TW201909422A - Semiconductor power device and manufacturing method thereof - Google Patents
Semiconductor power device and manufacturing method thereof Download PDFInfo
- Publication number
- TW201909422A TW201909422A TW106123562A TW106123562A TW201909422A TW 201909422 A TW201909422 A TW 201909422A TW 106123562 A TW106123562 A TW 106123562A TW 106123562 A TW106123562 A TW 106123562A TW 201909422 A TW201909422 A TW 201909422A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- region
- power device
- semiconductor layer
- type semiconductor
- Prior art date
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
本發明係關於一種半導體功率元件,更具體而言,係關於一種包含氮化物半導體之半導體功率元件。The present invention relates to a semiconductor power device, and more particularly to a semiconductor power device including a nitride semiconductor.
近幾年來,由於高頻及高功率產品的需求與日俱增,以氮化鎵為材料的半導體功率元件,如氮化鋁鎵-氮化鎵(AlGaN/GaN),因具高速電子遷移率、可達到非常快速的切換速度、可於高頻、高功率及高溫工作環境下操作的元件特性,故廣泛應用在電源供應器(power supply)、DC/DC整流器(DC/DC converter)、DC/AC換流器(AC/DC inverter)以及工業運用,其領域包含電子產品、不斷電系統、汽車、馬達、風力發電等。In recent years, due to the increasing demand for high frequency and high power products, semiconductor power components such as aluminum gallium nitride-gallium nitride (AlGaN/GaN) based on gallium nitride have been achieved due to high-speed electron mobility. Very fast switching speed, component characteristics that can be operated in high frequency, high power and high temperature working environments, so it is widely used in power supply, DC/DC converter, DC/AC converter AC/DC inverter and industrial applications, including electronic products, uninterruptible power systems, automobiles, motors, wind power generation, etc.
半導體功率元件之主動區範圍,一般以元件導通下電流所流經的區域面積來定義,此主動區範圍在元件製程中被定義出來。當各別元件之主動區範圍在晶圓上被區分出後,各別元件可在晶圓上經由測試,得出單一元件的電特性;因此,必須確保各元件間的隔離性。在習知氮化鎵半導體功率元件製程中,可利用乾式蝕刻移除部份的半導體層或是在半導體層內實施離子佈植等方式製作出元件間的隔離區,使各元件之間無導通層,來完成獨立的多個元件於單一晶圓上。The active region range of a semiconductor power device is generally defined by the area of the region through which the current flows under the component conduction, and the active region range is defined in the component process. When the active area ranges of the individual components are distinguished on the wafer, the individual components can be tested on the wafer to derive the electrical characteristics of the individual components; therefore, the isolation between the components must be ensured. In the conventional GaN semiconductor power device process, a portion of the semiconductor layer may be removed by dry etching or an ion implantation may be performed in the semiconductor layer to form an isolation region between the components, so that no conduction between the components is performed. Layers to complete separate multiple components on a single wafer.
本申請案揭露一種半導體功率元件,包含:一基板;一通道層,位於基板上;一阻障層,位於通道層上;一二維電子氣,位於通道層內,且鄰近通道層與阻障間之一介面;一汲極電極、一閘極電極、以及一源極電極,分別位於阻障層上;一第一區域P型半導體層,位於閘極電極與阻障層之間;以及一隔離區形成層,位於阻障層上方之週圍,且隔離區形成層下方之通道層內不具有二維電子氣。The present application discloses a semiconductor power device comprising: a substrate; a channel layer on the substrate; a barrier layer on the channel layer; a two-dimensional electron gas located in the channel layer adjacent to the channel layer and the barrier One interface; a drain electrode, a gate electrode, and a source electrode respectively on the barrier layer; a first region P-type semiconductor layer between the gate electrode and the barrier layer; and a The isolation region forms a layer around the barrier layer, and the channel layer under the isolation region formation layer does not have two-dimensional electron gas.
本申請案更揭露一種半導體功率元件之製造方法,包含:提供一基板;形成一磊晶疊層於基板上,磊晶疊層包含:一通道層;一阻障層;以及一P型半導體層;移除部份的P型半導體層,以形成一第一區域P型半導體層以及一第二區域P型半導體層,其中第二區域P型半導體層位於阻障層上方之週圍;形成一源極以及一汲極在阻障層上;以及形成一閘極在第一區域P型半導體層上。The present application further discloses a method for fabricating a semiconductor power device, comprising: providing a substrate; forming an epitaxial layer on the substrate, the epitaxial layer stack comprising: a channel layer; a barrier layer; and a P-type semiconductor layer Removing a portion of the P-type semiconductor layer to form a first region P-type semiconductor layer and a second region P-type semiconductor layer, wherein the second region P-type semiconductor layer is located around the barrier layer; forming a source a pole and a drain are on the barrier layer; and a gate is formed on the first region P-type semiconductor layer.
本發明之實施例如說明與圖式所示,相同或類似之部分係以相同編號標示於圖式或說明書之中。The implementation of the present invention is, for example, the same or similar parts as those shown in the drawings.
第1A及1B圖繪示本申請案一實施例中一種半導體功率元件100,第1B圖為第1A圖中沿B-B’線段之截面圖。半導體功率元件100依序包含一基板10、一成核層20、一緩衝結構30、一通道層40、一阻障層50、一第一區域之第一導電型化合物半導體層60a、一第二區域之第一導電型化合物半導體層60b、一閘極電極G、一源極電極S和一汲極電極D。1A and 1B are diagrams showing a semiconductor power device 100 in an embodiment of the present application, and Fig. 1B is a cross-sectional view taken along line B-B' in Fig. 1A. The semiconductor power device 100 sequentially includes a substrate 10, a nucleation layer 20, a buffer structure 30, a channel layer 40, a barrier layer 50, a first region of the first conductivity type compound semiconductor layer 60a, and a second region. A first conductive type compound semiconductor layer 60b, a gate electrode G, a source electrode S and a drain electrode D in the region.
基板10的材料可以是半導體材料或是氧化物材料,上述的半導體材料例如可以包含矽(Si)、氮化鎵(GaN)、碳化矽(SiC)、砷化鎵(GaAs)等,而上述的氧化物材料例如可以包含藍寶石(sapphire)。另外,當以導電性來區分時,基板10本身可為導電基板或者是絕緣基板,上述的導電基板包含矽(Si)基板、氮化鎵(GaN)基板、砷化鎵(GaAs)等基板,而上述的絕緣基板則包含藍寶石(sapphire)、絕緣矽基板(Silicon on insulator, SOI)等基板。此外,基板10可選擇性的摻雜物質於其中,以改變其導電性,以形成導電基板或不導電基板,以矽(Si)基板而言,其摻雜物可為硼(B)或砷(As) 或磷(P)。於本實施例中,基板10為矽基板,厚度約為1000~1200um。成核層20位於基板10的上方,厚度約為數十奈米或數百奈米,用以減少基板10和阻障層50之間的晶格差異。成核層20例如是三五族材料,包括氮化鋁(AlN)、氮化鎵(GaN)、或氮化鋁鎵(AlGaN)等材料。緩衝結構30位於成核層20的上方,厚度約為數微米或數十微米,其材料可為三五族材料,同樣是用以減少基板10和阻障層50之間的晶格差異,降低晶格缺陷。於本實施例中,緩衝結構30可包括單層結構或是多層結構,當緩衝結構30為多層結構時,可包括超晶格疊層(super lattice multilayer)或兩層以上材料各不相同之交互疊層。單層或多層緩衝結構30之材料可包括三五族半導體材料,例如氮化鋁(AlN)、氮化鎵(GaN)、或氮化鋁鎵(AlGaN)等材料,並且可摻雜其他元素,例如碳(C)或是鐵(Fe)於其中,摻雜濃度可為依成長方向漸變或固定。此外,當緩衝結構30為超晶格疊層時,可由兩層具不同材料交互堆疊之多層磊晶層所構成,其材料可為三五族半導體材料,例如是由氮化鋁層(AlN)與氮化鋁鎵層(AlGaN)交疊所構成或是由氮化鎵層(GaN)與氮化銦鎵層(InGaN)交疊所構成。The material of the substrate 10 may be a semiconductor material or an oxide material, and the semiconductor material may include, for example, germanium (Si), gallium nitride (GaN), tantalum carbide (SiC), gallium arsenide (GaAs), or the like. The oxide material may, for example, comprise sapphire. In addition, when distinguished by conductivity, the substrate 10 itself may be a conductive substrate or an insulating substrate, and the conductive substrate includes a substrate of a bismuth (Si) substrate, a gallium nitride (GaN) substrate, or a gallium arsenide (GaAs). The above insulating substrate includes a substrate such as sapphire or silicon on insulator (SOI). In addition, the substrate 10 may selectively dope a substance therein to change its conductivity to form a conductive substrate or a non-conductive substrate. For a germanium (Si) substrate, the dopant may be boron (B) or arsenic. (As) or phosphorus (P). In the embodiment, the substrate 10 is a germanium substrate and has a thickness of about 1000 to 1200 um. The nucleation layer 20 is located above the substrate 10 and has a thickness of about several tens of nanometers or hundreds of nanometers to reduce the lattice difference between the substrate 10 and the barrier layer 50. The nucleation layer 20 is, for example, a tri-five material including materials such as aluminum nitride (AlN), gallium nitride (GaN), or aluminum gallium nitride (AlGaN). The buffer structure 30 is located above the nucleation layer 20 and has a thickness of about several micrometers or tens of micrometers. The material of the buffer structure 30 can be a tri-five material, which is also used to reduce the lattice difference between the substrate 10 and the barrier layer 50, and reduce the crystal. Defects. In this embodiment, the buffer structure 30 may include a single layer structure or a multi-layer structure. When the buffer structure 30 is a multi-layer structure, the super-lattice laminate or the interaction of two or more layers may be included. Lamination. The material of the single-layer or multi-layer buffer structure 30 may include a group of three or five semiconductor materials, such as aluminum nitride (AlN), gallium nitride (GaN), or aluminum gallium nitride (AlGaN), and may be doped with other elements. For example, carbon (C) or iron (Fe) may be used, and the doping concentration may be gradual or fixed depending on the growth direction. In addition, when the buffer structure 30 is a superlattice laminate, it may be composed of two layers of epitaxial layers stacked with different materials, and the material may be a group of three or five semiconductor materials, for example, an aluminum nitride layer (AlN). It is formed by overlapping with an aluminum gallium nitride layer (AlGaN) or by overlapping a gallium nitride layer (GaN) and an indium gallium nitride layer (InGaN).
通道層40形成於緩衝層30上,並具有一第一能隙。阻障層50形成在通道層40上,並具有一第二能隙,第二能隙較第一能隙高,阻障層50之晶格常數比通道層40小。於本實施例中,通道層40及阻障層50之材料包含氮化鋁銦鎵(Alx Iny Ga(1-x-y )N),其中0≦x<1,0≦x+y≦1。在本實施例中,阻障層50之鋁含量可介於0.1至0.3之間。通道層40以及阻障層50自身形成自發性極化(spontaneous polarization),而阻障層50與通道層40彼此之間又因通道層40與下方磊晶疊層中各層之間不同晶格常數相互作用的總和對上層阻障層50形成壓電極化(piezoelectric polarization),上述兩種極化現象影響改變兩者能帶的結構,使得能帶彎曲,部分的能帶位於費米能階之下,電子可在位於費米能階下的能帶中二維移動,在通道層40及阻障層50間的異質接面產生二維電子氣16 (two-dimensional electron gas (2DEG),以虛線表示於圖中)。於本實施例中,通道層40及阻障層50的材料例如可為無摻雜其他元素的本質性半導體,但亦可以視元件特性摻雜其他元素。例如可摻雜元素矽(Si)於其中,以摻雜的元素濃度調整二維電子氣層的濃度。The channel layer 40 is formed on the buffer layer 30 and has a first energy gap. The barrier layer 50 is formed on the channel layer 40 and has a second energy gap. The second energy gap is higher than the first energy gap, and the barrier layer 50 has a smaller lattice constant than the channel layer 40. In this embodiment, the material of the channel layer 40 and the barrier layer 50 comprises aluminum indium gallium nitride (Al x In y Ga( 1-xy )N), where 0 ≦ x<1, 0 ≦ x + y ≦ 1 . In the present embodiment, the aluminum content of the barrier layer 50 may be between 0.1 and 0.3. The channel layer 40 and the barrier layer 50 themselves form spontaneous polarization, and the barrier layer 50 and the channel layer 40 are different from each other due to different lattice constants between the channel layer 40 and the layers in the lower epitaxial layer. The sum of the interactions forms a piezoelectric polarization to the upper barrier layer 50. The above two polarization phenomena affect the structure of the band of the two bands, causing the band to bend, and some of the bands are below the Fermi level. The electron can move two-dimensionally in the energy band under the Fermi level, and a two-dimensional electron gas (2DEG) is generated on the heterojunction between the channel layer 40 and the barrier layer 50, indicated by a broken line. In the picture). In this embodiment, the material of the channel layer 40 and the barrier layer 50 may be, for example, an intrinsic semiconductor without other elements, but other elements may be doped depending on the characteristics of the device. For example, the element cerium (Si) may be doped therein, and the concentration of the two-dimensional electron gas layer is adjusted by the doping element concentration.
在阻障層50上方,具有第一導電型化合物半導體層60,包含一第一區域之第一導電型化合物半導體層60a位於阻障層50之中央區域內,以及一第二區域之第一導電型化合物半導體層60b位於阻障層50之週圍區域。第一區域與第二區域之第一導電型化合物半導體層60a與60b為互相分離,且第一區域之第一導電型化合物半導體層60a由上視觀之為封閉環型圖案。Above the barrier layer 50, there is a first conductive type compound semiconductor layer 60, a first conductive type compound semiconductor layer 60a including a first region is located in a central region of the barrier layer 50, and a first conductive region of a second region The compound semiconductor layer 60b is located in a peripheral region of the barrier layer 50. The first conductive type compound semiconductor layers 60a and 60b of the first region and the second region are separated from each other, and the first conductive type compound semiconductor layer 60a of the first region is viewed from the upper side as a closed ring pattern.
第一導電型化合物半導體層60材料包含p型半導體材料,於本實施例中,第一導電型化合物半導體層60例如為p型的三五族半導體,如p型氮化鎵層(p-GaN)。其作用為降低第一導電型化合物半導體層60下方的二維電子氣16濃度或使其下方的二維電子氣16消散,使得半導體功率元件在閘極未施加偏壓的狀態下處於未導通的狀態(normally off)。其中,第一區域與第二區域之第一導電型化合物半導體層60a與60b可具有相同的材料特性,例如相同的厚度、材料組成、第一導電型摻雜物或第一導電型摻雜濃度。The material of the first conductive type compound semiconductor layer 60 includes a p-type semiconductor material. In the present embodiment, the first conductive type compound semiconductor layer 60 is, for example, a p-type tri-five semiconductor such as a p-type gallium nitride layer (p-GaN). ). The function is to reduce the concentration of the two-dimensional electron gas 16 under the first conductive type compound semiconductor layer 60 or to dissipate the two-dimensional electron gas 16 under the first conductive type compound semiconductor layer 60, so that the semiconductor power device is not turned on in a state where the gate is not biased. Normally off. The first conductive type compound semiconductor layers 60a and 60b of the first region and the second region may have the same material characteristics, such as the same thickness, material composition, first conductive type dopant or first conductive type doping concentration. .
在第一區域之第一導電型化合物半導體層60a上方形成閘極電極G,閘極電極G與第一區域之第一導電型化合物半導體層60a具有對應的封閉環型圖案。源極電極S和汲極電極D位於阻障層50上方,源極電極S位於封閉環型圖案的閘極電極G中,汲極電極D位於封閉環型圖案的閘極電極G外的一側,於一實施例中,汲極電極D與閘極電極G的距離大於閘極電極G與源極電極S的距離。位於阻障層50週圍的第二區域之第一導電型化合物半導體層60b同時包圍閘極電極G、源極電極S和汲極電極D。汲極電極D與源極電極S的材料可以選自鈦(Ti)、鋁(Al),閘極電極G的材料可以選自鎳(Ni)、金(Au)、鎢(W)、氮化鈦(TiN)、氮化鎢(TiW)、鉑(Pt)、鉬(Mo)、或其組合。A gate electrode G is formed over the first conductive type compound semiconductor layer 60a of the first region, and the gate electrode G has a corresponding closed ring pattern with the first conductive type compound semiconductor layer 60a of the first region. The source electrode S and the drain electrode D are located above the barrier layer 50, the source electrode S is located in the gate electrode G of the closed loop pattern, and the drain electrode D is located on the side outside the gate electrode G of the closed loop pattern. In one embodiment, the distance between the drain electrode D and the gate electrode G is greater than the distance between the gate electrode G and the source electrode S. The first conductive type compound semiconductor layer 60b located in the second region around the barrier layer 50 simultaneously surrounds the gate electrode G, the source electrode S, and the drain electrode D. The material of the drain electrode D and the source electrode S may be selected from titanium (Ti) and aluminum (Al), and the material of the gate electrode G may be selected from nickel (Ni), gold (Au), tungsten (W), and nitride. Titanium (TiN), tungsten nitride (TiW), platinum (Pt), molybdenum (Mo), or a combination thereof.
第2至5B圖繪示本申請案所揭示之半導體功率元件100的製造方法。2 to 5B illustrate a method of fabricating the semiconductor power device 100 disclosed in the present application.
參照第2圖,半導體功率元件製造方法包含一晶圓(wafer)形成步驟。首先將成核層20、緩衝結構30、通道層40、阻障層50以及第一導電型化合物半導體層60依序成長於基板10上。基板10例如為矽基板,厚度約為1000~1200um,上述的成核層20、緩衝結構30、通道層40、阻障層50以磊晶方式成長於基板10的(111)面上,並沿[0001]方向成長。磊晶方式例如為金屬有機物化學氣相磊晶法(metal-organic chemical vapor deposition, MOCVD)或分子束磊晶法(molecular-beam epitaxy, MBE)。在其他實施例中,可進一步移除部分的基板10,以減少漏電路徑,達到減少漏電的效果。例如,將基板10相對於成核層20等半導體層的表面磨薄;或是將基板10移除後,將原本其上方成核層20等半導體層轉置接合於一絕緣散熱基板;於另一實施例中,在移除基板10後,更可進一步移除磊晶缺陷密度較高的半導體層,例如移除成核層20以及緩衝結構30後,再進行轉置接合至絕緣散熱基板的製程。Referring to Fig. 2, a semiconductor power device manufacturing method includes a wafer forming step. First, the nucleation layer 20, the buffer structure 30, the channel layer 40, the barrier layer 50, and the first conductivity type compound semiconductor layer 60 are sequentially grown on the substrate 10. The substrate 10 is, for example, a germanium substrate having a thickness of about 1000 to 1200 μm. The nucleation layer 20, the buffer structure 30, the channel layer 40, and the barrier layer 50 are epitaxially grown on the (111) surface of the substrate 10, and along the edge. [0001] The direction grows. The epitaxial method is, for example, metal-organic chemical vapor deposition (MOCVD) or molecular-beam epitaxy (MBE). In other embodiments, a portion of the substrate 10 may be further removed to reduce leakage paths for the purpose of reducing leakage. For example, the substrate 10 is thinned relative to the surface of the semiconductor layer such as the nucleation layer 20; or after the substrate 10 is removed, the semiconductor layer such as the upper nucleation layer 20 is transposed and bonded to an insulating heat dissipation substrate; In an embodiment, after the substrate 10 is removed, the semiconductor layer having a higher epitaxial defect density can be further removed, for example, after the nucleation layer 20 and the buffer structure 30 are removed, and then transposed and bonded to the insulating heat dissipation substrate. Process.
接著,如第3圖所示,同樣以磊晶成長的方式成長第一導電型化合物半導體層60於阻障層50上方,以得到一晶圓1。Next, as shown in FIG. 3, the first conductive type compound semiconductor layer 60 is grown on the barrier layer 50 in the same manner as the epitaxial growth to obtain a wafer 1.
接續晶圓形成步驟,半導體功率元件製造方法包含一第一導電型化合物半導體層60圖案化步驟。如第4A及4B圖所示,第4B圖為第4A圖中沿B-B’線段之截面圖,透過蝕刻等製程定義第一導電型化合物半導體層60的圖形,移除部份的第一導電型化合物半導體層60,以形成第一區域之第一導電型化合物半導體層60a以及第二區域之第一導電型化合物半導體層60b,更利用第二區域之第一導電型化合物半導體層60b在晶圓1中定義出複數個主動區域(active region)A1、A2,在複數個主動區域A1、A2之間定義出元件隔離區ISO,將電流控制在各別主動區域之內,使後續形成的各半導體功率元件可獨立操作而不受彼此干擾。In the subsequent wafer forming step, the semiconductor power device manufacturing method includes a patterning step of the first conductive type compound semiconductor layer 60. As shown in FIGS. 4A and 4B, FIG. 4B is a cross-sectional view taken along line BB' of FIG. 4A, and the pattern of the first conductive type compound semiconductor layer 60 is defined by etching or the like, and the first portion of the removed portion is removed. The conductive compound semiconductor layer 60 forms the first conductive type compound semiconductor layer 60a of the first region and the first conductive type compound semiconductor layer 60b of the second region, and further utilizes the first conductive type compound semiconductor layer 60b of the second region. In the wafer 1, a plurality of active regions A1 and A2 are defined, and an element isolation region ISO is defined between the plurality of active regions A1 and A2, and the current is controlled within the respective active regions to form a subsequent Each of the semiconductor power components can operate independently without interference with each other.
在第4A圖的上視圖中,第二區域之第一導電型化合物半導體層60b包圍環繞各主動區域A1、A2且位於各主動區域A1、A2之間,同時位於各主動區域A1、A2中阻障層50上方之週圍,利用第二區域之第一導電型化合物半導體層60b與阻障層50之間的晶格差異產生反極化效應,將能帶拉升至費米能階之上,使得該區域下方的二維電子氣16消散或是濃度降低,達到元件隔離的效果。第一區域之第一導電型化合物半導體層60a位於各主動區域A1、A2內,於上視圖中呈一封閉式環型,且與第二區域之第一導電型化合物半導體層60b彼此相互分離。In the upper view of FIG. 4A, the first conductive type compound semiconductor layer 60b of the second region is surrounded by the active regions A1 and A2 and located between the active regions A1 and A2, and is located in each of the active regions A1 and A2. Around the barrier layer 50, a lattice difference between the first conductive type compound semiconductor layer 60b of the second region and the barrier layer 50 is utilized to generate a reverse polarization effect, and the energy band is pulled up above the Fermi level. The two-dimensional electron gas 16 below the region is dissipated or the concentration is lowered to achieve the component isolation effect. The first conductive type compound semiconductor layer 60a of the first region is located in each of the active regions A1, A2, and has a closed ring shape in the upper view, and the first conductive type compound semiconductor layers 60b of the second region are separated from each other.
接續第一導電型化合物半導體層60圖案化步驟,半導體功率元件製造方法包含一電極形成步驟。第5B圖為第5A圖中沿B-B’線段之截面圖。如第5B圖及5B所示,在阻障層50上方分別形成汲極電極D與源極電極S,以及在第一區域之第一導電型化合物半導體層60a上方形成閘極電極G,以作為與外部電子元件或外部電源電性連接的端點。其中閘極電極G與第一區域之第一導電型化合物半導體層60a於上視中具有對應的封閉環型圖案,且源極電極S位於此封閉環型圖案的閘極電極G中,汲極電極D可位於封閉環型圖案外的阻障層之一側。在本實施例中,可以藉由選擇適當的汲極電極D與源極電極S的材料,以及/或者藉由製程(例如熱退火)使汲極電極D與源極電極S和阻障層50之間形成歐姆接觸。類似地,也可藉由選擇適當的閘極電極G的材料,使得閘極電極G與第一區域之第一導電型化合物半導體層60a之間形成蕭特基接觸或歐姆接觸。Following the patterning step of the first conductive type compound semiconductor layer 60, the semiconductor power device manufacturing method includes an electrode forming step. Fig. 5B is a cross-sectional view taken along line B-B' in Fig. 5A. As shown in FIGS. 5B and 5B, a drain electrode D and a source electrode S are respectively formed over the barrier layer 50, and a gate electrode G is formed over the first conductive type compound semiconductor layer 60a of the first region as An end point that is electrically connected to an external electronic component or an external power source. The gate electrode G and the first conductive type compound semiconductor layer 60a of the first region have a corresponding closed ring pattern in the upper view, and the source electrode S is located in the gate electrode G of the closed ring pattern, and the drain electrode The electrode D may be located on one side of the barrier layer outside the closed ring pattern. In this embodiment, the drain electrode D and the source electrode S and the barrier layer 50 may be selected by selecting appropriate materials of the drain electrode D and the source electrode S, and/or by a process (eg, thermal annealing). An ohmic contact is formed between them. Similarly, a Schottky contact or an ohmic contact can be formed between the gate electrode G and the first conductive type compound semiconductor layer 60a of the first region by selecting a material of the appropriate gate electrode G.
依本申請案製造方法所形成之半導體功率元件100,如第5B圖所示,在未對閘極電極G施加偏壓時,第一區域之第一導電型化合物半導體層60a下方之通道層40內不具有二維電子氣16,因此半導體功率元件100未被導通而呈現關閉狀態。此外,第一區域之第一導電型化合物半導體層60a與閘極電極G封閉環型圖案下,對應的通道層40內不具有二維電子氣16,藉此形成ㄧ阻斷區域18封閉環繞源極電極S,使汲極電極D到源極電極S之間不會有電流通過而讓元件能夠確實處於關閉狀態。According to the semiconductor power device 100 formed by the manufacturing method of the present application, as shown in FIG. 5B, when the gate electrode G is not biased, the channel layer 40 under the first conductive type compound semiconductor layer 60a of the first region is formed. There is no two-dimensional electron gas 16 therein, and thus the semiconductor power device 100 is not turned on to assume a closed state. In addition, under the closed loop pattern of the first conductive type compound semiconductor layer 60a and the gate electrode G of the first region, the corresponding channel layer 40 does not have the two-dimensional electron gas 16 therein, thereby forming the germanium blocking region 18 to close the surrounding source. The electrode S has a current between the drain electrode D and the source electrode S so that the element can be surely turned off.
而當對閘極電極G施加偏壓時,如第6圖所示,各半導體功率元件100內的第一區域之第一導電型化合物半導體層60a下方之通道層內形成二維電子氣16,因此各半導體功率元件100被導通。且由於第一區域之第一導電型化合物半導體層60a與第二區域之第一導電型化合物半導體層60b間為互相分離,意即,第一區域之第一導電型化合物半導體層60a與元件隔離區ISO具有一間距,因此,單一半導體功率元件100內的二維電子氣16不會受週圍的元件隔離區ISO所影響,電流可自汲極電極D流向源極電極S;且在元件隔離區ISO(即第二區域之第一導電型化合物半導體層60b)之通道層40內不會形成二維電子氣16,因此可使各元件之間為相互電性隔離。When a bias voltage is applied to the gate electrode G, as shown in FIG. 6, a two-dimensional electron gas 16 is formed in the channel layer under the first conductive type compound semiconductor layer 60a of the first region in each semiconductor power device 100, Therefore, each semiconductor power device 100 is turned on. And since the first conductive type compound semiconductor layer 60a of the first region and the first conductive type compound semiconductor layer 60b of the second region are separated from each other, that is, the first conductive type compound semiconductor layer 60a of the first region is isolated from the element. The area ISO has a pitch. Therefore, the two-dimensional electron gas 16 in the single semiconductor power device 100 is not affected by the surrounding element isolation region ISO, and the current can flow from the drain electrode D to the source electrode S; and in the element isolation region The two-dimensional electron gas 16 is not formed in the channel layer 40 of the ISO (i.e., the first conductive type compound semiconductor layer 60b of the second region), so that the elements can be electrically isolated from each other.
在本申請案之一實施例中,閘極電極G下方的第一區域之第一導電型化合物半導體層60a跟第二區域之第一導電型化合物半導體層60b之形成方式為在形成第一導電型化合物半導體層60後,再同時對第一導電型化合物半導體層60進行蝕刻所形成,因此第一區域之第一導電型化合物半導體層60a跟第二區域之第一導電型化合物半導體層60b可具有相同特性,例如相同的厚度、材料組成、第一導電型摻雜物或第一導電型摻雜濃度。此外,相較於習知技術利用乾式蝕刻或在半導體層內實施離子佈植等方式來形成元件隔離區,本申請案所揭示之半導體功率元件及其製造方法在製程上較為簡化,同時也具有較低製作成本。In an embodiment of the present application, the first conductive type compound semiconductor layer 60a of the first region under the gate electrode G and the first conductive type compound semiconductor layer 60b of the second region are formed in a manner of forming the first conductive After the compound semiconductor layer 60 is formed, the first conductive type compound semiconductor layer 60 is simultaneously etched, so that the first conductive type compound semiconductor layer 60a of the first region and the first conductive type compound semiconductor layer 60b of the second region can be The same characteristics, such as the same thickness, material composition, first conductivity type dopant or first conductivity type doping concentration. In addition, the semiconductor power device and the manufacturing method thereof disclosed in the present application are simplified in the process, and also have a process in which the device isolation region is formed by dry etching or ion implantation in a semiconductor layer. Lower production costs.
在本申請案之另一實施例中,在完成前述半導體功率元件製造方法後,可沿著第二區域之第一導電型化合物半導體層60b進一步將各半導體功率元件100分割開,例如使用輪刀切割或雷射切割,以形成如第1A圖與第1B圖所示的獨立半導體功率元件100。在分開後的半導體功率元件100中,第二區域之第一導電型化合物半導體層60b下方沒有二維電子氣,具有減少漏電流路徑的功用。在一實施例中,切割前的第二區域之第一導電型化合物半導體層60b的寬度大於第一區域之第一導電型化合物半導體層60a;第二區域之第一導電型化合物半導體層60b的寬度要足夠寬,使得在切割製程中部分第二區域之第一導電型化合物半導體層60b被移除後,於半導體功率元件上剩下足夠的第二區域之第一導電型化合物半導體層60b行使上述的功用。In another embodiment of the present application, after the semiconductor power device manufacturing method is completed, each of the semiconductor power devices 100 may be further divided along the first conductive type compound semiconductor layer 60b of the second region, for example, using a wheel cutter. Cutting or laser cutting to form individual semiconductor power devices 100 as shown in Figures 1A and 1B. In the divided semiconductor power device 100, there is no two-dimensional electron gas under the first conductive type compound semiconductor layer 60b in the second region, and the function of reducing the leakage current path is obtained. In one embodiment, the width of the first conductive type compound semiconductor layer 60b of the second region before the dicing is larger than the first conductive type compound semiconductor layer 60a of the first region; and the first conductive type compound semiconductor layer 60b of the second region The width is wide enough to allow the first conductive type compound semiconductor layer 60b of the second region to remain on the semiconductor power device after the first conductive type compound semiconductor layer 60b of the second region is removed in the dicing process The above functions.
於本申請案之另一實施例中,在形成汲極電極D、源極電極S及閘極電極G之前,可如第7圖先形成一介電層32在阻障層50的上表面之上。部分的介電層32位於閘極電極G的下方,並位於閘極電極G與阻障層50之間,能進一步降低表面漏電流,更可提高閘極電極G操作偏壓範圍,提升元件可靠度。介電層32可以是氧化物或者氮化物,例如是氧化矽或氧化鋁等氧化物,也可以是氮化矽或氮化鎵等氮化物。In another embodiment of the present application, before forming the drain electrode D, the source electrode S, and the gate electrode G, a dielectric layer 32 may be formed on the upper surface of the barrier layer 50 as shown in FIG. on. A portion of the dielectric layer 32 is located below the gate electrode G and between the gate electrode G and the barrier layer 50, which can further reduce surface leakage current, and can improve the operating bias range of the gate electrode G, and improve the reliability of the component. degree. The dielectric layer 32 may be an oxide or a nitride, for example, an oxide such as ruthenium oxide or aluminum oxide, or a nitride such as tantalum nitride or gallium nitride.
於本申請案之另一實施例中,在形成汲極電極D、源極電極S及閘極電極G之後,還可以進一步形成一保護層(未繪示)覆蓋介電層32、汲極電極D、源極電極S及閘極電極G之表面,以防止通道層40的電性受到影響。而在本實施例中,保護層可以是氧化物或者氮化物,如氧化矽或氧化鋁等氧化物,也可以是氮化矽或氮化鎵等氮化物。接著再蝕刻保護層,以暴露出部分汲極電極D、源極電極S及閘極電極G,即汲極電極D、源極電極S及閘極電極G可以有一部份表面未被保護層所覆蓋,以增加與外界電性連接的方便性。In another embodiment of the present application, after forming the drain electrode D, the source electrode S, and the gate electrode G, a protective layer (not shown) may be further formed to cover the dielectric layer 32 and the drain electrode. D, the surface of the source electrode S and the gate electrode G to prevent the electrical properties of the channel layer 40 from being affected. In this embodiment, the protective layer may be an oxide or a nitride, such as an oxide such as ruthenium oxide or aluminum oxide, or a nitride such as tantalum nitride or gallium nitride. Then, the protective layer is further etched to expose a part of the drain electrode D, the source electrode S and the gate electrode G, that is, the drain electrode D, the source electrode S and the gate electrode G may have a part of the surface unprotected layer Coverage to increase the convenience of electrical connection with the outside world.
第8A至8D圖繪示本申請案另一實施例中一種半導體功率元件200,第8B圖為第8A圖中沿B-B’線段之截面圖,第8C圖為第8A圖中沿C-C’線段之截面圖,第8D圖為第8A圖中沿D-D’線段之截面圖。8A to 8D are diagrams showing a semiconductor power device 200 in another embodiment of the present application, wherein FIG. 8B is a cross-sectional view taken along line BB′ in FIG. 8A, and FIG. 8C is a cross-sectional view along C-B in FIG. 8A. A cross-sectional view of the C' line segment, and Fig. 8D is a cross-sectional view taken along line D-D' in Fig. 8A.
半導體功率元件200與半導體功率元件100相似,依序包含基板10、成核層20、緩衝結構30、通道層40以及阻障層50、第一區域之第一導電型化合物半導體層60a、第二區域之第一導電型化合物半導體層60b、閘極電極G、源極電極S和汲極電極D。在阻障層50上方,具有第一區域之第一導電型化合物半導體層60a位於阻障層50之中央區域內,以及第二區域之第一導電型化合物半導體層60b位於阻障層50之週圍區域,且第一區域與第二區域之第一導電型化合物半導體層60a與60b為互相分離。第一區域與第二區域之第一導電型化合物半導體層60a與60b之材料、形成方式以及功用與前述半導體功率元件100相同,在此不再贅述。與半導體功率元件100不同的是,半導體功率元件200之第一區域之第一導電型化合物半導體層60a由上視觀之為一條狀圖案。此外,如第8C與8D圖所示,為兼顧半導體功率元件200利用第一區域之第一導電型化合物半導體層60a及第二區域之第一導電型化合物半導體層60b達到關閉及隔離的功能,本實施例利用一凹部28及一位於凹部28上的絕緣層42使第一區域和第二區域之第一導電型化合物半導體層60a和60b達到電性絕緣,為前述半導體功率元件100中封閉環型的第一導電型化合物半導體層60a之一變化例。第一區域之第一導電型化合物半導體層60a之兩端與第二區域之第一導電型化合物半導體層60b之間,部分的阻障層50和通道層40被蝕刻移除,形成凹部28,凹部28的底面即為通道層40被蝕刻而暴露出的一表面401。絕緣層42形成於凹部28的底面、側壁及第一導電型化合物半導體層60的部分上表面。The semiconductor power device 200 is similar to the semiconductor power device 100, and includes the substrate 10, the nucleation layer 20, the buffer structure 30, the channel layer 40, and the barrier layer 50, the first conductive type compound semiconductor layer 60a of the first region, and the second. The first conductive type compound semiconductor layer 60b, the gate electrode G, the source electrode S, and the drain electrode D in the region. Above the barrier layer 50, the first conductive type compound semiconductor layer 60a having the first region is located in the central region of the barrier layer 50, and the first conductive type compound semiconductor layer 60b of the second region is located around the barrier layer 50. The region, and the first conductive type compound semiconductor layers 60a and 60b of the first region and the second region are separated from each other. The materials, formation modes, and functions of the first conductive type compound semiconductor layers 60a and 60b of the first region and the second region are the same as those of the semiconductor power device 100 described above, and will not be described herein. Unlike the semiconductor power device 100, the first conductive type compound semiconductor layer 60a of the first region of the semiconductor power device 200 is viewed from a top view as a stripe pattern. Further, as shown in FIGS. 8C and 8D, in order to achieve the function of closing and isolating the first conductive type compound semiconductor layer 60a of the first region and the first conductive type compound semiconductor layer 60b of the second region by the semiconductor power device 200, In this embodiment, the first conductive type compound semiconductor layers 60a and 60b of the first region and the second region are electrically insulated by a recess 28 and an insulating layer 42 on the recess 28, which is a closed loop in the semiconductor power device 100. A variation of one of the first conductivity type compound semiconductor layers 60a. Between the two ends of the first conductive type compound semiconductor layer 60a of the first region and the first conductive type compound semiconductor layer 60b of the second region, a portion of the barrier layer 50 and the channel layer 40 are etched away to form the recess 28, The bottom surface of the recess 28 is a surface 401 that the channel layer 40 is etched to expose. The insulating layer 42 is formed on the bottom surface of the concave portion 28, the side wall, and a part of the upper surface of the first conductive type compound semiconductor layer 60.
閘極電極G設置於第一區域之第一導電型化合物半導體層60a上方,且與第一區域之第一導電型化合物半導體層60a具有相似的條狀圖案。閘極電極G沿著第一區域之第一導電型化合物半導體層60a設置,並由第一區域之第一導電型化合物半導體層60a之兩端延伸至凹部28內的絕緣層42上。源極電極S和汲極電極D分別設置在阻障層50上、閘極電極G的兩側。The gate electrode G is disposed above the first conductive type compound semiconductor layer 60a of the first region, and has a strip pattern similar to that of the first conductive type compound semiconductor layer 60a of the first region. The gate electrode G is disposed along the first conductive type compound semiconductor layer 60a of the first region, and extends from both ends of the first conductive type compound semiconductor layer 60a of the first region to the insulating layer 42 in the recess 28. The source electrode S and the drain electrode D are respectively disposed on the barrier layer 50 and on both sides of the gate electrode G.
第9A圖至第10圖為多個半導體功率元件200的操作狀態示意圖。如同前述半導體功率元件的製造過程中,各半導體功率元件200,未對閘極電極G施加偏壓的元件狀態如第9A圖至9C所示,第9B圖為第9A圖中沿B-B’線段之截面圖,第9C圖為第9A圖中沿C-C’線段之截面圖。第一區域之第一導電型化合物半導體層60a下方之通道層40內不具有二維電子氣16,因此半導體功率元件200未被導通而呈現關閉狀態。此外,如第9C圖所示,在閘極電極G與第一區域之第一導電型化合物半導體層60a兩端的凹部28內,由於阻障層50及部分的通道層40已被蝕刻移除,故凹部28內的二維電子氣16無法形成而被阻斷,使汲極電極D到源極電極S之間不會有電流通過而讓各元件能夠確實處於關閉狀態。9A through 10 are schematic views showing operational states of a plurality of semiconductor power devices 200. As in the manufacturing process of the semiconductor power device described above, the state of each semiconductor power device 200, the component that does not bias the gate electrode G is as shown in FIGS. 9A to 9C, and the image of FIG. 9B is the B-B' in FIG. 9A. A cross-sectional view of the line segment, and Fig. 9C is a cross-sectional view taken along line C-C' in Fig. 9A. The channel layer 40 under the first conductive type compound semiconductor layer 60a of the first region does not have the two-dimensional electron gas 16 therein, and thus the semiconductor power device 200 is not turned on to assume a closed state. Further, as shown in FIG. 9C, in the recess 28 at both ends of the gate electrode G and the first conductive type compound semiconductor layer 60a of the first region, since the barrier layer 50 and a portion of the channel layer 40 have been removed by etching, Therefore, the two-dimensional electron gas 16 in the concave portion 28 cannot be formed and blocked, so that no current flows between the drain electrode D and the source electrode S, and the respective elements can be surely turned off.
而當對閘極電極G施加偏壓時,如第10圖所示,各半導體功率元件200內的第一區域之第一導電型化合物半導體層60a下方之通道層內形成二維電子氣16,因此各半導體功率元件200被導通。而在第二區域之第一導電型化合物半導體層60b下方之通道層40內,即元件隔離區ISO內不會形成二維電子氣16,因此可使各元件之間為電性隔離。且由於第一區域之第一導電型化合物半導體層60a與第二區域之第一導電型化合物半導體層60b間為互相分離,半導體功率元件200內的二維電子氣16與週圍的元件隔離區ISO不會受彼此影響,在單一晶圓上可正確地測得各別半導體功率元件的電特性。When a bias voltage is applied to the gate electrode G, as shown in FIG. 10, a two-dimensional electron gas 16 is formed in the channel layer under the first conductive type compound semiconductor layer 60a of the first region in each semiconductor power device 200, Therefore, each of the semiconductor power elements 200 is turned on. On the other hand, in the channel layer 40 under the first conductive type compound semiconductor layer 60b in the second region, that is, the two-dimensional electron gas 16 is not formed in the element isolation region ISO, the elements can be electrically isolated. And because the first conductive type compound semiconductor layer 60a of the first region and the first conductive type compound semiconductor layer 60b of the second region are separated from each other, the two-dimensional electron gas 16 in the semiconductor power device 200 and the surrounding element isolation region ISO Without being affected by each other, the electrical characteristics of the individual semiconductor power components can be accurately measured on a single wafer.
惟上述實施例僅為例示性說明本申請案之原理及其功效,而非用於限制本申請案。任何本申請案所屬技術領域中具有通常知識者均可在不違背本申請案之技術原理及精神的情況下,對上述實施例進行修改及變化。因此本申請案之權利保護範圍如後述之申請專利範圍所列。However, the above embodiments are merely illustrative of the principles and effects of the present application, and are not intended to limit the present application. Modifications and variations of the above-described embodiments can be made without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present application is as set forth in the scope of the patent application described below.
1‧‧‧晶圓1‧‧‧ wafer
10‧‧‧基板10‧‧‧Substrate
18‧‧‧阻斷區域18‧‧‧Blocking area
20‧‧‧成核層20‧‧‧Nuclear layer
28‧‧‧凹部28‧‧‧ recess
30‧‧‧緩衝結構30‧‧‧buffer structure
32‧‧‧介電層32‧‧‧Dielectric layer
40‧‧‧通道層40‧‧‧Channel layer
42‧‧‧絕緣層42‧‧‧Insulation
50‧‧‧阻障層50‧‧‧Barrier layer
60‧‧‧第一導電型化合物半導體層60‧‧‧First Conductive Compound Semiconductor Layer
60a‧‧‧第一區域之第一導電型化合物半導體層60a‧‧‧First Conductive Compound Semiconductor Layer in the First Region
60b‧‧‧第二區域之第一導電型化合物半導體層60b‧‧‧First Conductive Compound Semiconductor Layer in the Second Region
100、200‧‧‧半導體功率元件100,200‧‧‧Semiconductor power components
A1、A2‧‧‧主動區域A1, A2‧‧‧ active area
S‧‧‧源極電極S‧‧‧ source electrode
D‧‧‧汲極電極D‧‧‧汲electrode
G‧‧‧閘極電極G‧‧‧gate electrode
ISO‧‧‧元件隔離區ISO‧‧‧ Component isolation area
﹝第1A至1B圖﹞為本發明之一實施例中所揭示之半導體功率元件。 ﹝第2至5B圖﹞為本發明之一實施例中所揭示之半導體功率元件的製造方法。 ﹝第6圖﹞為本發明之一實施例中所揭示之半導體功率元件的操作狀態。 ﹝第7圖﹞為本發明之另一實施例中所揭示之半導體功率元件。 ﹝第8A至8D圖﹞為本發明之另一實施例中所揭示之半導體功率元件。 ﹝第9A至9C圖﹞為本發明之另一實施例中所揭示之半導體功率元件的操作狀態。 ﹝第10圖﹞為本發明之另一實施例中所揭示之半導體功率元件的操作狀態。[Figs. 1A to 1B] are semiconductor power elements disclosed in an embodiment of the present invention. [Fig. 2 to 5B] is a method of manufacturing a semiconductor power device disclosed in an embodiment of the present invention. [Fig. 6] is an operational state of a semiconductor power device disclosed in an embodiment of the present invention. [Fig. 7] A semiconductor power device disclosed in another embodiment of the present invention. [8A to 8D] is a semiconductor power device disclosed in another embodiment of the present invention. [9A to 9C] is an operational state of the semiconductor power device disclosed in another embodiment of the present invention. [Fig. 10] is an operational state of a semiconductor power device disclosed in another embodiment of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106123562A TWI662707B (en) | 2017-07-14 | 2017-07-14 | Semiconductor power device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106123562A TWI662707B (en) | 2017-07-14 | 2017-07-14 | Semiconductor power device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201909422A true TW201909422A (en) | 2019-03-01 |
TWI662707B TWI662707B (en) | 2019-06-11 |
Family
ID=66590329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106123562A TWI662707B (en) | 2017-07-14 | 2017-07-14 | Semiconductor power device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI662707B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI834328B (en) * | 2022-10-05 | 2024-03-01 | 創世電股份有限公司 | Semiconductor device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7915643B2 (en) * | 2007-09-17 | 2011-03-29 | Transphorm Inc. | Enhancement mode gallium nitride power devices |
US9006791B2 (en) * | 2013-03-15 | 2015-04-14 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | III-nitride P-channel field effect transistor with hole carriers in the channel |
-
2017
- 2017-07-14 TW TW106123562A patent/TWI662707B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI834328B (en) * | 2022-10-05 | 2024-03-01 | 創世電股份有限公司 | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TWI662707B (en) | 2019-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI798402B (en) | Schottky barrier diode | |
US9219137B2 (en) | Vertical gallium nitride transistors and methods of fabricating the same | |
US9153682B2 (en) | Semiconductor device | |
CN108807527A (en) | Group IIIA nitride HEMT with tunnel diode in gate stack | |
CN108461591B (en) | Nitride semiconductor epitaxial stack structure and its power device | |
TWI641133B (en) | Semiconductor cell | |
JP2014527303A (en) | Field effect power transistor | |
CN103311292A (en) | Gallium nitride superjunction device | |
US20070117355A1 (en) | Semiconductor device and method for fabricating the same | |
JP2008210936A (en) | Nitride semiconductor device and method for manufacturing nitride semiconductor device | |
JP6225584B2 (en) | Semiconductor device evaluation method, semiconductor device and manufacturing method thereof | |
JP2021533556A (en) | External electric field termination structure to improve the reliability of high voltage and high power active devices | |
TWI569439B (en) | Semiconductor cell | |
TW201838178A (en) | Semiconductor device | |
JP2013065612A (en) | Nitride semiconductor device and manufacturing method of the same | |
JP6213520B2 (en) | Heterojunction semiconductor device and manufacturing method thereof | |
JPWO2018181200A1 (en) | Semiconductor device | |
TWI662707B (en) | Semiconductor power device and manufacturing method thereof | |
KR102099437B1 (en) | Power semiconductor device | |
TW201709511A (en) | Semiconductor unit | |
TWI732813B (en) | Semiconductor device, electronic part, electronic apparatus, and method for fabricating semiconductor device | |
TWI768985B (en) | Semiconductor structure and high electron mobility transistor | |
JP2015126034A (en) | Field effect semiconductor element | |
TW201911421A (en) | III-nitride high electron mobility field effect transistor device | |
KR102029807B1 (en) | hetero junction field effect transistor |