二端和該升壓二極體之該陽極之間;一第二端,耦接至該第一接地電位;以及一控制端,耦接至該控制電路以接收該第一控制訊號。 The power supply as claimed in claim 1, wherein: the boost type active power factor correction circuit further comprises: a rectifier for converting the AC voltage into the DC voltage; a boost inductor comprising: a first end coupled to the rectifier to receive the DC voltage; and a second end; a boost diode comprising: an anode coupled to the second end of the boost inductor; and a cathode coupled to the first pulsed DC voltage; and a The first energy storage capacitor is used to store the energy of the first pulsed DC voltage, and includes: a first end coupled to the first pulsed DC voltage; and a second end coupled to a first ground potential; and the first switch includes: a first end coupled between the second end of the boost inductor and the anode of the boost diode; a second end coupled to the first ground potential; and a control end coupled to the control circuit to receive the first control signal. 如請求項1所述之電源供應器,其中:該諧振電路包含:一激磁電感,其包含:一第一端,耦接至該初級側繞組之該第五打點端;以及一第二端,耦接至該初級側繞組之該第五非打點端;一諧振電感,其包含:一第一端,耦接至該初級側繞組之該第五打點端;以及一第二端;以及一諧振電容,其包含:一第一端,耦接至該初級側繞組之該第五非打點端;以及 一第二端,耦接至一第一接地電位;該第二開關包含:一第一端,耦接至該第一脈動直流電壓;一第二端,耦接至該諧振電感之該第二端;以及一控制端,耦接至該控制電路以接收該第二控制訊號;且該第三開關包含:一第一端,耦接至該諧振電感之該第二端;一第二端,耦接至該第一接地電位;以及一控制端,耦接至該控制電路以接收該第三控制訊號。 A power supply as described in claim 1, wherein: the resonant circuit comprises: a magnetizing inductor, comprising: a first end coupled to the fifth dotted end of the primary side winding; and a second end coupled to the fifth non-dotted end of the primary side winding; a resonant inductor, comprising: a first end coupled to the fifth dotted end of the primary side winding; and a second end; and a resonant capacitor, comprising: a first end coupled to the fifth non-dotted end of the primary side winding; and A second terminal coupled to a first ground potential; the second switch comprises: a first terminal coupled to the first pulsed DC voltage; a second terminal coupled to the second terminal of the resonant inductor; and a control terminal coupled to the control circuit to receive the second control signal; and the third switch comprises: a first terminal coupled to the second terminal of the resonant inductor; a second terminal coupled to the first ground potential; and a control terminal coupled to the control circuit to receive the third control signal. 如請求項1所述之電源供應器,其中:該諧振轉換電路另包含:一第二儲能電容,用來儲存該第二脈動直流電壓之能量以供應該輸出電壓,其包含:一第一端,耦接至該輸出端;以及一第二端,耦接至一第二接地電位;以及一第三儲能電容,用來儲存該第三脈動直流電壓之能量以供應該輸出電壓,其包含:一第一端,耦接至該輸出端;以及一第二端,耦接至該第二接地電位;該第四開關包含:一第一端,耦接至該第一同步整流繞組之該第一打點端;一第二端,耦接至該第二儲能電容之該第一端;以及一控制端,耦接至該控制電路以接收該第四控制訊號; 該第五開關包含:一第一端,耦接至該第二同步整流繞組之該第二非打點端;一第二端,耦接至該第二儲能電容之該第一端;以及一控制端,耦接至該控制電路以接收該第五控制訊號;該第六開關包含:一第一端,耦接至該第三同步整流繞組之該第三打點端;一第二端,耦接至該第三儲能電容之該第一端;以及一控制端,耦接至該控制電路以接收該第六控制訊號;且該第七開關包含:一第一端,耦接至該第四同步整流繞組之該第四非打點端;一第二端,耦接至該第三儲能電容之該第一端;以及一控制端,耦接至該控制電路以接收該第七控制訊號。 A power supply as described in claim 1, wherein: the resonant conversion circuit further includes: a second energy storage capacitor for storing energy of the second pulsed DC voltage to supply the output voltage, which includes: a first end coupled to the output end; and a second end coupled to a second ground potential; and a third energy storage capacitor for storing energy of the third pulsed DC voltage to supply the output voltage, which includes: a first end coupled to the output end; and a second end coupled to the second ground potential; the fourth switch includes: a first end coupled to the first dotting end of the first synchronous rectification winding; a second end coupled to the first end of the second energy storage capacitor; and a control end coupled to the control circuit to receive the fourth control signal ; The fifth switch includes: a first end coupled to the second non-point-point end of the second synchronous rectifier winding; a second end coupled to the first end of the second energy storage capacitor; and a control end coupled to the control circuit to receive the fifth control signal; the sixth switch includes: a first end coupled to the third point-point end of the third synchronous rectifier winding; a second end coupled to the first end of the third energy storage capacitor; and a control end coupled to the control circuit to receive the sixth control signal; and the seventh switch includes: a first end coupled to the fourth non-point-point end of the fourth synchronous rectifier winding; a second end coupled to the first end of the third energy storage capacitor; and a control end coupled to the control circuit to receive the seventh control signal. 如請求項1所述之電源供應器,其中該電壓偵測電路包含:一誤差放大器,其包含:一正輸入端,耦接至該參考電壓;一負輸入端,耦接至該輸出端以接收該輸出電壓;以及一輸出端,用來依據該正輸入端和該負輸入端之間的壓差輸出一誤差電壓;以及一邏輯單元,其包含:一第一輸入端,耦接至該誤差放大器之該輸出端以接收該誤差電壓;一第二輸入端,耦接至該參考電壓;以及 一輸出端,用來依據該第一輸入端和該二輸入端之電位輸出該判斷電壓。 A power supply as described in claim 1, wherein the voltage detection circuit comprises: an error amplifier, which comprises: a positive input terminal coupled to the reference voltage; a negative input terminal coupled to the output terminal to receive the output voltage; and an output terminal for outputting an error voltage according to the voltage difference between the positive input terminal and the negative input terminal; and a logic unit, which comprises: a first input terminal coupled to the output terminal of the error amplifier to receive the error voltage; a second input terminal coupled to the reference voltage; and an output terminal for outputting the judgment voltage according to the potentials of the first input terminal and the second input terminal. 如請求項1所述之電源供應器,其中該控制電路包含:一第一腳位、一第二腳位、一第三腳位、一第四腳位、一第五腳位、一第六腳位、一第七腳位、一第八腳位、一第九腳位、一第十腳位、一第十一腳位、一第十二腳位、一第十三腳位,以及一第十四腳位;一第一脈衝寬度調變積體電路,用來:透過該第一腳位輸出該第一控制訊號;透過該第八腳位接收該判斷電壓;以及透過該第九腳位選擇性地輸出一全開訊號或一同步互補訊號;一第二脈衝寬度調變積體電路,用來:透過該第二腳位輸出該第二控制訊號;透過該第三腳位輸出該第三控制訊號;以及透過該第十四腳位輸出該參考電壓;一第一同步整流開關控制積體電路,用來:透過該第四腳位輸出該第四控制訊號;透過該第五腳位輸出該第五控制訊號;以及透過該第十腳位接收該全開訊號或該同步互補訊號;以及一第二同步整流開關控制積體電路,用來:透過該第六腳位輸出該第六控制訊號;透過該第七腳位輸出該第七控制訊號;以及透過該第十一腳位接收該全開訊號或該同步互補訊號。 A power supply as described in claim 1, wherein the control circuit comprises: a first pin, a second pin, a third pin, a fourth pin, a fifth pin, a sixth pin, a seventh pin, an eighth pin, a ninth pin, a tenth pin, an eleventh pin, a twelfth pin, a thirteenth pin, and a fourteenth pin; a first pulse width modulation integrated circuit, used to: output the first control signal through the first pin; receive the judgment voltage through the eighth pin; and selectively output a full-on signal or a synchronous complementary signal through the ninth pin; a second pulse width modulation integrated circuit, used to: output the first control signal through the first pin; receive the judgment voltage through the eighth pin; and selectively output a full-on signal or a synchronous complementary signal through the ninth pin; output the second control signal through the second pin; output the third control signal through the third pin; and output the reference voltage through the fourteenth pin; a first synchronous rectifier switch control integrated circuit, used to: output the fourth control signal through the fourth pin; output the fifth control signal through the fifth pin; and receive the full-on signal or the synchronous complementary signal through the tenth pin; and a second synchronous rectifier switch control integrated circuit, used to: output the sixth control signal through the sixth pin; output the seventh control signal through the seventh pin; and receive the full-on signal or the synchronous complementary signal through the eleventh pin. 如請求項6所述之電源供應器,其中:當判定該輸出電壓之值小於該參考電壓時,該電壓偵測電路係輸出具一第一電位之該判斷電壓;當判定該輸出電壓之值不小於該參考電壓時,該電壓偵測電路係輸出具一第二電位之該判斷電壓;當該第一脈衝寬度調變積體電路透過該第八腳位接收到具該第一電位之該判斷電壓時,另用來透過該第九腳位輸出該全開訊號;且當該第一脈衝寬度調變積體電路透過該第八腳位接收到具該第二電位之該判斷電壓時,另用來透過該第九腳位輸出該同步互補訊號。 The power supply as claimed in claim 6, wherein: when it is determined that the value of the output voltage is less than the reference voltage, the voltage detection circuit outputs the determination voltage with a first potential; when it is determined that the value of the output voltage is not less than the reference voltage, the voltage detection circuit outputs the determination voltage with a second potential; when the first pulse width is When the first pulse width modulation integrated circuit receives the judgment voltage with the first potential through the eighth pin, it is used to output the full-on signal through the ninth pin; and when the first pulse width modulation integrated circuit receives the judgment voltage with the second potential through the eighth pin, it is used to output the synchronous complementary signal through the ninth pin. 如請求項7所述之電源供應器,其中:當該第一同步整流開關控制積體電路透過該第十腳位接收到該全開訊號時,另用來透過該第四腳位輸出具該第四致能電位之該第四控制訊號和透過該第五腳位輸出具該第五致能電位之該第五控制訊號;當該第二同步整流開關控制積體電路透過該第十一腳位接收到該全開訊號時,另用來透過該第六腳位輸出具該第六致能電位之該第六控制訊號和透過該第七腳位輸出具該第七致能電位之該第七控制訊號;當該第一同步整流開關控制積體電路透過該第十腳位接收到該同步互補訊號時,其透過該第四腳位輸出之該第四控制訊號和透 過該第五腳位輸出之該第五控制訊號具相反相位;且當該第二同步整流開關控制積體電路透過該第十一腳位接收到該同步互補訊號時,其透過該第六腳位輸出之該第六控制訊號和透過該第七腳位輸出之該第七控制訊號具相反相位,且和該第四控制訊號具相同相位。 The power supply as described in claim 7, wherein: when the first synchronous rectifier switch control integrated circuit receives the fully-on signal through the tenth pin, it is further used to output the fourth control signal with the fourth enable potential through the fourth pin and the fifth control signal with the fifth enable potential through the fifth pin; when the second synchronous rectifier switch control integrated circuit receives the fully-on signal through the eleventh pin, it is further used to output the sixth control signal with the sixth enable potential through the sixth pin and the seventh enable potential through the seventh pin. When the first synchronous rectifier switch control integrated circuit receives the synchronous complementary signal through the tenth pin, the fourth control signal output through the fourth pin and the fifth control signal output through the fifth pin have opposite phases; and when the second synchronous rectifier switch control integrated circuit receives the synchronous complementary signal through the eleventh pin, the sixth control signal output through the sixth pin and the seventh control signal output through the seventh pin have opposite phases and have the same phase as the fourth control signal. 如請求項6所述之電源供應器,其中當該第一同步整流開關控制積體電路透過該第十腳位接收到該同步互補訊號時,另用來透過該第十二腳位和該第二同步整流開關控制積體電路進行溝通,以確保該第四控制訊號和該第六控制訊號具相同相位且和第七控制訊號具相反相位。 A power supply as described in claim 6, wherein when the first synchronous rectifier switch control integrated circuit receives the synchronous complementary signal through the tenth pin, it is used to communicate with the second synchronous rectifier switch control integrated circuit through the twelfth pin to ensure that the fourth control signal has the same phase as the sixth control signal and has an opposite phase to the seventh control signal. 如請求項9所述之電源供應器,其中當該第二同步整流開關控制積體電路透過該第十一腳位接收到該同步互補訊號時,另用來透過該第十三腳位和該第一同步整流開關控制積體電路進行溝通,以確保該第六控制訊號和該第四控制訊號具相同相位且和第五控制訊號具相反相位。 A power supply as described in claim 9, wherein when the second synchronous rectifier switch control integrated circuit receives the synchronous complementary signal through the eleventh pin, it is used to communicate with the first synchronous rectifier switch control integrated circuit through the thirteenth pin to ensure that the sixth control signal has the same phase as the fourth control signal and has an opposite phase to the fifth control signal.
TW112135586A 2023-09-19 2023-09-19 Power supply providing synchronous rectification control with high resonant efficiency TWI865051B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112135586A TWI865051B (en) 2023-09-19 2023-09-19 Power supply providing synchronous rectification control with high resonant efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112135586A TWI865051B (en) 2023-09-19 2023-09-19 Power supply providing synchronous rectification control with high resonant efficiency

Publications (2)

Publication Number Publication Date
TWI865051B true TWI865051B (en) 2024-12-01
TW202515110A TW202515110A (en) 2025-04-01

Family

ID=94769251

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112135586A TWI865051B (en) 2023-09-19 2023-09-19 Power supply providing synchronous rectification control with high resonant efficiency

Country Status (1)

Country Link
TW (1) TWI865051B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339727A1 (en) * 2009-12-23 2011-06-29 Comarco Wireless Technologies, Inc. Single-stage single switch power factor correction circuit having isolated output and boost inductor between AC source and bridge rectifier
TW201316668A (en) * 2011-09-29 2013-04-16 Fsp Technology Inc Resonant power converion apparatus
US8848399B2 (en) * 2010-08-18 2014-09-30 Finsix Corporation Very high frequency switching resonant synchronous rectification
CN102624213B (en) * 2012-03-29 2014-12-03 台达电子工业股份有限公司 Power factor correction circuit
CN206962730U (en) * 2017-08-09 2018-02-02 航天长峰朝阳电源有限公司 Integrated PFC high voltage half-bridge resonance synchronous rectification AC/DC power modules
US10038368B2 (en) * 2016-08-31 2018-07-31 Murata Manufacturing Co., Ltd. Power factor correction device and controlling method thereof, and electronic device
CN217904704U (en) * 2022-06-07 2022-11-25 东莞华明灯具有限公司 Small-size high-power-density switching power supply with LLC framework
CN111478566B (en) * 2019-01-24 2022-12-13 海信视像科技股份有限公司 Synchronous rectification circuit and display device
TW202327239A (en) * 2021-10-21 2023-07-01 新加坡商艾意斯全球控股私人有限公司 Hold-up time circuit for llc converter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339727A1 (en) * 2009-12-23 2011-06-29 Comarco Wireless Technologies, Inc. Single-stage single switch power factor correction circuit having isolated output and boost inductor between AC source and bridge rectifier
US8848399B2 (en) * 2010-08-18 2014-09-30 Finsix Corporation Very high frequency switching resonant synchronous rectification
US20200259420A1 (en) * 2010-08-18 2020-08-13 Finsix Corporation Multi-path power factor correction
TW201316668A (en) * 2011-09-29 2013-04-16 Fsp Technology Inc Resonant power converion apparatus
CN102624213B (en) * 2012-03-29 2014-12-03 台达电子工业股份有限公司 Power factor correction circuit
US10038368B2 (en) * 2016-08-31 2018-07-31 Murata Manufacturing Co., Ltd. Power factor correction device and controlling method thereof, and electronic device
CN206962730U (en) * 2017-08-09 2018-02-02 航天长峰朝阳电源有限公司 Integrated PFC high voltage half-bridge resonance synchronous rectification AC/DC power modules
CN111478566B (en) * 2019-01-24 2022-12-13 海信视像科技股份有限公司 Synchronous rectification circuit and display device
TW202327239A (en) * 2021-10-21 2023-07-01 新加坡商艾意斯全球控股私人有限公司 Hold-up time circuit for llc converter
CN217904704U (en) * 2022-06-07 2022-11-25 东莞华明灯具有限公司 Small-size high-power-density switching power supply with LLC framework

Similar Documents

Publication Publication Date Title
US8488348B2 (en) Switch mode power supply apparatus having active clamping circuit
US7239530B1 (en) Apparatus for isolated switching power supply with coupled output inductors
WO2020207356A1 (en) Resonant converter
TW201929404A (en) Adjustable frequency curve for flyback converter at green mode
EP1405394A2 (en) Isolated drive circuitry used in switch-mode power converters
TWI691823B (en) Power supply device and control method thereof
TWI495245B (en) Method of controlling phase-shift full-bridge converter at light load operation
TW202040920A (en) Power converter and control circuit thereof
US8411476B2 (en) Charge mode control
TWI865051B (en) Power supply providing synchronous rectification control with high resonant efficiency
JP2000305641A (en) Switching power circuit
KR20090102949A (en) Dc/dc converter with multi-output
US20240079961A1 (en) Power supply capable of stabilizing and compensating resonant voltages
TWI745981B (en) Self-driving power supply based on resonance energy recycling
WO2002015371B1 (en) Switched magamp post regulator
CN101252317B (en) Self Oscillating Power Converter
TWI871880B (en) Power supply with dynamic control of resonant mode
CN114744883A (en) Primary side feedback circuit of flyback power supply
CN108736698A (en) Power supply and residual voltage discharging method
TWI628906B (en) Power supply and residual voltage discharging method
TWI857581B (en) Power supply with over-current protection during start-up
TWI865082B (en) Power supply having adaptive voltage compensation loop and related system
KR100586978B1 (en) LLC resonance DC / DC converter
TWI746174B (en) Resonant converter and related electronic system capable of improving device loss and efficiency
US20250079968A1 (en) Power supply having adaptive adjustable frequency range of voltage compensation mechanism