TWI865082B - Power supply having adaptive voltage compensation loop and related system - Google Patents
Power supply having adaptive voltage compensation loop and related system Download PDFInfo
- Publication number
- TWI865082B TWI865082B TW112137860A TW112137860A TWI865082B TW I865082 B TWI865082 B TW I865082B TW 112137860 A TW112137860 A TW 112137860A TW 112137860 A TW112137860 A TW 112137860A TW I865082 B TWI865082 B TW I865082B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- feedback
- coupled
- output
- potential
- Prior art date
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims description 52
- 238000004891 communication Methods 0.000 claims description 36
- 230000033228 biological regulation Effects 0.000 claims description 29
- 238000004804 winding Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 18
- 230000001105 regulatory effect Effects 0.000 claims description 11
- 238000004146 energy storage Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 5
- 230000005284 excitation Effects 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 4
- 230000006641 stabilisation Effects 0.000 abstract 3
- 238000011105 stabilization Methods 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 17
- 101100489713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND1 gene Proteins 0.000 description 8
- 101100489717 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND2 gene Proteins 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明相關於一種電源供應器和相關電源供應系統,尤指一種具自適應式穩壓補償迴路之電源供應器和相關電源供應系統。 The present invention relates to a power supply and a related power supply system, and in particular to a power supply with an adaptive voltage-stabilizing compensation circuit and a related power supply system.
電腦系統中不同組件所需的操作電壓不同,因此普遍採用電源供應器以通過變壓、整流與濾波的方式,將交流電室內電源轉換為直流電以驅動不同零組件。隨著環保意識的抬頭,各國針對消費性電子產品、辦公設備、家電製品和外接電源供應器的節能規格都有所規範。舉例來說,美國能源之星是由美國能源部和環境保護署共同贊助的認證計畫,其針對不同額定輸出功率之電源供應器在各狀態和不同負載操作下所消耗功率都有明確的定義及節能規格要求。 Different components in a computer system require different operating voltages, so power supplies are commonly used to convert AC indoor power into DC power to drive different components through transformation, rectification and filtering. With the rise of environmental awareness, countries have energy-saving specifications for consumer electronic products, office equipment, home appliances and external power supplies. For example, the US Energy Star is a certification program jointly sponsored by the US Department of Energy and the Environmental Protection Agency. It has clear definitions and energy-saving specification requirements for power supplies with different rated output power in various states and under different load operations.
為了因應越來越嚴格的節能規格,電源供應器通常會設計穩壓回授補償架構以降低功耗。傳統返馳式架構之電源供應器設計簡單但動態響應較差,亦即當受電端的系統操作在嚴苛的動態負載時,電源供應器的輸出端會呈現不穩定的狀態,造成輸出電壓能量不足及無 電壓輸出等問題。因此,需要一種具自適應式穩壓補償迴路之電源供應器。 In order to cope with increasingly stringent energy-saving specifications, power supplies are usually designed with a voltage-regulated feedback compensation architecture to reduce power consumption. The traditional flyback architecture of power supplies is simple in design but has poor dynamic response, that is, when the system at the receiving end operates under severe dynamic loads, the output end of the power supply will be unstable, resulting in insufficient output voltage energy and no voltage output. Therefore, a power supply with an adaptive voltage-regulated compensation loop is needed.
本發明提供一種具自適應式穩壓補償迴路之電源供應器,用來提供一輸出電壓以供電至一受電裝置,其包含一整流電路、一返馳式轉換電路、一電壓偵測電路、一穩壓回授補償電路和一控制電路。該整流電路用來將一市電供應之一交流電壓轉換成一直流輸入電壓。該返馳式轉換電路用來將該直流輸入電壓轉換成該輸出電壓。該電壓偵測電路用來提供相關該輸出電壓之一回授電流和一回授電壓。該穩壓回授補償電路用來自適應式地提供一穩壓回授補償迴路以儲存相關該回授電流之能量,進而供應該回授電壓。控制電路用來依據該受電裝置提供之一溝通訊號來判斷該受電裝置之一目前運作模式;當依據該溝通訊號判定該受電裝置係在一第一模式下運作時,控制該穩壓回授補償電路以提供具一第一回授電容值之該穩壓回授補償迴路,進而使該電壓偵測電路提供具一第一值之該回授電壓;當依據該溝通訊號判定該受電裝置係在一第二模式下運作時,控制該穩壓回授補償電路以提供具一第二回授電容值之該穩壓回授補償迴路,進而使該電壓偵測電路提供具一第二值之該回授電壓;在接收到具該第一值之該回授電壓時,輸出以一第一責任週期在一第一致能電位和一第一除能電位之間週期性切換的一第一控制訊號以控制該返馳式轉換電路之運作;以及在接收到具該第二值之該回授電壓時,輸出以一第二責任週期在該第一致能電位和該第一除能電位之間週期性切換的該第一控制訊號以控制該返馳式轉換電路之運作。其中,當該受電裝置在該第一模式 下運作時該電源供應器之一第一即時輸出負載小於當該受電裝置在該第二模式下運作時該電源供應器之一第二即時輸出負載,該第一回授電容值小於該第二回授電容值,該第一值小於該第二值,且該第一責任週期小於該第二責任週期。 The present invention provides a power supply with an adaptive voltage-stabilizing compensation circuit, which is used to provide an output voltage to supply power to a power receiving device, and includes a rectifier circuit, a flyback converter circuit, a voltage detection circuit, a voltage-stabilizing feedback compensation circuit and a control circuit. The rectifier circuit is used to convert an AC voltage supplied by a city power supply into a DC input voltage. The flyback converter circuit is used to convert the DC input voltage into the output voltage. The voltage detection circuit is used to provide a feedback current and a feedback voltage related to the output voltage. The voltage-regulated feedback compensation circuit is used to adaptively provide a voltage-regulated feedback compensation loop to store energy related to the feedback current, thereby supplying the feedback voltage. The control circuit is used to determine a current operation mode of the power receiving device according to a communication signal provided by the power receiving device; when it is determined according to the communication signal that the power receiving device is operating in a first mode, the voltage regulation feedback compensation circuit is controlled to provide the voltage regulation feedback compensation circuit with a first feedback capacitance value, thereby causing the voltage detection circuit to provide the feedback voltage with a first value; when it is determined according to the communication signal that the power receiving device is operating in a second mode, the voltage regulation feedback compensation circuit is controlled to provide the voltage regulation feedback compensation circuit with a second feedback capacitance value. The invention relates to a flyback converter circuit comprising a first control signal which is periodically switched between a first enable potential and a first disable potential in a first duty cycle to control the operation of the flyback converter circuit; and a first control signal which is periodically switched between the first enable potential and the first disable potential in a second duty cycle to control the operation of the flyback converter circuit. Wherein, when the power receiving device operates in the first mode, a first real-time output load of the power supply is less than a second real-time output load of the power supply when the power receiving device operates in the second mode, the first feedback capacitance value is less than the second feedback capacitance value, the first value is less than the second value, and the first duty cycle is less than the second duty cycle.
10:整流電路 10: Rectifier circuit
20:返馳式轉換電路 20: Flyback converter circuit
30:電壓偵測電路 30: Voltage detection circuit
32:發光二極體 32: LED
34:光敏電晶體 34: Photosensitive transistor
40:穩壓回授補償電路 40: Voltage regulation feedback compensation circuit
50:控制電路 50: Control circuit
60:傳輸介面 60: Transmission interface
100:電源供應器 100: Power supply
200:受電裝置 200: Power receiving device
300:電源供應系統 300: Power supply system
JACK1、PLUG1、JACK2:連接座 JACK1, PLUG1, JACK2: connector
Vbus:供電用腳位 Vbus: power supply pin
GND:接地腳位 GND: ground pin
CM:溝通電位 CM: Communication potential
EC:嵌入式控制器 EC: Embedded Controller
TR:變壓器 TR: Transformer
NP:初級側繞組和匝數 NP: Primary side winding set and number of turns
NS:次級側繞組和匝數 NS: Secondary winding and number of turns
GND1、GND2:接地電位 GND1, GND2: ground potential
Q1:功率開關 Q1: Power switch
Q2-Q4:輔助開關 Q2-Q4: Auxiliary switch
PC:線性光耦合器 PC: Linear optocoupler
R1、R2:電阻 R1, R2: resistors
TL:穩壓器 TL: Voltage regulator
A:穩壓器之陽極端 A: Anode end of the voltage regulator
K:穩壓器之陰極端 K: cathode end of the voltage regulator
R:穩壓器之參考端 R: Reference terminal of the voltage regulator
CO:儲能電容 CO: Energy storage capacitor
CC:補償電容 CC: Compensation capacitor
CB:回授電容 CB: Feedback capacitor
CR1、CR2:輔助電容 CR1, CR2: Auxiliary capacitors
DO:輸出二極體 DO: output diode
D1-D4:二極體 D1-D4: diodes
LM:激磁電感 LM: Magnetizing inductance
LR:輔助電感 LR: Auxiliary inductor
VIN:直流輸入電壓 V IN : DC input voltage
VOUT:輸出電壓 V OUT : Output voltage
VAC:交流電壓 V AC : Alternating current voltage
VFB:回授電壓 V FB : Feedback voltage
VREF:參考電壓 V REF : Reference voltage
IC:補償電流 I C : Compensation Current
IFB:回授電流 I FB : Feedback current
ILR:電感電流 I LR : Inductor current
GD1-GD4:控制訊號 GD1-GD4: control signal
SCM:溝通訊號 S CM : Communication Signal
P1-P6:腳位 P1-P6: Foot position
第1圖為本發明實施例中一種電源供應系統之功能方塊圖。 Figure 1 is a functional block diagram of a power supply system in an embodiment of the present invention.
第2圖為本發明實施例電源供應系統中電源供應器實作方式之示意圖。 Figure 2 is a schematic diagram of the implementation of the power supply in the power supply system of the embodiment of the present invention.
第3圖為本發明另一實施例電源供應系統中電源供應器實作方式之示意圖。 Figure 3 is a schematic diagram of the implementation of the power supply in the power supply system of another embodiment of the present invention.
第4A圖為本發明實施例中當受電裝置在正常模式下運作時電源供應器相關訊號之示意圖。 Figure 4A is a schematic diagram of power supply related signals when the power receiving device operates in normal mode in an embodiment of the present invention.
第4B圖為本發明實施例中當受電裝置在嚴苛動態負載模式下運作時電源供應器相關訊號之示意圖。 Figure 4B is a schematic diagram of power supply related signals when the power receiving device operates in a severe dynamic load mode in an embodiment of the present invention.
第4C圖為本發明實施例中當受電裝置在省電模式下運作時電源供應器相關訊號之示意圖。 Figure 4C is a schematic diagram of power supply related signals when the power receiving device operates in power saving mode in an embodiment of the present invention.
第5A圖為本發明實施例中當受電裝置在正常模式下運作時穩壓回授補償電路之等效電路圖。 Figure 5A is an equivalent circuit diagram of the voltage regulation feedback compensation circuit in the embodiment of the present invention when the power receiving device operates in normal mode.
第5B圖為本發明實施例中當受電裝置在嚴苛動態負載模式下運作時穩壓回授補償電路之等效電路圖。 Figure 5B is an equivalent circuit diagram of the voltage regulation feedback compensation circuit in an embodiment of the present invention when the power receiving device operates under a severe dynamic load mode.
第5C圖為本發明實施例中當受電裝置在省電模式下運作時穩壓回授補償電路之等效電路圖。 Figure 5C is an equivalent circuit diagram of the voltage regulation feedback compensation circuit in an embodiment of the present invention when the power receiving device operates in power saving mode.
第1圖為本發明實施例中一種電源供應系統300之功能方塊圖。電源供應系統300包含一電源供應器100和一受電裝置200。電源供應器100包含一連接座JACK1、一連接座PLUG1、一整流電路10、一返馳式(flyback)轉換電路20、一電壓偵測電路30、一穩壓回授補償電路40,以及一控制電路50。受電裝置200包含一連接座JACK2和一嵌入式控制器(embedded controller)EC。
FIG. 1 is a functional block diagram of a
電源供應器100可透過位於其輸入端之連接座JACK1連結至市電,並可透過位於其輸出端之連接座PLUG1連結至受電裝置200之連接座JACK2。電源供應器100之連接座PLUG1可透過一傳輸介面60連結至受電裝置200之連接座JACK2。在一實施例中,電源供應器100之連接座PLUG1和受電裝置200之連接座JACK2可透過相對應之供電用腳位Vbus、接地腳位GND和溝通腳位CM傳遞訊號。在一實施例中,傳輸介面60可為USB Type-C介面,但不侷限於此。
The
電源供應器100可將由市電供應之交流電壓VAC轉換成一輸出電壓VOUT以供應受電裝置200運作所需的電力。受電裝置200可透過位於其輸入端之連接座JACK2接收電源供應器100提供的電力或傳來的指示,嵌入式控制器EC可提供相關受電裝置200目前運作模式之溝通訊號SCM。
The
第2圖和第3圖為本發明實施例中電源供應系統300中電源供應器100實作方式之示意圖。在本發明實施例中,電源供應器100之整
流電路10可為一橋式整流器,其包含整流二極體D1-D4,用來將市電供應之交流電壓VAC轉換成一直流輸入電壓VIN。然而,整流電路10之實施方式並不限定本發明之範疇。
FIG. 2 and FIG. 3 are schematic diagrams of the implementation of the
在第2圖和第3圖所示之實施例中,返馳式轉換電路20包含一變壓器TR、一功率開關Q1、一激磁電感LM、一儲能電容CO,以及一輸出二極體DO。返馳式轉換電路20可在其輸入端接收輸入電壓VIN,將輸入電壓VIN轉換成輸出電壓VOUT,並透過其輸出端之連接座PLUG1供電至受電裝置200之連接座JACK2。變壓器TR包含一初級側繞組(由匝數NP來表示)和一次級側繞組(由匝數NS來表示),其中初級側繞組NP之非打點端經由功率開關Q1選擇性地耦接至一接地電位GND1,而次級側繞組NS之打點端耦接至一接地電位GND2。激磁電感LM之第一端耦接至變壓器TR中初級側繞組NP之打點端,而第二端耦接至變壓器TR中初級側繞組NP之非打點端。功率開關Q1之第一端耦接至變壓器TR中初級側繞組NP之非打點端,第二端耦接至接地電位GND1,而控制端接收一第一控制訊號GD1。輸出二極體DO之陽極耦接至變壓器TR中次級側繞組NS之非打點端,而陰極耦接至連接座PLUG1之Vbus腳位。儲能電容CO之第一端耦接至輸出二極體DO之陰極,而第二端耦接至接地電位GND2,用來儲存輸出電壓VOUT之能量。
In the embodiment shown in FIG. 2 and FIG. 3 , the
整流電路10所輸出之直流輸入電壓VIN為返馳式轉換電路20之輸入電壓,功率開關Q1可依據第一控制訊號GD1來做高頻切換而讓激磁電感LM進行能量儲存與能量釋放。變壓器TR可將初級側繞組NP所存對應直流輸入電壓VIN之能量感應至次級側繞組NS,儲能電容CO
可儲存次級側繞組NS之能量以提供輸出電壓VOUT。當輸出二極體DO因順向偏壓而導通時,變壓器TR中次級側繞組NS內存能量可對儲能電容CO充電,進而透過連接座PLUG1之Vbus腳位供應輸出電壓VOUT至受電裝置200;當輸出二極體DO因反向偏壓而截止時,電源供應器100之電力傳送路徑會被切斷,此時連接座PLUG1之Vbus腳位無輸出(VOUT=0)。
The DC input voltage V IN output by the
在第2圖和第3圖所示之實施例中,電壓偵測電路30包含一線性光耦合器PC、一補償電容CC、一穩壓器TL,以及電阻R1-R2。電阻R1和R2串聯於輸出電壓VOUT和接地電位GND2之間,可在電阻R2上建立相關輸出電壓VOUT之一參考電壓VREF,其中VRET=VOUT*R2/(R1+R2)。穩壓器TL之參考端R耦接於電阻R1和R2之間以接收參考電壓VREF,陽極端A耦接至接地電位GND2,而陰極端K耦接至線性光耦合器PC,其中VKA代表穩壓器TL陰極端K和陽極端A之間的跨壓。補償電容CC之第一端耦接至穩壓器TL之陰極端K,而其第二端耦接至穩壓器TL之參考端R。穩壓器TL可依據參考端R之狀態來調整流經陰極端K和陽極端A之補償電流IC。更詳細地說,穩壓器TL會將其參考端R接收到之參考電壓VREF和一內建基準電壓做誤差比較。當有誤差值發生時,耦接於穩壓器TL之陰極端K和參考端R之間的補償電容CC可依此調整穩壓器TL之增益,使得補償電流IC之值能反應參考電壓VREF之值,也就是能反應輸出電壓VOUT之值。
In the embodiment shown in FIG. 2 and FIG. 3 , the
線性光耦合器PC包含一發光二極體32和一光敏電晶體34,可在變壓器TR之初級側和次級側之間進行電-光-電轉換。發光二極體32耦接於線性光耦合器PC之第一輸入端和第二輸入端之間,其陽極耦接
至儲能電容CO之第一端(亦即耦接至輸出電壓VOUT),而陰極耦接至穩壓器TL之陰極端K。光敏電晶體34耦接於線性光耦合器PC之第一輸出端和第二輸出端之間,其第一端耦接於控制電路50,而第二端耦接至穩壓回授補償電路40。由於流經發光二極體32之補償電流IC相關輸出電壓VOUT之值,線性光耦合器PC可利用輸入側之發光二極體32來感應輸出電壓VOUT之變化量,並將相關輸出電壓VOUT變化量之電能轉換成光能,再由輸出側之光敏電晶體34接收後轉換成一回授電流IFB。回授電流IFB會流經穩壓回授補償電路40,並被儲存成一回授電壓VFB,其中回授電壓VFB之值相關於穩壓回授補償電路40所提供之穩壓回授補償迴路的總回授電容值。
The linear optocoupler PC includes a
在第2圖和第3圖所示之實施例中,穩壓回授補償電路40包含第一至第三輔助開關Q2-Q4、一回授電容CB、第一輔助電容CR1和第二輔助電容CR2,以及一輔助電感LR。第一輔助開關Q2之第一端耦接至線性光耦合器PC中光敏電晶體34之第二端以接收回授電流IFB,其第二端耦接至第一輔助電容CR1,而控制端接收一第二控制訊號GD2。第二輔助開關Q3之第一端耦接至輔助電感LR,其第二端耦接至接地電位GND1,而控制端接收一第三控制訊號GD3。第三輔助開關Q4之第一端耦接至線性光耦合器PC中光敏電晶體34之第二端以接收回授電流IFB,其第二端耦接至第二輔助電容CR2,而控制端接收一第四控制訊號GD4。回授電容CB之第一端耦接至線性光耦合器PC中光敏電晶體34之第二端以接收回授電流IFB,而其第二端耦接至接地電位GND1。第一輔助電容CR1之第一端耦接至第一輔助開關Q2之第二端,而其第二端耦接至接地電位GND1。第二輔助電容CR2之第一端耦接至第三輔助開關
Q4之第二端,而其第二端耦接至接地電位GND1。
In the embodiment shown in FIG. 2 and FIG. 3, the voltage regulation
在第2圖和第3圖所示之實施例中,控制電路50可為一微處理控制單元(microcontroller unit,MCU),其包含腳位P1~P5,其中腳位P1用來輸出在一第一致能電位和一第一除能電位之間高頻切換之第一控制訊號GD1至功率開關Q1之控制端,腳位P2用來選擇性地輸出具一第二致能電位或具一第二除能電位之第二控制訊號GD2至第一輔助開關Q2之控制端,腳位P3用來選擇性地輸出具一第三致能電位或具一第三除能電位之第三控制訊號GD3至第二輔助開關Q3之控制端,腳位P4耦接至第三輔助開關Q4之控制端,而腳位P5耦接至電壓偵測電路30以接收回授電壓VFB。
In the embodiment shown in FIG. 2 and FIG. 3, the
在第2圖所示之實施例中,控制電路50另透過腳位P4耦接至其連接座PLUG1之CM腳位以接收溝通訊號SCM,也就是說第三輔助開關Q4之第四控制訊號GD4係由溝通訊號SCM來提供。在第3圖所示之實施例中,控制電路50另包含腳位P6,耦接至其連接座PLUG1之CM腳位以接收溝通訊號SCM,且會依據溝通訊號SCM之值來透過其腳位P4選擇性地輸出具一第四致能電位或具一第四除能電位之第四控制訊號GD4至第三輔助開關Q4之控制端。
In the embodiment shown in FIG. 2 , the
如第2圖和第3圖所示,當電源供應器100並未連接上市電時,所有控制訊號皆為0,而電源供應器100不會有輸出(VOUT=0)。當電源供應器100連接上市電後,整流電路10可將市電供應之交流電壓VAC轉換成直流輸入電壓VIN,而控制電路50會透過腳位P1輸出在第一致能
電位和第一除能電位之間高頻切換之第一控制訊號GD1至功率開關Q1之控制端,使得功率開關Q1能在導通和截止狀態之間相對應地做高頻切換,進而讓升壓電感LM週期性地進行能量儲存與能量釋放,進而週期性地將變壓器TR的初級側能量感應至次級側,此時輸出電壓VOUT開始上升。
As shown in FIG. 2 and FIG. 3 , when the
輸出電壓VOUT會由電阻R1和電阻R2進行分壓,並在電阻R2上建立參考電壓VREF。穩壓器TL會將參考電壓VREF和其參考端R之電位做電壓誤差比較,當判定有誤差發生時藉由補償電容CC去調整迴路之電壓增益和電壓VKA,使得流經穩壓器TL之補償電流IC之值能反應參考電壓VREF之值。接著,線性光耦合器PC可利用輸入側之發光二極體32來感應補償電流IC之變化量,並將相關補償電流IC變化量之電能轉換成光能,再由輸出側之光敏電晶體34接收後轉換成回授電流IFB。由於參考電壓VBEF之值相關輸出電壓VOUT之值,因此補償電流IC之變化量會相關輸出電壓VOUT之變化量,而回授電流IFB之值也能反應輸出電壓VOUT之狀態。
The output voltage V OUT is divided by resistors R1 and R2, and a reference voltage V REF is established on resistor R2. The voltage regulator TL compares the reference voltage V REF with the potential of its reference terminal R for voltage error. When an error is detected, the compensation capacitor CC is used to adjust the loop voltage gain and voltage V KA , so that the value of the compensation current I C flowing through the voltage regulator TL can reflect the value of the reference voltage V REF . Then, the linear optocoupler PC can use the
本發明之電源供應器100會依據受電裝置200之運作模式來控制穩壓回授補償電路40,進而提供相對應之穩壓回授補償架構。為了說明目的,假設受電裝置200可在三種模式下運作:正常模式、嚴苛動態負載模式和省電模式。受電裝置200可透過其連接座JACK2之CM腳位輸出溝通訊號SCM至電源供應器100中連接座PLUG1之CM腳位,使得電源供應器100能得知受電裝置200之目前運作模式。在電源供應器100供電至受電裝置200的情況下,當受電裝置200分別在正常模式、嚴
苛動態負載模式和省電模式運作時,電源供應器100之第一至第三即時輸出負載分別為LOAD1、LOAD2和LOAD3,其中LOAD3<LOAD1<LOAD2。
The
在第2圖所示之實施例中,當受電裝置200在嚴苛動態負載模式下運作時會透過其連接座JACK2之CM腳位輸出具第四致能電位之溝通訊號SCM,在省電模式下運作時會透過其連接座JACK2之CM腳位輸出具第四除能電位之溝通訊號SCM,而在正常模式下運作時不會透過其連接座JACK2之CM腳位輸出任何訊號(亦即第四控制訊號GD4為浮動電位)。
In the embodiment shown in FIG. 2 , when the
在第3圖所示之實施例中,當受電裝置200在正常模式下運作時會透過其連接座JACK2之CM腳位輸出具一第一電位之溝通訊號SCM,在嚴苛動態負載模式下運作時會透過其連接座JACK2之CM腳位輸出具一第二電位之溝通訊號SCM,而在省電模式下運作時會透過其連接座JACK2之CM腳位輸出具一第三電位之溝通訊號SCM,其中第一電位、第二電位和第三電位彼此相異。
In the embodiment shown in FIG. 3 , when the
第4A圖為本發明實施例中當受電裝置200在正常模式下運作時電源供應器100相關訊號之示意圖。第4B圖為本發明實施例中當受電裝置200在嚴苛動態負載模式下運作時電源供應器100相關訊號之示意圖。第4C圖為本發明實施例中當受電裝置200在省電模式下運作時電源供應器100相關訊號之示意圖。第5A圖為本發明實施例中當受電裝置200在正常模式下運作時穩壓回授補償電路40之等效電路圖。第5B圖為
本發明實施例中當受電裝置200在嚴苛動態負載模式下運作時穩壓回授補償電路40之等效電路圖。第5C圖為本發明實施例中當受電裝置200在省電模式下運作時穩壓回授補償電路40之等效電路圖。
FIG. 4A is a schematic diagram of the
如第4A圖和第5A圖所示,當控制電路50並未透過其腳位P4接收到溝通訊號SCM(第2圖所示之實施例)或透過其腳位P6接收到具第一電位之溝通訊號SCM(第3圖所示之實施例)時,會判定目前受電裝置200是在正常模式下運作。此時,控制電路50會透過其腳位P2輸出具第二除能電位之第二控制訊號GD2以截止第一輔助開關Q2,並會透過其腳位P3輸出具第三除能電位之第三控制訊號GD3以截止第二輔助開關Q3。由於在未收到溝通訊號SCM時第三輔助開關Q4之控制端具浮動電位,因此第三輔助開關Q4也會被截止。在這種情況下,穩壓回授補償電路40所提供之穩壓回授補償迴路僅包含回授電容CB,其總第一回授電容值CT1亦為CB,如第5A圖所示。回授電容CB會被回授電流IFB充電以提供回授電壓VFB,當控制電路50透過其腳位P5接收到回授電壓VFB時,會將回授電壓VFB與其內部之三角波電壓TRI做比較,進而以脈衝調變方式控制功率開關Q1。舉例來說,假設當受電裝置200在正常模式下運作時控制電路50接收到之回授電壓VFB其值為VCB1,第一控制訊號GD1之第一責任週期DT1會由VCB1>TRI的區間來決定,以達到穩定輸出電壓VOUT的功能,如第4A圖所示。
As shown in FIG. 4A and FIG. 5A, when the
如第4B圖和第5B圖所示,當控制電路50透過其腳位P4接收到具第四致能電位之溝通訊號SCM(第2圖所示之實施例)或透過其腳位P6接收到具第二電位之溝通訊號SCM(第3圖所示之實施例)時,會判定目前
受電裝置200是在嚴苛動態負載模式下運作。此時,控制電路50會透過其腳位P2輸出具第二致能電位之第二控制訊號GD2以導通第一輔助開關Q2,並會透過其腳位P3輸出具第三除能電位之第三控制訊號GD3以截止第二輔助開關Q3。同時,第三輔助開關Q4會被具第四致能電位之溝通訊號SCM(第2圖所示之實施例)所導通,或控制電路50另會透過其腳位P4輸出具第四致能電位之第四控制訊號GD4以導通第三輔助開關Q4(第3圖所示之實施例)。在這種情況下,穩壓回授補償電路40所提供之穩壓回授補償迴路會包含回授電容CB、第一輔助電容CR1和第二輔助電容CR2之並聯結構,其總第二回授電容值CT2為(CB+CR1+CR2),如第5B圖所示。回授電容CB、第一輔助電容CR1和第二輔助電容CR2皆會被回授電流IFB充電以拉高回授電壓VFB之值,當控制電路50透過其腳位P5接收到回授電壓VFB時,會將回授電壓VFB與其內部之三角波電壓TRI做比較,進而以脈衝調變方式控制功率開關Q1。舉例來說,假設當受電裝置200在嚴苛動態負載模式下運作時控制電路50接收到之回授電壓VFB其值為VCB2,第一控制訊號GD1之第二責任週期DT2會由VCB2>TRI的區間來決定,如第4B圖所示。當受電裝置200在嚴苛動態負載模式下運作時,回授電壓VFB之值會隨著較大的總第二回授電容值CT2而升至VCB2(VCB2>VCB1),使得控制電路50能輸出具較長第二責任週期DT2之第一控制訊號GD1。透過增加功率開關Q1之導通時間可提升激磁電感LM之平均能量,以避免在高即時輸出負載的需求下發生供電不足或斷電等現象,進而達到穩定輸出電壓VOUT的功能。
As shown in FIG. 4B and FIG. 5B, when the
如第4C圖和第5C圖所示,當控制電路50透過其腳位P4接收到具第四除能電位之溝通訊號SCM(第2圖所示之實施例)或透過其腳位P6
接收到具第三電位之溝通訊號SCM(第3圖所示之實施例)時,會判定目前受電裝置200是在省電模式下運作。此時,控制電路50會透過其腳位P2輸出具第二除能電位之第二控制訊號GD2以截止第一輔助開關Q2,並會透過其腳位P3輸出具第三致能電位之第三控制訊號GD3以導通第二輔助開關Q3。同時,第三輔助開關Q4會被具第四除能電位之溝通訊號SCM(第2圖所示之實施例)所截止,或控制電路50另會透過其腳位P4輸出具第四除能電位之第四控制訊號GD4以截止第三輔助開關Q4(第3圖所示之實施例)。在這種情況下,穩壓回授補償電路40所提供之穩壓回授補償迴路會包含回授電容CB和輔助電感LR之並聯結構,如第5C圖所示。如相關領域具備通常知識者皆知,電容-電感之並聯結構的跨壓相同,但電感電流的相位會落後電壓90度,電容電流的相位會超前電壓90度,使得電感電流與電容電流之間會有180度的相位差,亦即流經回授電容CB之回授電流IFB和流經輔助電感LR之電感電流ILR電流方向相反,使得穩壓回授補償電路40之總第三回授電容值CT3會小於CB。當回授電流IFB部分電流會被電感電流ILR抵消時會拉低回授電壓VFB之值,當控制電路50透過其腳位P5接收到回授電壓VFB時,會將回授電壓VFB與其內部之三角波電壓TRI做比較,進而以脈衝調變方式控制功率開關Q1。舉例來說,假設當受電裝置200在省電模式下運作時控制電路50接收到之回授電壓VFB其值為VCB3,第一控制訊號GD1之第三責任週期DT3會由VCB3>TRI的區間來決定,如第4C圖所示。當受電裝置200在省電模式下運作時,回授電壓VFB之值會隨著較小的總第三回授電容值CT3而降至VCB3(VCB3<VCB1),使得控制電路50能輸出具較短第三責任週期DT3之第一控制訊號GD1。透過減少功率開關Q1之導通時間可降低激磁電感LM之平均能量,以達到省電目的。
As shown in FIG. 4C and FIG. 5C , when the
在本發明實施例中,功率開關Q1和第一至第三輔助開關Q2-Q4可為金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)、雙極性接面型電晶體(bipolar junction transistor,BJT),或其它具類似功能的元件。對N型電晶體來說,致能電位為高電位,而除能電位為低電位;對P型電晶體來說,致能電位為低電位,而除能電位為高電位。然而,上述開關之種類並不限定本發明之範疇。 In the embodiment of the present invention, the power switch Q1 and the first to third auxiliary switches Q2-Q4 can be metal-oxide-semiconductor field-effect transistors (MOSFET), bipolar junction transistors (BJT), or other components with similar functions. For N-type transistors, the enable potential is high and the disable potential is low; for P-type transistors, the enable potential is low and the disable potential is high. However, the types of the above switches do not limit the scope of the present invention.
綜上所述,在本發明之電源供應器100中,整流電路10和返馳式轉換電路20可將市電供應之交流電壓VAC轉換成輸出電壓VOUT以供應受電裝置200運作所需的電力。電壓偵測電路30可偵測輸出電壓VOUT之狀態,並提供相對應之回授電流IFB和回授電壓VFB。穩壓回授補償電路40可自適應式地提供穩壓回授補償迴路以儲存相關回授電流IFB之能量,進而供應回授電壓VFB。控制電路50會依據受電裝置200之運作模式來控制穩壓回授補償電路40使其能提供相對應之穩壓回授補償迴路,並依據回授電壓VFB之值來控制返馳式轉換電路20之運作以達到穩定輸出電壓VOUT的功能。本發明之電源供應器和電源供應系統能避免在高即時輸出負載的需求下發生供電不足或斷電等現象,並能在低即時輸出負載的需求下達到省電目的。
In summary, in the
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made within the scope of the patent application of the present invention shall fall within the scope of the present invention.
10:整流電路 10: Rectifier circuit
20:返馳式轉換電路 20: Flyback converter circuit
30:電壓偵測電路 30: Voltage detection circuit
32:發光二極體 32: LED
34:光敏電晶體 34: Photosensitive transistor
40:穩壓回授補償電路 40: Voltage regulation feedback compensation circuit
50:控制電路 50: Control circuit
100:電源供應器 100: Power supply
Vbus供電用腳位 Vbus power supply pin
GND接地腳位 GND ground pin
CM溝通電位 CM communication potential
TR:變壓器 TR: Transformer
NP:初級側繞組和匝數 NP: Primary side winding set and number of turns
NS:次級側繞組和匝數 NS: Secondary winding and number of turns
GND1、GND2:接地電位 GND1, GND2: ground potential
Q1:功率開關 Q1: Power switch
Q2-Q4:輔助開關 Q2-Q4: Auxiliary switch
PC:線性光耦合器 PC: Linear optocoupler
R1、R2:電阻 R1, R2: resistors
TL:穩壓器 TL: Voltage regulator
A:穩壓器之陽極端 A: Anode end of the voltage regulator
K:穩壓器之陰極端 K: cathode end of the voltage regulator
R:穩壓器之參考端 R: Reference terminal of the voltage regulator
CO:儲能電容 CO: Energy storage capacitor
CC:補償電容 CC: Compensation capacitor
CB:回授電容 CB: Feedback capacitor
CR1、CR2:輔助電容 CR1, CR2: Auxiliary capacitors
DO:輸出二極體 DO: output diode
D1-D4:二極體 D1-D4: diodes
LM:激磁電感 LM: Magnetizing inductance
LR:輔助電感 LR: Auxiliary inductor
VIN:直流輸入電壓 V IN : DC input voltage
VOUT:輸出電壓 V OUT : Output voltage
VAC:交流電壓 V AC : Alternating current voltage
VFB:回授電壓 V FB : Feedback voltage
VREF:參考電壓 V REF : Reference voltage
IC:補償電流 I C : Compensation Current
IFB:回授電流 I FB : Feedback current
ILR:電感電流 I LR : Inductor current
GD1-GD4:控制訊號 GD1-GD4: control signal
SCM:溝通訊號 S CM : Communication Signal
P1-P5:腳位 P1-P5: Foot position
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112137860A TWI865082B (en) | 2023-10-03 | 2023-10-03 | Power supply having adaptive voltage compensation loop and related system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW112137860A TWI865082B (en) | 2023-10-03 | 2023-10-03 | Power supply having adaptive voltage compensation loop and related system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI865082B true TWI865082B (en) | 2024-12-01 |
Family
ID=94769184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112137860A TWI865082B (en) | 2023-10-03 | 2023-10-03 | Power supply having adaptive voltage compensation loop and related system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI865082B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102237810A (en) * | 2010-04-22 | 2011-11-09 | 通嘉科技股份有限公司 | Control method and compensation circuit of switch mode power supply |
EP2683068A1 (en) * | 2012-07-06 | 2014-01-08 | Nxp B.V. | Control circuit for a switched-mode power supply |
TW201914185A (en) * | 2017-08-28 | 2019-04-01 | 強弦科技股份有限公司 | Switching power supply having dynamically adjustable feedback compensation function |
TWI806684B (en) * | 2022-07-04 | 2023-06-21 | 宏碁股份有限公司 | Power supply device |
-
2023
- 2023-10-03 TW TW112137860A patent/TWI865082B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102237810A (en) * | 2010-04-22 | 2011-11-09 | 通嘉科技股份有限公司 | Control method and compensation circuit of switch mode power supply |
EP2683068A1 (en) * | 2012-07-06 | 2014-01-08 | Nxp B.V. | Control circuit for a switched-mode power supply |
TW201914185A (en) * | 2017-08-28 | 2019-04-01 | 強弦科技股份有限公司 | Switching power supply having dynamically adjustable feedback compensation function |
TWI806684B (en) * | 2022-07-04 | 2023-06-21 | 宏碁股份有限公司 | Power supply device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109962631B (en) | Flyback converter with adjustable frequency reduction curve | |
US8885364B2 (en) | Flyback converter with primary side and secondary side feedback control and method for the same | |
US9621053B1 (en) | Peak power control technique for primary side controller operation in continuous conduction mode | |
KR100379057B1 (en) | A Burst Mode Switching Mode Power Supply | |
US7167028B2 (en) | Voltage detection circuit, power supply unit and semiconductor device | |
US7529105B1 (en) | Configuring a power converter to operate with or without burst mode functionality | |
CN103078478B (en) | Controller for switching power supply and switching power supply | |
US20060285365A1 (en) | Primary side constant output current controller | |
TWI442677B (en) | Power supply and controller thereof | |
KR101020243B1 (en) | Switching-mode power supplies | |
JP7425792B2 (en) | Bias power regulator circuit for isolated converters with wide output voltage range | |
TWI514745B (en) | Ac-dc converting apparatus and operating method thereof | |
KR101889108B1 (en) | Apparatus for power converter reducing the standby power consumption | |
TWI443946B (en) | Over power protection (opp) compensation circuit and flyback power supply | |
US20110013431A1 (en) | Switching power conversion circuit and power sypply using same | |
KR100750906B1 (en) | Switched-Mode Power Supplies for Low Power Driving | |
KR20100008118A (en) | Power converter, switching control device thereof and driving method thereof | |
CN102739057B (en) | Flyback Power Converter with Primary and Secondary Dual Feedback Control | |
TWI865082B (en) | Power supply having adaptive voltage compensation loop and related system | |
CN209571962U (en) | A kind of double winding secondary side feedback Switching Power Supply | |
TWI844088B (en) | Power supply capable of stabilizing and compensating resonant voltage | |
TW202125964A (en) | Power supply apparatus and method of operating the same | |
TWI871880B (en) | Power supply with dynamic control of resonant mode | |
TW202145692A (en) | Self-driving power supply based on resonance energy recycling | |
TWI858945B (en) | Power converter and method for feedback control the same |