[go: up one dir, main page]

TWI768985B - Semiconductor structure and high electron mobility transistor - Google Patents

Semiconductor structure and high electron mobility transistor Download PDF

Info

Publication number
TWI768985B
TWI768985B TW110123356A TW110123356A TWI768985B TW I768985 B TWI768985 B TW I768985B TW 110123356 A TW110123356 A TW 110123356A TW 110123356 A TW110123356 A TW 110123356A TW I768985 B TWI768985 B TW I768985B
Authority
TW
Taiwan
Prior art keywords
layer
superlattice
electrical isolation
group iii
compositionally graded
Prior art date
Application number
TW110123356A
Other languages
Chinese (zh)
Other versions
TW202301675A (en
Inventor
陳志諺
釩達 盧
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW110123356A priority Critical patent/TWI768985B/en
Application granted granted Critical
Publication of TWI768985B publication Critical patent/TWI768985B/en
Publication of TW202301675A publication Critical patent/TW202301675A/en

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A semiconductor structure includes a superlattice structure, an electrical isolation layer, a channel layer, and a composition gradient layer. The superlattice structure is disposed on a substrate, the electrical isolation layer is disposed on the superlattice structure, the channel layer is disposed on the electrical isolation layer, and the composition gradient layer is disposed between the electrical isolation layer and the superlattice structure, wherein the composition gradient layer and the superlattice structure include a same group III element, and the atomic percentage of the same group III element in the composition gradient layer is gradually decreased in the direction from the superlattice structure to the electrical isolation layer. In addition, a high electron mobility transistor including the semiconductor structure is also provided.

Description

半導體結構及高電子遷移率電晶體 Semiconductor structures and high electron mobility transistors

本揭露涉及半導體裝置的領域,特別是涉及一種半導體結構及含有此半導體結構的高電子遷移率電晶體。 The present disclosure relates to the field of semiconductor devices, and more particularly, to a semiconductor structure and a high electron mobility transistor including the semiconductor structure.

在半導體技術中,III-V族的化合物半導體可用於形成各種積體電路裝置,例如:高功率場效電晶體、高頻電晶體或高電子遷移率電晶體(high electron mobility transistor,HEMT)。HEMT是屬於具有二維電子氣(two dimensional electron gas,2-DEG)的一種電晶體,其2-DEG會鄰近於能隙不同的兩種材料之間的接合面(亦即,異質接合面)。由於HEMT並非使用摻雜區域作為電晶體的載子通道,而是使用2-DEG作為電晶體的載子通道,因此相較於習知的金氧半場效電晶體(MOSFET),HEMT具有多種吸引人的特性,例如:高電子遷移率及以高頻率傳輸信號之能力。 In semiconductor technology, group III-V compound semiconductors can be used to form various integrated circuit devices, such as high power field effect transistors, high frequency transistors or high electron mobility transistors (HEMTs). HEMT is a transistor with two dimensional electron gas (2-DEG), and its 2-DEG will be adjacent to the junction between two materials with different energy gaps (ie, heterojunction) . Since HEMT does not use the doped region as the carrier channel of the transistor, but uses 2-DEG as the carrier channel of the transistor, compared with the conventional MOSFET, HEMT has various attractive Human characteristics such as high electron mobility and the ability to transmit signals at high frequencies.

對於習知的HEMT,可以包含依序堆疊的通道層、阻障層、化合物半導體蓋層、及閘極電極。利用閘極電極向化合物半導體蓋層施加偏壓,可以調控位於化合物半導體蓋層下方的通道層中的二維電子氣濃度,進而調控HEMT的開關。 For a conventional HEMT, a channel layer, a barrier layer, a compound semiconductor cap layer, and a gate electrode may be sequentially stacked. Using the gate electrode to bias the compound semiconductor cap layer, the two-dimensional electron gas concentration in the channel layer under the compound semiconductor cap layer can be regulated, and then the switching of the HEMT can be regulated.

然上述HEMT疊層因晶格不匹配(lattice mismatch)所產生的應力,進而 形成極化效應,導致HEMT發生漏電流現象,因而降低了HEMT的電性表現。 However, the stress generated by the above-mentioned HEMT stack due to lattice mismatch, and then The polarization effect is formed, which leads to the leakage current phenomenon of the HEMT, thereby reducing the electrical performance of the HEMT.

有鑑於此,有必要提出一種改良的高電子遷移率電晶體,以提升HEMT的電性表現。 In view of this, it is necessary to propose an improved high electron mobility transistor to improve the electrical performance of HEMT.

根據本揭露的一實施例,提供一種半導體結構,包括超晶格結構、電隔離層、通道層及組成漸變層。超晶格結構設置於基底上,電隔離層設置於超晶格結構上,通道層設置於電隔離層上,以及組成漸變層設置於電隔離層與超晶格結構之間,其中組成漸變層與超晶格結構包含一相同的第三族元素,且在組成漸變層中的此相同的第三族元素的原子百分比從超晶格結構到電隔離層的方向上逐漸減少。 According to an embodiment of the present disclosure, a semiconductor structure is provided, including a superlattice structure, an electrical isolation layer, a channel layer, and a compositionally graded layer. The superlattice structure is arranged on the substrate, the electrical isolation layer is arranged on the superlattice structure, the channel layer is arranged on the electrical isolation layer, and the composition gradient layer is arranged between the electrical isolation layer and the superlattice structure, wherein the composition gradient layer The superlattice structure contains an identical Group III element, and the atomic percentage of this same Group III element in the compositionally graded layer gradually decreases from the superlattice structure to the electrical isolation layer.

根據本揭露的一實施例,提供一種高電子遷移率電晶體,包括上述的半導體結構、阻障層、摻雜半導體蓋層、閘極電極、源極電極和汲極電極。其中,阻障層設置於上述通道層上,摻雜半導體蓋層設置於阻障層上,閘極電極設置於摻雜半導體蓋層上,以及源極電極和汲極電極分別設置於閘極電極的兩側。 According to an embodiment of the present disclosure, a high electron mobility transistor is provided, including the above-mentioned semiconductor structure, a barrier layer, a doped semiconductor cap layer, a gate electrode, a source electrode and a drain electrode. The barrier layer is arranged on the channel layer, the doped semiconductor cap layer is arranged on the barrier layer, the gate electrode is arranged on the doped semiconductor cap layer, and the source electrode and the drain electrode are respectively arranged on the gate electrode on both sides.

為讓本揭露之特徵明顯易懂,下文特舉出實施例,並配合所附圖式,作詳細說明如下。 In order to make the features of the present disclosure clear and easy to understand, the following specific embodiments are given and described in detail as follows in conjunction with the accompanying drawings.

100:高電子遷移率電晶體 100: High electron mobility transistor

102:基底 102: Substrate

104:成核層 104: Nucleation layer

106:超晶格結構 106: Superlattice Structure

106-1:第一超晶格堆疊 106-1: The first superlattice stack

106-2:第二超晶格堆疊 106-2: Second Superlattice Stack

106A:第一超晶格層 106A: first superlattice layer

106B:第二超晶格層 106B: Second superlattice layer

108:拉伸應力層 108: Tensile stress layer

110:組成漸變層 110: Composition of gradient layers

112:電隔離層 112: Electrical isolation layer

114:通道層 114: channel layer

116:阻障層 116: Barrier layer

118:摻雜半導體蓋層 118: Doping semiconductor capping layer

120:隔離區 120: Quarantine

122:源極電極 122: source electrode

124:汲極電極 124: drain electrode

125:接觸洞 125: Contact hole

126:閘極電極 126: gate electrode

128:鈍化層 128: Passivation layer

128-1:第一鈍化層 128-1: First passivation layer

128-2:第一鈍化層 128-2: First passivation layer

130:二維電子氣區域 130: Two-dimensional electron gas region

140:二維電洞氣 140: 2D Electric Hole Gas

150:二維電子氣 150: Two-dimensional electron gas

C1:數值 C1: Numerical value

C2:數值 C2: Numerical value

C3:數值 C3: Numerical value

201:直線 201: Straight

202:弧線 202: Arc

203:階梯狀曲線 203: Stepped Curve

204:波浪狀曲線 204: Wavy Curves

為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起 見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。 In order to make the following easier to understand, reference is made to both the drawings and their detailed description while reading the present disclosure. The specific embodiments of the present disclosure will be explained in detail through the specific embodiments herein and the corresponding drawings will be referred to, and the working principles of the specific embodiments of the present disclosure will be described. Furthermore, for clarity See, the features in the drawings may not be drawn to actual scale, so the dimensions of some features in some drawings may be intentionally enlarged or reduced.

第1圖是根據本揭露一實施例所繪示的高電子遷移率電晶體(HEMT)的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a high electron mobility transistor (HEMT) according to an embodiment of the present disclosure.

第2圖是根據本揭露另一實施例所繪示的HEMT之第一超晶格堆疊、拉伸應力層、組成漸變層和電隔離層的放大剖面示意圖。 FIG. 2 is an enlarged cross-sectional schematic diagram of a first superlattice stack, a tensile stress layer, a compositionally graded layer and an electrical isolation layer of a HEMT according to another embodiment of the present disclosure.

第3、4、5、6圖是根據本揭露不同實施例所繪示的HEMT之組成漸變層、拉伸應力層和最上層的第二超晶格層中的相同的第三族元素例如鋁(Al)的原子百分比隨著不同深度位置變化的濃度曲線。 Figures 3, 4, 5, and 6 illustrate the same group III elements such as aluminum in the compositionally graded layer, the tensile stress layer, and the uppermost second superlattice layer of the HEMT according to different embodiments of the present disclosure (Al) concentration curve of atomic percent as a function of different depth positions.

第7、8、9、10圖是根據本揭露一實施例所繪示的製作HEMT之中間階段的剖面示意圖。 FIGS. 7, 8, 9, and 10 are schematic cross-sectional views of intermediate stages of manufacturing a HEMT according to an embodiment of the present disclosure.

本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與佈置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。 The present disclosure provides several different embodiments for implementing different features of the present disclosure. For simplicity of illustration, the present disclosure also describes examples of specific components and arrangements. These examples are provided for illustrative purposes only and are not intended to be limiting in any way. For example, the following description of "the first feature is formed on or over the second feature" may mean "the first feature is in direct contact with the second feature" or "the first feature is in direct contact with the second feature". There are other features between features", so that the first feature is not in direct contact with the second feature. Additionally, various embodiments in the present disclosure may use repeated reference symbols and/or textual notation. These repeated reference signs and notations are used for brevity and clarity of description, rather than to indicate associations between different embodiments and/or configurations.

另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「下」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或 特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在使用中以及操作時的可能擺向。隨著半導體裝置的擺向的不同(旋轉90度或其它方位),用以描述其擺向的空間相關敘述亦應透過類似的方式予以解釋。 In addition, for the space-related narrative words mentioned in this disclosure, for example: "below", "low", "below", "above", "above", "below", "top" ”, “bottom” and similar words, for the convenience of description, their usage is to describe the relationship between one element or feature in the drawings and another (or more) elements or relative relationship of features. In addition to the pendulum shown in the drawings, these space-related terms are also used to describe the possible pendulum orientations of the semiconductor device during use and operation. With the different swing directions of the semiconductor device (rotated by 90 degrees or other orientations), the space-related descriptions used to describe the swing directions should also be interpreted in a similar manner.

雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。 Although the present disclosure uses the terms first, second, third, etc. to describe various elements, components, regions, layers, and/or sections, it should be understood that such elements, components, regions, layers, and/or blocks should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, and/or block from another element, component, region, layer, and/or block, and do not by themselves imply or represent that element The presence of any preceding ordinal numbers does not imply the order in which an element is arranged relative to another element, or the order of the method of manufacture. Thus, a first element, component, region, layer or block discussed below could be termed a second element, component, region, layer or block without departing from the scope of the specific embodiments of the present disclosure Of.

本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。 The terms "about" or "substantially" referred to in this disclosure generally mean within 20%, preferably within 10%, and more preferably within 5% of a given value or range, or Within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, the meaning of "about" or "substantially" can still be implied without the specific description of "about" or "substantially".

在本揭露中,「三五族半導體(group III-V semiconductor)」係指包含至少一第三族(group III)元素與至少一第五族(group V)元素的化合物半導體。其中,第三族元素可以是硼(B)、鋁(Al)、鎵(Ga)或銦(In),而第五族元素可以是氮(N)、磷(P)、砷(As)或銻(Sb)。進一步而言,「三五族半導體」可以是二元化合物半導體、三元化合物半導體或四元化合物半導體,包括:氮化鎵(GaN)、磷化銦(InP)、砷化鋁(AlAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、氮化銦鋁鎵(InAlGaN)、氮化銦鎵(InGaN)、氮化鋁(AlN)、磷化鎵銦(GaInP)、砷化鋁鎵(AlGaAs)、砷化鋁銦 (InAlAs)、砷化鎵銦(InGaAs)、氮化鋁(AlN)、磷化鎵銦(GaInP)、砷化鋁鎵(AlGaAs)、砷化鋁銦(InAlAs)、砷化鎵銦(InGaAs)、其類似物或上述化合物的組合,但不限於此。此外,端視需求,三五族半導體內亦可包括摻質,而為具有特定導電型的三五族半導體,例如n型或p型三五族半導體。在下文中,三五族半導體又可稱為III-V族半導體。 In the present disclosure, "group III-V semiconductor" refers to a compound semiconductor comprising at least one group III (group III) element and at least one group V (group V) element. Wherein, the third group element can be boron (B), aluminum (Al), gallium (Ga) or indium (In), and the fifth group element can be nitrogen (N), phosphorus (P), arsenic (As) or Antimony (Sb). Further, "group III and V semiconductors" can be binary compound semiconductors, ternary compound semiconductors or quaternary compound semiconductors, including: gallium nitride (GaN), indium phosphide (InP), aluminum arsenide (AlAs), Gallium Arsenide (GaAs), Aluminum Gallium Nitride (AlGaN), Indium Aluminum Gallium Nitride (InAlGaN), Indium Gallium Nitride (InGaN), Aluminum Nitride (AlN), Gallium Indium Phosphide (GaInP), Aluminum Arsenide Gallium (AlGaAs), Aluminum Indium Arsenide (InAlAs), Indium Gallium Arsenide (InGaAs), Aluminum Nitride (AlN), Gallium Indium Phosphide (GaInP), Aluminum Gallium Arsenide (AlGaAs), Aluminum Indium Arsenide (InAlAs), Indium Gallium Arsenide (InGaAs) , its analogs, or a combination of the above compounds, but not limited thereto. In addition, depending on the requirements, dopants may also be included in the III-V semiconductor, which is a III-V semiconductor with a specific conductivity type, such as an n-type or p-type III-V semiconductor. Hereinafter, group III-V semiconductors may also be referred to as group III-V semiconductors.

雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理亦可應用至其他的實施例。此外,為了不致使本發明之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中具有通常知識者的知識範圍。 Although the invention of the present disclosure is described below with reference to specific embodiments, the inventive principles of the present disclosure can also be applied to other embodiments. Furthermore, in order not to obscure the spirit of the present invention, certain details will be omitted, which are within the knowledge of those having ordinary skill in the art.

本揭露係關於一種半導體結構,以及包括此半導體結構的高電子遷移率電晶體(HEMT),其可以作為電壓轉換器應用之功率切換電晶體。相較於矽功率電晶體,由於III-V族半導體HEMT(III-V HEMT)具有較寬的能帶間隙,因此具有低導通電阻(on-state resistance)與低切換損失之特徵。 The present disclosure relates to a semiconductor structure, and a high electron mobility transistor (HEMT) including the semiconductor structure, which can be used as a power switching transistor for voltage converter applications. Compared with silicon power transistors, group III-V semiconductor HEMTs (III-V HEMTs) have the characteristics of low on-state resistance and low switching loss due to their wider energy bandgap.

第1圖是根據本揭露一實施例所繪示的高電子遷移率電晶體(HEMT)的剖面示意圖。如第1圖所示,根據本揭露一實施例,高電子遷移率電晶體100,例如增強型HEMT,係設置在基底102上,且基底102上依序可設置有成核層(nucleation layer)104、超晶格(superlattice,SL)結構106、組成漸變層(composition gradient layer)110、電隔離層(electrical isolation layer)112、通道層114、阻障層116、摻雜半導體蓋層118、及鈍化層(passivation layer)128。根據一實施例,超晶格結構106可包含兩個或兩個以上不同的超晶格堆疊,例如第一超晶格堆疊106-1設置於第二超晶格堆疊106-2上。每個超晶格堆疊可包括多個成對的超晶格層,且超晶格層之間可呈現周期性交替堆疊。每個超晶格層可以是由兩種或多種材料構成,每個超晶格層的厚度大約數奈米(nm)至數十奈米。第一超晶格堆疊106-1和第二超晶格堆疊106-2可以是材料成份不同、材料組成比例不同、或材料周期性 交替堆疊方式不同。根據另一實施例,超晶格結構106可以是單一超晶格堆疊,例如是第一超晶格堆疊106-1。 FIG. 1 is a schematic cross-sectional view of a high electron mobility transistor (HEMT) according to an embodiment of the present disclosure. As shown in FIG. 1, according to an embodiment of the present disclosure, a high electron mobility transistor 100, such as an enhancement type HEMT, is disposed on a substrate 102, and a nucleation layer may be disposed on the substrate 102 in sequence 104. A superlattice (SL) structure 106, a composition gradient layer 110, an electrical isolation layer 112, a channel layer 114, a barrier layer 116, a doped semiconductor cap layer 118, and Passivation layer 128. According to an embodiment, the superlattice structure 106 may include two or more different superlattice stacks, eg, the first superlattice stack 106-1 is disposed on the second superlattice stack 106-2. Each superlattice stack may include a plurality of pairs of superlattice layers, and the superlattice layers may be periodically alternately stacked. Each superlattice layer may be composed of two or more materials, and the thickness of each superlattice layer is about several nanometers (nm) to tens of nanometers. The first superlattice stack 106-1 and the second superlattice stack 106-2 may have different material compositions, different material composition ratios, or material periodicity Alternate stacking is different. According to another embodiment, the superlattice structure 106 may be a single superlattice stack, such as the first superlattice stack 106-1.

此外,高電子遷移率電晶體100還包含閘極電極126、源極電極122和汲極電極124,其中閘極電極126設置於摻雜半導體蓋層118上,且貫穿鈍化層128,源極電極122和汲極電極124分別設置於閘極電極126的兩側。根據一些實施例,源極電極122和汲極電極124可從鈍化層128中向下延伸到阻障層116或通道層114中,且與電隔離層112相隔一垂直距離。另外,隔離區120設置於源極電極122和汲極電極124的外圍,以將相鄰的HEMT隔離。隔離區120穿過阻障層116到通道層114中,且隔離區120的底部低於源極電極122和汲極電極124的底部,使得隔離區120比源極電極122和汲極電極124更靠近電隔離層112,達到良好的電性隔離作用。然於其他實施例中,隔離區120可依照實際需求延伸到其他層別,達到電性隔離作用。 In addition, the high electron mobility transistor 100 further includes a gate electrode 126 , a source electrode 122 and a drain electrode 124 , wherein the gate electrode 126 is disposed on the doped semiconductor cap layer 118 and penetrates through the passivation layer 128 . 122 and the drain electrode 124 are respectively disposed on both sides of the gate electrode 126 . According to some embodiments, source electrode 122 and drain electrode 124 may extend from passivation layer 128 down into barrier layer 116 or channel layer 114 and spaced a vertical distance from electrical isolation layer 112 . In addition, the isolation region 120 is disposed on the periphery of the source electrode 122 and the drain electrode 124 to isolate the adjacent HEMTs. The isolation region 120 passes through the barrier layer 116 into the channel layer 114 , and the bottom of the isolation region 120 is lower than the bottoms of the source electrode 122 and the drain electrode 124 , so that the isolation region 120 is deeper than the source electrode 122 and the drain electrode 124 . Close to the electrical isolation layer 112 to achieve good electrical isolation. However, in other embodiments, the isolation region 120 can be extended to other layers according to actual requirements to achieve electrical isolation.

根據本揭露一實施例,通道層114可包含一層或多層III-V族半導體層,III-V族半導體層的成份可以是GaN、AlGaN、InGaN或InAlGaN,但不限定於此。此外,通道層114可以是未經摻雜的或者被摻雜的一層或多層III-V族半導體層,被摻雜的通道層114例如是p型的III-V族半導體層,對p型的III-V族半導體層而言,其摻質可以是碳(C)、鐵(Fe)、鎂(Mg)或鋅(Zn),但不限定於此。上述阻障層116可包含一層或多層III-V族半導體層,且其組成會不同於通道層114的III-V族半導體。舉例來說,阻障層116可包含AlN、AlzGa(1-z)N(0<z<1)或其組合。根據一實施例,通道層114可以是未經摻雜的GaN層,而阻障層116可以為未經摻雜或本質上為n型的AlGaN層。由於通道層114和阻障層116間具有不連續的能隙,藉由將通道層114和阻障層116互相堆疊設置,電子會因壓電效應而被聚集於通道層114和阻障層116之間的異質接面,因而產生高電子遷移率的薄層,亦即二維電子氣(2-DEG)區域130。針對常關型(normally off)元件而言,當不施加電壓至閘極電 極126時,被摻雜半導體蓋層118所覆蓋的區域不會形成2-DEG,可視為是2-DEG截斷區域,此時源極電極122和汲極電極124之間不會導通。當施加正電壓至閘極電極126時,被摻雜半導體蓋層118所覆蓋的區域會形成2-DEG,使得源極電極122和汲極電極124之間產生連續的2-DEG區域130,而讓源極電極122和汲極電極124之間導通。 According to an embodiment of the present disclosure, the channel layer 114 may include one or more III-V semiconductor layers, and the composition of the III-V semiconductor layers may be GaN, AlGaN, InGaN or InAlGaN, but not limited thereto. In addition, the channel layer 114 may be undoped or doped one or more III-V semiconductor layers. The doped channel layer 114 may be, for example, a p-type III-V semiconductor layer. For the III-V semiconductor layer, the dopant may be carbon (C), iron (Fe), magnesium (Mg) or zinc (Zn), but is not limited thereto. The above-mentioned barrier layer 116 may include one or more III-V semiconductor layers, and its composition may be different from that of the channel layer 114 . For example, the barrier layer 116 may include AlN, AlzGa (1-z) N (0<z<1), or a combination thereof. According to an embodiment, the channel layer 114 may be an undoped GaN layer and the barrier layer 116 may be an undoped or intrinsically n-type AlGaN layer. Since there is a discontinuous energy gap between the channel layer 114 and the barrier layer 116, by stacking the channel layer 114 and the barrier layer 116 on each other, electrons will be collected in the channel layer 114 and the barrier layer 116 due to the piezoelectric effect Heterojunction between them, thus creating a thin layer of high electron mobility, ie, a two-dimensional electron gas (2-DEG) region 130 . For normally off devices, when no voltage is applied to the gate electrode 126, the region covered by the doped semiconductor cap layer 118 will not form 2-DEG, which can be regarded as a 2-DEG cut-off region. At this time, there is no conduction between the source electrode 122 and the drain electrode 124 . When a positive voltage is applied to the gate electrode 126, a 2-DEG is formed in the area covered by the doped semiconductor capping layer 118, resulting in a continuous 2-DEG region 130 between the source electrode 122 and the drain electrode 124, while Conduction is established between the source electrode 122 and the drain electrode 124 .

第2圖是根據本揭露另一實施例所繪示的高電子遷移率電晶體之第一超晶格堆疊、拉伸應力層、組成漸變層和電隔離層的放大剖面示意圖。第2圖與第1圖的差異在於第2圖的第一超晶格堆疊106-1與組成漸變層110之間還設置有拉伸應力層108。如第2圖所示,根據本揭露一實施例,高電子遷移率電晶體100的第一超晶格堆疊106-1可由複數個成對堆疊的第一超晶格層106A和第二超晶格層106B組成。雖然第2圖僅顯示四個成對堆疊的超晶格層,根據本揭露其他實施例,第一超晶格堆疊106-1亦可以由更多成對堆疊的超晶格層組成,例如由100對以上的超晶格層組成。其中,第一超晶格層106A具有拉伸應力,第二超晶格層106B具有壓縮應力,且第二超晶格層106B堆疊於第一超晶格層106A上。換言之,第一超晶格層106A會對相鄰的第二超晶格層106B產生拉伸應力,第二超晶格層106B會對相鄰的第一超晶格層106A產生壓縮應力。藉由調整第一超晶格層106A和第二超晶格層106B的各層厚度,可以使得最上層的第二超晶格層106B以外的其他第二超晶格層106B中的2-DEG 150和2-DHG 140彼此成對,進而互相抵銷2-DEG層及2-DHG層的作用。此外,根據本揭露一實施例,在最上層的第二超晶格層106B上設置拉伸應力層108,可以在最上層的第二超晶格層106B中產生2-DEG,以抵銷最上層的第二超晶格層106B中的2-DHG,藉此可以避免最上層的第二超晶格層106B產生未與2-DEG配對的2-DHG層,進而防止側向電流傳輸路徑產生,避免相鄰的HEMT之間發生漏電流。 2 is an enlarged cross-sectional schematic diagram of a first superlattice stack, a tensile stress layer, a compositionally graded layer and an electrical isolation layer of a high electron mobility transistor according to another embodiment of the present disclosure. The difference between FIG. 2 and FIG. 1 is that a tensile stress layer 108 is further disposed between the first superlattice stack 106 - 1 and the compositionally graded layer 110 in FIG. 2 . As shown in FIG. 2, according to an embodiment of the present disclosure, the first superlattice stack 106-1 of the high electron mobility transistor 100 can be composed of a plurality of first superlattice layers 106A and second superlattice layers stacked in pairs Grid layer 106B is formed. Although FIG. 2 only shows four superlattice layers stacked in pairs, according to other embodiments of the present disclosure, the first superlattice stack 106-1 may also be composed of more superlattice layers stacked in pairs, such as More than 100 pairs of superlattice layers are formed. The first superlattice layer 106A has tensile stress, the second superlattice layer 106B has compressive stress, and the second superlattice layer 106B is stacked on the first superlattice layer 106A. In other words, the first superlattice layer 106A generates tensile stress on the adjacent second superlattice layer 106B, and the second superlattice layer 106B generates compressive stress on the adjacent first superlattice layer 106A. By adjusting the thickness of each layer of the first superlattice layer 106A and the second superlattice layer 106B, the 2-DEG 150 in the second superlattice layer 106B other than the uppermost second superlattice layer 106B can be made. and 2-DHG 140 are paired with each other, thereby offsetting the effects of the 2-DEG layer and the 2-DHG layer. In addition, according to an embodiment of the present disclosure, by disposing the tensile stress layer 108 on the uppermost second superlattice layer 106B, 2-DEG can be generated in the uppermost second superlattice layer 106B to offset the uppermost second superlattice layer 106B. 2-DHG in the upper second superlattice layer 106B, thereby avoiding the generation of 2-DHG layers that are not paired with 2-DEG in the uppermost second superlattice layer 106B, thereby preventing the generation of lateral current transmission paths , to avoid leakage current between adjacent HEMTs.

此外,根據本揭露一實施例,在電隔離層112與超晶格結構106的第 一超晶格堆疊106-1之間設置組成漸變層110,且組成漸變層110設置於拉伸應力層108上。其中,組成漸變層110可以用以消除電隔離層112對於拉伸應力層108的壓縮應力。根據本揭露一實施例,超晶格結構106、拉伸應力層108和組成漸變層110的組成包含一相同的第三族元素,且在組成漸變層110中的此相同的第三族元素的原子百分比從超晶格結構106到電隔離層112的方向上逐漸減少,以避免電隔離層112產生壓縮應力。藉此,在電隔離層112與組成漸變層110的界面處便不會產生2-DHG,可以避免在電隔離層112的底面產生2-DHG層,進而防止側向電流傳輸路徑產生,避免相鄰的HEMT之間發生漏電流。 In addition, according to an embodiment of the present disclosure, at the first position between the electrical isolation layer 112 and the superlattice structure 106 A compositionally graded layer 110 is disposed between a superlattice stack 106 - 1 , and the compositionally graded layer 110 is disposed on the tensile stress layer 108 . The compositionally graded layer 110 can be used to eliminate the compressive stress of the electrical isolation layer 112 to the tensile stress layer 108 . According to an embodiment of the present disclosure, the composition of the superlattice structure 106 , the tensile stress layer 108 and the compositionally graded layer 110 includes a same Group III element, and the composition of the same Group III element in the compositionally graded layer 110 The atomic percentage gradually decreases from the superlattice structure 106 to the electrical isolation layer 112 to avoid compressive stress in the electrical isolation layer 112 . In this way, 2-DHG will not be generated at the interface between the electrical isolation layer 112 and the composition graded layer 110, so that the 2-DHG layer on the bottom surface of the electrical isolation layer 112 can be avoided, thereby preventing the generation of lateral current transmission paths and avoiding phase Leakage current occurs between adjacent HEMTs.

又,根據本揭露一實施例,可以藉由調整組成漸變層110的成分,而使得組成漸變層110的底部具有拉伸應力。藉此,可以對最上層的第二超晶格層106B產生拉伸應力,並在最上層的第二超晶格層106B中產生2-DEG,以抵銷最上層的第二超晶格層106B中的2-DHG。因此,即便未設置拉伸應力層108,亦可降低相鄰的HEMT之間發生漏電流的程度。 In addition, according to an embodiment of the present disclosure, the bottom of the gradation layer 110 can have tensile stress by adjusting the composition of the gradation layer 110 . Thereby, tensile stress can be generated on the uppermost second superlattice layer 106B, and 2-DEG can be generated in the uppermost second superlattice layer 106B to offset the uppermost second superlattice layer 2-DHG in 106B. Therefore, even if the tensile stress layer 108 is not provided, the degree of leakage current between adjacent HEMTs can be reduced.

此外,本揭露之實施例除了可以避免相鄰的HEMT之間發生漏電流,由於組成漸變層110、拉伸應力層108、超晶格結構106的組成,使得這些疊層之間具有良好的晶格匹配,因此可以避免HEMT疊層產生應力,進而避免極化效應產生,使得本揭露之HEMT的各種漏電流降低,因而提昇了HEMT的電性表現。 In addition, the embodiments of the present disclosure can avoid leakage current between adjacent HEMTs. Due to the composition of the graded composition layer 110 , the tensile stress layer 108 and the superlattice structure 106 , these stacked layers have good crystallinity. Lattice matching can prevent the HEMT stack from generating stress, thereby avoiding the polarization effect, so that various leakage currents of the HEMT disclosed in the present disclosure are reduced, thereby improving the electrical performance of the HEMT.

根據本揭露一實施例,組成漸變層110的組成可以是三元III-V族半導體,例如氮化鋁鎵(AlxGa(1-x)N),其中0.1<x<0.9,且x值從超晶格結構106到電隔離層112的方向上逐漸減少,亦即在深度方向上,組成漸變層110中的前述相同的第三族元素例如鋁(Al)的原子百分比從下到上遞減,且組成漸變層110中的另一第三族元素例如鎵(Ga)的原子百分比從下到上遞增,電隔離層112中包含此另一第三族元素例如鎵(Ga)。在一實施例中,拉伸應力層108的組成可以是二元III-V族半導體,例如氮化鋁(AlN)。根據一實施例,拉伸應力層108中的此相同的第三族 元素例如鋁(Al)的平均原子濃度高於組成漸變層110中的此相同的第三族元素例如鋁(Al)的平均原子濃度。此外,在一實施例中,組成漸變層110的厚度可為電隔離層112厚度的0.5%到5%,拉伸應力層108的厚度可為電隔離層112厚度的0.2%到2%。需注意的是,組成漸變層110和拉伸應力層108的厚度必須大於各超晶格層的厚度,例如大於第一超晶格層106A或第二超晶格層106B的厚度,才足以產生或消除界面的應力。根據本揭露一實施例,組成漸變層110中可摻雜一摻質,此摻質可以是碳或鐵,藉此可增加組成漸變層110的電阻率。 According to an embodiment of the present disclosure, the composition of the compositionally graded layer 110 may be a ternary III-V semiconductor, such as aluminum gallium nitride ( AlxGa (1-x) N), where 0.1<x<0.9, and the value of x is From the superlattice structure 106 to the electrical isolation layer 112, the atomic percentage of the same group III element, such as aluminum (Al), decreases from bottom to top, that is, in the depth direction. , and the atomic percentage of another third group element such as gallium (Ga) in the composition graded layer 110 increases from bottom to top, and the other third group element such as gallium (Ga) is contained in the electrical isolation layer 112 . In one embodiment, the composition of the tensile stressor layer 108 may be a binary III-V semiconductor, such as aluminum nitride (AlN). According to an embodiment, the average atomic concentration of this same Group III element, eg, aluminum (Al), in tensile stress layer 108 is higher than the average atomic concentration of this same Group III element, eg, aluminum (Al), in compositionally graded layer 110 . Atomic concentration. In addition, in one embodiment, the thickness of the compositionally graded layer 110 may be 0.5% to 5% of the thickness of the electrical isolation layer 112 , and the thickness of the tensile stress layer 108 may be 0.2% to 2% of the thickness of the electrical isolation layer 112 . It should be noted that the thicknesses of the compositionally graded layer 110 and the tensile stress layer 108 must be greater than the thicknesses of the respective superlattice layers, for example, greater than the thicknesses of the first superlattice layer 106A or the second superlattice layer 106B, in order to generate Or relieve the stress at the interface. According to an embodiment of the present disclosure, the compositionally graded layer 110 may be doped with a dopant, and the dopant may be carbon or iron, thereby increasing the resistivity of the compositionally graded layer 110 .

根據本揭露一實施例,當相比較第一超晶格層106A和第二超晶格層106B時,第一超晶格層106A的組成的晶格常數較小且能隙較寬,例如是氮化鋁(AlN),第二超晶格層106B的組成的晶格常數較大且能隙較窄,例如是氮化鋁鎵(AlyGa(1-y)N,其中0.05<y<0.3)。組成漸變層110中的前述相同的第三族元素例如鋁(Al)的平均原子濃度高於這些第二超晶格層106B中的此相同的第三族元素例如鋁(Al)的平均原子濃度。根據一實施例,第一超晶格堆疊106-1中的各第二超晶格層106B中的鋁(Al)的原子百分比可以不同,亦即各第二超晶格層106B中的鎵(Ga)的原子百分比可以不同,例如各第二超晶格層106B中的鋁(Al)的原子百分比可以隨著各層變化,由下層到上層遞減,以降低第一超晶格堆疊106-1的應力。此外,根據一實施例,第一超晶格堆疊106-1的第一超晶格層106A和第二超晶格層106B中可摻雜一摻質,且此摻質可以是碳或鐵,藉此可增加第一超晶格堆疊106-1的電阻率。 According to an embodiment of the present disclosure, when comparing the first superlattice layer 106A and the second superlattice layer 106B, the composition of the first superlattice layer 106A has a smaller lattice constant and a wider energy gap, such as Aluminum nitride (AlN), the composition of the second superlattice layer 106B has a relatively large lattice constant and a relatively narrow energy gap, such as aluminum gallium nitride ( AlyGa (1-y) N, where 0.05<y< 0.3). The average atomic concentration of the aforementioned same Group III elements such as aluminum (Al) in the compositionally graded layer 110 is higher than the average atomic concentration of this same Group III element such as aluminum (Al) in the second superlattice layers 106B . According to an embodiment, the atomic percentage of aluminum (Al) in each second superlattice layer 106B in the first superlattice stack 106-1 may be different, that is, the gallium (Al) in each second superlattice layer 106B The atomic percentage of Ga) may be different, for example, the atomic percentage of aluminum (Al) in each second superlattice layer 106B may vary with each layer, decreasing from the lower layer to the upper layer, so as to reduce the atomic percentage of the first superlattice stack 106-1. stress. In addition, according to an embodiment, the first superlattice layer 106A and the second superlattice layer 106B of the first superlattice stack 106-1 may be doped with a dopant, and the dopant may be carbon or iron, Thereby, the resistivity of the first superlattice stack 106-1 can be increased.

此外,根據本揭露一實施例,如第1圖所示,超晶格結構106可包含設置在第一超晶格堆疊106-1下方的第二超晶格堆疊106-2,類似於第2圖所示的第一超晶格堆疊106-1,第二超晶格堆疊106-2可由複數個成對堆疊的第三超晶格層和第四超晶格層組成,其中第三超晶格層具有拉伸應力,第四超晶格層具有壓縮應力,且第四超晶格層堆疊於第三超晶格層上,藉由調整第三超晶格層和第 四超晶格層的各層厚度,可以使得第二超晶格堆疊106-2中不會產生不成對的2-DEG層及2-DHG層。此外,在一實施例中,第三超晶格層的組成例如是氮化鋁(AlN),第四超晶格層的組成例如是氮化鋁鎵(AlwGa(1-w)N,其中0.1<w<0.5),且第二超晶格堆疊106-2中的鋁(Al)的平均原子濃度高於第一超晶格堆疊106-1中的鋁(Al)的平均原子濃度。在一實施例中,各第四超晶格層中的鋁(Al)的原子百分比可以不同,亦即各第四超晶格層中的鎵(Ga)的原子百分比可以不同,例如各第四超晶格層中的鋁(Al)的原子百分比可以隨著各層變化,由下層到上層遞減,以降低第二超晶格堆疊106-2的應力。此外,根據一實施例,第二超晶格堆疊106-2的第三超晶格層和第四超晶格層中可摻雜一摻質,且此摻質可以是碳或鐵,藉此可增加第二超晶格堆疊106-2的電阻。根據一實施例,組成漸變層110中的前述相同的第三族元素例如鋁(Al)的平均原子濃度高於這些第四超晶格層中的此相同的第三族元素例如鋁(Al)的平均原子濃度。 Furthermore, according to an embodiment of the present disclosure, as shown in FIG. 1, the superlattice structure 106 may include a second superlattice stack 106-2 disposed under the first superlattice stack 106-1, similar to the second superlattice stack 106-2. The first superlattice stack 106-1 and the second superlattice stack 106-2 shown in the figure may be composed of a plurality of third superlattice layers and fourth superlattice layers stacked in pairs, wherein the third superlattice layer The lattice layer has tensile stress, the fourth superlattice layer has compressive stress, and the fourth superlattice layer is stacked on the third superlattice layer, by adjusting the third superlattice layer and the fourth superlattice layer The thickness of each layer can prevent unpaired 2-DEG layer and 2-DHG layer from being generated in the second superlattice stack 106-2. In addition, in one embodiment, the composition of the third superlattice layer is, for example, aluminum nitride (AlN), and the composition of the fourth superlattice layer is, for example, aluminum gallium nitride (AlwGa (1-w) N , where 0.1<w<0.5), and the average atomic concentration of aluminum (Al) in the second superlattice stack 106-2 is higher than the average atomic concentration of aluminum (Al) in the first superlattice stack 106-1. In one embodiment, the atomic percentage of aluminum (Al) in each of the fourth superlattice layers may be different, that is, the atomic percentage of gallium (Ga) in each of the fourth superlattice layers may be different. The atomic percentage of aluminum (Al) in the superlattice layers may vary with each layer, decreasing from the lower layer to the upper layer, to reduce the stress of the second superlattice stack 106-2. In addition, according to an embodiment, the third superlattice layer and the fourth superlattice layer of the second superlattice stack 106-2 may be doped with a dopant, and the dopant may be carbon or iron, thereby The resistance of the second superlattice stack 106-2 can be increased. According to an embodiment, the average atomic concentration of the aforementioned same group III elements such as aluminum (Al) in the compositionally graded layer 110 is higher than that of the same group III elements such as aluminum (Al) in the fourth superlattice layers The average atomic concentration of .

此外,根據本揭露一實施例,組成漸變層110中的前述相同的第三族元素例如鋁(Al)的平均原子濃度低於整體超晶格結構106中的此相同的第三族元素例如鋁(Al)的平均原子濃度。根據一實施例,拉伸應力層108的厚度大於超晶格結構106中各超晶格層的厚度,例如大於第一超晶格堆疊106-1的第一超晶格層106A、第二超晶格層106B的厚度,且也大於第二超晶格堆疊106-2的第三超晶格層、第三超晶格層的厚度。 In addition, according to an embodiment of the present disclosure, the average atomic concentration of the same group III element such as aluminum (Al) in the compositionally graded layer 110 is lower than that of the same group III element such as aluminum in the overall superlattice structure 106 (Al) average atomic concentration. According to an embodiment, the thickness of the tensile stress layer 108 is greater than the thickness of each superlattice layer in the superlattice structure 106, eg, greater than the thickness of the first superlattice layer 106A, the second superlattice layer 106A of the first superlattice stack 106-1 The thickness of the lattice layer 106B is also greater than the thickness of the third superlattice layer and the third superlattice layer of the second superlattice stack 106-2.

根據本揭露一實施例,電隔離層112的組成可以是摻雜的或未摻雜的二元III-V族半導體,例如是碳摻雜的氮化鎵(c-GaN),且在電隔離層112中的碳摻質的濃度從組成漸變層110到通道層114的方向上逐漸增加,亦即在深度方向上,電隔離層112中的碳摻質的濃度由下到上遞增,以防止碳堆積在電隔離層112與組成漸變層110的界面處,藉此讓電隔離層112靠近通道層114的表面的電阻更高,以提供更好的電性隔離作用。 According to an embodiment of the present disclosure, the composition of the electrical isolation layer 112 may be a doped or undoped binary III-V semiconductor, such as carbon-doped gallium nitride (c-GaN), and is electrically isolated The concentration of the carbon dopant in the layer 112 gradually increases from the compositionally graded layer 110 to the channel layer 114, that is, in the depth direction, the concentration of the carbon dopant in the electrical isolation layer 112 increases from bottom to top to prevent Carbon is deposited at the interface between the electrical isolation layer 112 and the compositionally graded layer 110 , thereby making the surface of the electrical isolation layer 112 close to the channel layer 114 higher in resistance to provide better electrical isolation.

第3圖是根據本揭露一實施例所繪示的高電子遷移率電晶體(HEMT)之組成漸變層、拉伸應力層和最上層的第二超晶格層中的相同的第三族元素例如鋁(Al)的原子百分比隨著不同深度位置變化的濃度曲線。第3圖的橫軸是組成漸變層110、拉伸應力層108和最上層的第二超晶格層106B在深度方向的位置,縱軸是鋁(Al)的原子百分比,根據一實施例,如第3圖所示,最上層的第二超晶格層106B的鋁(Al)原子百分比大約為數值C3,拉伸應力層108的鋁(Al)原子百分比最高為數值C2,且組成漸變層110的鋁(Al)原子百分比在深度方向由下到上遞減,從數值C1逐漸減少到接近0,其中數值C3為大約10%,數值C2為大約50%,且數值C1為大約30%,在此實施例中,組成漸變層110的鋁(Al)原子百分比的濃度變化曲線可以是直線201。在一實施例中,組成漸變層110的鋁(Al)原子百分比也可以從比數值C1更高或更低的其他數值作為起始數值而逐漸減少到接近0。根據本揭露一實施例,拉伸應力層108的鋁(Al)平均原子濃度高於組成漸變層110的鋁(Al)平均原子濃度,且組成漸變層110的鋁(Al)平均原子濃度高於最上層的第二超晶格層106B的鋁(Al)平均原子濃度。 FIG. 3 shows the same Group III elements in the compositionally graded layer, the tensile stress layer, and the uppermost second superlattice layer of a high electron mobility transistor (HEMT) according to an embodiment of the present disclosure For example, the concentration curve of the atomic percentage of aluminum (Al) as a function of different depth positions. The horizontal axis of FIG. 3 is the position of the composition graded layer 110, the tensile stress layer 108 and the uppermost second superlattice layer 106B in the depth direction, and the vertical axis is the atomic percentage of aluminum (Al). According to an embodiment, As shown in FIG. 3, the atomic percentage of aluminum (Al) of the uppermost second superlattice layer 106B is about C3, the atomic percentage of aluminum (Al) of the tensile stress layer 108 is the highest value of C2, and the composition graded layer The atomic percentage of aluminum (Al) of 110 decreases from bottom to top in the depth direction, gradually decreasing from the value C1 to nearly 0, where the value C3 is about 10%, the value C2 is about 50%, and the value C1 is about 30%, at In this embodiment, the concentration variation curve of the atomic percentage of aluminum (Al) constituting the graded layer 110 may be a straight line 201 . In one embodiment, the atomic percentage of aluminum (Al) constituting the graded layer 110 may also be gradually reduced to near 0 from other values higher or lower than the value C1 as a starting value. According to an embodiment of the present disclosure, the average atomic concentration of aluminum (Al) in the tensile stress layer 108 is higher than the average atomic concentration of aluminum (Al) in the compositionally graded layer 110 , and the average atomic concentration of aluminum (Al) in the compositionally graded layer 110 is higher than The average atomic concentration of aluminum (Al) in the uppermost second superlattice layer 106B.

第4圖、第5圖和第6圖分別是根據本揭露的一些實施例所繪示的HEMT之組成漸變層、拉伸應力層和最上層的第二超晶格層中的相同的第三族元素例如鋁(Al)的原子百分比隨著不同深度位置變化的濃度曲線。第4圖之實施例與第3圖的差異在於組成漸變層110的鋁(Al)原子百分比的濃度變化曲線可以是弧線202,第5圖之實施例與第3圖的差異在於組成漸變層110的鋁(Al)原子百分比的濃度變化曲線可以是階梯狀曲線203,第6圖之實施例與第3圖的差異在於組成漸變層110的鋁(Al)原子百分比的濃度變化曲線可以是波浪狀曲線204,其他類似的部份可參照前述第3圖的說明。 FIGS. 4 , 5 and 6 are respectively the same third of the compositionally graded layer, the tensile stress layer and the uppermost second superlattice layer of the HEMT according to some embodiments of the present disclosure. Concentration curves of atomic percent of group elements such as aluminum (Al) as a function of different depth positions. The difference between the embodiment in FIG. 4 and FIG. 3 is that the concentration change curve of the atomic percentage of aluminum (Al) in the composition graded layer 110 can be an arc 202 . The difference between the embodiment in FIG. 5 and FIG. 3 lies in the composition graded layer 110 . The concentration change curve of the atomic percentage of aluminum (Al) can be a step-shaped curve 203. The difference between the embodiment in FIG. 6 and FIG. 3 is that the concentration change curve of the aluminum (Al) atomic percentage of the composition graded layer 110 can be wave-shaped. For the curve 204, other similar parts can be referred to the description of FIG. 3 above.

第7圖、第8圖、第9圖和第10圖分別是根據本揭露實施例所繪示的製作高電子遷移率電晶體100的各中間階段的剖面示意圖。根據本揭露一實施例, 如第7圖所示,提供基底102,其上依序形成有成核層104、超晶格結構106、拉伸應力層108、組成漸變層110、電隔離層112、通道層114、阻障層116及摻雜半導體蓋層118的堆疊層。在一實施例中,超晶格結構106可由第一超晶格堆疊106-1設置於第二超晶格堆疊106-2上組成。在另一實施例中,超晶格結構106可由第一超晶格堆疊106-1構成。 FIG. 7 , FIG. 8 , FIG. 9 , and FIG. 10 are respectively schematic cross-sectional views of intermediate stages of fabricating the high electron mobility transistor 100 according to an embodiment of the present disclosure. According to an embodiment of the present disclosure, As shown in FIG. 7, a substrate 102 is provided on which a nucleation layer 104, a superlattice structure 106, a tensile stress layer 108, a compositionally graded layer 110, an electrical isolation layer 112, a channel layer 114, a barrier layer are formed in sequence Layer 116 and a stack of doped semiconductor capping layers 118 . In one embodiment, the superlattice structure 106 may consist of a first superlattice stack 106-1 disposed on a second superlattice stack 106-2. In another embodiment, the superlattice structure 106 may be composed of the first superlattice stack 106-1.

根據一實施例,基底102可以是塊矽基板、碳化矽(SiC)基板、藍寶石(sapphire)基板、絕緣層上覆矽(silicon on insulator,SOI)基板或絕緣層上覆鍺(germanium on insulator,GOI)基板,但不限定於此。於另一實施例中,基底102更包含單一或多層的絕緣材料層以及/或其他合適的材料層(例如半導體層)與一核心層。絕緣材料層可以是氧化物、氮化物、氮氧化物、或其他合適的絕緣材料。核心層可以是碳化矽(SiC)、氮化鋁(AlN)、氧化鋁(Al2O3)、氮化鋁鎵(AlGaN)、氧化鋅(ZnO)或氧化鎵(Ga2O3)、或其他合適的陶瓷材料。於一實施例中,單一或多層的絕緣材料層以及/或其他合適的材料層包覆核心層。 According to an embodiment, the substrate 102 may be a bulk silicon substrate, a silicon carbide (SiC) substrate, a sapphire (sapphire) substrate, a silicon on insulator (SOI) substrate, or a germanium on insulator (germanium on insulator, GOI) substrate, but not limited to this. In another embodiment, the substrate 102 further includes a single or multiple layers of insulating material and/or other suitable material layers (eg, semiconductor layers) and a core layer. The insulating material layer may be oxide, nitride, oxynitride, or other suitable insulating material. The core layer may be silicon carbide (SiC), aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), aluminum gallium nitride (AlGaN), zinc oxide (ZnO), or gallium oxide (Ga 2 O 3 ), or Other suitable ceramic materials. In one embodiment, a single or multiple layers of insulating material and/or other suitable material layers coat the core layer.

成核層104可以選擇地設置在基底102上,其具有較少的晶格缺陷,因此可以增進設置於成核層104上的超晶格結構106的磊晶品質。於一實施例中,成核層104可以包含氮化物(AlN)堆疊層,例如可包含第一氮化物層及第二氮化物層。根據本揭露一實施例,第一氮化物層可例如是低溫氮化鋁層(LT-AlN),此低溫氮化鋁層可以經由金屬有機化學氣相沉積(metal-organic CVD,MOCVD),在800℃-1100℃的環境溫度下形成;第二氮化物層可例如是高溫氮化鋁層(HT-AlN),此高溫氮化鋁層可以經由金屬有機化學氣相沉積,在1100℃-1400℃的環境溫度下形成,但不限定於此。 The nucleation layer 104 can be selectively disposed on the substrate 102 , which has less lattice defects, and thus can improve the epitaxial quality of the superlattice structure 106 disposed on the nucleation layer 104 . In one embodiment, the nucleation layer 104 may include a nitride (AlN) stack layer, eg, may include a first nitride layer and a second nitride layer. According to an embodiment of the present disclosure, the first nitride layer may be, for example, a low temperature aluminum nitride layer (LT-AlN), and the low temperature aluminum nitride layer may be deposited by metal-organic chemical vapor deposition (MOCVD). Formed at an ambient temperature of 800°C-1100°C; the second nitride layer can be, for example, a high temperature aluminum nitride layer (HT-AlN), which can be deposited by metal organic chemical vapor deposition at 1100°C-1400 It is formed at an ambient temperature of °C, but is not limited to this.

超晶格結構106設置在基底102上,根據本揭露一實施例,超晶格結構106的第二超晶格堆疊106-2可以選擇地設置於成核層104上,接著,第一超晶格堆疊106-1設置於第二超晶格堆疊106-2上,或者當省略第二超晶格堆疊106-2 時,第一超晶格堆疊106-1可設置於成核層104上。超晶格結構106可用以降低基底102和設置於超晶格結構106上的半導體層之間的晶格不匹配(lattice mismatch)的程度,以及降低晶格不匹配所產生之應力。根據本揭露一實施例,如第2圖所示,第一超晶格堆疊106-1可包含第一超晶格層106A及第二超晶格層106B。類似地,第二超晶格堆疊106-2可包含多個成對的超晶格層,例如第三超晶格層及第四超晶格層。根據不同需求,第一超晶格堆疊106-1及第二超晶格堆疊106-2可以各自是由至少兩種III-V族半導體層周期性交替堆疊所構成的結構,例如各自包括複數個成對的AlN薄層/AlGaN薄層或複數個成對的AlN薄層/GaN薄層,或者各自包括多個組成比例漸變的III-V族半導體層堆疊所構成的結構,例如是氮化鋁鎵(AlaGa1-aN,0.15≦a≦0.9)中的鋁組成比例可由下方的超晶格層至上方的超晶格層漸減,但不限定於此。根據一實施例,超晶格結構106可利用原子層沉積(atomic layer deposition,ALD)製程形成,經由調整沉積各原子層的來源氣體比例,例如調整鋁(Al)、氮(N)及鎵(Ga)來源氣體的比例,可以沉積各種組成比例的多個超晶格層堆疊。 The superlattice structure 106 is disposed on the substrate 102. According to an embodiment of the present disclosure, the second superlattice stack 106-2 of the superlattice structure 106 can be selectively disposed on the nucleation layer 104. Next, the first superlattice The lattice stack 106-1 is disposed on the second superlattice stack 106-2, or the first superlattice stack 106-1 may be disposed on the nucleation layer 104 when the second superlattice stack 106-2 is omitted. The superlattice structure 106 can be used to reduce the degree of lattice mismatch between the substrate 102 and the semiconductor layers disposed on the superlattice structure 106, and to reduce the stress caused by the lattice mismatch. According to an embodiment of the present disclosure, as shown in FIG. 2 , the first superlattice stack 106 - 1 may include a first superlattice layer 106A and a second superlattice layer 106B. Similarly, the second superlattice stack 106-2 may include a plurality of pairs of superlattice layers, such as a third superlattice layer and a fourth superlattice layer. According to different requirements, the first superlattice stack 106-1 and the second superlattice stack 106-2 can each be a structure composed of at least two kinds of III-V semiconductor layers stacked periodically, for example, each includes a plurality of Pairs of AlN thin layers/AlGaN thin layers or a plurality of pairs of AlN thin layers/GaN thin layers, or structures each comprising a stack of a plurality of III-V semiconductor layers with graded composition ratios, such as aluminum nitride The composition ratio of aluminum in gallium (Al a Ga 1-a N, 0.15≦a≦0.9) may gradually decrease from the lower superlattice layer to the upper superlattice layer, but is not limited thereto. According to an embodiment, the superlattice structure 106 may be formed by an atomic layer deposition (ALD) process by adjusting the ratio of source gases for depositing each atomic layer, such as aluminum (Al), nitrogen (N), and gallium ( Ga) ratio of source gas, multiple superlattice layer stacks of various composition ratios can be deposited.

根據本揭露一實施例,拉伸應力層108可以選擇地設置於超晶格結構106上,組成漸變層110可形成於拉伸應力層108上,拉伸應力層108和組成漸變層110的組成如前所述,在此不再重述。根據一實施例,組成漸變層110和拉伸應力層108可利用原子層沉積(atomic layer deposition,ALD)製程形成,經由調整沉積各原子層的來源氣體比例,例如調整鋁(Al)、氮(N)及鎵(Ga)來源氣體的比例,可以沉積組成比例漸變的多個原子層堆疊,進而形成例如鋁(Al)原子百分比或原子濃度漸變的組成漸變層110。根據一實施例,拉伸應力層108的厚度可以是2nm到20nm,或者可以是電隔離層112厚度的0.2%到2%;組成漸變層110的厚度可以是5nm到50nm,或者可以是電隔離層112厚度的0.5%到5%。 According to an embodiment of the present disclosure, the tensile stress layer 108 may be selectively disposed on the superlattice structure 106 , the compositionally graded layer 110 may be formed on the tensile stress layer 108 , and the composition of the tensile stress layer 108 and the compositionally graded layer 110 may be formed. As mentioned above, it will not be repeated here. According to an embodiment, the compositionally graded layer 110 and the tensile stress layer 108 can be formed by an atomic layer deposition (ALD) process, by adjusting the ratio of source gas for depositing each atomic layer, such as adjusting aluminum (Al), nitrogen ( The ratio of N) and gallium (Ga) source gases can deposit a plurality of atomic layer stacks with graded composition ratios, thereby forming a graded composition layer 110 with graded aluminum (Al) atomic percentage or atomic concentration, for example. According to an embodiment, the thickness of the tensile stress layer 108 may be 2 nm to 20 nm, or may be 0.2% to 2% of the thickness of the electrical isolation layer 112; the thickness of the compositionally graded layer 110 may be 5 nm to 50 nm, or may be electrically isolated 0.5% to 5% of the thickness of layer 112.

根據本揭露一實施例,電隔離層112設置於組成漸變層110上,電隔 離層112相較於其他的層具有較高的電阻率,因此可避免設置於電隔離層112上的半導體層和基底102間產生漏電流。通道層114可設置於電隔離層112上,阻障層116可設置於通道層114上,通道層114和阻障層116的組成如前所述,在此不再重述。摻雜半導體蓋層118可形成於阻障層116上,以空乏二維電子氣(2-DEG)區域,達成HEMT的常關(normally-off)狀態。摻雜半導體蓋層118可以是被摻雜的一層或多層III-V族半導體層,例如以p型摻雜劑或n型摻雜劑摻雜的GaN。其成份可以是GaN、AlGaN、InGaN或InAlGaN,其摻質可以是C、Fe、Mg或Zn,但不限定於此。根據一實施例,摻雜半導體蓋層118可以是p型的GaN層。 According to an embodiment of the present disclosure, the electrical isolation layer 112 is disposed on the composition graded layer 110, and the electrical isolation layer 112 is Compared with other layers, the debonding layer 112 has a higher resistivity, so that leakage current can be avoided between the semiconductor layer disposed on the electrical isolation layer 112 and the substrate 102 . The channel layer 114 may be disposed on the electrical isolation layer 112 , and the barrier layer 116 may be disposed on the channel layer 114 . The compositions of the channel layer 114 and the barrier layer 116 are as described above, and will not be repeated here. A doped semiconductor capping layer 118 may be formed on the barrier layer 116 to deplete the two-dimensional electron gas (2-DEG) region to achieve a normally-off state of the HEMT. The doped semiconductor capping layer 118 may be one or more doped III-V semiconductor layers, such as GaN doped with p-type dopants or n-type dopants. Its composition can be GaN, AlGaN, InGaN or InAlGaN, and its dopant can be C, Fe, Mg or Zn, but not limited thereto. According to an embodiment, the doped semiconductor capping layer 118 may be a p-type GaN layer.

接著,根據本揭露一實施例,如第8圖所示,形成圖案化的摻雜半導體蓋層118於阻障層116上,可以利用微影和蝕刻製程形成圖案化的摻雜半導體蓋層118。然後,在HEMT的週邊形成隔離區120,以隔離相鄰的HEMT。根據一實施例,隔離區120貫穿阻障層116向下延伸至通道層114中,且與電隔離層112相隔一段距離。在一實施例中,隔離區120可以是淺溝槽隔離區(shallow trench isolation,STI),其可以經由蝕刻製程在阻障層116和通道層114中形成溝槽,然後在溝槽中填充一層或多層介電材料,例如氧化矽、氮化矽或前述之組合,並經過化學機械研磨(chemical mechanical polishing,CMP)製程而形成隔離區120。在另一實施例中,隔離區120可以利用離子佈植方式形成,使用硬遮罩覆蓋預定形成隔離區120以外的區域,將摻質佈植到阻障層116和通道層114中而形成隔離區120,摻質例如為氦或碳。 Next, according to an embodiment of the present disclosure, as shown in FIG. 8, a patterned doped semiconductor capping layer 118 is formed on the barrier layer 116, and the patterned doped semiconductor capping layer 118 can be formed by lithography and etching processes . Then, isolation regions 120 are formed around the HEMTs to isolate adjacent HEMTs. According to one embodiment, isolation region 120 extends through barrier layer 116 down into channel layer 114 and is spaced apart from electrical isolation layer 112 . In one embodiment, the isolation region 120 may be a shallow trench isolation (STI), which may form trenches in the barrier layer 116 and the channel layer 114 through an etching process, and then fill the trenches with a layer Or multiple layers of dielectric materials, such as silicon oxide, silicon nitride, or a combination thereof, are subjected to a chemical mechanical polishing (CMP) process to form the isolation region 120 . In another embodiment, the isolation region 120 can be formed by ion implantation, and a hard mask is used to cover the area outside the predetermined isolation region 120, and dopants are implanted into the barrier layer 116 and the channel layer 114 to form isolation In region 120, the dopant is, for example, helium or carbon.

接著,根據本揭露一實施例,如第9圖所示,在隔離區120和阻障層116上形成第一鈍化層128-1,以及在摻雜半導體蓋層118的兩側形成源極電極122和汲極電極124。在一實施例中,源極電極122和汲極電極124貫穿第一鈍化層128-1和阻障層116,向下延伸至通道層114中,使得源極電極122和汲極電極124的底部高於隔離區120的底部,並且低於通道層114的頂面。在另一實施例中,源極電極 122和汲極電極124貫穿第一鈍化層128-1,向下延伸至阻障層116中,使得源極電極122和汲極電極124的底部高於隔離區120的底部,並且低於阻障層116的頂面。 Next, according to an embodiment of the present disclosure, as shown in FIG. 9 , a first passivation layer 128 - 1 is formed on the isolation region 120 and the barrier layer 116 , and source electrodes are formed on both sides of the doped semiconductor cap layer 118 122 and drain electrode 124. In one embodiment, the source electrode 122 and the drain electrode 124 extend through the first passivation layer 128-1 and the barrier layer 116 and extend down into the channel layer 114, so that the bottom of the source electrode 122 and the drain electrode 124 Above the bottom of isolation region 120 and below the top surface of channel layer 114 . In another embodiment, the source electrode 122 and the drain electrode 124 penetrate the first passivation layer 128-1 and extend down into the barrier layer 116, so that the bottom of the source electrode 122 and the drain electrode 124 is higher than the bottom of the isolation region 120 and lower than the barrier The top surface of layer 116 .

根據一實施例,可先沉積第一鈍化層128-1以覆蓋隔離區120、阻障層116和摻雜半導體蓋層118,然後在第一鈍化層128-1、阻障層116和通道層114中形成分別位於摻雜半導體蓋層118兩側的源極電極122和汲極電極124的接觸洞,然後,於接觸洞內及第一鈍化層128-1上沉積導電材料層。在一實施例中,可以經由化學機械研磨製程形成源極電極122和汲極電極124,且露出摻雜半導體蓋層118的頂面,其中源極電極122和汲極電極124的頂面可以與摻雜半導體蓋層118的頂面齊平。在另一實施例中,在沉積導電材料層之後,可以使用蝕刻製程以移除接觸洞之外的導電材料層,以形成源極電極122和汲極電極124,且摻雜半導體蓋層118的頂面仍可以被第一鈍化層128-1覆蓋。 According to an embodiment, the first passivation layer 128-1 may be deposited to cover the isolation region 120, the barrier layer 116 and the doped semiconductor capping layer 118, and then the first passivation layer 128-1, the barrier layer 116 and the channel layer may be deposited. Contact holes for the source electrode 122 and the drain electrode 124 on both sides of the doped semiconductor cap layer 118 are formed in 114, and then a conductive material layer is deposited in the contact holes and on the first passivation layer 128-1. In one embodiment, the source electrode 122 and the drain electrode 124 can be formed through a chemical mechanical polishing process, and the top surface of the doped semiconductor cap layer 118 is exposed, wherein the top surface of the source electrode 122 and the drain electrode 124 can be The top surface of the doped semiconductor capping layer 118 is flush. In another embodiment, after the conductive material layer is deposited, an etching process may be used to remove the conductive material layer outside the contact holes to form the source electrode 122 and the drain electrode 124 , and to doped the semiconductor cap layer 118 . The top surface may still be covered by the first passivation layer 128-1.

根據一實施例,源極電極122和汲極電極124可以是單層或多層的結構,且其組成可以包括歐姆接觸金屬。其中,歐姆接觸金屬係指可以和半導體層(例如通道層114)產生歐姆接觸(ohmic contact)的金屬、合金或其堆疊層,例如是Ti、Ti/Al、Ti/Al/Ti/TiN、Ti/Al/Ti/Au、Ti/Al/Ni/Au或Ti/Al/Mo/Au,但不限定於此。 According to an embodiment, the source electrode 122 and the drain electrode 124 may be a single-layer or multi-layer structure, and the composition may include an ohmic contact metal. Wherein, the ohmic contact metal refers to a metal, an alloy or a stacked layer thereof that can produce ohmic contact with the semiconductor layer (eg, the channel layer 114 ), such as Ti, Ti/Al, Ti/Al/Ti/TiN, Ti /Al/Ti/Au, Ti/Al/Ni/Au or Ti/Al/Mo/Au, but not limited thereto.

接著,根據本揭露一實施例,如第10圖所示,形成第二鈍化層128-2覆蓋第一鈍化層128-1、摻雜半導體蓋層118、源極電極122和汲極電極124,第一鈍化層128-1和第二鈍化層128-2可以合併稱為鈍化層128。然後,在第二鈍化層128-2中形成閘極電極126的接觸洞125,以露出摻雜半導體蓋層118的頂面。根據本揭露一實施例,對於摻雜半導體蓋層118的頂面設置有蝕刻停止層(圖未示)之情形,蝕刻停止層可以被暴露出於接觸洞125。其中,蝕刻停止層可用於保護摻雜半導體蓋層118,以避免摻雜半導體蓋層118直接接觸形成接觸洞125時所採用的蝕刻劑。之後,於接觸洞125內及第二鈍化層128-2上沉積導電材料層,經過微 影和蝕刻製程將導電材料層圖案化後,形成如第1圖所示之閘極電極126。根據一實施例,閘極電極126的頂面高於鈍化層128的頂面。在另一實施例中,閘極電極126的一部分還可以延伸至鈍化層128的頂面上。 Next, according to an embodiment of the present disclosure, as shown in FIG. 10, a second passivation layer 128-2 is formed to cover the first passivation layer 128-1, the doped semiconductor cap layer 118, the source electrode 122 and the drain electrode 124, The first passivation layer 128 - 1 and the second passivation layer 128 - 2 may be collectively referred to as the passivation layer 128 . Then, a contact hole 125 of the gate electrode 126 is formed in the second passivation layer 128 - 2 to expose the top surface of the doped semiconductor capping layer 118 . According to an embodiment of the present disclosure, in the case where an etch stop layer (not shown) is disposed on the top surface of the doped semiconductor cap layer 118 , the etch stop layer may be exposed to the contact holes 125 . The etch stop layer can be used to protect the doped semiconductor capping layer 118 to prevent the doped semiconductor capping layer 118 from directly contacting the etchant used for forming the contact hole 125 . Afterwards, a conductive material layer is deposited in the contact hole 125 and on the second passivation layer 128-2. After the conductive material layer is patterned by the shadow and etching process, the gate electrode 126 as shown in FIG. 1 is formed. According to one embodiment, the top surface of the gate electrode 126 is higher than the top surface of the passivation layer 128 . In another embodiment, a portion of the gate electrode 126 may also extend to the top surface of the passivation layer 128 .

根據一實施例,閘極電極126可以是單層或多層的結構,例如是包含第一導電層和第二導電層的雙層結構。其中,第一導電層可以直接接觸摻雜半導體蓋層118,且其組成包括蕭特基接觸金屬。其中,蕭特基接觸金屬係指可以和半導體層(例如摻雜半導體蓋層118)產生蕭特基接觸(Schottky contact)的金屬、合金或其堆疊層,例如是TiN、W、Pt、Ni或Ni,但不限定於此。第二導電層的組成可以包括Ti、Al、Au、Mo,但不限定於此。根據一實施例,第一導電層還可以包含耐火性金屬的金屬氮化物,且耐火性金屬可選自由鈦、鋯、鉿、釩、鈮、鉭、鉻、鉬、鎢、錳、鎝、錸、釕、鋨、銠及銥所構成之群組。 According to an embodiment, the gate electrode 126 may be a single-layer or multi-layer structure, for example, a double-layer structure including a first conductive layer and a second conductive layer. The first conductive layer can directly contact the doped semiconductor capping layer 118, and its composition includes Schottky contact metal. Wherein, the Schottky contact metal refers to a metal, an alloy or a stacked layer thereof that can form a Schottky contact with a semiconductor layer (eg, the doped semiconductor cap layer 118 ), such as TiN, W, Pt, Ni or Ni, but not limited to this. The composition of the second conductive layer may include Ti, Al, Au, Mo, but is not limited thereto. According to an embodiment, the first conductive layer may further comprise metal nitrides of refractory metals, and the refractory metals may be selected from titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, onium, rhenium , the group consisting of ruthenium, osmium, rhodium and iridium.

根據一實施例,第一鈍化層128-1和第二鈍化層128-2的材料包含氧化鋁(Al2O3)、氮化矽(Si3N4)、氮氧化矽(SiON)、或氧化矽(SiO2),並且第一鈍化層128-1和第二鈍化層128-2的材料可以相同。在另一實施例中,第一鈍化層128-1和第二鈍化層128-2的材料可以不同。 According to an embodiment, the materials of the first passivation layer 128-1 and the second passivation layer 128-2 include aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon oxynitride (SiON), or Silicon oxide (SiO 2 ), and the materials of the first passivation layer 128-1 and the second passivation layer 128-2 may be the same. In another embodiment, the materials of the first passivation layer 128-1 and the second passivation layer 128-2 may be different.

根據本揭露的實施例目的之一,可以避免超晶格結構與電隔離層之間產生電流傳輸路徑。根據本揭露的實施例另一目的之一,以避免相鄰的HEMT之間發生漏電流的互相干擾問題。此不但改善了封裝前裸晶針測(CP)測試的正確度,而能更正確判斷HEMT是否符合電性規格,同時還能維持HEMT的2-DEG效能,改善了HEMT的電性表現。 According to one of the objectives of the embodiments of the present disclosure, the generation of a current transmission path between the superlattice structure and the electrical isolation layer can be avoided. According to another objective of the embodiments of the present disclosure, the problem of mutual interference of leakage current between adjacent HEMTs is avoided. This not only improves the accuracy of the bare die pin test (CP) test before packaging, but also more accurately determines whether the HEMT meets the electrical specifications, while maintaining the 2-DEG performance of the HEMT and improving the electrical performance of the HEMT.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:高電子遷移率電晶體 100: High electron mobility transistor

102:基底 102: Substrate

104:成核層 104: Nucleation layer

106:超晶格結構 106: Superlattice Structure

106-1:第一超晶格堆疊 106-1: The first superlattice stack

106-2:第二超晶格堆疊 106-2: Second Superlattice Stack

110:組成漸變層 110: Composition of gradient layers

112:電隔離層 112: Electrical isolation layer

114:通道層 114: channel layer

116:阻障層 116: Barrier layer

118:摻雜半導體蓋層 118: Doping semiconductor capping layer

120:隔離區 120: Quarantine

122:源極電極 122: source electrode

124:汲極電極 124: drain electrode

126:閘極電極 126: gate electrode

128:鈍化層 128: Passivation layer

130:二維電子氣區域 130: Two-dimensional electron gas region

Claims (12)

一種半導體結構,包括:一超晶格結構,設置於一基底上;一電隔離層,設置於該超晶格結構上;一通道層,設置於該電隔離層上;以及一組成漸變層,設置於該電隔離層與該超晶格結構之間,其中該電隔離層包括碳摻雜的氮化鎵(C-GaN),該組成漸變層與該超晶格結構包含一相同的第三族元素,且在該組成漸變層中的該相同的第三族元素的原子百分比從該超晶格結構到該電隔離層的方向上逐漸減少。 A semiconductor structure, comprising: a superlattice structure disposed on a substrate; an electrical isolation layer disposed on the superlattice structure; a channel layer disposed on the electrical isolation layer; and a composition gradient layer, disposed between the electrical isolation layer and the superlattice structure, wherein the electrical isolation layer comprises carbon-doped gallium nitride (C-GaN), the compositionally graded layer and the superlattice structure comprise a same third Group elements, and the atomic percentage of the same Group III elements in the compositionally graded layer gradually decreases in the direction from the superlattice structure to the electrical isolation layer. 如請求項1所述之半導體結構,更包括一拉伸應力層,設置於該超晶格結構與該組成漸變層之間,其中該拉伸應力層包含該相同的第三族元素。 The semiconductor structure of claim 1, further comprising a tensile stress layer disposed between the superlattice structure and the compositionally graded layer, wherein the tensile stress layer includes the same Group III element. 如請求項2所述之半導體結構,其中該拉伸應力層中的該相同的第三族元素的平均原子濃度高於該組成漸變層中的該相同的第三族元素的平均原子濃度。 The semiconductor structure of claim 2, wherein the average atomic concentration of the same Group III element in the tensile stress layer is higher than the average atomic concentration of the same Group III element in the compositionally graded layer. 如請求項2所述之半導體結構,其中該組成漸變層的組成包括氮化鋁鎵(AlxGa(1-x)N),其中0.1<x<0.5,且x值從該超晶格結構到該電隔離層的方向上逐漸減少,該拉伸應力層的組成包括氮化鋁(AlN)。 The semiconductor structure of claim 2, wherein the composition of the compositionally graded layer comprises aluminum gallium nitride ( AlxGa (1-x) N), wherein 0.1<x<0.5, and the value of x is derived from the superlattice structure Decreasing in the direction of the electrical isolation layer, the composition of the tensile stress layer includes aluminum nitride (AlN). 如請求項2所述之半導體結構,其中該拉伸應力層的厚度為該電隔 離層厚度的0.2%到2%。 The semiconductor structure of claim 2, wherein the tensile stress layer has a thickness equal to the electrical spacer 0.2% to 2% of the thickness of the separation layer. 如請求項1所述之半導體結構,其中該組成漸變層包含一摻質,且該摻質包括碳或鐵。 The semiconductor structure of claim 1, wherein the compositionally graded layer comprises a dopant, and the dopant comprises carbon or iron. 如請求項1所述之半導體結構,其中該電隔離層包含另一第三族元素,且該組成漸變層包含該另一第三族元素,在該組成漸變層中的該另一第三族元素的原子百分比從該超晶格結構到該電隔離層的方向上逐漸增加。 The semiconductor structure of claim 1, wherein the electrical isolation layer comprises another Group III element, and the compositionally graded layer comprises the other Group III element, the other Group III element in the compositionally graded layer The atomic percentage of elements gradually increases in the direction from the superlattice structure to the electrical isolation layer. 如請求項1所述之半導體結構,其中該電隔離層包含一碳摻質,且在該電隔離層中的該碳摻質的濃度從該組成漸變層到該通道層的方向上逐漸增加。 The semiconductor structure of claim 1, wherein the electrical isolation layer comprises a carbon dopant, and the concentration of the carbon dopant in the electrical isolation layer gradually increases from the compositionally graded layer to the channel layer. 如請求項1所述之半導體結構,其中該組成漸變層中的該相同的第三族元素的平均原子濃度低於該超晶格結構中的該相同的第三族元素的平均原子濃度。 The semiconductor structure of claim 1, wherein the average atomic concentration of the same Group III element in the compositionally graded layer is lower than the average atomic concentration of the same Group III element in the superlattice structure. 如請求項1所述之半導體結構,其中該超晶格結構包括複數個成對堆疊的一第一超晶格層和一第二超晶格層,該第一超晶格層具有拉伸應力,該第二超晶格層具有壓縮應力,且該第二超晶格層堆疊於該第一超晶格層上,該組成漸變層的底部接觸最上層的該第二超晶格層,該組成漸變層中的該相同的第三族元素的平均原子濃度高於該些第二超晶格層中的該相同的第三族元素的平均原子濃度。 The semiconductor structure of claim 1, wherein the superlattice structure comprises a first superlattice layer and a second superlattice layer stacked in pairs, and the first superlattice layer has tensile stress , the second superlattice layer has compressive stress, and the second superlattice layer is stacked on the first superlattice layer, the bottom of the composition graded layer contacts the second superlattice layer of the uppermost layer, the The average atomic concentration of the same Group III element in the compositionally graded layer is higher than the average atomic concentration of the same Group III element in the second superlattice layers. 如請求項1所述之半導體結構,其中該組成漸變層的厚度為該電隔離層厚度的0.5%到5%。 The semiconductor structure of claim 1, wherein the thickness of the compositionally graded layer is 0.5% to 5% of the thickness of the electrical isolation layer. 一種高電子遷移率電晶體,包括:一如請求項1所述之半導體結構;一阻障層,設置於該通道層上;一摻雜半導體蓋層,設置於該阻障層上;一閘極電極,設置於該摻雜半導體蓋層上;以及一源極電極和一汲極電極,分別設置於該閘極電極的兩側。 A high electron mobility transistor, comprising: a semiconductor structure as claimed in claim 1; a barrier layer disposed on the channel layer; a doped semiconductor cap layer disposed on the barrier layer; a gate The electrode electrode is arranged on the doped semiconductor cap layer; and a source electrode and a drain electrode are respectively arranged on both sides of the gate electrode.
TW110123356A 2021-06-25 2021-06-25 Semiconductor structure and high electron mobility transistor TWI768985B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110123356A TWI768985B (en) 2021-06-25 2021-06-25 Semiconductor structure and high electron mobility transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110123356A TWI768985B (en) 2021-06-25 2021-06-25 Semiconductor structure and high electron mobility transistor

Publications (2)

Publication Number Publication Date
TWI768985B true TWI768985B (en) 2022-06-21
TW202301675A TW202301675A (en) 2023-01-01

Family

ID=83104118

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110123356A TWI768985B (en) 2021-06-25 2021-06-25 Semiconductor structure and high electron mobility transistor

Country Status (1)

Country Link
TW (1) TWI768985B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602715A (en) * 2022-11-17 2023-01-13 英诺赛科(苏州)半导体有限公司(Cn) Semiconductor device and forming method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201612990A (en) * 2014-09-16 2016-04-01 Toshiba Kk Semiconductor device and a method of manufacturing the same
US20160126312A1 (en) * 2014-10-30 2016-05-05 Semiconductor Components Industries, Llc Semiconductor structure including a doped buffer layer and a channel layer and a process of forming the same
TW202017187A (en) * 2018-10-26 2020-05-01 世界先進積體電路股份有限公司 High electron mobility transistor and methods for forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201612990A (en) * 2014-09-16 2016-04-01 Toshiba Kk Semiconductor device and a method of manufacturing the same
US20160126312A1 (en) * 2014-10-30 2016-05-05 Semiconductor Components Industries, Llc Semiconductor structure including a doped buffer layer and a channel layer and a process of forming the same
TW202017187A (en) * 2018-10-26 2020-05-01 世界先進積體電路股份有限公司 High electron mobility transistor and methods for forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115602715A (en) * 2022-11-17 2023-01-13 英诺赛科(苏州)半导体有限公司(Cn) Semiconductor device and forming method thereof

Also Published As

Publication number Publication date
TW202301675A (en) 2023-01-01

Similar Documents

Publication Publication Date Title
CN112490286B (en) Semiconductor device and manufacturing method thereof
JP6649208B2 (en) Semiconductor device
TWI775276B (en) High electron mobility transistor and fabrication method thereof
CN112490285B (en) Semiconductor device and method for manufacturing the same
CN110476254A (en) Heterojunction transistor with vertical structure
US11967642B2 (en) Semiconductor structure, high electron mobility transistor and fabrication method thereof
US20250015174A1 (en) Method of fabricating high electron mobility transistor
TWI768985B (en) Semiconductor structure and high electron mobility transistor
TWI790655B (en) Semiconductor structure and high electron mobility transistor
TWI740554B (en) High electron mobility transistor
CN116936629A (en) Semiconductor element and manufacturing method thereof
US20220293779A1 (en) High electron mobility transistor and fabrication method thereof
CN116960172A (en) Semiconductor components and manufacturing methods
CN112490278B (en) Semiconductor epitaxial structures with reduced defects
TWI846726B (en) Enhancement mode high electron mobility transistor
US11942519B2 (en) Semiconductor structure and high electron mobility transistor
CN115548087A (en) Semiconductor structure and high electron mobility transistor
TWI755277B (en) High electron mobility transistor and fabrication method thereof
CN113451403A (en) High electron mobility transistor and manufacturing method thereof
CN111902945A (en) Semiconductor device and method for manufacturing the same
TWI794599B (en) High electron mobility transistor and fabrication method thereof
CN115513276A (en) Semiconductor structure and high electron mobility transistor
CN113871476A (en) High electron mobility transistor and high voltage semiconductor device
TWI795022B (en) High electron mobility transistor
TW202341484A (en) Semiconductor device and manufacturing method thereof