TW202107145A - 成像透鏡組、成像裝置及電子裝置 - Google Patents
成像透鏡組、成像裝置及電子裝置 Download PDFInfo
- Publication number
- TW202107145A TW202107145A TW108127425A TW108127425A TW202107145A TW 202107145 A TW202107145 A TW 202107145A TW 108127425 A TW108127425 A TW 108127425A TW 108127425 A TW108127425 A TW 108127425A TW 202107145 A TW202107145 A TW 202107145A
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- imaging
- lens group
- object side
- imaging lens
- Prior art date
Links
Images
Landscapes
- Lenses (AREA)
Abstract
一種成像透鏡組,由物側至像側依序包含光圈、具有負屈折力之第一透鏡、具有正屈折力之第二透鏡、具有負屈折力之第三透鏡、具有正屈折力之第四透鏡及具有正屈折力之第五透鏡。其中,第一透鏡與第二透鏡之組合焦距為正值;第一透鏡之像側面為凹面;第四透鏡之物側面為凹面、像側面為凸面;第五透鏡之物側面為凸面。此成像透鏡組之透鏡總數為五片。當此成像透鏡組滿足特定條件時,能同時滿足小型化、耐環境變化及高成像品質的要求。
Description
本發明係有關於一種成像透鏡組及成像裝置,特別是有關適用於車用攝影電子裝置或監控攝影系統之成像透鏡組、成像裝置及電子裝置。
隨著半導體製程技術的進步,使得影像感測元件的畫素可以達到更微小的尺寸,進而提升了整體影像感測元件的效能。因此,光學成像鏡頭的成像品質也必須持續地提升,以符合現今消費市場的需求。
而隨著消費性電子產品的多元化發展,例如智慧型手機、運動型攝影機、行車記錄器、倒車攝影裝置、及家用監控攝影設備等,光學成像鏡頭的設計要求也更加地多樣化。以車用攝影裝置為例,通常要求光學成像鏡頭具有較佳的環境適應性,例如從溫度較低的寒帶地區到高溫的熱帶地區,配合不同地區與季節的溫度變化,皆需維持穩定的成像品質。此外,由於消費性電子產品的規格體積亦追求輕薄短小,因此,相關零組件包含光學成像鏡頭等,在尺寸上也必須進一步地薄型化。然而,縮小光學成像鏡頭的體積,往往難以同時兼顧視角與成像品質。
是以,如何提供一種小型化、耐環境氣候變化且具有高成像品質的光學成像鏡頭,實為此技術領域者持續努力的目標。
是以,為解決上述問題,本發明提供一種成像透鏡組,由物側至像側依序包含光圈、第一透鏡、第二透鏡、第三透鏡、第四透鏡及第五透鏡。其中,第一透鏡具有負屈折力,其像側面為凹面;第二透鏡具有正屈折力;第三透鏡具有負屈折力;第四透鏡為具有正屈折力之彎月形透鏡,其物側面為凹面,像側面為凸面;第五透鏡具有正屈折力,其物側面為凸面。所述成像透鏡組之透鏡總數為五片。所述成像透鏡組之有效焦距為EFL,而第一透鏡與第二透鏡之組合焦距為f12,其滿足以下關係式:0.5>f12/EFL>1.6。
本發明又提供一種成像透鏡組,由物側至像側依序包含光圈、第一透鏡、第二透鏡、第三透鏡、第四透鏡及第五透鏡。其中,第一透鏡具有負屈折力,其像側面為凹面;第二透鏡具有正屈折力,其中,第一透鏡及第二透鏡之組合焦距為正值;第三透鏡,具有負屈折力;第四透鏡具有正屈折力,其物側面為凹面,其像側面為凸面;及第五透鏡具有正屈折力,其物側面為凸面。所述成像透鏡組之透鏡總數為五片。所述成像透鏡組之有效焦距為EFL,第二透鏡之焦距為f2,第一透鏡之物側面至成像透鏡組之成像面在光軸上的距離為TTL,所述成像透鏡組之最大像高為ImgH;所述成像透鏡組滿足以下關係式:0.4>f2/EFL>0.9;及3.8>TTL/ImgH>5.1。
根據本發明之一實施例,所述成像透鏡組係滿足以下關係式:0.2>f3/f1>0.7;其中,f1為第一透鏡之焦距,f3為第三透鏡之焦距。
根據本發明之一實施例,所述成像透鏡組之第四透鏡係滿足以下關係式:0.25>R8/R7>0.6;其中,R7為第四透鏡物側面之曲率半徑,R8為第四透鏡像側面之曲率半徑。
根據本發明之一實施例,所述成像透鏡組係滿足以下關係式:0.11>CT4/TTL>0.19;其中,CT4為第四透鏡之厚度,TTL為第一透鏡物側面至成像透鏡組之成像面在光軸上之距離。
根據本發明之一實施例,所述成像透鏡組之第五透鏡係滿足以下關係式: 0.7>(C9+C10)/(C9-C10)>2.5;其中,第五透鏡物側面之曲率為C9,像側面之曲率為C10。
根據本發明之一實施例,所述成像透鏡組係滿足以下關係式: 0.03>CT5/TTL>0.1;其中,CT5為第五透鏡之厚度。
根據本發明之一實施例,所述成像透鏡組至少包含二片折射率大於1.7之透鏡。
根據本發明之一實施例,所述成像透鏡組之第二透鏡係滿足以下關係式:Nd2>1.75;其中,Nd2為第二透鏡之折射率。
根據本發明之一實施例,所述成像透鏡組之第三透鏡的物側面及像側面皆為非球面,且第三透鏡之材質為玻璃。
根據本發明之一實施例,所述成像透鏡組之第三透鏡的物側面於近光軸處為凸面。
根據本發明之一實施例,所述成像透鏡組之第二透鏡的物側面及像側面皆為凸面。
根據本發明之一實施例,所述成像透鏡組滿足以下關係式:3.8>TTL/ImgH>5.1;其中,TTL為第一透鏡物側面至成像透鏡組之成像面在光軸上之距離,ImgH為成像透鏡組之最大像高。
根據本發明之一實施例,所述成像透鏡組滿足以下關係式:0.4>f2/EFL>0.9;其中,f2為第二透鏡之焦距。
根據本發明之一實施例,所述成像透鏡組滿足以下關係式:0.9>f4/EFL>1.6;其中,f4為第四透鏡之焦距。
根據本發明之一實施例,所述成像透鏡組滿足以下關係式:1.3>f5/EFL>6;其中,f5為第五透鏡之焦距。
根據本發明之一實施例,所述成像透鏡組滿足以下關係式:0.7>AT34/(AT12+AT23+AT45)>4.3;其中,AT12為第一透鏡像側面至第二透鏡物側面在光軸上之距離,AT23為第二透鏡像側面至第三透鏡物側面在光軸上之距離,AT34為第三透鏡像側面至第四透鏡物側面在光軸上之距離,AT45為第四透鏡像側面至第五透鏡物側面在光軸上之距離。
本發明更提供一成像裝置,此成像裝置包含前述之成像透鏡組,及一影像感測元件。
本發明更提供一電子裝置,此電子裝置包含如前述之成像裝置及一近紅外線發射元件。
為使本發明上述特徵和優點能更明顯易懂,以下列舉數個實施例,並配合附圖詳細說明如下。
在以下實施例中,成像透鏡組之各透鏡可為玻璃或塑膠材質,而不以實施例所列舉之材質為限。當透鏡材質為玻璃時,透鏡表面可透過研磨方式或模造的方式進行加工;此外,由於玻璃材質本身耐溫度變化及高硬度特性,可以減輕環境變化對成像透鏡組的影響,進而延長成像透鏡組的使用壽命。當透鏡材質為塑膠時,則有利於減輕成像透鏡組的重量,及降低生產成本。
在本發明之實施例中,每一個透鏡皆包含朝向被攝物之一物側面,及朝向成像面之一像側面。每一個透鏡的表面形狀係依據所述表面靠近光軸區域(近軸處)的形狀加以定義,例如描述一個透鏡之物側面為凸面時,係表示該透鏡在靠近光軸區域的物側面為凸面,亦即,雖然在實施例中描述該透鏡表面為凸面,而該表面在遠離光軸區域(離軸處)可能是凸面或凹面。每一個透鏡近軸處的形狀係以該面之曲率半徑為正值或負值加以判斷,例如,若一個透鏡之物側面曲率半徑為正值時,則該物側面為凸面;反之,若其曲率半徑為負值,則該物側面為凹面。就一個透鏡之像側面而言,若其曲率半徑為正值,則該像側面為凹面;反之,若其曲率半徑為負值,則該像側面為凸面。
在本發明之實施例中,成像透鏡組之總長TTL(Total Track Length)定義為此成像透鏡組之第一透鏡的物側面至成像面在光軸上之距離。此成像透鏡組之成像高度稱為最大像高ImgH(Image Height);當成像面上設置一影像感測元件時,最大像高ImgH代表影像感測元件的有效感測區域對角線長度之一半。在以下實施例中,所有透鏡的曲率半徑、透鏡厚度、透鏡之間的距離、透鏡組總長TTL、最大像高ImgH和焦距(Focal Length)的單位皆以公厘(mm)加以表示。
本發明提供一種成像透鏡組,由物側至像側依序包含光圈、第一透鏡、第二透鏡、第三透鏡、第四透鏡及第五透鏡。此成像透鏡組之透鏡總數為五片。
第一透鏡具有負屈折力,其像側面為凹面。藉此,可以提高收光範圍,擴大成像透鏡組之拍攝視角。
第二透鏡具有正屈折力,用以會聚光線。其中,第一透鏡與第二透鏡之組合焦距為正值。是以,藉由設置第一透鏡與第二透鏡,可以接收較大角度的入射光線,並有效地修正像差。
第三透鏡具有負屈折力,係作為調節光路之元件,用以引導光線至後方的第四透鏡及第五透鏡,增加成像透鏡組在成像面上的像高。藉由設置具有負屈折力之第三透鏡,可以有效地修正成像透鏡組之畸變像差。
第四透鏡具有正屈折力。第四透鏡為一彎月形透鏡,其物側面為凹面、像側面為凸面。
第五透鏡具有正屈折力,其物側面為凸面。藉由第四透鏡與第五透鏡之屈折力配置,以及第四透鏡之像側面與第五透鏡之物側面二者凸面相對之結構,可以有效地修正成像透鏡組之場曲像差及球面像差。
所述成像透鏡組之有效焦距為 EFL,第一透鏡及第二透鏡之組合焦距為f12,此成像透鏡組係滿足以下關係式:
0.5>f12/EFL>1.6 (1);
藉由滿足關係式(1)的條件,有利於縮小成像透鏡組的體積,同時保有良好的光學性能。若f12/EFL超出關係式(1)的上限,則會使球面像差及彗星像差較難以修正;若f12/EFL低於關係式(1)的下限,則使成像透鏡組的總長變長。
所述成像透鏡組之第三透鏡的焦距為f3,其與第一透鏡之焦距f1間係滿足以下關係式:
0.2>f3/f1>0.7; (2);
藉由滿足關係式(2)的條件,有利於修正成像透鏡組之畸變像差。
所述成像透鏡組自第一透鏡之物側面至成像面在光軸上之距離為TTL,其成像面上影像感測元件的有效感測區域對角線之一半為ImgH,二者間係滿足以下關係式:
3.8>TTL/ImgH>5.1 (3);
藉由滿足關係式(3)的條件,有利於維持成像透鏡組之小型化。
所述成像透鏡組之第二透鏡的焦距為f2,其與成像透鏡組之有效焦距EFL之間滿足以下關係式:
0.4>f2/EFL>0.9; (4);
藉由滿足關係式(4)的條件,可透過第二透鏡所提供之正屈折力縮小在第三透鏡表面之入射光角度,以利於修正成像透鏡組之像差。
所述成像透鏡組之第四透鏡滿足以下關係式:
0.25>R8/R7>0.6 (5);
其中,R7為第四透鏡物側面之曲率半徑,R8為第四透鏡像側面之曲率半徑。藉由滿足關係式(5)的條件,有利於修正成像透鏡組之場曲像差。
所述第四透鏡進一步滿足以下關係式:
0.11>CT4/TTL>0.19 (6);
其中,CT4為第四透鏡之厚度。
所述成像透鏡組之第五透鏡物側面之曲率為C9,像側面之曲率為C10,係滿足以下關係式:
0.7>(C9+C10)/(C9-C10)>2.5 (7);
藉由滿足關係式(7)的條件,有利於修正成像透鏡組之球面像差。
所述第五透鏡進一步滿足以下關係式:
0.03>CT5/TTL>0.1 (8);
其中,CT5為第五透鏡在光軸上之厚度。
所述成像透鏡組具有五片具有屈折力之透鏡,其中,包含至少二片折射率大於1.7之透鏡。藉此,可以降低成像透鏡組之成像像差。
所述成像透鏡組進一步滿足以下關係式:
Nd2>1.75 (9);
其中,Nd2為第二透鏡之折射率。藉由滿足關係式(9)的條件,有利於降低成像透鏡組之畸變像差。
所述成像透鏡組之第三透鏡之物側面及像側面皆為非球面,且第三透鏡之材質為玻璃。
所述成像透鏡組之第四透鏡的焦距為f4,其與成像透鏡組之有效焦距EFL間係滿足以下關係式:
0.9>f4/EFL>1.6 (10)。
所述成像透鏡組之第五透鏡的焦距為f5,其與成像透鏡組之有效焦距EFL間係滿足以下關係式:
1.3>f5/EFL>6 (11)。
所述成像透鏡組之第一透鏡像側面至第二透鏡物側面在光軸上之距離為AT12,第二透鏡像側面至第三透鏡物側面在光軸上之距離為AT23,第三透鏡像側面至第四透鏡物側面在光軸上之距離為AT34,第四透鏡像側面至第五透鏡物側面在光軸上之距離為AT45,係滿足以下關係式:
0.7>AT34/(AT12+AT23+AT45)>4.3 (12);
藉由滿足關係式(12)的條件,有利於控制成像透鏡組的總長度,並有助於修正像差。第一實施例
參見圖1A及圖1B, 圖1A為本發明第一實施例之成像透鏡組之示意圖。圖1B由左至右依序為本發明第一實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖1A所示,第一實施例之成像透鏡組10由物側至像側依序包含光圈ST、第一透鏡11、第二透鏡12、第三透鏡13、第四透鏡14及第五透鏡15。此成像透鏡組10更可包含濾光元件16、保護玻璃17及成像面18。在成像面18上更可設置一影像感測元件100,以構成一成像裝置(未另標號)。
第一透鏡11具有負屈折力,其物側面11a為平面、像側面11b為凹面,且其物側面11a及像側面11b皆為球面。第一透鏡11之材質為玻璃。
第二透鏡12 具有正屈折力,其物側面12a為凸面、像側面12b為凸面,且其物側面12a及像側面12b皆為球面。第二透鏡12之材質為玻璃。其中,第一透鏡11與第二透鏡12之組合焦距(Composite Focal Length)為正值。
第三透鏡13具有負屈折力,其物側面13a為凸面(於近軸處為凸面,離軸處為凹面),其像側面13b為凹面,且物側面13a及像側面13b皆為非球面。第三透鏡之材質為玻璃。
第四透鏡14為具有正屈折力之彎月形透鏡,其物側面14a為凹面,其像側面14b為凸面,且其物側面14a及像側面14b皆為球面。第四透鏡之材質為玻璃。
第五透鏡15具有正屈折力,其物側面15a為凸面、像側面15b為凹面,且其物側面15a及像側面15b皆為球面。第五透鏡之材質為玻璃。
濾光元件16設置於第五透鏡15與成像面18之間,用以濾除特定波長區段的光線。濾光元件16之二表面16a、16b皆為平面,其材質為玻璃。
保護玻璃17設置於影像感測元件100之上,其二表面17a、17b皆為平面,其材質為玻璃。
影像感測元件(Image Sensor)100例如是電荷耦合元件影像感測元件(Charge-Coupled Device (CCD) Image Sensor)或互補式金屬氧化半導體感測元件(CMOS Image Sensor)。
上述各個非球面之曲線方程式表示如下:
其中,X:非球面上距離光軸為Y的點與非球面於光軸上之切面間的距離;
Y:非球面上的點與光軸間之垂直距離;
R:透鏡於近光軸處的曲率半徑;
K:錐面係數;以及
Ai:第i階非球面係數。
請參見下方表一,其為本發明第一實施例之成像透鏡組10的詳細光學數據。其中,第一透鏡11之物側面11a標示為表面11a、像側面11b標示為表面11b,其他各透鏡表面則依此類推。表中距離欄位的數值代表該表面至下一表面在光軸I上的距離,例如第一透鏡11之物側面11a至像側面11b之距離為0.5mm,代表第一透鏡11在光軸上之厚度為0.5mm。第一透鏡11之像側面11b至第二透鏡12之物側面12a之距離為0.08mm。其它可依此類推,以下不再重述。
第一實施例中,成像透鏡組10之有效焦距為EFL,光圈值(F-number)為Fno,整體成像透鏡組10最大視角之一半為HFOV(Half Field of View),第一透鏡11之物側面11a至成像面18在光軸 I 上之距離為總長TTL,在成像面18上影像感測元件100有效感測區域對角線之一半為最大像高ImgH,其數值如下:EFL=5.63mm,Fno=2.10,TTL=12.22mm,HFOV=30.5度,ImgH=3.14mm 。
表一
第一實施例 | ||||||||
EFL= 5.63 mm , Fno = 2.10 , HFOV = 30.5 deg | ||||||||
表面 | 表面種類 | 曲率半徑(mm) | 距離(mm) | 折射率 | 色散係數 | 焦距(mm) | 材質 | |
被攝物 | 平面 | 無限 | 無限 | |||||
光圈 | ST | 0.000 | ||||||
第一透鏡 | 11a | 球面 | 無限 | 0.500 | 1.579 | 61.2 | -11.20 | 玻璃 |
11b | 球面 | 6.488 | 0.080 | |||||
第二透鏡 | 12a | 球面 | 8.526 | 1.232 | 1.834 | 40.6 | 4.20 | 玻璃 |
12b | 球面 | -5.550 | 0.150 | |||||
第三透鏡 | 13a | 非球面 | 20.865 | 0.922 | 1.512 | 70.1 | -5.33 | 玻璃 |
13b | 非球面 | 2.378 | 1.345 | |||||
第四透鏡 | 14a | 球面 | -11.079 | 1.905 | 1.973 | 27.7 | 6.84 | 玻璃 |
14b | 球面 | -4.511 | 0.100 | |||||
第五透鏡 | 15a | 球面 | 13.431 | 0.951 | 1.813 | 37.2 | 17.81 | 玻璃 |
15b | 球面 | 178.594 | 0.300 | |||||
濾光元件 | 16a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
16b | 平面 | 無限 | 3.811 | |||||
保護玻璃 | 17a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
17b | 平面 | 無限 | 0.125 | |||||
成像面 | 18 | 平面 | 無限 | |||||
參考波長:940 nm |
請參見下方表二,其為本發明第一實施例之第三透鏡13各表面的非球面係數。其中,K為非球面曲線方程式中的錐面係數,A4
至A10
則代表各表面第4階至第10階非球面係數。例如第三透鏡 13之物側面13a之錐面係數K為-1210。其它可依此類推,以下不再重述。此外,以下各實施例的表格係對應至各實施例之攝像透鏡組,各表格的定義係與本實施例相同,故在以下實施例中不再加以贅述。
表二
第一實施例之非球面係數 | ||
表面 | 13a | 13b |
K | -1.21E+03 | -5.24E+00 |
A4 | -3.21E-02 | -7.33E-03 |
A6 | 3.39E-03 | 8.45E-04 |
A8 | -4.67E-04 | -5.77E-05 |
A10 | 3.64E-05 | 1.77E-06 |
第一實施例中,第一透鏡11與第二透鏡12之組合焦距f12與成像透鏡組 10之有效焦距EFL間之關係式為f12/EFL=1.112。
第一實施例中,第一透鏡11之焦距f1與第三透鏡13之焦距f3間之關係式為f3/f1=0.476。
第一實施例中,成像透鏡組10之TTL與最大像高ImgH間之關係式為TTL/ImgH=3.897。
第一實施例中,第二透鏡之焦距f2與成像透鏡組10之有效焦距EFL間之關係式為f2/EFL=0.745。
第一實施例中,第四透鏡14之物側面14a的曲率半徑R7與像側面14b的曲率半徑R8間之關係式為R8/R7=0.407。
第一實施例中,第四透鏡14在光軸上之厚度CT4與成像透鏡組10總長TTL間之關係式為CT4/TTL=0.156。
第一實施例中,第五透鏡15之物側面15a的曲率C9與像側面的曲率C10間之關係式為 (C9+C10)/(C9-C10)=1.163。
第一實施例中,第五透鏡15在光軸上之厚度CT5與成像透鏡組10總長TTL間之關係式為CT5/TTL=0.078。
第一實施例中,第二透鏡12之折射率Nd2=1.834。
第一實施例中,第四透鏡14之焦距f4與成像透鏡組10之有效焦距EFL間之關係式為f4/EFL=1.214。
第一實施例中,第五透鏡15之焦距f5與成像透鏡組10之有效焦距EFL間之關係式為f5/EFL=3.162。
第一實施例中,第一透鏡11像側面11b至第二透鏡12物側面12a在光軸上之距離AT12、第二透鏡12像側面12b至第三透鏡13物側面13a在光軸上之距離AT23、第三透鏡13像側面13b至第四透鏡14物側面14a在光軸上之距離AT34,與第四透鏡14像側面14b至第五透鏡15物側面15a在光軸上之距離AT45間之關係式為AT34/(AT12+AT23+AT45)=4.076。
由上述關係式的數值可知,第一實施例之成像透鏡組10滿足關係式(1)至(12)的要求。
參見圖1B,圖中由左至右分別為成像透鏡組10之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種近紅外線900nm、940nm、980nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在+
0.05mm以內。由像散場曲像差圖(波長940nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在+
0.08mm以內;子午方向的像差在整個視場範圍內的焦距變化量在+
0.04mm以內;而畸變像差可以控制在6%以內。如圖1B所示,本實施例之成像透鏡組10已良好地修正了各項像差,符合光學系統的成像品質要求。第二實施例
參見圖2A及圖2B, 圖2A為本發明第二實施例之成像透鏡組20之示意圖。圖2B由左至右依序為本發明第二實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖2A所示,第二實施例之成像透鏡組20由物側至像側依序包含光圈ST、第一透鏡21、第二透鏡22、第三透鏡23、第四透鏡24及第五透鏡25。此成像透鏡組20更可包含濾光元件26、保護玻璃27及成像面28。在成像面28上更可設置一影像感測元件200,以構成一成像裝置(未另標號)。
第一透鏡21具有負屈折力,其物側面21a為凸面、像側面21b為凹面,且其物側面21a及像側面21b皆為球面。第一透鏡21之材質為玻璃。
第二透鏡22 具有正屈折力,其物側面22a為凸面、像側面22b為凸面,且其物側面22a及像側面22b皆為球面。第二透鏡22之材質為玻璃。
第三透鏡23具有負屈折力,其物側面23a為凸面(於近軸處為凸面、離軸處為凹面),其像側面23b為凹面,且其物側面23a及像側面23b皆為非球面。第三透鏡23之材質為玻璃。
第四透鏡24具有正屈折力,其物側面24a為凹面、像側面24b為凸面,且其物側面24a及像側面24b皆為球面。第四透鏡24之材質為玻璃。
第五透鏡25具有正屈折力,其物側面25a為凸面、像側面25b為凸面,且其物側面25a及像側面25b皆為球面。第五透鏡25之材質為玻璃。
濾光元件26設置於第五透鏡25與成像面28之間,用以濾除特定波長區段的光線。濾光元件26之二表面26a、26b皆為平面,其材質為玻璃。
保護玻璃27設置於影像感測元件200之上,其二表面27a、27b皆為平面,其材質為玻璃。
影像感測元件(Image Sensor)200例如是電荷耦合元件影像感測元件(Charge-Coupled Device (CCD) Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第二實施例之成像透鏡組20之詳細光學數據及透鏡表面之非球面係數分別列於表三及表四。在第二實施例中,非球面之曲線方程式表示如第一實施例的形式。
表三
表四
第二實施例 | ||||||||
EFL= 5.65 mm , Fno = 2.09 , HFOV = 30 deg | ||||||||
表面 | 表面種類 | 曲率半徑(mm) | 距離(mm) | 折射率 | 色散係數 | 焦距(mm) | 材質 | |
被攝物 | 平面 | 無限 | 無限 | |||||
光圈 | ST | 0.000 | ||||||
第一透鏡 | 21a | 球面 | 29.880 | 0.812 | 1.593 | 60.7 | -11.09 | 玻璃 |
21b | 球面 | 5.337 | 0.285 | |||||
第二透鏡 | 22a | 球面 | 10.914 | 1.309 | 1.813 | 37.3 | 4.76 | 玻璃 |
22b | 球面 | -5.668 | 0.144 | |||||
第三透鏡 | 23a | 非球面 | 32.925 | 1.022 | 1.512 | 70.1 | -5.42 | 玻璃 |
23b | 非球面 | 2.534 | 1.517 | |||||
第四透鏡 | 24a | 球面 | -13.975 | 1.802 | 1.961 | 20.7 | 6.54 | 玻璃 |
24b | 球面 | -4.611 | 0.836 | |||||
第五透鏡 | 25a | 球面 | 16.168 | 0.878 | 1.874 | 34.0 | 16.16 | 玻璃 |
25b | 球面 | -108.861 | 0.300 | |||||
濾光元件 | 26a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
26b | 平面 | 無限 | 3.972 | |||||
保護玻璃 | 27a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
27b | 平面 | 無限 | 0.125 | |||||
成像面 | 28 | 平面 | 無限 | |||||
參考波長:940 nm |
第二實施例之非球面係數 | ||
表面 | 23a | 23b |
K | 1.61E+02 | -4.84E+00 |
A4 | -3.26E-02 | -7.66E-03 |
A6 | 3.53E-03 | 8.42E-04 |
A8 | -5.24E-04 | -5.78E-05 |
A10 | 3.39E-05 | 1.83E-06 |
在第二實施例中,攝像透鏡組20之各關係式的數值列於表五。由表五可知,第二實施例之攝像透鏡組20滿足關係式(1)至(12)的要求。
表五
f12/EFL | 1.333 |
f3/f1 | 0.489 |
TTL/ImgH | 4.518 |
f2/EFL | 0.842 |
R8/R7 | 0.330 |
CT4/TTL | 0.131 |
(C9+C10)/(C9-C10) | 0.741 |
CT5/TTL | 0.064 |
Nd2 | 1.813 |
f4/EFL | 1.158 |
f5/EFL | 2.861 |
AT34/(AT12+AT23+AT45) | 1.200 |
參見圖2B,圖中由左至右分別為成像透鏡組20之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種近紅外線900nm、940nm、980nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在+
0.05mm以內。由像散場曲像差圖(波長940nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在+
0.08mm以內;子午方向的像差在整個視場範圍內的焦距變化量在+
0.05mm以內;而畸變像差可以控制在7%以內。如圖2B所示,本實施例之成像透鏡組20已良好地修正了各項像差,符合光學系統的成像品質要求。第三實施例
參見圖 3A及圖3B, 圖3A為本發明第三實施例之成像透鏡組30之示意圖。圖3B由左至右依序為本發明第三實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖3A所示,第三實施例之成像透鏡組30由物側至像側依序包含光圈ST、第一透鏡31、第二透鏡32、第三透鏡33、第四透鏡34及第五透鏡35。此成像透鏡組30更可包含濾光元件36、保護玻璃37及成像面38。在成像面38上更可設置一影像感測元件300,以構成一成像裝置(未另標號)。
第一透鏡31具有負屈折力,其物側面31a為凸面、像側面31b為凹面,且其物側面31a及像側面31b皆為球面。第一透鏡31之材質為玻璃。
第二透鏡32 具有正屈折力,其物側面32a為凸面、像側面32b為凸面,且其物側面32a及像側面32b皆為球面。第二透鏡32之材質為玻璃。
第三透鏡33具有負屈折力,其物側面33a為凸面(於近軸處為凸面、離軸處為凹面),其像側面33b為凹面,且其物側面33a及像側面33b皆為非球面。第三透鏡33之材質為玻璃。
第四透鏡34具有正屈折力,其物側面34a為凹面、像側面34b為凸面,且其物側面34a及像側面34b皆為球面。第四透鏡34之材質為玻璃。
第五透鏡35具有正屈折力,其物側面35a為凸面、像側面35b為 凹面,且其物側面35a及像側面35b皆為球面。第五透鏡35之材質為玻璃。
濾光元件36設置於第五透鏡35與成像面38之間,用以濾除特定波長區段的光線。濾光元件36之二表面36a、36b皆為平面,其材質為玻璃。
保護玻璃37設置於影像感測元件300之上,其二表面37a、37b皆為平面,其材質為玻璃。
影像感測元件(Image Sensor)300例如是電荷耦合元件影像感測元件(Charge-Coupled Device (CCD) Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第三實施例之成像透鏡組30之詳細光學數據及透鏡表面之非球面係數分別列於表六及表七。在第三實施例中,非球面之曲線方程式表示如第一實施例的形式。
表六
表七
第三實施例 | ||||||||
EFL= 5.81 mm , Fno = 2.10 , HFOV = 29 deg | ||||||||
表面 | 表面種類 | 曲率半徑(mm) | 距離(mm) | 折射率 | 色散係數 | 焦距(mm) | 材質 | |
被攝物 | 平面 | 無限 | 無限 | |||||
光圈 | ST | 0.000 | ||||||
第一透鏡 | 31a | 球面 | 68.386 | 0.400 | 1.602 | 58.6 | -8.92 | 玻璃 |
31b | 球面 | 4.972 | 0.254 | |||||
第二透鏡 | 32a | 球面 | 8.277 | 1.321 | 1.792 | 41.1 | 4.63 | 玻璃 |
32b | 球面 | -6.129 | 0.255 | |||||
第三透鏡 | 33a | 非球面 | 34.494 | 0.950 | 1.502 | 63.4 | -6.00 | 玻璃 |
33b | 非球面 | 2.743 | 1.329 | |||||
第四透鏡 | 34a | 球面 | -12.911 | 1.672 | 2.094 | 17.3 | 5.77 | 玻璃 |
34b | 球面 | -4.524 | 0.807 | |||||
第五透鏡 | 35a | 球面 | 15.360 | 0.864 | 1.638 | 39.5 | 30.19 | 玻璃 |
35b | 球面 | 74.046 | 0.300 | |||||
濾光元件 | 36a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
36b | 平面 | 無限 | 3.983 | |||||
保護玻璃 | 37a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
37b | 平面 | 無限 | 0.125 | |||||
成像面 | 38 | 平面 | 無限 | |||||
參考波長:940 nm |
第三實施例之非球面係數 | ||
表面 | 33a | 33b |
K | 1.83E+02 | -4.93E+00 |
A4 | -3.15E-02 | -7.84E-03 |
A6 | 3.40E-03 | 8.58E-04 |
A8 | -5.77E-04 | -5.99E-05 |
A10 | 3.90E-05 | 2.03E-06 |
在第三實施例中,攝像透鏡組30之各關係式的數值列於表八。由表八可知,第三實施例之攝像透鏡組30滿足關係式(1)至(12)的要求。
表八
f12/EFL | 1.434 |
f3/f1 | 0.672 |
TTL/ImgH | 4.318 |
f2/EFL | 0.798 |
R8/R7 | 0.350 |
CT4/TTL | 0.128 |
(C9+C10)/(C9-C10) | 1.523 |
CT5/TTL | 0.066 |
Nd2 | 1.792 |
f4/EFL | 0.993 |
f5/EFL | 5.197 |
AT34/(AT12+AT23+AT45) | 1.010 |
參見圖3B,圖中由左至右分別為成像透鏡組30之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種近紅外線900nm、940nm、980nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在+
0.05mm以內。由像散場曲像差圖(波長940nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在+
0.06mm以內;子午方向的像差在整個視場範圍內的焦距變化量在+
0.05mm以內;而畸變像差可以控制在7%以內。如圖3B所示,本實施例之成像透鏡組30已良好地修正了各項像差,符合光學系統的成像品質要求。第四實施例
參見圖4A及圖4B, 圖4A為本發明第四實施例之成像透鏡組40之示意圖。圖4B由左至右依序為本發明第四實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖4A所示,第四實施例之成像透鏡組40由物側至像側依序包含光圈ST、第一透鏡41、第二透鏡42、第三透鏡43、第四透鏡44及第五透鏡45。此成像透鏡組40更可包含濾光元件46、保護玻璃47及成像面48。在成像面48上更可設置一影像感測元件400,以構成一成像裝置(未另標號)。
第一透鏡41具有負屈折力,其物側面41a為平面、像側面41b為凹面,且其物側面41a及像側面41b皆為球面。第一透鏡41之材質為玻璃。
第二透鏡42 具有正屈折力,其物側面42a為凸面、像側面42b為凸面,且其物側面42a及像側面42b皆為球面。第二透鏡42之材質為玻璃。
第三透鏡43具有負屈折力,其物側面43a為凸面(於近軸處為凸面、離軸處為凹面),其像側面43b為凹面,且其物側面43a及像側面43b皆為非球面。第三透鏡43之材質為玻璃。
第四透鏡44具有正屈折力,其物側面44a為凹面、像側面44b為凸面,且其物側面44a及像側面44b皆為球面。第四透鏡44之材質為玻璃。
第五透鏡45具有正屈折力,其物側面45a為凸面、像側面45b為凹面,且其物側面45a及像側面45b皆為球面。第五透鏡45之材質為玻璃。
濾光元件46設置於第五透鏡45與成像面48之間,用以濾除特定波長區段的光線。濾光元件46之二表面46a、46b皆為平面,其材質為玻璃。
保護玻璃47設置於影像感測元件400之上,其二表面47a、47b皆為平面,其材質為玻璃。
影像感測元件(Image Sensor)400例如是電荷耦合元件影像感測元件(Charge-Coupled Device (CCD) Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第四實施例之成像透鏡組40之詳細光學數據及透鏡表面之非球面係數分別列於表九及表十。在第四實施例中,非球面之曲線方程式表示如第一實施例的形式。
表九
表十
第四實施例 | ||||||||
EFL= 5.50 mm , Fno = 2.10 , HFOV = 30.5 deg | ||||||||
表面 | 表面種類 | 曲率半徑(mm) | 距離(mm) | 折射率 | 色散係數 | 焦距(mm) | 材質 | |
被攝物 | 平面 | 無限 | 無限 | |||||
光圈 | ST | 0.000 | ||||||
第一透鏡 | 41a | 球面 | 無限 | 0.500 | 1.579 | 61.2 | -10.64 | 玻璃 |
41b | 球面 | 6.165 | 0.080 | |||||
第二透鏡 | 42a | 球面 | 8.919 | 1.950 | 1.834 | 36.6 | 4.26 | 玻璃 |
42b | 球面 | -5.314 | 0.150 | |||||
第三透鏡 | 43a | 非球面 | 18.172 | 0.910 | 1.512 | 70.1 | -5.32 | 玻璃 |
43b | 非球面 | 2.331 | 1.400 | |||||
第四透鏡 | 44a | 球面 | -11.357 | 2.000 | 1.972 | 28.3 | 6.79 | 玻璃 |
44b | 球面 | -4.537 | 0.100 | |||||
第五透鏡 | 45a | 球面 | 13.244 | 0.960 | 1.862 | 39.2 | 16.91 | 玻璃 |
45b | 球面 | 139.827 | 0.300 | |||||
濾光元件 | 46a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
46b | 平面 | 無限 | 3.778 | |||||
保護玻璃 | 47a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
47b | 平面 | 無限 | 0.125 | |||||
成像面 | 48 | 平面 | 無限 | |||||
參考波長:940 nm |
第四實施例之非球面係數 | ||
表面 | 43a | 43b |
K | -9.30E+02 | -5.09E+00 |
A4 | -3.19E-02 | -7.55E-03 |
A6 | 3.39E-03 | 8.46E-04 |
A8 | -5.15E-04 | -5.85E-05 |
A10 | 3.48E-05 | 1.87E-06 |
在第四實施例中,攝像透鏡組40之各關係式的數值列於表十一。由表十一可知,第四實施例之攝像透鏡組40滿足關係式(1)至(12)的要求。
表十一
f12/EFL | 1.148 |
f3/f1 | 0.500 |
TTL/ImgH | 4.263 |
f2/EFL | 0.774 |
R8/R7 | 0.399 |
CT4/TTL | 0.153 |
(C9+C10)/(C9-C10) | 1.209 |
CT5/TTL | 0.074 |
Nd2 | 1.834 |
f4/EFL | 1.234 |
f5/EFL | 3.072 |
AT34/(AT12+AT23+AT45) | 4.242 |
參見圖4B,圖中由左至右分別為成像透鏡組40之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種近紅外線900nm、940nm、980nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在+
0.05mm以內。由像散場曲像差圖(波長940nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在+
0.05mm以內;子午方向的像差在整個視場範圍內的焦距變化量在+
0.09mm以內;而畸變像差可以控制在6%以內。如圖4B所示,本實施例之成像透鏡組40已良好地修正了各項像差,符合光學系統的成像品質要求。第五實施例
參見圖5A及圖5B, 圖5A為本發明第五實施例之成像透鏡組50之示意圖。圖5B由左至右依序為本發明第五實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖5A所示,第五實施例之成像透鏡組50由物側至像側依序包含光圈ST、第一透鏡51、第二透鏡52、第三透鏡53、第四透鏡54及第五透鏡55。此成像透鏡組50更可包含濾光元件56、保護玻璃57及成像面58。在成像面58上更可設置一影像感測元件500,以構成一成像裝置(未另標號)。
第一透鏡51具有負屈折力,其物側面51a為凹面、像側面51b為凹面,且其物側面51a及像側面51b皆為球面。第一透鏡51之材質為玻璃。
第二透鏡52 具有正屈折力,其物側面52a為凸面、像側面52b為凸面,且其物側面52a及像側面52b皆為球面。第二透鏡52之材質為玻璃。
第三透鏡53具有負屈折力,其物側面53a為凸面(於近軸處為凸面、離軸處為凹面),其像側面53b為凹面,且其物側面53a及像側面53b皆為非球面。第三透鏡53之材質為玻璃。
第四透鏡54具有正屈折力,其物側面54a為凹面、像側面54b為凸面,且其物側面54a及像側面54b皆為球面。第四透鏡54之材質為玻璃。
第五透鏡55具有正屈折力,其物側面55a為凸面、像側面55b為凸面,且其物側面55a及像側面55b皆為球面。第五透鏡55之材質為玻璃。
濾光元件56設置於第五透鏡55與成像面58之間,用以濾除特定波長區段的光線。濾光元件56之二表面56a、56b皆為平面,其材質為玻璃。
保護玻璃57設置於影像感測元件500之上,其二表面57a、57b皆為平面,其材質為玻璃。
影像感測元件(Image Sensor)500例如是電荷耦合元件影像感測元件(Charge-Coupled Device (CCD) Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第五實施例之成像透鏡組50之詳細光學數據及透鏡表面之非球面係數分別列於表十二及表十三。在第五實施例中,非球面之曲線方程式表示如第一實施例的形式。
表十二
表十三
第五實施例 | ||||||||
EFL= 5.70 mm , Fno = 2.10 , HFOV = 30 deg | ||||||||
表面 | 表面種類 | 曲率半徑(mm) | 距離(mm) | 折射率 | 色散係數 | 焦距(mm) | 材質 | |
被攝物 | 平面 | 無限 | 無限 | |||||
光圈 | ST | 0.000 | ||||||
第一透鏡 | 51a | 球面 | -275.262 | 0.400 | 1.573 | 59.5 | -7.89 | 玻璃 |
51b | 球面 | 4.598 | 0.203 | |||||
第二透鏡 | 52a | 球面 | 8.527 | 1.619 | 1.787 | 35.5 | 4.53 | 玻璃 |
52b | 球面 | -5.610 | 0.291 | |||||
第三透鏡 | 53a | 非球面 | 31.016 | 0.985 | 1.579 | 61.3 | -5.29 | 玻璃 |
53b | 非球面 | 2.758 | 1.484 | |||||
第四透鏡 | 54a | 球面 | -16.720 | 2.068 | 1.971 | 29.1 | 6.39 | 玻璃 |
54b | 球面 | -4.800 | 0.246 | |||||
第五透鏡 | 55a | 球面 | 15.090 | 1.050 | 1.772 | 47.4 | 17.77 | 玻璃 |
55b | 球面 | -146.849 | 0.300 | |||||
濾光元件 | 56a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
56b | 平面 | 無限 | 4.908 | |||||
保護玻璃 | 57a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
57b | 平面 | 無限 | 0.125 | |||||
成像面 | 58 | 平面 | 無限 | |||||
參考波長:940 nm |
第五實施例之非球面係數 | ||
表面 | 53a | 53b |
K | 2.07E+02 | -5.64E+00 |
A4 | -3.16E-02 | -7.74E-03 |
A6 | 3.59E-03 | 8.59E-04 |
A8 | -5.23E-04 | -6.16E-05 |
A10 | 2.62E-05 | 2.29E-06 |
在第五實施例中,攝像透鏡組50之各關係式的數值列於表十四。由表十四可知,第五實施例之攝像透鏡組50滿足關係式(1)至(12)的要求。
表十四
f12/EFL | 1.514 |
f3/f1 | 0.671 |
TTL/ImgH | 4.783 |
f2/EFL | 0.795 |
R8/R7 | 0.287 |
CT4/TTL | 0.143 |
(C9+C10)/(C9-C10) | 0.814 |
CT5/TTL | 0.073 |
Nd2 | 1.787 |
f4/EFL | 1.121 |
f5/EFL | 3.118 |
AT34/(AT12+AT23+AT45) | 2.005 |
參見圖5B,圖中由左至右分別為成像透鏡組50之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種近紅外線900nm、940nm、980nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在+
0.05mm以內。由像散場曲像差圖(波長940nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在+
0.06mm以內;子午方向的像差在整個視場範圍內的焦距變化量在+
0.06mm以內;而畸變像差可以控制在9%以內。如圖5B所示,本實施例之成像透鏡組50已良好地修正了各項像差,符合光學系統的成像品質要求。第六實施例
參見圖6A及圖6B, 圖6A為本發明第六實施例之成像透鏡組60之示意圖。圖6B由左至右依序為本發明第六實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖6A所示,第六實施例之成像透鏡組60由物側至像側依序包含光圈ST、第一透鏡61、第二透鏡62、第三透鏡63、第四透鏡64及第五透鏡65。此成像透鏡組60更可包含濾光元件66、保護玻璃67及成像面68。在成像面68上更可設置一影像感測元件600,以構成一成像裝置(未另標號)。
第一透鏡61具有負屈折力,其物側面61a為平面、像側面61b為凹面,且其物側面61a及像側面61b皆為球面。第一透鏡61之材質為玻璃。
第二透鏡62 具有正屈折力,其物側面62a為凸面、像側面62b為凸面,且其物側面62a及像側面62b皆為球面。第二透鏡62之材質為玻璃。
第三透鏡63具有負屈折力,其物側面63a為凹面,其像側面63b為凹面,且其物側面63a及像側面63b皆為非球面。第三透鏡63之材質為玻璃。
第四透鏡64具有正屈折力,其物側面64a為凹面、像側面64b為凸面,且其物側面64a及像側面64b皆為球面。第四透鏡64之材質為玻璃。
第五透鏡65具有正屈折力,其物側面65a為凸面、像側面65b為凹面,且其物側面65a及像側面65b皆為球面。第五透鏡65之材質為玻璃。
濾光元件66設置於第五透鏡65與成像面68之間,用以濾除特定波長區段的光線。濾光元件66之二表面66a、66b皆為平面,其材質為玻璃。
保護玻璃67設置於影像感測元件600之上,其二表面67a、67b皆為平面,其材質為玻璃。
影像感測元件(Image Sensor)600例如是電荷耦合元件影像感測元件(Charge-Coupled Device (CCD) Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第六實施例之成像透鏡組60之詳細光學數據及透鏡表面之非球面係數分別列於表十五及表十六。在第六實施例中,非球面之曲線方程式表示如第一實施例的形式。
表十五
表十六
第六實施例 | ||||||||
EFL= 5.94 mm , Fno = 2.10 , HFOV = 25 deg | ||||||||
表面 | 表面種類 | 曲率半徑(mm) | 距離(mm) | 折射率 | 色散係數 | 焦距(mm) | 材質 | |
被攝物 | 平面 | 無限 | 無限 | |||||
光圈 | ST | 0.000 | ||||||
第一透鏡 | 61a | 球面 | Infinity | 0.500 | 1.581 | 60.7 | -8.50 | 玻璃 |
61b | 球面 | 4.939 | 0.186 | |||||
第二透鏡 | 62a | 球面 | 6.583 | 2.032 | 1.878 | 37.1 | 3.89 | 玻璃 |
62b | 球面 | -6.083 | 0.206 | |||||
第三透鏡 | 63a | 非球面 | -108.429 | 0.768 | 1.509 | 63.5 | -5.01 | 玻璃 |
63b | 非球面 | 2.618 | 1.333 | |||||
第四透鏡 | 64a | 球面 | -16.389 | 1.854 | 1.972 | 28.3 | 6.10 | 玻璃 |
64b | 球面 | -4.596 | 0.732 | |||||
第五透鏡 | 65a | 球面 | 14.328 | 0.960 | 1.791 | 41.0 | 29.80 | 玻璃 |
65b | 球面 | 35.430 | 0.300 | |||||
濾光元件 | 66a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
66b | 平面 | 無限 | 3.545 | |||||
保護玻璃 | 67a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
67b | 平面 | 無限 | 0.125 | |||||
成像面 | 68 | 平面 | 無限 | |||||
參考波長:940 nm |
第六實施例之非球面係數 | ||
表面 | 63a | 63b |
K | 2.48E+03 | -5.22E+00 |
A4 | -3.28E-02 | -7.06E-03 |
A6 | 3.86E-03 | 9.65E-04 |
A8 | -4.59E-04 | -5.82E-05 |
A10 | 3.54E-05 | 1.11E-06 |
在第六實施例中,攝像透鏡組60之各關係式的數值列於表十七。由表十七可知,第六實施例之攝像透鏡組60滿足關係式(1)至(12)的要求。
表十七
f12/EFL | 1.030 |
f3/f1 | 0.589 |
TTL/ImgH | 5.041 |
f2/EFL | 0.655 |
R8/R7 | 0.280 |
CT4/TTL | 0.139 |
(C9+C10)/(C9-C10) | 2.358 |
CT5/TTL | 0.072 |
Nd2 | 1.878 |
f4/EFL | 1.026 |
f5/EFL | 5.014 |
AT34/(AT12+AT23+AT45) | 1.185 |
參見圖6B,圖中由左至右分別為成像透鏡組60之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種近紅外線900nm、940nm、980nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在+
0.1mm以內。由像散場曲像差圖(波長940nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在+
0.08mm以內;子午方向的像差在整個視場範圍內的焦距變化量在+
0.1mm以內;而畸變像差可以控制在5%以內。如圖6B所示,本實施例之成像透鏡組60已良好地修正了各項像差,符合光學系統的成像品質要求。第七實施例
參見圖7A及圖7B, 圖7A為本發明第七實施例之成像透鏡組70之示意圖。圖7B由左至右依序為本發明第七實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖7A所示,第七實施例之成像透鏡組70由物側至像側依序包含光圈ST、第一透鏡71、第二透鏡72、第三透鏡73、第四透鏡74及第五透鏡75。此成像透鏡組70更可包含濾光元件76、保護玻璃77及成像面78。在成像面78上更可設置一影像感測元件700,以構成一成像裝置(未另標號)。
第一透鏡71具有負屈折力,其物側面71a為凸面、像側面71b為凹面,且其物側面71a及像側面71b皆為球面。第一透鏡71之材質為玻璃。
第二透鏡72 具有正屈折力,其物側面72a為凸面、像側面72b為凸面,且其物側面72a及像側面72b皆為球面。第二透鏡72之材質為玻璃。
第三透鏡73具有負屈折力,其物側面73a為凹面,其像側面73b為凹面,且其物側面73a及像側面73b皆為球面。第三透鏡73之材質為玻璃。
第四透鏡74具有正屈折力,其物側面74a為凹面、像側面74b為凸面,且其物側面74a及像側面74b皆為球面。第四透鏡74之材質為玻璃。
第五透鏡75具有正屈折力,其物側面75a為凸面、像側面75b為凹面,且其物側面75a及像側面75b皆為球面。第五透鏡75之材質為玻璃。
濾光元件76設置於第五透鏡75與成像面78之間,用以濾除特定波長區段的光線。濾光元件76之二表面76a、76b皆為平面,其材質為玻璃。
保護玻璃77設置於影像感測元件700之上,其二表面77a、77b皆為平面,其材質為玻璃。
影像感測元件(Image Sensor)700例如是電荷耦合元件影像感測元件(Charge-Coupled Device (CCD) Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第七實施例之成像透鏡組70之詳細光學數據列於表十八。
表十八
第七實施例 | ||||||||
EFL= 5.50 mm , Fno = 2.75 , HFOV = 24 deg | ||||||||
表面 | 表面種類 | 曲率半徑(mm) | 距離(mm) | 折射率 | 色散係數 | 焦距(mm) | 材質 | |
被攝物 | 平面 | 無限 | 無限 | |||||
光圈 | ST | 0.000 | ||||||
第一透鏡 | 71a | 球面 | 6.814 | 0.500 | 1.524 | 60.3 | -9.66 | 玻璃 |
71b | 球面 | 2.815 | 0.060 | |||||
第二透鏡 | 72a | 球面 | 2.948 | 1.850 | 1.975 | 32.3 | 2.31 | 玻璃 |
72b | 球面 | -5.998 | 0.220 | |||||
第三透鏡 | 73a | 球面 | -3.733 | 0.910 | 1.984 | 17.9 | -2.09 | 玻璃 |
73b | 球面 | 4.703 | 0.370 | |||||
第四透鏡 | 74a | 球面 | -6.997 | 2.000 | 1.816 | 46.5 | 8.71 | 玻璃 |
74b | 球面 | -3.947 | 0.100 | |||||
第五透鏡 | 75a | 球面 | 5.780 | 0.960 | 1.800 | 47.5 | 7.63 | 玻璃 |
75b | 球面 | 139.800 | 0.300 | |||||
濾光元件 | 76a | 平面 | 無限 | 0.400 | 1.517 | 64.2 | 玻璃 | |
76b | 平面 | 無限 | 2.072 | |||||
保護玻璃 | 77a | 平面 | 無限 | 0.400 | 1.517 | 64.2 | 玻璃 | |
77b | 平面 | 無限 | 0.125 | |||||
成像面 | 78 | 平面 | 無限 | |||||
參考波長:588 nm |
在第七實施例中,攝像透鏡組70之各關係式的數值列於表十九。由表十九可知,第七實施例之攝像透鏡組70滿足關係式(1)至(12)的要求。
表十九
f12/EFL | 0.539 |
f3/f1 | 0.216 |
TTL/ImgH | 4.289 |
f2/EFL | 0.419 |
R8/R7 | 0.564 |
CT4/TTL | 0.195 |
(C9+C10)/(C9-C10) | 1.086 |
CT5/TTL | 0.094 |
Nd2 | 1.975 |
f4/EFL | 1.585 |
f5/EFL | 1.388 |
AT34/(AT12+AT23+AT45) | 0.975 |
參見圖7B,圖中由左至右分別為成像透鏡組70之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種可見光486nm、588nm、656nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在+
0.04mm以內。由像散場曲像差圖(波長588nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在+
0.06mm以內;子午方向的像差在整個視場範圍內的焦距變化量在+
0.06mm以內;而畸變像差可以控制在3%以內。如圖7B所示,本實施例之成像透鏡組70已良好地修正了各項像差,符合光學系統的成像品質要求。第八實施例
參見圖8A及圖8B, 圖8A為本發明第八實施例之成像透鏡組80之示意圖。圖8B由左至右依序為本發明第八實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖8A所示,第八實施例之成像透鏡組80由物側至像側依序包含光圈ST、第一透鏡81、第二透鏡82、第三透鏡83、第四透鏡84及第五透鏡85。此成像透鏡組80更可包含濾光元件86、保護玻璃87及成像面88。在成像面88上更可設置一影像感測元件800,以構成一成像裝置(未另標號)。
第一透鏡81具有負屈折力,其物側面81a為凸面、像側面81b為凹面,且其物側面81a及像側面81b皆為球面。第一透鏡81之材質為玻璃。
第二透鏡82 具有正屈折力,其物側面82a為凸面、像側面82b為凸面,且其物側面82a及像側面82b皆為球面。第二透鏡82之材質為玻璃。
第三透鏡83具有負屈折力,其物側面83a為凸面(於近軸處為凸面、離軸處為凹面),其像側面83b為凹面,且其物側面83a及像側面83b皆為非球面。第三透鏡83之材質為玻璃。
第四透鏡84具有正屈折力,其物側面84a為凹面、像側面84b為凸面,且其物側面84a及像側面84b皆為球面。第四透鏡84之材質為玻璃。
第五透鏡85具有正屈折力,其物側面85a為凸面、像側面85b為凹面,且其物側面85a及像側面85b皆為球面。第五透鏡85之材質為玻璃。
濾光元件86設置於第五透鏡85與成像面88之間,用以濾除特定波長區段的光線。濾光元件86之二表面86a、86b皆為平面,其材質為玻璃。
保護玻璃87設置於影像感測元件800之上,其二表面87a、87b皆為平面,其材質為玻璃。
影像感測元件(Image Sensor)800例如是電荷耦合元件影像感測元件(Charge-Coupled Device (CCD) Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第八實施例之成像透鏡組80之詳細光學數據及透鏡表面之非球面係數分別列於表二十及表二十一。在第八實施例中,非球面之曲線方程式表示如第一實施例的形式。
表二十
表二十一
第八實施例 | ||||||||
EFL= 5.76 mm , Fno = 2.09 , HFOV = 27 deg | ||||||||
表面 | 表面種類 | 曲率半徑(mm) | 距離(mm) | 折射率 | 色散係數 | 焦距(mm) | 材質 | |
被攝物 | 平面 | 無限 | 無限 | |||||
光圈 | ST | 0.000 | ||||||
第一透鏡 | 81a | 球面 | 67.449 | 0.300 | 1.602 | 58.6 | -8.93 | 玻璃 |
81b | 球面 | 4.974 | 0.254 | |||||
第二透鏡 | 82a | 球面 | 8.264 | 1.333 | 1.792 | 41.1 | 4.63 | 玻璃 |
82b | 球面 | -6.118 | 0.255 | |||||
第三透鏡 | 83a | 非球面 | 34.416 | 0.950 | 1.502 | 63.4 | -6.00 | 玻璃 |
83b | 非球面 | 2.742 | 1.329 | |||||
第四透鏡 | 84a | 球面 | -12.916 | 1.672 | 2.090 | 17.3 | 5.79 | 玻璃 |
84b | 球面 | -4.523 | 0.807 | |||||
第五透鏡 | 85a | 球面 | 15.441 | 0.864 | 1.678 | 30.1 | 28.63 | 玻璃 |
85b | 球面 | 73.721 | 0.300 | |||||
濾光元件 | 86a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
86b | 平面 | 無限 | 3.927 | |||||
保護玻璃 | 87a | 平面 | 無限 | 0.400 | 1.508 | 64.2 | 玻璃 | |
87b | 平面 | 無限 | 0.125 | |||||
成像面 | 88 | 平面 | 無限 | |||||
參考波長:940 nm |
第八實施例之非球面係數 | ||
表面 | 83a | 83b |
K | 1.82E+02 | -4.95E+00 |
A4 | -3.15E-02 | -7.84E-03 |
A6 | 3.40E-03 | 8.58E-04 |
A8 | -5.77E-04 | -6.00E-05 |
A10 | 3.89E-05 | 2.04E-06 |
在第八實施例中,攝像透鏡組80之各關係式的數值列於表二十二。由表二十二可知,第八實施例之攝像透鏡組80滿足關係式(1)至(12)的要求。
表二十二
f12/EFL | 1.438 |
f3/f1 | 0.672 |
TTL/ImgH | 4.629 |
f2/EFL | 0.803 |
R8/R7 | 0.350 |
CT4/TTL | 0.129 |
(C9+C10)/(C9-C10) | 1.530 |
CT5/TTL | 0.067 |
Nd2 | 1.792 |
f4/EFL | 1.004 |
f5/EFL | 4.969 |
AT34/(AT12+AT23+AT45) | 1.010 |
參見圖8B,圖中由左至右分別為成像透鏡組80之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種近紅外線900nm、940nm、980nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在+
0.05mm以內。由像散場曲像差圖(波長940nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在+
0.06mm以內;子午方向的像差在整個視場範圍內的焦距變化量在+
0.05mm以內;而畸變像差可以控制在6%以內。如圖8B所示,本實施例之成像透鏡組80已良好地修正了各項像差,符合光學系統的成像品質要求。第九實施例
參見圖9A及圖9B, 圖9A為本發明第九實施例之成像透鏡組90之示意圖。圖9B由左至右依序為本發明第九實施例之縱向球差圖(Longitudinal Spherical Aberration)、像散場曲像差圖(Astigmatism/Field Curvature)及畸變像差圖(Distortion)。
如圖9A所示,第九實施例之成像透鏡組90由物側至像側依序包含光圈ST、第一透鏡91、第二透鏡92、第三透鏡93、第四透鏡94及第五透鏡95。此成像透鏡組90更可包含濾光元件96、保護玻璃97及成像面98。在成像面98上更可設置一影像感測元件900,以構成一成像裝置(未另標號)。
第一透鏡91具有負屈折力,其物側面91a為凹面、像側面91b為凹面,且其物側面91a及像側面91b皆為球面。第一透鏡91之材質為玻璃。
第二透鏡92 具有正屈折力,其物側面92a為凸面、像側面92b為凸面,且其物側面92a及像側面92b皆為球面。第二透鏡92之材質為玻璃。
第三透鏡93具有負屈折力,其物側面93a為凸面(於近軸處為凸面、離軸處為凹面),其像側面93b為凹面,且其物側面93a及像側面93b皆為非球面。第三透鏡93之材質為玻璃。
第四透鏡94具有正屈折力,其物側面94a為凹面、像側面94b為凸面,且其物側面94a及像側面94b皆為球面。第四透鏡94之材質為玻璃。
第五透鏡95具有正屈折力,其物側面95a為凸面、像側面95b為凸面,且其物側面95a及像側面95b皆為球面。第五透鏡95之材質為玻璃。
濾光元件96設置於第五透鏡95與成像面98之間,用以濾除特定波長區段的光線。濾光元件96之二表面96a、96b皆為平面,其材質為玻璃。
保護玻璃97設置於影像感測元件900之上,其二表面97a、97b皆為平面,其材質為玻璃。
影像感測元件(Image Sensor)900例如是電荷耦合元件影像感測元件(Charge-Coupled Device (CCD) Image Sensor)或互補式金屬氧化半導體影像感測元件(CMOS Image Sensor)。
第九實施例之成像透鏡組90之詳細光學數據及透鏡表面之非球面係數分別列於表二十三及表二十四。在第九實施例中,非球面之曲線方程式表示如第一實施例的形式。
表二十三
表二十四
第九實施例 | ||||||||
EFL= 5.78 mm , Fno = 2.09 , HFOV = 26.5 deg | ||||||||
表面 | 表面種類 | 曲率半徑(mm) | 距離(mm) | 折射率 | 色散係數 | 焦距(mm) | 材質 | |
被攝物 | 平面 | 無限 | 無限 | |||||
光圈 | ST | 0.000 | ||||||
第一透鏡 | 91a | 球面 | -1843.673 | 0.571 | 1.600 | 56.5 | -9.80 | 玻璃 |
91b | 球面 | 5.898 | 0.160 | |||||
第二透鏡 | 92a | 球面 | 11.724 | 0.826 | 1.927 | 32.3 | 4.54 | 玻璃 |
92b | 球面 | -6.345 | 0.258 | |||||
第三透鏡 | 93a | 非球面 | 29.754 | 0.684 | 1.554 | 60.8 | -6.00 | 玻璃 |
93b | 非球面 | 2.968 | 1.155 | |||||
第四透鏡 | 94a | 球面 | -10.666 | 1.638 | 1.973 | 26.2 | 5.85 | 玻璃 |
94b | 球面 | -3.994 | 1.117 | |||||
第五透鏡 | 95a | 球面 | 29.554 | 0.560 | 1.788 | 41.0 | 29.03 | 玻璃 |
95b | 球面 | -100.190 | 0.300 | |||||
濾光元件 | 96a | 平面 | 平面 | 0.400 | 1.508 | 64.2 | 玻璃 | |
96b | 平面 | 平面 | 3.893 | |||||
保護玻璃 | 97a | 平面 | 平面 | 0.400 | 1.508 | 64.2 | 玻璃 | |
97b | 平面 | 平面 | 0.125 | |||||
成像面 | 98 | 平面 | 平面 | |||||
參考波長:940 nm |
第九實施例之非球面係數 | ||
表面 | 93a | 93b |
K | 1.33E+02 | -7.93E+00 |
A4 | -4.03E-02 | -8.81E-03 |
A6 | 4.16E-03 | 7.31E-04 |
A8 | -2.57E-04 | -4.89E-05 |
A10 | -6.20E-05 | 4.51E-06 |
在第九實施例中,攝像透鏡組90之各關係式的數值列於表二十五。由表二十五可知,第九實施例之攝像透鏡組90滿足關係式(1)至(12)的要求。
表二十五
f12/EFL | 1.353 |
f3/f1 | 0.612 |
TTL/ImgH | 4.450 |
f2/EFL | 0.788 |
R8/R7 | 0.374 |
CT4/TTL | 0.136 |
(C9+C10)/(C9-C10) | 0.544 |
CT5/TTL | 0.046 |
Nd2 | 1.927 |
f4/EFL | 1.015 |
f5/EFL | 5.037 |
AT34/(AT12+AT23+AT45) | 0.752 |
參見圖9B,圖中由左至右分別為成像透鏡組90之縱向球差圖、像散場曲像差圖及畸變像差圖。由縱向球差圖可以看出,三種近紅外線900nm、940nm、980nm波長在不同高度的離軸光線皆可集中於成像點附近,其成像點偏差可以控制在+
0.05mm以內。由像散場曲像差圖(波長940nm)可以看出,弧矢方向的像差在整個視場範圍內的焦距變化量在+
0.09mm以內;子午方向的像差在整個視場範圍內的焦距變化量在+
0.08mm以內;而畸變像差可以控制在6%以內。如圖9B所示,本實施例之成像透鏡組90已良好地修正了各項像差,符合光學系統的成像品質要求。第十實施例
本發明第十實施例為一成像裝置,此成像裝置包含如前述第一至第九實施例之成像透鏡組,及一影像感測元件。影像感測元件例如是電荷耦合元件(Charge-Coupled Device,CCD)或互補式金屬氧化半導體(Complementary Metal Oxide Semiconductor,CMOS)影像感測元件等。此成像裝置例如是車用攝影之相機模組、可攜式電子產品之相機模組,或監控攝影機之相機模組等。第十一實施例
請參照圖十,圖中係繪示本發明第十一實施例之電子裝置1000的示意圖。如圖所示,電子裝置1000包含一成像裝置1010及一近紅外線發射元件1020。成像裝置1010例如是前述第十實施例之成像裝置,可以由本發明之成像透鏡組及一影像感測元件所構成。近紅外線發射元件1020例如是一近紅外線燈,用以發射波長940nm之近紅外線光束。此電子裝置1000例如是駕駛監控裝置或監視攝影機等。
雖然本發明使用前述數個實施例加以說明,然而該些實施例並非用以限制本發明之範圍。對任何熟知此項技藝者而言,在不脫離本發明之精神與範圍內,仍可以參照本發明所揭露的實施例內容進行形式上和細節上的多種變化。是故,此處需明白的是,本發明係以下列申請專利範圍所界定者為準,任何在申請專利範圍內或其等效的範圍內所作的各種變化,仍應落入本發明之申請專利範圍之內。
10、20、30、40、50、60、70、80、90:成像透鏡組
11、21、31、41、51、61、71、81、91:第一透鏡
12、22、32、42、52、62、72、82、92:第二透鏡
13、23、33、43、53、63、73、83、93:第三透鏡
14、24、34、44、54、64、74、84、94:第四透鏡
15、25、35、45、55、65、75、85、95:第五透鏡
16、26、36、46、56、66、76、86、96:濾光元件
17、27、37、47、57、67、77、87、97:保護玻璃
18、28、38、48、58、68、78、88、98:成像面
11a、21a、31a、41a、51a、61a、71a、81a、91a:第一透鏡之物側面
11b、21b、31b、41b、51b、61b、71b、81b、91b:第一透鏡之像側面
12a、22a、32a、42a、52a、62a、72a、82a、92a:第二透鏡之物側面
12b、22b、32b、42b、52b、62b、72b、82b、92b:第二透鏡之像側面
13a、23a、33a、43a、53a、63a、73a、83a、93a:第三透鏡之物側面
13b、23b、33b、43b、53b、63b、73b、83b、93b:第三透鏡之像側面
14a、24a、34a、44a、54a、64a、74a、84a、94a:第四透鏡之物側面
14b、24b、34b、44b、54b、64b、74b、84b、94b:第四透鏡之像側面
15a、25a、35a、45a、55a、65a、75a、85a、95a:第五透鏡之物側面
15b、25b、35b、45b、55b、65b、75b、85b、95b:第五透鏡之像側面
16a、16b、26a、26b、36a、36b、46a、46b、56a、56b、66a、66b、76a、76b、86a、86b、96a、96b:濾光元件之二表面
17a、17b、27a、27b、37a、37b、47a、47b、57a、57b、67a、67b、77a、77b、87a、87b、97a、97b:保護玻璃之二表面
100、200、300、400、500、600、700、800、900:影像感測元件
1000:電子裝置
1010:成像裝置
1020:近紅外線發射元件
I:光軸
ST:光圈
〔圖1A〕為本發明第一實施例之成像透鏡組示意圖;
〔圖1B〕由左至右依序為本發明第一實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;
〔圖2A〕為本發明第二實施例之成像透鏡組示意圖;
〔圖2B〕由左至右依序為本發明第二實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;
〔圖3A〕為本發明第三實施例之成像透鏡組示意圖;
〔圖3B〕由左至右依序為本發明第三實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;
〔圖4A〕為本發明第四實施例之成像透鏡組示意圖;
〔圖4B〕由左至右依序為本發明第四實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;
〔圖5A〕為本發明第五實施例之成像透鏡組示意圖;
〔圖5B〕由左至右依序為本發明第五實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;
〔圖6A〕為本發明第六實施例之成像透鏡組示意圖;
〔圖6B〕由左至右依序為本發明第六實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;
〔圖7A〕為本發明第七實施例之成像透鏡組示意圖;
〔圖7B〕由左至右依序為本發明第七實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;
〔圖8A〕為本發明第八實施例之成像透鏡組示意圖;
〔圖8B〕由左至右依序為本發明第八實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;
〔圖9A〕為本發明第九實施例之成像透鏡組示意圖;
〔圖9B〕由左至右依序為本發明第九實施例之縱向球差圖、像散場曲像差圖及畸變像差圖;及
〔圖10〕為本發明第十一實施例之電子裝置的示意圖。
10:成像透鏡組
11:第一透鏡
12:第二透鏡
13:第三透鏡
14:第四透鏡
15:第五透鏡
16:濾光元件
17:保護玻璃
18:成像面
11a:第一透鏡之物側面
11b:第一透鏡之像側面
12a:第二透鏡之物側面
12b:第二透鏡之像側面
13a:第三透鏡之物側面
13b:第三透鏡之像側面
14a:第四透鏡之物側面
14b:第四透鏡之像側面
15a:第五透鏡之物側面
15b:第五透鏡之像側面
16a、16b:濾光元件之二表面
17a、17b:保護玻璃之二表面
100:影像感測元件
I:光軸
ST:光圈
Claims (19)
- 一種成像透鏡組,由物側至像側依序包含: 一光圈; 一第一透鏡,具有負屈折力,其像側面為凹面; 一第二透鏡,具有正屈折力; 一第三透鏡,具有負屈折力; 一第四透鏡,具有正屈折力之彎月形透鏡,其物側面為凹面,像側面為凸面;及 一第五透鏡,具有正屈折力,其物側面為凸面;其中,該成像透鏡組之透鏡總數為五片;該第一透鏡與該第二透鏡之組合焦距為f12,該成像透鏡組之有效焦距為EFL,其滿足以下關係式: 0.5>f12/EFL>1.6。
- 如申請專利範圍第1項之成像透鏡組,其中,該成像透鏡組係滿足以下關係式: 0.2>f3/f1>0.7; 其中,f1為該第一透鏡之焦距,f3為該第三透鏡之焦距。
- 申請專利範圍第1項之成像透鏡組,其中,該成像透鏡組至少包含二片折射率大於1.7之透鏡。
- 申請專利範圍第1項之成像透鏡組,其中,該第二透鏡之折射率為Nd2,其滿足以下關係式: Nd2>1.75。
- 如申請專利範圍第1項之成像透鏡組,其中,該第三透鏡之物側面及像側面皆為非球面,且該第三透鏡之材質為玻璃。
- 如申請專利範圍第1項之成像透鏡組,其中,該第三透鏡之物側面於近光軸處為凸面。
- 如申請專利範圍第1項之成像透鏡組,其中,該第二透鏡之物側面及像側面皆為凸面。
- 如申請專利範圍第1項之成像透鏡組,其中,該成像透鏡組滿足以下關係式: 3.8>TTL/ImgH>5.1; 其中,TTL為該第一透鏡物側面至該成像透鏡組之成像面在光軸上之距離,ImgH為該成像透鏡組之最大像高。
- 如申請專利範圍第1項之成像透鏡組,其中,該成像透鏡組滿足以下關係式: 0.4>f2/EFL>0.9; 其中,f2為該第二透鏡之焦距。
- 如申請專利範圍第1項之成像透鏡組,其中,該成像透鏡組滿足以下關係式: 0.9>f4/EFL>1.6; 其中,f4為該第四透鏡之焦距。
- 如申請專利範圍第1項之成像透鏡組,其中,該成像透鏡組滿足以下關係式: 1.3>f5/EFL>6; 其中,f5為該第五透鏡之焦距。
- 如申請專利範圍第1項之成像透鏡組,其中,該成像透鏡組滿足以下關係式: 0.7>AT34/(AT12+AT23+AT45)>4.3; 其中,AT12為該第一透鏡像側面至該第二透鏡物側面在光軸上之距離,AT23為該第二透鏡像側面至該第三透鏡物側面在光軸上之距離,AT34為該第三透鏡像側面至該第四透鏡物側面在光軸上之距離,AT45為該第四透鏡像側面至該第五透鏡物側面在光軸上之距離。
- 一種成像透鏡組,由物側至像側依序包含: 一光圈; 一第一透鏡,具有負屈折力,其像側面為凹面; 一第二透鏡,具有正屈折力,其中,該第一透鏡及該第二透鏡之組合焦距為正值; 一第三透鏡,具有負屈折力; 一第四透鏡,具有正屈折力,其物側面為凹面,其像側面為凸面;及 一第五透鏡,具有正屈折力,其物側面為凸面;該成像透鏡組之透鏡總數為五片;該第二透鏡之焦距為f2,該成像透鏡組之有效焦距為EFL,該第一透鏡物側面至該成像透鏡組之成像面在光軸上之距離為TTL,該成像透鏡組之最大像高為ImgH;該成像透鏡組滿足以下關係式: 0.4>f2/EFL>0.9;及 3.8>TTL/ImgH>5.1。
- 如申請專利範圍第1項或第13項之成像透鏡組,其中,該第四透鏡係滿足以下關係式: 0.25>R8/R7>0.6; 其中,R7為該第四透鏡物側面之曲率半徑,R8為該第四透鏡像側面之曲率半徑。
- 如申請專利範圍第14項之成像透鏡組,其中,該成像透鏡組係滿足以下關係式: 0.11>CT4/TTL>0.19; 其中,CT4為該第四透鏡之厚度,TTL為該第一透鏡物側面至該成像透鏡組之成像面在光軸上之距離。
- 如申請專利範圍第1項或第13項之成像透鏡組,其中,該第五透鏡物側面之曲率為C9,像側面之曲率為C10,係滿足以下關係式: 0.7>(C9+C10)/(C9-C10)>2.5。
- 如申請專利範圍第16項之成像透鏡組,其中,該成像透鏡組係滿足以下關係式: 0.03>CT5/TTL>0.1; 其中,CT5為該第五透鏡之厚度,TTL為該第一透鏡物側面至該成像透鏡組之成像面在光軸上之距離。
- 一種成像裝置,其包含如申請專利範圍第1項或第13項之成像透鏡組,及一影像感測元件。
- 一種電子裝置,其包含如申請專利範圍第18項之成像裝置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108127425A TWI680306B (zh) | 2019-08-01 | 2019-08-01 | 成像透鏡組、成像裝置及電子裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108127425A TWI680306B (zh) | 2019-08-01 | 2019-08-01 | 成像透鏡組、成像裝置及電子裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI680306B TWI680306B (zh) | 2019-12-21 |
TW202107145A true TW202107145A (zh) | 2021-02-16 |
Family
ID=69582252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108127425A TWI680306B (zh) | 2019-08-01 | 2019-08-01 | 成像透鏡組、成像裝置及電子裝置 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI680306B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113376804B (zh) * | 2021-06-16 | 2024-04-05 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN114384669B (zh) * | 2021-12-31 | 2024-08-09 | 福建福光天瞳光学有限公司 | 一种红外成像镜头及其成像方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5462466B2 (ja) * | 2008-10-29 | 2014-04-02 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
-
2019
- 2019-08-01 TW TW108127425A patent/TWI680306B/zh active
Also Published As
Publication number | Publication date |
---|---|
TWI680306B (zh) | 2019-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI718066B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI690743B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TW202037960A (zh) | 光學成像透鏡組及成像裝置 | |
TWI717285B (zh) | 光學取像透鏡組、成像裝置及電子裝置 | |
TWI792749B (zh) | 光學取像透鏡組、成像裝置及電子裝置 | |
TWI680306B (zh) | 成像透鏡組、成像裝置及電子裝置 | |
TWI717301B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI693428B (zh) | 光學取像透鏡組、成像裝置及電子裝置 | |
TW202045975A (zh) | 攝像透鏡組、成像裝置及電子裝置 | |
TWI705265B (zh) | 成像透鏡組、成像裝置及電子裝置 | |
TWI717264B (zh) | 光學影像擷取透鏡組、成像裝置及電子裝置 | |
TWI809914B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI751949B (zh) | 光學成像透鏡組、成像裝置及電子裝置 | |
TWI805283B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI708963B (zh) | 光學成像透鏡組、成像裝置及電子裝置 | |
TWI804892B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI775657B (zh) | 光學影像擷取透鏡組、成像裝置及電子裝置 | |
TWI747760B (zh) | 光學取像透鏡組、成像裝置及電子裝置 | |
TWI807883B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI848754B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TW202102891A (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI792836B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI807831B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI787122B (zh) | 光學攝像透鏡組、成像裝置及電子裝置 | |
TWI758086B (zh) | 光學取像透鏡組、成像裝置及電子裝置 |