TWI865051B - Power supply providing synchronous rectification control with high resonant efficiency - Google Patents
Power supply providing synchronous rectification control with high resonant efficiency Download PDFInfo
- Publication number
- TWI865051B TWI865051B TW112135586A TW112135586A TWI865051B TW I865051 B TWI865051 B TW I865051B TW 112135586 A TW112135586 A TW 112135586A TW 112135586 A TW112135586 A TW 112135586A TW I865051 B TWI865051 B TW I865051B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- output
- pin
- control signal
- switch
- Prior art date
Links
Images
Landscapes
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
本發明相關於一種電源供應器,尤指一種具高諧振效率之同步整流控制的電源供應器。 The present invention relates to a power supply, in particular to a power supply with synchronous rectification control and high resonance efficiency.
電腦系統中不同組件所需的操作電壓不同,因此普遍採用電源供應器以通過變壓、整流與濾波的方式,將交流電室內電源轉換為直流電(DC)以驅動不同零組件。隨著環保意識的抬頭,各國針對消費性電子產品、辦公設備、家電製品和外接電源供應器的節能規格都有所規範。舉例來說,美國能源之星是由美國能源部和環境保護署共同贊助的認證計畫,其針對不同額定輸出功率之電源供應器在各狀態和不同負載操作下所消耗功率都有明確的定義及節能規格要求 Different components in a computer system require different operating voltages, so power supplies are commonly used to convert AC indoor power into direct current (DC) to drive different components through transformation, rectification and filtering. With the rise of environmental awareness, countries have energy-saving specifications for consumer electronic products, office equipment, home appliances and external power supplies. For example, the US Energy Star is a certification program jointly sponsored by the US Department of Energy and the Environmental Protection Agency. It has clear definitions and energy-saving specification requirements for power supplies with different rated output power in various states and under different load operations.
舉例來說,針對輸出功率大於7OW的電源供應器和其整體系統配置,美國能源之星規範其額定功率因數需大於0.9。因此,大功率電源供應器之設計架構通常會分為升壓型的前級電路與降壓型後級電路。大功率電源供應器之前級電路可為升壓型功率因數校正器,負責提升交流電源端之功率因數;大功率電源供應器之後級電路可採用降 壓型電感-電感-電容(LCC)諧振轉換器,負責將升壓型功率因數校正器輸出之高電壓(例如400V)轉為低電壓(例如19.5V)以供應筆電等負載裝置。 For example, for power supplies with an output power greater than 70W and their overall system configuration, the US Energy Star stipulates that the rated power factor must be greater than 0.9. Therefore, the design architecture of high-power power supplies is usually divided into a boost-type front-stage circuit and a buck-type back-stage circuit. The front-stage circuit of a high-power power supply can be a boost-type power factor corrector, which is responsible for improving the power factor of the AC power supply end; the back-stage circuit of a high-power power supply can use a buck-type inductor-inductor-capacitor (LCC) resonant converter, which is responsible for converting the high voltage (e.g. 400V) output by the boost-type power factor corrector into a low voltage (e.g. 19.5V) to supply load devices such as laptops.
功率開關在硬性切換時,其跨壓與通過功率開關的電流兩者之乘積會造成功率開關的切換損失,而導致整體電路效率降低。諧振轉換器是一種利用諧振轉換電能的切換式電源供應器,其包含由電感元件及電容器形成的諧振電路。在功率開關切換時,透過電感和電容所產生的LLC諧振來將功率開關兩端之電壓轉換為正弦波的電壓或電流,以達到零電壓或零電流之柔性切換,進而解決高頻切換所產生之問題。因此,需要一種具高諧振效率之同步整流控制的電源供應器。 When the power switch is hard switched, the product of its cross-voltage and the current passing through the power switch will cause switching loss of the power switch, resulting in reduced overall circuit efficiency. A resonant converter is a switching power supply that uses resonance to convert electrical energy, and includes a resonant circuit formed by an inductor and a capacitor. When the power switch is switched, the LLC resonance generated by the inductor and capacitor is used to convert the voltage at both ends of the power switch into a sinusoidal voltage or current to achieve flexible switching of zero voltage or zero current, thereby solving the problems caused by high-frequency switching. Therefore, a power supply with synchronous rectification control and high resonance efficiency is needed.
本發明提供一種具高諧振效率之同步整流控制的電源供應器,其包含用來接收一交流電壓之一輸入端、用來輸出一輸出電壓之一輸出端、一升壓型主動功率因數校正電路、一諧振轉換電路、一電壓偵測電路,和一控制電路。該升壓型主動功率因數校正電路包含一第一開關,用來將該交流電壓轉換成一直流電壓,再將該直流電壓換成一第一脈動直流電壓。該諧振轉換電路用來將該第一脈動直流電壓轉換成該輸出電壓,其包含一變壓器和第二至第七開關。該變壓器用來將該第一脈動直流電壓從一初級側感應至一次級側以供應該輸出電壓,其包含一初級側繞組和第一至第四同步整流繞組。該第二開關和該第三開關設置在該初級側,用來控制該諧振電路之運作。該第四開關選擇性地將該第一同步整流繞組內存能量傳送至該輸出端以提供一 第二脈動直流電壓。該第五開關設置選擇性地將該第二同步整流繞組內存能量傳送至該輸出端以提供該第二脈動直流電壓。該第六開關選擇性地將該第三同步整流繞組內存能量傳送至該輸出端以提供一第三脈動直流電壓。該第七開關選擇性地將該第四同步整流繞組內存能量傳送至該輸出端以提供該第三脈動直流電壓。該電壓偵測電路用來偵測該輸出電壓之狀態,並輸出相對應之一判斷電壓。當依據該判斷電壓判定該輸出電壓之值小於一參考電壓時,該控制電路輸出具致能電位之第四至第七控制訊號以分別導通該第四至第七開關。當依據該判斷電壓判定該輸出電壓之值不小於該參考電壓時,該控制電路在一第一週期內輸出第四至第七控制訊號以導通該第五和第七開關並截止該第四和第六開關,並在一第二週期內輸出第四至第七控制訊號以截止該第五和第七開關並導通該第四和第六開關。 The present invention provides a power supply with synchronous rectification control and high resonance efficiency, which includes an input terminal for receiving an AC voltage, an output terminal for outputting an output voltage, a boost type active power factor correction circuit, a resonance conversion circuit, a voltage detection circuit, and a control circuit. The boost type active power factor correction circuit includes a first switch for converting the AC voltage into a DC voltage, and then converting the DC voltage into a first pulsed DC voltage. The resonance conversion circuit is used to convert the first pulsed DC voltage into the output voltage, and includes a transformer and second to seventh switches. The transformer is used to induce the first pulsed DC voltage from a primary side to a secondary side to supply the output voltage, and includes a primary side winding and first to fourth synchronous rectifier windings. The second switch and the third switch are arranged on the primary side to control the operation of the resonant circuit. The fourth switch selectively transmits the energy stored in the first synchronous rectifier winding to the output end to provide a second pulsed DC voltage. The fifth switch is arranged to selectively transmit the energy stored in the second synchronous rectifier winding to the output end to provide the second pulsed DC voltage. The sixth switch selectively transmits the energy stored in the third synchronous rectifier winding to the output end to provide a third pulsed DC voltage. The seventh switch selectively transmits the energy stored in the fourth synchronous rectifier winding to the output terminal to provide the third pulsed DC voltage. The voltage detection circuit is used to detect the state of the output voltage and output a corresponding judgment voltage. When the value of the output voltage is determined to be less than a reference voltage according to the judgment voltage, the control circuit outputs fourth to seventh control signals with enable potentials to turn on the fourth to seventh switches respectively. When the output voltage is determined to be not less than the reference voltage according to the determination voltage, the control circuit outputs the fourth to seventh control signals in a first cycle to turn on the fifth and seventh switches and turn off the fourth and sixth switches, and outputs the fourth to seventh control signals in a second cycle to turn off the fifth and seventh switches and turn on the fourth and sixth switches.
10:升壓型主動功率因數校正電路 10: Boost type active power factor correction circuit
20:諧振轉換電路 20: Resonance conversion circuit
30:電壓偵測電路 30: Voltage detection circuit
32:誤差放大器 32: Error amplifier
34:邏輯單元 34:Logic unit
40:控制電路 40: Control circuit
100:電源供應器 100: Power supply
TR:變壓器 TR: Transformer
PWMIC1、PWMIC2:脈衝寬度調變積體電路 PWMIC1, PWMIC2: pulse width modulation integrated circuit
SRIC1、SRIC2:同步整流開關控制積體電路 SRIC1, SRIC2: Synchronous rectification switch control integrated circuit
NP:初級側繞組和匝數 NP: Primary side winding set and number of turns
NS1:第一同步整流繞組和匝數 NS1: First synchronous rectifier winding and turns
NS2:第二同步整流繞組和匝數 NS2: Second synchronous rectifier winding and turns
NS3:第三同步整流繞組和匝數 NS3: The third synchronous rectifier winding and turns
NS4:第四同步整流繞組和匝數 NS4: Fourth synchronous rectifier winding and turns
Q1-Q3:功率開關 Q1-Q3: Power switch
Q4-Q7:同步整流開關 Q4-Q7: synchronous rectification switch
CO1-CO3:儲能電容 CO1-CO3: Energy storage capacitor
DO1:升壓二極體 DO1: boost diode
D1~D4:二極體 D1~D4: diode
LM1:升壓電感 LM1: boost inductor
LR:諧振電感 LR: Resonance inductor
LM2:激磁電感 LM2: Magnetizing inductance
CR:諧振電容 CR: Resonance capacitor
VIN:直流電壓 V IN : DC voltage
VOUT:輸出電壓 V OUT : Output voltage
VAC:交流電壓 V AC : Alternating current voltage
VAA:判斷電壓 V AA : Determination voltage
VF:參考電壓 VF: reference voltage
VE:誤差電壓 VE: Error voltage
VO1-VO3:脈動直流電壓 VO1-VO3: Pulsating DC voltage
GND1、GND2:接地電位 GND1, GND2: ground potential
GD1-GD7:控制訊號 GD1-GD7: control signal
CM1:全開訊號 CM1: Fully open signal
CM2:同步互補訊號 CM2: Synchronous complementary signal
P1-P14:腳位 P1-P14: Foot position
第1圖本發明實施例中一種具高諧振效率之同步整流控制的電源供應器的功能方塊圖。 Figure 1 is a functional block diagram of a power supply with synchronous rectification control and high resonance efficiency in an embodiment of the present invention.
第2圖為本發明實施例中電源供應器實作方式之示意圖。 Figure 2 is a schematic diagram of the implementation of the power supply in the embodiment of the present invention.
第3圖為本發明實施例中電源轉換器運作時相關訊號圖。 Figure 3 is a diagram of related signals when the power converter is operating in an embodiment of the present invention.
第1圖本發明實施例中一種具高諧振效率之同步整流控制的電源供應器100的功能方塊圖。電源供應器100包含一升壓型主動功率因數校正電路10、一諧振轉換電路20、一電壓偵測電路30,以及一控
制電路40。升壓型主動功率因數校正電路10可接收市電供應之交流電壓VAC,並將交流電壓VAC轉換成一脈動直流電壓VO1。諧振轉換電路20可將脈動直流電壓VO1轉換為輸出電壓VOUT以供電至負載裝置(未顯示於第1圖)。電壓偵測電路30可偵測輸出電壓VOUT的狀態以提供相對應之一偵測電壓VAA。控制電路40可依據偵測電壓VAA來控制升壓型主動功率因數校正電路10和諧振轉換電路20之運作以進行電壓轉換和穩壓回授補償,以達到具高諧振效率之同步整流控制。
FIG. 1 is a functional block diagram of a
第2圖為本發明實施例中電源供應器100實作方式之示意圖。在第2圖所示之實施例中,升壓型主動功率因數校正電路10包含一整流器12、一功率開關Q1、一升壓二極體DO1、一儲能電容CO1,以及一升壓電感LM1,可將市電供應之交流電壓VAC轉換為脈動直流電壓VO1。在本發明實施例中,整流器12可為一橋式整流器,其包含整流二極體D1-D4,用來將市電供應之交流電壓VAC轉換成一直流電壓VIN。然而,整流器12之實施方式並不限定本發明之範疇。
FIG. 2 is a schematic diagram of the implementation of the
升壓電感LM1之第一端耦接至整流器12以接收直流電壓VIN,而第二端透過功率開關Q1選擇性地耦接至接地電位GND1,可儲存直流電壓VIN之能量。儲能電容CO1之第一端耦接至脈動直流電壓VO1,而第二端耦接至接地電位GND1,可儲存脈動直流電壓VO1之能量。升壓二極體DO1之陽極耦接至升壓電感LM1之第二端,而陰極耦接至儲能電容CO1之第一端。功率開關Q1之第一端耦接於升壓電感LM1之第二端和升壓二極體DO1之陽極之間,第二端耦接至接地電位GND1,而控制端接收一控制訊號GD1,可依據控制訊號GD1來做高頻
切換而讓升壓電感LM1進行能量儲存與能量釋放,以使輸入電流追隨輸入電壓,進而提高功率因數和降低電流諧波。
The first end of the boost inductor LM1 is coupled to the
在升壓型主動功率因數校正電路10中,升壓電感LM1、升壓二極體DO1、儲能電容CO1和功率開關Q1能實現升壓目的。在市電供應交流電壓VAC的期間當功率開關Q1為導通時,升壓電感LM1之第二端會耦接至接地電位GND1,此時升壓電感LM1會因應直流電壓VIN的變化而產生感應電壓,再把電能轉換為磁能以儲存。當功率開關Q1為截止時,升壓電感LM1的接地迴路被斷開,此時會將其內存的磁能轉換為電能,讓大電流通過升壓二極體DO1來對儲能電容CO1充電。在多次快速切換功率開關Q1後,即可達到升高直流電壓VIN以提供脈動直流電壓VO1的目的。
In the boost type active power
在第2圖所示之實施例中,諧振轉換電路20包含一變壓器TR、功率開關Q2-Q3、同步整流開關Q4-Q7、一諧振電感LR、一激磁電感LM2、一諧振電容CR,以及儲能電容CO2-CO3。諧振轉換電路20可在其輸入端接收脈動直流電壓VO1,並於其輸出端提供輸出電壓VOUT。變壓器TR包含一組初級側繞組(由匝數NP來表示)和四組同步整流繞組(分別由匝數NS1-NS4來表示),其中初級側繞組NP設置在變壓器TR之初級側,而同步整流繞組NS1-NS4設置在變壓器TR之次級側。同步整流繞組NS1之非打點端、同步整流繞組NS2之打點端、同步整流繞組NS3之非打點端和同步整流繞組NS4之打點端耦接至一接地電位GND2。同步整流繞組NS1串聯於同步整流繞組NS2,而同步整流繞組NS3串聯於同步整流繞組NS4。
In the embodiment shown in FIG. 2 , the
功率開關Q2之第一端耦接至升壓型主動功率因數校正電路10中升壓電感LM1之陰極以接收脈動直流電壓VO1,第二端耦接至功率開關Q3,而控制端接收一控制訊號GD2。功率開關Q3之第一端耦接至功率開關Q1之第二端,第二端耦接至接地電位GND1,而控制端接收一控制訊號GD3。同步整流開關Q4之第一端耦接至變壓器TR中同步整流繞組NS1之打點端,第二端耦接至電源供應器100之輸出端,而控制端接收一控制訊號GD4。同步整流開關Q5之第一端耦接至變壓器TR中同步整流繞組NS2之非打點端,第二端耦接至電源供應器100之輸出端,而控制端接收一控制訊號GD5。同步整流開關Q6之第一端耦接至變壓器TR中同步整流繞組NS3之打點端,第二端耦接至電源供應器100之輸出端,而控制端接收一控制訊號GD6。同步整流開關Q7之第一端耦接至變壓器TR中同步整流繞組NS4之非打點端,第二端耦接至電源供應器100之輸出端,而控制端接收一控制訊號GD7。
The first end of the power switch Q2 is coupled to the cathode of the boost inductor LM1 in the boost type active power
諧振電感LR、激磁電感LM2和諧振電容CR組成一LCC諧振電路,能讓功率開關Q2和Q3達到零電壓或零電流之柔性切換,進而解決高頻切換所產生之問題。諧振電感LR之第一端耦接至變壓器TR中初級側繞組NP之打點端,而其第二端耦接至功率開關Q2之第二端和功率開關Q3之第一端之間。激磁電感LM2之第一端耦接至變壓器TR中初級側繞組NP之打點端,而第二端耦接至變壓器TR中初級側繞組NP之非打點端。諧振電容CR之第一端耦接至變壓器TR中初級側繞組NP1之非打點端,而其第二端耦接至接地電位GND1。儲能電容CO2之第一端耦接至電源供應器100之輸出端,而其第二端耦接至接地電位GND2。儲能電
容CO3之第一端耦接至電源供應器100之輸出端,而其第二端耦接至接地電位GND2。
The resonant inductor LR, the magnetizing inductor LM2 and the resonant capacitor CR form an LCC resonant circuit, which enables the power switches Q2 and Q3 to achieve a flexible switching of zero voltage or zero current, thereby solving the problem caused by high-frequency switching. The first end of the resonant inductor LR is coupled to the tapping end of the primary winding NP in the transformer TR, and the second end thereof is coupled between the second end of the power switch Q2 and the first end of the power switch Q3. The first end of the magnetizing inductor LM2 is coupled to the tapping end of the primary winding NP in the transformer TR, and the second end is coupled to the non-tapping end of the primary winding NP in the transformer TR. The first end of the resonant capacitor CR is coupled to the non-pointing end of the primary winding NP1 in the transformer TR, and the second end thereof is coupled to the ground potential GND1. The first end of the energy storage capacitor CO2 is coupled to the output end of the
升壓型主動功率因數校正電路10所輸出之脈動直流電壓VO1為諧振轉換電路20之輸入電壓,功率開關Q2和Q3可分別依據控制訊號GD2和GD3來做高頻互補式切換,進而使諧振電感LR、激磁電感LM2和諧振電容CR相互諧振,以達到零電壓或零電流之柔性切換以降低切換損失。變壓器TR可將初級側繞組NP所存對應脈動直流電壓VO1之能量感應至同步整流繞組NS1-NS4以提供一脈動直流電壓VO2及/或一脈動直流電壓VO3,進而供應輸出電壓VOUT。
The pulsed DC voltage VO1 output by the boost active power
同步整流開關Q4-Q7可在變壓器之次級測實現同步整流之功能:當同步整流開關Q4為導通時,同步整流繞組NS1之能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2;當同步整流開關Q5為導通時,同步整流繞組NS2之能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2;當同步整流開關Q6為導通時,同步整流繞組NS3之能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO3;當同步整流開關Q7為導通時,同步整流繞組NS4之能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO3。儲能電容CO2可儲存同步整流繞組NS1或NS2之能量(脈動直流電壓VO2)以供應輸出電壓VOUT,而儲能電容CO3可儲存同步整流繞組NS3或NS4之能量(脈動直流電壓VO3)以供應輸出電壓VOUT。當同步整流開關Q4-Q7皆為截止時,電源供應器100之電力傳送路徑會被切斷,此時電源供應器100之輸出端無輸出(VOUT=0V)。
The synchronous rectification switches Q4-Q7 can realize the synchronous rectification function at the secondary side of the transformer: when the synchronous rectification switch Q4 is turned on, the energy of the synchronous rectification winding NS1 can be transmitted to the output end of the
在第2圖所示之實施例中,電壓偵測電路30包含一誤差放大器32和一邏輯單元34,可依據輸出電壓VOUT之狀態來提供判斷電壓VAA。誤差放大器32之正輸入端耦接至一參考電壓VF,其負輸入端耦接至電源供應器100之輸出端以接收輸出電壓VOUT,而其輸出端用來輸出一誤差電壓VE。邏輯單元34之第一輸入端耦接至誤差放大器32之輸出端以接收誤差電壓VE,其第二輸入端耦接至參考電壓VF,而其輸出端用來輸出判斷電壓VAA。在一實施例中,當誤差放大器32判定其正輸入端和負輸入端之間的壓差為0時,會輸出具一第一電位(例如高電位)之誤差電壓VE;當判定其正輸入端和負輸入端之間的壓差不為0時,會輸出具一第二電位(例如低電位)之誤差電壓VE。當邏輯單元34判定其第一輸入端(誤差電壓VE)和第二輸入端(參考電壓VF)皆為高電位時,會輸出具一第三電位(例如高電位)之判斷電壓VAA;判定其第一輸入端(誤差電壓VE)和第二輸入端(參考電壓VF)並非皆為高電位時,會輸出具一第四電位(例如低電位)之判斷電壓VAA。在一實施例中,電壓偵測電路30之邏輯單元34可為一及閘(AND gate),但不侷限於此。
In the embodiment shown in FIG. 2 , the
在第2圖所示之實施例中,控制電路40包含脈衝寬度調變積體電路PWMIC1-PWMIC2和同步整流開關控制積體電路SRIC1-SRIC2。脈衝寬度調變積體電路PWMIC1包含腳位P1、P8和P9,其中腳位P1用來輸出在一第一致能電位和一第一除能電位之間高頻切換之控制訊號GD1至功率開關Q1之控制端,腳位P8耦接至電壓偵測電路30以接收判斷電壓VAA,而腳位P9用來選擇性地輸出一全開訊號CM1或一同步互補訊號CM2至同步整流開關控制積體電路SRIC1和SRIC2。脈衝寬度調變
積體電路PWMIC2包含腳位P2、P3和P14,其中腳位P2用來輸出在一第二致能電位和一第二除能電位之間高頻切換之控制訊號GD2至功率開關Q2之控制端,腳位P3用來輸出在一第三致能電位和一第三除能電位之間高頻切換之控制訊號GD3至功率開關Q3之控制端,而腳位P14用來輸出參考電壓VF至電壓偵測電路30。
In the embodiment shown in FIG. 2 , the
同步整流開關控制積體電路SRIC1包含腳位P4、P5、P10和P12,其中腳位P4用來選擇性地輸出具一第四致能電位或一第四除能電位之控制訊號GD4至同步整流開關Q4之控制端,腳位P5用來選擇性地輸出具一第五致能電位或一第五除能電位之控制訊號GD5至同步整流開關Q5之控制端,腳位P10耦接至脈衝寬度調變積體電路PWMIC1之腳位P9以接收全開訊號CM1或同步互補訊號CM2,而腳位P12耦接至同步整流開關控制積體電路SRIC2。 The synchronous rectifier switch control integrated circuit SRIC1 includes pins P4, P5, P10 and P12, wherein pin P4 is used to selectively output a control signal GD4 having a fourth enable potential or a fourth disable potential to the control end of the synchronous rectifier switch Q4, pin P5 is used to selectively output a control signal GD5 having a fifth enable potential or a fifth disable potential to the control end of the synchronous rectifier switch Q5, pin P10 is coupled to pin P9 of the pulse width modulation integrated circuit PWMIC1 to receive the full-on signal CM1 or the synchronous complementary signal CM2, and pin P12 is coupled to the synchronous rectifier switch control integrated circuit SRIC2.
同步整流開關控制積體電路SRIC2包含腳位P6、P7、P11和P13,其中腳位P6用來選擇性地輸出具一第六致能電位或一第六除能電位之控制訊號GD6至同步整流開關Q6之控制端,腳位P7用來選擇性地輸出具一第七致能電位或一第七除能電位之控制訊號GD7至同步整流開關Q7之控制端,腳位P11耦接至脈衝寬度調變積體電路PWMIC1之腳位P9以接收全開訊號CM1或同步互補訊號CM2,而腳位P13耦接至同步整流開關控制積體電路SRIC1之腳位P12。 The synchronous rectifier switch control integrated circuit SRIC2 includes pins P6, P7, P11 and P13, wherein pin P6 is used to selectively output a control signal GD6 having a sixth enable potential or a sixth disable potential to the control end of the synchronous rectifier switch Q6, pin P7 is used to selectively output a control signal GD7 having a seventh enable potential or a seventh disable potential to the control end of the synchronous rectifier switch Q7, pin P11 is coupled to pin P9 of the pulse width modulation integrated circuit PWMIC1 to receive the full-on signal CM1 or the synchronous complementary signal CM2, and pin P13 is coupled to pin P12 of the synchronous rectifier switch control integrated circuit SRIC1.
第3圖為本發明實施例中電源轉換器100運作時相關訊號圖。如第2圖和第3圖所示,在時間點T0-T1之間當電源供應器100並未
連接上市電時,所有控制訊號皆為0,而電源供應器100不會有輸出(VOUT=0)。
FIG3 is a diagram of related signals when the
如第2圖和第3圖所示,在時間點T1之後電源供應器100連接上市電,升壓型主動功率因數校正電路10之整流器12可將交流電壓VAC轉換成直流電壓VIN,而脈衝寬度調變積體電路PWMIC1會透過腳位P1輸出在第一致能電位和第一除能電位之間高頻切換之控制訊號GD1至功率開關Q1之控制端,使得功率開關Q1能在導通和截止狀態之間相對應地做高頻切換,進而讓升壓電感LM1週期性地進行能量儲存與能量釋放,以在變壓器TR的初級側提供升壓後之脈動直流電壓VO1。接著,在升壓型主動功率因數校正電路10穩定運作後所輸出之脈動直流電壓VO1為諧振轉換電路20之輸入電壓,脈衝寬度調變積體電路PWMIC2會透過腳位P2輸出在第二致能電位和第二除能電位之間高頻切換之控制訊號GD2至功率開關Q2之控制端,並透過腳位P3輸出在第三致能電位和第三除能電位之間高頻切換之控制訊號GD3至功率開關Q3之控制端。控制訊號GD2和GD3為互補訊號,也就是當控制訊號GD2具第二致能電位時控制訊號GD3會具第三除能電位,而當控制訊號GD2具第二除能電位時控制訊號GD3會具第三致能電位,使得功率開關Q2和Q3可分別依據控制訊號GD2和GD3來做高頻互補式切換,進而使諧振電感LR、激磁電感LM2和諧振電容CR相互諧振,以達到零電壓或零電流之柔性切換以降低切換損失。在這種情況下,變壓器TR可將初級側繞組NP所存對應脈動直流電壓VO1之能量感應至同步整流繞組NS1-NS4。
As shown in FIG. 2 and FIG. 3 , after time point T1, the
在時間點T1和T2之間輸出電壓VOUT之值尚未達到參考電壓
VF的準位,此時誤差放大器32會輸出具第二電位(例如低電位)之誤差電壓VE。當邏輯單元34判斷其第一輸入端(低電位誤差電壓VE)和第二輸入端(高電位參考電壓VF)並非皆為高電位時,會輸出具第四電位(例如低電位)之判斷電壓VAA。在接收到具第四電位(例如低電位)之判斷電壓VAA後,脈衝寬度調變積體電路PWMIC1會透過腳位P9輸出全開訊號CM1至同步整流開關控制積體電路SRIC1之腳位P10和同步整流開關控制積體電路SRIC2之腳位P11。
Between time points T1 and T2, the value of the output voltage V OUT has not yet reached the level of the reference voltage VF, and the
全開訊號CM1對應全開式同步整流運作,也就是說脈衝寬度調變積體電路PWMIC1會指示同步整流開關控制積體電路SRIC1透過其腳位P4輸出具第四致能電位之控制訊號GD4以導通同步整流開關Q4,指示同步整流開關控制積體電路SRIC1透過其腳位P5輸出具第五致能電位之控制訊號GD5以導通同步整流開關Q5,指示同步整流開關控制積體電路SRIC2透過其腳位P6輸出具第六致能電位之控制訊號GD6以導通同步整流開關Q6,並指示同步整流開關控制積體電路SRIC2透過其腳位P7輸出具第七致能電位之控制訊號GD7以導通同步整流開關Q7。在同步整流開關Q4-Q7皆為導通的情況下,同步整流繞組NS1-NS4內存能量皆可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2和脈動直流電壓VO3,使得輸出電壓VOUT之值持續爬升。
The full-on signal CM1 corresponds to the full-on synchronous rectification operation, that is, the pulse width modulation integrated circuit PWMIC1 will instruct the synchronous rectification switch control integrated circuit SRIC1 to output the control signal GD4 with the fourth enable potential through its pin P4 to turn on the synchronous rectification switch Q4, and instruct the synchronous rectification switch control integrated circuit SRIC1 to output the fifth enable potential through its pin P5. The control signal GD5 is used to turn on the synchronous rectifier switch Q5, and the synchronous rectifier switch control integrated circuit SRIC2 is instructed to output the control signal GD6 with the sixth enable potential through its pin P6 to turn on the synchronous rectifier switch Q6, and the synchronous rectifier switch control integrated circuit SRIC2 is instructed to output the control signal GD7 with the seventh enable potential through its pin P7 to turn on the synchronous rectifier switch Q7. When the synchronous rectifier switches Q4-Q7 are all turned on, the energy stored in the synchronous rectifier windings NS1-NS4 can be transmitted to the output end of the
如第2圖和第3圖所示,在時間點T2時輸出電壓VOUT之值達到參考電壓VF的準位,也就是會讓誤差放大器32之正輸入端和負輸入端之間的壓差為0,此時誤差放大器32會輸出具第一電位(例如高電位)之誤差電壓VE。當邏輯單元34判定其第一輸入端(高電位誤差電壓VE)和
第二輸入端(高電位參考電壓VF)皆為高電位時,會輸出具第三電位(例如高電位)之判斷電壓VAA。在接收到具第三電位(例如高電位)之判斷電壓VAA後,脈衝寬度調變積體電路PWMIC1會透過腳位P9輸出同步互補訊號CM2至同步整流開關控制積體電路SRIC1之腳位P10和同步整流開關控制積體電路SRIC2之腳位P11。
As shown in FIG. 2 and FIG. 3 , at time point T2, the value of the output voltage V OUT reaches the level of the reference voltage VF, that is, the voltage difference between the positive input terminal and the negative input terminal of the
同步互補訊號CM2對應互補式同步整流運作,也就是說脈衝寬度調變積體電路PWMIC1在時間點T2後的奇數週期(例如時間點T2-T3、T4-T5)會指示同步整流開關控制積體電路SRIC1透過其腳位P4輸出具第四除能電位之控制訊號GD4以截止同步整流開關Q4,指示同步整流開關控制積體電路SRIC1透過其腳位P5輸出具第五致能電位之控制訊號GD5以導通同步整流開關Q5,指示同步整流開關控制積體電路SRIC2透過其腳位P6輸出具第六除能電位之控制訊號GD6以截止同步整流開關Q6,並指示同步整流開關控制積體電路SRIC2透過其腳位P7輸出具第七致能電位之控制訊號GD7以導通同步整流開關Q7。在同步整流開關Q4和Q6為截止而同步整流開關Q5和Q7為導通的情況下,同步整流繞組NS2和NS4內存能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2和脈動直流電壓VO3,使得輸出電壓VOUT之值維持穩定。
The synchronous complementary signal CM2 corresponds to the complementary synchronous rectification operation, that is, the pulse width modulation integrated circuit PWMIC1 will instruct the synchronous rectification switch control integrated circuit SRIC1 to output the control signal GD4 with the fourth disable potential through its pin P4 in the odd cycle after the time point T2 to turn off the synchronous rectification switch Q4, instructing the synchronous rectification switch control integrated circuit SRIC1. The control signal GD5 having the fifth enable potential is outputted through its pin P5 to turn on the synchronous rectifier switch Q5, the synchronous rectifier switch control integrated circuit SRIC2 is instructed to output the control signal GD6 having the sixth disable potential through its pin P6 to turn off the synchronous rectifier switch Q6, and the synchronous rectifier switch control integrated circuit SRIC2 is instructed to output the control signal GD7 having the seventh enable potential through its pin P7 to turn on the synchronous rectifier switch Q7. When the synchronous rectifier switches Q4 and Q6 are turned off and the synchronous rectifier switches Q5 and Q7 are turned on, the energy stored in the synchronous rectifier windings NS2 and NS4 can be transmitted to the output end of the
同理,脈衝寬度調變積體電路PWMIC1在時間點T2後偶數週期(例如時間點T3-T4、T5-T6)會指示同步整流開關控制積體電路SRIC1透過其腳位P4輸出具第四致能電位之控制訊號GD4以導通同步整流開關Q4,指示同步整流開關控制積體電路SRIC1透過其腳位P5輸出具第
五除能電位之控制訊號GD5以截止同步整流開關Q5,指示同步整流開關控制積體電路SRIC2透過其腳位P6輸出具第六致能電位之控制訊號GD6以導通同步整流開關Q6,並指示同步整流開關控制積體電路SRIC2透過其腳位P7輸出具第七除能電位之控制訊號GD7以截止同步整流開關Q7。在同步整流開關Q4和Q6為導通而同步整流開關Q5和Q7為截止的情況下,同步整流繞組NS1和NS3內存能量可被傳送至電源供應器100之輸出端以提供脈動直流電壓VO2和脈動直流電壓VO3,使得輸出電壓VOUT之值維持穩定。
Similarly, the pulse width modulation integrated circuit PWMIC1 will instruct the synchronous rectification switch control integrated circuit SRIC1 to output the control signal GD4 with the fourth enable potential through its pin P4 to turn on the synchronous rectification switch Q4 in the even cycle after the time point T2 (for example, the time point T3-T4, T5-T6), and instruct the synchronous rectification switch control integrated circuit SRIC1 to output the control signal GD4 with the fifth enable potential through its pin P5 to turn on the synchronous rectification switch Q4. The control signal GD5 with the disable potential turns off the synchronous rectifier switch Q5, instructs the synchronous rectifier switch control integrated circuit SRIC2 to output the control signal GD6 with the sixth enable potential through its pin P6 to turn on the synchronous rectifier switch Q6, and instructs the synchronous rectifier switch control integrated circuit SRIC2 to output the control signal GD7 with the seventh disable potential through its pin P7 to turn off the synchronous rectifier switch Q7. When the synchronous rectifier switches Q4 and Q6 are turned on and the synchronous rectifier switches Q5 and Q7 are turned off, the energy stored in the synchronous rectifier windings NS1 and NS3 can be transmitted to the output terminal of the
在本發明實施例中,當同步整流開關控制積體電路SRIC1之腳位P10和同步整流開關控制積體電路SRIC2之腳位P11接收到同步互補訊號CM2時,同步整流開關控制積體電路SRIC1可透過腳位P12和同步整流開關控制積體電路SRIC2之腳位P13進行溝通,以確保控制訊號GD4和控制訊號GD6具相同相位且和控制訊號GD7具相反相位,以及確保控制訊號GD5和控制訊號GD7具相同相位且和控制訊號GD6具相反相位。 In the embodiment of the present invention, when the pin P10 of the synchronous rectifier switch control integrated circuit SRIC1 and the pin P11 of the synchronous rectifier switch control integrated circuit SRIC2 receive the synchronous complementary signal CM2, the synchronous rectifier switch control integrated circuit SRIC1 can communicate through the pin P12 and the pin P13 of the synchronous rectifier switch control integrated circuit SRIC2 to ensure that the control signal GD4 and the control signal GD6 have the same phase and the opposite phase to the control signal GD7, and ensure that the control signal GD5 and the control signal GD7 have the same phase and the opposite phase to the control signal GD6.
在本發明實施例中,功率開關Q1-Q3和同步整流開關Q4-Q7可為金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)、雙極性接面型電晶體(bipolar junction transistor,BJT),或其它具類似功能的元件。對N型電晶體來說,致能電位為高電位,而除能電位為低電位;對P型電晶體來說,致能電位為低電位,而除能電位為高電位。然而,上述開關之種類並不限定本發明之範疇。 In the embodiment of the present invention, the power switches Q1-Q3 and the synchronous rectification switches Q4-Q7 can be metal-oxide-semiconductor field-effect transistors (MOSFET), bipolar junction transistors (BJT), or other components with similar functions. For N-type transistors, the enable potential is high and the disable potential is low; for P-type transistors, the enable potential is low and the disable potential is high. However, the types of the above switches do not limit the scope of the present invention.
綜上所述,在本發明之電源供應器100中,升壓型主動功率因數校正電路10可提升交流電源端之功率因數,而諧振轉換電路20可將升壓型主動功率因數校正電路10輸出之電壓轉換成負載裝置運作所需之輸出電壓VOUT。電壓偵測電路30可偵測輸出電壓VOUT之狀態,使得控制電路40能在輸出電壓VOUT之值尚未達到參考電壓時指示諧振轉換電路20進行全開式同步整流運作,並在輸出電壓VOUT之值達到參考電壓時指示諧振轉換電路20進行互補式同步整流運作,進而提供具高諧振效率之同步整流控制。
In summary, in the
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
10:升壓型主動功率因數校正電路 10: Boost type active power factor correction circuit
20:諧振轉換電路 20: Resonance conversion circuit
30:電壓偵測電路 30: Voltage detection circuit
40:控制電路 40: Control circuit
100:電源供應器 100: Power supply
VOUT:輸出電壓 V OUT : Output voltage
VAC:交流電壓 V AC : Alternating current voltage
VAA:判斷電壓 V AA : Determination voltage
VO1:脈動直流電壓 VO1: Pulsating DC voltage
GD1-GD7:控制訊號 GD1-GD7: control signal
P1-P8:腳位 P1-P8: Foot position
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112135586A TWI865051B (en) | 2023-09-19 | 2023-09-19 | Power supply providing synchronous rectification control with high resonant efficiency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112135586A TWI865051B (en) | 2023-09-19 | 2023-09-19 | Power supply providing synchronous rectification control with high resonant efficiency |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI865051B true TWI865051B (en) | 2024-12-01 |
TW202515110A TW202515110A (en) | 2025-04-01 |
Family
ID=94769251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112135586A TWI865051B (en) | 2023-09-19 | 2023-09-19 | Power supply providing synchronous rectification control with high resonant efficiency |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI865051B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2339727A1 (en) * | 2009-12-23 | 2011-06-29 | Comarco Wireless Technologies, Inc. | Single-stage single switch power factor correction circuit having isolated output and boost inductor between AC source and bridge rectifier |
TW201316668A (en) * | 2011-09-29 | 2013-04-16 | Fsp Technology Inc | Resonant power converion apparatus |
US8848399B2 (en) * | 2010-08-18 | 2014-09-30 | Finsix Corporation | Very high frequency switching resonant synchronous rectification |
CN102624213B (en) * | 2012-03-29 | 2014-12-03 | 台达电子工业股份有限公司 | Power factor correction circuit |
CN206962730U (en) * | 2017-08-09 | 2018-02-02 | 航天长峰朝阳电源有限公司 | Integrated PFC high voltage half-bridge resonance synchronous rectification AC/DC power modules |
US10038368B2 (en) * | 2016-08-31 | 2018-07-31 | Murata Manufacturing Co., Ltd. | Power factor correction device and controlling method thereof, and electronic device |
CN217904704U (en) * | 2022-06-07 | 2022-11-25 | 东莞华明灯具有限公司 | Small-size high-power-density switching power supply with LLC framework |
CN111478566B (en) * | 2019-01-24 | 2022-12-13 | 海信视像科技股份有限公司 | Synchronous rectification circuit and display device |
TW202327239A (en) * | 2021-10-21 | 2023-07-01 | 新加坡商艾意斯全球控股私人有限公司 | Hold-up time circuit for llc converter |
-
2023
- 2023-09-19 TW TW112135586A patent/TWI865051B/en active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2339727A1 (en) * | 2009-12-23 | 2011-06-29 | Comarco Wireless Technologies, Inc. | Single-stage single switch power factor correction circuit having isolated output and boost inductor between AC source and bridge rectifier |
US8848399B2 (en) * | 2010-08-18 | 2014-09-30 | Finsix Corporation | Very high frequency switching resonant synchronous rectification |
US20200259420A1 (en) * | 2010-08-18 | 2020-08-13 | Finsix Corporation | Multi-path power factor correction |
TW201316668A (en) * | 2011-09-29 | 2013-04-16 | Fsp Technology Inc | Resonant power converion apparatus |
CN102624213B (en) * | 2012-03-29 | 2014-12-03 | 台达电子工业股份有限公司 | Power factor correction circuit |
US10038368B2 (en) * | 2016-08-31 | 2018-07-31 | Murata Manufacturing Co., Ltd. | Power factor correction device and controlling method thereof, and electronic device |
CN206962730U (en) * | 2017-08-09 | 2018-02-02 | 航天长峰朝阳电源有限公司 | Integrated PFC high voltage half-bridge resonance synchronous rectification AC/DC power modules |
CN111478566B (en) * | 2019-01-24 | 2022-12-13 | 海信视像科技股份有限公司 | Synchronous rectification circuit and display device |
TW202327239A (en) * | 2021-10-21 | 2023-07-01 | 新加坡商艾意斯全球控股私人有限公司 | Hold-up time circuit for llc converter |
CN217904704U (en) * | 2022-06-07 | 2022-11-25 | 东莞华明灯具有限公司 | Small-size high-power-density switching power supply with LLC framework |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8488348B2 (en) | Switch mode power supply apparatus having active clamping circuit | |
US7239530B1 (en) | Apparatus for isolated switching power supply with coupled output inductors | |
WO2020207356A1 (en) | Resonant converter | |
TW201929404A (en) | Adjustable frequency curve for flyback converter at green mode | |
EP1405394A2 (en) | Isolated drive circuitry used in switch-mode power converters | |
TWI691823B (en) | Power supply device and control method thereof | |
TWI495245B (en) | Method of controlling phase-shift full-bridge converter at light load operation | |
TW202040920A (en) | Power converter and control circuit thereof | |
US8411476B2 (en) | Charge mode control | |
TWI865051B (en) | Power supply providing synchronous rectification control with high resonant efficiency | |
JP2000305641A (en) | Switching power circuit | |
KR20090102949A (en) | Dc/dc converter with multi-output | |
US20240079961A1 (en) | Power supply capable of stabilizing and compensating resonant voltages | |
TWI745981B (en) | Self-driving power supply based on resonance energy recycling | |
WO2002015371B1 (en) | Switched magamp post regulator | |
CN101252317B (en) | Self Oscillating Power Converter | |
TWI871880B (en) | Power supply with dynamic control of resonant mode | |
CN114744883A (en) | Primary side feedback circuit of flyback power supply | |
CN108736698A (en) | Power supply and residual voltage discharging method | |
TWI628906B (en) | Power supply and residual voltage discharging method | |
TWI857581B (en) | Power supply with over-current protection during start-up | |
TWI865082B (en) | Power supply having adaptive voltage compensation loop and related system | |
KR100586978B1 (en) | LLC resonance DC / DC converter | |
TWI746174B (en) | Resonant converter and related electronic system capable of improving device loss and efficiency | |
US20250079968A1 (en) | Power supply having adaptive adjustable frequency range of voltage compensation mechanism |