[go: up one dir, main page]

TW201211533A - Microfluidic device for simultaneous detection of multiple conditions in a patient - Google Patents

Microfluidic device for simultaneous detection of multiple conditions in a patient Download PDF

Info

Publication number
TW201211533A
TW201211533A TW100119241A TW100119241A TW201211533A TW 201211533 A TW201211533 A TW 201211533A TW 100119241 A TW100119241 A TW 100119241A TW 100119241 A TW100119241 A TW 100119241A TW 201211533 A TW201211533 A TW 201211533A
Authority
TW
Taiwan
Prior art keywords
probe
nucleic acid
gas
target
acid sequence
Prior art date
Application number
TW100119241A
Other languages
Chinese (zh)
Inventor
Kia Silverbrook
Alireza Moini
Mehdi Azimi
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201211533(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201211533A publication Critical patent/TW201211533A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A microfluidic device for simultaneous detection of multiple conditions in a patient, the microfluidic device having an inlet for receiving a sample of biological material drawn from the patient, a microsystems technologies (MST) layer with a detection section having an array of probes for reaction with target molecules in the sample to form probe-target complexes, the target molecules being indicative of medical conditions in the patient, and, a photosensor for detecting the probe-target complexes, wherein, the array of probes has more than 1000 probes.

Description

201211533 六、發明說明: 【發明所屬之技術領域】 本發明關於使用微系統技術(MST)之診斷裝置。特別 是,本發明關於用於分子診斷之微流體和生化之處理及分 析。 【先前技術】 φ 分子診斷已用於:可於病徵顯現之前,提供早期疾病 檢測預示之領域。分子診斷試驗係用於檢測: •遺傳病症 •後天病症 •傳染性疾病 •與健康有關情況之基因易致病因素 由於有高準確度及快速處理時間,分子診斷試驗得以 減少無效健康照護的發生、增進病患預後(patient outcome)、 φ 改進疾病管理及個體化患者照護。分子診斷的許多技術係 基於自生物樣本(諸如血液或唾液)萃取及擴增之特定核酸( 去氧核糖核酸(DNA)以及核糖核酸(RNA)兩者)的檢測及辨 識。核酸鹼基的互補特性,使經合成之DNA的短序列(寡 核苷酸)得以與特定核酸序列結合(雜交),以供核酸試驗使 用。若雜交發生,則互補序列存在於樣本中。這使得例如 預測個人未來會得到的疾病、判定感染性病原體的種類及 致病性,或判定個人對藥物的反應成爲可能。 -5- 201211533 以核酸爲基之分子診斷試驗 以核酸爲基之試驗有四個獨立步驟: 1. 樣本製備 2. 核酸萃取 3. 核酸擴增(任意的) 4. 檢測 許多樣本類型,諸如血液、尿液、痰和組織樣本,係 用於基因分析。診斷試驗判定所需的樣本類型,因爲並非 所有樣本皆可代表疾病進程。這些樣本具有各種組分,但 通常只有其中之一受到關注。例如,在血液中,高濃度的 紅血球可抑制致病微生物的檢測。因此,在核酸試驗一開 始時通常需要純化及/或濃縮步驟。 血液是最常請求的樣本類型之一。其具有三種主要組 分:白血球、紅血球及血小板。血小板加速凝血且在活體 外維持活性。爲了抑制凝血,該試樣在純化與濃縮之前與 諸如伸乙二胺四乙酸(EDTA)的試劑混合。通常自樣本移除 紅血球以濃縮標靶細胞。在人體中,紅血球佔細胞物質之 約99%,但其不帶有DNA因彼不具細胞核。此外,紅血 球含有諸如血紅素之可能干擾下游核酸擴增程序(描述於 下)的成分。藉由溶解溶液差示(differentially)溶解紅血球 可完成紅血球之移除,而留下完整之其餘細胞物質,接著 可利用離心自樣本分離其餘之細胞物質。此提供自其萃取 核酸之濃縮標靶細胞。 用於萃取核酸之確切規程取決於樣本及待實施之診斷 -6- 201211533 分析。例如,用於萃取病毒RNA之規程與用於萃取基因 組DNA之規程相當不同。然而,自標靶細胞萃取核酸通 常包含細胞溶解步驟及接續的核酸純化。細胞溶解步驟使 細胞及細胞核膜破裂,而釋放出遺傳物質。此經常使用溶 胞清潔劑來完成,溶胞清潔劑係諸如十二院基硫酸鈉,其 亦使存在於細胞中之大量蛋白質變性。 接著以酒精沉澱步驟純化核酸,此步驟通常使用冰乙 φ 醇或異丙醇,或是經由固相純化步驟純化核酸,該固相純 化步驟通常在管柱中的二氧化矽基材、樹脂或在高濃度的 離液鹽存在下之順磁珠粒上進行,接著清洗核酸,然後以 低離子強度之緩衝液進行洗提。在核酸沉澱之前一個選擇 性步驟是加入蛋白酶,該酶消化蛋白質以進一步純化該樣 本。 其他的溶胞方法包括經由超聲振動之機械式溶胞以及 將樣本加熱至94t以破壞細胞膜之熱溶胞。 φ 標靶DNA_或RNA可以極小量存在於經萃取之物質中 ,尤其是若標靶來自致病性來源。核酸擴增提供選擇性擴 增(即複製)以低濃度存在之特定標靶至可檢測之量的能力 〇 最常使用的核酸擴增技術是聚合酶連鎖反應(PCR)。 PCR在此領域已廣爲所知,且關於此類型反應之完整描述 係提供於 E.van Pelt-Verkuil 等人之 Principles and Technical Aspects of PCR Amplification, Springer, 2008 〇 PCR爲有用之技術,其可在複雜DNA之背景中擴增 201211533 標靶DNA序列。若.欲(藉由pcr)擴增rna,首先必須使 用名爲反轉錄酶之酵素將RNA轉錄爲cDNA(互補DNA)。 隨後,藉由PCR擴增該得到之cdnA。 PCR爲指數型方法,只要維持反應的條件爲可接受的 即可繼續進行。PCR反應之成份爲:201211533 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a diagnostic apparatus using microsystem technology (MST). In particular, the present invention relates to the processing and analysis of microfluidics and biochemicals for molecular diagnostics. [Prior Art] φ molecular diagnostics have been used to provide an early indication of disease detection before the onset of symptoms. Molecular diagnostic tests are used to detect: • genetic disorders • acquired diseases • infectious diseases • genes associated with health-related genetic factors due to high accuracy and rapid processing time, molecular diagnostic tests can reduce the incidence of ineffective health care, Improve patient outcome, improve disease management, and individualized patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids (both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobase allows the short sequence (oligonucleotide) of the synthesized DNA to bind (hybridize) to a particular nucleic acid sequence for use in nucleic acid assays. If hybridization occurs, the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease that an individual will get in the future, to determine the type and pathogenicity of an infectious pathogen, or to determine an individual's response to a drug. -5- 201211533 Nucleic Acid-Based Molecular Diagnostic Tests Nucleic acid-based assays have four separate steps: 1. Sample preparation 2. Nucleic acid extraction 3. Nucleic acid amplification (optional) 4. Detection of many sample types, such as blood , urine, sputum and tissue samples for genetic analysis. Diagnostic tests determine the type of sample required, as not all samples represent disease progression. These samples have various components, but usually only one of them is of interest. For example, in the blood, high concentrations of red blood cells can inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are typically required at the beginning of the nucleic acid assay. Blood is one of the most frequently requested sample types. It has three main components: white blood cells, red blood cells, and platelets. Platelets accelerate coagulation and maintain activity outside the body. To inhibit coagulation, the sample was mixed with a reagent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In the human body, red blood cells account for about 99% of cellular material, but they do not carry DNA because they do not have a nucleus. In addition, red blood cells contain components such as heme that may interfere with downstream nucleic acid amplification procedures (described below). Red blood cell removal can be accomplished by dissolving the solution differentially red blood cells, leaving the entire remaining cellular material, which can then be separated from the sample by centrifugation. This provides a concentrated target cell from which the nucleic acid is extracted. The exact procedure used to extract nucleic acids depends on the sample and the diagnosis to be performed -6- 201211533 Analysis. For example, the protocol used to extract viral RNA is quite different from the protocol used to extract genomic DNA. However, extracting nucleic acids from a target cell typically involves a cell lysis step and subsequent nucleic acid purification. The cell lysis step ruptures the cell and nuclear membrane and releases the genetic material. This is often done using a lysing detergent such as sodium sulfoxide, which also denatures a large amount of protein present in the cells. The nucleic acid is then purified by an alcohol precipitation step, which is usually carried out using glacial alcohol or isopropanol, or by a solid phase purification step, usually in a column of cerium oxide substrate, resin or It is carried out on paramagnetic beads in the presence of a high concentration of chaotropic salts, followed by washing of the nucleic acids, followed by elution with a buffer of low ionic strength. A selective step prior to precipitation of the nucleic acid is the addition of a protease which digests the protein to further purify the sample. Other lysis methods include mechanical lysis via ultrasonic vibration and heating of the sample to 94t to disrupt thermal lysis of the cell membrane. The φ target DNA_ or RNA can be present in the extracted material in very small amounts, especially if the target is from a pathogenic source. Nucleic acid amplification provides the ability to selectively amplify (i.e., replicate) a particular target in a low concentration to a detectable amount. 〇 The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). PCR is well known in the art, and a complete description of this type of reaction is provided in E. van Pelt-Verkuil et al. Principles and Technical Aspects of PCR Amplification, Springer, 2008 〇 PCR is a useful technique. The 201211533 target DNA sequence was amplified in the context of complex DNA. If you want to amplify rna (by PCR), you must first use an enzyme called reverse transcriptase to transcribe RNA into cDNA (complementary DNA). Subsequently, the obtained cdnA was amplified by PCR. PCR is an exponential method and can be continued as long as the conditions for maintaining the reaction are acceptable. The components of the PCR reaction are:

1. 引子對一具有約10至30個與毗鄰(flanking)標靶序列之 區互補之核苷酸的短單股DN A 2. DNA聚合酶-合成DNA之熱穩定性酶 3. 去氧核糖核苷三磷酸(dNTP)-提供被倂入新合成之DNA 股之核苷酸 4. 緩衝液一提供DNA合成之理想化學環境。 PCR通常涉及將這些反應物置於含有經萃取之核酸的 小管(約1〇至50微升)。將管放置於循環熱反應器(thermal cycler)中;此反應器係使反應在一系列不同的溫度中進行 不等時間的儀器。每個熱循環的標準規程涉及變性相、退 火相和延伸相。延伸相有時候被稱爲引子延伸相。除了這 三步驟規程之外,亦可使用二步驟熱規程,其中退火相和 延伸相係經合倂。變性相通常涉及提升反應溫度至90至 95 °C以使DN A股變性;在退火相中,該溫度被降至50至 6(TC以使引子黏合;然後在延伸相中,該溫度被提升至最 佳DNA聚合酶活性溫度60至72°C以供引子延伸。此過程 被重複循環約20至40次,最終結果爲產生數百萬套介於 引子間之標靶序列拷貝。 已發展出用於分子診斷之許多標準PCR規程之變體, -8- 201211533 其中包括諸如多引子組PCR,連接子引發(linker-primed )PCR、直接PCR、重複序列(tandem)PCR、即時PCR以及 反轉錄酶PCR。 多引子組PCR在單一 PCR混合物中使用多重引子組 ,以產生對不同DNA序列具特異性之不同大小之擴增子 。藉由一次標靶(瞄準)多個基因,可自單一試驗得到額外 的資訊(以其他方式則需要數次試驗)。多引子組PCR之最 φ 佳化則較爲困難,因其需要選取具近似黏合溫度之引子及 具近似長度與鹼基組成之擴增子以確保各擴增子之擴增效 率相等。 連接子引發(linker-primed)PCR,又稱爲接合接合子 (ligation adapt〇r)PCR,係一種不需要標靶-特異性引子, 而能在複雜DN A混合物中使實質上所有DNA序列之核酸 擴增之方法。此方法首先以合適之限制內切酶(酵素)剪切 (digest)標靶DNA群。接著使用接合酶將具有合適懸端之 φ 雙股寡核苷酸連接子(亦稱爲接合子)與標靶DNA片段之末 端接合。接下來使用對連接子序列.具有特異性之寡核苷酸 引子進行核酸擴增。藉此,所有與連接子寡核苷酸毗鄰之 DNA來源的片段可被擴增。 直接PCR描述一種直接於樣本上實施PCR而不需要 任何(或最少)核酸萃取之系統。長久以來認爲未經純化之 生物樣本中存在的許多成分諸如血液中的原血紅素成分會 抑制PCR反應。因此在製備PCR反應混合物之前,習慣 上需要加強純化標靶核酸。然而,利用化學性質及樣本濃 -9- 201211533 度之適當變化,有可能僅需最少之DNA純化或以直接 PCR進行PCR。用於直接PCR之PCR化學性質的調整包 括提高緩衝液強度,使用具高活性及處理性(pr〇cessivity) 之聚合酶及與潛在聚合酶抑制劑螯合之添加物。 重複序列PCR利用兩次獨立的核酸擴增循環以增進擴 增正確擴增子的機率。重複序列PCR之一型爲巢式PCR, 其中兩對PCR引子被用於在不同的核酸擴增循環中擴增單 一基因座。第一對引子與位於標靶核酸序列以外之區域的 核酸序列雜交。第二對引子(巢式引子)係用於第二次擴增 ,該對引子結合於第一 PCR產物之內以產生含有標靶核酸 之第二PCR產物,且第二產物較第一產物爲短。此策略所 運用的論理爲:若第一次核酸擴增期間因失誤而擴增錯誤 之基因座,該錯誤基因座又被第二對引子再次擴增之機率 非常低,因此確保了特異性。 即時PCR或定量PCR被用於即時測量PCR產物之量 。藉由在反應中使用含有螢光團之探針或螢光染料以及一 組標準物,可測定樣本中之核酸的最初含量。此特別有用 於分子診斷學,其中治療選擇可能取決於樣本中病原體之 含量而有所不同。 反轉錄酶PCR(RT-PCR)係用於自RNA擴增DNA。反 轉錄酶係將 RNA反轉錄成互補 DNA(cDNA)之酶,該 cDNA接著藉由PCR擴增。RT-PCR被廣泛地用於表現分 析(expression profiling)以測定基因之表現或辨識RNA轉 錄物之序列,包括轉錄起始及終止位點。其亦用於擴增 -10- ⑧ 201211533 RNA病毒,諸如人類免疫不全病毒或C型肝炎病毒。 恆溫擴增係另一種形式之核酸擴增,此種擴增不依賴 擴增反應期間之標靶DNA熱變性,因此不需要精密複雜 的儀器。因此恆溫核酸擴增方法可在田野場所進行或在實 驗室以外之環境簡單地操作。一些恆溫核酸擴增方法已被 描述,包括股取代擴增(Strand Displacement Amplification)、 轉錄媒介性擴增(Transcription Mediated Amplification)、 核酸序列基底擴增(Nucleic Acid Sequence Based Amplification) 、重組酶聚合酶擴增(Recombinase Polymerase Amplification) 、滾環擴增(Rolling Circle Amplification)、分枝型擴增( Ramification Amplification)、解螺旋酶依賴性恆溫 DNA 擴增(H e 1 i c a s e - D ep e n d en t Isothermal DNA Amplification) 及環形恒溫擴增(Loop-Mediated Isothermal Amplification) o 恆溫核酸擴增不依賴持續加熱變性模板DNA以產生 φ 作爲繼續擴增之模板的單股分子,而是利用其他於恆溫下 之方法產生單股分子,諸如藉由特異性限制內核酸酶進行 DNA分子之酶切割,或是利用酶分開DNA雙股。 股取代擴增(SDA)依賴特定限制酶切割半修飾(hemi-m〇dified)DNA之未經修飾股之能力,以及缺乏5’-3’核酸 外切酶活性之聚合酶延伸及取代下游股之能力。然後藉由 偶合正義(sense)與反義(antisense)反應以達成指數性核酸 擴增,其中來自正義反應之股取代係反義反應之模板。此 反應所使用之切口酶不以慣用方式切割DNA,而是在 -11 - 201211533 DNA之一股上產生切口 ,諸如 N.Alwl、N.BstNBl及 Mlyl。SDA藉由使用熱穩定性限制酶(Aval)及熱穩定性外 聚合酶(B st聚合酶)之組合加以改進。此組合已經顯示可 使反應之擴增效率自1〇8倍擴增提高至101Q倍擴增,因此 可能可以利用此技術來擴增獨特之單拷貝分子。 轉錄介導擴增(TMA)及以核酸序列爲基擴增(NASB A) 使用RNA聚合酶複製RNA序列而非對應之基因組DNA。 此技術使用兩種引子及兩或三種酶,即RNA聚合酶、反 轉錄酶及選擇性之RNase Η(若反轉錄酶不具Rnase活性) 。其中的一種引子含有RNA聚合酶之啓動子序列。在核 酸擴增的第一步驟中,此引子於限定位點與標靶核糖體 RNA(rRNA)雜交。接著反轉錄酶自啓動子引子之3’端開始 延伸以產生該標靶rRNA之DNA拷貝。在所形成之RNA :DNA雙體中的RNA藉由該反轉錄酶之RNase活性(若有 的話)或額外之RN a se Η分解。在下一步驟中,第二引子 與DNA拷貝結合。新的DNA股係由反轉錄酶自此引子之 末端合成,產生雙股之DNA分子。RNA聚合酶辨識DNA 模板中之啓動子序列並開始轉錄。各個新合成之RNA擴 增子再進入過程中以作爲新的複製週期之模板。 在重組酶聚合酶擴增(RPA)中,特定DNA片段之恆温 擴增係經由使方向相反(opposing)之寡核苷酸引子與模板 DNA結合’再藉由DNA聚合酶延伸該等引子加以達成。 雙股D N A (d s D N A)模板之變性不需要加熱。取而代之地, RPA採用重組酶-引子複合物來掃描dsDNA以促進在同源 201211533 位點之股交換。該產生之結構係藉由單股DNA結合蛋白 與該經取代之模板股交互作用加以穩定,從而防止引子經 由分支遷移(branch migration)退出。重組酶解開使股取代 DNA聚合酶(諸如枯草芽孢桿菌P〇l I(BSU)之大片段)得以 接近之寡核苷酸之3’端,隨之而來的是引子延伸。指數型 核酸擴增則經此過程之重複循環完成。 解螺旋酶依賴性擴增(HDA)模擬活體內系統,其中使 φ 用DNA解螺旋酶以產生供引子雜交之單股模板,接著由 DNA聚合酶延伸引子。在HDA反應之第一步驟中,解螺 旋酶沿著標靶DNA穿過以打斷連接兩股間之氫鍵,該兩 股接著與單股結合蛋白結合。藉由解螺旋酶使單股標靶區 暴露後引子得以黏合。然後DNA聚合酶利用游離之去氧 核糖核苷三磷酸(dNTP)延伸各引子之3’端以製造二條 DNA複製股。該兩條dsDNA複製股各自進入下一個HDA 循環,導致該標靶序列之指數型核酸擴增。 φ 其他以DNA爲基礎之恆温技術包括滾環擴增(RCA), 其中DNA聚合酶圍繞環形DNA模板持續延伸引子,產生 由該環之許多重複拷貝所組成之長DNA產物。在反應結 束前,該聚合酶產生成千上萬份該環形模板之拷貝,且該 等拷貝之鏈被繫留於該原始標靶DNA上。此方式允許標 靶之空間解離及信號之快速核酸擴增。一小時至多可產生 1〇12份模板拷貝。分枝型擴增係RCA之一種變型,其使 用封閉之環形探針(C-探針)或掛鎖探針及具有高延伸性 (processivity)之DNA聚合酶以在恆温條件下指數型擴增 -13- 201211533 該C-探針。 環形恒溫擴增(LAMP)提供高選擇性,其採用dnA聚 合酶及一組經特別設計之四個引子,該等引子可辨識標耙 DNA上共ό個不同之序列。包含標祀DNA之正義及反義 股序列之內引子啓動LAMP。隨後由外引子啓動之股取代 DNA合成釋放單股DNA。此單股DNA可作爲由第二內引 子及外引子啓動之DNA合成的模板,該第二內引子及外 引子係與標IE之另一端雜交,該DNA合成產生莖環(stem-loop)DNA結構。在後續之LAMP循環中,一個內引子與 產物上之環雜交並啓動取代性DN A合成,產生原始之莖 環DNA及具有兩倍長之莖的新率環DNA。該循環反應在 —個小時以內持續累積1 09份標靶拷貝。最終產物爲具有 數個該標靶之反向重複子及菜花狀結構之莖環DNA,該菜 花狀結構中之多個環係因同一股中交替反向之標靶重複子 互相黏連而形成。 完成核酸擴增後,必須分析該擴增產物以測定是否產 生預期之擴增子(標靶核酸之擴增量)。分析產物之方法可 從簡單地透過凝膠電泳測定該擴增子之大小,到利用DN A 雜交以鑑定該擴增子之核苷酸組成。 凝膠電泳係檢査核酸擴增方法是否產生預期之擴增子 最簡單的方法。凝膠電泳利用施加於凝膠基質之電場以分 離DNA片段。帶負電之DNA片段將以不同速度在基質中 移動,該速度主要取決於片段大小。電泳完成後’將凝膠 中之片段染色以使其可視化。溴化乙錠係常用之染劑’其 -14- ⑧ 201211533 在紫外光下顯現出螢光。 片段之大小係藉由與DNA尺寸標記(DNA ladder)比較 來測定,該等標記含有已知大小之DNA片段且在凝膠上 與擴增子並排泳行。由於寡核苷酸引子與毗鄰標靶DNA 之特定位點結合,因此擴增產物之大小可被預測及檢測爲 凝膠上已知大小之帶。爲了確定該擴增子之正確性,或者 若產生數個擴增子,則通常採用與擴增子雜交之DNA探 •針。 DNA雜交係指藉由互補鹼基配對形成雙股DNA。用 於明確辨識特定擴增產物之DNA雜交需要使用長度約20 個核苷酸之DNA探針。若探針具有與擴增子(標靶)DNA 序列互補之序列,雜交將可在適當溫度、pH値和離子濃 度之條件下發生。若發生雜交,則該受到關注之基因或 DNA序列存在於原始樣本中。 光學檢測係最常用於偵測雜交之方法。擴增子及探針 φ 中之一者係經螢光劑或電化學發光劑之標示以發射光。這 些方法之差異在於使光產生基團產生激發狀態之裝置,但 二者均可用於共價標示核苷酸股。就電化學發光(ECL)而 言,光係由電流刺激發光基團分子或複合物產生。以螢光 而言,其係受到激發光之照射而導致發射光。 螢光係利用發光源及偵測單位加以偵測,該發光源提 供由該螢光分子吸收之波長的激發光。該偵測單位包括一 個偵測發射信號之光感應器(諸如光電倍增管或電荷耦合 裝置(C CD)陣列)及防止激發光被包含在光感應器輸出之裝 -15- 201211533 置(諸如波長選擇過濾器)。該螢光分子發射斯托克斯位移 (Stokes shifted)光以回應激發光,此發射之光則由偵測單 位收集。斯托克斯位移係發射光與被吸收之激發光之間的 頻率差異或波長差異。 ECL發射係利用光感應器檢測,該感應器對於所使用 之ECL物種的發射波長具敏感性。例如,過渡金屬-配體 複合物發射可視波長之光,因此習用之光電二極體和CCD 可被用來作爲光感應器。ECL的一項優點在於,若遮蔽環 境光線,ECL之發射光即爲檢測系統中之唯一光線,因此 增進敏感性。 微陣列能讓數以百千計之DNA雜交試驗得以同時進 行。微陣列係強大之分子診斷工具,其可在單一試驗中篩 選數千種基因疾病或檢測眾多感染性病原體之存在。微陣 列係由許多不同的DNA探針所組成,該等探針經固定爲 受質上之點。首先將標靶DNA(擴增子)以螢光或發光分子 標示(不論在核酸擴增期間亦或在核酸擴增之後),接著施 用標靶DNA至探針微陣列。該微陣列係於溫度控制、潮 濕環境中培養數小時或數天以使探針及擴增子之間發生雜 交。在培養後,微陣列必須經一系列緩衝液清洗以移除未 結合之股。待清洗後即用氣流(通常爲氮氣)乾燥微陣列表 面。雜交及清洗之嚴謹度至關重要。嚴謹度不足可能導致 高度非特異性結合。嚴謹度過高可能導致無法適當結合, 造成敏感性降低。雜交係藉由檢測與互補探針形成雜交物 之標示擴增子所發射之光加以識別。 -16- 201211533 來自微陣列之螢光係利用微陣列掃描器檢測,掃描器 通常是由電腦控制之倒立掃描式螢光共軛焦顯微鏡,該顯 微鏡通常使用雷射激發螢光染劑及光感應器(諸如光電倍 增管或CCD)檢測該發射信號。螢光分子發射斯托克斯位 移光(如上所述),該光係由檢測單元收集。 該發射之螢光必須經過收集、與未吸收之激發波長分 開並傳輸至檢測器。在微陣列掃描器中,通常使用裝設在 φ 影像面之共軛焦針孔光圈的共軛焦配置以消除非聚焦(out-〇f-focus)之資訊。此裝置使得只有聚焦部分之光會被檢測 。來自目標之聚焦面以上及以下的光無法進入檢測器,因 此提高信噪比。該經檢測之螢光光子被檢測器轉換成電能 ,接著再被轉換成數位信號。此數位信號轉譯成數字,該 數字代表來自給定像素之螢光的強度。陣列之每項特徵係 由一或多個該等像素組成。掃描之最終結果係陣列表面之 影像。由於在微陣列上之每種探針之確切序列及位置係已 Φ 知的,因此可同時辨識及分析與之雜交之標靶序列。 有關螢光探針之更多資訊請見: http://www.premierbiosoft.com/tech_notes/FRET_probe.html 及 http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-1. A short single strand of DN A 2. DNA polymerase-synthesized DNA thermostable enzyme having a nucleotide complementary to a region of about 10 to 30 flanking target sequences 3. Deoxyribose Nucleoside triphosphate (dNTP) - provides nucleotides that are incorporated into newly synthesized DNA strands. 4. Buffer - provides the ideal chemical environment for DNA synthesis. PCR typically involves placing these reactants in a vial containing about the extracted nucleic acid (about 1 to 50 microliters). The tube is placed in a thermal cycler; the reactor is a device that allows the reaction to take unequal time at a range of different temperatures. The standard procedures for each thermal cycle involve the denaturing phase, the annealing phase, and the extended phase. The extension phase is sometimes referred to as the primer extension phase. In addition to these three-step procedures, a two-step thermal procedure can also be used in which the annealing phase and the extension phase are combined. The denatured phase typically involves raising the reaction temperature to 90 to 95 °C to denature the DN A strand; in the annealed phase, the temperature is reduced to 50 to 6 (TC to bond the primer; then in the extended phase, the temperature is raised The optimal DNA polymerase activity temperature is 60 to 72 ° C for primer extension. This process is repeated about 20 to 40 times, and the final result is to generate millions of copies of the target sequence between the primers. Variants of many standard PCR protocols for molecular diagnostics, -8- 201211533 These include, for example, multiple primer set PCR, linker-primed PCR, direct PCR, tandem PCR, real-time PCR, and reverse transcription Enzyme PCR Multi-initiator PCR uses multiple primer sets in a single PCR mix to generate different sizes of amplicons specific for different DNA sequences. By single target (targeting) multiple genes, one can experiment from a single experiment. Get extra information (in other ways, it takes several trials). The most φ optimization of multi-initiator PCR is more difficult because it requires the selection of primers with approximate adhesion temperature and the extension of approximate length and base composition. To ensure equal amplification efficiency of each amplicon. Linker-primed PCR, also known as ligation adaptor PCR, is a type that does not require a target-specific primer. A method of amplifying a nucleic acid of substantially all DNA sequences in a complex DN A mixture. This method first digests the target DNA population with a suitable restriction endonuclease (enzyme). The ligase will then have a suitable suspension. The φ double-stranded oligonucleotide linker (also known as a conjugate) is ligated to the end of the target DNA fragment. Next, nucleic acid amplification is performed using an oligonucleotide primer having specificity for the linker sequence. Thus, all DNA-derived fragments contiguous with the linker oligonucleotide can be amplified. Direct PCR describes a system that performs PCR directly on a sample without any (or minimal) nucleic acid extraction. Many components present in the purified biological sample, such as the protohemoglobin component in the blood, inhibit the PCR reaction. Therefore, it is customary to enhance the purification of the target nucleic acid before preparing the PCR reaction mixture. Chemical properties and appropriate changes in sample concentration -9-201211533 degrees, it is possible to perform minimal DNA purification or PCR by direct PCR. The PCR chemistry for direct PCR involves increasing buffer strength and using high activity. Pr〇cessivity polymerase and addition to potential polymerase inhibitors. Repeat PCR utilizes two separate nucleic acid amplification cycles to increase the probability of amplifying the correct amplicon. One type is nested PCR, in which two pairs of PCR primers are used to amplify a single locus in different nucleic acid amplification cycles. The first pair of primers hybridize to a nucleic acid sequence located in a region other than the target nucleic acid sequence. A second pair of primers (nested primers) is used for the second amplification, the pair of primers being incorporated within the first PCR product to produce a second PCR product comprising the target nucleic acid, and the second product is short. The rationale used in this strategy is that if the wrong locus is amplified due to a mistake during the first nucleic acid amplification, the probability that the wrong locus is re-amplified by the second pair of primers is very low, thus ensuring specificity. Real-time PCR or quantitative PCR is used to measure the amount of PCR product in real time. The initial amount of nucleic acid in the sample can be determined by using a probe containing a fluorophore or a fluorescent dye and a set of standards in the reaction. This is especially useful for molecular diagnostics where the choice of treatment may vary depending on the amount of pathogen in the sample. Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. The reverse transcriptase is an enzyme that reverse transcribes RNA into complementary DNA (cDNA), which is then amplified by PCR. RT-PCR is widely used for expression profiling to determine the expression of a gene or to identify sequences of an RNA transcript, including transcription initiation and termination sites. It is also used to amplify -10- 8 201211533 RNA viruses, such as human immunodeficiency virus or hepatitis C virus. The isothermal amplification is another form of nucleic acid amplification that does not rely on the thermal denaturation of the target DNA during the amplification reaction, thus eliminating the need for sophisticated instruments. Therefore, the thermostatic nucleic acid amplification method can be carried out in a field place or simply in an environment other than the laboratory. Some thermostatic nucleic acid amplification methods have been described, including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Expansion Recombinase Polymerase Amplification, Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent Thermostatic DNA Amplification (H e 1 icase - D ep end en t Isothermal DNA Amplification Loop-Mediated Isothermal Amplification o Constant-temperature nucleic acid amplification does not rely on continuous heating to denature template DNA to produce φ as a template for continued amplification of the template, but to generate a single using other methods at constant temperature. A strand of a molecule, such as enzymatic cleavage of a DNA molecule by specific restriction of an endonuclease, or separation of a DNA double strand by an enzyme. Strand-substituted amplification (SDA) relies on the ability of specific restriction enzymes to cleave unmodified strands of hemi-m〇dified DNA, and polymerase extensions that lack 5'-3' exonuclease activity and replace downstream stocks Ability. Exponential nucleic acid amplification is then achieved by coupling sense and antisense, wherein the strand from the sense reaction replaces the template for the antisense reaction. The nicking enzyme used in this reaction does not cleave the DNA in a conventional manner, but instead produces an incision in one of the -11 - 201211533 DNA strands, such as N.Alwl, N.BstNBl, and Mlyl. SDA is improved by using a combination of a thermostable restriction enzyme (Aval) and a thermostable external polymerase (B st polymerase). This combination has been shown to increase the amplification efficiency of the reaction from 1-8 fold amplification to 101Q fold amplification, so it is possible to utilize this technique to amplify unique single copy molecules. Transcription-mediated amplification (TMA) and nucleic acid sequence-based amplification (NASB A) RNA polymerase is used to replicate RNA sequences rather than corresponding genomic DNA. This technique uses two primers and two or three enzymes, RNA polymerase, reverse transcriptase, and selective RNase Η (if reverse transcriptase does not have Rnase activity). One of the primers contains a promoter sequence of RNA polymerase. In the first step of nucleic acid amplification, the primer hybridizes to the target ribosomal RNA (rRNA) at a defined site. The reverse transcriptase then extends from the 3' end of the promoter primer to produce a DNA copy of the target rRNA. The RNA in the formed RNA:DNA dimer is decomposed by the RNase activity (if any) of the reverse transcriptase or additional RN a se. In the next step, the second primer binds to the DNA copy. The new DNA strand is synthesized by reverse transcriptase from the end of this primer to produce a double-stranded DNA molecule. RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription. Each newly synthesized RNA expander is re-entered as a template for a new replication cycle. In recombinase polymerase amplification (RPA), isothermal amplification of a specific DNA fragment is achieved by binding an oppositely directed oligonucleotide primer to the template DNA and then extending the primers by a DNA polymerase. . Denaturation of the double-stranded D N A (d s D N A) template does not require heating. Instead, RPA uses a recombinase-introduction complex to scan dsDNA to facilitate stock exchange at the homologous 201211533 locus. The resulting structure is stabilized by the interaction of a single strand of DNA binding protein with the substituted template strand, thereby preventing the primer from exiting via branch migration. Recombinase unwinding allows the strand-substituted DNA polymerase (such as a large fragment of B. subtilis P〇l I (BSU)) to be accessible to the 3' end of the oligonucleotide, followed by primer extension. Exponential nucleic acid amplification is accomplished by repeated cycles of this process. The helicase-dependent amplification (HDA) mimics an in vivo system in which φ is used with DNA helicase to generate a single-strand template for primer hybridization, followed by extension of the primer by DNA polymerase. In the first step of the HDA reaction, the de-enzyme is passed along the target DNA to interrupt the hydrogen bond between the two strands, which in turn binds to the single-stranded binding protein. The primers are bonded by exposing the single-strand target region by helicase. The DNA polymerase then uses the free deoxyribonucleoside triphosphate (dNTP) to extend the 3' end of each primer to make two DNA replicas. The two dsDNA replication strands each enter the next HDA cycle, resulting in amplification of the exponential nucleic acid of the target sequence. φ Other DNA-based thermostating techniques include rolling circle amplification (RCA) in which a DNA polymerase extends the primer around a circular DNA template to produce a long DNA product consisting of many repeat copies of the loop. Prior to the end of the reaction, the polymerase produced tens of thousands of copies of the circular template and the copies of the strands were tethered to the original target DNA. This approach allows for spatial dissociation of the target and rapid nucleic acid amplification of the signal. A copy of 1 to 12 templates can be generated in one hour. A variant of the branched-type amplification system RCA that uses a closed circular probe (C-probe) or a padlock probe and a DNA polymerase with high processivity to exponentially expand under constant temperature conditions - 13- 201211533 The C-probe. Circular thermostat amplification (LAMP) provides high selectivity using dnA polymerase and a set of four specially designed primers that recognize a total of different sequences on the standard DNA. The primers within the sense and antisense strand sequences containing the standard DNA initiate LAMP. The strands initiated by the exogenous primers then replace the DNA synthesis to release a single strand of DNA. The single-stranded DNA can serve as a template for DNA synthesis initiated by a second primer and an external primer, and the second primer and the foreign primer are hybridized to the other end of the standard IE, and the DNA is synthesized to produce stem-loop DNA. structure. In the subsequent LAMP cycle, an internal primer hybridizes to the loop on the product and initiates a substitutional DN A synthesis, producing the original stem-loop DNA and a new rate of loop DNA with twice as long stems. The cycle reaction continued to accumulate 1 09 copies of the target within - hours. The final product is a stem-loop DNA having a plurality of inverted repeats of the target and a cauliflower-like structure, wherein the plurality of loops in the cauliflower-like structure are formed by adhering mutually overlapping target repeats in the same strand. . After completion of nucleic acid amplification, the amplification product must be analyzed to determine whether or not the expected amplicon (amplification amount of the target nucleic acid) is produced. The method of analyzing the product can be carried out by simply measuring the size of the amplicon by gel electrophoresis to hybridization with DN A to identify the nucleotide composition of the amplicon. Gel electrophoresis is the easiest way to check whether a nucleic acid amplification method produces the desired amplicon. Gel electrophoresis utilizes an electric field applied to a gel matrix to separate DNA fragments. Negatively charged DNA fragments will move in the matrix at different rates, depending on the fragment size. After the electrophoresis is completed, the fragments in the gel are stained to visualize them. The commonly used dyeing agent for ethidium bromide is -14- 8 201211533. It shows fluorescence under ultraviolet light. The size of the fragments is determined by comparison with DNA ladders containing DNA fragments of known size and migrating side by side with the amplicons on the gel. Since the oligonucleotide primer binds to a specific site adjacent to the target DNA, the size of the amplification product can be predicted and detected as a band of known size on the gel. In order to determine the correctness of the amplicon, or if several amplicons are produced, a DNA probe that hybridizes to the amplicon is typically employed. DNA hybridization refers to the formation of double stranded DNA by complementary base pairing. DNA hybridization of about 20 nucleotides in length is required for DNA hybridization to clearly identify a particular amplification product. If the probe has a sequence complementary to the amplicon (target) DNA sequence, hybridization will occur at the appropriate temperature, pH and ion concentration. If hybridization occurs, the gene or DNA sequence of interest is present in the original sample. Optical detection systems are most commonly used to detect hybridization methods. One of the amplicon and probe φ is labeled with a fluorescent agent or an electrochemical luminescent agent to emit light. These methods differ in that they cause the photo-generating group to produce an excited state, but both can be used to covalently label nucleotide strands. In the case of electrochemiluminescence (ECL), the light system is generated by current stimulating luminescent group molecules or complexes. In the case of fluorescence, it is irradiated with excitation light to cause light to be emitted. The fluorescent system is detected by a light source and a detection unit that provides excitation light of a wavelength absorbed by the fluorescent molecule. The detection unit includes a light sensor (such as a photomultiplier tube or a charge coupled device (C CD) array) that detects the transmitted signal and prevents the excitation light from being included in the output of the light sensor -15-201211533 (such as wavelength Select filter). The fluorescent molecules emit Stokes shifted light in response to the excitation light, which is collected by the detection unit. The Stokes shift is the difference in frequency or wavelength between the emitted light and the absorbed excitation light. The ECL emission system is detected using a light sensor that is sensitive to the emission wavelength of the ECL species used. For example, transition metal-ligand complexes emit light of a visible wavelength, so conventional photodiodes and CCDs can be used as light sensors. An advantage of ECL is that if the ambient light is shielded, the ECL emits light that is the only light in the detection system, thus increasing sensitivity. Microarrays allow hundreds of thousands of DNA hybridization experiments to be performed simultaneously. Microarrays are powerful molecular diagnostic tools that screen thousands of genetic diseases or detect the presence of numerous infectious pathogens in a single experiment. The microarray consists of a number of different DNA probes that are fixed at the point of acceptance. The target DNA (amplicon) is first labeled with fluorescent or luminescent molecules (either during nucleic acid amplification or after nucleic acid amplification), followed by application of the target DNA to the probe microarray. The microarray is cultured in a temperature controlled, humidified environment for hours or days to cause hybridization between the probe and the amplicon. After incubation, the microarray must be washed through a series of buffers to remove unbound strands. After cleaning, the microarray surface is dried with a gas stream (usually nitrogen). The rigor of hybridization and cleaning is critical. Insufficient stringency may result in highly non-specific binding. Excessive rigor may result in inability to properly combine, resulting in reduced sensitivity. Hybridization is identified by detecting the light emitted by the labeled amplicon of the hybridizing probe with the complementary probe. -16- 201211533 Fluorescence from microarrays is detected by a microarray scanner, which is usually a computer-controlled inverted scanning fluorescent conjugated focus microscope that typically uses laser-excited fluorescent dyes and light-sensing The transmitter (such as a photomultiplier tube or CCD) detects the transmitted signal. The fluorophore emits a Stokes bit shift (as described above) which is collected by the detection unit. The emitted fluorescent light must be collected, separated from the unabsorbed excitation wavelength and transmitted to the detector. In a microarray scanner, a conjugate focal configuration of a conjugate focal hole aperture mounted on the φ image plane is typically used to eliminate out-〇f-focus information. This device allows only the light of the focused portion to be detected. Light from above and below the focal plane of the target cannot enter the detector, thus increasing the signal to noise ratio. The detected fluorescent photons are converted into electrical energy by a detector and then converted into a digital signal. This digital signal is translated into a number that represents the intensity of the fluorescence from a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. Since the exact sequence and position of each probe on the microarray is known, the target sequence to which it is hybridized can be simultaneously identified and analyzed. More information on fluorescent probes can be found at: http://www.premierbiosoft.com/tech_notes/FRET_probe.html and http://www.invitrogen.com/site/us/en/home/References/Molecular- Probes-The-

Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-

Energy-Transfer-FRET.html 定點照護0〇1>^-(^-〇八1^)分子診斷 雖然分子診斷試驗提供許多好處,但是此類檢測在臨 -17- 201211533 床實驗室之成長仍較預期的緩慢,還不是實驗室醫學檢驗 之主流。這主要是因爲相較於不涉及核酸方法之檢測而言 ,核酸檢測導致較高之複雜性及成本。在臨床環境中廣泛 地採用分子診斷檢驗係與儀器設備之發展密切相關,該儀 器設備必須能顯著降低成本、提供自始(樣本處理)至終(產 生結果)快速及自動化之分析,且不須大幅人力干預之運 作。 定點照護技術可在醫師辦公室、醫院床側或甚至以消 費者爲主之居家環境提供照護,此技術可提供許多優點包 括: · •快速獲得結果,以便立即採取治療及改善照護品質 •可自非常少量之樣本檢驗獲得實驗室數値 •減少臨床工作量 •減少實驗室工作量及藉由減少行政工作以增進辦公 室效率 •經由減少住院天數、門診病患可在初診時得到確診 及減少樣本之處理、儲存及運送而改善每位病患成本 •有助於臨床管理決策諸如感染控制及抗生素使用 以實驗室晶片(LOC)爲基之分子診斷 以微流體技術爲基礎之分子診斷系統提供可自動化及 加速分子診斷分析之裝置。較短之檢測時間主要是因爲所 需之樣本體積極少、自動化及在微流體裝置內之低開銷內 置級聯式之診斷方法步驟。以奈升及微升爲規模之體積亦 ⑧ -18- 201211533 減少試劑消耗及成本。實驗室晶片(LOC)裝置係常見之微 流體裝置形式。LOC裝置具有在MST層內之MST結構以 用於將流體處理整合至單一支持受質(通常爲矽)上。利用 半導體產業之VLSI(超大型積體電路)平版印刷技術製造使 各LOC裝置之單位成本非常低廉。然而,控制流體流經 LOC裝置、添加試劑、控制反應條件等等需要大型之外部 水電工程裝置。連接LOC裝置至這些外部裝置大幅地限 φ 制1〇(:裝置之分子診斷用途於實驗室環境中。外部儀器 之費用及其操作複雜性排除以LOC爲基之分子診斷作爲 定點照護環境中之選擇。 有鑑於此,需要可供定點照護使用之以LOC裝置爲 基之分子診斷系統。 【發明內容】 本發明之各種態樣現由下列編號段落說明。 φ GAS080.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針;及 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子。 GAS 08 0.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 -19- 201211533 GAS 080.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS080.4 較佳地,該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS080.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS080.6 較佳地’該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS080.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 080.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS080.9 較佳地’該發光團係有機金屬錯合物。 GAS080.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子》 GAS080.il 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS080.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 -20- 201211533 GAS080.1 3 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS080.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS080.1 5 較佳地,該等光電二極體具有用於接受 φ 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS080.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團'之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 φ 該光電二極體與該工作電極之間。 GAS080.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使與該主動表面區域光耦合之表面區 域大於該光電二極體之主動表面區域之5 0%。 GAS080.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 -21 - 201211533 GAS080.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS080.20 較佳地,該 LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 電化學發光具有在微流體環境中之控制位置產生有效 光之優點。另外,與感測器同步化相較於諸如螢光之技術 係更爲便利。此LOC裝置具有較不複雜之設計及製造要 求之好處,因此將導致更簡單、更可靠之製造》此能夠更 敏感且更具特異性地檢測標的DN Α。 GAS08 1 · 1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 支持基板; 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)有機金屬錯合物之探 針;及 用於產生有機金屬錯合物之激發狀態之電極,在該激 發狀態中該有機金屬錯合物發射光之光子;及 介於該支持基板與該等探針之間的CMOS電路以用於 施加電壓至該等電極。 GAS08 1.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該有機金屬錯合物之光子發射之功能性部分 ⑧ -22- 201211533 GAS08 1.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該有機金屬錯 合物之光子發射之功能性部分係進一步源自該有機金屬錯 合物。 GAS081.4 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 φ GAS081.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS081.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS081.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS081.8 較佳地,該陽極和陰極之間係相隔0.4 φ 微米至2.0微米寬之介電間隙。 GAS081.9 較佳地,該有機金屬錯合物係有機釕錯 合物。 GAS081.10 較佳地,該LOC裝置亦具有在電化學 發光期間與該有機金屬錯合物一起存在之電化學共反應物 〇 GAS081.il 較佳地’該CMOS電路倂有光感應器以 用於感測由該有機金屬錯合物所發射之光子。 GAS081.12 較佳地,該LOC裝置亦具有雜交室之 -23- 201211533 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS 081.13 較佳地,該CMOS電路係位於該等雜交 室與該支持基板之間,以使該光感應器鄰近該等雜交室。 GAS081.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS081.15 較佳地,該等光電二極體具有用於接受 來自該有機金屬錯合物之光的平面主動表面區域,各該等 主動表面區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS08 1.16 較佳地,各該等電極對中之一個電極係 導致該有機金屬錯合物之氧化或還原以產生發射光子之激 發物種之工作電極,該工作電極之位置係經配置以使該等 探針介於該光電二極體與該工作電極之間。 GAS081.17 較佳地,該等光電二極體具有用於接受 來自該有機金屬錯合物之光的平面主動表面區域,且該工 作電極具有與該光電二極體之主動表面區域光耦合之表面 區域,該工作電極係經配置以使該經光耦合之表面區域大 於該光電二極體之主動表面區域之50%。 -24- 201211533 GAS081.18 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS081.19 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該C Μ Ο S電路操作控制。 GAS08 1.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 電化學發光具有在微流體環境中之控制位置產生有效 光之優點。另外,與感測器同步化相較於諸如螢光之技術 係更爲便利。此LOC裝置具有較不複雜之設計及製造要 求之好處,因此將導致更簡單、更可靠之製造。此化學之 好處在於該報告子錯合物在光子發射期間不會被消耗,其 提高給定報告子濃度之信號水平。 GAS082.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 支持基板; 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及有機釕錯合物之探針: 用於產生有機釕錯合物之激發狀態之電極,在該激發 狀態中該有機釕錯合物發射光之光子;及 用於施加電壓至該等電極之CMOS電路。 -25- 201211533 GAS082.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該有機釕錯合物之光子發射之功能性部分。 GAS 082.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該有機釕錯合 物之光子發射之功能性部分係進一步源自該有機釕錯合物 〇 GAS082.4 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS 08 2.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 082.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS082.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 082.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS082.9 較佳地,該光感應器具有用於接受來自 該有機釕錯合物之光的平面主動表面區域且該等電極在垂 直該主動表面區域之方向的厚度超過2微米。 GAS 08 2.1 0 較佳地,該LOC裝置亦具有在電化學 發光期間與該有機釕錯合物分子一起存在之電化學共反應 物。 GAS082.il 較佳地,該CMOS電路倂有光感應器以 201211533 用於感測由該有機釕錯合物分子所發射之光子。 GAS082.12 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS082.1 3 較佳地,該CMOS電路係位於該等雜交 φ 室與該支持基板之間,以使該光感應器鄰近該等雜交室。 GAS082.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS082.1 5 較佳地,該等光電二極體具有用於接受 來自該有機釕錯合物之光的平面主動表面區域,各該等主 動表面區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 φ 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS082.1 6 較佳地,各該等電極對中之一個電極係 導致該有機釕錯合物分子之氧化或還原以產生發射光子之 激發物種之工作電極,該工作電極之位置係經配置以使該 等探針介於該光電二極體與該工作電極之間。 GAS 08 2.1 7 較佳地,該等光電二極體具有用於接受 來自該有機釕錯合物分子之光的平面主動表面區域,且該 工作電極具有與該光電二極體之主動表面區域光耦合之表 •27- 201211533 面區域,該工作電極係經配置以使該經光耦合之表面區域 大於該光電二極體之主動表面區域之5 0%。 GAS08 2.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PC R)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS082.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS082.20 較佳地,該LOC裝置亦具有多個與該 CMO S電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 電化學發光具有在微流體環境中之控制位置產生有效 光之優點。另外,與感測器同步化相較於諸如螢光之技術 係更爲便利。此能夠更敏感且更具特異性地檢測標的DNA 。此LOC裝置具有較不複雜之設計及製造要求之好處, 因此將導致更簡單、更可靠之製造。此化學之好處在於該 報告子錯合物在光子發射期間不會被消耗,其提高給定報 告子濃度之信號水平。 GAS0 8 3.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針; 用於產生ECL發光團之激發狀態之電極,在該激發狀 -28- 201211533 態中該ECL發光團發射光之光子;及 在電化學發光期間與該發光團一起存在之電化學共反 應物。 GAS 08 3.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS083.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 φ 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 08 3.4 較佳地,該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS08 3.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS083.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 08 3.7 較佳地,該等電極具有分別具有手指狀 φ 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS08 3.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 • GAS083.9 較佳地,該發光團係有機金屬錯合物。 GAS 08 3. 1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS083.1 1 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 -29- 201211533 GAS083.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS083.1 3 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室》 GAS083.1 4 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS08 3.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 GAS08 3.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS 08 3.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 ⑧ -30- 201211533 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之5 0%。 GAS083.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。Energy-Transfer-FRET.html Fixed-point care 0〇1>^-(^-〇八1^) Molecular diagnosis Although molecular diagnostic tests offer many benefits, the growth of such tests in the clinical laboratory of Lin-17-201211533 is still relatively high. The slowness of expectations is not the mainstream of laboratory medical testing. This is primarily due to the higher complexity and cost of nucleic acid detection compared to assays that do not involve nucleic acid methods. The extensive use of molecular diagnostic testing in clinical settings is closely related to the development of instrumentation, which must significantly reduce costs, provide rapid (automatic) analysis from initial (sample processing) to final (resulting), and does not require The operation of substantial human intervention. Point-of-care technology can provide care in the physician's office, on the hospital bed side, or even in a consumer-focused home environment. This technology offers many advantages including: • Quick results, immediate treatment and improved care quality • Very self-contained A small number of samples to obtain the number of laboratories • Reduce clinical workload • Reduce laboratory workload and reduce administrative efficiency to improve office efficiency • Reduce hospitalization days, outpatients can be diagnosed at the initial diagnosis and reduced sample processing , storage and delivery to improve the cost per patient • Helps clinical management decisions such as infection control and antibiotic use. Laboratory wafer (LOC)-based molecular diagnostics provide micro-fluid technology-based molecular diagnostic systems that can be automated and A device that accelerates molecular diagnostic analysis. The shorter detection time is primarily due to the fact that the required sample volume is less active, automated, and low-cost built-in cascaded diagnostic method steps within the microfluidic device. The volume of nanoliters and microliters is also 8 -18- 201211533 to reduce reagent consumption and cost. Laboratory wafer (LOC) devices are a common form of microfluidic device. The LOC device has an MST structure within the MST layer for integrating fluid processing onto a single supporting substrate (usually helium). The unit cost of each LOC device is very low by manufacturing the VLSI (very large integrated circuit) lithography technology of the semiconductor industry. However, controlling the flow of fluid through the LOC device, adding reagents, controlling reaction conditions, and the like requires a large external hydroelectric engineering device. Connecting LOC devices to these external devices is significantly limited to φ1〇 (: molecular diagnostics of the device is used in a laboratory environment. The cost of external instruments and their operational complexity excludes LOC-based molecular diagnostics as a point-of-care environment. In view of this, there is a need for a molecular diagnostic system based on a LOC device for use in point-of-care. [Invention] Various aspects of the present invention are now described by the following numbered paragraphs. φ GAS080.1 This aspect of the invention Provided is a wafer on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: a nucleic acid sequence having a hybrid complementary to the target nucleic acid sequence for use in forming a probe-target hybrid and electrochemiluminescence (ECL) a probe of a luminophore; and an electrode for generating an excited state of the ECL luminophore, wherein the ECL luminophore emits photons of light in the excited state. GAS 08 0.2 Preferably, each probe has Resonance energy transfer to quench a functional portion of photon emission from the ECL luminophore. -19- 201211533 GAS 080.3 Preferably, the probe is configured to When the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL luminophore. GAS 080.4 Preferably, the LOC device also has a A CMOS circuit configured to provide electrical pulses to the electrodes. GAS 080.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS 080.6 preferably 'the current of the electrical pulse is between 0.1 Nai and 69.0 Preferably, the electrodes have an anode and a cathode each having a finger-like configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 080.8 Preferably The anode and the cathode are separated by a dielectric gap of 0.4 micrometers to 2.0 micrometers wide. GAS080.9 preferably 'the luminophore organometallic complex. GAS080.1 0 Preferably, the organometallic is misaligned Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. GAS 080.1 2 Preferably, the LOC device Also having an array of hybrid chambers, each of which The hybridization chambers each have a pair of electrodes and contain a plurality of probes, and the nucleic acid sequences of the probes in each of the hybridization chambers are different from the nucleic acid sequences in at least one other hybridization chamber in the array, such that the plurality of labeled nucleic acid sequences are Detected. -20- 201211533 GAS080.1 3 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate to make the photosensor adjacent to the hybrid Preferably, the light sensor is an array of photodiodes, the position of the photodiode array being configured such that each of the photodiodes respectively corresponds to one of the hybrid chambers By. GAS080.1 5 Preferably, the photodiodes have planar active surface regions for receiving φ light from the luminophore, each of the active surface regions being in the same plane, and the electrodes are patterned by one layer Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes 〇GAS080.1 6 preferably, each of the electrodes is centered One of the electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are between the photodiode and the working electrode between. GAS080.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode The working electrode is configured such that a surface area optically coupled to the active surface area is greater than 50% of an active surface area of the photodiode. GAS 080.1 8 Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. -21 - 201211533 GAS080.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS080.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology such as fluorescent. This LOC device has the benefit of less complex design and manufacturing requirements and will therefore result in a simpler, more reliable manufacturing that will detect the target DN 更 more sensitively and more specifically. GAS08 1 · 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: a support substrate; having complementary to the target nucleic acid sequence for formation a probe-target hybrid nucleic acid sequence and a probe for an electrochemiluminescence (ECL) organometallic complex; and an electrode for generating an excited state of the organometallic complex in which the organometallic is misaligned a photon that emits light; and a CMOS circuit between the support substrate and the probes for applying a voltage to the electrodes. GAS08 1.2 Preferably, each of the probes has a functional moiety for quenching photon emission from the organometallic complex by resonance energy transfer. 8-22-201211533 GAS08 1.3 Preferably, the probe is configured The functional moiety for quenching photon emission from the organometallic complex is further derived from the organometallic complex when the probe forms a probe-target hybrid. GAS 081.4 Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. φ GAS081.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 081.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. Preferably, the anode and the cathode are separated by a dielectric gap of 0.4 φ micrometers to 2.0 micrometers wide. GAS 081.9 Preferably, the organometallic complex is an organic ruthenium complex. GAS081.10 Preferably, the LOC device also has an electrochemical co-reactant 〇GAS081.il that is present with the organometallic complex during electrochemiluminescence. Preferably, the CMOS circuit has a light sensor for use. Photons emitted by the organometallic complex are sensed. GAS081.12 Preferably, the LOC device also has a hybridization chamber -23-201211533 array, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acids of the probes in each of the hybridization chambers The sequence is different from the nucleic acid sequence in at least one other hybridization chamber in the array such that a plurality of target nucleic acid sequences can be detected. GAS 081.13 Preferably, the CMOS circuit is positioned between the hybridization chambers and the support substrate such that the light sensor is adjacent to the hybridization chambers. Preferably, the light sensor is an array of photodiodes, the photodiode array being positioned such that each of the photodiodes corresponds to one of the hybridization chambers. GAS081.15 Preferably, the photodiodes have planar active surface regions for receiving light from the organometallic complex, each of the active surface regions being in the same plane, and the electrodes are one layer Patterned to form a separate conductive material of the anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes 〇GAS08 1.16, preferably, each of the electrodes is centered An electrode system causes oxidation or reduction of the organometallic complex to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode between. GAS081.17 Preferably, the photodiodes have a planar active surface region for receiving light from the organometallic complex, and the working electrode has optical coupling with an active surface region of the photodiode The surface region, the working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS081.19 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the C Ο S circuit. GAS 08 1.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology such as fluorescent. This LOC device has the benefit of less complex design and manufacturing requirements and therefore results in a simpler, more reliable manufacturing. The advantage of this chemistry is that the reporter complex is not consumed during photon emission, which increases the signal level for a given reporter concentration. GAS082.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: a support substrate; having complementary to the target nucleic acid sequence for use in forming a probe a nucleic acid sequence of a needle-target hybrid and a probe of an organic ruthenium complex: an electrode for generating an excited state of an organic ruthenium complex, wherein the organic ruthenium complex emits photons of light in the excited state; A CMOS circuit that applies a voltage to the electrodes. -25- 201211533 GAS082.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the organic germanium complex. GAS 082.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the organic ruthenium complex is further derived from The organic germanium complex 〇GAS082.4 preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS 08 2.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS 082.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 082.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 082.8 Preferably, the anode and cathode are separated by a dielectric gap of between 0.4 microns and 2.0 microns. GAS 082.9 Preferably, the light sensor has a planar active surface area for receiving light from the organic germanium complex and the electrodes have a thickness in the direction perpendicular to the active surface area of more than 2 microns. GAS 08 2.1 0 Preferably, the LOC device also has an electrochemical co-reactant with the organic ruthenium complex molecule during electrochemiluminescence. GAS082.il Preferably, the CMOS circuit has a light sensor for 201211533 for sensing photons emitted by the organic germanium complex molecule. GAS082.12 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers The nucleic acid sequences in at least one other hybridization chamber in the array are different such that a plurality of the subject nucleic acid sequences can be detected. GAS 082.1 3 Preferably, the CMOS circuit is positioned between the hybridization φ chamber and the support substrate such that the photosensor is adjacent to the hybridization chambers. Preferably, the light sensor is an array of photodiodes, the photodiode array being positioned such that each of the photodiodes corresponds to one of the hybridization chambers. GAS082.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the organic germanium complex, each of the active surface regions being in the same plane, and the electrodes are one layer Patterned to form the conductive material of the separate anode and cathode, the plane of the layer φ being parallel to the plane of the active surface region of the photodiodes 〇GAS082.1 6 preferably, each of these One of the electrode pairs causes oxidation or reduction of the organic ruthenium complex molecule to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiodes Between the body and the working electrode. GAS 08 2.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the organic germanium complex molecule, and the working electrode has an active surface region light with the photodiode Coupling Table • 27-201211533 Surface area, the working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS08 2.1 8 Preferably, the LOC device also has a polymerase interlocking reaction (PC R) portion for amplifying the target nucleic acid sequence in the sample. GAS 082.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS 082.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the benefit of less complex design and manufacturing requirements and will therefore result in a simpler, more reliable manufacturing. The benefit of this chemistry is that the reporter complex is not consumed during photon emission, which increases the signal level for a given reporter concentration. GAS0 8 3.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: having a nucleic acid sequence complementary to the target for forming a probe-target a nucleic acid sequence of a hybrid and a probe of an electrochemiluminescence (ECL) luminophore; an electrode for generating an excited state of an ECL luminophore, wherein the ECL luminophore emits photons of light in the excited state of -28-201211533; An electrochemical co-reactant present with the luminophore during electrochemiluminescence. GAS 08 3.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. GAS083.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional portion for quenching photon emission from the ECL luminophore φ is further derived from The ECL luminophore. GAS 08 3.4 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS08 3.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 08 3.7 Preferably, the electrodes have an anode and a cathode, each having a finger-like configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 08 3.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2.0 microns. • GAS 083.9 Preferably, the luminophore is an organometallic complex. GAS 08 3.10 Preferably, the organometallic complex is an organogermanium complex molecule. GAS 083.1 1 Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. -29-201211533 GAS083.1 2 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, the probes in each of the hybridization chambers The nucleic acid sequence is different from the nucleic acid sequence in at least one other hybridization chamber in the array such that a plurality of target nucleic acid sequences can be detected. Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybrid chambers GAS083.1 4 Preferably, the light sensor is an array of photodiodes, the position of the photodiode array being configured such that each of the photodiodes corresponds to one of the hybridization chambers. GAS08 3.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned ( To form a conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes. GAS08 3.1 6 Preferably, one of the electrode pairs A working electrode that causes oxidation or reduction of the luminophore to produce an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode. GAS 08 3.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode The 8-30-201211533 working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 083.1 8 Preferably, the LOC device also has a polymerase-associated reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample.

GAS083.19 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS083.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 電化學發光具有在微流體環境中之控制位置產生有效 光之優點。另外,與感測器同步化相較於諸如螢光之技術 係更爲便利。此能夠更敏感且更具特異性地檢測標的DNA 。此LOC裝置具有較不複雜之設計及製造要求之好處, 因此將導致更簡單、更可靠之製造。使用共反應物增加該 信號強度及減少產生該電化學發光信號所需之電壓。 GAS084.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 支持基板; 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針; 用於產生ECL發光團之激發狀態之電極,在該激發狀 -31 - 201211533 態中該EC L發光團發射光之光子;及 介於該支持基板與該等探針之間的CMOS電路以用於 施加電壓至該等電極。 GAS084.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS084.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 G A S 0 8 4.4 較佳地,該C Μ Ο S電路係經配置以提供 電脈衝至該等電極。 GAS084.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS084.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS084.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS084.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS084.9 較佳地,該發光團係有機金屬錯合物。 GAS084.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS084.il 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 -32- 201211533 GAS084.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS084.1 3 較佳地,該CMOS電路係位於該等雜交 室與該支持基板之間,以使該光感應器鄰近該等雜交室。 GAS084.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS 084.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS084.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS084.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 -33- 201211533 二極體之主動表面區域之50%。 GAS084.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS084.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS084.20 較佳地,該 LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 電化學發光具有在微流體環境中之控制位置產生有效 光之優點。另外,與感測器同步化相較於諸如螢光之技術 係更爲便利。此能夠更敏感且更具特異性地檢測標的DNA 。此LOC裝置具有較不複雜之設計及製造要求之好處, 因此將導致更簡單、更可靠之製造。此增加檢測標的分子 之特異性。 GAS08 5.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 支持基板; 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列、電化學發光(ECL)發光團及藉由共振能 量轉移以淬熄來自該ECL發光團之光子發射之功能性部分 之探針; -34- 201211533 用於產生EC L發光團之激發狀態之電極’在該激發狀 態中該ECL發光團發射光之光子;及 介於該支持基板與該等探針之間的CMOS電路以用於 施加電壓至該等電極。 GAS085.2 較佳地,該LOC裝置亦具有在電化學 發光期間與該發光團一起存在之電化學共反應物。 GAS 08 5.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團* GAS 0 8 5.4 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。如申請專利範圍之LOC裝置 GAS 08 5.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 08 5.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS08 5.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS085.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS08 5.9 較佳地,該發光團係有機金屬錯合物》 GAS085.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS085.il 較佳地,該CMOS電路倂有光感應器以 -35- 201211533 用於感測由該ECL發光團所發射之光子。 GAS 08 5.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS085.13 較佳地,該CMOS電路係位於該等雜交 室與該支持基板之間,以使該光感應器鄰近該等雜交室。 GAS 08 5.1 4 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS 08 5.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化( patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 GAS 08 5.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS 08 5.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 -36- ⑧ 201211533 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之50%。 GAS085.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS08 5.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 φ 經配置以由該C Μ Ο S電路操作控制。 GAS08 5.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 電化學發光具有在微流體環境中之控制位置產生有效 光之優點。另外,與感測器同步化相較於諸如螢光之技術 係更爲便利。此能夠更敏感且更具特異性地檢測標的DNA 。此LOC裝置具有較不複雜之設計及製造要求之好處, φ 因此將導致更簡單、更可靠之製造。該根據互補性之信號 改變所提供之優點在於獲得一致格式之信號之能力。不須 清洗、額外致敏化或顯影步驟以產生其強度隨著該標的之 存在而改變之信號。 GAS086.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列、電化學發光(ECL)發光團及藉由共振能 -37- 201211533 量轉移以淬熄來自該ECL發光團之光子發射之功能性部分 之探針;及 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子;其中在使用期間, 當形成探針-標的雜交體時,該功能性部分改變與該 發光團之接近程度。 GAS086.2 較佳地,該LOC裝置亦具有在電化學 發光期間與該發光團一起存在之電化學共反應物。 GAS086.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS086.4 較佳地,該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS 0 8 6.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS086.6 較佳地,該電脈衝之電流係介於〇.1奈 安培至69.0奈安培。 GAS086.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS086.8 較佳地,該陽極和陰極之間係相隔〇·4 微米至2微米寬之介電間隙》 GAS 086.9 較佳地,該發光團係有機金屬錯合物。 GAS086.1 0 較佳地,該有機金屬錯合物係有機釕錯 -38- 201211533 合物分子。 GAS086.11 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS 08 6.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS 086.1 3 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路之位置係經配置以介於該等雜交室與 該支持基板之間,以使該光感應器係鄰近該等雜交室。 GAS086.1 4 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS086.1 5 較佳地,該等光電二極體具有用於接受 φ 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化( patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS086.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 -39- 201211533 GAS 08 6.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之5 0%。 GAS086.1 8 較佳地,該 LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS 08 6.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS 08 6.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 電化學發光具有在微流體環境中之控制位置產生有效 光之優點。另外,與感測器同步化相較於諸如螢光之技術 係更爲便利。此能夠更敏感且更具特異性地檢測標的DNA 。此LOC裝置具有較不複雜之設計及製造要求之好處, 因此將導致更簡單、更可靠之製造。此增加檢測標的分子 之特異性。該根據互補性之信號改變所提供之優點在於獲 得一致格式之信號之能力。不須清洗、額外致敏化或顯影 步驟以產生其強度隨著該標的之存在而改變之信號。 GAS087.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(L0C)裝置,該LOC裝 201211533 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針; 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子;及 雜交室之陣列,各該等雜交室分別具有一對電極且含 有多種探針,在各該等雜交室中之探針的核酸序列係與該 φ 陣列中之至少一個其他雜交室中之核酸序列不同,以使得 多種標的核酸序列可被檢測。 GAS087.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS087.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS087.4 較佳地,該LOC裝置亦具有經配置以 Φ 提供電脈衝至該等電極之CMOS電路。 GAS 087.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS087.6 較佳地,該電脈衝之電流係介於〇·1奈 安培至69.0奈安培。 GAS087.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 08 7.8 較佳地,該陽極和陰極之間係相隔0 -4 -41 - 201211533 微米至2微米寬之介電間隙。 GAS 08 7.9 較佳地,該發光團係有機金屬錯合物。 GAS 08 7.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS087.il 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS 08 7.1 2 較佳地,該LOC裝置亦具有在電化學 發光期間與該發光團一起存在之電化學共反應物。 GAS 08 7.1 3 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS 08 7.1 4 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS087.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS 08 7.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 -42- 201211533 GAS08 7.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之5 0%。 GAS08 7.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 • 列。 GAS087.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS 08 7.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 電化學發光具有在微流體環境中之控制位置產生有效 φ 光之優點。另外,與感測器同步化相較於諸如螢光之技術 係更爲便利。此能夠更敏感且更具特異性地檢測標的DNA 。此LOC裝置具有較不複雜之設計及製造要求之好處, 因此將導致更簡單、更可靠之製造。此增加檢測標的分子 之特異性。具有平行反應部位之LOC裝置設計使平行診 斷檢測能以非常小之樣品體積進行,其增加所獲得之診斷 資料之範圍及品質。 GAS 088.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 -43- 201211533 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針; 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子;及 用於感測來自該ECL發光團所發射之光子之光感應器 〇 GAS088.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS08 8.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS088.4 較佳地,該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS08 8.5 較佳地,該電脈衝具有小於0.6 9秒之 期間。 GAS 08 8.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 08 8.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS08 8.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS088.9 較佳地,該發光團係有機金屬錯合物。 -44 - 201211533 GAS08 8.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS088.il 較佳地,該CMOS電路倂有該光感應器 以使該光感應器緊鄰該等雜交室。 GAS08 8.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 φ 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS08 8.1 3 較佳地,該L0C裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS088.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 φ GAS 088.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS 08 8.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 -45- 201211533 該光電二極體與該工作電極之間。 GAS 08 8.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之50%。 GAS 08 8.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS088.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該C Μ O S電路操作控制。 GAS 08 8.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 整合式光感應器相較於晶片外感測器設計具有較高光 效率之優點。整合式光感應器具有更容易與其他系統事件 同步化之優點。整合式光感應器具有減少離散組件數量之 優點。電化學發光具有在微流體環境中之控制位置產生有 效光之優點。另外,與感測器同步化相較於諸如螢光之技 術係更爲便利。此LOC裝置具有較不複雜之設計及製造 要求之好處,因此將導致更簡單、更可靠之製造。此能夠 更敏感且更具特異性地檢測標的DNA。 GAS 08 9. 1 本發明之此態樣提供一種用於檢測樣品 -46 - 201211533 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針; 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子;及 用於感測來自該ECL發光團所發射之光子之光感應器 :其中 該等電極係導電材料之板,該等板具有與該光感應器 光耦合之周邊邊緣。 GAS089.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS089.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS089.4 較佳地,該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS089.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 089.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS089.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 -47- 201211533 GAS089.8 較佳地,該陽極和陰極之間係相隔0.9 微米至2微米寬之介電間隙。 GAS089.9 較佳地,該發光團係有機金屬錯合物。 GAS089.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS089.il 較佳地,該CMOS電路倂有該光感應器 以使該光感應器緊鄰該等雜交室。 GAS089.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS 089.1 3 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS089.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS089.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 ⑧ 48 - 201211533 GAS08 9.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS089.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之5 0%。 GAS08 9.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS089.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該C Μ Ο S電路操作控制。 GAS089.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 整合式光感應器相較於晶片外感測器設計具有較高光 效率之優點。整合式光感應器具有更容易與其他系統事件 同步化之優點。整合式光感應器具有減少離散組件數量之 優點。電化學發光具有在微流體環境中之控制位置產生有 效光之優點。另外,與感測器同步化相較於諸如螢光之技 術係更爲便利。此能夠更敏感且更具特異性地檢測標的 -49- 201211533 DNA。此LOC裝置具有較不複雜之設計及製造要求之好 處,因此將導致更簡單、更可靠之製造。此LOC裝置設 計具有增加該光發射區與該光感應器之間的耦合之優點。 GAS090.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針; 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子;及 用於感測來自該ECL發光團所發射之光子之光感應器 :其中 該等電極具有至少一個導致該發光團之氧化或還原以 產生發射光子之激發物種之工作電極,該工作電極之位置 係緊鄰該光感應器。 GAS090.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該E C L發光團之光子發射之功能性部分。 GAS090.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS090.4 較佳地’該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 G A S 090.5 較佳地,該電脈衝具有小於0.69秒之 期間 -50- 201211533 GAS090.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS090.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 090.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 φ GAS090.9 較佳地,該發光團係有機金屬錯合物。 GAS090.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS090.1 1 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS090.12 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 φ 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS 090.1 3 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS090.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS090.1 5 較佳地,該等光電二極體具有用於接受 -51 - 201211533 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化( patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS090.1 6 較佳地,該等工作電極係導電材料之板 ,該等板定義一系列之手指狀構造以增加與該光感應器光 耦合之板的周邊邊緣長度。 GAS090.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之5 0%。 GAS090.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS090.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS090.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 整合式光感應器相較於晶片外感測器設計具有較高光 效率之優點。整合式光感應器具有更容易與其他系統事件 -52-GAS 083.19 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS 083.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the benefit of less complex design and manufacturing requirements and will therefore result in a simpler, more reliable manufacturing. The use of a co-reactant increases the signal intensity and reduces the voltage required to produce the electroluminescent signal. GAS084.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: a support substrate; having a complement to the target nucleic acid sequence for use in forming a probe a nucleic acid sequence of a needle-target hybrid and a probe of an electrochemiluminescence (ECL) luminophore; an electrode for generating an excited state of an ECL luminophore, wherein the EC L luminophore emits light in the excited state -31 - 201211533 a photon; and a CMOS circuit between the support substrate and the probes for applying a voltage to the electrodes. GAS 084.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional portion for quenching photon emission from the ECL luminophore is further derived from the ECL luminophore. G A S 0 8 4.4 Preferably, the C Μ Ο S circuit is configured to provide electrical pulses to the electrodes. GAS 084.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS 084.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 084.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 084.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2.0 microns. GAS 084.9 Preferably, the luminophore is an organometallic complex. GAS 084.1 0 Preferably, the organometallic complex is an organogermanium complex molecule. GAS 084. il. Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. -32- 201211533 GAS084.1 2 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, the probes in each of the hybridization chambers The nucleic acid sequence is different from the nucleic acid sequence in at least one other hybridization chamber in the array such that a plurality of target nucleic acid sequences can be detected. GAS 084.1 3 Preferably, the CMOS circuit is located between the hybridization chambers and the support substrate such that the light sensors are adjacent to the hybridization chambers. GAS 084.14 Preferably, the light sensor is an array of photodiodes, the photodiode array being configured such that each of the photodiodes corresponds to one of the hybridization chambers. GAS 084.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes being patterned ( Patterned to form a conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. GAS 084.1 6 Preferably, one of each of the pair of electrodes The electrode system causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode. GAS 084.1 7 Preferably, the photodiodes have a planar active surface area for receiving light from the luminophore, and the working electrode has a surface area optically coupled to an active surface area of the photodiode The working electrode is configured such that the surface area of the optical coupling is greater than 50% of the active surface area of the photo-33-201211533 diode. GAS 084.1 8 Preferably, the LOC device also has a polymerase linkage reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 084.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS 084.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the benefit of less complex design and manufacturing requirements and will therefore result in a simpler, more reliable manufacturing. This increases the specificity of the target molecule. GAS08 5.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: a support substrate; having a nucleic acid sequence complementary to the target for forming a probe a nucleic acid sequence of the target hybrid, an electrochemiluminescence (ECL) luminophore, and a probe for quenching a functional portion of photon emission from the ECL luminophore by resonance energy transfer; -34- 201211533 for generating EC L An electrode of an excited state of the luminophore 'in the excited state, the ECL luminophore emits photons of light; and a CMOS circuit interposed between the support substrate and the probes for applying a voltage to the electrodes. GAS 085.2 Preferably, the LOC device also has an electrochemical co-reactant present with the luminophore during electrochemiluminescence. GAS 08 5.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional portion for quenching photon emission from the ECL luminophore is further derived from the ECL Luminance* GAS 0 8 5.4 Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. Preferably, the electrical pulse has a period of less than 0.69 seconds, as in the patented LOC device GAS 08 5.5. GAS 08 5.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 08 5.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 085.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2 microns wide. GAS08 5.9 Preferably, the luminophore is an organometallic complex. GAS 085.1 0 Preferably, the organometallic complex is an organogermanium complex molecule. GAS085.il Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore with -35-201211533. GAS 08 5.1 2 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers The nucleic acid sequences in at least one other hybridization chamber in the array are different such that a plurality of target nucleic acid sequences can be detected. GAS085.13 Preferably, the CMOS circuit is positioned between the hybridization chambers and the support substrate such that the light sensor is adjacent to the hybridization chambers. GAS 08 5.1 4 Preferably, the light sensor is an array of photodiodes, the position of the photodiode array being configured such that each of the photodiodes respectively corresponds to one of the hybrid chambers . GAS 08 5.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned To form a conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiode. GAS 08 5.1 6 Preferably, one of each of the pair of electrodes The electrode system causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode. GAS 08 5.1 7 Preferably, the photodiodes have a planar active surface area for receiving light from the luminophore, and the working electrode has a surface area optically coupled to an active surface area of the photodiode The -36-8 201211533 working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 085.1 8 Preferably, the LOC device also has a polymerase chain reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 08 5.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence of the target and a polymerase, the heater element φ being configured to be operationally controlled by the C Ο S circuit. GAS 08 5.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the benefit of less complex design and manufacturing requirements, and φ will therefore result in a simpler, more reliable manufacturing. This signal change based on complementarity provides the advantage of obtaining a consistently formatted signal. There is no need to clean, otherwise sensitize or develop the steps to produce a signal whose intensity changes with the presence of the target. GAS086.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: having a nucleic acid sequence complementary to the target for forming a probe-target a nucleic acid sequence of a hybrid, an electrochemiluminescence (ECL) luminophore, and a probe that is capable of quenching a functional portion of photon emission from the ECL luminophore by resonance energy-37-201211533; and for generating ECL luminescence An electrode of an excited state of the cluster, in which the ECL luminophore emits photons of light; wherein during use, when a probe-target hybrid is formed, the functional moiety changes in proximity to the luminophore. GAS 086.2 Preferably, the LOC device also has an electrochemical co-reactant present with the luminophore during electrochemiluminescence. GAS086.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL luminophore. GAS 086.4 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 0 8 6.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 086.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 086.8 Preferably, the anode and cathode are separated by a dielectric gap of 4 micrometers to 2 micrometers wide. GAS 086.9 Preferably, the luminophore is an organometallic complex. GAS086.1 0 Preferably, the organometallic complex is an organic --38-201211533 conjugate molecule. GAS 086.11 Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. GAS 08 6.1 2 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers The nucleic acid sequences in at least one other hybridization chamber in the array are different such that a plurality of target nucleic acid sequences can be detected. GAS 086.1 3 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is positioned to be interposed between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybridization chamber . GAS086.1 4 Preferably, the light sensor is an array of photodiodes, the position of the photodiode array being configured such that each of the photodiodes respectively corresponds to one of the hybrid chambers . GAS086.1 5 Preferably, the photodiodes have planar active surface regions for receiving φ light from the luminophore, each of the active surface regions being in the same plane, and the electrodes are patterned by a layer Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiode 〇GAS086.1 6 Preferably, each of the electrodes is centered One of the electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode . -39- 201211533 GAS 08 6.1 7 Preferably, the photodiodes have a planar active surface area for receiving light from the luminophore, and the working electrode has an active surface area light with the photodiode The coupled surface region is configured such that the optically coupled surface region is greater than 50% of the active surface region of the photodiode. GAS 086.1 8 Preferably, the LOC device also has a polymerase linkage reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 08 6.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS 08 6.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the benefit of less complex design and manufacturing requirements and will therefore result in a simpler, more reliable manufacturing. This increases the specificity of the target molecule. The advantage of this signal change based on complementarity is the ability to obtain signals in a consistent format. There is no need to clean, additional sensitization or development steps to produce a signal whose intensity changes as the target is present. GAS087.1 This aspect of the invention provides a wafer-on-lab (L0C) device for detecting a target nucleic acid sequence in a sample, the LOC assembly 201211533 comprising: having a nucleic acid sequence complementary to the target for forming a probe a nucleic acid sequence of the target hybrid and a probe of an electrochemiluminescence (ECL) luminophore; an electrode for generating an excited state of the ECL luminophore, in which the photon of the ECL luminophore emits light; and a hybrid chamber An array, each of the hybridization chambers having a pair of electrodes and comprising a plurality of probes, wherein the nucleic acid sequence of the probes in each of the hybridization chambers is different from the nucleic acid sequence in at least one other hybridization chamber of the array of φ Multiple target nucleic acid sequences can be detected. GAS 087.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. GAS 087.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional portion for quenching photon emission from the ECL luminophore is further derived from the ECL luminophore. GAS 087.4 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 087.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. Preferably, the electrical current of the electrical pulse is between 〇·1 nanoamperes to 69.0 nanoamperes. GAS 087.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 08 7.8 Preferably, the anode and cathode are separated by a dielectric gap of 0 -4 -41 - 201211533 microns to 2 microns wide. GAS 08 7.9 Preferably, the luminophore is an organometallic complex. GAS 08 7.1 0 Preferably, the organometallic complex is an organogermanium complex molecule. GAS 087.il Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. GAS 08 7.1 2 Preferably, the LOC device also has an electrochemical co-reactant present with the luminophore during electrochemiluminescence. GAS 08 7.1 3 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybridization chambers. GAS 08 7.1 4 Preferably, the light sensor is an array of photodiodes, the position of the photodiode array being configured such that each of the photodiodes respectively corresponds to one of the hybrid chambers . GAS087.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes 〇GAS 08 7.1 6 Preferably, each of the electrodes is An electrode system causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode. -42- 201211533 GAS08 7.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has optical coupling with an active surface region of the photodiode The surface area of the working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 08 7.1 8 Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 087.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence that circulates the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS 08 7.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. Electrochemiluminescence has the advantage of producing effective φ light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the benefit of less complex design and manufacturing requirements and will therefore result in a simpler, more reliable manufacturing. This increases the specificity of the target molecule. The LOC device design with parallel reaction sites allows parallel diagnostic testing to be performed in very small sample volumes, which increases the range and quality of diagnostic data obtained. GAS 088.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC-43-201211533 comprising: having a nucleic acid sequence complementary to the target for formation a probe-target hybrid nucleic acid sequence and a probe for an electrochemiluminescence (ECL) luminophore; an electrode for generating an excited state of an ECL luminophore, in which the ECL luminophore emits photons of light; Light sensor 〇GAS088.2 for sensing photons emitted from the ECL luminophore. Preferably, each of the probes has a functional portion that is resonated by resonance energy transfer to quench photon emission from the ECL luminophore. GAS08 8.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS 088.4 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS08 8.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS 08 8.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 08 8.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS08 8.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2 microns wide. GAS 088.9 Preferably, the luminophore is an organometallic complex. -44 - 201211533 GAS08 8.1 0 Preferably, the organometallic complex is an organogermanium complex molecule. GAS088.il Preferably, the CMOS circuit is provided with the light sensor such that the light sensor is in close proximity to the hybrid chambers. GAS08 8.1 2 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers φ in the array differs in the nucleic acid sequence in at least one other hybridization chamber such that a plurality of target nucleic acid sequences can be detected. GAS 08 8.1 3 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybridization chambers. GAS 088.14 Preferably, the light sensor is an array of photodiodes, the positions of the photodiode array being configured such that each of the photodiodes corresponds to one of the hybridization chambers. φ GAS 088.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes 〇GAS 08 8.1 6 Preferably, each of the electrodes is An electrode system causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are between -45 and 201211533 and the photodiode is associated with the work Between the electrodes. GAS 08 8.1 7 Preferably, the photodiodes have a planar active surface area for receiving light from the luminophore, and the working electrode has a surface area optically coupled to an active surface area of the photodiode The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 08 8.1 8 Preferably, the LOC device also has a polymerase linkage reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 088.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the C Μ O S circuit. GAS 08 8.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The integrated light sensor has the advantage of higher light efficiency than the off-chip sensor design. Integrated light sensors have the advantage of being easier to synchronize with other system events. Integrated light sensors have the advantage of reducing the number of discrete components. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology system such as fluorescent. This LOC device has the benefit of less complex design and manufacturing requirements and therefore results in a simpler, more reliable manufacturing. This enables more sensitive and specific detection of the target DNA. GAS 08 9. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a nucleic acid sequence in a sample of -46 - 201211533, the LOC device comprising: having a nucleic acid sequence complementary to the target a probe for forming a nucleic acid sequence of a probe-target hybrid and an electrochemiluminescence (ECL) luminophore; an electrode for generating an excited state of an ECL luminophore, wherein the ECL luminophore emits photons of light in the excited state; And a light sensor for sensing photons emitted from the ECL luminophore: wherein the electrodes are plates of a conductive material, the plates having peripheral edges that are optically coupled to the light sensor. GAS 089.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. GAS089.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional portion for quenching photon emission from the ECL luminophore is further derived from the ECL luminophore. GAS 089.4 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 089.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS 089.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 089.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. -47- 201211533 GAS089.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.9 microns to 2 microns wide. GAS 089.9 Preferably, the luminophore is an organometallic complex. GAS 089.1 0 Preferably, the organometallic complex is an organogermanium complex molecule. GAS 089. il. Preferably, the CMOS circuit is provided with the light sensor such that the light sensor is in close proximity to the hybrid chambers. GAS089.1 2 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers The nucleic acid sequences in at least one other hybridization chamber in the array are different such that a plurality of target nucleic acid sequences can be detected. GAS 089.1 3 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chambers and the support substrate such that the light sensor is adjacent to the hybridization chambers. Preferably, the light sensor is an array of photodiodes, the photodiode array being positioned such that each of the photodiodes corresponds to one of the hybridization chambers. Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiode. 8 48 - 201211533 GAS08 9.1 6 Preferably, each of the electrode pairs One of the electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode between. GAS089.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 08 9.1 8 Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 089.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the C Ο S circuit. GAS089.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The integrated light sensor has the advantage of higher light efficiency than the off-chip sensor design. Integrated light sensors have the advantage of being easier to synchronize with other system events. Integrated light sensors have the advantage of reducing the number of discrete components. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology system such as fluorescent. This enables more sensitive and specific detection of the target -49-201211533 DNA. This LOC device has the advantage of less complex design and manufacturing requirements and therefore results in a simpler, more reliable manufacturing. This LOC device design has the advantage of increasing the coupling between the light emitting region and the light sensor. GAS090.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: having a nucleic acid sequence complementary to the target for forming a probe-target a nucleic acid sequence of a hybrid and a probe of an electrochemiluminescence (ECL) luminophore; an electrode for generating an excited state of an ECL luminophore in which the photon of the ECL luminophore emits light; and for sensing from a photon sensor of the photon emitted by the ECL luminophore: wherein the electrodes have at least one working electrode that causes oxidation or reduction of the luminophore to generate an excited species that emits photons, the working electrode being in close proximity to the photosensor . GAS 090.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the E C L luminophore. GAS090.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL luminophore. GAS 090.4 Preferably the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. G A S 090.5 Preferably, the electrical pulse has a period of less than 0.69 seconds -50 - 201211533 GAS090.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 090.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 090.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2 microns wide. φ GAS090.9 Preferably, the luminophore is an organometallic complex. GAS 090.1 0 Preferably, the organometallic complex is an organogermanium complex molecule. GAS090.1 1 Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. GAS090.12 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers φ in the array differs in the nucleic acid sequence in at least one other hybridization chamber such that a plurality of target nucleic acid sequences can be detected. GAS 090.1 3 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybridization chambers. Preferably, the light sensor is an array of photodiodes whose positions are configured such that each of the photodiodes corresponds to one of the hybrid chambers. GAS090.1 5 Preferably, the photodiodes have planar active surface regions for receiving -51 - 201211533 light from the luminophore, each of the active surface regions being in the same plane, and the electrode systems A layer is patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiode 〇GAS090.1 6 preferably, such work Electrodes are plates of electrically conductive material that define a series of finger-like configurations to increase the length of the peripheral edge of the plate that is optically coupled to the photosensor. GAS090.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 090.1 8 Preferably, the LOC device also has a polymerase ligation reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 090.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS090.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The integrated light sensor has the advantage of higher light efficiency than the off-chip sensor design. Integrated light sensor has easier event with other systems -52-

201211533 同步化之優點。整合式光感應器具有減少離散組件 優點。電化學發光具有在微流體環境中之控制位置 效光之優點。另外,與感測器同步化相較於諸如蛋 術係更爲便利。此能夠更敏感且更具特異性地檢 DNA »此LOC裝置具有較不複雜之設計及製造要 處,因此將導致更簡單、更可靠之製造。此LOC 計具有增加該光發射區與該光感應器之間的耦合之 GAS091.1 本發明之此態樣提供一種用於檢 中之標的核酸序列之晶片上實驗室(LOC)裝置,該 置包含: 具有與該標的核酸序列互補以用於形成探針_ 交體之核酸序列及電化學發光(ECL)發光團之探針 用於產生ECL發光團之激發狀態之電極,在爵 態中該ECL發光團發射光之光子;及 用於感測來自該ECL發光團所發射之光子之为 φ ;其中 該光感應器具有用於接受來自該ECL發光團;^ 面主動表面區域且該等電極在垂直該等光電二極H 主動表面區域之方向的厚度係介於0.25微米至2¾ GAS091.2 較佳地,各該探針具有藉由共扭 移以淬熄來自該ECL發光團之光子發射之功能性茜 GAS091.3 較佳地,該探針係經配置以使| 形成探針-標的雜交體時,該用於淬熄來自該ECL 之光子發射之功能性部分係進一步源自該ECL發分 數量之 產生有 光之技 測標的 求之好 裝置設 優點。 測樣品 LOC裝 •標的雜 :激發狀 ;感應器 .光的平 :之平面 [米。 :能量轉 ί分。 該探針 發光團 :團。 -53- 201211533 GAS091.4 較佳地’該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS091.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS091.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS091.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS091.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS 09 1.9 較佳地,該發光團係有機金屬錯合物。 GAS 091 .10 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS091.il 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS091.12 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS091.13 較佳地,該LOC裝置亦具有支持基板 ’其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 -54- 201211533 GAS091.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS 09 1.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 _^所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS091.16 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS091.17 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 φ 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之5 0%。 GAS091.18 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS091.19 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該C Μ 0 S電路操作控制。 -55- 201211533 GAS09 1 .20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 整合式光感應器相較於晶片外感測器設計具有較高光 效率之優點。整合式光感應器具有更容易與其他系統事件 同步化之優點。整合式光感應器具有減少離散組件數量之 優點。電化學發光具有在微流體環境中之控制位置產生有 效光之優點。另外,與感測器同步化相較於諸如螢光之技 術係更爲便利。此能夠更敏感且更具特異性地檢測標的 DNA。此LOC裝置具有較不複雜之設計及製造要求之好 處,因此將導致更簡單、更可靠之製造。此LOC裝置設 計具有增加該光發射區與該光感應器之間的耦合之優點。 GAS092.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針; 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子:及 用於感測來自該ECL發光團所發射之光子之光感應器 :其中 該等電極係導電材料之板,該等板之邊緣特性係經配 置以使各該等板之周邊邊緣長度大於128微米。 GAS092.2 較佳地,各該探針具有藉由共振能量轉 -56- 201211533 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS092.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS092.4 較佳地,該 LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS092.5 較佳地,該電脈衝具有小於0.6 9秒之 φ 期間。 GAS092.6 較佳地,該電脈衝之電流係介於0.1奈 安培至6 9.0奈安培。 GAS092.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS092.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 φ GAS092.9 較佳地,該發光團係有機金屬錯合物。 GAS 092.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS092.il 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS092.12 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 -57- 201211533 核酸序列可被檢測。 GAS 092.1 3 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS092.1 4 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS092.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS092.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS092.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之50%。 GAS 092.1 8 較佳地,該L0C裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 201211533 列。 GAS092.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該C Μ Ο S電路操作控制。 GAS092.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 φ 整合式光感應器相較於晶片外感測器設計具有較高光 效率1之優點。整合式光感應器具有更容易與其他系統事件 同步化之優點。整合式光感應器具有減少離散組件數量之 優點。電化學發光具有在微流體環境中之控制位置產生有 效光之優點。另外,與感測器同步化相較於諸如螢光之技 術係更爲便利。此能夠更敏感且更具特異性地檢測標的 DNA。此LOC裝置具有較不複雜之設計及製造要求之好 處,因此將導致更簡單、更可靠之製造。此LOC裝置設 φ 計具有增加該光發射區與該光感應器之間的耦合之優點》 GAS093.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針;及 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子;其中 該等電極具有陽極和陰極,各陽極和陰極具有經配置 -59- 201211533 以互相交叉之手指狀構造。 GAS093.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS093.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS093.4 較佳地,該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS093.5 較佳地,該電脈衝具有小於0.6 9秒之 期間。 GAS093.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 093.7 較佳地,該LOC裝置亦具有在電化學 發光期間與該ECL發光團一起存在之電化學共反應物。 GAS093.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS093.9 較佳地,該發光團係有機金屬錯合物。 GAS093.1 0 較佳地’該有機金屬錯合物係有機釕錯 合物分子。 GAS093.il 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS093.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 -60- 201211533 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS093.1 3 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS093.1 4 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 φ 極體分別對應該等雜交室中之一者。 GAS093.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS093.1 6 較佳地,各該等電極對中之一個電極係 φ 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS093.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之50%。 GAS093.1 8 較佳地,該LOC裝置亦具有聚合酶連 201211533 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS 093.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS093.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 整合式光感應器相較於晶片外感測器設計具有較高光 效率之優點。整合式光感應器具有更容易與其他系統事件 同步化之優點。整合式光感應器具有減少離散組件數量之 優點》電化學發光具有在微流體環境中之控制位置產生有 效光之優點。另外,與感測器同步化相較於諸如螢光之技 術係更爲便利。此能夠更敏感且更具特異性地檢測標的 DNA。此LOC裝置具有較不複雜之設計及製造要求之好 處,因此將導致更簡單、更可靠之製造。此LOC裝置設 計具有增加該光發射區與該光感應器之間的耦合之優點。 GAS094.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針; 電極對,其中各該等電極對中之一個電極係導致該發 光團之氧化或還原以產生發射光子之激發物種之工作電極 -62- 201211533 :及 分別對應各該等電極對之光電二極體;其中 該等光電二極體具有用於接受來自該發光團之光的平 面主動表面區域,且該工作電極具有與該光電二極體之主 動表面區域光耦合之表面區域,該工作電極係經配置以使 該經光耦合之表面區域大於該光電二極體之主動表面區域 之 5 0%。 φ GAS094.2 較佳地,該等電極對中之一者之二個電 極皆具有經配置以互相交叉之手指狀構造。 GAS094.3 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分》 GAS094.4 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS094.5 較佳地,該LOC裝置亦具有經配置以 φ 提供電脈衝至該等電極之CMOS電路。 GAS094.6 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS094.7 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS094.8 較佳地,該工作電極係經配置以使該經 光耦合之表面區域大於該光電二極體之主動表面區域之 9 0%。 GAS094.9 較佳地,在各該等電極對中之電極之間 -63- 201211533 係相隔0.4微米至2微米寬之介電間隙。 GAS094.10 較佳地,該發光團係有機金屬錯合物。 GAS094.il 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS094.1 2 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS094.1 3 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有該等電極對中之一者且 含有多種探針,在各該等雜交室中之探針的核酸序列係與 該陣列中之至少一個其他雜交室中之核酸序列不同,以使 得多種標的核酸序列可被檢測。 GAS094.1 4 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該等光電二極體鄰近該等雜交室。 GAS094.1 5 較佳地,該工作電極之位置係經配置以 使該等探針介於該光電二極體與該工作電極之間。 GAS094.1 6 較佳地,各該等主動表面區域係在同一 平面,且該等電極係一層經圖案化(patterned)以形成該分 開之陽極和陰極之導電材料,該層所在之平面與該等光電 二極體之主動表面區域之平面平行。 GAS094.1 7 較佳地,該等電極在垂直該等光電二極 體之平面主動表面區域之方向的厚度係介於0.25微米至2 微米。 GAS094.1 8 較佳地,該LOC裝置亦具有聚合酶連 -64-201211533 The advantages of synchronization. Integrated light sensors have the advantage of reducing discrete components. Electrochemiluminescence has the advantage of controlling positional light in a microfluidic environment. In addition, synchronization with the sensor is more convenient than, for example, an egg system. This enables more sensitive and specific detection of DNA. » This LOC device has less complex design and manufacturing advantages and therefore will result in a simpler, more reliable manufacturing. The LOC meter has a GAS091.1 that increases the coupling between the light-emitting region and the light sensor. This aspect of the invention provides a wafer-on-lab (LOC) device for in-situ calibration of a nucleic acid sequence. Including: an electrode having a nucleic acid sequence complementary to the target nucleic acid sequence for forming a probe-crossbody and an electrochemiluminescence (ECL) luminophore for generating an excited state of the ECL luminophore, in the state a photon emitted by the ECL luminophore; and a photon for sensing photons emitted from the ECL luminophore; wherein the photosensor has an active surface region for receiving the ECL luminophore from the surface and the electrodes are The thickness of the direction perpendicular to the active surface regions of the photodiodes H is between 0.25 micrometers and 23⁄4 GAS 091.2. Preferably, each of the probes has a common twisting to quench photon emission from the ECL luminophores. Functional 茜GAS091.3 Preferably, when the probe is configured to form a probe-target hybrid, the functional portion for quenching photon emission from the ECL is further derived from the ECL The number of sub-quantities Good means disposed seeking the advantages of the subject of measurement technology. Measuring sample LOC loading • Standard miscellaneous: excitation; sensor. Light flat: plane [m. : Energy turns ί points. The probe luminophore: group. -53- 201211533 GAS091.4 Preferably the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 091.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS091.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 091.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 091.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2 microns wide. GAS 09 1.9 Preferably, the luminophore is an organometallic complex. GAS 091.10 Preferably, the organometallic complex is an organogermanium complex molecule. GAS091.il Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. GAS091.12 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers The nucleic acid sequences in at least one other hybridization chamber in the array are different such that a plurality of the subject nucleic acid sequences can be detected. GAS091.13 Preferably, the LOC device also has a support substrate 'where the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybridization chambers. -54-201211533 GAS091.14 Preferably, the light sensor is an array of photodiodes, the position of the photodiode array being configured such that each of the photodiodes respectively corresponds to a hybrid chamber One of them. GAS 09 1.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes 〇GAS091.16 Preferably, each of the electrodes is centered One of the electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode . GAS091.17 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface optically coupled to an active surface region of the photodiode The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 091.18 Preferably, the LOC device also has a polymerase chain reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS091.19 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence that circulates the target and a polymerase, the heater element being configured to be operationally controlled by the C Μ 0 S circuit. -55- 201211533 GAS09 1 .20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The integrated light sensor has the advantage of higher light efficiency than the off-chip sensor design. Integrated light sensors have the advantage of being easier to synchronize with other system events. Integrated light sensors have the advantage of reducing the number of discrete components. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology system such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the advantage of less complex design and manufacturing requirements and therefore results in a simpler, more reliable manufacturing. This LOC device design has the advantage of increasing the coupling between the light emitting region and the light sensor. GAS092.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: having a nucleic acid sequence complementary to the target for forming a probe-target a nucleic acid sequence of a hybrid and a probe of an electrochemiluminescence (ECL) luminophore; an electrode for generating an excited state of an ECL luminophore in which the photon of the ECL luminophore emits light: and for sensing from A photon sensor of the photon emitted by the ECL luminophore: wherein the electrodes are plates of a conductive material, the edge characteristics of the plates being configured such that the perimeter edges of each of the plates are greater than 128 microns. GAS 092.2 Preferably, each of the probes has a functional portion that is shifted by resonance energy to -56 - 201211533 to quench photon emission from the ECL luminophore. GAS092.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL luminophore. GAS 092.4 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 092.5 Preferably, the electrical pulse has a period of φ of less than 0.69 seconds. GAS092.6 Preferably, the current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 092.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS092.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2 microns wide. φ GAS092.9 Preferably, the luminophore is an organometallic complex. GAS 092.1 0 Preferably, the organometallic complex is an organogermanium complex molecule. GAS092.il Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. GAS092.12 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers The nucleic acid sequences in at least one other hybridization chamber in the array are different such that a plurality of the labeled -57-201211533 nucleic acid sequences can be detected. GAS 092.1 3 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybridization chambers. GAS092.1 4 Preferably, the light sensor is an array of photodiodes, the position of the photodiode array being configured such that each of the photodiodes respectively corresponds to one of the hybrid chambers . GAS092.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes 〇GAS092.1 6 preferably, each of the electrodes is An electrode system causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode. GAS092.1 7 Preferably, the photodiodes have a planar active surface area for receiving light from the luminophore, and the working electrode has a surface area optically coupled to an active surface area of the photodiode The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 092.1 8 Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence 201211533 column in the sample. GAS 092.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the C Ο S circuit. GAS 092.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The φ integrated light sensor has the advantage of higher light efficiency 1 than the off-chip sensor design. Integrated light sensors have the advantage of being easier to synchronize with other system events. Integrated light sensors have the advantage of reducing the number of discrete components. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology system such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the advantage of less complex design and manufacturing requirements and therefore results in a simpler, more reliable manufacturing. The LOC device has an advantage of increasing the coupling between the light-emitting region and the light sensor. GAS093.1 This aspect of the invention provides a wafer-on-lab (for wafer-on-a-chip) for detecting a nucleic acid sequence in a sample ( a LOC device comprising: a probe having a nucleic acid sequence complementary to the target nucleic acid sequence for use in forming a probe-target hybrid and an electrochemiluminescence (ECL) luminophore; and for generating an ECL luminophore An excited state electrode in which the ECL luminophore emits photons of light; wherein the electrodes have an anode and a cathode, each anode and cathode having a finger-like configuration configured to cross each other -59-201211533. GAS 093.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. GAS093.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL luminophore. GAS 093.4 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 093.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS093.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 093.7 Preferably, the LOC device also has an electrochemical co-reactant present with the ECL luminophore during electrochemiluminescence. GAS 093.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2 microns wide. GAS 093.9 Preferably, the luminophore is an organometallic complex. GAS 093.1 0 Preferably the organometallic complex is an organogermanium complex molecule. GAS093.il Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. GAS093.1 2 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers The nucleic acid sequences in the at least one other hybridization chamber of -60-201211533 in the array are different such that a plurality of target nucleic acid sequences can be detected. GAS 093.1 3 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybridization chambers. GAS093.1 4 Preferably, the light sensor is an array of photodiodes, the position of the photodiode array being configured such that each of the photodiodes are respectively corresponding to one of the hybrid chambers By. GAS093.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes 〇GAS093.1 6 preferably, each of the electrodes is An electrode system φ causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode . GAS093.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 093.1 8 Preferably, the LOC device also has a polymerase ligature 201211533 lock reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 093.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS093.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The integrated light sensor has the advantage of higher light efficiency than the off-chip sensor design. Integrated light sensors have the advantage of being easier to synchronize with other system events. Integrated light sensors have the advantage of reducing the number of discrete components. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology system such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the advantage of less complex design and manufacturing requirements and therefore results in a simpler, more reliable manufacturing. This LOC device design has the advantage of increasing the coupling between the light emitting region and the light sensor. GAS094.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: having a nucleic acid sequence complementary to the target for forming a probe-target a nucleic acid sequence of a hybrid and a probe for an electrochemiluminescence (ECL) luminophore; an electrode pair, wherein one of each of the pair of electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons -62-201211533: and a photodiode corresponding to each of the pair of electrodes; wherein the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has the optoelectronic The active surface region of the diode is optically coupled to the surface region, the working electrode being configured such that the optically coupled surface region is greater than 50% of the active surface region of the photodiode. φ GAS 094.2 Preferably, the two electrodes of one of the pairs of electrodes have a finger configuration configured to intersect each other. GAS 094.3 Preferably, each of the probes has a functional moiety for quenching photon emission from the ECL luminophore by resonance energy transfer. GAS094.4 Preferably, the probe is configured to When the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL luminophore. GAS 094.5 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 094.6 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS094.7 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 094.8 Preferably, the working electrode is configured such that the surface area of the optical coupling is greater than 90% of the active surface area of the photodiode. Preferably, GAS094.9 is between -63 and 201211533 between the electrodes of each of the pairs of electrodes separated by a dielectric gap of 0.4 microns to 2 microns. GAS094.10 Preferably, the luminophore is an organometallic complex. GAS094.il Preferably, the organometallic complex is an organogermanium complex molecule. GAS 094.1 2 Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. GAS094.1 3 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has one of the pair of electrodes and contains a plurality of probes, probes in each of the hybridization chambers The nucleic acid sequence is different from the nucleic acid sequence in at least one other hybridization chamber in the array such that a plurality of the target nucleic acid sequences can be detected. GAS 094.1 4 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the photodiodes are adjacent to the hybridization chambers. GAS 094.1 5 Preferably, the working electrode is positioned such that the probes are interposed between the photodiode and the working electrode. GAS094.1 6 Preferably, each of the active surface regions is in the same plane, and the electrodes are patterned to form the conductive material of the separate anode and cathode, the plane of the layer and the layer The planes of the active surface regions of the photodiodes are parallel. Preferably, the electrodes are between 0.25 microns and 2 microns thick in the direction perpendicular to the planar active surface area of the photodiodes. GAS094.1 8 Preferably, the LOC device also has a polymerase-64-

201211533 鎖反應(PC R)部,其係用於擴增在該樣品中之標 列。 GAS094.19 較佳地,該PCR部具有用於加 該標的核酸序列與聚合酶之加熱器元件,該加熱器 經配置以由該C Μ Ο S電路操作控制。 GAS094.20 較佳地,該LOC裝置亦具有多 CMOS電路連接之感測器以用於反饋控制該等電極 熱器元件。 整合式光感應器相較於晶片外感測器設計具窄 效率之優點。整合式光感應器具有更容易與其他弃 同步化之優點。整合式光感應器具有減少離散組料 優點。電化學發光具有在微流體環境中之控制位濯 效光之優點。另外,與感測器同步化相較於諸如蓬 術係更爲便利。此能夠更敏感且更具特異性地檢 DNA。此LOC裝置具有較不複雜之設計及製造要 處,因此將導致更簡單、更可靠之製造。此LOC 計具有增加該光發射區與該光感應器之間的耦合之 GAS095.1 本發明之此態樣提供一種用於杨 中之標的核酸序列之晶片上實驗室(LOC)裝置,該 置包含: 具有與該標的核酸序列互補以用於形成探針 交體之核酸序列及電化學發光(ECL)發光團之探針 用於產生ECL發光團之激發狀態之電極,在 態中該ECL發光團發射光之光子;其中 I核酸序 丨熱循環 ^元件係 ,個與該 ¥及該加 「較高光 ^統事件 :數量之 ΐ產生有 5光之技 測標的 ί求之好 裝置設 優點。 ί測樣品 LOC裝 -標的雜 :及 〔激發狀 -65- 201211533 該等電極係成對安排,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光感應器與該工作電極之間。 GAS095.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS095.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS095.4 較佳地,該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS 095.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 095.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 095.7 較佳地,該等電極對具有陽極和陰極, 各陽極和陰極具有經配置以互相交叉之手指狀構造。 GAS 095.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS095.9 較佳地,該發光團係有機金屬錯合物。 GAS095.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS 095.1 1 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 ⑧ -66- 201211533 .GAS095.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有該等電極對中之一者且 含有多種探針,在各該等雜交室中之探針的核酸序列係與 該陣列中之至少一個其他雜交室中之核酸序列不同,以使 得多種標的核酸序列可被檢測。 GAS095.1 3 較佳地,該L0C裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 φ ,以使該光感應器鄰近該等雜交室。 GAS095.1 4 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS 09 5.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 φ 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS095.1 6 較佳地,該L0C裝置亦具有在電化學 發光期間與該發光團一起存在之電化學共反應物。 GAS095.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之50%。 -67- 201211533 GAS095.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS 095.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該C Μ Ο S電路操作控制。 GAS095.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 整合式光感應器相較於晶片外感測器設計具有較高光 效率之優點。整合式光感應器具有更容易與其他系統事件 同步化之優點。整合式光感應器具有減少離散組件數量之 優點。電化學發光具有在微流體環境中之控制位置產生有 效光之優點。另外,與感測器同步化相較於諸如螢光之技 術係更爲便利。此能夠更敏感且更具特異性地檢測標的 DNA。此LOC裝置具有較不複雜之設計及製造要求之好 處,因此將導致更簡單、更可靠之製造。此LOC裝置設 計具有增加該光發射區與該光感應器之間的耦合之優點。 GAS096.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針;及 用於產生ECL發光團之激發狀態之電極,在該激發狀 -68- 201211533 態中該ECL發光團發射光之光子;其中 該等電極係成對安排,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極可被具有該ECL發光團所發射之光 子的波長之光穿透。 GAS096.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 φ GAS 096.3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS096.4 較佳地,該LOC裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS096.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS096.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS096.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS096.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS096.9 較佳地,該發光團係有機金屬錯合物。 GAS096.1 0 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 • 69 201211533 GAS096.11 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS096.1 2 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS 096.1 3 較佳地,該LOC裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS096.1 4 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS096.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS096.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS 096. 1 7 較佳地,該等光電二極體具有用於接受 -70- 201211533 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使與該主動表面區域光耦合之表面區 域大於該光電二極體之主動表面區域之50%。 GAS096.1 8 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 φ GAS096.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS096.20 較佳地,該LOC裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 整合式光感應器相較於晶片外感測器設計具有較高光 效率之優點。整合式光感應器具有更容易與其他系統事件 φ 同步化之優點。整合式光感應器具有減少離散組件數量之 優點。電化學發光具有在微流體環境中之控制位置產生有 效光之優點。另外,與感測器同步化相較於諸如螢光之技 術係更爲便利。此能夠更敏感且更具特異性地檢測標的 DNA。此LOC裝置具有較不複雜之設計及製造要求之好 處,因此將導致更簡單、更可靠之製造。此L0C裝置設 計具有增加該光發射區與該光感應器之間的親合之優點。 GAS097.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之微流體裝置,該微流體裝置包含: -71 - 201211533 試劑貯器,其係用於在檢測該標的核酸序列之前添加 試劑至該樣品; 具有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針;及 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子。 GAS097.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 G A S 0 9 7 · 3 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS097.4 較佳地,該微流體裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS097.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS097.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS097.7 較佳地,該等電極具有陽極和陰極,各 陽極和陰極具有經配置以互相交叉之手指狀構造。 GAS097.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS097.9 較佳地’該微流體裝置亦具有用於支持 CMOS電路之支持基板及在其中定義該等試劑貯器之上蓋 ,其中該等電極及該等探針係介於該上蓋及該CMOS電路 -72- 201211533 之間。 GAS097.10 較佳地,該等試劑貯器各具有出口閥以 用於保留液體試劑於該貯器中直到需要添加試劑至該樣品 〇 GAS097.1 1 較佳地,該CMOS電路倂有光感應器以 用於感測由該ECL發光團所發射之光子。 GAS097.1 2 較佳地,該微流體裝置亦具有雜交室之 φ 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS 097.1 3 較佳地,該微流體裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS097.14 較佳地,該光感應器係與雜交室之陣列 φ 配準之光電二極體之陣列,以使各該等雜交室分別對應該 等光電二極體中之一者。 GAS097.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS097.1 6 較佳地,各該等電極對中之一個電極係 -73- 201211533 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS097.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之50%。 GAS097.1 8 較佳地,該微流體裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS097.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS097.20 較佳地,該微流體裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 該以電·化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 098.1 本發明之態樣提供一種用於檢測流體中 之標的分子之微流體裝置,該微流體裝置包含: 試劑貯器,其係用於在檢測該標的分子之前添加試劑 -74- 201211533 至該流體; 與該標的分子反應以形成探針-標的雜交體之探針及 電化學發光(ECL)發光團; 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子;及 用於感測來自該ECL發光團所發射之光子之光感應器 〇 φ GAS098.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS 098.3 較佳地,該探針係經配置以使當該探針 形成探針-標的複合體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS098.4 較佳地,該微流體裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS098.5 較佳地,該電脈衝具有小於0.69秒之 φ 期間。 GAS098.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS098.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS098.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS09 8.9 較佳地,該微流體裝置亦具有用於支持 201211533 CMOS電路之支持基板及在其中定義該等試劑貯器之上蓋 ’其中該等電極及該等探針係介於該上蓋及該CMOS電路 之間。 GAS098.1 0 較佳地,該等試劑貯器各具有出口閥以 用於保留液體試劑於該貯器中直到需要添加試劑至該流體 〇 GAS 09 8.il 較佳地,該CMOS電路倂有該光感應器 以使該光感應器緊鄰該等雜交室。 GAS098.1 2 較佳地,該微流體裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且包含多個探 針,其中該流體係生物樣品且該等標的係標的核酸序列, 該等探針各具有與該等標的中之各自一者互補之核酸序列 〇 GAS 098.1 3 較佳地,該微流體裝置亦具有支持基板 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS 098.1 4 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS 098.1 5 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 -76- 201211533 GAS098.16 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS098.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 φ 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之5 0%。 GAS098.1 8 較佳地,該微流體裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列° GAS 098.1 9 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 φ 經配置以由該CMOS電路操作控制。 GAS098.20 較佳地,該微流體裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 該整合式影像感測器免除昂貴外部成像系統之需求, 提供可大量生產又不貴之全面解決方案,其低系統組件數 代表輕巧、具高度移動性之系統。該整合式影像感測器因 爲大角度光收集而得到增加讀取敏感度之好處且免除在該 光收集元件串使用光學組件之需求。 -77- 201211533 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS099.1 本發明之此態樣提供一種微流體裝置, 其包含: 支持基板; 微系統技術(MST)層,其設有具有電化學發光(ECL)探 針之陣列之雜交部以用於與流體中之標的核酸序列雜交, 及用於接受電脈衝之電極對,該等ECL探針係經配置以在 與該等核酸標的中之一者雜交及受到該等電極中之一者活 化時發射光之光子;及 用於檢測來自已經雜交之ECL探針之光之光子的光感 應器。 GAS099.2 較佳地,該等探針各具有當呈激發狀態 時發射光子之ECL發光團及用於藉由共振能量轉移淬熄來 自該ECL發光團之光子發射之功能性部分。 GAS099.3 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS099.4 較佳地,該微流體裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS099.5 較佳地,該電脈衝具有小於0.69秒之 201211533 GAS099.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS099.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 099.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS099.9 較佳地,該微流體裝置亦具有用於支持 CMOS電路之支持基板及在其中定義該等試劑貯器之上蓋 ,其中該等電極及該等探針係介於該上蓋及該CMOS電路 之間。 GAS099. 1 0 較佳地,該上蓋具有試劑貯器以用於在 檢測該標的核酸序列之前添加試劑至該樣品,該等試劑貯 器各具有出口閥以用於保留液體試劑在該貯器內直到需要 添加試劑至該樣品。 GAS099.il 較佳地,該等試劑貯器各具有出口閥以 用於保留液體試劑於該貯器中直到需要添加試劑至該樣品 〇 GAS099.12 較佳地,該微流體裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS 099 . 1 3 較佳地,該微流體裝置亦具有支持基板 -79- 201211533 ,其中該CMOS電路係位於該等雜交室與該支持基板之間 ,以使該光感應器鄰近該等雜交室。 GAS099.14 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS099.1 5 較佳地,該等光電二極體具.有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化( patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS099.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS099.1 7 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之5 0%。 GAS 099.1 8 較佳地,該微流體裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS099.19 較佳地,該PCR部具有用於加熱循環 201211533 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS099.20 較佳地,該微流體裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件》 該樣品入口能將該樣品導入該微流體測試模組,其以 高容積效率遞送少量樣品至該微流體裝置之指定部。該探 針雜交部經由雜交提供對該標的之分析。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過滹元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS100.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之微流體裝置,該微流體裝置包含: 樣品入□,其係用於接受該樣品; 真有與該標的核酸序列互補以用於形成探針-標的雜 交體之核酸序列及電化學發光(ECL)發光團之探針;及 用於產生ECL發光團之激發狀態之電極,在該激發狀 態中該ECL發光團發射光之光子;其中 該樣品入口藉由毛細作用吸引該樣品沿著導向該等探 針之流體流路流動。 GAS100.2 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS 100.3 較佳地,該探針係經配置以使當該探針 -81 - 201211533 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 100.4 較佳地,該微流體裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS 1 00.5 較佳地,該電脈衝具有小於〇 · 6 9秒之 期間。 GAS 1 00.6 較佳地,該電脈衝之電流係介於0. 1奈 安培至69.0奈安培。 GAS 1 00.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS100.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS100.9 較佳地,該微流體裝置亦具有用於支持 CMOS電路之支持基板及在其中定義該等試劑貯器之上蓋 ,其中該等電極及該等探針係介於該上蓋及該CMOS電路 之間。 GAS 100.10 較佳地,該上蓋具有試劑貯器以用於在 〆· 檢測該標的核酸序列.之前添加試劑至該樣品,該等試劑貯 器各具有出口閥以用於保留液體試劑在該貯器內直到需要 添加試劑至該樣品。 GAS100.il 較佳地,該等試劑貯器各具有出口閥以 用於保留液體試劑於該貯器中直到需要添加試劑至該樣品 -82- 201211533 GAS100.12 較佳地,該微流體裝置亦具有雜交室之 陣列,其中各該等雜交室分別具有一對電極且含有多種探 針,在各該等雜交室中之探針的核酸序列係與該陣列中之 至少一個其他雜交室中之核酸序列不同,以使得多種標的 核酸序列可被檢測。 GAS100.13 較佳地,該微流體裝置亦具有用於感測 自該ECL發光團發射之光子的光感應器及支持基板,其中 φ 該CMOS電路係位於該等雜交室與該支持基板之間,以使 該光感應器鄰近該等雜交室。 GAS100.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS 100.15 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 ^ (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 . ·· GAS 1 00.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS100.17 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 -83- 201211533 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之50%。 GAS100.18 較佳地,該微流體裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS100.19 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS 1 00.20 較佳地,該微流體裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 該探針雜交部經由雜交提供對該標的之分析。該整合 式影像感測器免除昂貴外部成像系統之需求,提供可大量 生產又不貴之全面解決方案,其低系統組件數代表輕巧、 具高度移動性之系統。該整合式影像感測器因爲大角度光 收集而得到增加讀取敏感度之好處且免除在該光收集元件 串使用光學組件之需求。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 01 . 1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之微流體裝置,該微流體裝置包含: -84 - 201211533 支持基板; 覆蓋該支持基板以用於處理該樣品之微系統技術 (MST)層,該MST層設有雜交室之陣列,各雜交室含有用 於與該標的核酸序列雜交之電化學發光(ECL)探針,及用 於接受電脈衝之電極對,該等ECL探針係經配置以在與該 等核酸標的中之一者雜交及受到該等電極中之一者活化時 發射光之光子; 溫度感測器之陣列,其位置係經安排以使至少一個該 溫度感測器分別對應各該等雜交室;及 用於加熱各該等雜交室之加熱器;以使 來自該等溫度感測器之輸出被用於反饋控制該等加熱 器。 GAS101.2 較佳地,該微流體裝置亦具有位於該支 持基板與該MST層之間的CMOS電路,該CMOS電路倂 有光感應器。 GAS101.3 較佳地,該光感應器係分別與各該雜交 室配準之光電二極體陣列。 GAS101.4 較佳地,該CMOS電路具有用於儲存關 於該樣品之處理的資料之數位記憶體,該資料包括該探針 細節及各該探針在該陣列中之位置。 GAS 10 1.5 較佳地,該微流體裝置亦具有整體含有 用於處理該樣品之所有試劑之試劑貯器。201211533 Lock Reaction (PC R), which is used to amplify the label in this sample. GAS094.19 Preferably, the PCR portion has a heater element for adding the target nucleic acid sequence to a polymerase, the heater being configured to be operationally controlled by the C Ο S circuit. GAS094.20 Preferably, the LOC device also has multiple CMOS circuit-connected sensors for feedback control of the electrode elements. The integrated light sensor has the advantage of narrow efficiency compared to the off-chip sensor design. The integrated light sensor has the advantage of being easier to synchronize with other abandonment. Integrated light sensors have the advantage of reducing discrete components. Electrochemiluminescence has the advantage of controlling the potential light in a microfluidic environment. In addition, synchronization with the sensor is more convenient than for example. This allows for more sensitive and specific detection of DNA. This LOC device has less complex design and manufacturing considerations and will therefore result in a simpler, more reliable manufacturing. The LOC meter has a GAS095.1 that increases the coupling between the light-emitting region and the light sensor. This aspect of the invention provides a wafer-on-lab (LOC) device for the nucleic acid sequence of the target in the yang, the set comprising: A probe having a nucleic acid sequence complementary to the target nucleic acid sequence for forming a probe crossbody and an electrochemiluminescence (ECL) luminophore for generating an excited state of the ECL luminophore, in which the ECL luminophore emits Photon photon; where I nucleic acid sequence thermal cycle ^ component system, and the device and the "higher optical event: the number of ΐ ΐ 有 ΐ ΐ ΐ ΐ ΐ 5 5 5 ί ί ί ί ί ί The sample LOC is loaded with the standard: and [excited-65-201211533. The electrodes are arranged in pairs, and one of the electrode pairs causes oxidation or reduction of the luminophore to produce an excited species that emits photons. An electrode, the position of the working electrode being configured such that the probe is interposed between the photosensor and the working electrode. GAS 095.2 Preferably, each of the probes has quenching by resonance energy transfer Functional portion of the photon emission of the ECL luminophore. GAS 095.3 Preferably, the probe is configured to quench the elucent cluster from the ECL when the probe forms a probe-target hybrid The functional portion of the photon emission is further derived from the ECL luminophore. GAS 095.4 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 095.5 Preferably, the electrical pulse Having a period of less than 0.69 seconds GAS 095.6 Preferably, the electrical current of the electrical pulse is between 0.1 Nai and 69.0 Nai. GAS 095.7 Preferably, the electrode pairs have an anode and a cathode, and each anode and cathode have a It is configured to have a finger-like configuration that intersects each other. GAS 095.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 micrometers to 2.0 micrometers wide. GAS 095.9 Preferably, the luminophore is an organometallic complex. Preferably, the organometallic complex is an organogermanium complex molecule. GAS 095.1 1 Preferably, the CMOS circuit has a light sensor for sensing emission by the ECL luminophore Photon. 8 -66- 201 211533 .GAS095.1 2 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has one of the pair of electrodes and contains a plurality of probes in each of the hybridization chambers The nucleic acid sequence of the probe is different from the nucleic acid sequence in at least one other hybridization chamber in the array such that a plurality of the target nucleic acid sequences can be detected. GAS 095.1 3 Preferably, the LOC device also has a support substrate, wherein A CMOS circuit is located between the hybridization chambers and the support substrate φ such that the light sensor is adjacent to the hybridization chambers. GAS095.1 4 Preferably, the light sensor is an array of photodiodes, the position of the photodiode array being configured such that each of the photodiodes respectively corresponds to one of the hybrid chambers . GAS 09 5.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned Patterned to form the conductive material of the separate anode and cathode, the plane of the layer φ is parallel to the plane of the active surface region of the photodiodes. GAS095.1 6 Preferably, the LOC device also has An electrochemical co-reactant present with the luminophore during electrochemiluminescence. GAS095.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. -67- 201211533 GAS095.1 8 Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 095.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the C Ο S circuit. GAS095.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The integrated light sensor has the advantage of higher light efficiency than the off-chip sensor design. Integrated light sensors have the advantage of being easier to synchronize with other system events. Integrated light sensors have the advantage of reducing the number of discrete components. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology system such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the advantage of less complex design and manufacturing requirements and therefore results in a simpler, more reliable manufacturing. This LOC device design has the advantage of increasing the coupling between the light emitting region and the light sensor. GAS096.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device comprising: having a nucleic acid sequence complementary to the target for forming a probe-target a nucleic acid sequence of the hybrid and a probe of an electrochemiluminescence (ECL) luminophore; and an electrode for generating an excited state of the ECL luminophore, wherein the ECL luminophore emits photons of light in the excited state -68-201211533; Wherein the electrodes are arranged in pairs, one of the electrode pairs causing oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being capable of being emitted by the ECL luminophore The light of the wavelength of the photon penetrates. GAS 096.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. φ GAS 096.3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from ECL luminophore. GAS 096.4 Preferably, the LOC device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 096.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS096.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 096.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 096.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2.0 microns wide. GAS096.9 Preferably, the luminophore is an organometallic complex. GAS 096.1 0 Preferably, the organometallic complex is an organogermanium complex molecule. • 69 201211533 GAS096.11 Preferably, the CMOS circuit has a light sensor for sensing photons emitted by the ECL luminophore. GAS096.1 2 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers The nucleic acid sequences in at least one other hybridization chamber in the array are different such that a plurality of target nucleic acid sequences can be detected. GAS 096.1 3 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybridization chambers. GAS096.1 4 Preferably, the light sensor is an array of photodiodes, and the position of the photodiode array is configured such that each of the photodiodes respectively corresponds to one of the hybrid chambers . GAS096.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes 〇GAS096.1 6 preferably, each of the electrodes is An electrode system causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode. GAS 096. 1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the illuminating group of -70-201211533, and the working electrode has an active surface region with the photodiode The surface area of the optical coupling, the working electrode being configured such that a surface area optically coupled to the active surface area is greater than 50% of an active surface area of the photodiode. GAS 096.1 8 Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. φ GAS 096.1 9 Preferably, the PCR section has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS096.20 Preferably, the LOC device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The integrated light sensor has the advantage of higher light efficiency than the off-chip sensor design. The integrated light sensor has the advantage of being easier to synchronize with other system events φ. Integrated light sensors have the advantage of reducing the number of discrete components. Electrochemiluminescence has the advantage of producing effective light at controlled locations in a microfluidic environment. In addition, synchronizing with the sensor is more convenient than a technology system such as fluorescent. This enables more sensitive and specific detection of the target DNA. This LOC device has the advantage of less complex design and manufacturing requirements and therefore results in a simpler, more reliable manufacturing. This L0C device design has the advantage of increasing the affinity between the light emitting region and the light sensor. GAS097.1 This aspect of the invention provides a microfluidic device for detecting a target nucleic acid sequence in a sample, the microfluidic device comprising: -71 - 201211533 reagent reservoir for use in detecting the target nucleic acid sequence Adding a reagent to the sample; a probe having a nucleic acid sequence complementary to the target nucleic acid sequence for forming a probe-target hybrid and an electrochemiluminescence (ECL) luminophore; and an excitation state for generating an ECL luminophore An electrode in which the ECL luminophore emits photons of light. GAS 097.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. GAS 0 9 7 · 3 Preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further From the ECL luminophore. GAS 097.4 Preferably, the microfluidic device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 097.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS097.6 Preferably, the current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 097.7 Preferably, the electrodes have an anode and a cathode, each anode and cathode having a finger configuration configured to intersect each other. GAS097.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2.0 microns. GAS097.9 preferably the microfluidic device also has a support substrate for supporting the CMOS circuit and defining the reagent reservoir upper cover therein, wherein the electrodes and the probes are interposed between the upper cover and the CMOS Circuit between -72- 201211533. GAS097.10 Preferably, the reagent reservoirs each have an outlet valve for retaining a liquid reagent in the reservoir until a reagent needs to be added to the sample. GAS097.1 1 Preferably, the CMOS circuit has light sensing For sensing photons emitted by the ECL luminophore. GAS097.1 2 Preferably, the microfluidic device also has an array of φ of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and contains a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers The nucleic acid sequence is different from the nucleic acid sequence in at least one other hybridization chamber in the array such that a plurality of target nucleic acid sequences can be detected. GAS 097.1 3 Preferably, the microfluidic device also has a support substrate, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybridization chambers. Preferably, the light sensor is an array of photodiodes that are aligned with the array φ of the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS097.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes 〇GAS097.1 6 preferably, each of the electrodes is An electrode system -73-201211533 results in oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the work Between the electrodes. GAS097.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 097.1 8 Preferably, the microfluidic device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 097.1 9 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS097.20 Preferably, the microfluidic device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The detection and analysis of the subject based on electricity and chemiluminescence eliminates the need for a detection system that requires an excitation source, an excitation optical, and an optical filter element, thereby providing a lighter and less expensive detection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 098.1 Aspects of the invention provide a microfluidic device for detecting a target molecule in a fluid, the microfluidic device comprising: a reagent reservoir for adding a reagent -74 - 201211533 to the detection of the target molecule to the a fluid; a probe that reacts with the target molecule to form a probe-target hybrid; and an electrochemiluminescence (ECL) luminophore; an electrode for generating an excited state of the ECL luminophore, in which the ECL luminophore emits a photon of light; and a light sensor for sensing photons emitted from the ECL luminophore 〇 φ GAS 098.2 Preferably, each of the probes has resonance energy transfer to quench the luminescent group from the ECL The functional part of photon emission. GAS 098.3 Preferably, the probe is configured such that when the probe forms a probe-target complex, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS 098.4 Preferably, the microfluidic device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS098.5 Preferably, the electrical pulse has a period of φ of less than 0.69 seconds. GAS098.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 098.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS098.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2.0 microns. GAS09 8.9 Preferably, the microfluidic device also has a support substrate for supporting the 201211533 CMOS circuit and defining the reagent reservoir upper cover therein, wherein the electrodes and the probes are interposed between the upper cover and the CMOS Between circuits. GAS 098.1 0 Preferably, the reagent reservoirs each have an outlet valve for retaining a liquid reagent in the reservoir until a reagent needs to be added to the fluid 〇GAS 09 8.il. Preferably, the CMOS circuit has The light sensor is such that the light sensor is in close proximity to the hybrid chambers. GAS098.1 2 Preferably, the microfluidic device also has an array of hybridization chambers, wherein each of the hybridization chambers has a pair of electrodes and comprises a plurality of probes, wherein the flow system biological sample and the labeled labeled nucleic acids a sequence, each of which has a nucleic acid sequence complementary to each of the targets 〇 GAS 098.1 3 Preferably, the microfluidic device also has a support substrate, wherein the CMOS circuit is located in the hybrid chamber and The substrates are supported to position the light sensor adjacent to the hybrid chambers. GAS 098.1 4 Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS 098.1 5 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes being patterned ( Patterned to form a conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiode - 76 - 201211533 GAS098.16 Preferably, each of the electrodes is centered One of the electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode . GAS098.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a light coupling with an active surface region of the photodiode The surface region, the working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS098.1 8 Preferably, the microfluidic device also has a polymerase chain reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 098.1 9 Preferably, the PCR portion is useful The target nucleic acid sequence is heated and heated to a heater element of the polymerase, the heater element φ being configured to be operationally controlled by the CMOS circuit. GAS098.20 Preferably, the microfluidic device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The integrated image sensor eliminates the need for expensive external imaging systems, providing a comprehensive solution that is both mass-produced and inexpensive, with low system component counts for lightweight, highly mobile systems. The integrated image sensor has the benefit of increased read sensitivity due to large angle light collection and eliminates the need to use optical components in the string of light collecting elements. -77- 201211533 This electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS099.1 This aspect of the invention provides a microfluidic device comprising: a support substrate; a microsystem technology (MST) layer provided with a hybrid portion having an array of electrochemiluminescence (ECL) probes for use with Hybridization of a target nucleic acid sequence in a fluid, and an electrode pair for receiving an electrical pulse, the ECL probes being configured to hybridize upon activation with one of the nucleic acid targets and upon activation by one of the electrodes a photon of light; and a light sensor for detecting photons of light from an already hybridized ECL probe. GAS 099.2 Preferably, the probes each have an ECL luminophore that emits photons when in an excited state and a functional moiety for photon emission from the ECL luminophore by resonance energy transfer quenching. GAS 099.3 Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived The ECL luminophore. GAS 099.4 Preferably, the microfluidic device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS099.5 Preferably, the electrical pulse has a duration of less than 0.69 seconds 201211533 GAS099.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 099.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 099.8 Preferably, the anode and cathode are separated by a dielectric gap of between 0.4 microns and 2.0 microns. GAS099.9 Preferably, the microfluidic device also has a support substrate for supporting the CMOS circuit and defining the reagent reservoir upper cover therein, wherein the electrodes and the probes are interposed between the upper cover and the CMOS Between circuits. Preferably, the upper cap has a reagent reservoir for adding a reagent to the sample prior to detecting the target nucleic acid sequence, each reagent reservoir having an outlet valve for retaining a liquid reagent within the reservoir Until the reagent needs to be added to the sample. GAS099.il Preferably, the reagent reservoirs each have an outlet valve for retaining a liquid reagent in the reservoir until a reagent needs to be added to the sample 〇GAS099.12. Preferably, the microfluidic device also has a hybridization chamber. An array wherein each of the hybridization chambers has a pair of electrodes and a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers is different from the nucleic acid sequence in at least one other hybridization chamber in the array, In order to allow a plurality of target nucleic acid sequences to be detected. Preferably, the microfluidic device also has a support substrate -79-201211533, wherein the CMOS circuit is located between the hybridization chamber and the support substrate such that the light sensor is adjacent to the hybrid chambers. . GAS 099.14 Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS099.1 5 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, each of the active surface regions being in the same plane, and the electrodes are patterned by a layer Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes. GAS099.1 6 Preferably, each of the electrodes is centered One of the electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode . GAS099.1 7 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 099.1 8 Preferably, the microfluidic device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS099.19 Preferably, the PCR portion has a heater element for heating the circulating nucleic acid sequence 201211533 with a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS099.20 Preferably, the microfluidic device also has a plurality of sensors connected to the CMOS circuit for feedback control of the electrodes and the heater element. The sample inlet can introduce the sample into the microfluidic test. A module that delivers a small amount of sample to a designated portion of the microfluidic device with high volumetric efficiency. The probe hybrid provides analysis of the target via hybridization. The electrochemiluminescence-based detection analysis eliminates the need for a detection system that requires an excitation source, excitation optics, and optical over-the-loop components to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS100.1 This aspect of the invention provides a microfluidic device for detecting a target nucleic acid sequence in a sample, the microfluidic device comprising: a sample into the sample for accepting the sample; indeed complementary to the target nucleic acid sequence a probe for forming a nucleic acid sequence of a probe-target hybrid and an electrochemiluminescence (ECL) luminophore; and an electrode for generating an excited state of the ECL luminophore, wherein the ECL luminophore emits light in the excited state Photon; wherein the sample inlet attracts the sample along the fluid flow path leading to the probes by capillary action. GAS 100.2 Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. GAS 100.3 Preferably, the probe is configured such that when the probe -81 - 201211533 forms a probe-target hybrid, the functional portion for quenching photon emission from the ECL luminophore is further From the ECL luminophore. GAS 100.4 Preferably, the microfluidic device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS 1 00.5 Preferably, the electrical pulse has a period of less than 〇 · 6.9 seconds. Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 1 00.7 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 100.8 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2.0 microns. GAS100.9 Preferably, the microfluidic device also has a support substrate for supporting the CMOS circuit and defining the reagent reservoir upper cover therein, wherein the electrodes and the probes are interposed between the upper cover and the CMOS Between circuits. GAS 100.10 Preferably, the upper cap has a reagent reservoir for adding a reagent to the sample prior to detecting the target nucleic acid sequence, each of the reagent reservoirs having an outlet valve for retaining a liquid reagent in the reservoir Add reagents to the sample until needed. Preferably, the reagent reservoirs each have an outlet valve for retaining a liquid reagent in the reservoir until a reagent needs to be added to the sample - 82 - 201211533 GAS 100.12 Preferably, the microfluidic device is also An array having a hybridization chamber, wherein each of the hybridization chambers has a pair of electrodes and a plurality of probes, and the nucleic acid sequence of the probes in each of the hybridization chambers and the nucleic acid in at least one other hybridization chamber in the array The sequences are different such that a plurality of target nucleic acid sequences can be detected. GAS100.13 Preferably, the microfluidic device also has a light sensor and a support substrate for sensing photons emitted from the ECL luminophore, wherein the CMOS circuit is located between the hybridization chamber and the support substrate So that the light sensor is adjacent to the hybrid chambers. GAS 100.14 Preferably, the light sensor is an array of photodiodes, the photodiode array being positioned such that each of the photodiodes corresponds to one of the hybridization chambers. GAS 100.15 Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned ^ ( Patterned to form a conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes. · GAS 1 00.1 6 Preferably, each of the pairs of electrodes One of the electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode between. GAS100.17 Preferably, the photodiodes have a planar active surface area for receiving light from the luminophore, and the working electrode has an active surface area light with the photodiode -83-201211533 The coupled surface region is configured such that the optically coupled surface region is greater than 50% of the active surface region of the photodiode. GAS 100.18 Preferably, the microfluidic device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 100.19 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS 1 00.20 Preferably, the microfluidic device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The probe hybridization provides analysis of the target via hybridization. The integrated image sensor eliminates the need for expensive external imaging systems, providing a comprehensive solution that is both mass-produced and inexpensive, with low system component counts for lightweight, highly mobile systems. The integrated image sensor has the benefit of increased read sensitivity due to large angle light collection and eliminates the need to use optical components in the light collecting element string. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 01 . 1 This aspect of the invention provides a microfluidic device for detecting a target nucleic acid sequence in a sample, the microfluidic device comprising: -84 - 201211533 a support substrate; covering the support substrate for processing the sample a microsystem technology (MST) layer, the MST layer being provided with an array of hybridization chambers, each hybridization chamber containing an electrochemiluminescence (ECL) probe for hybridization with the target nucleic acid sequence, and an electrode pair for receiving an electrical pulse The ECL probes are configured to emit photons of light upon hybridization with one of the nucleic acid targets and upon activation by one of the electrodes; an array of temperature sensors arranged at a location Having at least one of the temperature sensors corresponding to each of the hybridization chambers; and a heater for heating each of the hybridization chambers; such that outputs from the temperature sensors are used to feedback control the heaters. GAS 101.2 Preferably, the microfluidic device also has a CMOS circuit between the support substrate and the MST layer, the CMOS circuit having a light sensor. GAS 101.3 Preferably, the light sensor is an array of photodiodes respectively registered with each of the hybrid chambers. GAS 101.4 Preferably, the CMOS circuit has digital memory for storing data relating to the processing of the sample, the data including the probe details and the location of each of the probes in the array. GAS 10 1.5 Preferably, the microfluidic device also has a reagent reservoir that integrally contains all reagents for processing the sample.

GAS101.6 較佳地,該雜交室分別具有由該CMOS 電路控制之加熱器,其係用於維持該探針及標的核酸序列 -85- 201211533 之雜交溫度。 GAS101.7 較佳地,該光感應器與該對應之雜交室 之距離小於1,600微米。 GAS 1 01 .8 較佳地,該雜交室之體積小於 900,000 立方微米。 GAS 1 01.9 較佳地,該雜交室之體積小於200,000 立方微米。GAS 101.6 Preferably, the hybridization chamber has a heater controlled by the CMOS circuit, respectively, for maintaining the hybridization temperature of the probe and the target nucleic acid sequence -85 - 201211533. GAS 101.7 Preferably, the light sensor is less than 1,600 microns from the corresponding hybridization chamber. GAS 1 01 .8 Preferably, the hybridization chamber has a volume of less than 900,000 cubic microns. GAS 1 01.9 Preferably, the hybridization chamber has a volume of less than 200,000 cubic microns.

GAS 1 01.1 0 較佳地,該雜交室之體積小於 40,000 立方微米。 GAS101.il 較佳地,該雜交室之體積小於9,000立 方微米。 GAS101.12 較佳地,該CMOS電路自對應包含相同 探針之雜交室的光電二極體導出單一結果。 GAS101.13 較佳地,該CMOS電路係經配置以提供 激發脈衝至該等電極對,該激發脈衝期間小於0.69秒。GAS 1 01.1 0 Preferably, the hybridization chamber has a volume of less than 40,000 cubic microns. GAS 101.il Preferably, the hybridization chamber has a volume of less than 9,000 cubic microns. GAS 101.12 Preferably, the CMOS circuit derives a single result from a photodiode corresponding to a hybridization chamber containing the same probe. GAS 101.13 Preferably, the CMOS circuit is configured to provide an excitation pulse to the pair of electrodes, the period of the excitation pulse being less than 0.69 seconds.

GAS101.14 較佳地,該光感應器係光電二極體之陣 列,該光電二極體陣列之位置係經配置以使各該等光電二 極體分別對應該等雜交室中之一者。 GAS101.15 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 -86- 201211533 GAS 10 1.1 6 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS101.17 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之50%。 GAS 10 1.1 8 較佳地,該微流體裝置亦具有聚合酶連 鎖反應(PC R)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS101.19 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS101.20 較佳地,該微流體裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 該探針雜交部經由雜交提供對該標的之分析。該溫度 反饋控制確保該雜交室內之溫度的控制,以達最佳雜交溫 度及後續之最佳檢測溫度。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 -87- 201211533 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 02.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之微流體裝置,該微流體裝置包含: 雜交室之陣列,各雜交室含有用於與該標的核酸序列 雜交之電化學發光(ECL)探針,及用於接受電脈衝之電極 對,該等ECL探針係經配置以在與該等核酸標的中之一者 雜交及受到該等電極中之一者活化時發射光之光子;其中 該等雜交室各具有可被該ECL探針所發射之光光穿透 之壁部。 GAS 102.2 較佳地,該微流體裝置亦具有用於檢測 由該ECL探針所發射之光的光感應器,其中該壁部係位於 該等ECL探針與該光感應器之間。 GAS102.3 較佳地,該微流體裝置亦具有該光感應 器及該雜交室陣列之支持基板,其中該光感應器係位於該 等雜交室與該支持基板之間,且該壁部係倂有二氧化矽之 層。 GAS102·4 較佳地’該等探針各具有當呈激發狀態 時發射光子之ECL發光團及用於藉由共振能量轉移淬熄來 自該ECL發光團之光子發射之功能性部分。 GAS 102.5 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 1 02.6 較佳地’該微流體裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路》 -88- 201211533 GAS 102.7 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS102.8 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS102.9 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 102.10 較佳地,該陽極和陰極之間係相隔〇·4 微米至2.0微米寬之介電間隙。 GAS102.il 較佳地,該微流體裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 CMOS電路之間。 GAS102.12 較佳地,該等試劑貯器各具有出口閥以 用於保留液體試劑於該貯器中直到需要添加試劑至該樣品 〇 GAS102.13 較佳地,該透明壁部之厚度小於1,600 微米》 GAS102.14 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS102.15 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 89 - 201211533 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS102.16 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS 102.17 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,且該工作電極具 有與該光電二極體之主動表面區域光耦合之表面區域,該 工作電極係經配置以使該經光耦合之表面區域大於該光電 二極體之主動表面區域之50%。 GAS 102.18 較佳地,該微流體裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS102.19 較佳地,該PCR部具有用於加熱循環 該標的核酸序列與聚合酶之加熱器元件,該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS 1 02.20 較佳地,該微流體裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 該探針雜交部經由雜交提供對該標的之分析。該光穿 透之雜交室提供該用於檢測該標的與該探針之雜交的電化 學發光信號之傳送。 201211533 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 03.1 本發明之此態樣提供一種用於檢測樣品 中之標的核酸序列之微流體裝置,該微流體裝置包含:Preferably, the light sensor is an array of photodiodes, the photodiode array being positioned such that each of the photodiodes corresponds to one of the hybrid chambers. Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes being patterned ( Patterned to form a conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiodes - 86 - 201211533 GAS 10 1.1 6 Preferably, each of the pairs of electrodes One of the electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode between. Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode, The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 10 1.1 8 Preferably, the microfluidic device also has a polymerase interlocking reaction (PC R) portion for amplifying the target nucleic acid sequence in the sample. GAS 101.19 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS 101.20 Preferably, the microfluidic device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The probe hybridization provides analysis of the target via hybridization. This temperature feedback control ensures control of the temperature within the hybrid chamber to achieve optimal hybridization temperature and subsequent optimal detection temperature. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. There is no need to reject any excitation light. -87-201211533 This detector circuit makes the detection system even cheaper. GAS 1 02.1 This aspect of the invention provides a microfluidic device for detecting a target nucleic acid sequence in a sample, the microfluidic device comprising: an array of hybridization chambers, each hybridization chamber containing an electrochemical for hybridization to the target nucleic acid sequence An illuminating (ECL) probe, and an electrode pair for receiving an electrical pulse, the ECL probes being configured to hybridize upon activation with one of the nucleic acid targets and upon activation by one of the electrodes Photon of light; wherein each of the hybridization chambers has a wall portion that is transparent to light emitted by the ECL probe. GAS 102.2 Preferably, the microfluidic device also has a light sensor for detecting light emitted by the ECL probe, wherein the wall portion is between the ECL probe and the light sensor. Preferably, the microfluidic device also has the light sensor and the support substrate of the hybrid chamber array, wherein the light sensor is located between the hybridization chamber and the support substrate, and the wall portion is There is a layer of cerium oxide. The GAS 102·4 preferably 'the probes each have an ECL luminophore that emits photons when in an excited state and a functional moiety for photon emission from the ECL luminophore by resonance energy transfer quenching. GAS 102.5 Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from ECL luminophore. GAS 1 02.6 Preferably the microfluidic device also has a CMOS circuit configured to provide electrical pulses to the electrodes. - 88 - 201211533 GAS 102.7 Preferably, the electrical pulse has a period of less than 0.69 seconds. Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 102.9 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 102.10 Preferably, the anode and cathode are separated by a dielectric gap of from 4 micrometers to 2.0 micrometers wide. Preferably, the microfluidic device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample prior to detecting the sequence of the target, wherein the electrodes and the probes are interposed Between the upper cover and the CMOS circuit. Preferably, the reagent reservoirs each have an outlet valve for retaining a liquid reagent in the reservoir until a reagent needs to be added to the sample 〇GAS 102.13. Preferably, the transparent wall portion has a thickness of less than one. 600 micron" GAS 102.14 Preferably, the light sensor is an array of photodiodes that are positioned in registration with the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned 89 - 201211533 (patterned) to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface region of the photodiode 〇GAS102.16 Preferably, each of the electrodes is centered One of the electrodes causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed between the photodiode and the working electrode . GAS 102.17 Preferably, the photodiodes have a planar active surface region for receiving light from the luminophore, and the working electrode has a surface region optically coupled to an active surface region of the photodiode, The working electrode is configured such that the optically coupled surface area is greater than 50% of the active surface area of the photodiode. GAS 102.18 Preferably, the microfluidic device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 102.19 Preferably, the PCR portion has a heater element for heating the nucleic acid sequence circulating the target and a polymerase, the heater element being configured to be operationally controlled by the CMOS circuit. GAS 1 02.20 Preferably, the microfluidic device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. The probe hybridization provides analysis of the target via hybridization. The light-transmissive hybridization chamber provides for delivery of an electrochemical luminescence signal for detecting hybridization of the target with the probe. 201211533 This electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 03.1 This aspect of the invention provides a microfluidic device for detecting a target nucleic acid sequence in a sample, the microfluidic device comprising:

雜交室之陣列’各該等雜交室含有用於接受電脈衝之 電極對及用於與該等標的核酸序列雜交之電化學發光 (ECL)探針,該等ECL探針係經配置以使得當與該等核酸 標的中之一者雜交且被介於該等電極之間的電流激發時發 射光之光子;其中 在各該雜交室中之探針質量係小於270皮克。 GAS103.2 較佳地,在各該雜交室中之探針質量係 小於60皮克。 GAS103.3 較佳地,在各該雜交室中之探針質量係 小於1 2皮克。 GAS103.4 較佳地,在各該雜交室中之探針質量係 小於2.7皮克。 GAS 103.5 較佳地,各該等雜交室分別包含該等電 極對中之一者。An array of hybridization chambers - each of the hybridization chambers comprising an electrode pair for receiving an electrical pulse and an electrochemiluminescence (ECL) probe for hybridizing to the target nucleic acid sequence, the ECL probes being configured such that A photon that hybridizes to one of the nucleic acid targets and emits light when excited by a current between the electrodes; wherein the probe mass in each of the hybridization chambers is less than 270 picograms. GAS 103.2 Preferably, the probe mass in each of the hybridization chambers is less than 60 picograms. GAS 103.3 Preferably, the probe mass in each of the hybridization chambers is less than 12 picograms. GAS 103.4 Preferably, the probe mass in each of the hybridization chambers is less than 2.7 picograms. GAS 103.5 Preferably, each of the hybrid chambers comprises one of the pair of electrodes.

GAS103.6 較佳地,該等雜交室各具有可被該ECL 探針所發射之光光穿透之壁部。 GAS 103.7 較佳地,該微流體裝置亦具有用於偵測 由該ECL探針所發射之光的光感應器。 -91 - 201211533 GAS 103.8 較佳地,該等探針各具有當呈激發狀態 時發射光子之ECL發光團及用於藉由共振能量轉移淬熄來 自該ECL發光團之光子發射之功能性部分。 GAS 103.9 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS103.10 較佳地,該微流體裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS103.il 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS103.12 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 103. 13 較佳地,該等電極對具有分別具有手指 狀構造之陽極和陰極,該等手指狀構造係經配置以使該陽 極之指與該陰極之指交叉。 GAS103.14 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS 103. 15 較佳地,該微流體裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 CMOS電路之間。 GAS103.16 較佳地,該等試劑貯器各具有出口閥以 用於保留液體試劑於該貯器中直到需要添加試劑至該樣品 -92 - 201211533 GAS 1 03.1 7 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS103.18 較佳地,該微流體裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 GAS 103.19 較佳地,該PCR部具有用於加熱循環 φ 該標的核酸序列與聚合酶之加熱器元件’該加熱器元件係 經配置以由該CMOS電路操作控制。 GAS 1 03.20 較佳地,該微流體裝置亦具有多個與該 CMOS電路連接之感測器以用於反饋控制該等電極及該加 熱器元件。 該低探針體積代表低探針成本,進而允許該不貴之檢 測系統。該以電化學發光爲基底之標的檢測分析免除任需 要激發光源、激發光學及光學過濾元件之檢測系統,進而 φ 提供更輕巧且更便宜之檢測系統。不需要斥拒任何激發光 亦簡化該檢測器電路,使該檢測系統甚至更便宜。 GAS 105.1 本發明之此態樣提供一種用於擴增及檢 測樣品中之標的核酸序列之微流體裝置,該微流體裝置包 含: 聚合酶連鎖反應(PC R)部,其係用於擴增該等標的核 酸序列;及 雜交部,其具有用於與該等標的核酸序列雜交以形成 探針-標的雜交體之電化學發光(ECL)探針之陣列,及多個 -93- 201211533 用於接受電脈衝以使該等探針-標的雜交體發射光之光子 之電極。 GAS105.2 較佳地,該等探針各具有當呈激發狀態 時發射光子之ECL發光團及用於藉由共振能量轉移淬熄來 自該ECL發光團之光子發射之功能性部分。 GAS105.3 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 105.4 較佳地,該微流體裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS105.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS105.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS105.7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS105.8 較佳地,該陽極和陰極之間係相隔0.4 微米至2.0微米寬之介電間隙。 GAS105.9 較佳地,該微流體裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 C Μ Ο S電路之間。 GAS105.10 較佳地,該等試劑貯器各具有出口閥以 -94- 201211533 用於保留液體試劑於該貯器中直到需要添加試劑至 〇 GAS105.il 較佳地,該微流體裝置亦具有用 該等ECL探針與一對電極之雜交室之陣列。 GAS105.12 較佳地,該等雜交室各具有可被 探針所發射之光光穿透之壁部。 GAS 105.13 較佳地,該微流體裝置亦具有用 φ 由該ECL探針所發射之光的光感應器,其中該壁部 該等ECL探針與該光感應器之間。 GAS 105.14 較佳地,該微流體裝置亦具有該 器及該雜交室陣列之支持基板,其中該光感應器係 等雜交室與該支持基板之間,且該壁部係倂有二氧 層。 GAS105.15 較佳地,該光感應器係位置與雜 準之光電二極體之陣列,以使各該等雜交室分別對 φ 光電二極體中之一者。 GAS 1 05.1 6 較佳地,該等光電二極體之陣列 雜交室之距離係小於1,6〇〇微米。 GAS105.17 較佳地,該等光電二極體具有用 來自該發光團之光的平面主動表面區域,各該等主 區域係在同一平面,且該等電極係一層經G (patterned)以形成該分開之陽極和陰極之導電材料 所在之平面與該等光電二極體之主動表面區域之平 該樣品 於包含 該ECL 於檢測 係位於 光感應 位於該 化矽之 交室配 應該等 與該等 於接受 動表面 B案化 ,該層 面平行 -95- 201211533 GAS 105.18 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS 105.19 較佳地,該PCR部具有在PCR入口及 PCR出口之間延伸之微通道,該微通道係經配置以藉由毛 細作用吸引該樣品從該PCR入口流至該PCR出口。 GAS 1 05.20 較佳地,該微通道具有多個長形加熱器 ,各該多個長形加熱器係可獨立地操作。 該PCR部經由擴增標的以提供標的檢測所需之敏感性 。該探針雜交部經由雜交提供對該標的之分析。該整合式 PCR及探針雜交部實質上減少在檢測中導入汙染之可能性 ,簡化分析階段,且提供輕巧又不貴之單裝置分析解決方 案。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 06.1 本發明之態樣提供一種用於檢測流體中 之標的分子之微流體裝置,該微流體裝置包含: 室之陣列,各室含有用於與該標的分子反應以形成探 針-標的複合體之電化學發光(ECL)探針,及位於各室以用 於接受電脈衝之電極,該探針-標的複合體係經配置以使 得當被該等電極之間的電流激發時發射光之光子; ⑧ -96- 201211533 含有該等標的之流體的流路;其中 各該等室具有用於流體溝通該樣品流路與該室內之探 針之室入口,該室入口係經配置爲擴散屏障’以防止該等 探針-標的複合體在該等室之間擴散而導致錯誤之檢測結 果。 GAS106.2 較佳地,該室入口定義曲折流路。 GAS106.3 較佳地,該曲折流路具有彎繞構型。 φ GAS106.4 較佳地,該流體係生物樣品且該等標的 係核酸序列,該等探針各具有與該等標的中之一者互補之 核酸序列且該等室係用於雜交該等探針以形成探針-標的 雜交體之雜交室。 GAS106.5 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS106.6 較佳地,該微流體裝置亦具有用於檢測 由該探針所發射之光的光感應器,其中該壁部係位於該等 φ 探針與該光感應器之間。 GAS106.7 較佳地,該微流體裝置亦具有該光感應 器及該雜交室陣列之支持基板,其中該光感應器係位於該 等雜交室與該支持基板之間,且該壁部係倂有二氧化矽之 層。 GAS106.8 較佳地,該等探針各具有當呈激發狀態 時發射光子之ECL發光團及用於藉由共振能量轉移淬熄來 自該ECL發光團之光子發射之功能性部分。 GAS 106· 9 較佳地’該等探針係經配置以使當該探 -97- 201211533 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 106.10 較佳地,該微流體裝置亦具有經配置以 提供電脈衝至該等電極之CMOS電路。 GAS106.il 較佳地,該電脈衝具有小於〇. 6 9秒之 期間。 GAS106.12 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS106.13 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 106.14 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS 106.15 較佳地,該微流體裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 C Μ Ο S電路之間。 GAS106.16 較佳地’該等試劑貯器各具有出口閥以 用於保留液體試劑於該貯器中直到需要添加試劑至該樣品 〇 GAS106.17 較佳地,該層之厚度小於1,600微米。 GAS 106.18 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列’以使各該等雜交室分別對應該等 光電二極體中之一者。 98- 201211533 GAS106.19 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化( patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS 1 06.20 較佳地,各該等電極對中之一個電極係 φ 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 該探針雜交部經由雜交提供對該標的之分析。該擴散 屏障實質上消除該探針在雜交前及雜交後之回流,以防止 信號喪失及提供高度檢測敏感性。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 φ 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 108. 1 本發明之態樣提供一種用於檢測流體中 之標的分子之微流體裝置,該微流體裝置包含: 含有電化學發光(ECL)探針以用於與該等標的分子反 應以形成探針-標的複合體之室之陣列; 位於各該等室內以用於接受電脈衝之電極,該探針― 標的複合體係經配置以使得當被該等電極之間的電流激發 時發射光之光子;及 -99- 201211533 用於檢測由該等探針所發射之光的光感應器;其中 該光感應器與該等探針之距離小於1,600微米。 GAS108.2 較佳地,在各該室中之探針質量係小於 270皮克。 GAS108.3 較佳地,在各該室中之探針質量係小於 60皮克。 GAS108.4 較佳地,在各該室中之探針質量係小於 12皮克。 GAS108.5 較佳地,該微流體裝置亦具有: 支持基板: 用於提供電脈衝給該等電極之CMOS電路;及 含有該等標的之流體的流路;其中 該CMOS係介於該等室與該支持基板之間,且該流路 藉由毛細作用吸引該流體至各該等室。 GAS 108.6 較佳地,該流體係生物樣品且該標的係 核酸序列,該等探針各具有與該標的互補之核酸序列且該 等室係用於雜交該等探針以形成探針-標的雜交體之雜交 室。 GAS108.7 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS108.8 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 108.9 較佳地,該壁部係倂有二氧化矽之層。 GAS108.10 較佳地,該等探針各具有當被該等電極 -100- 201211533 之間的電流激發時發射光子之ECL發光團及用於藉由共振 能量轉移淬熄來自該ECL發光團之光子發射之功能性部分 〇 GAS108.il 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS108.12 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS 108.13 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 10 8.14 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS108.15 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 108.16 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS108.17 較佳地,該透明壁部之厚度小於1,600 微米。 GAS108.18 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS108.19 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 • 101 - 201211533 區域係在同一平面’且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 所在之平面與該等光電二極體之主動表面區域之平面平行 GAS108.20 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 該非成像光學提供可大量生產又不貴之低系統組件數 全面解決方案,且提供輕巧、具高度移動性之系統。該非 成像光學因爲大角度光收集而得到增加讀取敏感度之好處 且免除在該光收集元件串使用光學組件之需求。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 09.1 本發明之態樣提供一種用於檢測流體中 之標的分子之微流體裝置,該微流體裝置包含: 含有電極及探針之雜交室,其係用於與標的分子雜交 以形成探針-標的複合體及回應該等電極之間的電流以產 生電化學發光(ECL)信號;及 光電二極體,其具有主動區及垂直於該主動區延伸及 通過雜交室之光軸;其中 該雜交室具有位置與該光電二極體之主動區平行之底 ⑧ -102- 201211533 部表面,該底部表面具有質心且該主動區係被包含於該質 心位於彼之頂點的角錐內,且頂角係小於1 7 4。。 GAS 109.2 較佳地,該頂角係小於29度。 GAS 109.3 較佳地,該頂角係小於4.8度。 GAS109.4 較佳地,該頂角係小於0.8度。 GAS109.5 較佳地,該微流體裝置亦具有: 支持基板; 用於提供電脈衝給該等電極之CMOS電路; 該等雜交室之陣列;及 含有該等標的分子之流體的流路;其中 該CMOS電路係介於該等室與該支持基板之間,且該 流路藉由毛細作用吸引該流體至各該等室。 GAS109.6 較佳地,該流體係生物樣品且該標的係 核酸序列,該等探針各具有與該標的互補之核酸序列且該 等室係用於雜交該等探針以形成探針-標的雜交體之雜交 GAS109.7 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS109.8 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS109.9 較佳地,該壁部係倂有二氧化矽之層。 GAS109.10 較佳地,該等探針各具有當被該等電極 之間的電流激發時發射光子之ECL發光團及用於藉由共振 能量轉移淬熄來自該ECL發光團之光子發射之功能性部分 -103- 201211533 GAS 109.11 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時’該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 109.12 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS 1 09.13 期間。 較佳地,該電脈衝具有小於0 · 6 9秒之 GAS 1 09.1 4 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 109.15 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 1 09.16 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS 1 09.1 7 微米。 較佳地,該透明壁部之厚度小於1,600 GAS 1 09.1 8 較佳地,該光感應器係位置與雜交室配 準之該等光電二極體之陣列,以使各該等雜交室分別對應 該等光電二極體中之一者。 GAS109.19 較佳地,各該等主動區係在同一平面, 且該等電極係一層經圖案化(patterned)以形成該分開之陽 極和陰極之導電材料,該層所在之平面與該等光電二極體 之主動區之平面平行。 -104- 201211533 GAS109.20 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 該大角度之發射光收集提供可大量生產又不貴之低系 統組件數全面解決方案,且提供輕巧、具高度移動性之系 統。該大角度之發射光收集增加讀取之敏感度,其免除在 φ 該光收集元件串使用光學組件之需求》 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 1 0.1 本發明之態樣提供一種用於檢測流體中 之標的分子之微流體裝置,該微流體裝置包含: 電化學發光(ECL)探針之陣列,其係用於與該等標的 φ 分子反應以形成探針-標的複合體; 用於接受電脈衝之電極,該等探針-標的複合體係經 配置以使得當被該等電極之間的電流激發時發射光之光子 :及 用於檢測由該等探針所發射之光的光感應器;其中當 使用時, 添加該流體至該等探針防止後續添加其他流體至該等 探針。 GAS 11 0.2 較佳地,該微流體裝置亦具有室之陣列 •105- 201211533 ,其中各該等室分別包含一對電極和用於該等標的中之一 者之探針,其中該流體藉由毛細作用塡充各該等室。 GAS110.3 較佳地,該等室之體積各小於900,000 立方微米。 GAS 11 0.4 較佳地,該光感應器與該探針之距離小 於1,600微米。 GAS110.5 較佳地,該微流體裝置亦具有: 支持基板; 用於提供電脈衝給該等電極之CMOS電路;及 含有該等標的之流體的流路;其中 該CMOS係介於該等室與該支持基板之間,且該流路 藉由毛細作用吸引該流體至各該等室。 GAS 110.6 較佳地,該流體係生物樣品且該標的係 核酸序列,該等探針各具有與該標的互補之核酸序列且該 等室係用於雜交該等探針以形成探針-標的雜交體之雜交 室。 G.AS1 10.7 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS110.8 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS110.9 較佳地,該壁部係倂有二氧化矽之層。 GAS110.10 較佳地,該等探針各具有當被該等電極 之間的電流激發時發射光子之ECL發光團及用於藉由共振 能量轉移淬熄來自該ECL發光團之光子發射之功能性部分 ⑧ -106- 201211533 GAS 11 0.11 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 110.12 較佳地,該C Μ O S電路係經配置以提供 電脈衝至該等電極。 GAS1 10.13 較佳地,該電脈衝具有小於0.69秒之 φ 期間。 GAS 1 10.14 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS110.15 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 1 10.16 較佳地,該陽極和陰極之間係相隔〇.4 微米至2微米寬之介電間隙。 φ GAS1 10.17 較佳地,該透明壁部之厚度小於1,600 微米。 GAS1 10.18 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS110.19 較佳地,該等光電二極體具有用於接受 來自該發光團之光的平面主動表面區域,各該等主動表面 區域係在同一平面,且該等電極係一層經圖案化 (patterned)以形成該分開之陽極和陰極之導電材料,該層 -107- 201211533 所在之平面與該等光電二極體之主動表面區域之平面平行 〇 GAS 11 0.20 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 該易於使用、可大量生產、不貴又輕巧之微流體裝置 接受生物樣品,利用彼之整合式成像感測器經由探針雜交 識別該樣品之核酸序列,且在彼之輸出墊提供電子結果。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 1 1 · 1 本發明之態樣提供一種用於檢測流體中 之標的分子之晶片上實驗室(LOC)裝置,該LOC裝置包含 電化學發光(ECL)探針之陣列,其係用於與該等標的 分子反應以形成探針-標的複合體: 用於接受電脈衝之電極,該等探針·標的複合體係經 配置以使得當被該等電極之間的電流激發時發射光之光子 :及 用於檢測由該探針-標的複合體所發射之光之光感應 器。 GAS 1 11.2 較佳地,該LOC裝置亦具有: -108- 201211533 支持基板; 用於提供電脈衝給該等電極之CMOS電路; 室之陣列,各室含有用於與該等標的分子反應以形成 探針-標的複合體之探針及一對電極;及 含有該等標的之流體的流路;其中 該CMOS係介於該等室與該支持基板之間,且該流路 藉由毛細作用吸引該流體至各該等室。 GAS111.3 較佳地,該流體係生物樣品且該標的係 核酸序列,該等探針各具有與該標的互補之核酸序列且該 等室係用於雜交該等探針以形成探針-標的雜交體之雜交 室。 GASU1.4 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS111.5 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 11 1.6 較佳地,該壁部係倂有二氧化矽之層。 GAS111.7 較佳地,該等探針各具有當被該等電極 之間的電流激發時發射光子之ECL發光團及用於藉由共振 能量轉移淬熄來自該ECL發光團之光子發射之功能性部分 〇 GAS 1 1 1.8 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 1 11.9 較佳地,該CMOS電路係經配置以提供 -109- 201211533 電脈衝至該等電極。 GAS111.10 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS111.11 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS11 1.12 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS111.13 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS111.14 較佳地,該透明壁部之厚度小於1,600 微米。 GAS1 11.15 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS1 11.16 較佳地,該等光電二極體各具有平面主 動表面區域以使得該等平面主動表面區域集體提供該收集 表面,各該等主動表面區域係在同一平面,且該等電極係 —層經圖案化(patterned)以形成該分開之陽極和陰極之導 電材料,該層所在之平面與該等光電二極體之主動表面區 域之平面平行。 GAS 1 11.17 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 -110- 201211533 該光電二極體與該工作電極之間。 GAS1 11.18 較佳地,該發光團係有機金屬錯合物。 GAS 1 1 1 1 9 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS111.20 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 φ 該易於使用、可大量生產、不貴又輕巧之LOC裝置 接受生物樣品,利用彼之整合式成像感測器經由探針雜交 識別該樣品之核酸序列,且在彼之輸出墊提供電子結果。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS1 12.1 本發明之此態樣提供一種用於激發電化 φ 學發光發光團之晶片上實驗室(LOC)裝置,該LOC裝置包 含: 支持基板; 電化學發光(ECL)探針之陣列,其係用於與該等標的 分子反應以形成探針-標的複合體,該等探針各具有發光 團以在激發狀態時用於發射光之光子; 電極,其係用於接受電脈衝以利用該等電極之間的電 流激發該等發光團;及 用於控制傳送至該等電極之電脈衝之CMOS電路;其 -111 - 201211533 中 該CMOS電路係介於該支持基板與該探針陣列之間。 GAS112.2 較佳地,該LOC裝置亦具有: 用於檢測由該探針-標的複合體所發射之光之光感應 器; 室之陣列,各室含有用於與該等標的分子反應以形成 探針-標的複合體之探針及一對電極;及 含有該等標的之流體的流路;其中 該流路藉由毛細作用吸引該流體至各該等室。 GAS1 12.3 較佳地,該流體係生物樣品且該標的係 核酸序列,該等探針各具有與該標的互補之核酸序列且該 等室係用於雜交該等探針以形成探針-標的雜交體之雜交 室。 GAS1 12.4 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS112.5 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS II 2.6 較佳地,該壁部係倂有二氧化矽之層。 GAS112.7 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 GAS112.8 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS1 12.9 較佳地,該CMOS電路係經配置以提供 ⑧ -112 201211533 電脈衝至該等電極。 GAS1 12.10 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS112.il 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 11 2.12 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 1 12.13 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙》 GAS 1 12.14 較佳地,該透明壁部之厚度小於1,600 微米。 GAS112.15 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS112.16 較佳地,該等光電二極體各具有平面主 動表面區域以使得該等平面主動表面區域集體提供該收集 表面,各該等主動表面區域係在同一平面,且該等電極係 —層經圖案化(patterned)以形成該分開之陽極和陰極之導 電材料,該層所在之平面與該等光電二極體之主動表面區 域之平面平行。 GAS112.17 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 -113- 201211533 該光電二極體與該工作電極之間。 GAS1 12.18 較佳地,該發光團係有機金屬錯合物。 GAS 11 2.19 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS1 12.20 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 在該LOC裝置上之用於激發電化學發光發光團之整 合式驅動器係自該通用USB操作,提供易於使用、可大 量生產、不貴又輕巧之具有小組件數之系統。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS1 13.1 本發明之態樣提供一種用於檢測流體中 之標的分子之晶片上實驗室(LOC)裝置,該LOC裝置包含 電化學發光(ECL)探針之陣列,其係用於與該等標的 分子反應以形成探針-標的複合體;及 用於接受電脈衝之電極;其中 該等探針各具有當被該等電極之間的電流激發時發射 光子之ECL發光團及用於藉由共振能量轉移淬熄來自該 ECL發光團之光子發射之功能性部分。 GAS113.2 較佳地,該LOC裝置亦具有: -114- 201211533 用於檢測由該探針-標的複合體所發射之光之光感應 器。 GAS1 13.3 較佳地,該LOC裝置亦具有: 支持基板; 用於提供電脈衝給該等電極之CMOS電路; 室之陣列,各室含有用於與該等標的分子反應以形成 探針-標的複合體之探針及一對電極;及 φ 含有該等標的之流體的流路;其中 該CMOS係介於該等室與該支持基板之間,且該流路 藉由毛細作用吸引該流體至各該等室。 GAS113.4 較佳地,該流體係生物樣品且該標的係 核酸序列,該等探針各具有與該標的互補之核酸序列且該 等室係用於雜交該等探針以形成探針-標的雜交體之雜交 室。 GAS113.5 較佳地,該等雜交室各具有可被該探針 φ 所發射之光光穿透之壁部。 GAS113.6 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 1 13.7 較佳地,該壁部係倂有二氧化矽之層。 GAS113.8 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS113.9 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 -115- 201211533 GASl 13.10 較佳地,該電脈衝具有小於〇 . 6 9秒之 期間。 GAS113.il 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS1 13.12 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS1 13.13 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS 113.14 較佳地,該透明壁部之厚度小於1,600 微米。 GAS 1 13.15 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS113.16 較佳地,該等光電二極體各具有平面主 動表面區域以使得該等平面主動表面區域集體提供該收集 表面,各該等主動表面區域係在同一平面,且該等電極係 一層經圖案化(patterned)以形成該分開之陽極和陰極之導 電材料,該層所在之平面與該等光電二極體之主動表面區 域之平面平行。 GAS113.17 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 -116- 201211533 GASl 13.18 較佳地,該發光團係有機金屬錯合物。 GAS 11 3.19 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS113.20 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 該易於使用、可大量生產、不貴又輕巧之LOC裝置 接受生物樣品,利用彼之整合式成像感測器經由與電化學 發光共振能量轉移探針雜交以識別該樣品之核酸序列,且 在彼之輸出墊提供電子結果,由該電化學發光共振能量轉 移探針提供高特異性及高可靠性之檢測該標的序列。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 14.1 本發明之此態樣提供一種用於檢測標的 核酸序列之雜交之晶片上實驗室(LOC)裝置,該LOC裝置 包含: 電化學發光(ECL)、共振能量轉移、與引子連接、莖 環探針,其係用於與.該等標的核酸序列雜交以形成探針-標的雜交體,各該等探針具有含有該標的核酸序列之環部 分、用於沿著該標的核酸序列延伸以形成與該標的互補之 核酸序列之引子、用於在激發狀態時發射光子之ECL發光 團及用於藉由共振能量轉移淬熄來自該ECL發光團之光子 -117- 201211533 發射的功能性部分;及 用於接受電脈衝以激發該等ECL發光團之電極;其中 當使用時’ 形成該互補核酸序列造成該環部分打開以使其中之該 標的核酸序列與該互補核酸序列雜交且該ECL發光團被移 至遠離該功能性部分。 GAS 1 14.2 較佳地,該LOC裝置亦具有: 光感應器,其係用於檢測當該ECL發光團呈探針-標 的雜交體構型時所發射之光。 GAS 1 14.3 較佳地,該LOC裝置亦具有: 支持基板; 用於提供電脈衝給該等電極之CMOS電路; 含有用於與該等標的雜交之探針及一對電極之雜交室 :及 含有該等標的之流體的流路;其中 該CMOS係介於該等雜交室與該支持基板之間,且該 流路藉由毛細作用吸引該流體至各該等雜交室。 GAS114.4 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS114.5 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS1 14.6 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 ⑧ -118- 201211533 GAS 11 4.7 較佳地,該壁部係倂有二氧化矽之層。 GAS114.8 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 114.9 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS114.10 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 11 4.11 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 11 4.12 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 1 14.13 較佳地,該陽極和陰極之間係相隔〇.4 微米至2微米寬之介電間隙。 GAS1 14.14 較佳地,該透明壁部之厚度小於1,600 微米。 GAS114.15 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS114.16 較佳地,該等光電二極體各具有平面主 動表面區域以使得該等平面主動表面區域集體提供該收集 表面,各該等主動表面區域係在同一平面’且該等電極係 一層經圖案化(patterned)以形成該分開之陽極和陰極之導 -119- 201211533 電材料,該層所在之平面與該等光電二極體之主動表面區 域之平面平行。 GAS114.17 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS1 14.18 較佳地,該發光團係有機金屬錯合物。 GAS114.19 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS1 14.20 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序 列。 該易於使用、可大量生產、不貴又輕巧之LOC裝置 接受生物樣品,擴增該樣品中之核酸標的,利用彼之整合 式成像感測器經由與電化學發光共振能量轉移引子連接之 莖環探針雜交以識別該樣品之核酸序列,且在彼之輸出墊 提供電子結果,由該與引子連接之莖環探針提供大量將被 進行之最佳平行擴增反應,亦提供高特異性、敏感性及可 靠性之檢測該標的序列。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 11 5 .1 本發明之此態樣提供一種用於檢測標的 -120 - 201211533 核酸序列之雜交之晶片上實驗室(LOC)裝置,該LOC裝置 包含: 電化學發光(ECL)、共振能量轉移、與引子連接、線 性探針,其係用於與該等標的核酸序列雜交以形成探針-標的雜交體,各該等探針具有含有該標的核酸序列之線性 部分、用於沿著該標的核酸序列延伸以形成與該標的互補 之核酸序列之引子、用於在激發狀態時發射光子之ECL發 光團及用於藉由共振能量轉移淬熄來自該ECL發光團之光 子發射的功能性部分;及 用於接受電脈衝以激發該等ECL發光團之電極;其中 當使用時, 複製該標的核酸序列造成該線性部分與該功能性部分 解離,以使其內之互補核酸序列與該標的核酸序列雜交, 且由該ECL發光團發射之光子不被淬熄。 GAS115.2 較佳地,該LOC裝置亦具有: 用於檢測由該ECL發光團所發射之光的光感應器。 GAS 1 15.3 較佳地,該LOC裝置亦具有: 支持基板; 用於提供電脈衝給該等電極之CMOS電路; 含有用於與該等標的雜交之探針及一對電極之雜交室 :及 含有該等標的之流體的流路;其中 該CMOS係介於該等雜交室與該支持基板之間,且該 流路藉由毛細作用吸引該流體至各該等雜交室。 -121 - 201211533 GASl 15.4 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS 1 15.5 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS115.6 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS115.7 較佳地,該壁部係倂有二氧化矽之層。 GAS 1 1 5.8 較佳地,該等探針係經配置以使當該探 針形成探針-標的雜交體時,該用於淬熄來自該ECL發光 團之光子發射之功能性部分係進一步源自該ECL發光團。 GAS 1 15.9 較佳地,該C Μ O S電路係經配置以提供 電脈衝至該等電極。 GAS 11 5.10 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS115.il 較佳地,該電脈衝之電流係介於〇.1奈 安培至6 9.0奈安培。 GAS 11 5.12 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 115.13 較佳地,該陽極和陰極之間係相隔〇. 4 微米至2微米寬之介電間隙。 GAS 1 15.14 較佳地,該透明壁部之厚度小於1,6〇〇 微米。 -122- 201211533 GAS 115.15 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS 115.16 較佳地,該等光電二極體各具有平面主 動表面區域以使得該等平面主動表面區域集體提供該收集 表面,各該等主動表面區域係在同一平面,且該等電極係 一層經圖案化(patterned)以形成該分開之陽極和陰極之導 φ 電材料,該層所在之平面與該等光電二極體之主動表面區 域之平面平行。 GAS1 15.17 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS 11 5. 18 較佳地,該發光團係有機金屬錯合物。 GAS 1 1 5 . 1 9 較佳地,該有機金屬錯合物係有機釕錯 ^ 合物分子。 GAS1 15.20 較佳地,該LOC裝置亦具有聚合酶連 鎖反應(PCR)部,其係用於擴增在該樣品中之標的核酸序' 列。 該易於使用、可大量生產、不貴又輕巧之LOC裝置 接受生物樣品,擴增該樣品中之核酸標的,利用彼之整合 式成像感測器經由與電化學發光共振能量轉移引子連接之 線性探針雜交以識別該樣品之核酸序列,且在彼之輸出墊 提供電子結果,由該與引子連接之線性探針提供大量將被 -123- 201211533 進行之最佳平行擴增反應,亦提供高特異性、敏感性及可 靠性之檢測該標的序列。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 17.1 本發明之此態樣提供一種用於擴增及檢 測標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝置 包含: 用於與該等標的核酸序列雜交之電化學發光(ECL)、 共振能量轉移、莖環探針,各該等探針具有含有與該標的 核酸序列互補之序列的環部分、用於在激發狀態時發射光 子之ECL發光團、用於藉由共振能量轉移淬熄來自該ECL 發光團之光子發射的功能性部分,及用於沿著自該標的核 酸序列變性之互補序列延伸以複製該標的核酸序列之共價 連接引子; 用於加熱循環該標的核酸序列以進行聚合酶連鎖反應 (PCR)之加熱器,其中該共價連接引子與含有該標的核酸 序列之寡核苷酸黏合;及 用於接受電脈衝以激發該等ECL發光團之電極;其中 當使用時, 複製該標的核酸序列造成該環部分打開以使其中之該 互補核酸序列與該標的核酸序列雜交且該ECL發光團被移 至遠離該功能性部分。 -124- 201211533 GASl 17.2 較佳地,該LOC裝置亦具有: 用於檢測由該ECL發光團所發射之光的光感應器。 GAS 1 17.3 較佳地,該LOC裝置亦具有: 支持基板; 用於活化該等加熱器及提供電脈衝給該等電極之 CMOS電路; 含有用於與該等標的雜交之探針、該等加熱器中之至 ^ 少一者及一對電極之雜交室;及 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS117.4 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS 117.5 較佳地,該等雜交室各具有可被該探針 φ 所發射之光光穿透之壁部。 GAS 11 7.6 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 1 1 7.7 較佳地,該壁部係倂有二氧化矽之層。 GAS 1 1 7.8 較佳地,該共價連接引子係與該功能性 部分連接以用於淬熄來自該ECL發光團之光子發射且該環 部分係介於該ECL發光團及該功能性部分之間。 GAS 11 7.9 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 -125- 201211533 GASl 17.10 較佳地,該電脈衝具有小於〇·69秒之 期間。 GAS117.il 較佳地,該電脈衝之電流係介於〇.1奈 安培至69.0奈安培。 GAS 11 7. 12 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS117.13 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS117.14 較佳地,該透明壁部之厚度小於1,600 微米。 GAS 11 7.15 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS 11 7. 16 較佳地,該等光電二極體各具有平面主 動表面區域以使得該等平面主動表面區域集體提供該收集 表面,各該等主動表面區域係在同一平面,且該等電極係 一層經圖案化(patterned)以形成該分開之陽極和陰極之導 電材料,該層所在之平面與該等光電二極體之主動表面區 域之平面平行》 GAS117.17 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極’該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 -126- 201211533 GAS117.18 較佳地,該發光團係有機金屬錯合物。 GAS 11 7.19 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS117.20 較佳地,該LOC裝置亦具有透析部以 用於分流小於預定大小閥値之細胞至分開之流。 該易於使用、可大量生產、不貴又輕巧之LOC裝置 接受生物樣品,擴增該樣品中之核酸標的,利用彼之整合 φ 式成像感測器經由與電化學發光共振能量轉移引子連接之 莖環探針雜交以識別該樣品之核酸序列,且在彼之輸出墊 提供電子結果,由該與引子連接之莖環探針提供大量將被 進行之最佳平行擴增反應,亦提供高特異性、敏感性及可 靠性之檢測該標的序列》 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 φ 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 18.1 本發明之此態樣提供一種用於擴增及檢 測標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝置 包含: 用於與該等標的核酸序列雜交之電化學發光(ECL)、 共振能量轉移、線性探針,各該等探針具有含有與該標的 核酸序列互補之序列的線性部分、用於在激發狀態時發射 光子之ECL發光團、用於藉由共振能量轉移淬熄來自該 ECL發光團之光子發射的功能性部分,及用於沿著自該標 -127- 201211533 的核酸序列變性之互補序列延伸以複製該標的核酸序列之 共價連接引子: 用於加熱循環該標的核酸序列以進行聚合酶連鎖反應 (PCR)之加熱器,其中該共價連接引子與含有該標的核酸 序列之寡核苷酸黏合:及 用於接受電脈衝以激發該等ECL發光團之電極;其中 當使用時, 複製該標的核酸序列造成該線性部分與該功能性部分 解離,以使其內之互補核酸序列與該標的核酸序列雜交, 且由該ECL發光團發射之光子不被淬熄。 GAS118.2 較佳地,該LOC裝置亦具有: 用於檢測由該ECL發光團所發射之光的光感應器。 GAS1 18.3 較佳地,該LOC裝置亦具有: 支持基板; 用於活化該等加熱器及提供電脈衝給該等電極之 CMOS電路; 含有用於與該等標的雜交之探針、該等加熱器中之至 少一者及一對電極之雜交室;及 含有該等標的之流體的流路;其中 該CMOS係介於該等雜交室與該支持基板之間,且該 流路藉由毛細作用吸引該流體至各該等雜交室。 GAS1 18.4 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 -128 - 201211533 GAS118.5 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS118.6 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS118.7 較佳地,該壁部係併有二氧化矽之層。 GAS 118.8 較佳地,該探針具有介於該共價連接引 子與該線性部分之間的PCR阻斷物基團。 φ GAS118.9 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS1 18.10 較佳地,該電脈衝具有小於〇. 6 9秒之 期間。 GAS118.il 較佳地,該電脈衝之電流係介於〇. 1奈 安培至69.0奈安培。 GAS 1 1 8 .1 2 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 φ 之指與該陰極之指交叉。 GAS 11 8.13 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS 118.14 較佳地,該透明壁部之厚度小於1,600 微米。 GAS 1 18.15 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS118.16 較佳地,該等光電二極體各具有平面主 -129- 201211533 動表面區域以使得該等平面主動表面區域集體提供該收集 表面,各該等主動表面區域係在同一平面,且該等電極係 —層經圖案化(patterned)以形成該分開之陽極和陰極之導 電材料,該層所在之平面與該等光電二極體之主動表面區 域之平面平行。 GAS 1 18.17 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 GAS118.18 較佳地,該發光團係有機金屬錯合物。 GAS118.19 較佳地,該有機金屬錯合物係有機釕錯 合物分子》 GAS1 18.20 較佳地,該LOC裝置亦具有透析部以 用於分流小於預定大小閥値之細胞至分開之流。 該易於使用、可大量生產、不貴又輕巧之LOC裝置 接受生物樣品,擴增該樣品中之核酸標的,利用彼之整合 式成像感測器經由與電化學發光共振能量轉移引子連接之 線性探針雜交以識別該樣品之核酸序列,且在彼之輸出墊 提供電子結果,由該與引子連接之線性探針提供大量將被 進行之最佳平行擴增反應,亦提供高特異性、敏感性及可 靠性之檢測該標的序列。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 -130- 201211533 化該檢測器電路,使該檢測系統甚至更便宜。 GAS119.1 本發明之此態樣提供一種用於擴增及檢 測標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝置 包含: 用於在已知接合位點限制(消化)雙股寡核苷酸之限制 酶; 用於連接至該雙股寡核苷酸之接合端之連接子分子; 用於在聚合酶連鎖反應(PCR)過程中加熱循環該寡核 苷酸之加熱器; 用於在變性後黏合至該寡核苷酸之單股上的連接子分 子之引子; 用於沿著該單股寡核苷酸延伸該引子之去氧核糖核苷 三磷酸(dNTP);及 用於接受電脈衝以激發該等ECL發光團之電極。 GAS1 19.2 較佳地,該LOC裝置亦具有: 用於檢測由該ECL發光團所發射之光的光感應器。 GAS119.3 較佳地,該LOC裝置亦具有: 支持基板; 用於活化該等加熱器及提供電脈衝給該等電極之 CMOS電路; 含有用於與該等標的雜交之探針、該等加熱器中之至 少一者及一對電極之雜交室;及 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, -131 - 201211533 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS 119.4 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS 1 1 9.5 較佳地’該等雜交室各具有可被該探針 所發射之光光穿透之壁部》 GAS119.6 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間β GAS 11 9.7 較佳地,該壁部係倂有二氧化矽之層。 GAS119.8 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS 1 19.9 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS 1 19.10 較佳地,該電脈衝具有小於0.69秒之 期間》 GAS119.il 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS1 19.12 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 1 19.13 較佳地,該陽極和陰極之間係相隔〇·4 -132- 201211533 微米至2微米寬之介電間隙。 GAS119.14 較佳地,該透明壁部之厚度小於1,600 微米。 GAS119.15 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS119.16 較佳地,該等光電二極體各具有平面主 φ 動表面區域以使得該等平面主動表面區域集體提供該收集 表面,各該等主動表面區域係在同一平面,且該等電極係 —層經圖案化(patterned)以形成該分開之陽極和陰極之導 電材料,該層所在之平面與該等光電二極體之主動表面區 域之平面平行。 GAS119.17 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 φ 該光電二極體與該工作電極之間。 GAS 119.18 較佳地,該發光團係有機金屬錯合物。 GAS 11 9. 19 較佳地,該有機金屬錯合物係有機釕錯 合物分子。 GAS119.20 較佳地,該LOC裝置亦具有透析部以 用於分流小於預定大小閥値之細胞至分開之流。 該易於使用、可大量生產、不貴又輕巧之L〇C裝置 接受生物樣品,擴增該樣品中之核酸標的’利用彼之整合 式成像感測器經由探針雜交識別該樣品之核酸序列’且在 -133- 201211533 彼之輸出墊提供電子結果,此係由該適應子引子提供基因 組級擴增及分柄之能力。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 120.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 用於與該標的核酸序列雜交之電化學發光(ECL)、共 振能量轉移探針,各該等探針含有與該標的核酸序列互補 之序列及用於在激發狀態時發射光子之ECL發光團、用於 藉由共振能量轉移淬熄來自該ECL發光團之光子發射的功 能性部分; 用於接受電脈衝以激發該等ECL發光團之電極;含有 用於與該等標的雜交之探針、該等加熱器中之至少一者及 一對電極之雜交室;及 含有用於添加至該流體之試劑之試劑貯器;其中 該等雜交室各具有小於900,000立方微米之體積且該 試劑貯器具有小於1,〇〇〇,〇〇〇,〇〇〇立方微米之體積。 GAS120.2較佳地,該等雜交室各具有小於200,000立方 微米之體積且該試劑貯器具有小於300,000,000立方微米 之體積。 GAS 1 20.3 較佳地,該等雜交室各具有小於40,000 -134- 201211533 立方微米之體積且該試劑貯器具有小於70,000,000立方微 米之體積。 GAS120.4 較佳地,該等雜交室各具有小於9,000 立方微米之體積且該試劑貯器具有小於20,000,000立方微 米之體積。 GAS120.5 較佳地,該LOC裝置亦具有: 用於檢測由該ECL發光團所發射之光的光感應器。 φ GAS 1 20.6 較佳地,該LOC裝置亦具有: 支持基板; 用於提供電脈衝給該等電極之CMOS電路;及 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS120.7 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 φ 膜以釋放任何其內之基因物質。 GAS 12 0.8 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS120.9 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 12 0.10 較佳地,該壁部係倂有二氧化矽之層。 GAS120.il 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 -135- 201211533 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS120.12 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS 120.13 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 120.14 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培》 GAS 120.1 5 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 120.16 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS120.17 較佳地,該透明壁部之厚度小於1,600 微米。 GAS 120.18 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS120.19 較佳地,該等光電二極體各具有平面主 動表面區域以使得該等平面主動表面區域集體提供該收集 表面,各該等主動表面區域係在同一平面,且該等電極係 —層經圖案化(patterned)以形成該分開之陽極和陰極之導 電材料,該層所在之平面與該等光電二極體之主動表面區 域之平面平行。 -136- 201211533 GAS 1 20.20 較佳地,各該等電極對中之一個電極係 導致該發光團之氧化或還原以產生發射光子之激發物種之 工作電極,該工作電極之位置係經配置以使該等探針介於 該光電二極體與該工作電極之間。 該低體積之雜交室及試劑貯器在某種程度上代表低探 針及試劑體積,進而提供低探針及試劑成本且不貴之檢測 系統。 φ 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 2 1 · 1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 用於檢測該標的核酸序列之電化學發光(ECL)探針, φ 各該等探針具有用於在激發狀態時發射光子之ECL發光團 、用於藉由共振能量轉移淬熄來自該ECL發光團之光子發 射的功能性部分; 至少一個陽性對照探針,其具有該等ECL發光團中之 一者但不具有該用於淬熄光子發射之功能性部分; 至少一個陰性對照探針’其不具有該等ECL發光團中 之一者;及 用於接受電脈衝以激發該等ECL發光團之電極。 GAS121.2 較佳地’該LOC裝置亦具有位於鄰近 -137- 201211533 該探針之光感應器,其係用於感測那些探針回應該電脈衝 而產生光子。 GAS121.3 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該探針與該支持基板之間的電荷 耦合裝置(CCD)陣列。 GAS 121.4 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該支持基板上與該等探針配準之 光電二極體之陣列。 GAS121.5 較佳地,該光電二極體陣列距離該探針 小於1,600微米。 GAS 121.6 較佳地,該LOC裝置亦具有在該支持 基板上之CMOS電路,該光電二極體之陣列係該CMOS電 路之組件,其中當使用時,該CMOS電路回應無法感測來 自該陽性對照探針之EC L信號或回應感測來自該陰性對照 探針之信號而引發錯誤信號。 GAS 121 .7 較佳地,該LOC裝置亦具有包含該等 探針與一對電極之雜交室。 GAS121.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS121.9 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 -138- 201211533 GAS121.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS121.il 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 12 1.1 2 較佳地,該壁部係倂有二氧化矽之層》 GAS 12 1.1 3 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 φ 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS121.14 較佳地,該CMO S電路係經配置以提供 電脈衝至該等電極。 GAS 12 1.1 5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 121 . 16 較佳地,該電脈衝之電流係介於0.1奈 φ 安培至69.0奈安培。 GAS 1 2 1 . 1 7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 12 1.1 8 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS121.19 較佳地,該透明壁部之厚度小於1,600 微米。 - GAS 12 1.20 較佳地,該LOC裝置亦具有上蓋,該 -139- 201211533 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 C Μ 0 S電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 對照探針改善該分析結果之可靠性。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 22.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 用於檢測該標的核酸序列之電化學發光(ECL)探針, 各該等探針具有用於在激發狀態時發射光子之ECL發光團 、用於藉由共振能量轉移淬熄來自該ECL發光團之光子發 射的功能性部分; 至少一個陽性對照探針,其係用於檢測已知一定存在 於該流體中之核酸序列;及 用於接受電脈衝以激發該等ECL發光團之電極。 GAS122.2 較佳地,該LOC裝置亦具有位於鄰近 該探針之光感應器,其係用於感測那些探針回應該電脈衝 而產生ECL光子。 GAS122.3 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該探針與該支持基板之間的電荷 -140- 201211533 耦合裝置(CCD)陣列。 GAS122·4 較佳地,該LOC裝置亦具有支持基板 ’其中該光感應器係位於該支持基板上與該等探針配準之 光電二極體之陣列。 GAS122.5 較佳地,該光電二極體陣列距離該探針 小於1,600微米。 GAS122.6 較佳地,該LOC裝置亦具有在該支持 φ 基板上之CMOS電路,該光電二極體之陣列係該CMOS電 路之組件,其中當使用時,該CMOS電路回應未檢測到來 自該陽性對照探針之ECL發射而引發錯誤信號。 GAS122.7 較佳地,該LOC裝置亦具有包含該等 探針與一對電極之雜交室。 GAS122.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, φ 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS122.9 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS122.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS122.il 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 122.12 較佳地,該壁部係倂有二氧化矽之層。 -141 - 201211533 GAS 122.13 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS 1 22.14 較佳地,該C Μ Ο S電路係經配置以提供 電脈衝至該等電極。 GAS 1 22. 1 5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 1 22.1 6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 1 22.1 7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 1 22.1 8 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS122.19 較佳地,該LOC裝置亦具有用於擴增 該標的核酸序列之PCR部。 GAS 1 22.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 CMOS電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 對照探針改善該分析結果之可靠性。 -142- 201211533 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 23 · 1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: φ 用於檢測該標的核酸序列之電化學發光(ECL)探針, 各該等探針具有用於在激發狀態時發射光子之ECL發光團 、用於藉由共振能量轉移淬熄來自該ECL發光團之光子發 射的功能性部分; 至少一個陽性對照探針,其具有該ECL發光團但不具 有該用於淬熄光子發射之功能性部分;及 用於接受電脈衝以激發該等ECL發光團之電極。 GAS123.2 較佳地,該LOC裝置亦具有位於鄰近 φ 該探針之光感應器,其係用於感測那些探針回應該電脈衝 而產生ECL光子。 GAS123.3 較佳地’該LOC裝置亦具有支持基板 ,其中該光感.應器係位於該探針與該支持基板之間的電荷 耦合裝置(CCD)陣列。 GAS123.4 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該支持基板上與該等探針配準之 光電二極體之陣列。 GAS123.5 較佳地,該光電二極體陣列距離該探針 -143- 201211533 小於1,600微米。 GAS123.6 較佳地,該LOC裝置亦具有在該支持 基板上之CMOS電路,該光電二極體之陣列係該CMOS電 路之組件,其中當使用時,該CMOS電路回應檢測到來自 該陰性對照探針之ECL發射而引發錯誤信號。 GAS123.7 較佳地,該LOC裝置亦具有包含該等 探針與一對電極之雜交室。 GAS123.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS 123.9 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS123.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS123.il 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 123. 12 較佳地,該壁部係倂有二氧化矽之層。 GAS 123.13 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 -144- 201211533 GAS123.14 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS123.15 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS123.16 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS123.17 較佳地,該等電極具有分別具有手指狀 φ 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS123.18 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙》 GAS123.19 較佳地,該LOC裝置亦具有PCR部, 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS 1 23.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 φ 該樣品,其中該等電極及該等探針係介於該上蓋及該 CMOS電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 對照探針改善該分析結果之可靠性。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜》 GAS124.1 本發明之此態樣提供一種用於檢測流體 -145- 201211533 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 用於檢測該標的核酸序列之電化學發光(ECL)探針, 各該等探針具有用於在激發狀態時發射光子之ECL發光團 、用於藉由共振能量轉移淬熄來自該ECL發光團之光子發 射的功能性部分: 用於接受電脈衝以激發該等ECL發光團之電極; 含有用於檢測該等標的之探針及一對電極之雜交室; 及 至少一個含有陽性對照探針之陽性對照室,該陽性對 照探針具有ECL發光團但不具有用於淬熄光子發射之功能 性部分。 GAS124.2 較佳地,該L0C裝置亦具有位於鄰近 該探針之光感應器,其係用於感測那些探針回應該電脈衝 而產生ECL光子。 GAS124.3 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該探針與該支持基板之間的電荷 耦合裝置(CCD)陣列。 GAS124.4 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該支持基板上與該等雜交室配準 之光電二極體之陣列。 GAS 124.5 較佳地,該光電二極體陣列距離該探針 小於1,600微米。 GAS124.6 較佳地,該LOC裝置亦具有在該支持 -146- 201211533 基板上之CMOS電路,該光電二極體之陣列係該CMOS電 路之組件,其中當使用時,該CMOS電路回應無法感測來 自該陽性對照探針之ECL發射而引發錯誤信號。 GAS124.7 較佳地,該 LOC裝置亦具有至少一個 含有陰性對照探針之陰性對照室,該陰性對照探針無法與 該流體中之任何核酸序列雜交。 GAS124.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室》 GAS124.9 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS124.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS124.il 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 124.12 較佳地,該壁部係倂有二氧化矽之層。 GAS124.13 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS124.14 較佳地,該C Μ Ο S電路係經配置以提供 -147- 201211533 電脈衝至該等電極。 GAS 1 24.1 5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 1 24.1 6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 1 24.1 7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 124.18 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS124.19 較佳地,該LOC裝置亦具有PCR部, 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS 1 24.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 CMOS電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 對照探針改善該分析結果之可靠性。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS125.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 -148 - ⑧ 201211533 置包含: 用於檢測該標的核酸序列之電化學發光(ECL)探針, 各該等探針具有用於在激發狀態時發射光子之ECL發光團 、用於藉由共振能量轉移淬熄來自該ECL發光團之光子發 射的功能性部分; 用於接受電脈衝以激發該等ECL發光團之電極; 含有用於檢測該等標的之探針及一對電極之雜交室; •及 至少一個含有陰性對照探針之陰性對照室,該陰性對 照探針無法與該流體中之任何核酸序列雜交。 GAS125.2 較佳地,該 LOC裝置亦具有位於鄰近 該探針之光感應器,其係用於感測那些探針回應該電脈衝 而產生ECL光子。 GAS125.3 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該探針與該支持基板之間的電荷 φ 耦合裝置(CCD)陣列。 GAS125.4 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該支持基板上與該等雜交室配準 之光電二極體之陣列。 GAS125.5 較佳地,該光電二極體陣列距離該探針 小於1,600微米。 GAS125.6 較佳地,該LOC裝置亦具有在該支持 基板上之CMOS電路,該光電二極體之陣列係該CMOS電 路之組件,其中當使用時,該CMOS電路回應檢測到來自 -149- 201211533 該陰性對照室之ECL發射而引發錯誤信號。 GAS125.7 較佳地,該LOC裝置亦具有至少一個 含有陽性對照探針之陽性對照室,該陽性對照探針具有 ECL發光團但不具有用於淬熄光子發射之功能性部分。 GAS 125.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS 125.9 較佳地,該 LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS125.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS125.il 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS125.12 較佳地,該壁部係倂有二氧化矽之層。 GAS125.13 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS125.14 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS125.15 較佳地,該電脈衝具有小於0.69秒之 -150- 201211533 期間。 GAS125.16 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 125.17 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS125.18 較佳地,該陽極和陰極之間係相隔0.4 φ 微米至2微米寬之介電間隙。 GAS 1 25.1 9 較佳地,該LOC裝置亦具有PCR部, 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS 1 25.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 CMOS電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 φ 對照探針改善該分析結果之可靠性。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜》 GAS 1 26.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 用於檢測該標的核酸序列之電化學發光(ECL)探針, -151 - 201211533 各該等探針具有用於在激發狀態時發射光子之ECL發光團 、用於藉由共振能量轉移淬熄來自該ECL發光團之光子發 射的功能性部分; 用於接受電脈衝以激發該等ECL發光團之電極; 含有用於檢測該等標的之探針及一對電極之雜交室; 及 至少一個含有不具ECL發光團之陰性對照探針之陰性 對照室。 GAS126.2 較佳地,該LOC裝置亦具有位於鄰近 該探針之光感應器,其係用於感測那些探針回應該電脈衝 而產生ECL光子。 GAS126.3 較佳地,該 LOC裝置亦具有支持基板 ,其中該光感應器係位於該探針與該支持基板之間的電荷 耦合裝置(CCD)陣列。 GAS126.4 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該支持基板上與該等雜交室配準 之光電二極體之陣列。 GAS126.5 較佳地,該光電二極體陣列距離該探針 小於1,600微米。 GAS126.6 較佳地,該LOC裝置亦具有在該支持 基板上之CMOS電路,該光電二極體之陣列係該CMOS電 路之組件,其中當使用時,該CMOS電路回應檢測到來自 該陰性對照室之ECL發射而引發錯誤信號。 GAS 126.7 較佳地,該LOC裝置亦具有至少一個 -152- 201211533 含有陽性對照探針之陽性對照室,該陽性對照探針具有 ECL發光團但不具有用於淬熄光子發射之功能性部分。 GAS126.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS‘電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS126.9 較佳地,該LOC裝置亦具有溶胞部, φ 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS126.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS126.il 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS126.12 較佳地,該壁部係倂有二氧化矽之層。 GAS126.13 較佳地,該探針具有莖環結構,其環部 φ 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS 126.14 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS126.15 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS126.16 較佳地,該電脈衝之電流係介於0.1奈 -153- 201211533 安培至69.0奈安培。 GAS 1 26.1 7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 1 26.1 8 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS126.19 較佳地,該LOC裝置亦具有PCR部, 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS 1 26.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 C Μ Ο S電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 對照探針改善該分析結果之可靠性。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 127. 1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 用於檢測該標的核酸序列之電化學發光(ECL)探針, 各該等探針具有用於在激發狀態時發射光子之ECL發光團 、用於藉由共振能量轉移淬熄來自該ECL發光團之光子發 -154- 201211533 射的功能性部分: 用於接受電脈衝以激發該等ECL發光團之電極; 含有用於檢測該等標的之探針及一對電極之雜交室: 及 至少一個不具該ECL探針之陰性對照室。 GAS127.2 較佳地,該LOC裝置亦具有位於鄰近 該探針之光感應器,其係用於感測那些探針回應該電脈衝 φ 而產生ECL光子。 GAS127.3 較佳地,該 LOC裝置亦具有支持基板 ,其中該光感應器係位於該探針與該支持基板之間的電荷 耦合裝置(CCD)陣列。 GAS127.4 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該支持基板上與該等雜交室配準 之光電二極體之陣列。 GAS127.5 較佳地,該光電二極體陣列距離該探針 φ 小於1,600微米。 GAS127.6 較佳地,該LOC裝置亦具有在該支持 基板上之CMOS電路,該光電二極體之陣列係該CMOS電 路之組件,其中當使用時,該CMOS電路回應檢測到來自 該陰性對照室之ECL發射而引發錯誤信號。 GAS127.7 較佳地,該LOC裝置亦具有至少一個 含有陽性對照探針之陽性對照室,該陽性對照探針具有 ECL發光團但不具有用於淬熄光子發射之功能性部分。 GAS127.8 較佳地,該LOC裝置亦具有: -155- 201211533 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS127.9 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS127.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS127.il 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS127.12 較佳地,該壁部係倂有二氧化矽之層。 GAS 127.13 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光圑之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS 12 7.14 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS127.15 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS 12 7.16 較佳地,該電脈衝之電流係介於〇. 1奈 安培至69.0奈安培。 GAS 127.17 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 -156- 201211533 之指與該陰極之指交叉。 GAS127.18 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS127.19 較佳地,該LOC裝置亦具有PCR部, 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS 1 27.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 φ 該樣品,其中該等電極及該等探針係介於該上蓋及該 C Μ Ο S電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 對照探針改善該分析結果之可靠性。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 φ GAS128.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 用於檢測該標的核酸序列之電化學發光(ECL)探針, 各該等探針具有用於在激發狀態時發射光子之ECL發光團 、用於藉由共振能量轉移淬熄來自該ECL發光團之光子發 射的功能性部分; 用於接受電脈衝以激發該等ECL發光團之電極; 用於暴露至由該ECL發光團所發射之光子之檢測光電 -157- 201211533 二極體:及 至少一個用於暴露至環境光之校準光電二極體;其中 當使用時, 該來自任何檢測光電二極體之輸出與該來自校準光電 二極體之輸出之間的差異係與預定閥値差異比較,該輸出 差異大於該預定閥値表示該標的係存在。 GAS128.2 較佳地,該LOC裝置亦具有: 含有用於檢測標的之探針及一對電極之雜交室,該檢 測光電二極體係分別位於與各該等雜交室配準:及 位於鄰近該校準光電二極體之校準室。 GAS 128.3 較佳地,該LOC裝置亦具有多個校準 室及多個對應之分布於該等雜交室陣列各處之校準光電二 極體,其中當使用時,來自該檢測光電二極體中之任一者 之輸出係與來自最靠近該檢測光電二極體之校準光電二極 體之輸出比較。 GAS128.4 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 GAS128.5 較佳地,該檢測光電二極體與該雜交室 之距離小於1,600微米。 GAS 128.6 較佳地,該LOC裝置亦具有在該支持 基板上之 CMOS電路,該檢測及校準光電二極體係該 CMOS電路之組件,其中當使用時,該CMOS電路具有用 於測定各該等檢測光電二極體與該最靠近之校準光電二極 體之間的輸出差異之比較器電路》 -158- 201211533 GAS128.7 較佳地,該校準室具有缺乏該ECL發 光團但包括該用於淬熄光子發射之功能性部分之探針。 GAS 1 28.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS128.9 較佳地,該LOC裝置亦具有溶胞部, φ 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS128.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS128.il 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS128.12 較佳地,該壁部係倂有二氧化矽之層。 GAS128.13 較佳地,該探針具有莖環結構,其環部 φ 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS 128.14 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS128.15 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS128.16 較佳地,該電脈衝之電流係介於0.1奈 -159- 201211533 安培至69.0奈安培。 GAS128.17 較佳地,該等電極具有分別 構造之陽極和陰極,該等手指狀構造係經配置 之指與該陰極之指交叉。 GAS128.18 較佳地,該陽極和陰極之間 微米至2微米寬之介電間隙。 GAS128.19 較佳地,該LOC裝置亦具窄 其係用於在由該等探針檢測之前擴增該標的核〖 GAS 1 28.20 較佳地,該 LOC裝置亦具 上蓋設有試劑貯器以用於在檢測該等標的序列 該樣品,其中該等電極及該等探針係介於言 C Μ Ο S電路之間。 該雜交陣列經由雜交提供對該標的之分析 校準光感應器改善該分祈結果之可靠性、敏感 圍。 該以電化學發光爲基底之標的檢測分析免 發光源、激發光學及光學過濾元件之檢測系統 更輕巧且更便宜之檢測系統。不需要斥拒任何 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 129.1 本發明之此態樣提供一種用 中之標的核酸序列之晶片上實驗室(LOC)裝置, 置包含: 包含用於檢測該標的核酸序列之電化學發 針之雜交室,各該等探針具有用於在激發狀態 具有手指狀 以使該陽極 係相隔〇.4 ί PCR 部, 唆序列。 有上蓋,該 之前添加至 突上蓋及該 ,並利用該 性及動態範 除任需要激 ,進而提供 激發光亦簡 於檢測流體 該LOC裝 光(ECL)探 時發射光子 -160- 201211533 之EC L發光團、用於藉由共振能量轉移淬熄來自該EC L 發光團之光子發射的功能性部分; 至少一個包含經設計以不與該流體中之任何核酸序列 互補之ECL探針之校準室;及 用於接受電脈衝以激發該等ECL發光團之電極。 GAS 129.2 較佳地,該LOC裝置亦具有: 用於暴露至由該ECL發光團所發射之光子之檢測光電 φ 二極體;及 至少一個用於暴露至環境光之校準光電二極體;其中 當使用時, 該來自任何檢測光電二極體之輸出與該來自校準光電 二極體之輸出之間的差異係與預定閥値差異比較,該輸出 差異大於該預定閥値表示該標的係存在。 GAS129.3 較佳地,該LOC裝置亦具有多個校準 室及多個對應之分布於該等雜交室陣列各處之校準光電二 φ 極體,其中當使用時,來自該檢測光電二極體中之任一者 之輸出係與來自最靠近該檢測光電二極體之校準光電二極 體之輸出比較。 GAS129.4 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 GAS129.5 較佳地,該檢測光電二極體與該雜交室 之距離小於1,600微米。 GAS129.6 較佳地,該LOC裝置亦具有在該支持 基板上之CMOS電路,該檢測及校準光電二極體係該 -161 - 201211533 CMOS電路之組件,其中當使用時,該CMOS電路具有用 於測定各該等檢測光電二極體與該最靠近之校準光電二極 體之間的輸出差異之比較器電路。 GAS129.7 較佳地,該校準室具有缺乏該ECL發 光團但包括該用於淬熄光子發射之功能性部分之探針。 GAS129.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS129.9 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質》 ' GAS129.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS129.il 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 129.12 較佳地,該壁部係倂有二氧化矽之層。 GAS 129.13 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該E C L發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 GAS 1 29.1 4 較佳地,該C Μ Ο S電路係經配置以提供 電脈衝至該等電極。 -162- 201211533 GAS129.15 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS129.16 較佳地,該電脈衝之電流係介於〇.1奈 安培至69.0奈安培。 GAS129.17 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 129.18 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS 1 29.1 9 較佳地,該LOC裝置亦具有PCR部, 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS 1 29.20 較佳地,該 LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 C Μ Ο S電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 校準探針改善該分析結果之可靠性、敏感性及動態範圍。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 3 0 · 1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: -163- 201211533 用於檢測該標的核酸序列之電化學發光(EC L)探針, 各該等ECL探針具有用於在激發狀態時發射光子之Ecl 發光團、用於藉由共振能量轉移淬熄來自該ECL發光團之 光子發射的功能性部分; 不具ECL發光團之校準探針;及 用於接受電脈衝以激發該等ECL發光團之電極。 GAS130.2 較佳地,該LOC裝置亦具有: 用於暴露至由該ECL發光團所發射之光子之檢測光電 二極體;及 至少一個用於暴露至該校準探針之校準光電二極體; 其中當使用時, 該來自任何檢測光電二極體之輸出與該來自校準光電 二極體之輸出之間的差異係與預定閥値差異比較,該輸出 差異大於該預定閥値表示該標的係存在。 GAS130.3 較佳地,該LOC裝置亦具有用於包含 該ECL探針之校準室之陣列及多個分布在該雜交室之陣列 各處之校準室,各該等校準室包含該校準探針且各該等校 準室具有對應之校準光電二極體,其中當使用時,來自該 檢測光電二極體中任一者之輸出係與來自最靠近該檢測光 電二極體之校準光電二極體之輸出比較。 GAS130.4 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 GAS 130.5 較佳地,該檢測光電二極體與該雜交室 之距離小於1,600微米。 -164- 201211533 GAS130.6 較佳地,該LOC裝置亦具有在該 基板上之 CMOS電路,該檢測及校準光電二極體 CMOS電路之組件,其中當使用時,該CMOS電路具 於測定各該等檢測光電二極體與該最靠近之校準光電 體之間的輸出差異之比較器電路。 GAS 13 0.7 較佳地,該校準探針包括用於淬熄 發射之功能性部分。 φ GAS130.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS130.9 較佳地,該LOC裝置亦具有溶胞 其中該流體係含有細胞之生物樣品且該溶胞部破壞該 膜以釋放任何其內之基因物質。 GAS130.10 較佳地,該等雜交室各具有可被該 φ 所發射之光光穿透之壁部。 GAS130.il 較佳地,該CMOS電路倂有該光電 體,其中該壁部係位於該等探針與該光電二極體之間 GAS130.12 較佳地,該壁部係倂有二氧化矽之 GAS130.13 較佳地,該ECL探針具有莖環結 其環部分含有與該標的核酸序列互補之序列,該環部 位於該用於淬熄來自該ECL發光團之光子發射之功能 分與該ECL發光團之間,以使與該標的核酸序列雜交 該環部分且使該ECL發光團遠離該功能性部分。 支持 係該 有用 二極 光子 間, 部, 細胞 探針 二極 〇 層。 構, 分係 性部 打開 -165- 201211533 GAS 13 0.1 4 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS130.15 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS130.16 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS130.17 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS130.18 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS 1 30.1 9 較佳地,該LOC裝置亦具有PCR部, 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS 1 30.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 C Μ Ο S電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 校準探針改善該分析結果之可靠性、敏感性及動態範圍。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS131.1 本發明之此態樣提供一種用於檢測流體 -166- 201211533 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 包含用於檢測該標的核酸序列之電化學發光(ECL)探 針之雜交室,各該等ECL探針具有用於在激發狀態時發射 光子之ECL發光團、用於藉由共振能量轉移淬熄來自該 ECL發光團之光子發射的功能性部分; 至少一個包含經密封以不與該流體接觸之探針之校準 φ 室;及 用於接受電脈衝以激發該等ECL發光團之電極。 GAS131.2 較佳地,該LOC裝置亦具有: 用於暴露至由該ECL發光團所發射之光子之檢測光電 二極體;及 至少一個用於暴露至該校準室之校準光電二極體;其 中當使用時, 該來自任何檢測光電二極體之輸出與該來自校準光電 φ 二極體之輸出之間的差異係與預定閥値差異比較,該輸出 差異大於該預定閥値表示該標的係存在。 GAS131.3 較佳地,該LOC裝置亦具有多個分布 於該等雜交室陣列各處之校準室,各該等校準室具有對應 之校準光電二極體,其中當使用時,來自該檢測光電二極 體中之任一者之輸出係與來自最靠近該檢測光電二極體之 校準光電二極體之輸出比較。 GAS13 1.4 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 167 201211533 GAS131.5 較佳地,該檢測光電二極體與該雜交室 之距離小於1,600微米。 GAS131.6 較佳地,該LOC裝置亦具有在該支持 基板上之CMOS電路,該檢測及校準光電二極體係該 CMOS電路之組件,其中當使用時,該CMOS電路具有用 於測定各該等檢測光電二極體與該最靠近之校準光電二極 體之間的輸出差異之比較器電路。 GAS131.7 較佳地,該LOC裝置亦具有: 含有該等標的之流體之流路,其中該等雜交室各具有 用於流體溝通該流路與該等探針之間之入口,且該至少一 個校準室係與該流路封隔。 GAS131.8 較佳地,該CMOS電路係介於該等雜交 室與該支持基板之間,且該流路藉由毛細作用吸引該流體 至各該等雜交室。 GAS131.9 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS 13 1.10 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS131.il 較佳地,該CMOS電路倂有該光電二極 體,其中該壁部係位於該等探針與該光電二極體之間。 GAS 13 1.1 2 較佳地,該壁部係倂有二氧化矽之層。 GAS 13 1.13 較佳地,該ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 -168- 201211533 位於該用於淬熄來自該EC L發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 GAS 13 1.1 4 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS131.15 較佳地,該電脈衝具有小於0.69秒之 期間。 φ GAS131.16 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 1 3 1 . 1 7 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS131.18 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS131.19 較佳地,該LOC裝置亦具有PCR部, φ 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS131.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該樣品,其中該等電極及該等探針係介於該上蓋及該 CMOS電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 校準探針改善該分析結果之可靠性、敏感性及動態範圍。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 -169 - 201211533 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 132.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 用於檢測該標的核酸序列之電化學發光(ECL)探針, 各該等ECL探針具有用於在激發狀態時發射光子之ECL 發光團、用於藉由共振能量轉移淬熄來自該ECL發光團之 光子發射的功能性部分; 至少一個經配置以產生校準發射之校準源; 用於接受電脈衝以激發該等ECL發光團之電極; 至少一個用於感測來自該ECL發光團之光子發射及產 生檢測輸出之檢測光電二極體; 至少一個用於感測該校準發射及產生校準輸出之校準 光電二極體;及 具有差分電路以用於自該檢測輸出減去該校準輸出之 CMOS電路。 GAS 1 32.2 較佳地,該 LOC裝置亦具有多個校準 源及多個對應之校準光電二極體,及多個分別與各該等 ECL探針配準之檢測光電二極體。 GAS132.3 較佳地,該校準源係不具ECL發光團 之校準探針。 GAS 1 32.4 較佳地,該 LOC裝置亦具有含有該 ECL探針之雜交室之陣列及多個含有分布於該雜交室陣列 -170- 201211533 各處之校準源之校準室,其中當使用時,來自該 二極體中之任一者之輸出係與來自最靠近該檢測 體之校準光電二極體之輸出比較》 GAS132.5 較佳地,該校準源係校準探針 室係經配置以封隔開該校準探針與含有該標的核 流體。 GAS132.6 較佳地,各該校準室係被三乘 ^ 室方塊圍繞。 GAS 132.7 較佳地,該檢測光電二極體與 之距離小於1,600微米。 GAS132.8 較佳地,該校準探針包括用於 發射之功能性部分。 GAS132.9 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基 φ 且該流路藉由毛細作用吸引該流體至各該等雜交: GAS132.10 較佳地,該LOC裝置亦具有 其中該流體係含有細胞之生物樣品且該溶胞部破 膜以釋放任何其內之基因物質。 GAS132.il 較佳地,該等雜交室各具有可 探針所發射之光光穿透之壁部。 GAS132.12 較佳地,該壁部係倂有二氧化 GAS 1 32.1 3 較佳地,該ECL探針具有莖 其環部分含有與該標的核酸序列互補之序列,該 檢測光電 光電二極 且該校準 酸序列之 三之雜交 該雜交室 淬熄光子 板之間, 溶胞部, 壞該細胞 被該ECL 矽之層。 環結構, 環部分係 -171 - 201211533 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 GAS 13 2.14 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS132.15 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS132.16 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 13 2.17 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS132.18 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS 13 2.19 較佳地,該LOC裝置亦具有PCR部, 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS 1 3 2.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋設有試劑貯器以用於在檢測該等標的序列之前添加至 該流體,其中該等電極及該等探針係介於該上蓋及該 CMOS電路之間。 該雜交陣列經由雜交提供對該標的之分析,並利用該 校準電路改善該分析結果之可靠性、敏感性及動態範圍。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 -172-GAS103. Preferably, the hybridization chambers each have a wall portion that is permeable to light emitted by the ECL probe. GAS 103. Preferably, the microfluidic device also has a light sensor for detecting light emitted by the ECL probe. -91 - 201211533 GAS 103. Preferably, the probes each have an ECL luminophore that emits photons when in an excited state and a functional moiety for photon emission from the ECL luminophore by resonance energy transfer quenching. GAS 103. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS103. Preferably, the microfluidic device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS103. Il preferably, the electrical pulse has a magnitude less than zero. During the 69 seconds period. GAS103. 12 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS 103.  Preferably, the pair of electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS103. 14 Preferably, the anode and cathode are separated by 0. 4 microns to 2. 0 micron wide dielectric gap. GAS 103.  Preferably, the microfluidic device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample prior to detecting the sequence of the target, wherein the electrodes and the probes are interposed between the upper cover and Between these CMOS circuits. GAS103. Preferably, the reagent reservoirs each have an outlet valve for retaining the liquid reagent in the reservoir until the reagent needs to be added to the sample -92 - 201211533 GAS 1 03. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS103. Preferably, the microfluidic device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. GAS 103. Preferably, the PCR portion has a heater element for heating the cycle φ the nucleic acid sequence of the target and the polymerase. The heater element is configured to be operationally controlled by the CMOS circuit. GAS 1 03. Preferably, the microfluidic device also has a plurality of sensors coupled to the CMOS circuit for feedback control of the electrodes and the heater elements. This low probe volume represents a low probe cost, which in turn allows for this inexpensive detection system. The electrochemiluminescence-based detection analysis eliminates the need for a detection system that illuminates the source, excitation optics, and optical filter elements, thereby providing a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 105. 1 This aspect of the invention provides a microfluidic device for amplifying and detecting a target nucleic acid sequence in a sample, the microfluidic device comprising: a polymerase chain reaction (PC R) portion for amplifying the a nucleic acid sequence; and a hybridization portion having an array of electrochemiluminescence (ECL) probes for hybridizing with the target nucleic acid sequences to form a probe-target hybrid, and a plurality of -93-201211533 for receiving electricity Pulses are used to cause the probe-target hybrids to emit light photon electrodes. GAS105. Preferably, the probes each have an ECL luminophore that emits photons when in an excited state and a functional moiety for photon emission from the ECL luminophore by resonance energy transfer quenching. GAS105. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS 105. Preferably, the microfluidic device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS105. 5 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS105. 6 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS105. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS105. 8 Preferably, the anode and the cathode are separated by 0. 4 microns to 2. 0 micron wide dielectric gap. GAS105. Preferably, the microfluidic device also has an upper cover, the upper cover is provided with a reagent reservoir for adding to the sample before detecting the target sequence, wherein the electrodes and the probes are interposed between the upper cover and the probe Between the C Μ Ο S circuits. GAS105. Preferably, the reagent reservoirs each have an outlet valve for -94-201211533 for retaining liquid reagents in the reservoir until reagents need to be added to 〇 GAS 105. Il. Preferably, the microfluidic device also has an array of hybridization chambers for the ECL probes and a pair of electrodes. GAS105. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS 105. Preferably, the microfluidic device also has a light sensor with φ light emitted by the ECL probe, wherein the wall portion is between the ECL probe and the light sensor. GAS 105. Preferably, the microfluidic device also has a support substrate for the array of the hybridization chamber, wherein the light sensor is between the hybridization chamber and the support substrate, and the wall portion is doped with a dioxide layer. GAS105. Preferably, the light sensor is positioned and aligned with the array of photodiodes such that each of the hybrid chambers is respectively associated with one of the φ photodiodes. GAS 1 05. Preferably, the array of the photodiodes is at a distance of less than 1,6 microns. GAS105. Preferably, the photodiodes have planar active surface regions with light from the luminophores, each of the main regions being in the same plane, and the layers of the electrodes are G (patterned) to form the separation The plane where the conductive material of the anode and the cathode is located is equal to the active surface area of the photodiode, and the sample is included in the chamber containing the ECL at the detection system and is located at the junction of the wafer. Surface B case, the level is parallel -95- 201211533 GAS 105. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. GAS 105. Preferably, the PCR portion has a microchannel extending between the PCR inlet and the PCR outlet, the microchannel being configured to attract the sample from the PCR inlet to the PCR outlet by capillary action. GAS 1 05. Preferably, the microchannel has a plurality of elongate heaters, each of the plurality of elongate heaters being independently operable. The PCR section is amplified by the target to provide the sensitivity required for the target detection. The probe hybridization provides analysis of the target via hybridization. The integrated PCR and probe hybridization section substantially reduces the possibility of introducing contamination during the assay, simplifies the analysis phase, and provides a lightweight and inexpensive single-device analysis solution. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 06. 1 Aspects of the invention provide a microfluidic device for detecting a target molecule in a fluid, the microfluidic device comprising: an array of chambers, each chamber containing a complex for reacting with the target molecule to form a probe-target complex An electrochemiluminescence (ECL) probe, and an electrode located in each chamber for receiving electrical pulses, the probe-target composite system being configured to emit photons of light when excited by current between the electrodes; -96- 201211533 A flow path containing the fluids of the targets; wherein each of the chambers has a chamber inlet for fluid communication between the sample flow path and a probe in the chamber, the chamber inlet being configured as a diffusion barrier to prevent The probe-target complexes diffuse between the chambers resulting in erroneous detection results. GAS106. 2 Preferably, the chamber inlet defines a tortuous flow path. GAS106. Preferably, the meandering flow path has a curved configuration. φ GAS106. Preferably, the flow system biological sample and the labeled nucleic acid sequences each have a nucleic acid sequence complementary to one of the targets and the chambers are used to hybridize the probes to form Probe-target hybridization chamber. GAS106. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS106. Preferably, the microfluidic device also has a light sensor for detecting light emitted by the probe, wherein the wall portion is between the φ probe and the light sensor. GAS106. Preferably, the microfluidic device also has a support substrate of the light sensor and the array of hybridization chambers, wherein the light sensor is located between the hybridization chamber and the support substrate, and the wall portion has two Layer of yttrium oxide. GAS106. Preferably, the probes each have an ECL luminophore that emits photons when in an excited state and a functional moiety for photon emission from the ECL luminophore by resonance energy transfer quenching. GAS 106·9 preferably 'the probes are configured such that when the probe-97-201211533 needle forms a probe-target hybrid, the functionality for quenching photon emission from the ECL luminophore Part of the line is further derived from the ECL luminophore. GAS 106. Preferably, the microfluidic device also has a CMOS circuit configured to provide electrical pulses to the electrodes. GAS106. Il preferably, the electrical pulse has a value less than 〇.  6 9 seconds period. GAS106. 12 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS106. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 106. 14 Preferably, the anode and cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS 106. Preferably, the microfluidic device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample prior to detecting the sequence of the target, wherein the electrodes and the probes are interposed between the upper cover and Between the C Μ Ο S circuits. GAS106. 16 Preferably, the reagent reservoirs each have an outlet valve for retaining a liquid reagent in the reservoir until a reagent needs to be added to the sample 〇 GAS 106. Preferably, the layer has a thickness of less than 1,600 microns. GAS 106. Preferably, the light sensor is positioned as an array of photodiodes in registration with the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. 98- 201211533 GAS106. Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned. To form the conductive material of the separated anode and cathode, the plane of the layer is parallel to the plane of the active surface region of the photodiodes 〇GAS 1 06. Preferably, one of the electrode pairs φ causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being positioned such that the probes are interposed Between the photodiode and the working electrode. The probe hybridization provides analysis of the target via hybridization. The diffusion barrier substantially eliminates the reflux of the probe prior to and after hybridization to prevent signal loss and provide a high degree of detection sensitivity. The electrochemiluminescence-based detection analysis eliminates the need for a detection system that requires an excitation source, excitation optics, and optical filter components to provide a lighter and less expensive detection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 108.  1 Aspects of the invention provide a microfluidic device for detecting a target molecule in a fluid, the microfluidic device comprising: an electrochemiluminescence (ECL) probe for reacting with the target molecule to form a probe - An array of chambers of the target complex; electrodes located in each of the chambers for receiving electrical pulses, the probe-target composite system being configured to emit photons of light when excited by current between the electrodes; -99- 201211533 A light sensor for detecting light emitted by the probes; wherein the light sensor is at a distance of less than 1,600 microns from the probes. GAS108. Preferably, the probe mass in each of the chambers is less than 270 picograms. GAS108. Preferably, the probe mass in each of the chambers is less than 60 picograms. GAS108. Preferably, the probe mass in each of the chambers is less than 12 picograms. GAS108. Preferably, the microfluidic device also has: a support substrate: a CMOS circuit for supplying electrical pulses to the electrodes; and a flow path containing the target fluid; wherein the CMOS is interposed between the chambers and the The substrates are supported, and the flow path attracts the fluid to each of the chambers by capillary action. GAS 108. Preferably, the flow system biological sample and the target nucleic acid sequence, each of the probes has a nucleic acid sequence complementary to the target and the chambers are used to hybridize the probes to form a probe-target hybrid Hybrid room. GAS108. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS108. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 108. Preferably, the wall portion is doped with a layer of cerium oxide. GAS108. Preferably, the probes each have an ECL luminophore that emits photons when excited by a current between the electrodes -100 - 201211533 and a photon emission from the ECL luminophore by quenching by resonance energy transfer. The functional part is 〇GAS108. Il. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS108. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS 108. 13 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS 10 8. 14 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS108. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 108. 16 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS108. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS108. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS108. Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surfaces 101 - 201211533 regions being in the same plane 'and the electrodes are patterned Patterned to form the separate anode and cathode conductive material, the plane of the layer is parallel to the plane of the active surface area of the photodiode GAS108. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. This non-imaging optics provides a comprehensive solution for mass production and inexpensive, low system components, and provides a lightweight, highly mobile system. This non-imaging optics provides the benefit of increased read sensitivity due to large angle light collection and eliminates the need to use optical components in the string of light collecting elements. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 09. 1 Aspects of the invention provide a microfluidic device for detecting a target molecule in a fluid, the microfluidic device comprising: a hybridization chamber comprising an electrode and a probe for hybridizing with a target molecule to form a probe-target The composite and the current between the electrodes are returned to generate an electrochemiluminescence (ECL) signal; and the photodiode has an active region and an optical axis extending perpendicular to the active region and passing through the hybridization chamber; wherein the hybridization chamber a surface having a bottom portion 8-102-201211533 parallel to the active region of the photodiode, the bottom surface having a center of mass and the active region being included in a pyramid having a center of mass at a vertex thereof, and a vertex angle The system is less than 1 7 4 . . GAS 109. 2 Preferably, the apex angle is less than 29 degrees. GAS 109. 3 Preferably, the apex angle is less than 4. 8 degrees. GAS109. 4 Preferably, the apex angle is less than 0. 8 degrees. GAS109. Preferably, the microfluidic device also has: a support substrate; a CMOS circuit for supplying electrical pulses to the electrodes; an array of the hybridization chambers; and a flow path of a fluid containing the target molecules; wherein the CMOS A circuit is interposed between the chambers and the support substrate, and the flow path attracts the fluid to each of the chambers by capillary action. GAS109. Preferably, the flow system biological sample and the target nucleic acid sequence, each of the probes has a nucleic acid sequence complementary to the target and the chambers are used to hybridize the probes to form a probe-target hybrid Hybrid GAS109. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS109. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS109. Preferably, the wall portion is doped with a layer of cerium oxide. GAS109. Preferably, the probes each have an ECL luminophore that emits photons when excited by current between the electrodes and a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer. -103- 201211533 GAS 109. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional portion for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS 109. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS 1 09. 13 period. Preferably, the electrical pulse has a GAS 1 09 of less than 0 · 69 seconds. 1 4 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS 109. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 1 09. 16 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS 1 09. 1 7 microns. Preferably, the transparent wall portion has a thickness of less than 1,600 GAS 1 09. Preferably, the light sensor is positioned in an array of the photodiodes that are associated with the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS109. Preferably, each of the active regions is in the same plane, and the electrodes are patterned to form the conductive material of the separated anode and cathode, the plane of the layer and the photodiodes The planes of the active regions of the body are parallel. -104- 201211533 GAS109. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. This high-angle emission collection provides a comprehensive solution that is both mass-produced and inexpensive, with low system components and provides a lightweight, highly mobile system. The large-angle emission of light increases the sensitivity of reading, which eliminates the need for optical components to be used in the string of light collecting elements. The detection and analysis of the target based on electrochemiluminescence eliminates the need for excitation light source, excitation optics and optics. The detection system of the filter element provides a lighter and less expensive detection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 1 0. 1 Aspects of the invention provide a microfluidic device for detecting a target molecule in a fluid, the microfluidic device comprising: an array of electrochemiluminescence (ECL) probes for reacting with the target φ molecules Forming a probe-target complex; an electrode for receiving electrical pulses, the probe-target composite system being configured to emit photons of light when excited by current between the electrodes: and for detecting A light sensor that emits light from the probe; wherein, when used, the fluid is added to the probes to prevent subsequent addition of other fluids to the probes. GAS 11 0. Preferably, the microfluidic device also has an array of chambers, 105-201211533, wherein each of the chambers includes a pair of electrodes and a probe for one of the targets, wherein the fluid is acted upon by capillary action Fill each of these rooms. GAS110. 3 Preferably, the volumes of the chambers are each less than 900,000 cubic microns. GAS 11 0. Preferably, the distance between the light sensor and the probe is less than 1,600 microns. GAS110. Preferably, the microfluidic device also has: a support substrate; a CMOS circuit for supplying electrical pulses to the electrodes; and a flow path containing the target fluid; wherein the CMOS is interposed between the chambers and the The substrates are supported, and the flow path attracts the fluid to each of the chambers by capillary action. GAS 110. Preferably, the flow system biological sample and the target nucleic acid sequence, each of the probes has a nucleic acid sequence complementary to the target and the chambers are used to hybridize the probes to form a probe-target hybrid Hybrid room. G. AS1 10. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS110. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS110. Preferably, the wall portion is doped with a layer of cerium oxide. GAS110. Preferably, the probes each have an ECL luminophore that emits photons when excited by current between the electrodes and a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer. 8 -106- 201211533 GAS 11 0. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS 110. Preferably, the C Μ O S circuit is configured to provide electrical pulses to the electrodes. GAS1 10. 13 Preferably, the electrical pulse has a value less than 0. φ period of 69 seconds. GAS 1 10. 14 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS110. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 1 10. 16 Preferably, the anode and the cathode are separated from each other. Dielectric gap of 4 microns to 2 microns wide. φ GAS1 10. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS1 10. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS110. Preferably, the photodiodes have planar active surface regions for receiving light from the luminophore, each of the active surface regions being in the same plane, and the layers of the electrodes are patterned. To form the conductive material of the separate anode and cathode, the plane of the layer -107-201211533 is parallel to the plane of the active surface region of the photodiode 〇GAS 11 0. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. The easy-to-use, mass-produced, inexpensive and lightweight microfluidic device accepts a biological sample, uses its integrated imaging sensor to hybridize the probe to identify the nucleic acid sequence of the sample, and provides an electronic result on the output pad. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 1 1 · 1 Aspects of the invention provide a wafer-on-lab (LOC) device for detecting a target molecule in a fluid, the LOC device comprising an array of electrochemiluminescence (ECL) probes for use in an array Reacting with the target molecules to form a probe-target complex: an electrode for receiving electrical pulses configured to emit photons of light when excited by current between the electrodes And a light sensor for detecting light emitted by the probe-target complex. GAS 1 11. 2 Preferably, the LOC device also has: -108-201211533 support substrate; a CMOS circuit for supplying electrical pulses to the electrodes; an array of chambers, each chamber containing a reaction for reacting with the target molecules to form a probe a probe of the target complex and a pair of electrodes; and a flow path of the fluid containing the target; wherein the CMOS is interposed between the chamber and the support substrate, and the flow path attracts the fluid by capillary action To each of these rooms. GAS111. Preferably, the flow system biological sample and the target nucleic acid sequence, each of the probes has a nucleic acid sequence complementary to the target and the chambers are used to hybridize the probes to form a probe-target hybrid Hybrid room. GASU1. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS111. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 11 1. Preferably, the wall portion is doped with a layer of cerium oxide. GAS111. Preferably, the probes each have an ECL luminophore that emits photons when excited by current between the electrodes and a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer. 〇GAS 1 1 1. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS 1 11. Preferably, the CMOS circuit is configured to provide -109 - 201211533 electrical pulses to the electrodes. GAS111. 10 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS111. 11 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS11 1. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS111. 13 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS111. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS1 11. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS1 11. Preferably, the photodiodes each have a planar active surface area such that the planar active surface regions collectively provide the collection surface, each of the active surface regions being in the same plane, and the electrode layers are Patterned to form a separate conductive material of the anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. GAS 1 11. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed -110- 201211533 Between the photodiode and the working electrode. GAS1 11. Preferably, the luminophore is an organometallic complex. GAS 1 1 1 1 9 Preferably, the organometallic complex is an organogermanium complex molecule. GAS111. Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. φ This easy-to-use, mass-produced, inexpensive and lightweight LOC device accepts a biological sample, uses its integrated imaging sensor to hybridize the probe to identify the nucleic acid sequence of the sample, and provides an electronic result on the output pad. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS1 12. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for exciting an electrochemical luminescence group, the LOC device comprising: a support substrate; an array of electrochemiluminescence (ECL) probes, which is used Reacting with the target molecules to form a probe-target complex, each of which has a luminescent group for emitting photons in an excited state; an electrode for receiving an electrical pulse to utilize the electrodes The current between them excites the luminophores; and a CMOS circuit for controlling the electrical pulses transmitted to the electrodes; the CMOS circuit of -111 - 201211533 is interposed between the support substrate and the probe array. GAS112. 2 Preferably, the LOC device also has: a light sensor for detecting light emitted by the probe-target complex; an array of chambers, each chamber containing a reaction for reacting with the target molecules to form a probe a probe of the target complex and a pair of electrodes; and a flow path containing the fluid of the target; wherein the flow path attracts the fluid to each of the chambers by capillary action. GAS1 12. Preferably, the flow system biological sample and the target nucleic acid sequence, each of the probes has a nucleic acid sequence complementary to the target and the chambers are used to hybridize the probes to form a probe-target hybrid Hybrid room. GAS1 12. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS112. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS II 2. Preferably, the wall portion is doped with a layer of cerium oxide. GAS112. Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. GAS112. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS1 12. Preferably, the CMOS circuit is configured to provide 8 - 112 201211533 electrical pulses to the electrodes. GAS1 12. 10 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS112. Il preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS 11 2. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 1 12. 13 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide" GAS 1 12. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS112. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS112. Preferably, the photodiodes each have a planar active surface area such that the planar active surface regions collectively provide the collection surface, each of the active surface regions being in the same plane, and the electrode layers are Patterned to form a separate conductive material of the anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. GAS112. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed -113- 201211533 Between the photodiode and the working electrode. GAS1 12. Preferably, the luminophore is an organometallic complex. GAS 11 2. Preferably, the organometallic complex is an organogermanium complex molecule. GAS1 12. Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. The integrated driver for exciting the electroluminescent luminophore on the LOC device operates from the universal USB, providing a system that is easy to use, mass-produced, inexpensive, and lightweight with a small number of components. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS1 13. 1 Aspects of the invention provide a wafer-on-lab (LOC) device for detecting a target molecule in a fluid, the LOC device comprising an array of electrochemiluminescence (ECL) probes for use with the target molecule Reacting to form a probe-target complex; and an electrode for receiving an electrical pulse; wherein the probes each have an ECL luminophore that emits photons when excited by current between the electrodes and is used for resonance energy Transfer quenching the functional portion of photon emission from the ECL luminophore. GAS113. Preferably, the LOC device also has: -114-201211533 A light sensor for detecting light emitted by the probe-target complex. GAS1 13. Preferably, the LOC device also has: a support substrate; a CMOS circuit for supplying electrical pulses to the electrodes; an array of chambers, each chamber containing a complex for reacting with the target molecules to form a probe-target complex a probe and a pair of electrodes; and φ a flow path containing the target fluid; wherein the CMOS is interposed between the chambers and the support substrate, and the flow path attracts the fluid to each by capillary action Waiting room. GAS113. Preferably, the flow system biological sample and the target nucleic acid sequence, each of the probes has a nucleic acid sequence complementary to the target and the chambers are used to hybridize the probes to form a probe-target hybrid Hybrid room. GAS113. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe φ. GAS113. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 1 13. Preferably, the wall portion is doped with a layer of cerium oxide. GAS113. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS113. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. -115- 201211533 GASl 13. Preferably, the electrical pulse has a value less than 〇.  6 9 seconds period. GAS113. Il preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS1 13. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS1 13. 13 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS 113. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS 1 13. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS113. Preferably, the photodiodes each have a planar active surface area such that the planar active surface areas collectively provide the collecting surface, each of the active surface areas being in the same plane, and the electrodes are patterned by a layer A conductive material is formed to form the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. GAS113. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. -116- 201211533 GASl 13. Preferably, the luminophore is an organometallic complex. GAS 11 3. Preferably, the organometallic complex is an organogermanium complex molecule. GAS113. Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. The easy-to-use, mass-produced, inexpensive and lightweight LOC device accepts a biological sample, and uses its integrated imaging sensor to hybridize with an electrochemiluminescence resonance energy transfer probe to identify the nucleic acid sequence of the sample, and The output pad provides an electronic result, and the electrochemiluminescent resonance energy transfer probe provides a high specificity and high reliability for detecting the sequence of the target. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 14. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting hybridization of a target nucleic acid sequence, the LOC device comprising: electrochemiluminescence (ECL), resonance energy transfer, attachment to a primer, and stem-loop detection Needle, its system is used with. The labeled nucleic acid sequences hybridize to form probe-target hybrids, each of which has a loop portion containing the target nucleic acid sequence, and an primer for extending along the target nucleic acid sequence to form a nucleic acid sequence complementary to the target An ECL luminophore for emitting photons in an excited state and a functional portion for quenching photons from the ECL luminophore by resonant energy transfer - 117 - 201211533; and for receiving electrical pulses to excite such An electrode of an ECL luminophore; wherein forming the complementary nucleic acid sequence when used causes the loop portion to open such that the target nucleic acid sequence hybridizes to the complementary nucleic acid sequence and the ECL luminophore is moved away from the functional portion. GAS 1 14. Preferably, the LOC device also has: a light sensor for detecting light emitted when the ECL luminophore is in the probe-target hybrid configuration. GAS 1 14. Preferably, the LOC device also has: a support substrate; a CMOS circuit for supplying electrical pulses to the electrodes; a hybrid chamber containing a probe for hybridizing with the target and a pair of electrodes: and containing the same a flow path of the target fluid; wherein the CMOS is interposed between the hybridization chamber and the support substrate, and the flow path attracts the fluid to each of the hybridization chambers by capillary action. GAS114. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS114. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS1 14. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. 8 -118- 201211533 GAS 11 4. Preferably, the wall portion is doped with a layer of cerium oxide. GAS114. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS 114. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS114. 10 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS 11 4. 11 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS 11 4. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 1 14. 13 Preferably, the anode and the cathode are separated from each other. Dielectric gap of 4 microns to 2 microns wide. GAS1 14. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS114. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS114. Preferably, the photodiodes each have a planar active surface area such that the planar active surface regions collectively provide the collection surface, each of the active surface regions being in the same plane 'and the layers are patterned Patterned to form the separate anode and cathode leads -119 - 201211533 electrical material, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. GAS114. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. GAS1 14. Preferably, the luminophore is an organometallic complex. GAS114. Preferably, the organometallic complex is an organogermanium complex molecule. GAS1 14. Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence in the sample. The easy-to-use, mass-produced, inexpensive and lightweight LOC device accepts a biological sample, amplifies the nucleic acid target in the sample, and uses the integrated imaging sensor to connect the stem ring to the electrochemiluminescence resonance energy transfer primer. The probe hybridizes to identify the nucleic acid sequence of the sample, and provides an electronic result at the output pad, and the stem-loop probe attached to the primer provides a plurality of optimal parallel amplification reactions to be performed, and also provides high specificity, Sensitive and reliable detection of the target sequence. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 11 5 . 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting hybridization of a target -120 - 201211533 nucleic acid sequence, the LOC device comprising: electrochemiluminescence (ECL), resonance energy transfer, and primer connection a linear probe for hybridizing to the target nucleic acid sequence to form a probe-target hybrid, each of the probes having a linear portion comprising the target nucleic acid sequence for extension along the target nucleic acid sequence An primer for forming a nucleic acid sequence complementary to the target, an ECL luminophore for emitting photons in an excited state, and a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer; and for accepting Electrically pulsing to excite the electrodes of the ECL luminophores; wherein, when used, replicating the target nucleic acid sequence causes the linear portion to dissociate from the functional portion such that the complementary nucleic acid sequence within it hybridizes to the target nucleic acid sequence, and The photons emitted by the ECL luminophore are not quenched. GAS115. 2 Preferably, the LOC device also has: a light sensor for detecting light emitted by the ECL luminophore. GAS 1 15. Preferably, the LOC device also has: a support substrate; a CMOS circuit for supplying electrical pulses to the electrodes; a hybrid chamber containing a probe for hybridizing with the target and a pair of electrodes: and containing the same a flow path of the target fluid; wherein the CMOS is interposed between the hybridization chamber and the support substrate, and the flow path attracts the fluid to each of the hybridization chambers by capillary action. -121 - 201211533 GASl 15. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS 1 15. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS115. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS115. Preferably, the wall portion is doped with a layer of cerium oxide. GAS 1 1 5. Preferably, the probes are configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL Luminous group. GAS 1 15. Preferably, the C Μ O S circuit is configured to provide electrical pulses to the electrodes. GAS 11 5. 10 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS115. Il preferably, the current of the electrical pulse is between 〇. 1 nai to 6 0 nai pei. GAS 11 5. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 115. 13 Preferably, the anode and the cathode are separated from each other.  Dielectric gap of 4 microns to 2 microns wide. GAS 1 15. Preferably, the transparent wall portion has a thickness of less than 1,6 Å. -122- 201211533 GAS 115. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS 115. Preferably, the photodiodes each have a planar active surface area such that the planar active surface areas collectively provide the collecting surface, each of the active surface areas being in the same plane, and the electrodes are patterned by a layer Patterned to form the separate anode and cathode conductive material, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. GAS1 15. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. GAS 11 5.  Preferably, the luminophore is an organometallic complex. GAS 1 1 5 .  Preferably, the organometallic complex is an organogermanium compound molecule. GAS1 15. Preferably, the LOC device also has a polymerase interlocking reaction (PCR) portion for amplifying the target nucleic acid sequence ' in the sample. The easy-to-use, mass-produced, inexpensive and lightweight LOC device accepts a biological sample, amplifies the nucleic acid target in the sample, and utilizes an integrated imaging sensor to linearly link with an electrochemiluminescence resonance energy transfer primer. Needle hybridization to identify the nucleic acid sequence of the sample, and to provide an electronic result at the output pad, the linear probe coupled to the primer provides a large number of optimal parallel amplification reactions to be performed by -123-201211533, also providing high specificity Detection of the sequence of the target for sex, sensitivity and reliability. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 17. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for amplifying and detecting a target nucleic acid sequence, the LOC device comprising: electrochemiluminescence (ECL) for hybridization with the target nucleic acid sequence, Resonance energy transfer, stem-loop probes, each of which has a loop portion containing a sequence complementary to the target nucleic acid sequence, an ECL luminophore for emitting photons in an excited state, for quenching by resonance energy transfer a functional moiety derived from photon emission of the ECL luminophore, and a covalently linked primer for extending along a complementary sequence denatured from the target nucleic acid sequence to replicate the target nucleic acid sequence; for heating to circulate the target nucleic acid sequence for performing a polymerase chain reaction (PCR) heater, wherein the covalently linked primer is bonded to an oligonucleotide comprising the target nucleic acid sequence; and an electrode for receiving an electrical pulse to excite the ECL luminophore; wherein when used Copying the target nucleic acid sequence causes the loop portion to be opened such that the complementary nucleic acid sequence therein hybridizes to the target nucleic acid sequence and the ECL luminophore is moved to From the functional moiety. -124- 201211533 GASl 17. 2 Preferably, the LOC device also has: a light sensor for detecting light emitted by the ECL luminophore. GAS 1 17. Preferably, the LOC device also has: a support substrate; a CMOS circuit for activating the heaters and supplying electrical pulses to the electrodes; and a probe for hybridizing with the targets, the heaters a hybridization chamber of one and a pair of electrodes; and a flow path of the fluid containing the target; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path is capillary The action draws the fluid to each of the hybrid chambers. GAS117. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS 117. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe φ. GAS 11 7. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 1 1 7. Preferably, the wall portion is doped with a layer of cerium oxide. GAS 1 1 7. Preferably, the covalently linked primer is attached to the functional moiety for quenching photon emission from the ECL luminophore and the loop moiety is interposed between the ECL luminophore and the functional moiety. GAS 11 7. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. -125- 201211533 GASl 17. Preferably, the electrical pulse has a period of less than 〇·69 seconds. GAS117. Il preferably, the current of the electrical pulse is between 〇. 1 nai to 69. 0 nai pei. GAS 11 7.  Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS117. 13 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS117. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS 11 7. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS 11 7.  Preferably, the photodiodes each have a planar active surface area such that the planar active surface areas collectively provide the collecting surface, each of the active surface areas being in the same plane, and the electrodes are patterned by a layer Patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. GAS117. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons. The position of the working electrode is configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. -126- 201211533 GAS117. Preferably, the luminophore is an organometallic complex. GAS 11 7. Preferably, the organometallic complex is an organogermanium complex molecule. GAS117. Preferably, the LOC device also has a dialysis section for diverting cells smaller than a predetermined size valve to separate streams. The easy-to-use, mass-produced, inexpensive and lightweight LOC device accepts a biological sample, amplifies the nucleic acid target in the sample, and uses the integrated φ-type imaging sensor to connect to the stem via an electrochemiluminescence resonance energy transfer primer. Loop probe hybridization to identify the nucleic acid sequence of the sample and provide an electronic result at the output pad, the stem-loop probe attached to the primer provides a large number of optimal parallel amplification reactions to be performed, and also provides high specificity Detection of Sensitivity and Reliability The Sequence of Measurements This electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation, excitation, and optical filter components to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simply φ the detector circuit, making the detection system even cheaper. GAS 1 18. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for amplifying and detecting a target nucleic acid sequence, the LOC device comprising: electrochemiluminescence (ECL) for hybridization with the target nucleic acid sequence, Resonance energy transfer, linear probes, each of which has a linear portion comprising a sequence complementary to the target nucleic acid sequence, an ECL luminophore for emitting photons in an excited state, for quenching by resonance energy transfer from a functional portion of the photon emission of the ECL luminophore, and a covalently linked primer for extending along the complementary sequence denaturing from the nucleic acid sequence of the standard -127-201211533 to replicate the target nucleic acid sequence: for heating the loop a nucleic acid sequence for performing a polymerase chain reaction (PCR) heater, wherein the covalently linked primer is bonded to an oligonucleotide comprising the target nucleic acid sequence: and an electrode for receiving an electrical pulse to excite the ECL luminophore; Wherein, when used, the replication of the target nucleic acid sequence causes the linear portion to dissociate from the functional portion such that the complementary nucleic acid sequence within it and the target nucleus Sequences hybridize, and the photons emitted by the ECL luminophore which is not quenched. GAS118. 2 Preferably, the LOC device also has: a light sensor for detecting light emitted by the ECL luminophore. GAS1 18. Preferably, the LOC device also has: a support substrate; a CMOS circuit for activating the heaters and supplying electrical pulses to the electrodes; and a probe for hybridizing with the targets, the heaters a hybridization chamber of at least one of the electrodes and a pair of electrodes; and a flow path of the fluid containing the target; wherein the CMOS is interposed between the hybridization chamber and the support substrate, and the flow path attracts the capillary by capillary action Fluid to each of the hybridization chambers. GAS1 18. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. -128 - 201211533 GAS118. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS118. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS118. Preferably, the wall is provided with a layer of cerium oxide. GAS 118. Preferably, the probe has a PCR blocker group between the covalently linked primer and the linear portion. Φ GAS118. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS1 18. 10 Preferably, the electrical pulse has a value less than 〇.  6 9 seconds period. GAS118. Il preferably, the current of the electrical pulse is between 〇.  1 nai to 69. 0 nai pei. GAS 1 1 8 . Preferably, the electrodes have an anode and a cathode each having a finger-like configuration, the finger structures being configured to intersect the finger of the anode φ with the finger of the cathode. GAS 11 8. 13 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS 118. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS 1 18. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS118. Preferably, the photodiodes each have a planar main-129-201211533 moving surface area such that the planar active surface areas collectively provide the collecting surface, each of the active surface areas being in the same plane, and The electrode system layer is patterned to form the conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. GAS 1 18. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. GAS118. Preferably, the luminophore is an organometallic complex. GAS118. Preferably, the organometallic complex is an organic ruthenium complex molecule GAS1 18. Preferably, the LOC device also has a dialysis section for diverting cells smaller than a predetermined size valve to separate streams. The easy-to-use, mass-produced, inexpensive and lightweight LOC device accepts a biological sample, amplifies the nucleic acid target in the sample, and utilizes an integrated imaging sensor to linearly link with an electrochemiluminescence resonance energy transfer primer. Needle hybridization to identify the nucleic acid sequence of the sample, and to provide an electronic result at the output pad, the linear probe coupled to the primer provides a large number of optimal parallel amplification reactions to be performed, also providing high specificity, sensitivity And the reliability of the detection of the sequence of the target. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. There is no need to reject any excitation light. -130-201211533 This detector circuit makes the detection system even cheaper. GAS119. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for amplifying and detecting a target nucleic acid sequence, the LOC device comprising: for limiting (digesting) double-stranded oligonucleosides at known junction sites a restriction enzyme for acid; a linker molecule for ligation to the junction of the double-stranded oligonucleotide; a heater for heating and circulating the oligonucleotide during a polymerase chain reaction (PCR); a primer for binding to a linker molecule on a single strand of the oligonucleotide after denaturation; a deoxyribonucleoside triphosphate (dNTP) for extending the primer along the single-stranded oligonucleotide; and for receiving electricity A pulse is applied to excite the electrodes of the ECL luminophores. GAS1 19. 2 Preferably, the LOC device also has: a light sensor for detecting light emitted by the ECL luminophore. GAS119. Preferably, the LOC device also has: a support substrate; a CMOS circuit for activating the heaters and supplying electrical pulses to the electrodes; and a probe for hybridizing with the targets, the heaters a hybridization chamber of at least one of the electrodes and a pair of electrodes; and a flow path of the fluid containing the target; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, -131 - 201211533 and the flow path is borrowed The fluid is attracted to each of the hybridization chambers by capillary action. GAS 119. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS 1 1 9. 5 Preferably, the hybridization chambers each have a wall portion that can be penetrated by the light emitted by the probe. GAS119. 6 Preferably, the CMOS circuit has the light sensor, wherein the wall portion is located between the probe and the light sensor β GAS 11 9. Preferably, the wall portion is doped with a layer of cerium oxide. GAS119. Preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophores, hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional portion. GAS 1 19. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS 1 19. 10 Preferably, the electrical pulse has a value less than 0. 69 seconds period" GAS119. Il preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS1 19. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 1 19. Preferably, the anode and the cathode are separated by a dielectric gap of -4 -132 - 201211533 μm to 2 μm wide. GAS119. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS119. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS119. Preferably, the photodiodes each have a planar main φ moving surface region such that the planar active surface regions collectively provide the collecting surface, each of the active surface regions being in the same plane, and the electrode systems are The layer is patterned to form the electrically conductive material of the separate anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. GAS119. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed φ between the photodiode and the working electrode. GAS 119. Preferably, the luminophore is an organometallic complex. GAS 11 9.  Preferably, the organometallic complex is an organogermanium complex molecule. GAS119. Preferably, the LOC device also has a dialysis section for diverting cells smaller than a predetermined size valve to separate streams. The easy-to-use, mass-produced, inexpensive and lightweight L〇C device accepts a biological sample, amplifies the nucleic acid target in the sample, and uses the integrated imaging sensor to identify the nucleic acid sequence of the sample via probe hybridization. And at -133-201211533, the output pad provides electronic results, which provides the ability to genomic-level amplification and splitting by the adaptor primer. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 120. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: electrochemiluminescence (ECL), resonance for hybridization with the target nucleic acid sequence Energy transfer probes, each of which contains a sequence complementary to the target nucleic acid sequence and an ECL luminophore for emitting photons in an excited state, for quenching photon emission from the ECL luminophore by resonance energy transfer Functional portion; an electrode for receiving an electrical pulse to excite the ECL luminophore; a hybrid chamber containing a probe for hybridization with the label, at least one of the heaters, and a pair of electrodes; a reagent reservoir containing reagents for addition to the fluid; wherein the hybrid chambers each have a volume of less than 900,000 cubic microns and the reagent reservoir has a volume of less than 1, 〇〇〇, 〇〇〇, 〇〇〇 cubic microns volume. GAS120. Preferably, the hybrid chambers each have a volume of less than 200,000 cubic microns and the reagent reservoir has a volume of less than 300,000,000 cubic microns. GAS 1 20. Preferably, the hybrid chambers each have a volume of less than 40,000 - 134 - 201211533 cubic microns and the reagent reservoir has a volume of less than 70,000,000 cubic microns. GAS120. Preferably, the hybrid chambers each have a volume of less than 9,000 cubic microns and the reagent reservoir has a volume of less than 20,000,000 cubic micrometers. GAS120. Preferably, the LOC device also has: a light sensor for detecting light emitted by the ECL luminophore. φ GAS 1 20. Preferably, the LOC device also has: a support substrate; a CMOS circuit for supplying electrical pulses to the electrodes; and a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybrid chambers Between the support substrates, the flow path attracts the fluid to each of the hybridization chambers by capillary action. GAS120. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell φ membrane to release any genetic material therein. GAS 12 0. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS120. Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 12 0. Preferably, the wall portion is doped with a layer of cerium oxide. GAS120. Il preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore -135- 201211533 ECL luminophores, such that hybridization with the target nucleic acid sequence opens the loop portion and leaves the ECL luminophore away from the functional portion. GAS120. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS 120. 13 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS 120. 14 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 Nai'an Pei GAS 120. Preferably, the electrodes have an anode and a cathode each having a finger-like configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 120. 16 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS120. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. GAS 120. Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS120. Preferably, the photodiodes each have a planar active surface area such that the planar active surface regions collectively provide the collection surface, each of the active surface regions being in the same plane, and the electrode layers are Patterned to form a separate conductive material of the anode and cathode, the plane of the layer being parallel to the plane of the active surface area of the photodiodes. -136- 201211533 GAS 1 20. Preferably, one of the electrode pairs causes oxidation or reduction of the luminophore to produce a working electrode of an excited species that emits photons, the working electrode being configured such that the probes are interposed The photodiode is between the working electrode and the working electrode. The low volume hybridization chamber and reagent reservoir represent, to some extent, a low probe and reagent volume, thereby providing a low probe and reagent cost and an inexpensive detection system. φ This electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light, excitation optics, and optical filter components to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 2 1 · 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: electrochemiluminescence for detecting the target nucleic acid sequence ( ECL) probes, φ each of which has an ECL luminophore for emitting photons in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonance energy transfer; at least one positive a control probe having one of the ECL luminophores but without the functional moiety for quenching photon emission; at least one negative control probe 'which does not have one of the ECL luminophores; And electrodes for receiving electrical pulses to excite the ECL luminophores. GAS121. 2 Preferably, the LOC device also has a light sensor located adjacent to the -137-201211533 probe for sensing those probes that respond to electrical pulses to produce photons. GAS121. Preferably, the LOC device also has a support substrate, wherein the light sensor is a charge coupled device (CCD) array between the probe and the support substrate. GAS 121. Preferably, the LOC device also has a support substrate, wherein the light sensor is an array of photodiodes on the support substrate that are registered with the probes. GAS121. Preferably, the photodiode array is less than 1,600 microns from the probe. GAS 121. Preferably, the LOC device also has a CMOS circuit on the support substrate, the array of photodiodes being a component of the CMOS circuit, wherein when used, the CMOS circuit response cannot sense from the positive control The EC L signal of the needle or response senses a signal from the negative control probe to cause an error signal. GAS 121 . Preferably, the LOC device also has a hybridization chamber comprising the probes and a pair of electrodes. GAS121. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path attracts the fluid by capillary action To each of these hybrid chambers. GAS121. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. -138- 201211533 GAS121. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS121. Il Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 12 1. 1 2 Preferably, the wall portion is doped with a layer of cerium oxide. GAS 12 1. Preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located at the functional portion of the φ for quenching photon emission from the ECL luminophore Between the ECL luminophore and the nucleic acid sequence of the target, the loop portion is opened and the ECL luminophore is moved away from the functional portion. GAS121. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS 12 1. 1 5 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS 121 .  Preferably, the current of the electrical pulse is between 0. 1 奈 amp to 69. 0 nai pei. GAS 1 2 1 .  Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 12 1. 1 8 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS121. Preferably, the transparent wall portion has a thickness of less than 1,600 microns. - GAS 12 1. Preferably, the LOC device also has an upper cover, and the -139-201211533 upper cover is provided with a reagent reservoir for adding to the sample before detecting the target sequence, wherein the electrodes and the probes are interposed Between the upper cover and the C Μ 0 S circuit. The hybridization array provides analysis of the target via hybridization and utilizes the control probe to improve the reliability of the analytical results. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 22. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: an electrochemiluminescent (ECL) probe for detecting the target nucleic acid sequence, Each of the probes has an ECL luminophore for emitting photons in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonance energy transfer; at least one positive control probe, For detecting nucleic acid sequences known to be present in the fluid; and electrodes for receiving electrical pulses to excite the ECL luminophores. GAS122. Preferably, the LOC device also has a light sensor located adjacent to the probe for sensing those probes that respond to electrical pulses to produce ECL photons. GAS122. Preferably, the LOC device also has a support substrate, wherein the light sensor is a charge-140-201211533 coupling device (CCD) array between the probe and the support substrate. GAS 122·4 Preferably, the LOC device also has a support substrate ‘where the light sensor is located on the support substrate and an array of photodiodes registered with the probes. GAS122. Preferably, the photodiode array is less than 1,600 microns from the probe. GAS122. Preferably, the LOC device also has a CMOS circuit on the φ substrate, the array of photodiodes being a component of the CMOS circuit, wherein when used, the CMOS circuit responds to the undetected from the positive control. The ECL of the probe emits an error signal. GAS122. Preferably, the LOC device also has a hybridization chamber comprising the probes and a pair of electrodes. GAS122. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, φ and the flow path attracts the capillary by capillary action Fluid to each of the hybridization chambers. GAS122. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS122. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS122. Il Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 122. Preferably, the wall portion is doped with a layer of cerium oxide. -141 - 201211533 GAS 122. Preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophores, hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional portion. GAS 1 22. Preferably, the C Μ Ο S circuit is configured to provide electrical pulses to the electrodes. GAS 1 22.  1 5 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS 1 22. 1 6 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS 1 22. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 1 22. 1 8 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS122. Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence. GAS 1 22. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample before detecting the target sequence, wherein the electrodes and the probes are interposed between the upper cover and the Between CMOS circuits. The hybridization array provides analysis of the target via hybridization and utilizes the control probe to improve the reliability of the analytical results. -142- 201211533 This electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 23 · 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: φ for detecting electrochemiluminescence of the target nucleic acid sequence ( ECL) probes, each of which has an ECL luminophore for emitting photons in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonance energy transfer; at least one positive control a probe having the ECL luminophore but having no functional portion for quenching photon emission; and an electrode for receiving electrical pulses to excite the ECL luminophores. GAS123. Preferably, the LOC device also has a light sensor located adjacent to the probe φ for sensing those probes that respond to electrical pulses to produce ECL photons. GAS123. 3 Preferably, the LOC device also has a support substrate in which the light is sensed. The device is a charge coupled device (CCD) array between the probe and the support substrate. GAS123. Preferably, the LOC device also has a support substrate, wherein the light sensor is an array of photodiodes on the support substrate that are registered with the probes. GAS123. Preferably, the photodiode array is less than 1,600 microns from the probe -143 - 201211533. GAS123. Preferably, the LOC device also has a CMOS circuit on the support substrate, the array of photodiodes being a component of the CMOS circuit, wherein when in use, the CMOS circuit responds to the detection of the negative control probe The ECL is emitted to cause an error signal. GAS123. Preferably, the LOC device also has a hybridization chamber comprising the probes and a pair of electrodes. GAS123. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path attracts the fluid by capillary action To each of these hybrid chambers. GAS 123. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS123. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS123. Il Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 123.  Preferably, the wall portion is doped with a layer of cerium oxide. GAS 123. Preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophores, hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional portion. -144- 201211533 GAS123. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS123. 15 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS123. Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS123. Preferably, the electrodes have an anode and a cathode, each having a finger-like configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS123. 18 Preferably, the anode and cathode are separated by 0. 4 micron to 2 micron wide dielectric gap" GAS123. Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence prior to detection by the probes. GAS 1 23. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample φ before detecting the target sequence, wherein the electrodes and the probes are interposed between the cover and Between these CMOS circuits. The hybridization array provides analysis of the target via hybridization and utilizes the control probe to improve the reliability of the analytical results. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS124. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a nucleic acid sequence in a fluid of -145 to 201211533, the LOC device comprising: electrochemiluminescence for detecting the target nucleic acid sequence (ECL) a probe, each of which has an ECL luminophore for emitting photons in an excited state, a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer: for receiving electrical pulses An electrode for exciting the ECL luminophore; a hybridization chamber containing a probe for detecting the target and a pair of electrodes; and at least one positive control chamber containing a positive control probe having an ECL luminophore But there is no functional part for quenching photon emission. GAS124. Preferably, the LOC device also has a light sensor located adjacent to the probe for sensing those probes that respond to electrical pulses to produce ECL photons. GAS124. Preferably, the LOC device also has a support substrate, wherein the light sensor is a charge coupled device (CCD) array between the probe and the support substrate. GAS124. Preferably, the LOC device also has a support substrate, wherein the light sensor is an array of photodiodes on the support substrate that are registered with the hybrid chambers. GAS 124. Preferably, the photodiode array is less than 1,600 microns from the probe. GAS124. Preferably, the LOC device also has a CMOS circuit on the substrate supporting the -146-201211533, the array of photodiodes being a component of the CMOS circuit, wherein when used, the CMOS circuit response cannot be sensed from The ECL of the positive control probe emits an error signal. GAS124. Preferably, the LOC device also has at least one negative control chamber containing a negative control probe that is incapable of hybridizing to any of the nucleic acid sequences in the fluid. GAS124. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path attracts the fluid by capillary action To each of these hybrid chambers" GAS124. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS124. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS124. Il Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 124. Preferably, the wall portion is doped with a layer of cerium oxide. GAS124. Preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophores, hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional portion. GAS124. Preferably, the C Μ Ο S circuit is configured to provide -147 - 201211533 electrical pulses to the electrodes. GAS 1 24. 1 5 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS 1 24. 1 6 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS 1 24. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 124. 18 Preferably, the anode and cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS124. Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence prior to detection by the probes. GAS 1 24. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample before detecting the target sequence, wherein the electrodes and the probes are interposed between the upper cover and the Between CMOS circuits. The hybridization array provides analysis of the target via hybridization and utilizes the control probe to improve the reliability of the analytical results. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS125. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC loading -148 - 8 201211533 comprising: electrochemiluminescence for detecting the target nucleic acid sequence (ECL) probes, each of which has an ECL luminophore for emitting photons in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonance energy transfer; An electrical pulse to excite the electrodes of the ECL luminophores; a hybridization chamber containing a probe for detecting the label and a pair of electrodes; and at least one negative control chamber containing a negative control probe that is incapable of Hybridization with any nucleic acid sequence in the fluid. GAS125. Preferably, the LOC device also has a light sensor located adjacent to the probe for sensing those probes that respond to electrical pulses to produce ECL photons. GAS125. Preferably, the LOC device also has a support substrate, wherein the light sensor is a charge φ coupling device (CCD) array between the probe and the support substrate. GAS125. Preferably, the LOC device also has a support substrate, wherein the light sensor is an array of photodiodes on the support substrate that are registered with the hybrid chambers. GAS125. Preferably, the photodiode array is less than 1,600 microns from the probe. GAS125. Preferably, the LOC device also has a CMOS circuit on the support substrate, the array of photodiodes being a component of the CMOS circuit, wherein when used, the CMOS circuit responds to detect from -149-201211533 The ECL of the negative control chamber emits an error signal. GAS125. Preferably, the LOC device also has at least one positive control chamber containing a positive control probe having an ECL luminophore but without a functional moiety for quenching photon emission. GAS 125. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path attracts the fluid by capillary action To each of these hybrid chambers. GAS 125. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS125. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS125. Il Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS125. Preferably, the wall portion is doped with a layer of cerium oxide. GAS125. Preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophores, hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional portion. GAS125. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS125. 15 Preferably, the electrical pulse has a value less than 0. 69 seconds -150- 201211533 period. GAS125. Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS 125. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS125. 18 Preferably, the anode and cathode are separated by 0. 4 Between φ micron and 2 micron wide dielectric gap. GAS 1 25. Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence prior to detection by the probes. GAS 1 25. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample before detecting the target sequence, wherein the electrodes and the probes are interposed between the upper cover and the Between CMOS circuits. The hybridization array provides analysis of the target via hybridization and utilizes the φ control probe to improve the reliability of the analytical results. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 26. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: an electrochemiluminescent (ECL) probe for detecting the target nucleic acid sequence, -151 - 201211533 each of the probes has an ECL luminophore for emitting photons in an excited state, a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer; for receiving electrical pulses An electrode for exciting the ECL luminophore; a hybridization chamber containing a probe for detecting the label and a pair of electrodes; and at least one negative control chamber containing a negative control probe having no ECL luminophore. GAS126. Preferably, the LOC device also has a light sensor located adjacent to the probe for sensing those probes that respond to electrical pulses to produce ECL photons. GAS126. Preferably, the LOC device also has a support substrate, wherein the light sensor is a charge coupled device (CCD) array between the probe and the support substrate. GAS126. Preferably, the LOC device also has a support substrate, wherein the light sensor is an array of photodiodes on the support substrate that are registered with the hybrid chambers. GAS126. Preferably, the photodiode array is less than 1,600 microns from the probe. GAS126. Preferably, the LOC device also has a CMOS circuit on the support substrate, the array of photodiodes being a component of the CMOS circuit, wherein when used, the CMOS circuit responds to the detection from the negative control room. The ECL emits an error signal. GAS 126. Preferably, the LOC device also has at least one -152-201211533 positive control chamber containing a positive control probe having an ECL luminophore but without a functional moiety for quenching photon emission. GAS126. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS' circuit is interposed between the hybridization chamber and the support substrate, and the flow path attracts the capillary by capillary action Fluid to each of the hybridization chambers. GAS126. Preferably, the LOC device also has a lysis unit, φ wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS126. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS126. Il Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS126. Preferably, the wall portion is doped with a layer of cerium oxide. GAS126. Preferably, the probe has a stem-loop structure, the loop portion φ of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophore and the nucleic acid sequence of the target, the loop portion is opened and the ECL luminophore is moved away from the functional portion. GAS 126. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS126. 15 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS126. Preferably, the current of the electrical pulse is between 0. 1奈 -153- 201211533 amps to 69. 0 nai pei. GAS 1 26. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 1 26. 1 8 Preferably, the anode and the cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS126. Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence prior to detection by the probes. GAS 1 26. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample before detecting the target sequence, wherein the electrodes and the probes are interposed between the upper cover and the C Μ Ο between S circuits. The hybridization array provides analysis of the target via hybridization and utilizes the control probe to improve the reliability of the analytical results. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 127.  1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: an electrochemiluminescent (ECL) probe for detecting the target nucleic acid sequence, Each of the probes has an ECL luminophore for emitting photons in an excited state, and a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer: for receiving electricity Pulses to excite the electrodes of the ECL luminophores; a hybridization chamber containing a probe for detecting the label and a pair of electrodes: and at least one negative control chamber without the ECL probe. GAS127. Preferably, the LOC device also has a light sensor located adjacent to the probe for sensing those probes that respond to the electrical pulse φ to produce ECL photons. GAS127. Preferably, the LOC device also has a support substrate, wherein the light sensor is a charge coupled device (CCD) array between the probe and the support substrate. GAS127. Preferably, the LOC device also has a support substrate, wherein the light sensor is an array of photodiodes on the support substrate that are registered with the hybrid chambers. GAS127. Preferably, the photodiode array is less than 1,600 microns from the probe φ. GAS127. Preferably, the LOC device also has a CMOS circuit on the support substrate, the array of photodiodes being a component of the CMOS circuit, wherein when used, the CMOS circuit responds to the detection from the negative control room. The ECL emits an error signal. GAS127. Preferably, the LOC device also has at least one positive control chamber containing a positive control probe having an ECL luminophore but without a functional moiety for quenching photon emission. GAS127. Preferably, the LOC device also has: -155-201211533 a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path is capillary The action draws the fluid to each of the hybrid chambers. GAS127. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS127. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS127. Il Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS127. Preferably, the wall portion is doped with a layer of cerium oxide. GAS 127. Preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore The ECL emits light between the oximes such that hybridization with the target nucleic acid sequence opens the loop portion and leaves the ECL luminophore away from the functional portion. GAS 12 7. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS127. 15 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS 12 7. 16 Preferably, the current of the electrical pulse is between 〇.  1 nai to 69. 0 nai pei. GAS 127. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode - 156 - 201211533 with the fingers of the cathode. GAS127. 18 Preferably, the anode and cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS127. Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence prior to detection by the probes. GAS 1 27. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample φ before detecting the target sequence, wherein the electrodes and the probes are interposed between the cover and Between the C Μ Ο S circuits. The hybridization array provides analysis of the target via hybridization and utilizes the control probe to improve the reliability of the analytical results. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. φ GAS128. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: an electrochemiluminescent (ECL) probe for detecting the target nucleic acid sequence, Each of the probes has an ECL luminophore for emitting photons in an excited state, a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer; for receiving electrical pulses to excite such Electrode of an ECL luminophore; detection for exposure to photons emitted by the ECL luminophore - 157 - 201211533 Diode: and at least one calibrated photodiode for exposure to ambient light; The difference between the output from any of the sense photodiodes and the output from the calibrated photodiode is compared to a predetermined valve 値 difference, the output difference being greater than the predetermined valve 値 indicating the presence of the target system. GAS128. Preferably, the LOC device further comprises: a hybridization chamber containing a probe for detecting the target and a pair of electrodes, wherein the detection photodiode system is respectively located in registration with each of the hybrid chambers: and is located adjacent to the calibration photoelectric The calibration chamber for the diode. GAS 128. Preferably, the LOC device also has a plurality of calibration chambers and a plurality of corresponding calibrated photodiodes distributed throughout the array of hybridization chambers, wherein, when used, from the detection photodiodes The output of one is compared to the output from the calibrated photodiode closest to the detection photodiode. GAS128. Preferably, each of the calibration chambers is surrounded by a three by three hybrid chamber block. GAS128. Preferably, the distance between the detection photodiode and the hybridization chamber is less than 1,600 microns. GAS 128. Preferably, the LOC device also has a CMOS circuit on the support substrate, the detection and calibration of the components of the CMOS circuit of the photodiode system, wherein when used, the CMOS circuit has a function for measuring each of the detection electrodes Comparator circuit for the difference in output between the diode and the closest calibrated photodiode - 158 - 201211533 GAS128. Preferably, the calibration chamber has a probe that lacks the ECL radiant group but includes the functional portion for quenching photon emission. GAS 1 28. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path attracts the fluid by capillary action To each of these hybrid chambers. GAS128. Preferably, the LOC device also has a lysis unit, φ wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS128. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS128. Il Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS128. Preferably, the wall portion is doped with a layer of cerium oxide. GAS128. Preferably, the probe has a stem-loop structure, the loop portion φ of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophore and the nucleic acid sequence of the target, the loop portion is opened and the ECL luminophore is moved away from the functional portion. GAS 128. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS128. 15 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS128. Preferably, the current of the electrical pulse is between 0. 1奈 -159- 201211533 amp to 69. 0 nai pei. GAS128. Preferably, the electrodes have separate anodes and cathodes, the fingers being configured to intersect the fingers of the cathode. GAS128. Preferably, a dielectric gap of between microns and 2 microns is provided between the anode and the cathode. GAS128. Preferably, the LOC device is also narrowly used to amplify the target core prior to detection by the probes. [ GAS 1 28. Preferably, the LOC device is also provided with a reagent reservoir for detecting the sequence of the sample, wherein the electrodes and the probes are interposed between the circuits of the C Μ Ο S. The hybrid array provides analysis of the target via hybridization. The calibration light sensor improves the reliability and sensitivity of the results. The electrochemiluminescence-based detection and analysis system is a lighter and cheaper detection system for detection systems that are free of light sources, excitation optics, and optical filter elements. It is not necessary to disapprove the detector circuit, making the detection system even cheaper. GAS 129. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for use in a nucleic acid sequence in use, comprising: a hybridization chamber comprising an electrochemical hairpin for detecting the target nucleic acid sequence, each of the probes Having a finger shape in an excited state to isolate the anode system. 4 ί PCR section, 唆 sequence. There is an upper cover, which is added to the upper cover and the above, and utilizes the property and the dynamic range to eliminate the need for excitation, thereby providing excitation light and simply detecting the fluid. The LOC light-emitting (ECL) probe emits photons - 160 - 201211533 EC L luminophore, a functional moiety for quenching photon emission from the EC L luminophore by resonance energy transfer; at least one calibration chamber comprising an ECL probe designed to be complementary to any nucleic acid sequence in the fluid And electrodes for receiving electrical pulses to excite the ECL luminophores. GAS 129. 2 Preferably, the LOC device also has: a detecting photo φ diode for exposing photons emitted by the ECL illuminating group; and at least one calibrated photodiode for exposing to ambient light; wherein In use, the difference between the output from any of the sense photodiodes and the output from the calibrated photodiode is compared to a predetermined valve , difference that is greater than the predetermined valve 値 indicating the presence of the target. GAS129. Preferably, the LOC device also has a plurality of calibration chambers and a plurality of corresponding calibrated photodiode φ pole bodies distributed throughout the array of hybridization chambers, wherein when used, from the detection photodiode The output of either is compared to the output from the calibrated photodiode closest to the detection photodiode. GAS129. Preferably, each of the calibration chambers is surrounded by a three by three hybrid chamber block. GAS129. Preferably, the distance between the detection photodiode and the hybridization chamber is less than 1,600 microns. GAS129. Preferably, the LOC device also has a CMOS circuit on the support substrate, the detection and calibration of the photodiode system of the -161 - 201211533 CMOS circuit component, wherein when used, the CMOS circuit has a The comparator circuit detects the difference in output between the photodiode and the closest calibrated photodiode. GAS129. Preferably, the calibration chamber has a probe that lacks the ECL radiant group but includes the functional portion for quenching photon emission. GAS129. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path attracts the fluid by capillary action To each of these hybrid chambers. GAS129. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. ' GAS129. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS129. Il Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 129. Preferably, the wall portion is doped with a layer of cerium oxide. GAS 129. Preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophores, hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional portion. GAS 1 29. Preferably, the C Μ Ο S circuit is configured to provide electrical pulses to the electrodes. -162- 201211533 GAS129. 15 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS129. 16 Preferably, the current of the electrical pulse is between 〇. 1 nai to 69. 0 nai pei. GAS129. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 129. 18 Preferably, the anode and cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS 1 29. Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence prior to detection by the probes. GAS 1 29. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample before detecting the target sequence, wherein the electrodes and the probes are interposed between the upper cover and the C Μ Ο between S circuits. The hybridization array provides analysis of the target via hybridization and utilizes the calibration probe to improve the reliability, sensitivity, and dynamic range of the analytical results. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 3 0 · 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: -163-201211533 for detecting the target nucleic acid sequence Electrochemiluminescence (EC L) probes, each of which has an Ecl luminophore for emitting photons in an excited state, and a function for quenching photon emission from the ECL luminophore by resonance energy transfer a portion; a calibration probe that does not have an ECL luminophore; and an electrode that receives an electrical pulse to excite the ECL luminophore. GAS130. 2 Preferably, the LOC device also has: a detection photodiode for exposing photons emitted by the ECL luminophore; and at least one calibration photodiode for exposing to the calibration probe; When in use, the difference between the output from any of the sense photodiodes and the output from the calibrated photodiode is compared to a predetermined valve 値 difference that is greater than the predetermined valve 値 indicating the presence of the target. GAS130. Preferably, the LOC device also has an array of calibration chambers for the ECL probes and a plurality of calibration chambers distributed throughout the array of hybridization chambers, each of the calibration chambers including the calibration probes and each The calibration chambers have corresponding calibration photodiodes, wherein when used, the output from either of the detection photodiodes and the output from the calibration photodiode closest to the detection photodiode Comparison. GAS130. Preferably, each of the calibration chambers is surrounded by a three by three hybrid chamber block. GAS 130. Preferably, the distance between the detection photodiode and the hybridization chamber is less than 1,600 microns. -164- 201211533 GAS130. Preferably, the LOC device also has a CMOS circuit on the substrate, the component for detecting and calibrating the photodiode CMOS circuit, wherein when used, the CMOS circuit is configured to measure each of the detecting photodiodes A comparator circuit that differs from the output of the closest calibration photocell. GAS 13 0. Preferably, the calibration probe includes a functional portion for quenching the emission. φ GAS130. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path attracts the fluid to each by capillary action These hybrid chambers. GAS130. Preferably, the LOC device also has a lysate wherein the flow system contains a biological sample of cells and the lysate destroys the membrane to release any genetic material therein. GAS130. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the φ. GAS130. Preferably, the CMOS circuit has the photo-electric body, wherein the wall portion is located between the probe and the photodiode. 12 Preferably, the wall is entangled with GAS 130 of cerium oxide. Preferably, the ECL probe has a stem loop junction whose loop portion contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the function for quenching photon emission from the ECL luminophore and the ECL luminescence Between the clusters, the loop portion is hybridized to the target nucleic acid sequence and the ECL luminophore is moved away from the functional portion. Support for this useful two-pole photon, part, and cell probe bipolar 〇 layer. Structure, Division Department Open -165- 201211533 GAS 13 0. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS130. 15 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS130. Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS130. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS130. 18 Preferably, the anode and cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS 1 30. Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence prior to detection by the probes. GAS 1 30. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample before detecting the target sequence, wherein the electrodes and the probes are interposed between the upper cover and the C Μ Ο between S circuits. The hybridization array provides analysis of the target via hybridization and utilizes the calibration probe to improve the reliability, sensitivity, and dynamic range of the analytical results. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS131. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a nucleic acid sequence of a target in a fluid of -166 to 201211533, the LOC device comprising: electrochemiluminescence comprising a nucleic acid sequence for detecting the target ( ECL) hybridization chambers for probes, each of the ECL probes having an ECL luminophore for emitting photons in an excited state, and a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer; At least one calibration φ chamber comprising a probe sealed to be in contact with the fluid; and an electrode for receiving an electrical pulse to excite the ECL luminophores. GAS131. 2 Preferably, the LOC device also has: a detection photodiode for exposing photons emitted by the ECL luminophore; and at least one calibration photodiode for exposing to the calibration chamber; In use, the difference between the output from any of the sense photodiodes and the output from the calibrated photo φ diode is compared to a predetermined valve , difference that is greater than the predetermined valve 値 indicating the presence of the target. GAS131. Preferably, the LOC device also has a plurality of calibration chambers distributed throughout the array of hybridization chambers, each of the calibration chambers having a corresponding calibration photodiode, wherein when used, the detection photodiode The output of any of the bodies is compared to the output from the calibrated photodiode closest to the detection photodiode. GAS13 1. Preferably, each of the calibration chambers is surrounded by a three by three hybrid chamber block. 167 201211533 GAS131. Preferably, the distance between the detection photodiode and the hybridization chamber is less than 1,600 microns. GAS131. Preferably, the LOC device also has a CMOS circuit on the support substrate, the detection and calibration of the components of the CMOS circuit of the photodiode system, wherein when used, the CMOS circuit has a function for measuring each of the detection electrodes A comparator circuit for the difference in output between the diode and the closest calibrated photodiode. GAS131. Preferably, the LOC device also has: a flow path containing the target fluids, wherein the hybridization chambers each have an inlet for fluid communication between the flow path and the probes, and the at least one calibration The chamber is separated from the flow path. GAS131. Preferably, the CMOS circuit is interposed between the hybridization chambers and the support substrate, and the flow path attracts the fluid to each of the hybridization chambers by capillary action. GAS131. Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of the cell and the lysate destroys the cell membrane to release any genetic material therein. GAS 13 1. Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS131. Preferably, the CMOS circuit is provided with the photodiode, wherein the wall portion is located between the probe and the photodiode. GAS 13 1. Preferably, the wall portion is doped with a layer of cerium oxide. GAS 13 1. Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion is -168-201211533 located for quenching photon emission from the EC L luminophore Between the functional portion and the ECL luminophore, such that hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional portion. GAS 13 1. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS131. 15 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. Φ GAS131. Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS 1 3 1 .  Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS131. 18 Preferably, the anode and cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS131. Preferably, the LOC device also has a PCR portion, φ which is used to amplify the target nucleic acid sequence prior to detection by the probes. GAS131. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the sample before detecting the target sequence, wherein the electrodes and the probes are interposed between the upper cover and the Between CMOS circuits. The hybridization array provides analysis of the target via hybridization and utilizes the calibration probe to improve the reliability, sensitivity, and dynamic range of the analytical results. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 132. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: an electrochemiluminescent (ECL) probe for detecting the target nucleic acid sequence, Each of the ECL probes has an ECL luminophore for emitting photons in an excited state, a functional portion for quenching photon emission from the ECL luminophore by resonant energy transfer; at least one configured to generate a calibrated emission a calibration source; an electrode for receiving an electrical pulse to excite the ECL luminophore; at least one detection photodiode for sensing photon emission from the ECL luminophore and generating a detection output; at least one for sensing The calibration emits and produces a calibrated output of the calibrated photodiode; and a CMOS circuit having a differential circuit for subtracting the calibrated output from the sense output. GAS 1 32. Preferably, the LOC device also has a plurality of calibration sources and a plurality of corresponding calibration photodiodes, and a plurality of detection photodiodes respectively registered with the ECL probes. GAS132. Preferably, the calibration source is a calibration probe that does not have an ECL luminophore. GAS 1 32. Preferably, the LOC device also has an array of hybridization chambers containing the ECL probes and a plurality of calibration chambers containing calibration sources distributed throughout the array of hybridization chambers -170-201211533, wherein when used, from The output of any of the diodes is compared to the output of the calibrated photodiode from the closest detector. GAS132. Preferably, the calibration source calibration probe chamber is configured to seal the calibration probe from the nuclear fluid containing the target. GAS132. Preferably, each of the calibration chambers is surrounded by a three-square chamber block. GAS 132. Preferably, the detection photodiode is at a distance of less than 1,600 microns. GAS132. Preferably, the calibration probe includes a functional portion for transmission. GAS132. Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support base φ and the flow path attracts the fluid to each by capillary action These hybrids: GAS132. Preferably, the LOC device also has a biological sample in which the flow system contains cells and the lysate is ruptured to release any genetic material therein. GAS132. Il Preferably, the hybridization chambers each have a wall portion through which the light emitted by the probe penetrates. GAS132. 12 Preferably, the wall is enthalpy of GAS 1 32. Preferably, the ECL probe has a loop portion of the stem containing a sequence complementary to the target nucleic acid sequence, the detection photodiode and the third of the calibration acid sequence hybridize between the hybridization chamber quenching photonic plates, In the lysis part, the cell is broken by the layer of the ECL. a ring structure, a loop moiety -171 - 201211533, located between the functional moiety for quenching photon emission from the ECL luminophore and the ECL luminophore such that hybridization with the target nucleic acid sequence opens the loop portion and The ECL luminophore is remote from the functional portion. GAS 13 2. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS132. 15 Preferably, the electrical pulse has a value less than 0. During the 69 seconds period. GAS132. Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GAS 13 2. Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS132. 18 Preferably, the anode and cathode are separated by 0. Dielectric gap of 4 microns to 2 microns wide. GAS 13 2. Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence prior to detection by the probes. GAS 1 3 2. Preferably, the LOC device also has an upper cover, the upper cover being provided with a reagent reservoir for adding to the fluid prior to detecting the sequence of the target, wherein the electrodes and the probes are interposed between the upper cover and the Between CMOS circuits. The hybrid array provides analysis of the target via hybridization and utilizes the calibration circuit to improve the reliability, sensitivity, and dynamic range of the analytical results. The detection and analysis of the target based on electrochemiluminescence eliminates the need for a detection system that requires an excitation source, an excitation optical, and an optical filter element, thereby providing -172-

201211533 更輕巧且更便宜之檢測系統。不需要斥拒任 化該檢測器電路,使該檢測系統甚至更便宜 GAS 13 3.1 本發明之此態樣提供一種 中之標的核酸序列之微流體測試模組,該測 經配置以供手持移動之外殼,該外殻具 有該標的核酸序列之流體之入口; 安裝在該外殼中之雜交室,該雜交室包 標的核酸序列之電化學發光(ECL)探針,各| 具有用於在激發狀態時發射光子之ECL發光 共振能量轉移淬熄來自該ECL發光團之光子 部分,及用於接受電脈衝以激發該ECL發光 中 該雜交室之體積小於900,000立方微米 GAS133.2 較佳地,該雜交室之體積 立方微米。 GAS133.3 較佳地,該雜交室之體1 立方微米。 GAS133.4 較佳地,該雜交室之體積 方微米。 GAS 133.5 較佳地,該微流體測試模 用於暴露至由該ECL發光團所發射之光 應器;及 用於提供電脈衝至該等電極之控制.電路 GAS133.6 較佳地,該微流體測試模 何激發光亦簡 〇 用於檢測流體 試模組包含: 有用於接受含 含用於檢測該 |等ECL探針 團及用於藉由 發射的功能性 團之電極;其 〇 E 小於 2 0 0,0 0 0 實小於 40,000 小於9,0 0 0立 組亦具有: 子之檢測光感 〇 組亦具有: -173- 201211533 該控制電路之溝通介面以傳送資料至外部裝置。 GAS133.7 較佳地,該微流體測試模組亦具有雜交 室之陣列,該等雜交室含有用於不同標的核酸序列之ECL 探針,其中該控制電路具有記憶體以用於儲存關於在各該 等雜交室內之ECL探針之識別資料。 GAS133.8 較佳地,該溝通介面係通用性串列匯流 排(USB)連接件,以使該外殼係經配置爲USB隨身碟。 GAS133.9 較佳地,該檢測光感應器係配準該等雜 交室之檢測光電二極體陣列。 GAS 1 3 3 .1 0 較佳地,該微流體測試模組亦具有: 至少一個用於提供校準發射之校準源,及用於感測該 校準發射之校準光感應器,其中該控制電路具有差分電路 以用於自該檢測光感應器輸出減去該校準光感應器輸出。 GAS133.il 較佳地,該微流體測試模組亦具有多個 校準源,其中該檢測光感應器係分別與各該等ECL探針配 準之光電二極體陣列,且該校準光感應器係多個分別與該 等校準源配準之校準光電二極體。 GAS133.12 較佳地,該校準源係不具ECL發光團 之校準探針。 GAS 1 3 3 .1 3 較佳地,該微流體測試模組亦具有多個 校準室,該校準室含有分布於該雜交室陣列各處之校準源 ,其中當使用時,來自該檢測光電二極體中之任一者之輸 出係與來自最靠近該檢測光電二極體之校準光電二極體之 輸出比較。 -174- 201211533 GAS133·14 較佳地,該校準源係校準探針且該校準 室係經配置以封隔開該校準探針與含有該標的核酸序列之 流體。 GAS133.15 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 GAS133.16 較佳地,該檢測光電二極體與該雜交室 之距離小於1,600微米。 GAS 13 3.17 較佳地,該校準探針包括用於淬熄光子 發射之功能性部分。 GAS133.18 較佳地,該ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 GAS133.19 較佳地,傳送至該電極之電脈衝係DC 脈衝且具有小於0.69秒之期間。 GAS 1 3 3.20 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 該低體積之雜交室在某種程度上代表低探針體積,進 而提供低探針成本及不貴之檢測系統。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統’進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 -175- 201211533 化該檢測器電路,使該檢測系統甚至更便宜。 GAS134.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之微流體測試模組,該測試模組包含: 具有入口之外殻,該入口係用於接受含有該標的核酸 序列之流體; 用於接受電脈衝之電極對; 分別與各該等電極對接觸之電化學發光(ECL)探針點 樣,該ECL探針點樣包含具有用於在激發狀態時發射光子 之ECL發光團及用於藉由共振能量轉移淬熄來自該ECL 發光團之光子發射之功能性部分之E C L探針,以使該傳送 至該電極對之電脈衝激發該ECL發光團;其中 在各該探針點樣中之ECL探針質量係小於270皮克。 GAS 1 34.2 較佳地, 係小於6 0皮克。 GAS 1 34.3 較佳地, 係小於1 2皮克。 GAS 1 34.4 較佳地, 係小於2.7皮克。 GAS 1 34.5 較佳地, 配位子錯合物。 在各該探針點樣中之探針質量 在各該探針點樣中之探針質量 在各該探針點樣中之探針質量 該ECL發光團具有過渡金屬_ GAS134.6 較佳地,該微流體測試模組亦具有: 用於暴露至由該ECL發光團所發射之光子之檢測光感 應器;及 用於提供電脈衝至該等電極之控制電路。 -176- 201211533 GAS 134.7 較佳地,該微流體測試模組亦具有 該控制電路之溝通介面以傳送資料至外部裝置。 GAS 134.8 較佳地,該微流體測試模組亦具有 室之陣列,該等雜交室含有用於不同標的核酸序列之 探針,其中該控制電路具有記憶體以用於儲存關於在 等雜交室內之ECL探針之識別資料。 GAS134.9 較佳地,該等雜交室之體積 900,000立方微米。 GAS134.10 較佳地,該等雜交室之體積 200,000立方微米。 GAS134.il 較佳地,該溝通介面係通用性串列 排(USB)連接件,以使該外殻係經配置爲USB隨身碟 GAS134.12 較佳地,該檢測光感應器係配準該 交室之檢測光電二極體陣列。 GAS134.13 較佳地,該微流體測試模組亦具有 至少一個用於提供校準發射之校準源’及至少一 於感測該校準發射之校準光電二極體,其中該控制電 有差分電路以用於自各該檢測光電二極體輸出減去該 光電二極體輸出。 GAS134.14 較佳地,該微流體測試模組亦具有 校準源及多個對應之校準光電二極體,該校準光電二 分別與該校準源配準。 GAS 1 34.1 5 較佳地,該校準源係不具ECL發 之校準探針 雜交 ECL 各該 J、於 J、於 匯流 > 等雜 個用 路具 校準 多個 極體 光團 -177- 201211533 GAS134.16 較佳地,該微流體測試模組亦具有多個 校準室’該校準室含有分布於該等雜交室各處之校準源, 其中當使用時’來自該檢測光電二極體中之任一者之輸出 係與來自最靠近該檢測光電二極體之校準光電二極體之輸 出比較。 GAS 134· 17 較佳地,該校準源係校準探針且該校準 室係經配置以封隔開該校準探針與含有該標的核酸序列之 流體。 GAS134.18 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 GAS134.19 較佳地,該檢測光電二極體與該雜交室 之距離小於1,6 0 0微米。 GAS 1 34.20 較佳地,該ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 該低探針體積代表低探針成本,進而允許該不貴之檢 測系統。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS135.1 本發明之此態樣提供一種用於檢測流體 -178- 201211533 中之標的核酸序列之測試模組,該測試模組包含: 具有容器之外殼,該容器係用於接受含有該標的核酸 序列之流體; 電化學發光(ECL)探針,其具有當呈激發狀態時發射 光子之ECL發光團及藉由共振能量轉移淬熄來自該ECL 發光團之光子發射之功能性部分; 用於接受電脈衝以激發該等ECL發光團之電極;及 用於暴露至由該ECL發光團所發射之光子之檢測光感 應器。 GAS 1 35.2 較佳地,該測試模組亦具有晶片上實驗 室(LOC)裝置,該LOC裝置設有電路以用於提供電脈衝至 該等電極,其中該檢測光感應器係倂入該電路,且該ECL 探針、該電極及該控制電路係整合至該LOC裝置。 GAS135.3 較佳地,該LOC裝置具有用於支持該 電路之支持基板,其進而支持該等電極和ECL探針。 GAS 1 35.4 較佳地,該電路具有沉積在該支持基板 上之CMOS電路層,其係用於提供電脈衝給該等電極。 GAS 1 35.5 較佳地,該電脈衝具有小於0.6 9秒之 期間。 GAS 1 35.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 1 35.7 較佳地,該測試模組亦具有: 該電路之溝通介面以傳送資料至外部裝置。 GAS 1 35.8 較佳地,該測試模組亦具有雜交室之陣 -179- 201211533 列,該等雜交室含有用於不同標的核酸序列之ECL探針, 其中該CMOS電路具有記憶體以用於儲存關於在各該等雜 交室內之ECL探針之識別資料。 GAS135.9較佳地,該等雜交室之體積小於900,000立方 微米。 GAS135.10 較佳地,該等雜交室之體積小於200,000 立方微米。 GAS135.11 較佳地,該溝通介面係通用性串列匯流 排(USB)連接件,以使該外殼係經配置爲USB隨身碟。 GAS 1 3 5 . 1 2 較佳地,該檢測光感應器係配準該等雜 交室之檢測光電二極體陣列。 GAS 1 3 5 · 1 3 較佳地,該測試模組亦具有至少一個用 於提供校準發射之校準源,及至少一個用於感測該校準發 射之校準光電二極體,其中該CMOS電路具有差分電路以 用於自一或多個該檢測光電二極體之輸出減去該校準光電 二極體輸出。 GAS 1 3 5 · 1 4 較佳地,該測試模組亦具有多個校準源 及多個對應之校準光電二極體,該校準光電二極體分別與 該校準源配準。 GAS135.15 較佳地,該校準源係不具ECL發光團 之校準探針。 GAS 1 3 5 · 1 6 較佳地,該測試模組亦具有多個校準室 ’該校準室含有分布於該雜交室陣列各處之校準源,其中 當使用時,來自該檢測光電二極體中之任一者之輸出係與 180- 201211533 來自最靠近該檢測光電二極體之校準光電二極體之輸出比 較。 GAS 13 5.17 較佳地,該校準源係校準探針且該校準 室係經配置以封隔開該校準探針與含有該標的核酸序列之 流體。 GAS135.18 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 φ GAS135.19 較佳地,該檢測光電二極體與該雜交室 之距離小於1,600微米。 GAS 1 35.20 較佳地,該ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 該附有驅動器以用於激發電化學發光發光團之整合式 φ 影像感測器免除昂貴外部成像系統之需求,提供可大量生 產又不貴之全面解決方案,其低系統組件數代表輕巧、具 高度移動性之系統。該整合式影像感測器因爲大角度光收 集而得到增加讀取敏感度之好處且免除在該光收集元件串 使用光學組件之需求。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 -181 - 201211533 GAS 13 6.1 本發明之態樣提供一種用於激發經配置 以檢測標的核酸序列之電化學發光探針的可攜式測試模組 ,該測試模組包含: 經配置以供手持移動之外殼,該外殻具有用於接受含 有該標的核酸序列之流體之容器; 電化學發光(ECL)探針,其具有當呈激發狀態時發射 光子之ECL發光團及藉由共振能量轉移淬熄來自該ECL 發光團之光子發射之功能性部分;及 用於接受電脈衝以激發該等ECL發光團之電極;其中 當使用時, 該已經檢測到該等標的核酸序列中之一者的ECL探針 重新配置,以使該功能性部分不淬熄來自該ECL發光團當 被該等電極激發時之光子發射。 GAS 136.2 較佳地,該可攜式測試模組亦具有用於 提供該電脈衝至該等電極之電路,該電路倂有檢測光感應 器以用於暴露至由該ECL發光團所發射之光子。 GAS136.3 較佳地,該可攜式測試模組亦具有晶片 上實驗室(LOC)裝置,該LOC裝置具有用於支持該電路之 支持基板,其進而支持該等電極和ECL探針。 GAS136.4 較佳地,該電路具有沉積在該支持基板 上之CMOS電路層,其係用於提供電脈衝給該等電極。 GAS136.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS136.6 較佳地,該電脈衝之電流係介於0.1奈 ⑧ -182- 201211533 安培至69.0奈安培。 GAS 136.7 較佳地’該可擴式測試模組亦具有: 該電路之溝通介面以傳送資料至外部裝置。 GAS136.8 較佳地,該可攜式測試模組亦具有雜交 室之陣列,該等雜交室含有用於不同標的核酸序列之ECL 探針’其中該CMOS電路具有記憶體以用於儲存關於在各 該等雜交室內之ECL探針之識別資料。 φ GAS136.9較佳地’該等雜交室之體積小於900,000立方 微米。 GAS136.10 較佳地,該等雜交室之體積小於200,000 立方微米。 GAS136.il 較佳地,該溝通介面係通用性串列匯流 排(USB)連接件,以使該外殼係經配置爲USB隨身碟。 GAS136.12 較佳地,該檢測光感應器係配準該等雜 交室之檢測光電二極體陣列。 # GAS136.13 較佳地,該可攜式測試模組亦具有至少 一個用於提供校準發射之校準源,及至少一個用於感測該 校準發射之校準光電二極體,其中該CMOS電路具有差分 電路以用於自一或多個該檢測光電二極體之輸出減去該校 準光電二極體輸出。 GAS136.14 較佳地,該可攜式測試模組亦具有多個 校準源及多個對應之校準光電二極體,該校準光電二極體 分別與該校準源配準。 GAS136.15 較佳地,該校準源係不具ECL發光團 -183- 201211533 之校準探針。 GAS136.16 較佳地,該可攜式測試模組亦具有多個 校準室,該校準室含有分布於該雜交室陣列各處之校準源 ,其中當使用時,來自該檢測光電二極體中之任一者之輸 出係與來自最靠近該檢測光電二極體之校準光電二極體之 輸出比較。 GAS136.17 較佳地,該校準源係校準探針且該校準 室係經配置以封隔開該校準探針與含有該標的核酸序列之 流體。 GAS136.18 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 GAS136.19 較佳地,該檢測光電二極體與該雜交室 之距離小於1,6 0 0微米。 GAS 1 3 6.20 較佳地,該ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 該易於使用、可大量生產、不貴、輕巧且可攜帶之測 試模組接受生物樣品,利用彼之整合式成像感測器及用於 激發電化學發光發光團之整合式驅動器以經由電化學發光 探針雜交識別該樣品之核酸序列,且在彼之輸出埠提供電 子結果。 該以電化學發光爲基底之標的檢測分析免除任需要激 ⑧ -184- 201211533 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 13 7.1 本發明之態樣提供一種用於激發經配置 以檢測標的核酸序列之電化學發光探針的測試模組,該測 試模組包含: 具有容器之外殼,該容器係用於接受含有該標的核酸 ^ 序列之流體; 電化學發光(ECL)探針,其具有當呈激發狀態時發射 光子之ECL發光團及藉由共振能量轉移淬熄來自該ECL 發光團之光子發射之功能性部分; 用於接受電脈衝以激發該等ECL發光團之電極; 用於暴露至由該ECL發光團所發射之光子之檢測光感 應器; 提供電脈衝至該等電極之控制電路;及 φ 通用性串列匯流排(USB)連接件,以使該外殼係經配 置爲USB隨身碟以用於傳送有關該流體中標的檢測之資 料至外部裝置;其中當使用時, 該已經檢測到該等標的核酸序列中之一者的ECL探針 重新配置,以使該功能性部分不淬熄來自該ECL發光團當 被該等電極激發時之光子發射。 GAS137.2 較佳地,該等電極係導電材料之板,該 等板之邊緣特性係經配置以使各該等板之周邊邊緣長度大 於128微米。 -185- 201211533 GAS137·3 較佳地,該測試模組亦具有晶片上實驗 室(LOC)裝置’其中該ECL探針、電極、檢測光感應器及 控制電路係整合至該LOC裝置,其中該LOC裝置具有用 於支持該控制電路之支持基板,其進而支持該檢測光感應 器、電極和ECL探針。 GAS 137.4 較佳地,該控制電路係經配置以提供電 脈衝至該等電極之CMOS電路之層。 GAS137.5 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS137.6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS137.7 較佳地,該測試模組亦具有雜交室之陣 列,該等雜交室含有用於不同標的核酸序列之ECL探針及 一對電極,其中該控制電路具有記憶體以用於儲存關於在 各該等雜交室內之ECL探針之識別資料。 GAS 1 37.8 較佳地,該C Μ Ο S電路係經配置以施加 電壓至各該等雜交室中之電極對’該電壓係介於1.7伏特 至2.8伏特。 GAS137.9較佳地,該電壓係介於1.9伏特至2.6伏特。 GAS 1 37.1 0 較佳地,該等雜交室之體積小於900,000 立方微米。 GAS137.il 較佳地,該等雜交室之體積小於200,000 立方微米。 GAS137.12 較佳地,該檢測光感應器係配準該等雜 -186- 201211533 交室之檢測光電二極體陣列。 GAS 137.13 較佳地,該測試模組亦具有: 至少一個用於提供校準發射之校準源’及用於感測該 校準發射之校準光感應器,其中該控制電路具有差分電路 以用於自該檢測光感應器輸出減去該校準光感應器輸出。 GAS 137.14 較佳地,該測試模組亦具有多個校準源 ,其中該檢測光感應器係分別與各該等ECL探針配準之光 ^ 電二極體陣列,且該校準光感應器係多個分別與該等校準 源配準之校準光電二極體。 GAS 1 37.1 5 較佳地,該校準源係不具ECL發光團 之校準探針。 GAS137.16 較佳地,該測試模組亦具有多個校準室 ,該校準室含有分布於該雜交室陣列各處之校準源,其中 當使用時,來自該檢測光電二極體中之任一者之輸出係與 來自最靠近該檢測光電二極體之校準光電二極體之輸出比 鲁 較。 GAS137.17 較佳地,該校準源係校準探針且該校準 室係經配置以封隔開該校準探針與含有該標的核酸序列之 流體。 GAS137.18 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 GAS 1 37. 1 9 較佳地,該檢測光電二極體與該雜交室 之距離小於1,600微米。 GAS 1 3 7.20 較佳地’該ECL探針具有莖環結構, -187- 201211533 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該E C L發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 該易於使用、可大量生產、不貴、輕巧且可攜帶之測 試模組接受生物樣品,利用彼之整合式成像感測器及用於 激發電化學發光發光團之整合式驅動器以經由電化學發光 探針雜交識別該樣品之核酸序列,且在彼之輸出埠提供電 子結果,該通用USB埠係用於供應該模組電力及傳訊需 求。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 3 8 · 1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之測試模組,該測試模組包含: 具有入口之外殼,該入口係用於接受含有該標的核酸 序列之流體; 安裝在該外殻中之雜交室,該雜交室包含用於檢測該 標的核酸序列之電化學發光(ECL)探針,各該等ECL探針 具有用於在激發狀態時發射光子之ECL發光團及用於藉由 共振能量轉移淬熄來自該ECL發光團之光子發射的功能性 部分; 用於接受電脈衝以激發該等ECL發光團之電極;及 -188- 201211533 試劑貯器,其含有用於在檢測該標的核酸序列之前添 加至該流體之試劑;其中 該雜交室之體積小於900,000立方微米;且 該試劑貯器之體積小於1,000,000,000立方微米。 GAS138.2 較佳地,該雜交室具有小於200,000立 方微米之體積且該試劑貯器具有小於300,000,000立方微 米之體積。 φ GAS138.3 較佳地,該雜交室具有小於40,000立 方微米之體積且該試劑貯器具有小於7〇,〇〇〇,〇〇〇立方微米 之體積。 GAS138.4 較佳地,該雜交室具有小於9,000立方 微米之體積且該試劑貯器具有小於20,000,000立方微米之 體積。 GAS138.5 較佳地,該測試模組亦具有: 用於暴露至由該ECL發光團所發射之光子之檢測光感 _ 應器;及 提供電脈衝至該等電極之控制電路。 GAS 13 8.6 較佳地,該測試模組亦具有: 該控制電路之溝通介面以傳送資料至外部裝置。 GAS138.7 較佳地,該測試模組亦具有雜交室之陣 列,該等雜交室含有用於不同標的核酸序列之ECL探針及 一對電極,其中該控制電路具有記億體以用於儲存關於在 各該等雜交室內之ECL探針之識別資料。 GAS 1 3 8 · 8 較佳地,該溝通介面係通用性串列匯流 -189 - 201211533 排(USB)連接件,以使該外殼係經配置爲USB隨身碟。 GAS138.9 較佳地,該檢測光感應器係配準該等雜 交室之檢測光電二極體陣列。 GAS138.10 較佳地,該測試模組亦具有晶片上實驗 室(LOC)裝置,該LOC裝置倂有該雜交室、試劑貯器、檢 測光電二極體、電極及 ECL探針,該 LOC裝置具有 CMOS電路之層的支持基板,其形成該控制電路之部分以 使該檢測光電二極體介於該雜交室與該CMOS電路之間。201211533 Lighter and cheaper detection system. There is no need to disapprove the detector circuit, making the detection system even cheaper. GAS 13 3.1 This aspect of the invention provides a microfluidic test module for the nucleic acid sequence of the target, which is configured for hand movement An outer casing having an inlet for a fluid of the target nucleic acid sequence; a hybridization chamber mounted in the outer casing, the electrochemiluminescent (ECL) probe of the nucleic acid sequence of the hybridization chamber label, each having an excitation state ECL luminescence resonance energy transfer of the emitted photon quenches the photon portion from the ECL luminescence group, and is used to receive an electrical pulse to excite the ECL luminescence. The volume of the hybridization chamber is less than 900,000 cubic microns GAS 133.2. Preferably, the hybridization chamber The volume is cubic micron. GAS 133.3 Preferably, the body of the hybridization chamber is 1 cubic micrometer. GAS 133.4 Preferably, the hybridization chamber is a micron in volume. GAS 133.5 Preferably, the microfluidic test mode is for exposure to a photodetector emitted by the ECL luminophore; and for providing electrical pulses to the electrodes for control. Circuit GAS 133.6 preferably, the micro The fluid test mode and the excitation light are also used for the detection of the fluid test module. The method includes: an electrode for receiving an ECL probe group for detecting the | and a functional group for emitting by the electron; the 〇E is smaller than 2 0 0,0 0 0 Really less than 40,000 Less than 9,0 0 The vertical group also has: The sub-detection optical sensation group also has: -173- 201211533 The communication interface of the control circuit transmits data to the external device. GAS 133.7 Preferably, the microfluidic test module also has an array of hybridization chambers containing ECL probes for different target nucleic acid sequences, wherein the control circuit has memory for storage Identification data for ECL probes in these hybrid chambers. GAS 133.8 Preferably, the communication interface is a universal serial bus (USB) connector such that the housing is configured as a USB flash drive. GAS 133.9 Preferably, the detection light sensor registers the detection photodiode array of the hybrid chambers. GAS 1 3 3 .1 0 Preferably, the microfluidic test module also has: at least one calibration source for providing a calibration emission, and a calibration light sensor for sensing the calibration emission, wherein the control circuit has A differential circuit is operative to subtract the calibrated light sensor output from the detected light sensor output. Preferably, the microfluidic test module also has a plurality of calibration sources, wherein the detection light sensor is a photodiode array respectively registered with each of the ECL probes, and the calibration light sensor A plurality of calibrated photodiodes respectively registered with the calibration sources. GAS 133.12 Preferably, the calibration source is a calibration probe that does not have an ECL luminophore. GAS 1 3 3 .1 3 Preferably, the microfluidic test module also has a plurality of calibration chambers, the calibration chamber containing calibration sources distributed throughout the array of hybridization chambers, wherein when used, the detection photodiodes are The output of any of the polar bodies is compared to the output from the calibrated photodiode closest to the detection photodiode. Preferably, the calibration source is a calibration probe and the calibration chamber is configured to seal the calibration probe from the fluid containing the target nucleic acid sequence. GAS 133.15 Preferably, each of the calibration chambers is surrounded by a three by three hybrid cell block. GAS 133.16 Preferably, the distance between the detection photodiode and the hybridization chamber is less than 1,600 microns. GAS 13 3.17 Preferably, the calibration probe includes a functional portion for quenching photon emission. GAS133.18 Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functionality for quenching photon emission from the ECL luminophore Portion between the portion and the ECL luminophore to hybridize with the target nucleic acid sequence to open the loop portion and to move the ECL luminophore away from the functional portion. GAS 133.19 Preferably, the electrical pulse transmitted to the electrode is a DC pulse and has a period of less than 0.69 seconds. GAS 1 3 3.20 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. This low volume hybridization chamber represents, to some extent, a low probe volume, thereby providing low probe cost and an inexpensive detection system. The electrochemiluminescence-based detection analysis eliminates the need for a detection system that requires an excitation source, excitation optics, and optical filter elements to provide a lighter and less expensive detection system. There is no need to reject any excitation light. -175- 201211533 This detector circuit makes the detection system even cheaper. GAS 134.1 This aspect of the invention provides a microfluidic test module for detecting a target nucleic acid sequence in a fluid, the test module comprising: an outer casing having an inlet for receiving a nucleic acid sequence containing the target a fluid pair; an electrode pair for receiving an electrical pulse; respectively spotting an electrochemiluminescence (ECL) probe in contact with each of the pair of electrodes, the ECL probe spotting comprising an ECL having a photon for emitting in an excited state a luminophore and an ECL probe for quenching a functional portion of photon emission from the ECL luminophore by resonance energy transfer such that an electrical pulse transmitted to the pair of electrodes excites the ECL luminophore; The ECL probe mass in the probe spot is less than 270 picograms. Preferably, GAS 1 34.2 is less than 60 picograms. Preferably, GAS 1 34.3 is less than 12 picograms. Preferably, GAS 1 34.4 is less than 2.7 picograms. GAS 1 34.5 Preferably, a ligand complex. The probe mass in each probe spot is the probe mass in each probe spot. The probe mass in each probe spot has the transition metal _ GAS 134.6. The microfluidic test module also has: a detection light sensor for exposing to photons emitted by the ECL luminophore; and a control circuit for supplying electrical pulses to the electrodes. -176- 201211533 GAS 134.7 Preferably, the microfluidic test module also has a communication interface of the control circuit for transmitting data to an external device. GAS 134.8 Preferably, the microfluidic test module also has an array of chambers containing probes for different target nucleic acid sequences, wherein the control circuit has memory for storage in an equal hybridization chamber Identification of ECL probes. GAS 134.9 Preferably, the hybridization chambers have a volume of 900,000 cubic microns. GAS 134.10 Preferably, the hybridization chambers have a volume of 200,000 cubic microns. GAS 134.il Preferably, the communication interface is a universal serial (USB) connector such that the housing is configured as a USB flash drive GAS 134.12. Preferably, the detection light sensor is registered with the The detection of the photodiode array of the chamber. GAS134.13 Preferably, the microfluidic test module also has at least one calibration source for providing a calibration emission and at least one calibration photodiode for sensing the calibration emission, wherein the control circuit has a differential circuit to For subtracting the photodiode output from each of the detected photodiode outputs. GAS134.14 Preferably, the microfluidic test module also has a calibration source and a plurality of corresponding calibration photodiodes, and the calibration photodiodes are respectively registered with the calibration source. GAS 1 34.1 5 Preferably, the calibration source is a calibration probe hybridization ECL that does not have an ECL, and each of the J, J, J, and the like is used to calibrate a plurality of polar body light groups -177 - 201211533 GAS134 .16 Preferably, the microfluidic test module also has a plurality of calibration chambers. The calibration chamber contains calibration sources distributed throughout the hybrid chambers, wherein when used, 'from the detection photodiode The output of one is compared to the output from the calibrated photodiode closest to the detection photodiode. GAS 134·17 Preferably, the calibration source is a calibration probe and the calibration chamber is configured to seal the calibration probe from the fluid containing the target nucleic acid sequence. GAS 134.18 Preferably, each of the calibration chambers is surrounded by a three by three hybrid cell block. GAS 134.19 Preferably, the distance between the detection photodiode and the hybridization chamber is less than 1,600 microns. GAS 1 34.20 Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functionality for quenching photon emission from the ECL luminophore Portion between the portion and the ECL luminophore to hybridize with the target nucleic acid sequence to open the loop portion and to move the ECL luminophore away from the functional portion. This low probe volume represents a low probe cost, which in turn allows for this inexpensive detection system. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 135.1 This aspect of the invention provides a test module for detecting a nucleic acid sequence of a target in a fluid of 178-201211533, the test module comprising: a housing having a container for receiving a nucleic acid containing the target a fluid of sequence; an electrochemiluminescence (ECL) probe having an ECL luminophore that emits photons when in an excited state and a functional moiety that quenches photon emission from the ECL luminophore by resonance energy transfer; Electrical pulses to excite the electrodes of the ECL luminophores; and detection light sensors for exposure to photons emitted by the ECL luminophores. GAS 1 35.2 Preferably, the test module also has a lab-on-a-chip (LOC) device, the LOC device being provided with circuitry for providing electrical pulses to the electrodes, wherein the detection light sensor is plugged into the circuit And the ECL probe, the electrode, and the control circuit are integrated into the LOC device. GAS 135.3 Preferably, the LOC device has a support substrate for supporting the circuit, which in turn supports the electrodes and ECL probes. GAS 1 35.4 Preferably, the circuit has a CMOS circuit layer deposited on the support substrate for providing electrical pulses to the electrodes. GAS 1 35.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS 1 35.6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 1 35.7 Preferably, the test module also has: a communication interface of the circuit for transmitting data to an external device. GAS 1 35.8 Preferably, the test module also has a hybrid cell array -179-201211533, the hybridization chamber containing ECL probes for different target nucleic acid sequences, wherein the CMOS circuit has memory for storage Identification data for ECL probes in each of these hybrid chambers. Preferably, the GAS 135.9 has a volume of less than 900,000 cubic microns. GAS 135.10 Preferably, the hybridization chambers have a volume of less than 200,000 cubic microns. GAS 135.11 Preferably, the communication interface is a universal serial bus (USB) connector such that the housing is configured as a USB flash drive. GAS 1 3 5 . 1 2 Preferably, the detection light sensor registers the detection photodiode arrays of the hybrid chambers. GAS 1 3 5 · 1 3 Preferably, the test module also has at least one calibration source for providing a calibration emission, and at least one calibration photodiode for sensing the calibration emission, wherein the CMOS circuit has A differential circuit subtracts the calibrated photodiode output from the output of one or more of the detection photodiodes. GAS 1 3 5 · 1 4 Preferably, the test module also has a plurality of calibration sources and a plurality of corresponding calibration photodiodes, the calibration photodiodes being respectively registered with the calibration source. GAS 135.15 Preferably, the calibration source is a calibration probe that does not have an ECL luminophore. GAS 1 3 5 · 1 6 Preferably, the test module also has a plurality of calibration chambers. The calibration chamber contains calibration sources distributed throughout the array of hybridization chambers, wherein when used, the detection photodiodes are used. The output of either one is compared to the output of 180-201211533 from the calibrated photodiode closest to the detection photodiode. GAS 13 5.17 Preferably, the calibration source is a calibration probe and the calibration chamber is configured to seal the calibration probe from the fluid containing the target nucleic acid sequence. GAS 135.18 Preferably, each of the calibration chambers is surrounded by a three by three hybrid cell block. φ GAS 135.19 Preferably, the distance between the detection photodiode and the hybridization chamber is less than 1,600 microns. GAS 1 35.20 Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functionality for quenching photon emission from the ECL luminophore Portion between the portion and the ECL luminophore to hybridize with the target nucleic acid sequence to open the loop portion and to move the ECL luminophore away from the functional portion. The integrated φ image sensor with driver for exciting the electroluminescent luminophore eliminates the need for expensive external imaging systems, providing a comprehensive solution that is mass-produced and inexpensive, with low system component counts representing light weight and height Mobility system. The integrated image sensor has the benefit of increased read sensitivity due to large angle light collection and eliminates the need to use optical components in the string of light collecting elements. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. -181 - 201211533 GAS 13 6.1 Aspects of the invention provide a portable test module for exciting an electrochemiluminescent probe configured to detect a target nucleic acid sequence, the test module comprising: configured for hand movement a housing having a container for receiving a fluid containing the target nucleic acid sequence; an electrochemiluminescence (ECL) probe having an ECL luminophore that emits photons when excited, and quenching by resonance energy transfer a functional portion of photon emission from the ECL luminophore; and an electrode for receiving an electrical pulse to excite the ECL luminophore; wherein when used, the ECL probe of one of the labeled nucleic acid sequences has been detected The needle is reconfigured such that the functional portion does not quench photon emission from the ECL luminophore when excited by the electrodes. GAS 136.2 Preferably, the portable test module also has circuitry for providing the electrical pulse to the electrodes, the circuit having a detection light sensor for exposure to photons emitted by the ECL luminophore . GAS 136.3 Preferably, the portable test module also has a lab-on-a-chip (LOC) device having a support substrate for supporting the circuit, which in turn supports the electrodes and ECL probes. GAS 136.4 Preferably, the circuit has a CMOS circuit layer deposited on the support substrate for providing electrical pulses to the electrodes. GAS 136.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. GAS 136.6 Preferably, the current of the electrical pulse is between 0.1 Na 8 -182 - 201211533 amps to 69.0 Nai amps. GAS 136.7 Preferably, the expandable test module also has: a communication interface of the circuit for transmitting data to an external device. GAS 136.8 Preferably, the portable test module also has an array of hybridization chambers containing ECL probes for different target nucleic acid sequences 'where the CMOS circuit has memory for storage Identification data for ECL probes in each of these hybrid chambers. φ GAS 136.9 preferably the volume of the hybridization chambers is less than 900,000 cubic microns. GAS136.10 Preferably, the hybridization chambers have a volume of less than 200,000 cubic microns. GAS136.il Preferably, the communication interface is a universal serial bus (USB) connector such that the housing is configured as a USB flash drive. GAS136.12 Preferably, the detection light sensor registers the detection photodiode array of the hybrid chambers. #GAS136.13 Preferably, the portable test module also has at least one calibration source for providing a calibration emission, and at least one calibration photodiode for sensing the calibration emission, wherein the CMOS circuit has A differential circuit subtracts the calibrated photodiode output from the output of one or more of the detection photodiodes. GAS136.14 Preferably, the portable test module also has a plurality of calibration sources and a plurality of corresponding calibration photodiodes, the calibration photodiodes being respectively registered with the calibration source. GAS136.15 Preferably, the calibration source is a calibration probe that does not have an ECL luminophore -183-201211533. GAS136.16 Preferably, the portable test module also has a plurality of calibration chambers, the calibration chamber containing calibration sources distributed throughout the array of hybridization chambers, wherein when used, from the detection photodiode The output of either one is compared to the output from the calibrated photodiode closest to the detection photodiode. GAS136.17 Preferably, the calibration source is a calibration probe and the calibration chamber is configured to seal the calibration probe from the fluid containing the target nucleic acid sequence. GAS 136.18 Preferably, each of the calibration chambers is surrounded by a three by three hybrid cell block. GAS136.19 Preferably, the distance between the detection photodiode and the hybridization chamber is less than 1,600 microns. GAS 1 3 6.20 Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the function for quenching photon emission from the ECL luminophore Between the sexual moiety and the ECL luminophore, such that hybridization with the target nucleic acid sequence opens the loop moiety and moves the ECL luminophore away from the functional moiety. The easy-to-use, mass-produced, inexpensive, lightweight, and portable test module accepts biological samples, using its integrated imaging sensor and integrated driver for exciting electrochemiluminescence to electrochemiluminate Probe hybridization identifies the nucleic acid sequence of the sample and provides an electronic result at the output of the probe. The electrochemiluminescence-based detection analysis eliminates the need for a detection system that requires a light source, excitation optics, and optical filter components to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 13 7.1 Aspects of the invention provide a test module for exciting an electrochemiluminescent probe configured to detect a target nucleic acid sequence, the test module comprising: a housing having a container for accepting the inclusion a fluid of the target nucleic acid sequence; an electrochemiluminescence (ECL) probe having an ECL luminophore that emits photons when in an excited state and a functional moiety that quenches photon emission from the ECL luminophore by resonance energy transfer; An electrode for receiving an electrical pulse to excite the ECL luminophore; a detection light sensor for exposing to photons emitted by the ECL luminophore; a control circuit for supplying electrical pulses to the electrodes; and a φ versatility string a busbar (USB) connector such that the housing is configured as a USB flash drive for transmitting information about the detection of the fluid to the external device; wherein, when in use, the nucleic acid sequence has been detected One of the ECL probes is reconfigured such that the functional portion does not quench photon emission from the ECL luminophore when excited by the electrodes. Preferably, the electrodes are sheets of electrically conductive material, the edge characteristics of the plates being configured such that the perimeter edges of each of the plates are greater than 128 microns. -185-201211533 GAS137·3 Preferably, the test module also has a lab-on-a-chip (LOC) device in which the ECL probe, electrode, detection light sensor and control circuit are integrated into the LOC device, wherein The LOC device has a support substrate for supporting the control circuit, which in turn supports the detection light sensor, electrodes, and ECL probes. GAS 137.4 Preferably, the control circuit is configured to provide electrical pulses to the layers of the CMOS circuits of the electrodes. GAS 137.5 Preferably, the electrical pulse has a period of less than 0.69 seconds. Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 137.7 Preferably, the test module also has an array of hybridization chambers containing ECL probes for a different nucleic acid sequence and a pair of electrodes, wherein the control circuit has a memory for storage Identification data for ECL probes in each of these hybrid chambers. GAS 1 37.8 Preferably, the C Μ Ο S circuit is configured to apply a voltage to an electrode pair in each of the hybridization chambers. The voltage system is between 1.7 volts and 2.8 volts. GAS 137.9 Preferably, the voltage is between 1.9 volts and 2.6 volts. GAS 1 37.1 0 Preferably, the volume of the hybridization chambers is less than 900,000 cubic microns. GAS137.il Preferably, the hybridization chambers have a volume of less than 200,000 cubic microns. GAS137.12 Preferably, the detection light sensor is configured to register the detection photodiode array of the hetero-186-201211533 communication chamber. GAS 137.13 Preferably, the test module also has: at least one calibration source for providing a calibration emission and a calibration light sensor for sensing the calibration emission, wherein the control circuit has a differential circuit for Detecting the light sensor output minus the calibration light sensor output. Preferably, the test module also has a plurality of calibration sources, wherein the detection light sensor is respectively configured with a photodiode array of each of the ECL probes, and the calibration light sensor system A plurality of calibrated photodiodes respectively registered with the calibration sources. GAS 1 37.1 5 Preferably, the calibration source is a calibration probe that does not have an ECL luminophore. Preferably, the test module also has a plurality of calibration chambers containing calibration sources distributed throughout the array of hybridization chambers, wherein when used, from any of the detection photodiodes The output of the person is compared with the output of the calibrated photodiode from the closest photodetector. GAS 137.1. Preferably, the calibration source is a calibration probe and the calibration chamber is configured to block the calibration probe from the fluid containing the target nucleic acid sequence. GAS 137.18 Preferably, each of the calibration chambers is surrounded by a three by three hybrid cell block. GAS 1 37.19 Preferably, the distance between the detection photodiode and the hybridization chamber is less than 1,600 microns. GAS 1 3 7.20 Preferably 'the ECL probe has a stem-loop structure, -187-201211533, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located for quenching from the ECL luminophore Between the functional portion of the photon emission and the ECL luminophore, such that hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional portion. The easy-to-use, mass-produced, inexpensive, lightweight, and portable test module accepts biological samples, using its integrated imaging sensor and integrated driver for exciting electrochemiluminescence to electrochemiluminate The probe hybridizes to identify the nucleic acid sequence of the sample and provides an electronic result at the output of the probe, which is used to supply the module power and communication requirements. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 3 8 · 1 This aspect of the invention provides a test module for detecting a target nucleic acid sequence in a fluid, the test module comprising: an outer casing having an inlet for receiving a nucleic acid sequence containing the target a fluidization chamber installed in the housing, the hybridization chamber comprising electrochemiluminescence (ECL) probes for detecting the target nucleic acid sequence, each of the ECL probes having a photon for emitting in an excited state An ECL luminophore and a functional moiety for quenching photon emission from the ECL luminophore by resonance energy transfer; an electrode for receiving an electrical pulse to excite the ECL luminophore; and -188-201211533 reagent reservoir, It contains an agent for addition to the fluid prior to detecting the target nucleic acid sequence; wherein the hybridization chamber has a volume of less than 900,000 cubic microns; and the reagent reservoir has a volume of less than 1,000,000,000 cubic microns. GAS 138.2 Preferably, the hybridization chamber has a volume of less than 200,000 cubic microns and the reagent reservoir has a volume of less than 300,000,000 cubic micrometers. φ GAS 138.3 Preferably, the hybridization chamber has a volume of less than 40,000 cubic microns and the reagent reservoir has a volume of less than 7 Å, 〇〇〇, 〇〇〇 cubic micrometers. GAS 138.4 Preferably, the hybridization chamber has a volume of less than 9,000 cubic microns and the reagent reservoir has a volume of less than 20,000,000 cubic microns. GAS 138.5 Preferably, the test module also has: a detection light sensor for exposing to photons emitted by the ECL luminophore; and a control circuit for supplying electrical pulses to the electrodes. GAS 13 8.6 Preferably, the test module also has: a communication interface of the control circuit for transmitting data to an external device. GAS 138.7 Preferably, the test module also has an array of hybridization chambers containing ECL probes and a pair of electrodes for different target nucleic acid sequences, wherein the control circuit has a body for storage Identification data for ECL probes in each of these hybrid chambers. GAS 1 3 8 · 8 Preferably, the communication interface is a universal serial confluence -189 - 201211533 row (USB) connector such that the housing is configured as a USB flash drive. GAS 138.9 Preferably, the detection light sensor registers the detection photodiode arrays of the hybrid chambers. GAS138.10 Preferably, the test module also has a lab-on-a-chip (LOC) device having the hybrid chamber, reagent reservoir, detection photodiode, electrode and ECL probe, the LOC device A support substrate having a layer of a CMOS circuit that forms part of the control circuit such that the detection photodiode is interposed between the hybridization chamber and the CMOS circuit.

GAS138.il 較佳地,該測試模組亦具有倂入該LOC 裝置中之多個試劑貯器及聚合酶連鎖反應(PCR)部,其中 該PCR部係經配置以擴增該標的核酸序列且該試劑貯器包 含聚合酶、dNTP及引子。 GAS138.12 較佳地,該LOC裝置具有上蓋,該試 劑貯器係於其中定義。 GAS 1 3 8 . 1 3 較佳地,各該試劑貯器具有表面張力閥 ,各該表面張力閥具有彎液面錨定器以用於形成彎液面以 將試劑保留於其內。 GAS138.14 較佳地,在各該等雜交室中之該等電極 對具有分別具有手指狀構造之陽極和陰極,該等手指狀構 造係經配置以使該陽極之指與該陰極之指交叉。 GAS138.15 較佳地,該CMOS電路係經配置以提供 電脈衝給各該等電極對以在該等電極對產生電壓,該電壓 係介於1.7伏特至2.8伏特。 GAS138.16 較佳地,該電壓係介於1.9伏特至2.6 -190- 201211533 伏特。 GAS 138· 17 較佳地,該等檢測光電二極體與該等雜 交室之距離小於1,600微米且該等校準探針包括用於淬熄 光子發射之功能性部分。 GAS138.18 較佳地,該ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 φ 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 GAS138.19 較佳地,傳送至該電極之電脈衝係DC 脈衝且具有小於0.69秒之期間。 GAS 1 3 8.20 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 該低體積之雜交室及試劑貯器在某種程度上代表低探 針及試劑體積,進而提供低探針及試劑成本且不貴之檢測 φ 系統。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 139.1 本發明之態樣提供一種用於激發經配置 以檢測標的核酸序列之電化學發光探針的測試模組,該測 試模組包含: 具有入口之外殼,該入口係用於接受含有該標的核酸 -191 - 201211533 序列之流體; 電化學發光(ECL)探針’其具有當呈激發狀態時發射 光子之ECL發光團及藉由共振能量轉移淬熄來自該ECL 發光團之光子發射之功能性部分;及 用於接受電脈衝以激發該等ECL發光團之電極,以使 該已經檢測到該等標的核酸序列中之一者的E C L探針重新 配置,以使該功能性部分不淬熄來自該ECL發光團當被該 等電極激發時之光子發射;其中 該ECL發光團具有過渡金屬-配位子錯合物。 GAS139.2 較佳地,該過渡金屬-配位子錯合物係 釕螯合物。 GAS139.3 較佳地,該測試模組亦具有用於暴露至 由該ECL發光團所發射之光子之檢測光感應器;及 提供電脈衝至該等電極之控制電路。 GAS 139.4 較佳地,該測試模組亦具有晶片上實驗 室(LOC)裝置,其中該ECL探針、電極、檢測光感應器及 控制電路係整合至該LOC裝置,其中該LOC裝置具有用 於支持該控制電路之支持基板,其進而支持該檢測光感應 器、電極和ECL探針。 GAS 139.5 較佳地,該控制電路係經配置以提供電 脈衝至該等電極之CMOS電路之層》 GAS139.6 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS139.7 較佳地,該電脈衝之電流係介於0.1奈 -192- 201211533 安培至69.0奈安培。 GAS 13 9.8 較佳地,該測試模組亦具有: 該控制電路之溝通介面以傳送資料至外部裝置。 GAS 139.9 較佳地,該測試模組亦具有雜交室之陣 列,該等雜交室含有用於不同標的核酸序列之ECL探針, 其中該控制電路具有記憶體以用於儲存關於在各該等雜交 室內之ECL探針之識別資料。 φ GAS139.10 較佳地,該等雜交室之體積小於900,000 立方微米。 GAS139.il 較佳地,該溝通介面係通用性串列匯流 排(USB)連接件,以使該外殼係經配置爲USB隨身碟。 GAS139.12 較佳地,該檢測光感應器係配準該等雜 交室之檢測光電二極體陣列。 GAS139.13 較佳地,該測試模組亦具有‘· 至少一個用於提供校準發射之校準源,及用於感測該 φ 校準發射之校準光感應器,其中該控制電路具有差分電路 以用於自該檢測光感應器輸出減去該校準光感應器輸出。 GAS139.14 較佳地,該測試模組亦具有多個校準源 ,其中該檢測光感應器係分別與各該等ECL探針配準之光 電二極體陣列,且該校準光感應器係多個分別與該等校準 源配準之校準光電二極體。 GAS139.15 較佳地,該校準源係不具ECL發光團 之校準探針。 GAS139.1 6 較佳地,該測試模組亦具有多個校準室 -193- 201211533 ,該校準室含有分布於該雜交室陣列各處之 當使用時,來自該檢測光電二極體中之任一 來自最靠近該檢測光電二極體之校準光電二 較。 GAS139.17 較佳地,該校準源係校準 室係經配置以封隔開該校準探針與含有該標 流體。 GAS139.18 較佳地,各該校準室係被 室方塊圍繞。 GAS 13 9.19 較佳地,該檢測光電二極 之距離小於1,600微米。 GAS 1 3 9.2 0 較佳地,該 ECL探針具 其環部分含有與該標的核酸序列互補之序列 位於該用於淬熄來自該ECL發光團之光子發 分與該ECL發光團之間,以使與該標的核酸 該環部分且使該ECL發光團遠離該功能性部 使用該長壽命過渡金屬-配位子錯合物 底探針增進該檢測系統之敏感性及可靠性。 該以電化學發光爲基底之標的檢測分析 發光源、激發光學及光學過濾元件之檢測系 更輕巧且更便宜之檢測系統。不需要斥拒任 化該檢測器電路,使該檢測系統甚至更便宜 GAS140.1 本發明之態樣提供一種用 以檢測標的核酸序列之電化學發光探針的測 校準源,其中 者之輸出係與 極體之輸出比 探針且該校準 的核酸序列之 三乘三之雜交 體與該雜交室 有莖環結構, ,該環部分係 射之功能性部 序列雜交打開 分。 電化學發光基 免除任需要激 統,進而提供 何激發光亦簡 〇 於激發經配置 試模組,該測 -194- 201211533 試模組包含: 具有入口之外殼,該入口係用於接受含有該標的核酸 序列之流體; 電化學發光(ECL)探針,其具有當呈激發狀態時發射 光子之ECL發光團及藉由共振能量轉移淬熄來自該ECL 發光團之光子發射之功能性部分;及 用於接受電脈衝以激發該等ECL發光團之電極,以使 φ 該已經檢測到該等標的核酸序列中之一者的E C L探針重新 配置,以使該功能性部分不淬熄來自該ECL發光團當被該 等電極激發時之光子發射;其中 該ECL發光團具有鑭系金屬-配位子錯合物。 GAS140.2 較佳地,該鑭系金屬-配位子錯合物係 選自: 釕螯合物、 铽螯合物或 φ 銪螯合物。 GAS140.3 較佳地,該測試模組亦具有用於暴露至 由該ECL發光團所發射之光子之檢測光感應器;及 提供電脈衝至該等電極之控制電路。 GAS140.4 較佳地,該測試模組亦具有晶片上實驗 室(LOC)裝置,其中該ECL探針、電極、檢測光感應器及 控制電路係整合至該LOC裝置,其中該LOC裝置具有用 於支持該控制電路之支持基板,其進而支持該檢測光感應 器、電極和ECL探針。 -195- 201211533 GAS 140.5 較佳地,該控制電路係經配置以提供電 脈衝至該等電極之CMOS電路之層。 GAS140.6 較佳地,該電脈衝具有小於0.69秒之 期間。 GAS140.7 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 140.8 較佳地,該測試模組亦具有: 該控制電路之溝通介面以傳送資料至外部裝置。 GAS 140.9 較佳地,該測試模組亦具有雜交室之陣 列,該等雜交室含有用於不同標的核酸序列之ECL探針, 其中該控制電路具有記憶體以用於儲存關於在各該等雜交 室內之ECL探針之識別資料。 GAS140.10 較佳地,該等雜交室之體積小於900,000 立方微米。 GAS140.il 較佳地,該溝通介面係通用性串列匯流 排(USB)連接件,以使該外殼係經配置爲USB隨身碟。 GAS 140.12 較佳地,該檢測光感應器係配準該等雜 交室之檢測光電二極體陣列。 GAS 140.13 較佳地,該測試模組亦具有: 至少一個用於提供校準發射之校準源,及用於感測該 校準發射之校準光感應器,其中該控制電路具有差分電路 以用於自該檢測光感應器輸出減去該校準光感應器輸出。 GAS 140.14 較佳地,該測試模組亦具有多個校準源 ,其中該檢測光感應器係分別與各該等ECL探針配準之光 -196- 201211533 電二極體陣列,且該校準光感應器係多個分別與該等校準 源配準之校準光電二極體。 GAS140.15 較佳地,該校準源係不具ECL發光團 之校準探針。 GAS140.16 較佳地,該測試模組亦具有多個校準室 ,該校準室含有分布於該雜交室陣列各處之校準源,其中 當使用時,來自該檢測光電二極體中之任一者之輸出係與 φ 來自最靠近該檢測光電二極體之校準光電二極體之輸出比 較。 GAS140.17 較佳地,該校準源係校準探針且該校準 室係經配置以封隔開該校準探針與含有該標的核酸序列之 流體。 GAS140.18 較佳地,各該校準室係被三乘三之雜交 室方塊圍繞。 GAS140.19 較佳地,該檢測光電二極體與該雜交室 φ 之距離小於1,600微米。 GAS 140.20 較佳地,該ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 使用該長壽命鑭系金屬-配位子錯合物電化學發光基 底探針增進該檢測系統之敏感性及可靠性。 該以電化學發光爲基底之標的檢測分析免除任需要激 -197- 201211533 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS141.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之測試模組,該測試模組包含: 具有入口之外殻,該入口係用於接受含有該標的核酸 序列之流體; 用於接受電脈衝之電極對; 分別鄰近各該等電極對之電化學發光(ECL)探針,各 該等ECL探針具有用於在激發狀態時發射光子之ECL發 光團及用於藉由共振能量轉移淬熄來自該ECL發光團之光 子發射之功能性部分之ECL探針,以使該傳送至該電極對 之電脈衝激發該ECL發光團;其中 該等ECL探針並不固定在表面且在檢測期間於含有該 標的核酸序列之流體中形成懸浮液。 GAS141.2較佳地,該液體之點樣的體積各小於200,000 立方微米。 GAS 14 1.3較佳地,該液體之點樣的體積各小於30,000 立方微米。 GAS 141.4 較佳地,該液體之點樣的體積各小於 2,000立方微米。 GAS 141.5 較佳地,該ECL發光團具有過渡金屬-配位子錯合物。 GAS 141.6 較佳地,該測試模組亦具有: -198- 201211533 用於暴露至由該ECL發光團所發射之光子之檢測光感 應器;及 提供電脈衝至該等電極之控制電路。 GAS141.7 較佳地,該測試模組亦具有.: 該控制電路之溝通介面以傳送資料至外部裝置。 GAS 1 4 1 . 8 較佳地,該測試模組亦具有雜交室之陣 列,該等雜交室含有用於不同標的核酸序列之ECL探針, φ 其中該控制電路具有記憶體以用於儲存關於在各該等雜交 室內之ECL探針之識別資料。 GAS141.9較佳地,該等雜交室之體積小於900,000立方 微米》 GAS141.10 較佳地,該ECL發光團具有鑭系金屬- 配位子錯合物。 GAS141.il 較佳地,該溝通介面係通用性串列匯流 排(USB)連接件,以使該外殼係經配置爲USB隨身碟。 φ GAS141.12 較佳地,該檢測光感應器係配準該等雜 交室之檢測光電二極體陣列。 GAS 14 1.1 3 較佳地,該測試模組亦具有: 至少一個用於提供校準發射之校準源’及用於感測該 校準發射之校準光感應器,其中該控制電路具有差分電路 以用於自該檢測光感應器輸出減去該校準光感應器輸出。 GAS 1 4 1 . 1 4 較佳地,該測試模組亦具有多個校準源 ,其中該檢測光感應器係分別與各該等ECL探針配準之光 電二極體陣列,且該校準光感應器係多個分別與該等校準 -199- 201211533 源配準之校準光電二極體。 GAS 14 1.1 5 較佳地,該校準源係不具 之校準探針。 GAS 1 4 1 . 1 6 較佳地,該測試模組亦具有 ,該校準室含有分布於該雜交室陣列各處之校 當使用時,來自該檢測光電二極體中之任一者 來自最靠近該檢測光電二極體之校準光電二極 較。 GAS 14 1.1 7 較佳地,該校準源係校準探 室係經配置以封隔開該校準探針與含有該標的 流體。 GAS 141.1 8 較佳地,各該校準室係被三 室方塊圍繞。 GAS 14 1.1 9 較佳地,該檢測光電二極體 之距離小於1,6.00微米。 GAS 141.20 較佳地,該ECL探針具有 其環部分含有與該標的核酸序列互補之序列, 位於該用於淬熄來自該ECL發光團之光子發射 分與該ECL發光團之間,以使與該標的核酸序 該環部分且使該ECL發光團遠離該功能性部分 該經懸浮之探針藉由彼等之大電激發深度 深增加讀取之敏感性。該經懸浮之探針可較爲 地點樣》 該以電化學發光爲基底之標的檢測分析免 ECL發光團 多個校準室 準源,其中 之輸出係與 體之輸出比 針且該校準 核酸序列之 乘三之雜交 與該雜交室 莖環結構, 該環部分係 之功能性部 列雜交打開 〇 及大發射光 輕易且不貴 除任需要激 -200- 201211533 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS142.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之測試模組,該測試模組包含: 具有入口之外殼,該入口係用於接受含有該標的核酸 序列之流體; φ 電化學發光(ECL)探針之陣列,其係用於與該標的核 酸序列雜交以形成探針-標的雜交體;及 經放置以用於接受電脈衝之電極,該等探針-標的雜 交體係經配置以使得當被該等電極之間的電流激發時發射 光之光子:及 用於檢測由該等探針所發射之光的光感應器;其中當 使用時', 添加該流體至該等探針防止後續添加其他流體至該等 φ 探針。 GAS 142.2 較佳地,該測試模組亦具有雜交室之陣 列,其中各該等室分別包含一對電極對和用於該等標的中 之一者之探針,其中該流體藉由毛細作用塡充各該等室。 GAS142.3較佳地,該等雜交室之體積各小於900,000立 方微米。 GAS142.4 較佳地,該測試模組亦具有晶片上實驗 室(LOC)裝置,其中該ECL探針、電極及檢測光感應器係 整合至該LOC裝置’其中該LOC裝置具有CMOS電路、 -201 - 201211533 用於支持該CMOS電路之支持基板,其進而支持該檢測光 感應器、電極和ECL探針。‘ GAS142.5 較佳地,各該等ECL探針具有用於在 激發狀態時發射光子之ECL發光團及用於藉由共振能量轉 移淬熄來自該ECL發光團之光子發射之功能性部分,以使 該傳送至該電極對之電脈衝激發該ECL發光團。 GAS142.6 較佳地,該ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 GAS142.7 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS 142.8 較佳地,該CMOS電路倂有該光感應器 ,其中該壁部係位於該等探針與該光感應器之間。 GAS 142.9 較佳地,該壁部係倂有二氧化矽之層。 GAS142.10 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS142.il 較佳地,該CMOS電路係經配置以施加 電壓至各該等雜交室中之電極,該電壓係介於1.7伏特至 2.8伏特。 GAS142.12 較佳地,該電壓係介於1.9伏特至2.6 伏特。 GAS142.13 較佳地,該電脈衝具有小於0.69秒之 201211533 期間。 GAS 142.14 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS142.15 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS142.16 較佳地,該陽極和陰極之間係相隔0.4 φ 微米至2微米寬之介電間隙。 GAS142.17 較佳地,該LOC裝置具有流路,該流 路係經配置以藉由毛細作用吸引含有該標的之流體至所有 該雜交室。 GAS 142.18 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS142.19 較佳地,該ECL發光團各具有鑭系金 φ 屬-配位子錯合物。 GAS 1 42.20 較佳地,該ECL發光團各具有過渡金 屬-配位子錯合物。 該易於使用、可大量生產、不貴又輕巧之基因測試模 組接受生物樣品,利用彼之整合式成像感測器經由探針雜 交識別該樣品之核酸序列’且在彼之輸出埠提供電子結果 〇 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 -203- 201211533 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS 1 43.1 本發明之此態樣提供一種用於擴增及檢 測·流體中之標的核酸序列之測試模組,該測試模組包含: 具有容器之外殼,該容器係用於接受含有該標的核酸 序列之流體; 聚合酶連鎖反應(PCR)部,其係用於擴增該等標的核 酸序列; 電化學發光(ECL)探針之陣列,其係用於與該標的核 酸序列雜交以形成探針-標的雜交體;及 經放置以用於接受電脈衝之電極,該等探針-標的雜 交體係經配置以使得當被該等電極之間的電流激發時發射 光之光子;及 用於檢測由該等探針發射之光的光感應器:其中在使 用時,添加該流體至該等探針防止後續添加其他流體至該 等探針。 GAS143.2 較佳地,該測試模組亦具有雜交室之陣 列,其中各該等室分別包含一對電極對和用於該等標的中 之一者之探針,其中該流體藉由毛細作用塡充各該等室。 GAS 143.3 較佳地,該測試模組亦具有多個與該 PCR部流體相通之試劑貯器,其中該等試劑貯器包含聚合 酶、dNTP及引子。 GAS143.4 較佳地,該測試模組亦具有晶片上實驗 室(LOC)裝置,該LOC裝置具有支持基板及CMOS電路, -204- 201211533 其中該LOC裝置倂有該ECL探針及該電極以使該支持基 板支持該CMOS電路且該CMOS電路併有鄰近該電極與該 ECL探針之該檢測光感應器。 GAS143.5 較佳地,各該等ECL探針具有用於在 激發狀態時發射光子之ECL發光團及用於藉由共振能量轉 移淬熄來自該ECL發光團之光子發射之功能性部分,以使 該傳送至該電極對之電脈衝激發該ECL發光團。 φ GAS143.6 較佳地,該 ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 GAS143.7 較佳地,該等雜交室各具有可被該探針 所發射之光光穿透之壁部。 GAS 143.8 較佳地,該壁部係位於該探針與該光感 φ 應器之間。 GAS143.9 較佳地,該壁部係倂有二氧化矽之層。 GAS 143.10 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極》 GASM3.il 較佳地,該電脈衝具有介於1 .7伏特至 2.8伏特之電壓。 GAS143.12 較佳地,該電壓係介於1.9伏特至2.6 伏特。 GAS 143.13 較佳地,該電脈衝具有小於0.69秒之 -205 - 201211533 期間。 GAS 143.14 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培》 GAS143.15 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS143.16 較佳地,該陽極和陰極之間係相隔0.4 微米至2微米寬之介電間隙。 GAS143.17 較佳地,該LOC裝置具有流路,該流 路係經配置以藉由毛細作用吸引含有該標的之流體至所有 該雜交室。 GAS 143.18 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS143.19 較佳地,該ECL發光團各具有鑭系金 屬-配位子錯合物。 GAS 1 43.20 較佳地,該ECL發光團各具有過渡金 屬-配位子錯合物。 該易於使用、可大量生產、不貴又輕巧之基因測試模 組接受生物樣品,擴增該樣品中之核酸標的,利用彼之整 合式成像感測器經由探針雜交識別該樣品之核酸序列,且 在彼之輸出埠提供電子結果。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 -206- 201211533 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS144.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之測試模組,該測試模組包含: 具有容器之外殼,該容器係用於接受含有該標的核酸 序列之流體; . 電化學發光(ECL)探針之陣列,其係用於與該標的核 φ 酸序列雜交以形成探針·標的雜交體;及 經放置以用於接受電脈衝之電極,該等探針-標的雜 交體係經配置以使得當被該等電極之間的電流激發時發射 光子;及 用於提供電脈衝給該等電極之控制電路;其中當使用 時, 添加該流體至該等探針防止後續添加其他流體至該等 探針。 φ GAS 144.2 較佳地,該測試模組亦具有: 用於檢測由該等探針所發射之光子的光感應器;及 雜交室之陣列,其中各該等室分別包含一對電極及用 於該等標的中之一者之探針;其中 該流體藉由毛細作用塡充各該等室。 GAS 144.3較佳地,該等雜交室之體積各小於900,000立 方微米。 GAS 144.4 較佳地,該測試模組亦具有晶片上實驗 室(LOC)裝置,該LOC裝置具有支持基板、CMOS電路、 -207- 201211533 該EC L探針、該電極及該光感應器,其中該支持基板支持 倂有該檢測光感應器之CMOS電路,其進而支持該電極及 該ECL探針。 GAS144.5 較佳地,各該等ECL探針具有用於在 激發狀態時發射光子之ECL發光團及用於藉由共振能量轉 移淬熄來自該ECL發光團之光子發射之功能性部分,以使 該傳送至該電極對之電脈衝激發該ECL發光團。 GAS144.6 較佳地,該ECL探針具有莖環結構, 其環部分含有與該標的核酸序列互補之序列,該環部分係 位於該用於淬熄來自該ECL發光團之光子發射之功能性部 分與該ECL發光團之間,以使與該標的核酸序列雜交打開 該環部分且使該ECL發光團遠離該功能性部分。 GAS 144.7 較佳地,該等雜交室各具有可被該探針 所發射之光子光穿透之壁部。 GAS 144.8 較佳地,該CMOS電路倂有該光感應器 ,該壁部係位於該等探針與該光感應器之間。 GAS 144.9 較佳地,該壁部係倂有二氧化矽之層。 GAS 144.10 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS144.il 較佳地,該電脈衝具有介於1.7伏特至 2.8伏特之電壓。 GAS144.12 較佳地,該電壓係介於1.9伏特至2.6 伏特。 GAS 1 44.1 3 較佳地,該電脈衝具有小於〇.69秒之 -208- 201211533 期間。 GAS 144.14 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 144.15 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS 144.16 較佳地,該陽極和陰極之間係相隔0.4 φ 微米至2微米寬之介電間隙。 GAS144.17 較佳地,該LOC裝置具有流路,該流 路係經配置以藉由毛細作用吸引含有該標的之流體至所有 該雜交室。 GAS144.1 8 較佳地,該光感應器係位置與雜交室配 準之光電二極體之陣列,以使各該等雜交室分別對應該等 光電二極體中之一者。 GAS144.19 較佳地,該ECL發光團各具有鑭系金 φ 屬-配位子錯合物。 GAS 144.20 較佳地,該ECL發光團各具有過渡金 屬-配位子錯合物。 該易於使用、可大量生產、不貴又輕巧之基因測試模 組接受生物樣品,利用彼之具有用於激發電化學發光發光 團之驅動器的整合式成像感測器以經由探針雜交識別該樣 品之核酸序列,且在彼之輸出埠提供電子結果。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 -209- 201211533 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 GAS146.1 本發明之此態樣提供一種用於檢測流體 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 置包含: 用於檢測該標的核酸序列之電化學發光(ECL)探針, 各該等探針具有用於在激發狀態時發射光子之ECL發光團 、用於藉由共振能量轉移淬熄來自該ECL發光團之光子發 射的功能性部分;及 用於接受電脈衝以激發該等ECL發光團之電極;其中 該等電極係成對安排,各對具有陽極和陰極,該陽極 和陰極係由介於0.4微米及2微米寬之介電間隙分開。 GAS146.2 較佳地,該LOC裝置亦具有位於鄰近 該探針之光感應器,其係用於感測那些探針回應該電脈衝 而產生光子。 GAS146.3 較佳地,該LOC裝置亦具有雜交室之 陣列,其中各該等室分別包含一對電極對和用於該等標的 中之一者之探針,其中該流體藉由毛細作用塡充各該等室 〇 GAS146.4 較佳地,該LOC裝置亦具有支持基板 ,其中該光感應器係位於該支持基板上與該等雜交室配準 之光電二極體之陣列。 GAS146.5 較佳地,該光電二極體陣列距離該探針 小於1,600微米。 -210- 201211533 GAS146.6 較佳地,該LOC裝置亦具有在該支持 基板上之CMOS電路,該光電二極體之陣列係該CMOS電 路之組件’其中當使用時,該CMOS電路回應無法感測來 自該陽性對照探針之ECL光子而引發錯誤信號。 GAS 146.7 較佳地,該LOC裝置亦具有至少一個 含有陰性對照探針之陰性對照室,該陰性對照探針無法與 該流體中之任何核酸序列雜交。 φ GAS146.8 較佳地,該LOC裝置亦具有: 含有該等標的之流體的流路;其中 該CMOS電路係介於該等雜交室與該支持基板之間, 且該流路藉由毛細作用吸引該流體至各該等雜交室。 GAS146.9 較佳地,該LOC裝置亦具有溶胞部, 其中該流體係含有細胞之生物樣品且該溶胞部破壞該細胞 膜以釋放任何其內之基因物質。 GAS146.10 較佳地,該等雜交室各具有可被該探針 φ 所發射之光子光穿透之壁部。 GAS146.il 較佳地,該壁部係位於該探針與該光電 二極體陣列之間。 GAS146.12 較佳地,該壁部係倂有二氧化矽之層。 GAS146.13 較佳地,該探針具有莖環結構,其環部 分含有與該標的核酸序列互補之序列,該環部分係位於該 用於淬熄來自該ECL發光團之光子發射之功能性部分與該 ECL發光團之間,以使與該標的核酸序列雜交打開該環部 分且使該ECL發光團遠離該功能性部分。 -211 - 201211533 GAS146.14 較佳地,該CMOS電路係經配置以提供 電脈衝至該等電極。 GAS 1 46.1 5 較佳地,該電脈衝具有小於〇 · 6 9秒之 期間。 GAS 1 46.1 6 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GAS 146.17 較佳地,該等電極具有分別具有手指狀 構造之陽極和陰極,該等手指狀構造係經配置以使該陽極 之指與該陰極之指交叉。 GAS146.18 較佳地,該ECL發光團各具有過渡金 屬-配位子錯合物。 GAS146.19 較佳地,該LOC裝置亦具有PCR部, 其係用於在由該等探針檢測之前擴增該標的核酸序列。 GAS 1 46.20 較佳地,該LOC裝置亦具有上蓋,該 上蓋具有試劑貯器以用於在檢測該標的序列之前添加至該 流體。 該以電化學發光爲基底之標的檢測分析免除任需要激 發光源、激發光學及光學過濾元件之檢測系統,進而提供 更輕巧且更便宜之檢測系統。不需要斥拒任何激發光亦簡 化該檢測器電路,使該檢測系統甚至更便宜。 不需要添加電化學共反應物使該檢測系統更爲簡單且 更不昂貴,有助於更多檢測化學選擇之使用。 GPC03 5.1 本發明之此態樣提供一種用於擴增樣品 中之標的核酸序列之晶片上實驗室(LOC)裝置,該LOC裝 -212- 201211533 置包含: 支持基板; 多個用於處理該樣品之功能部’該等功能部中之—者 係用於擴增樣品中之核酸序列之核酸擴增部;其中 該核酸擴增部係由該支持基板支持’且該支持基板定 義用於熱隔絕該核酸擴增部與其他功能部中之一或多者之 溝。 φ GPC035.2 較佳地,該等功能部中之一者係設有探 針陣列之雜交部,其係用於與標的核酸序列雜交’且該溝 延伸在該核酸擴增部與該雜交部之間以熱隔絕該雜交部與 該核酸擴增部所產生之熱。 GPC03 5.3 較佳地,該支持基板係物質之層,該物 質之層具有由基板厚度分隔開之相對表面,該等功能部係 在該支持基板之一表面上形成且該溝係於另一表面定義。 GPC035.4 較佳地,該LOC裝置亦具有由該支持 φ 基板所支持之CMOS電路,其中該溝延伸通過該基板至該 CMOS電路》 GPC03 5.5 較佳地,在使用期間該溝包含空氣。 GPC035.6 較佳地,該核酸擴增部係聚合酶連鎖反 應(PCR)部。 GPC035.7 較佳地,該LOC裝置亦具有溫度感測GAS 138.il Preferably, the test module also has a plurality of reagent reservoirs and a polymerase chain reaction (PCR) portion that are inserted into the LOC device, wherein the PCR portion is configured to amplify the target nucleic acid sequence and The reagent reservoir contains a polymerase, dNTPs, and primers. GAS 138.12 Preferably, the LOC device has an upper cover to which the reagent reservoir is defined. GAS 1 3 8 . 1 3 Preferably, each of the reagent reservoirs has a surface tension valve, each of the surface tension valves having a meniscus anchor for forming a meniscus to retain reagent therein. GAS 138.14 Preferably, the electrode pairs in each of the hybridization chambers have an anode and a cathode respectively having a finger-like configuration, the finger structures being configured such that the fingers of the anode intersect the fingers of the cathode . GAS 138.15 Preferably, the CMOS circuit is configured to provide an electrical pulse to each of the pairs of electrodes to generate a voltage at the pair of electrodes, the voltage being between 1.7 volts and 2.8 volts. GAS 138.16 Preferably, the voltage is between 1.9 volts and 2.6-190-201211533 volts. GAS 138·17 Preferably, the distance between the detection photodiodes and the hybrid chambers is less than 1,600 microns and the calibration probes comprise functional portions for quenching photon emission. GAS138.18 Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functionality for quenching photon emission from the ECL luminophore The portion φ is separated from the ECL luminophore such that hybridization with the target nucleic acid sequence opens the loop portion and moves the ECL luminophore away from the functional portion. GAS 138.19 Preferably, the electrical pulse transmitted to the electrode is a DC pulse and has a period of less than 0.69 seconds. GAS 1 3 8.20 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. The low volume hybridization chamber and reagent reservoir represent, to some extent, low probe and reagent volumes, thereby providing low probe and reagent cost and inexpensive detection of the φ system. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 139.1 Aspects of the invention provide a test module for exciting an electrochemiluminescent probe configured to detect a target nucleic acid sequence, the test module comprising: an outer casing having an inlet for accepting the inclusion of the target Nucleic Acids - 191 - 201211533 Sequence Fluids; Electrochemiluminescence (ECL) Probes' have the functionality to emit photons of ECL luminescence when excited and the ability to quench photon emission from the ECL luminescence by resonance energy transfer a portion; and an electrode for receiving an electrical pulse to excite the ECL luminophores such that the ECL probe of the one of the labeled nucleic acid sequences has been reconfigured such that the functional portion is not quenched from The ECL luminophore emits photons when excited by the electrodes; wherein the ECL luminophore has a transition metal-coordination complex. GAS 139.2 Preferably, the transition metal-coordination complex is a ruthenium chelate. GAS 139.3 Preferably, the test module also has a detection light sensor for exposing photons emitted by the ECL luminophore; and a control circuit for supplying electrical pulses to the electrodes. GAS 139.4 Preferably, the test module also has a lab-on-a-chip (LOC) device, wherein the ECL probe, electrode, detection light sensor, and control circuitry are integrated into the LOC device, wherein the LOC device has A support substrate supporting the control circuit, which in turn supports the detection light sensor, the electrode, and the ECL probe. GAS 139.5 Preferably, the control circuit is configured to provide electrical pulses to the layers of the CMOS circuits of the electrodes. GAS 139.6 Preferably, the electrical pulses have a period of less than 0.69 seconds. GAS 139.7 Preferably, the electrical current of the electrical pulse is between 0.1 Na -192 - 201211533 amps to 69.0 Nai amps. GAS 13 9.8 Preferably, the test module also has: a communication interface of the control circuit for transmitting data to an external device. GAS 139.9 Preferably, the test module also has an array of hybridization chambers containing ECL probes for different target nucleic acid sequences, wherein the control circuit has memory for storage regarding each of the hybrids Identification data for indoor ECL probes. φ GAS 139.10 Preferably, the volume of the hybridization chamber is less than 900,000 cubic microns. GAS 139.il Preferably, the communication interface is a universal serial bus (USB) connector such that the housing is configured as a USB flash drive. GAS 139.12 Preferably, the detection light sensor registers the detection photodiode array of the hybrid chambers. GAS139.13 Preferably, the test module also has at least one calibration source for providing a calibration emission, and a calibration light sensor for sensing the φ calibration emission, wherein the control circuit has a differential circuit for use The calibration light sensor output is subtracted from the detected light sensor output. GAS139.14 Preferably, the test module also has a plurality of calibration sources, wherein the detection light sensor is respectively configured with a photodiode array registered with each of the ECL probes, and the calibration light sensor system is more A calibrated photodiode that is registered with the calibration sources, respectively. GAS 139.15 Preferably, the calibration source is a calibration probe that does not have an ECL luminophore. GAS 139.1 6 Preferably, the test module also has a plurality of calibration chambers - 193 - 201211533, which are distributed throughout the array of hybridization chambers, when used from the detection photodiode A calibration photoelectric photo from the closest to the detection photodiode. GAS 139.17 Preferably, the calibration source calibration chamber is configured to seal the calibration probe from containing the target fluid. GAS 139.18 Preferably, each of the calibration chambers is surrounded by a chamber block. GAS 13 9.19 Preferably, the distance between the detection photodiodes is less than 1,600 microns. GAS 1 3 9.2 0 Preferably, the ECL probe has a loop portion having a sequence complementary to the target nucleic acid sequence located between the photon emission from the ECL luminophore and the ECL luminophore Using the long-lived transition metal-coordination complex bottom probe with the loop portion of the target nucleic acid and the ECL luminophore away from the functional portion enhances the sensitivity and reliability of the detection system. The detection and analysis of the target of electrochemiluminescence is a lighter and cheaper detection system for detection of light source, excitation optics and optical filter elements. There is no need to reject the detector circuit, making the detection system even cheaper. GAS 140.1. The aspect of the invention provides a calibration source for the electrochemiluminescent probe for detecting the target nucleic acid sequence, the output of which is The hybrid with the output of the polar body and the three-by-three hybrid of the calibrated nucleic acid sequence and the hybridization chamber have a stem-loop structure, and the loop portion of the functional portion of the loop is hybridized to open the fraction. The electrochemiluminescence-based exemption requires any excitation, and thus provides excitation light and is also simple to excite the configured test module. The test-194-201211533 test module includes: an outer casing having an inlet for accepting the inclusion a fluid of a target nucleic acid sequence; an electrochemiluminescence (ECL) probe having an ECL luminophore that emits photons when in an excited state and a functional moiety that quenches photon emission from the ECL luminophore by resonance energy transfer; An electrode for receiving an electrical pulse to excite the ECL luminophores such that φ the ECL probe that has detected one of the labeled nucleic acid sequences is reconfigured such that the functional portion is not quenched from the ECL A photon is emitted when the luminophore is excited by the electrodes; wherein the ECL luminophore has a lanthanide metal-coordination complex. Preferably, the lanthanide metal-coordination complex is selected from the group consisting of: ruthenium chelate, ruthenium chelate or φ ruthenium chelate. GAS 140.3 Preferably, the test module also has a detection light sensor for exposing photons emitted by the ECL luminophore; and a control circuit for supplying electrical pulses to the electrodes. GAS 140.4 Preferably, the test module also has a lab-on-a-chip (LOC) device, wherein the ECL probe, electrode, detection light sensor and control circuit are integrated into the LOC device, wherein the LOC device has A support substrate supporting the control circuit further supports the detection light sensor, the electrode, and the ECL probe. - 195 - 201211533 GAS 140.5 Preferably, the control circuit is configured to provide electrical pulses to the layers of the CMOS circuits of the electrodes. GAS 140.6 Preferably, the electrical pulse has a period of less than 0.69 seconds. Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 140.8 Preferably, the test module also has: a communication interface of the control circuit to transmit data to an external device. GAS 140.9 Preferably, the test module also has an array of hybridization chambers containing ECL probes for different target nucleic acid sequences, wherein the control circuit has memory for storage regarding each of the hybrids Identification data for indoor ECL probes. GAS 140.10 Preferably, the hybridization chambers have a volume of less than 900,000 cubic microns. GAS 140.il Preferably, the communication interface is a universal serial bus (USB) connector such that the housing is configured as a USB flash drive. GAS 140.12 Preferably, the detection light sensor registers the detection photodiode arrays of the hybrid chambers. GAS 140.13 Preferably, the test module also has: at least one calibration source for providing a calibration emission, and a calibration light sensor for sensing the calibration emission, wherein the control circuit has a differential circuit for Detecting the light sensor output minus the calibration light sensor output. GAS 140.14 Preferably, the test module also has a plurality of calibration sources, wherein the detection light sensor is respectively associated with each of the ECL probes, the light-196-201211533 electric diode array, and the calibration light The sensor is a plurality of calibrated photodiodes respectively registered with the calibration sources. GAS 140.15 Preferably, the calibration source is a calibration probe that does not have an ECL luminophore. GAS 140.16 Preferably, the test module also has a plurality of calibration chambers, the calibration chamber containing calibration sources distributed throughout the array of hybridization chambers, wherein, when used, from any of the detection photodiodes The output of the comparator is compared to the output of φ from the calibration photodiode closest to the detection photodiode. GAS 140.17 Preferably, the calibration source is a calibration probe and the calibration chamber is configured to seal the calibration probe from the fluid containing the target nucleic acid sequence. GAS 140.18 Preferably, each of the calibration chambers is surrounded by a three by three hybrid cell block. GAS 140.19 Preferably, the distance between the detection photodiode and the hybridization chamber φ is less than 1,600 microns. GAS 140.20 Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophore and the nucleic acid sequence of the target, the loop portion is opened and the ECL luminophore is moved away from the functional portion. The use of the long-lived lanthanide metal-coordination complex electrochemiluminescent substrate probe enhances the sensitivity and reliability of the detection system. The electrochemiluminescence-based detection analysis eliminates the need for a detection system that requires a light source, excitation optics, and optical filter components to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 141.1 This aspect of the invention provides a test module for detecting a target nucleic acid sequence in a fluid, the test module comprising: an outer casing having an inlet for receiving a fluid containing the target nucleic acid sequence An electrode pair for receiving an electrical pulse; an electrochemiluminescence (ECL) probe adjacent to each of the pair of electrodes, each of the ECL probes having an ECL luminophore for emitting photons in an excited state and for borrowing An ECL probe from a functional portion of photon emission of the ECL luminophore is quenched by resonance energy transfer such that an electrical pulse transmitted to the pair of electrodes excites the ECL luminophore; wherein the ECL probes are not immobilized The surface forms a suspension in the fluid containing the target nucleic acid sequence during the assay. Preferably, GAS 141.2 has a spotted volume of less than 200,000 cubic microns each. GAS 14 1.3 Preferably, the volume of the liquid is less than 30,000 cubic microns each. GAS 141.4 Preferably, the volume of the liquid is less than 2,000 cubic microns each. GAS 141.5 Preferably, the ECL luminophore has a transition metal-coordination complex. GAS 141.6 Preferably, the test module also has: -198-201211533 a detection light sensor for exposing photons emitted by the ECL luminophore; and a control circuit for supplying electrical pulses to the electrodes. GAS 141.7 Preferably, the test module also has: the communication interface of the control circuit to transmit data to the external device. GAS 1 4 1.8. Preferably, the test module also has an array of hybridization chambers containing ECL probes for different target nucleic acid sequences, φ wherein the control circuit has memory for storage Identification data for ECL probes in each of these hybrid chambers. Preferably, the volume of the hybridization chambers is less than 900,000 cubic microns. GAS 141.10 Preferably, the ECL luminophore has a lanthanide metal-coordination complex. GAS 141.il Preferably, the communication interface is a universal serial bus (USB) connector such that the housing is configured as a USB flash drive. φ GAS141.12 Preferably, the detection light sensor registers the detection photodiode array of the hybrid chambers. GAS 14 1.1 3 Preferably, the test module also has: at least one calibration source for providing a calibration emission and a calibration light sensor for sensing the calibration emission, wherein the control circuit has a differential circuit for The calibration light sensor output is subtracted from the detected light sensor output. GAS 1 4 1 . 1 4 Preferably, the test module also has a plurality of calibration sources, wherein the detection light sensor is respectively configured with a photodiode array registered with each of the ECL probes, and the calibration light is The sensor is a plurality of calibrated photodiodes respectively registered with the calibration -199 - 201211533 source. GAS 14 1.1 5 Preferably, the calibration source does not have a calibration probe. GAS 1 4 1 . 16 Preferably, the test module also has a calibration chamber containing a plurality of detectors distributed throughout the array of hybridization chambers, and any one of the photodiodes from the detection is from the most The calibration photodiode is closer to the detection photodiode. GAS 14 1.1 7 Preferably, the calibration source is a calibration laboratory configured to seal the calibration probe from the fluid containing the target. GAS 141.1 8 Preferably, each of the calibration chambers is surrounded by three chambers. GAS 14 1.1 9 Preferably, the distance between the detection photodiodes is less than 1,6.00 microns. Preferably, the ECL probe has a loop portion having a sequence complementary to the target nucleic acid sequence, and is located between the photon emission component from the ECL luminophore and the ECL luminophore for quenching The target nucleic acid sequences the loop portion and leaves the ECL luminophore away from the functional portion. The suspended probes increase the sensitivity of reading by their deep electrical excitation depth. The suspended probe can be relatively sampled. The electrochemiluminescence-based detection analysis analyzes multiple calibration chambers of the ECL luminescence group, wherein the output system is the output ratio of the body and the calibration nucleic acid sequence By the hybridization of the three hybrids and the stem-loop structure of the hybrid chamber, the functional part of the loop is hybridized to open the 〇 and the large-emitting light is easy and inexpensive to remove. -200-201211533 light source, excitation optical and optical filter elements The detection system provides a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 142.1 This aspect of the invention provides a test module for detecting a target nucleic acid sequence in a fluid, the test module comprising: an outer casing having an inlet for receiving a fluid containing the target nucleic acid sequence; An array of φ electrochemiluminescence (ECL) probes for hybridization with the target nucleic acid sequence to form a probe-target hybrid; and an electrode placed for receiving electrical pulses, the probe-target hybridization The system is configured to emit photons of light when excited by current between the electrodes: and a light sensor for detecting light emitted by the probes; wherein when used, the fluid is added to the The probe prevents subsequent addition of other fluids to the φ probes. GAS 142.2 Preferably, the test module also has an array of hybridization chambers, wherein each of the chambers comprises a pair of electrode pairs and a probe for one of the targets, wherein the fluid is acted upon by capillary action Fill each of these rooms. Preferably, the GAS 142.3 has a volume of less than 900,000 cubic microns each. GAS 142.4 Preferably, the test module also has a lab-on-a-chip (LOC) device, wherein the ECL probe, the electrode and the detection light sensor are integrated into the LOC device, wherein the LOC device has a CMOS circuit, 201 - 201211533 A support substrate for supporting the CMOS circuit, which in turn supports the detection light sensor, the electrode, and the ECL probe. ' GAS 142.5 Preferably, each of the ECL probes has an ECL luminophore for emitting photons in an excited state and a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer, The electrical pulse transmitted to the pair of electrodes is excited to excite the ECL luminophore. GAS 142.6 Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functionality for quenching photon emission from the ECL luminophore Portion between the portion and the ECL luminophore to hybridize with the target nucleic acid sequence to open the loop portion and to move the ECL luminophore away from the functional portion. GAS 142.7 Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS 142.8 Preferably, the CMOS circuit is provided with the light sensor, wherein the wall portion is located between the probes and the light sensor. GAS 142.9 Preferably, the wall is doped with a layer of cerium oxide. GAS 142.10 Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS 142.il Preferably, the CMOS circuit is configured to apply a voltage to an electrode in each of the hybridization chambers, the voltage being between 1.7 volts and 2.8 volts. GAS 142.12 Preferably, the voltage is between 1.9 volts and 2.6 volts. GAS 142.13 Preferably, the electrical pulse has a 201211533 period of less than 0.69 seconds. GAS 142.14 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 142.15 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. Preferably, the anode and the cathode are separated by a dielectric gap of 0.4 φ micrometers to 2 micrometers wide. GAS 142.17 Preferably, the LOC device has a flow path configured to attract fluid containing the target to all of the hybrid chambers by capillary action. GAS 142.18 Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. Preferably, the ECL luminophores each have a lanthanide metal genus-coordination complex. GAS 1 42.20 Preferably, the ECL luminophores each have a transition metal-coordination complex. The easy-to-use, mass-produced, inexpensive and lightweight genetic test module accepts a biological sample, uses its integrated imaging sensor to identify the nucleic acid sequence of the sample via probe hybridization and provides electronic results at the output of the sample.检测The detection and analysis of the target based on electrochemiluminescence eliminates the need for a detection system that requires excitation of light sources, excitation optics and optical filter elements, thereby providing a lighter and cheaper detection system of -203- 201211533. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 1 43.1 This aspect of the invention provides a test module for amplifying and detecting a target nucleic acid sequence in a fluid, the test module comprising: a housing having a container for receiving a nucleic acid containing the target a fluid of sequence; a polymerase chain reaction (PCR) portion for amplifying the nucleic acid sequence of the target; an array of electrochemiluminescence (ECL) probes for hybridizing to the target nucleic acid sequence to form a probe a target hybrid; and an electrode placed for receiving an electrical pulse, the probe-target hybridization system being configured to emit photons of light when excited by current between the electrodes; and for detecting Light sensors of the light emitted by the probes: wherein, in use, the fluid is added to the probes to prevent subsequent addition of other fluids to the probes. GAS 143.2 Preferably, the test module also has an array of hybridization chambers, wherein each of the chambers comprises a pair of electrode pairs and a probe for one of the targets, wherein the fluid is acted upon by capillary action Fill each of these rooms. GAS 143.3 Preferably, the test module also has a plurality of reagent reservoirs in fluid communication with the PCR portion, wherein the reagent reservoirs comprise a polymerase, dNTPs, and primers. GAS 143.4 Preferably, the test module also has a lab-on-a-chip (LOC) device having a support substrate and a CMOS circuit, -204-201211533, wherein the LOC device has the ECL probe and the electrode The support substrate is supported by the CMOS circuit and the CMOS circuit has the detection light sensor adjacent to the electrode and the ECL probe. GAS 143.5 Preferably, each of the ECL probes has an ECL luminophore for emitting photons in an excited state and a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer, The electrical pulse transmitted to the pair of electrodes excites the ECL luminophore. φ GAS 143.6 Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the function for quenching photon emission from the ECL luminophore Between the sexual moiety and the ECL luminophore, such that hybridization with the target nucleic acid sequence opens the loop moiety and moves the ECL luminophore away from the functional moiety. GAS 143.7 Preferably, the hybridization chambers each have a wall portion that is transparent to the light emitted by the probe. GAS 143.8 Preferably, the wall is located between the probe and the photoreceptor. Preferably, the wall portion is entangled with a layer of cerium oxide. GAS 143.10 Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GASM3.il Preferably, the electrical pulses have a voltage between 1.7 volts and 2.8 volts. GAS143.12 Preferably, the voltage is between 1.9 volts and 2.6 volts. GAS 143.13 Preferably, the electrical pulse has a period of -205 - 201211533 of less than 0.69 seconds. GAS 143.14 Preferably, the current of the electrical pulse is between 0.1 Nai and 69.0 Nai's. GAS 143.15 Preferably, the electrodes have an anode and a cathode respectively having a finger-like structure, and the finger-like structures are It is configured such that the finger of the anode intersects the finger of the cathode. GAS 143.16 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 microns to 2 microns wide. GAS 143.17 Preferably, the LOC device has a flow path configured to attract fluid containing the target to all of the hybrid chambers by capillary action. GAS 143.18 Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS143.19 Preferably, the ECL luminophores each have a lanthanide metal-coordination complex. GAS 1 43.20 Preferably, the ECL luminophores each have a transition metal-coordination complex. The easy-to-use, mass-produced, inexpensive and lightweight genetic test module accepts a biological sample, amplifies the nucleic acid target in the sample, and uses the integrated imaging sensor to identify the nucleic acid sequence of the sample via probe hybridization. And provide electronic results at the output of the other. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 144.1 This aspect of the invention provides a test module for detecting a target nucleic acid sequence in a fluid, the test module comprising: a housing having a container for receiving a fluid containing the target nucleic acid sequence; An array of electrochemiluminescence (ECL) probes for hybridizing to the target nuclear φ acid sequence to form a probe-target hybrid; and an electrode placed for receiving electrical pulses, the probes - The target hybridization system is configured to emit photons when excited by current between the electrodes; and a control circuit for providing electrical pulses to the electrodes; wherein, when in use, the fluid is added to the probes to prevent subsequent Add other fluids to the probes. φ GAS 144.2 Preferably, the test module also has: a light sensor for detecting photons emitted by the probes; and an array of hybridization chambers, wherein each of the chambers comprises a pair of electrodes and a probe of one of the targets; wherein the fluid is charged to each of the chambers by capillary action. Preferably, the GAS 144.3 has a volume of less than 900,000 cubic microns each. GAS 144.4 Preferably, the test module also has a lab-on-a-chip (LOC) device having a support substrate, a CMOS circuit, the 207-201211533, the EC L probe, the electrode, and the light sensor, wherein The support substrate supports a CMOS circuit having the detection light sensor, which in turn supports the electrode and the ECL probe. GAS 144.5 Preferably, each of the ECL probes has an ECL luminophore for emitting photons in an excited state and a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer, The electrical pulse transmitted to the pair of electrodes excites the ECL luminophore. GAS 144.6 Preferably, the ECL probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functionality for quenching photon emission from the ECL luminophore Portion between the portion and the ECL luminophore to hybridize with the target nucleic acid sequence to open the loop portion and to move the ECL luminophore away from the functional portion. GAS 144.7 Preferably, the hybridization chambers each have a wall portion that is permeable to photon light emitted by the probe. GAS 144.8 Preferably, the CMOS circuit is provided with the light sensor, the wall being located between the probes and the light sensor. GAS 144.9 Preferably, the wall is entangled with a layer of cerium oxide. GAS 144.10 Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS 144.il Preferably, the electrical pulse has a voltage between 1.7 volts and 2.8 volts. GAS 144.12 Preferably, the voltage is between 1.9 volts and 2.6 volts. GAS 1 44.1 3 Preferably, the electrical pulse has a period of -208-201211533 less than 〇.69 seconds. GAS 144.14 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 144.15 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 144.16 Preferably, the anode and cathode are separated by a dielectric gap of 0.4 φ micrometers to 2 micrometers wide. GAS 144.17 Preferably, the LOC device has a flow path configured to attract fluid containing the target to all of the hybridization chambers by capillary action. GAS 144.1 8 Preferably, the light sensor is an array of photodiodes locating the hybridization chamber such that each of the hybridization chambers corresponds to one of the photodiodes. GAS 144.19 Preferably, the ECL luminophores each have a lanthanide genus-coordination complex. GAS 144.20 Preferably, the ECL luminophores each have a transition metal-coordination complex. The easy-to-use, mass-produced, inexpensive and lightweight genetic test module accepts a biological sample and uses an integrated imaging sensor with a driver for exciting the electroluminescent luminophore to identify the sample via probe hybridization. The nucleic acid sequence, and at its output, provides an electronic result. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. GAS 146.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a target nucleic acid sequence in a fluid, the LOC device comprising: an electrochemiluminescence (ECL) probe for detecting the target nucleic acid sequence a needle, each of the probes having an ECL luminophore for emitting photons in an excited state, a functional portion for quenching photon emission from the ECL luminophore by resonance energy transfer; and for receiving an electrical pulse Electrodes that excite the ECL luminophores; wherein the electrodes are arranged in pairs, each pair having an anode and a cathode separated by a dielectric gap between 0.4 microns and 2 microns wide. GAS 146.2 Preferably, the LOC device also has a light sensor located adjacent to the probe for sensing those probes that respond to electrical pulses to produce photons. GAS 146.3 Preferably, the LOC device also has an array of hybridization chambers, wherein each of the chambers comprises a pair of electrode pairs and a probe for one of the targets, wherein the fluid is acted upon by capillary action Preferably, the LOC device also has a support substrate, wherein the light sensor is an array of photodiodes on the support substrate that are registered with the hybrid chambers. GAS 146.5 Preferably, the photodiode array is less than 1,600 microns from the probe. -210-201211533 GAS146.6 Preferably, the LOC device also has a CMOS circuit on the support substrate, the array of the photodiode being a component of the CMOS circuit, wherein the CMOS circuit responds when not in use An ECL photon from the positive control probe is measured to cause an error signal. GAS 146.7 Preferably, the LOC device also has at least one negative control chamber containing a negative control probe that is incapable of hybridizing to any nucleic acid sequence in the fluid. φ GAS146.8 Preferably, the LOC device also has: a flow path containing the target fluid; wherein the CMOS circuit is interposed between the hybridization chamber and the support substrate, and the flow path is acted upon by capillary action The fluid is attracted to each of the hybrid chambers. GAS 146.9 Preferably, the LOC device also has a lysis unit, wherein the flow system contains a biological sample of cells and the lysate destroys the cell membrane to release any genetic material therein. GAS 146.10 Preferably, the hybridization chambers each have a wall portion that is permeable to photon light emitted by the probe φ. Preferably, the wall portion is between the probe and the array of photodiodes. Preferably, the wall portion is doped with a layer of cerium oxide. GAS146.13 Preferably, the probe has a stem-loop structure, the loop portion of which contains a sequence complementary to the target nucleic acid sequence, the loop portion being located in the functional portion for quenching photon emission from the ECL luminophore Between the ECL luminophore and the nucleic acid sequence of the target, the loop portion is opened and the ECL luminophore is moved away from the functional portion. Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. GAS 1 46.1 5 Preferably, the electrical pulse has a period of less than 〇 · 6.9 seconds. GAS 1 46.1 6 Preferably, the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. GAS 146.17 Preferably, the electrodes have an anode and a cathode, each having a finger configuration, the finger structures being configured to intersect the fingers of the anode with the fingers of the cathode. GAS 146.18 Preferably, the ECL luminophores each have a transition metal-coordination complex. GAS 146.19 Preferably, the LOC device also has a PCR portion for amplifying the target nucleic acid sequence prior to detection by the probes. GAS 1 46.20 Preferably, the LOC device also has an upper cover having a reagent reservoir for addition to the fluid prior to detecting the target sequence. The electrochemiluminescence-based detection analysis eliminates the need for detection systems that require excitation light sources, excitation optics, and optical filter elements to provide a lighter and less expensive inspection system. It is not necessary to reject any excitation light and simplify the detector circuit, making the detection system even cheaper. The need to add an electrochemical co-reactant makes the detection system simpler and less expensive, helping to use more of the detection chemistry options. GPC03 5.1 This aspect of the invention provides a wafer-on-lab (LOC) device for amplifying a target nucleic acid sequence in a sample, the LOC-212-201211533 comprising: a support substrate; a plurality of processing the sample The function portion 'of the functional portions is a nucleic acid amplification portion for amplifying a nucleic acid sequence in a sample; wherein the nucleic acid amplification portion is supported by the support substrate' and the support substrate is defined for thermal isolation A groove between one or more of the nucleic acid amplification unit and another functional unit. φ GPC035.2 Preferably, one of the functional portions is provided with a hybridization portion of the probe array for hybridizing with the target nucleic acid sequence and the groove is extended in the nucleic acid amplification portion and the hybridization portion The heat generated by the hybridization portion and the nucleic acid amplification portion is thermally isolated. GPC03 5.3 Preferably, the support substrate is a layer of a substance having a layer separated by a thickness of the substrate, the functional portions being formed on one surface of the support substrate and the groove being attached to the other Surface definition. GPC035.4 Preferably, the LOC device also has a CMOS circuit supported by the support φ substrate, wherein the trench extends through the substrate to the CMOS circuit GPC03 5.5. Preferably, the trench contains air during use. GPC035.6 Preferably, the nucleic acid amplification unit is a polymerase chain reaction (PCR) unit. GPC035.7 Preferably, the LOC device also has temperature sensing

器及倂有該等功能部之微系統技術(MST)層,其中該 CMOS電路係位於該支持基板與該M ST層之間,該CMOS 電路係經配置以使用該溫度感測器輸出以反饋控制該PCR -213- 201211533 部。 GPC03 5.8 較佳地,該PCR部具有PCR微通道以 用於加熱循環該樣品,該PCR微通道定義垂直該流之截面 積小於1 00,000平方微米之流路。 GPC03 5.9 較佳地,該PCR微通道垂直該流之截 面積小於1 6,000平方微米。 GPC 03 5.1 0 較佳地,該PCR微通道垂直該流之截 面積小於2,500平方微米。 GPC03 5.il 較佳地,該 PCR微通道具有至少一個 平行該PCR微通道延伸之長形加熱器元件。 GPC03 5.1 2 較佳地,該 PCR部具有多個分別由該 PCR微通道之各自部所形成之長形PCR室,該PCR微通 道具有由一系列寬彎道形成之彎繞構型,各該寬彎道係形 成該等長形PCR室中之一者之通道部。 GPC03 5.1 3 較佳地,該PCR部具有主動閥以用於 在熱循環期間將液體保留於該PCR部且允許該液體回應來 自該CMOS電路之活化信號而流至該雜交室陣列。 GPC03 5.1 4 較佳地,該主動閥係設有彎液面錨定器 及加熱器之沸騰啓動閥,該彎液面錨定器係經配置以形成 彎液面以阻止該液體之毛細驅動流,該加熱器係用於煮沸 該液體以自該彎液面錨定器處釋放該彎液面,以恢復毛細 驅動流。 GPC 0 3 5.1 5 較佳地,該LOC裝置亦具有用於偵測 該雜交部內之任何探針之雜交之光感應器。 -214- 201211533 GPC03 5.1 6 較佳地,該核酸擴增部係恆溫核酸擴增 部。 GPC03 5.1 7 較佳地,該雜交部具有雜交室陣列’該 雜交室陣列用於包含探針以使各該雜交室內之探針經配置 以與該標的核酸序列之一雜交。 GPC03 5.1 8 較佳地,該光感應器係配準該雜交室之 光電二極體陣列。 GPC03 5.1 9 較佳地,該恆溫核酸擴增部具有核酸擴 增微通道以用於維持該樣品之反應溫度,該核酸擴增微通 道定義垂直該流之截面積小於100,000平方微米之流路。 GPC03 5.20 較佳地,該核酸擴增微通道垂直該流之 截面積小於1 6,000平方微米。 該易於使用、可大量生產又不貴之基因分析LOC裝 置接受含有核酸之樣品,接著在該裝置之PCR室擴增該樣 品中之核酸標的。 該PCR室係利用隔熱溝加以熱隔絕,此提供該混合物 快速的溫度循環,減少電力需求,且減少該加熱循環對該 裝置之其他部分之影響,允許更廣泛之檢測化學。該快速 溫度循環能力提高該檢測之速度。 GPC03 6.1 本發明之此態樣提供一種微流體裝置, 其包含: 樣品入口,其係用於接受具有核酸序列之生物材料樣 品;及 用於擴增該核酸序列之核酸擴增部,該核酸擴增部具 -215- 201211533 有擴增室及加熱器元件;其中 該加熱器元件係結合至該擴增室之內部表面。 GPC036.2 較佳地,該核酸擴增部係聚合酶連鎖反 應(PCR)部且該擴增室係PCR室,以使該加熱器元件一起 加熱循環該樣品與dNTP、引子、聚合酶及緩衝溶液以擴 增該核酸序列。 GPC036.3 較佳地,該微流體裝置亦具有支持基板 以用於支持該PCR部,其中該PCR部具有微通道,該微 通道具有PCR入口及PCR出口,該PCR室係該微通道之 部,且該結合有加熱器元件之內部表面係最靠近該支持基 板之該微通道之底部。 GPC036.4 較佳地,該PCR部具有多個PCR室, 且該微通道具有由一系列寬彎道形成之彎繞構型,各該寬 彎道係通道部,其形成該PCR室之一者。 GPC03 6.5 較佳地,各該通道部具有多個該加熱器 元件。 GPC03 6.6 較佳地,該多個加熱器元件係長形,其 位置對準該通道部縱軸且沿著該通道部之端至端。 GPC036.7 較佳地,各該多個長形加熱器元件係可 獨立地操作。 GPC036.8 較佳地,該微流體裝置亦具有至少一個 溫度感測器以用於反饋控制該長形加熱器元件。 GPC036.9 較佳地,該PCR部具有在該PCR出口 處之主動閥,其係用於在加熱循環期間保留該液體於該 -216- 201211533 PCR部內。 GPC036.1 0 較佳地,該活性閥係設有彎液面錨定器 之沸騰啓動閥,該錨定器係用於保留液體在該PCR部內, 該沸騰啓動閥亦具有閥加熱器,係用於煮沸液體以使該彎 液面自彎液面錨定器處釋放,以恢復毛細驅動而流出該 PCR 部。 GPC03 6.il 較佳地,該彎液面錨定器係孔且該閥加 φ 熱器係位於鄰近該孔之邊緣。 GPC036.1 2 較佳地,該PCR微通道垂直該流體之 截面積係介於4 00平方微米至1平方微米。 GPC03 6.1 3 較佳地,該微流體裝置亦具有透析部, 其中該生物材料包括不同大小之細胞,該透析部係經配置 以分離大於預定閥値之細胞至一部分之樣品,該部分之樣 品係與僅包含小於該預定閥値之細胞之剩餘樣品分開處理 〇 # GPC03 6.1 4 較佳地,該核酸序列係來自小於該預定 閥値之細胞。 GPC036.1 5 較佳地,各該等通道部在靠近一端具有 液體感測器,該液體感測器係經配置以檢測在該液體檢測 器位置之液體以反饋控制該加熱器元件。 GPC036.1 6 較佳地,該微流體裝置亦具有用於容納 供核酸擴增使用之試劑的試劑貯器,及設有孔之表面張力 閥,該孔係經配置以令該試劑形成彎液面,以使該彎液面 將試劑保留在試劑貯器內直到流體樣品接觸時移除該彎液 -217- 201211533 面及試劑流出該試劑貯器。 GPC036.1 7 較佳地,該貯器具有通氣孔,以作爲當 該試劑流出該試劑貯器時之空氣入口。 GPC036.1 8 較佳地,該微流體裝置亦具有用於與該 樣品中之標的核酸序列雜交以形成探針^標的雜交體之探 針陣列,及用於檢測該探針-標的雜交體之光感應器。 GPC036.1 9 較佳地,該PCR部具有不到4秒之熱 循環時間。 GPC036.20 較佳地,該PCR部具有介於0.45秒至 1.5秒之熱循環時間。 該易於使用、可大量生產又不貴之微流體裝置接受含 有核酸之樣品,接著利用該裝置之核酸擴增室擴增該樣品 中之核酸標的。 GLY001.1 本發明之此態樣提供一種用於溶解流體 中之細胞之微流體裝置,該微流體裝置包含: 用於接受含有細胞之流體之入口; 溶胞試劑貯器,其含有溶胞試劑且設有出口閥:及 與該入口流體相通之溶胞部以用於在細胞溶解期間保 留該流體;其中 該出口閥係位於該溶胞部之上游且係經配置以在該流 體流入該溶胞部時打開,藉此添加該溶胞試劑至該流體。 GLY001.2 較佳地,該出口閥係設有孔之表面張力 閥,該孔係經配置以形成彎液面以將該溶胞試劑保留在其 內直到該流體接觸時移除該彎液面,該溶胞試劑被加至該 -218- 201211533 流體流而進入該溶胞部。 GLY001.3 較佳地,該溶胞部係經配置爲藉由毛細 作用吸引來自該入口之流體之溶胞通道,該溶胞部具有位 於該溶胞通道下游終點之主動閥以用於在該等細胞溶解期 間保留該流體。 GLY001.4 較佳地,該活性閥係設有彎液面錨定器 之沸騰啓動閥,該錨定器係用於保留在該溶胞部內之流體 φ ,該沸騰啓動閥亦具有閥加熱器,其係用於煮沸液體以使 該彎液面自彎液面錨定器處釋放,以恢復毛細驅動而流出 該溶胞部。 GLY001.5 較佳地,該微通道垂直該流體之截面積 係介於8平方微米至20,00 0平方微米。 GLY001.6 較佳地,該微流體裝置亦具有支持基板 ,其中該入口、該溶胞部及該溶胞試劑貯器係由該支持基 板支持且經配置爲晶片上實驗室(LOC)裝置。 φ GLY001.7 較佳地,該微流體裝置亦具有位於該支 持基板與該溶胞部之間的CMOS電路,該CMOS電路係經 配置以用於操作控制該閥加熱器。 GLY001.8 較佳地,該微流體裝置亦具有設有至少 一個加熱器之聚合酶連鎖反應(PCR)部,其係用於加熱循 環該流體以擴增自該等細胞釋出之核酸序列。 GLY001.9 較佳地,該微流體裝置亦具有至少一個 感測器,其中該CMOS電路係經配置使用該感測器以反饋 控制該至少一個PCR加熱器。 -219 - 201211533 GLY001.10 較佳地,該微流體裝置亦具有多個加熱 器及多個溫度感測器及多個液體感測器,以使該CM0S電 路回應該液體感測器以控制該加熱器之初始啓動及回應該 溫度感測器以控制該加熱器功率。 GLY001.il 較佳地,各該多個加熱器係可獨立地操 作。 GLY00 1 . 1 2 較佳地,該P C R部係經配置爲具有介 於1平方微米至400平方微米之截面積的PCR微通道’該 PCR部亦具有位於該PCR微通道下游終點之主動閥以在該 核酸序列擴增期間用於保留該流體。 GLY001.13 較佳地,該微流體裝置亦具有PCR混 合物貯器及聚合酶貯器,其中該PCR混合物貯器包含 dNTP、引子及緩衝溶液且該聚合酶貯器包含聚合酶。 GLY001.14 較佳地,該微流體裝置亦具有上蓋,該 上蓋定義該溶胞試劑貯器、該PCR混合物貯器、該聚合酶 貯器及該溶胞部,且該PCR部係介於該上蓋與該支持基板 之間。 GLY001.15 較佳地,該微流體裝置亦具有透析部, 其中該流體中之細胞的大小不同,該透析部係經配置以分 離大於預定閥値之細胞至一部分之樣品,該部分之樣品係 與僅包含小於該預定閥値之細胞之剩餘樣品分開處理。 GLY001.16 較佳地,該核酸序列係來自大於該預定 閥値之細胞。 GLY001.17 較佳地,該微流體裝置亦具有抗凝血劑 -220- 201211533 貯器,其中該流體係全血樣品以使抗凝血劑在該透析部上 游被加至該全血且該透析部係經配置以濃縮白血球至該全 血樣品之一部分。 GLY001.18 較佳地,該微流體裝置亦具有位於該 PCR部下游之雜交部,該雜交部具有探針陣列以用於與來 自該PCR部之擴增子中的預定標的核酸序列雜交;及 用於偵測探針陣列中探針雜交之光感應器。 φ GLY001.19 較佳地,該雜交部具有經放置以接受電 脈衝之電極,且該探針爲用於與該標的核酸序列雜交以形 成探針-標的雜交體之電化學發光(ECL)探針,該探針-標 的雜交體係經配置以當受到該等電極之間的電流激發時發 射光之光子。 GLY001.20 較佳地,該光感應器係位置分別配準該 ECL探針之光電二極體陣列。 該易於使用、可大量生產又不貴之微流體裝置接受生 • 化樣品,使用化學溶胞次單位以溶解細胞或細胞胞器,並 處理該溶解物。 該溶胞過程自該樣品中之細胞萃取分析及診斷標的, 且提供該等標的之後續處理及分析。將該溶胞次單位整合 至該裝置提供簡單檢測步驟、低系統組件數及簡單之系統 製造過程,導致不貴之檢測系統。 GLY002.1 本發明之此態樣提供一種用於溶解流體 中之細胞之微流體裝置,該微流體裝置包含: 用於接受含有細胞之流體之入口通道; -221 - 201211533 與該入口通道流體相通之溶胞部 間保留該流體;及 用於加熱在該溶胞部中之流體以 加熱器;其中 該入口通道係經配置以用於藉由 部。 GLY002.2 較佳地,該溶胞部 作用吸引來自該入口之流體之溶胞微 位於該溶胞微通道下游終點之主動閥 解期間保留該流體。 GLY002.3 較佳地,該活性閥 之沸騰啓動閥,該錨定器係用於保留 ,該沸騰啓動閥亦具有閥加熱器,其 該彎液面自彎液面錨定器處釋放,以 該溶胞部。 GLY002.4 較佳地,該微通道 係介於1平方微米至40 0平方微米。 GLY002.5 較佳地,該微流體 ,其中該入口及該溶胞部係由該支持 晶片上實驗室(LOC)裝置。 GLY002.6 較佳地,該微流體 持基板與該溶胞室之間的CMOS電路 配置以用於操作控制該溶胞加熱器及 點之閥加熱器。 以用於在細胞溶解期 使該細胞溶解之溶胞 毛細作用塡充該溶胞 係經配置爲藉由毛細 通道,該溶胞部具有 以用於在該等細胞溶 係設有彎液面錨定器 在該溶胞部內之流體 係用於煮沸液體以使 恢復毛細驅動而流出 垂直該流體之截面積 裝置亦具有支持基板 基板支持且經配置爲 裝置亦具有位於該支 ,該CMOS電路係經 位於該微通道下游終 -222- 201211533 GLY002.7 較佳地,該微流體裝置亦具有設有至少 一個加熱器之聚合酶連鎖反應(PCR)部,其係用於加熱循 環該流體以擴增自該等細胞釋出之核酸序列。 GLY002.8 較佳地,該微流體裝置亦具有至少一個 感測器,其中該CMOS電路係經配置使用該感測器以反饋 控制該至少一個P C R加熱器。 GLY002.9 較佳地,該微流體裝置亦具有多個溫度 φ 感測器及多個液體感測器,其中該PCR部具有多個加熱器 以使該CMOS電路回應該液體感測器以控制該加熱器之初 始啓動及回應該溫度感測器以控制該加熱器功率。 GLY002.1 0 較佳地,各該多個長形加熱器係可獨立 地操作。 GLY002.il 較佳地,該PCR部係經配置爲具有與 該溶胞微通道相同截面之PCR微通道,該PCR部亦具有 位於該PCR微通道下游終點之主動閥以在該核酸序列擴增 # 期間用於保留該流體。 GLY002.12 較佳地,該微流體裝置亦具有PCR混 合物貯器及聚合酶貯器,其中該PCR混合物貯器包含 dNTP、引子及緩衝溶液且該聚合酶貯器包含聚合酶。 GLY002.1 3 較佳地,該微流體裝置亦具有上蓋,該 上蓋定義該PCR混合物貯器及該聚合酶貯器,其中該溶胞 部及該PCR部係介於該上蓋與該支持基板之間。 GLY002.14 較佳地,該微流體裝置亦具有透析部, 其中該流體中之細胞的大小不同,該透析部係經配置以分 -223- 201211533 離大於預定閥値之細胞至一部分之樣品,該部分之樣品係 與僅包含小於該預定閥値之細胞之剩餘樣品分開處理。 GLY002.1 5 較佳地,該核酸序列係來自大於該預定 閥値之細胞。 GLY002.1 6 較佳地,該微流體裝置亦具有抗凝血劑 貯器,其中該流體係全血樣品以使抗凝血劑在該透析部上 游被加至該全血且該透析部係經配置以濃縮白血球至該全 血樣品之一部分。 GLY002.1 7 較佳地,該微流體裝置亦具有位於該 PCR部下游之雜交部,該雜交部具有探針陣列以用於與來 自該PCR部之擴增子中的預定標的核酸序列雜交;及 用於偵測探針陣列中探針雜交之光感應器。 GLY 002.1 8 較佳地,該雜交部具有經放置以接受電 脈衝之電極,且該探針爲用於與該標的核酸序列雜交以形 成探針-標的雜交體之電化學發光(ECL)探針,該探針-標 的雜交體係經配置以當受到該等電極之間的電流激發時發 射光之光子。 GLY002.1 9 較佳地,該光感應器係位置分別配準該 ECL探針之光電二極體陣列。 該易於使用、可大量生產又不貴之微流體裝置接受生 化樣品,使用熱溶胞次單位以溶解細胞或細胞胞器,並處 理該溶解物。 該溶胞過程自該樣品中之細胞萃取分析及診斷標的, 且提供該等標的之後續處理及分析。將該溶胞次單位整合 -224- 201211533 至該裝置提供簡單檢測步驟、低系統組件數及簡單之系統 製造過程’導致不貴之檢測系統。 該熱溶胞處理簡化檢測化學之需求且提供處理廣泛樣 品種類範圍之能力。 GLY004.1 本發明之此態樣提供一種用於溶解流體 中之細胞之測試模組,該測試模組包含: 設有容器之外殼,該容器係用於接受含有細胞之流體 •; 溶胞試劑貯器,其含有溶胞試劑且設有出口閥;及 與該容器流體相通之溶胞部以用於在細胞溶解期間保 留該流體;其中 該出口閥係位於該溶胞部之上游且係經配置以在該流 體流入該溶胞部時打開,藉此添加該溶胞試劑至該流體。 GLY004.2 較佳地,該出口閥係設有孔之表面張力 閥,該孔係經配置以形成彎液面以將該溶胞試劑保留在其 # 內直到該流體接觸時移除該彎液面,該溶胞試劑被加至該 流體流而進入該溶胞部。 GLY004.3 較佳地,該溶胞部係經配置爲藉由毛細 作用吸引來自該容器之流體之溶胞微通道,該溶胞部具有 位於該溶胞微通道下游終點之主動閥以用於在該等細胞溶 解期間保留該流體。 GLY004.4 較佳地,該活性閥係設有彎液面錨定器 之沸騰啓動閥,該錨定器係用於保留在該溶胞部內之流體 ,該沸騰啓動閥亦具有閥加熱器,其係用於煮沸液體以使 -225- 201211533 該彎液面自彎液面錨定器處釋放,以恢復毛細驅動而流出 該溶胞部。 GLY004.5 較佳地,該微通道垂直該流體之截面積 係介於8平方微米至20,000平方微米。 GLY004.6 較佳地,該測試模組亦具有支持基板, 其中該溶胞部及該溶胞試劑貯器係由該支持基板支持且經 配置爲晶片上實驗室(LOC)裝置。 GLY004.7 較佳地,該測試模組亦具有位於該支持 基板與該溶胞部之間的CMOS電路,該CMOS電路係經配 置以用於操作控制位於該微通道下游終點之閥加熱器。 GLY004.8 較佳地,該測試模組亦具有設有至少一 個加熱器之聚合酶連鎖反應(PCR)部,其係用於加熱循環 該流體以擴增自該等細胞釋出之核酸序列。 GLY004.9 較佳地,該測試模組亦具有至少一個感 測器,其中該CMOS電路係經配置使用該感測器以反饋控 制該至少一個PCR加熱器。 GLY004.1 0 較佳地,該測試模組亦具有多個加熱器 及至少一個溫度感測器及至少—個液體感測器,以使該 C Μ Ο S電路回應該至少一個液體感測器以控制該加熱器之 初始啓動及回應該至少—個溫度感測器以控制加熱器功率 〇 GLY004.il 較佳地,各該多個加熱器係可獨立地操 作。 GLY004.1 2 較佳地,該PCR部係經配置爲具有與 -226- 201211533 該溶胞微通道相同截面之PCR微通道,該PCR部亦具有 位於該PCR微通道下游終點之主動閥以在該核酸序列擴增 期間用於保留該流體。 GLY004.1 3 較佳地,該測試模組亦具有PCR混合 物貯器及聚合酶貯器,其中該PCR混合物貯器包含dNTP 、引子及緩衝溶液且該聚合酶貯器包含聚合酶。 GLY004.1 4 較佳地,該測試模組亦具有上蓋,該上 φ 蓋定義該溶胞試劑貯器、該PCR混合物貯器及該聚合酶貯 器,其中該溶胞部及該PCR部係介於該上蓋與該支持基板 之間。 . GLY004.1 5 較佳地,該測試模組亦具有透析部,其 中在該流體中之細胞具有不同大小,該透析部係經配置以 分離大於預定閥値之細胞至一部分之樣品,該部分之樣品 係與僅包含小於該預定閥値之細胞之剩餘樣品分開處理。 GLY004.1 6 較佳地,該核酸序列係來自大於該預定 # 閥値之細胞。 GLY004.1 7 較佳地,該測試模組亦具有抗凝血劑貯 器,其中該流體係全血樣品以使抗凝血劑在該透析部上游 被加至該全血且該透析部係經配置以濃縮白血球至該全血 樣品之一部分。And a microsystem technology (MST) layer having the functional portion, wherein the CMOS circuit is between the support substrate and the M ST layer, the CMOS circuit configured to use the temperature sensor output to provide feedback Control the PCR -213 - 201211533. GPC03 5.8 Preferably, the PCR portion has a PCR microchannel for heating to circulate the sample, the PCR microchannel defining a flow path having a cross-sectional area of less than 1 000,000 square microns. GPC03 5.9 Preferably, the PCR microchannel has a cross-sectional area of less than 1 6,000 square microns perpendicular to the flow. GPC 03 5.1 0 Preferably, the PCR microchannel has a cross-sectional area of less than 2,500 square microns perpendicular to the flow. GPC03 5.il Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. GPC03 5.1 2 Preferably, the PCR portion has a plurality of elongated PCR chambers respectively formed by respective portions of the PCR microchannels, the PCR microchannels having a curved configuration formed by a series of wide curves, each of which A wide curve forms the channel portion of one of the elongate PCR chambers. GPC03 5.1 3 Preferably, the PCR portion has an active valve for retaining liquid in the PCR portion during thermal cycling and allowing the liquid to flow to the hybridization chamber array in response to an activation signal from the CMOS circuit. GPC03 5.1 4 Preferably, the active valve is provided with a meniscus anchor and a boiling start valve of the heater, the meniscus anchor configured to form a meniscus to prevent capillary flow of the liquid The heater is used to boil the liquid to release the meniscus from the meniscus anchor to restore the capillary drive flow. GPC 0 3 5.1 5 Preferably, the LOC device also has a light sensor for detecting hybridization of any of the probes within the hybrid. -214-201211533 GPC03 5.1 6 Preferably, the nucleic acid amplification unit is a thermostatic nucleic acid amplification unit. GPC03 5.1 7 Preferably, the hybridization portion has a hybridization chamber array' that is adapted to contain probes such that the probes within each of the hybridization chambers are configured to hybridize to one of the target nucleic acid sequences. GPC03 5.1 8 Preferably, the light sensor is registered with the photodiode array of the hybridization chamber. GPC03 5.1 9 Preferably, the thermolabic nucleic acid amplification section has a nucleic acid amplification microchannel for maintaining a reaction temperature of the sample, the nucleic acid amplification microchannel defining a flow path having a cross-sectional area of the flow of less than 100,000 square micrometers. GPC03 5.20 Preferably, the nucleic acid amplification microchannel has a cross-sectional area of the stream of less than 1 6,000 square microns. The easy-to-use, mass-produced and inexpensive genetic analysis LOC device accepts a sample containing nucleic acid and then amplifies the nucleic acid target in the sample in the PCR chamber of the device. The PCR chamber is thermally insulated using an insulated trench, which provides rapid temperature cycling of the mixture, reduces power requirements, and reduces the effects of the heating cycle on other parts of the device, allowing for a broader range of detection chemistry. This rapid temperature cycling capability increases the speed of this detection. GPC03 6.1 This aspect of the invention provides a microfluidic device comprising: a sample inlet for receiving a sample of biological material having a nucleic acid sequence; and a nucleic acid amplification portion for amplifying the nucleic acid sequence, the nucleic acid amplification Additions - 215 - 201211533 have an amplification chamber and a heater element; wherein the heater element is bonded to the interior surface of the amplification chamber. GPC036.2 Preferably, the nucleic acid amplification portion is a polymerase chain reaction (PCR) portion and the amplification chamber is a PCR chamber such that the heater element is heated together to circulate the sample with dNTPs, primers, polymerases, and buffers. A solution to amplify the nucleic acid sequence. GPC036.3 Preferably, the microfluidic device also has a support substrate for supporting the PCR portion, wherein the PCR portion has a microchannel having a PCR inlet and a PCR outlet, the PCR chamber being part of the microchannel And the inner surface of the combined heater element is closest to the bottom of the microchannel of the support substrate. GPC036.4 Preferably, the PCR portion has a plurality of PCR chambers, and the microchannels have a curved configuration formed by a series of wide curves, each of the wide curve channel portions forming one of the PCR chambers By. GPC03 6.5 Preferably, each of the channel portions has a plurality of the heater elements. GPC03 6.6 Preferably, the plurality of heater elements are elongate in position aligned with the longitudinal axis of the channel portion and along the end to the end of the channel portion. GPC036.7 Preferably, each of the plurality of elongate heater elements is independently operable. GPC036.8 Preferably, the microfluidic device also has at least one temperature sensor for feedback control of the elongate heater element. GPC036.9 Preferably, the PCR portion has an active valve at the PCR outlet for retaining the liquid during the heating cycle within the PCR section of the -216-201211533. GPC036.1 0 Preferably, the active valve is provided with a boiling start valve of a meniscus anchor, the anchor is for retaining liquid in the PCR portion, and the boiling start valve also has a valve heater It is used to boil the liquid to release the meniscus from the meniscus anchor to recover the capillary drive and exit the PCR section. GPC03 6.il Preferably, the meniscus anchor is bored and the valve plus φ heater is located adjacent the edge of the bore. GPC036.1 2 Preferably, the PCR microchannel has a cross-sectional area of the fluid ranging from 400 square micrometers to 1 square micrometer. GPC03 6.1 3 Preferably, the microfluidic device also has a dialysis unit, wherein the biological material comprises cells of different sizes, the dialysis portion being configured to separate a sample larger than a predetermined valve cell to a portion of the sample system The treatment is performed separately from the remaining sample containing only cells smaller than the predetermined valve. G# GPC03 6.1 4 Preferably, the nucleic acid sequence is derived from cells smaller than the predetermined valve. GPC 036.1 5 Preferably, each of the channel portions has a liquid sensor proximate one end, the liquid sensor being configured to detect liquid at the liquid detector position to feedback control the heater element. GPC036.1 6 Preferably, the microfluidic device also has a reagent reservoir for containing reagents for nucleic acid amplification use, and a surface tension valve provided with a hole configured to cause the reagent to form a meniscus The surface is such that the meniscus retains the reagent in the reagent reservoir until the fluid sample contacts the surface of the meniscus and the reagent exits the reagent reservoir. GPC036.1 7 Preferably, the reservoir has a venting opening as an air inlet when the reagent exits the reagent reservoir. GPC036.1 8 Preferably, the microfluidic device also has a probe array for hybridizing with the target nucleic acid sequence in the sample to form a probe, and a hybrid for detecting the probe-target Light sensor. GPC036.1 9 Preferably, the PCR section has a thermal cycle time of less than 4 seconds. GPC036.20 Preferably, the PCR portion has a thermal cycle time of between 0.45 seconds and 1.5 seconds. The easy-to-use, mass-produced and inexpensive microfluidic device accepts a sample containing nucleic acid, and then amplifies the nucleic acid target in the sample using the nucleic acid amplification chamber of the device. GLY001.1 This aspect of the invention provides a microfluidic device for dissolving cells in a fluid, the microfluidic device comprising: an inlet for receiving a fluid containing cells; a lysis reagent reservoir containing a lysis reagent And an outlet valve: and a lysate in fluid communication with the inlet for retaining the fluid during cell lysis; wherein the outlet valve is located upstream of the lysis portion and configured to flow into the solution at the fluid The cell is opened, thereby adding the lysis reagent to the fluid. GLY001.2 Preferably, the outlet valve is provided with a surface tension valve of the bore configured to form a meniscus to retain the lysis reagent therein until the fluid is removed upon contact with the fluid The lysis reagent is added to the -218-201211533 fluid stream to enter the lysis section. GLY001.3 Preferably, the lysis portion is configured to attract a lytic channel of fluid from the inlet by capillary action, the lysis portion having an active valve at a downstream end of the lysis channel for use in The fluid is retained during cell lysis. GLY001.4 Preferably, the active valve is provided with a boiling start valve of a meniscus anchor, the anchor is used for retaining the fluid φ in the lysis unit, and the boiling start valve also has a valve heater It is used to boil the liquid to release the meniscus from the meniscus anchor to recover the capillary drive and flow out of the lysis unit. GLY001.5 Preferably, the cross-sectional area of the microchannel perpendicular to the fluid is between 8 square microns and 2,00 0 square microns. GLY001.6 Preferably, the microfluidic device also has a support substrate, wherein the inlet, the lysis unit, and the lysis reagent reservoir are supported by the support substrate and configured as a on-wafer laboratory (LOC) device. φ GLY001.7 Preferably, the microfluidic device also has a CMOS circuit between the support substrate and the lysis unit, the CMOS circuit being configured for operational control of the valve heater. GLY001.8 Preferably, the microfluidic device also has a polymerase chain reaction (PCR) portion provided with at least one heater for heating the circulating fluid to amplify the nucleic acid sequence released from the cells. GLY001.9 Preferably, the microfluidic device also has at least one sensor, wherein the CMOS circuit is configured to use the sensor to feedback control the at least one PCR heater. -219 - 201211533 GLY001.10 Preferably, the microfluidic device also has a plurality of heaters and a plurality of temperature sensors and a plurality of liquid sensors to cause the CMOS circuit to respond to the liquid sensor to control the The initial start of the heater and the response to the temperature sensor to control the heater power. GLY001.il Preferably, each of the plurality of heaters is independently operable. GLY00 1 . 1 2 Preferably, the PCR portion is configured as a PCR microchannel having a cross-sectional area of from 1 square micron to 400 square micrometers. The PCR portion also has an active valve located at a downstream end of the PCR microchannel. Used to retain the fluid during amplification of the nucleic acid sequence. GLY001.13 Preferably, the microfluidic device also has a PCR mixture reservoir and a polymerase reservoir, wherein the PCR mixture reservoir comprises dNTPs, primers, and a buffer solution and the polymerase reservoir comprises a polymerase. GLY001.14 Preferably, the microfluidic device also has an upper cover defining the lysis reagent reservoir, the PCR mixture reservoir, the polymerase reservoir and the lysis unit, and the PCR portion is interposed Between the upper cover and the support substrate. GLY001.15 Preferably, the microfluidic device also has a dialysis unit, wherein the cells in the fluid are different in size, and the dialysis portion is configured to separate a sample larger than a predetermined valve to a portion of the sample system. It is treated separately from the remaining sample containing only cells smaller than the predetermined valve. GLY001.16 Preferably, the nucleic acid sequence is derived from cells larger than the predetermined valve. GLY001.17 Preferably, the microfluidic device also has an anticoagulant-220-201211533 reservoir, wherein the flow system is a whole blood sample such that an anticoagulant is added to the whole blood upstream of the dialysis portion and the The dialysis section is configured to concentrate white blood cells to a portion of the whole blood sample. GLY001.18 Preferably, the microfluidic device also has a hybridization portion downstream of the PCR portion, the hybridization portion having a probe array for hybridization with a predetermined target nucleic acid sequence in an amplicon from the PCR portion; A light sensor for detecting probe hybridization in a probe array. φ GLY001.19 Preferably, the hybridization portion has an electrode placed to receive an electrical pulse, and the probe is an electrochemiluminescence (ECL) probe for hybridization with the target nucleic acid sequence to form a probe-target hybrid. A needle, the probe-target hybridization system is configured to emit photons of light when excited by current between the electrodes. GLY001.20 Preferably, the light sensor is positioned to respectively register the photodiode array of the ECL probe. The easy-to-use, mass-produced, inexpensive microfluidic device accepts a biochemical sample, uses a chemical lysis subunit to dissolve the cell or cell organelle, and treats the lysate. The lysis process is performed by cell extraction analysis and diagnostics in the sample, and subsequent processing and analysis of the targets are provided. Integrating the lysis subunit into the device provides a simple detection step, a low number of system components, and a simple system manufacturing process, resulting in an inexpensive detection system. GLY002.1 This aspect of the invention provides a microfluidic device for dissolving cells in a fluid, the microfluidic device comprising: an inlet channel for receiving a fluid containing cells; -221 - 201211533 being in fluid communication with the inlet channel Retaining the fluid between the lysis chambers; and heating the fluid in the lysis chamber with a heater; wherein the inlet passage is configured for passage. GLY002.2 Preferably, the lysing action retains the lysate of the fluid from the inlet to retain the fluid during active valve resection at the downstream end of the lysing microchannel. GLY002.3 Preferably, the active valve is a boiling start valve, the anchor is used for retention, and the boiling start valve also has a valve heater, the meniscus is released from the meniscus anchor, The lysis unit. GLY002.4 Preferably, the microchannel is between 1 square micron and 40 square micron. GLY002.5 Preferably, the microfluid, wherein the inlet and the lysis unit are supported by the on-wafer laboratory (LOC) device. GLY002.6 Preferably, the CMOS circuit between the microfluidic substrate and the lysis chamber is configured to operate a valve heater that controls the lysis heater and the point. Capsule capillary lysis for lysing the cells during cell lysis, the lysate is configured to be provided by a capillary channel, the lysate having a meniscus anchor for use in the cell solutes The flow system in the lysing portion is used to boil the liquid to cause the capillary to be driven to flow out of the cross-sectional area of the fluid. The device also has support substrate support and is configured to have the device also located in the branch. Located at the downstream of the microchannel -222-201211533 GLY002.7 Preferably, the microfluidic device also has a polymerase chain reaction (PCR) portion provided with at least one heater for heating and circulating the fluid for amplification Nucleic acid sequences released from such cells. GLY002.8 Preferably, the microfluidic device also has at least one sensor, wherein the CMOS circuit is configured to use the sensor to feedback control the at least one P C R heater. GLY002.9 Preferably, the microfluidic device also has a plurality of temperature φ sensors and a plurality of liquid sensors, wherein the PCR portion has a plurality of heaters to cause the CMOS circuits to respond to the liquid sensors for control The heater is initially activated and returned to the temperature sensor to control the heater power. GLY002.1 0 Preferably, each of the plurality of elongated heaters is independently operable. Preferably, the PCR portion is configured to have a PCR microchannel having the same cross section as the lysing microchannel, and the PCR portion also has an active valve located at a downstream end of the PCR microchannel to amplify the nucleic acid sequence #期 is used to retain the fluid. GLY002.12 Preferably, the microfluidic device also has a PCR mixture reservoir and a polymerase reservoir, wherein the PCR mixture reservoir comprises dNTPs, primers, and a buffer solution and the polymerase reservoir comprises a polymerase. GLY002.1 3 Preferably, the microfluidic device also has an upper cover, the upper cover defines the PCR mixture reservoir and the polymerase reservoir, wherein the lysis unit and the PCR portion are interposed between the upper cover and the support substrate between. GLY002.14 Preferably, the microfluidic device also has a dialysis unit, wherein the cells in the fluid are different in size, and the dialysis portion is configured to divide the cells larger than the predetermined valve to a part of the sample from -223 to 201211533, The portion of the sample is treated separately from the remaining sample containing only cells smaller than the predetermined valve. GLY002.1 5 Preferably, the nucleic acid sequence is derived from cells larger than the predetermined valve. GLY002.1 6 Preferably, the microfluidic device also has an anticoagulant reservoir, wherein the flow system is a whole blood sample such that an anticoagulant is added to the whole blood upstream of the dialysis portion and the dialysis system is It is configured to concentrate white blood cells to a portion of the whole blood sample. GLY002.1 7 Preferably, the microfluidic device also has a hybridization portion downstream of the PCR portion, the hybridization portion having an array of probes for hybridization with a predetermined target nucleic acid sequence in an amplicon from the PCR portion; And a light sensor for detecting probe hybridization in the probe array. GLY 002.1 8 Preferably, the hybridization portion has an electrode placed to receive an electrical pulse, and the probe is an electrochemiluminescence (ECL) probe for hybridization with the target nucleic acid sequence to form a probe-target hybrid. The probe-target hybridization system is configured to emit photons of light when excited by current between the electrodes. GLY002.1 9 Preferably, the light sensor is positioned to respectively register the photodiode array of the ECL probe. The easy-to-use, mass-produced and inexpensive microfluidic device accepts a biochemical sample, uses a hot lysis cell to dissolve the cells or cell cytometer, and treats the lysate. The lysis process is performed by cell extraction analysis and diagnostics in the sample, and subsequent processing and analysis of the targets are provided. Integrating this lysis unit into -224-201211533 to the device provides a simple detection step, low system component count and a simple system manufacturing process, resulting in an inexpensive inspection system. This thermal lysis process simplifies the need for detection chemistry and provides the ability to handle a wide range of species. GLY004.1 This aspect of the invention provides a test module for dissolving cells in a fluid, the test module comprising: a housing provided with a container for receiving a fluid containing cells;; a lysis reagent a reservoir containing a lysis reagent and having an outlet valve; and a lysate in fluid communication with the container for retaining the fluid during cell lysis; wherein the outlet valve is located upstream of the lysis unit and is Disposed to open when the fluid flows into the lysis section, thereby adding the lysis reagent to the fluid. GLY004.2 Preferably, the outlet valve is provided with a surface tension valve of the bore configured to form a meniscus to retain the lysis reagent in its # until the fluid contacts to remove the meniscus The lysing reagent is added to the fluid stream to enter the lysis unit. GLY004.3 Preferably, the lysis portion is configured to attract a lytic microchannel of fluid from the container by capillary action, the lysis portion having an active valve located at a downstream end of the lysis microchannel for The fluid is retained during the solubilization of the cells. GLY004.4 Preferably, the active valve is provided with a boiling start valve of a meniscus anchor, the anchor is for retaining fluid in the lysis unit, and the boiling start valve also has a valve heater. It is used to boil the liquid so that the meniscus is released from the meniscus anchor at -225 - 201211533 to resume capillary drive and flow out of the lysate. GLY004.5 Preferably, the microchannel has a cross-sectional area of the fluid from 8 square microns to 20,000 square microns. GLY004.6 Preferably, the test module also has a support substrate, wherein the lysis unit and the lysis reagent reservoir are supported by the support substrate and configured as a on-wafer laboratory (LOC) device. GLY004.7 Preferably, the test module also has a CMOS circuit between the support substrate and the lysis unit, the CMOS circuit being configured for operational control of a valve heater located at a downstream end of the microchannel. GLY004.8 Preferably, the test module also has a polymerase chain reaction (PCR) portion provided with at least one heater for heating the circulating fluid to amplify the nucleic acid sequence released from the cells. GLY004.9 Preferably, the test module also has at least one sensor, wherein the CMOS circuit is configured to use the sensor to feedback control the at least one PCR heater. GLY004.1 0 Preferably, the test module also has a plurality of heaters and at least one temperature sensor and at least one liquid sensor, so that the C Μ Ο S circuit corresponds to at least one liquid sensor To control the initial activation of the heater and to return at least one temperature sensor to control the heater power 〇GLY004.il Preferably, each of the plurality of heaters is independently operable. GLY004.1 2 Preferably, the PCR moiety is configured to have a PCR microchannel having the same cross section as the lysis microchannel of -226-201211533, the PCR portion also having an active valve located at a downstream end of the PCR microchannel to The nucleic acid sequence is used to retain the fluid during amplification. GLY004.1 3 Preferably, the test module also has a PCR mixture reservoir and a polymerase reservoir, wherein the PCR mixture reservoir comprises dNTPs, primers and buffer solutions and the polymerase reservoir comprises a polymerase. GLY004.1 4 Preferably, the test module also has an upper cover, the upper φ cover defines the lysis reagent reservoir, the PCR mixture reservoir and the polymerase reservoir, wherein the lysis unit and the PCR system Between the upper cover and the support substrate. GLY004.1 5 Preferably, the test module also has a dialysis section, wherein cells in the fluid have different sizes, and the dialysis section is configured to separate a sample larger than a predetermined valve to a portion of the sample, the section The sample is processed separately from the remaining sample containing only cells smaller than the predetermined valve. GLY004.1 6 Preferably, the nucleic acid sequence is derived from cells larger than the predetermined # valve. GLY004.1 7 Preferably, the test module also has an anticoagulant reservoir, wherein the flow system is a whole blood sample such that an anticoagulant is added to the whole blood upstream of the dialysis portion and the dialysis system is It is configured to concentrate white blood cells to a portion of the whole blood sample.

GLY004.1 8 較佳地,該測試模組亦具有位於該PCR 部下游之雜交部,該雜交部具有探針陣列以用於與來自該 PCR部之擴增子中的預定標的核酸序列雜交;及 用於偵測探針陣列中探針雜交之光感應器。 -227- 201211533 GLY004.19 較佳地,該雜交部具有經放置以接受電 脈衝之電極,且該探針爲用於與該標的核酸序列雜交以形 成探針-標的雜交體之電化學發光(ECL)探針,該探針-標 的雜交體係經配置以當受到該等電極之間的電流激發#胃 射光之光子。 GLY004.20 較佳地,該光感應器係位置分別配準該 ECL探針之光電二極體陣列。 該易於使用、可大量生產、不貴且可攜帶之基因測試 模組接受生化樣品,利用化學溶胞次單位以溶解細胞或細 胞胞器,並處理該溶解物。 該溶胞過程自該樣品中之細胞萃取分析及診斷標的, 且提供該等標的之後續處理及分析。將該溶胞次單位整合 至該模組提供簡單檢測步驟、低檢測系統複雜性,導致不 貴之檢測系統。 GLY005.1 本發明之此態樣提供一種用於溶解流體 中之細胞之測試模組,該測試模組包含: 設有用於接受樣品之容器之外殼’該樣品係含有細胞 之流體; 與該容器流體相通之溶胞部以用於在細胞溶解期間保 留該流體;及 用於加熱在該溶胞部中之流體以溶解細胞之溶胞加熱 器;其中 該測試模組係經配置以用於藉由毛細作用自該容器吸 引流體至該溶胞部β -228- 201211533 GLY005.2 較佳地,該溶胞部係經配置爲藉由毛細 作用吸引來自該入口之流體之溶胞微通道,該溶胞部具有 位於該溶胞微通道下游終點之主動閥以用於在該等細胞溶 解期間保留該流體。 GLY005.3 較佳地,該活性閥係設有彎液面錨定器 之沸騰啓動閥,該錨定器係用於保留在該溶胞部內之流體 ,該沸騰啓動閥亦具有閥加熱器,其係用於煮沸液體以使 φ 該彎液面自彎液面錨定器處釋放,以恢復毛細驅動而流出 該溶胞部。 GLY005.4 較佳地,該微通道垂直該流體之截面積 係介於1平方微米至400平方微米。 GLY005.5 較佳地,該測試模組亦具有支持基板, 其中該溶胞部係由該支持基板支持且經配置爲晶片上實驗 室(LOC)裝置。 GLY005.6 較佳地,該測試模組亦具有位於該支持 φ 基板與該溶胞部之間的CMOS電路,該CMOS電路係經配 置以用於操作控制該溶胞加熱器及位於該微通道下游終點 之閥加熱器。 GLY00 5.7 較佳地,該測試模組亦具有設有至少一 個加熱器之聚合酶連鎖反應(PCR)部,其係用於加熱循環 該流體以擴增自該等細胞釋出之核酸序列。 GLY005.8 較佳地,該測試模組亦具有至少一個感 測器,其中該CMOS電路係經配置使用該感測器以反饋控 制該至少一個PCR加熱器。 -229- 201211533 GLY005.9 較佳地,該測試模組亦具有至少一個溫 度感測器及至少一個液體感測器,其中該PCR部具有多個 加熱器以使該CMOS電路回應該至少一個液體感測器以控 制該等加熱器之初始啓動,且回應該至少一個溫度感測器 以控制加熱器電力。 GLY005.1 0 較佳地,各該多個加熱器係可獨立地操 作。 GLY005.il 較佳地,該PCR部係經配置爲具有與 該溶胞微通道相同截面之PCR微通道,該PCR部亦具有 位於該PCR微通道下游終點之主動閥以在該核酸序列擴增 期間用於保留該流體。 GLY005.1 2 較佳地,該測試模組亦具有PCR混合 物貯器及聚合酶貯器,其中該PCR混合物貯器包含dNTP 、引子及緩衝溶液且該聚合酶貯器包含聚合酶。 GLY005.1 3 較佳地,該測試模組亦具有上蓋,該上 蓋定義該PCR混合物貯器及該聚合酶貯器,其中該溶胞部 及該PCR部係介於該上蓋與該支持基板之間。 GLY005.1 4 較佳地,該測試模組亦具有透析部,其 中該流體中之細胞的大小不同,該透析部係經配置以分離 大於預定閥値之細胞至一部分之樣品,該部分之樣品係與 僅包含小於該預定閥値之細胞之剩餘樣品分開處理。 GLY005.1 5 較佳地,該核酸序列係來自小於該預定 閥値之細胞。 GLY005.1 6 較佳地,該測試模組亦具有抗凝血劑貯 -230- 201211533 器,其中該流體係全血樣品以使抗凝血劑在該透析部上游 處添加至該全血。 GLY005.1 7 較佳地,該測試模組亦具有位於該PCR 部下游之雜交部,該雜交部具有探針陣列以用於與來自該 PCR部之擴增子中的預定標的核酸序列雜交;及 用於偵測探針陣列中探針雜交之光感應器。 GLY005.1 8 較佳地,該雜交部具有經放置以接受電 φ 脈衝之電極,且該探針爲用於與該標的核酸序列雜交以形 成探針-標的雜交體之電化學發光(ECL)探針,該探針-標 的雜交體係經配置以當受到該等電極之間的電流激發時發 射光之光子。 GLY005.1 9 較佳地,該光感應器係位置分別配準該 ECL探針之光電二極體陣列。 該易於使用、可大量生產、不貴且可攜帶之基因測試 模組接受生化樣品,利用熱溶胞次單位以溶解細胞或細胞 # 胞器,並處理該溶解物。 該溶胞過程自該樣品中之細胞萃取分析及診斷標的, 且提供該等標的之後續處理及分析。將該溶胞次單位整合 至該模組提供簡單檢測步驟、低檢測系統複雜性,導致不 貴之檢測系統。 該熱溶胞處理簡化檢測化學之需求且提供處理廣泛樣 品種類範圍之能力。 GD A001.1 本發明之態樣提供一種用於同時偵測病 患之多重狀態之微流體裝置,該微流體裝置包含: -231 - 201211533 入口 ’該入口係用於接受抽取自該病患之生物材料樣 品; 具有偵測部之微系統技術(MS T)層,該層具有用於與 該樣品中之標的分子反應以形成探針-標的複合體之探針 陣列,該標的分子係該病患之醫學狀態的指徵;及 光感應器,該光感應器係用於偵測該探針-標的複合 體;其中, 該探針陣列具有超過1,000個探針。 GDA001.2 較佳地,該標的分子係標的核酸序列且 該探針陣列具有經配置以與該標的核酸序列雜交以形成探 針-標的雜交體之探針。 GDA001.3 較佳地,該標的分子係標的蛋白質且該 探針陣列具有經配置以與該標的蛋白質雜交或共軛以形成 探針-標的複合體之探針。 GDA001.4 較佳地,該微流體裝置亦具有CMOS電 路及支持基板,該CMOS電路係位於該MST層與該支持 基板之間,其中該光感應器係倂入該CMOS電路之光電二 極體陣列。 GDA001.5 較佳地,該微流體裝置亦具有含有探針 之雜交室陣列,其中各該探針具有與該標的核酸序列之一 互補之核酸序列及電化學發光(ECL)發光團,且各雜交室 具有用於產生該ECL發光團呈激發狀態之電極,其中在激 發狀態下之該ECL發光團發射光之光子。 GDA001.6 較佳地,該微流體裝置亦具有位於該雜 -232- 201211533 交室陣列上游之核酸擴增部,該核酸擴增部係經配置以用 於擴增該標的核酸序列。 GDA001.7 較佳地,該核酸擴增部係在該標的核酸 序列與該ECL探針雜交前用於擴增該標的核酸序列之聚合 酶連鎖反應(PCR)部。 GDA001.8 較佳地,該MST層具有多個MST通道 ,該等MST通道係經配置以藉由毛細作用吸取含有該標 • 的核酸序列之流體通過該PCR部並進入該雜交室。 GDA0 01.9 較佳地,該CMOS電路具有用於與外部 裝置電連接之銲墊,其中該CMOS電路係經配置以轉換來 自該光電二極體之輸出成顯示該ECL探針與該標的核酸序 列雜交之信號,且提供該信號至銲墊以供傳輸至該外部裝 置。 GDA001.10 較佳地,各該探針具有藉由共振能量轉 移以淬熄來自該ECL發光團之光子發射之功能性部分。 # GDA001.il 較佳地,該探針係經配置以使當該探針 形成探針-標的雜交體時,該用於淬熄來自該ECL發光團 之光子發射之功能性部分係進一步源自該E C L發光團。 GDA001.12 較佳地’該CMOS電路係經配置以提供 電脈衝至該電極,該電脈衝期間小於0.69秒。 GDA001.13 較佳地,該電脈衝之電流係介於0.1奈 安培至69.0奈安培。 GDA001.14 較佳地’該CMOS電路係經配置以控制 在該探針與該標的核酸序列雜交期‘間該雜交室之溫度。 233- 201211533 GDA001.15 較佳地,該微流體裝置亦具有雜交加熱 器’該雜交加熱器係由該CMOS電路控制以提供雜交用之 熱能。 GDA001.16 較佳地,該微流體裝置亦具有自該PCR 部至終點液體感應器之流體流路,該雜交室係沿著該流體 流路之二側配置。 GDA001.17 較佳地,該流體流路係經配置以藉由毛 細作用自該PCR部吸引流體流至該液體終點感應器,且各 該雜交室係經配置以藉由毛細作用充滿來自該流體流路之 流體’使得在使用期間,該CMOS電路反應來自該液體終 點感應器之顯示該流體已經到達該液體終點感應器之輸出 而活化該雜交加熱器。 GDA001.18 較佳地,各該雜交室之體積小於9,000 立方微米。 GDA001.19 較佳地’該光電二極體與該ECL探針 之距離小於1 ,600微米。 GDA00 1.20 較佳地’該微流體裝置亦具有多個處理 該流體所需之不同試劑的試劑貯器,其中該流體係藉由毛 細作用自該入口被吸引至該終點感應器,且不需添加來自 該微流體裝置外之來源之液體。 該易於使用 '可大量生產、不貴且可攜帶之診斷測試 模組接受生物樣品並處理及分析該樣品,其偵測及識別疾 病及狀況之組合。該測試模組之診斷能力提供診斷疾病及 組合之可靠性及速度、易於使用及非常低的診斷成本。 -234- 201211533 【實施方式】 本發明之較佳實施態樣之詳細說明 總論 此總論指明倂有本發明之實施態樣之分子診斷系統之 主要組件。系統結構及操作之完整細節於以下說明書中討 • 論。 參照圖1、2、3、104及105,系統具有下列最重要的 組件: 測試模組1 〇及1 1之大小如同普通之U S B隨身碟, 其可被非常便宜地生產。測試模組1 〇及1 1各包含通常爲 晶片上實驗室(LOC)裝置30形式之微流體裝置,該裝置預 載試劑及通常1,〇〇〇個以上之探針以用於分子診斷分析(見 圖1及1 04)。圖1槪示之測試模組1 0使用螢光基底之偵 # 測技術以識別目標分子,然而圖1 04之測試模組1 1使用 電化學發光基底之偵測技術。LOC裝置3 0具有用於螢光 或電化學發光檢測之整合式光感應器44(於以下詳細描述) 。測試模組10及11均使用標準微型-USB接頭14以供電 、資料及控制,二種測試模組均具有印刷電路板(PCB)5 7 及外部電源供應電容器3 2及電感器1 5 »測試模組1 0及 1 1均爲僅供單次使用,經大量生產及配銷爲可立即使用之 無菌包裝。 外殼13具有可接受生物樣品之大容器24及可移除之 -235- 201211533 無菌密封膠帶22,該膠帶較佳地具有低黏度黏著劑,以於 使用前覆蓋大容器。具有膜防護件4 1 0之膜密封件408形 成部份外殼1 3以減少測試模組內之濕度降低,同時在小 氣壓變動時提供釋壓作用。膜防護件4 1 0保護膜密封件 408免於損傷。 測試模組閱讀器1 2經由微型-U S B埠1 6供電給測試 模組1 〇或1 1。測試模組閱讀器1 2可爲許多不同形式,該 形式之選擇於後描述。圖1、3及104中所示之閱讀器12 版本爲智慧型手機之實施態樣。此閱讀器12之方塊圖係 示於圖3。處理器42執行來自程式儲存器43的應用軟體 。處理器42亦與顯示螢幕18及使用者界面(UI)觸控螢幕 17及按鍵19、蜂巢式無線電21、無線網路連接23,以及 衛星導航系統2 5介接。蜂巢式無線電2 1及無線網路連接 23係用於通訊。衛星導航系統25係用於以地點資料更新 流行病學資料庫。該地點資料可選擇性地經由觸控螢幕i 7 或按鍵19手動輸入。資料儲存器27儲存基因及診斷資訊 、測試結果、患者資訊、用於識別各探針及彼之陣列位置 之分析及探針資料。資料儲存器27及程式儲存器43可共 享於共同記億體設備。測試模組閱讀器! 2中安裝的應用 軟體提供結果分析與其他測試及診斷資訊。 要進行診斷測試時,將測試模組i 〇(或測試模組n )插 入至測試模組閱讀器12上的微型_USB埠。向後撕起無菌 密封膠帶22並將生物樣品(呈液體形式)裝載至樣品大容器 24中。按下開始按鍵2〇經由應用軟體開始測試。樣品流 -236- 201211533 進LOC裝置30而該裝置之機載分析對該樣品進行萃取、 培養、擴增及以預合成的雜交-反應性寡核苷酸探針與該 樣品核酸(標靶)雜交。以測試模組1 0而言(其使用螢光基 底之檢測),該等探針係經螢光標記且由安裝於殼1 3中之 LED 26提供必要之激發光以誘發經雜交之探針的螢光發 射(見圖1及2)。以測試模組1 1而言(其使用電化學發光 (ECL)檢測)’ LOC裝置30裝載ECL探針(如上述)而LED φ 26並非產生發光發射所必需。事實上由電極860及870提 供激發電流(見圖105)。該發射(螢光或發光)係由整合至 各LOC裝置之CMOS電路的光感應器44檢測。該檢測信 號經過放大,並轉換成數位輸出以供測試模組閱讀器1 2 分析。該閱讀器接著顯示結果。 該資料可在當地儲存及/或上傳至包含病患記錄之網 路伺服器。將測試模組1 0或1 1自測試模組閱讀器12移 除並加以適當處理。 # 圖1、3及104顯示設計成行動電話/智慧型手機28 之測試模組閱讀器1 2。其他形式之測試模組閱讀器可爲膝 上型電腦/筆電101、專用閱讀器103、電子書閱讀器107 、平板電腦109或桌上型電腦105以用於醫院、私人診所 或實驗室(見圖106)。該閱讀器可介接一些額外之應用程 式,諸如病患記錄、帳務、線上資料庫及多使用者環境。 其亦可與一些當地或遠端周邊設備介接,諸如印表機及病 患智慧卡。 參照圖1 07,由測試模組1 〇產生之資料可透過閱讀器 -237- 201211533 12及網路125用於更新流行病學資料主機系統111所儲存 之流行病學資料庫、基因資料主機系統1 1 3所儲存之基因 資料庫、電子化健康記錄(EHR)主機系統115所儲存之電 子化健康記錄、電子化醫療記錄(E M R)主機系統1 2 1所儲 存之電子化醫療記錄,以及個人健康記錄(P HR)主機系統 123所儲存之個人健康記錄。相反地,在流行病學資料主 機系統1 1 1所儲存之流行病學資料、在基因資料主機系統 113所儲存之基因資料、在電子化健康記錄(EHR)主機系 統1 1 5所儲存之電子化健康記錄、在電子化醫療記錄 (EMR)主機系統121所儲存之電子化醫療記錄,以及在個 人健康記錄(PHR)主機系統123所儲存之個人健康記錄可 被用於經由網路1 2 5及閱讀器1 2以更新測試模組1 0之 LOC 30中的數位記憶體。 參照圖1、2、1 04及1 05,行動電話組態中之閱讀器 1 2使用電池電力。該行動電話閱讀器包含所有預載之測試 及診斷資訊。資料亦可經由一些無線或接觸界面下載或上 傳以致能與週邊裝置、電腦或線上伺服器通訊。微型USB 埠16被用於連接電腦或主要電力供應以供電池充電。 圖63顯示用於僅需要特定標靶之陽性或陰性測試結 果之測試模組1 0的實施態樣,諸如用於測試人是否受到 例如A型流行性感冒病毒H1N1之感染。只需要爲特定目 的建造之僅USB電力/指示器模組47。不需要其他閱讀器 或應用軟體。在僅USB電力/指示器模組47上之指示器 45顯示陽性或陰性結果。此組態非常適合大量篩檢。 -238- 201211533 其他該系統可能提供之物件可包括含有供預處理特定 樣品之試劑的試管及用於樣品收集之抹刀及刺血針。圖63 顯示爲求方便而倂有加載彈簧之伸縮式刺血針3 90及刺血 針釋放鍵3 92之測試模組的實施態樣。偏遠地區可使用衛 星電話。 測試模組電子學 φ 圖2和1 0 5分別爲測試模組1 0和1 1中之電子組件的 方塊圖。整合於LOC裝置30中之CMOS電路具有USB裝 置驅動器36、控制器34、USB相容性LED驅動器29、時 鐘3 3、電源調節器3 1、RAM 3 8和程式及資料快閃記憶體 40。這些組件提供對整個測試模組1 〇或1 1包括光感應器 44、溫度感測器170、液體感測器174和各種加熱器152 、154、182、234以及相關驅動器37及39和暫存器35及 4 1之控制及記億。只有LED 26(以測試模組1 0爲例)、外 • 部電源電容器32和微型USB接頭14位在LOC裝置30外 部。LOC裝置30包括用於與這些外部組件連接之銲墊。 RAM 38和程式及資料快閃記憶體40具有超過1,000個探 針之應用軟體和診斷及測試資訊(快閃/保全儲存,例如經 由加密)。在經設計以供ECL檢測之測試模組1 1中,該測 試模組1 1不含LED 26(見圖1 04和105)。資料係由LOC 裝置3 0加密以供保全儲存及與外部裝置安全通訊。該 LOC裝置30裝載有電化學發光探針,該等雜交室各具有 —對ECL激發電極860和870。 -239- 201211533 許多類型之測試模組1 〇係經製造爲數種測試形式以 供現貨之用。不同試驗形式之間的差異在於機載分析(〇η board assay)之試劑和探針。 可利用此系統快速鑑識之一些感染性疾病實例包括: •流行性感冒-流行性感冒病毒 A、B、C、傳染性鮭 魚貧血病毒(Isavirus)、托高土病毒(Thogotovirus) •肺炎-呼吸道融合病毒(RSV)、腺病毒、間質肺炎病 毒、肺炎雙球菌、金黃色葡萄球菌 •結核病·結核分枝桿菌、牛型分枝桿菌、非洲分枝 桿菌、卡氏分枝桿菌和田鼠分枝桿菌 •惡性瘧原蟲、弓漿蟲和其他寄生性原蟲病 •傷寒-傷寒桿菌 •依波拉病毒 •人類免疫不全病毒(HIV) •登革熱-黃熱病毒 •肝炎(A到E) •醫源性感染-例如難養芽孢梭菌、抗萬古黴素腸球 菌以及抗藥性金黃色葡萄球菌 •單純皰疹病毒(HSV) •巨細胞病毒(CMV) •愛彼斯坦·巴爾病毒(EBV) •腦炎-日本腦炎病毒、章地埔拉病毒 •百日咳-百日咳菌 •麻疹-副黏液病毒 -240- 201211533 (Neisseria •腦膜炎-肺炎鏈球菌和腦膜炎奈瑟球菌 meningitidis) •炭疽病-炭疽桿菌 可利用此系統鑑識之一些基因疾病實例包括 •囊腫性纖維化 •血友病 •鐮狀細胞貧血病 Φ •黑矇性白癡病 •血色素沉著症 •腦動脈病 •克隆氏病 •多囊性腎臟病 •先天性心臟病 •蕾特氏症 由該診斷系統鑑別之少數癌症實例包括: # •卵巢癌 •結腸癌 •多發性內分泌腫瘤 •視網膜胚細胞瘤 •透克氏症(Turcot syndrome) 利用核酸 上述清單並不完整,該診斷系統可經組態以 和蛋白質體分析來檢測更多樣化之疾病及狀況。 " 系統組件之詳細結構 -241 - 201211533 LOC裝置 LOC裝置30係該診斷系統之核心。該裝置在微流體 平台上快速地進行核酸基底分子診斷分析之四個主要步驟 ’即樣品準備 '核酸萃取、核酸擴增和檢測。該LOC裝 置亦具有選擇性用途,並將詳述於下。如上述討論,測試 模組1 〇及1 1可採取許多不同組態以檢測不同的標靶。同 樣地’ LOC裝置3 0亦可針對所關注之標靶以打造各種不 同之實施例。其中一種形式之LOC裝置3 0.係用於螢光檢 測全血樣品中之病原體的標靶核酸序列之LOC裝置3 0 1。 爲了閫述之目的,LOC裝置301的結構和操作現參照圖4 至26及27至57加以詳細說明。 圖4係LOC裝置301之結構之代表圖式。爲了方便 起見,顯示於圖4的處理階段係以相應於實施該處理階段 之LOC裝置301的功能部之元件符號表示。與核酸基底 分子診斷分析之各個主要步驟有關的處理階段亦被顯示: 樣品輸入及製備288、萃取290、培養291、擴增292及檢 測2 94。LOC裝置301之各種貯器、室、閥及其他組件將 於以下更仔細的描述。 圖5係LOC裝置301之透視圖。該裝置係利用高容 積CMOS和MST(微系統技術)製造技術製造。LOC裝置 30 1之分層構造係以圖1 2之示意性(非按比例)部分剖面圖 闡述。該LOC裝置301具有支持COMS + MST晶片48之 矽基板84,該晶片包含CMOS電路86和MST層87並有 覆蓋MST層87之上蓋46。爲了本專利說明書之目的,術 -242- 201211533 語「MST層」係指以各種試劑處理樣品之結構和層之集合。 因此,這些結構和組件係經配置以定義具有特徵尺寸之流 動路徑,該特徵尺寸將支持以毛細作用驅動與處理階段之 樣品的物理特性類似之液體的流動。有鑑於此,該MST 層和組件通常利用表面微機械加工技術及/或立體微機械 加工技術製造。然而,其他製造方法亦可生產尺寸適用於 毛細驅動流及處理非常少量樣品之結構和組件。在本說明 φ 書中描述之特定實施例顯示該MST層係由CMOS電路86 所支持之結構及主動組件,但不具有上蓋46之特徵。然 而,熟此技藝者將理解該MST層不需要其下之CMOS或 甚至其上之上蓋即可處理樣品。 顯示於下列圖式之LOC裝置的整體尺寸爲1,760微米 X5,8 24微米。當然,爲不同應用所製造之LOC裝置可具 有不同的尺寸。 圖6顯示MST層87之特徵,其與上蓋之特徵重疊。 Φ 顯示於圖6中之AA至AD、AG及AH區分別放大於圖13 、14、3 5、5 6、5 5及5 8,並於以下詳細說明以充分了解 該LOC裝置301內之各個結構。圖7至10獨立顯示上蓋 46之特徵,而圖11獨立顯示CMOS+ MST裝置48之結構 分層結構 圖12和22以圖解說明CMOS + MST裝置48、上蓋46 &二者之間流體交互作用之分層結構。該些圖式爲了闡述 -243- 201211533 之目的而未依比例繪製。圖12爲通過樣品入口 68之截面 示意圖,圖22爲通過貯器54之截面示意圖。圖12清楚 顯示,CMOS + MST裝置48具有支持CMOS電路86之矽 基板84,該CMOS電路86操作其上之MST層87內之主 動元件。鈍化層88密封及保護CMOS層86以免流經MST 層87之液體流入》 液體分別流經上蓋層46及M ST通道層1〇〇中之上蓋 通道94及MST通道90兩者(見例如圖7及16) »細胞輸 送發生在製造於上蓋46中之較大通道94,而生化處理則 在較小之MST通道90進行。細胞輸送通道之大小係經設 計以便能輸送樣品中之細胞至MS Τ通道90中之預定部位 。輸送大於20微米之細胞(例如某些白血球)需要大於20 微米之通道尺寸,因此橫越液流之截面積必須大於400平 方微米。MST通道特別是在不需要輸送細胞之LOC中之 位置可以顯著地較小。 將理解的是,上蓋通道94和MST通道90爲通稱, 特定MST通道90亦可因其特定功能而被稱爲(例如)加熱 微通道或透析MST通道。MST通道90係藉由飽刻沉積在 鈍化層88上之MST通道層100形成,並由光阻劑形成圖 案。該MST通道90被頂部層66封閉,該頂部層形成 CMOS + MST裝置48之頂部(如圖式方向所示)。 雖然有時以分開之層顯示,但該上蓋通道層8〇和貝宁 器層78係由單一材料片形成。當然,該片材料亦可爲非 單一性。該片材料之兩面被蝕刻以形成上蓋通道層8〇與 -244- 201211533 貯器層78,在上蓋通道層80中蝕刻出上蓋通道94 ’在貯 器層78中蝕刻出貯器54、56、58、60和62。或者’該貯 器和上蓋通道係由微模塑法形成。蝕刻和微模塑技術皆被 用來製造具有橫越流體之截面積最大20,000平方微米且 最小8平方微米之通道。 針對LOC裝置中之不同位置,可以選擇各種適當之 橫越流體之通道截面積。當通道中容納大量樣品或具有大 φ 組分之樣品時,最大20,000平方微米之截面積(例如在厚 度100微米之層中寬度爲200微米之通道)係爲適當。當 通道中容納少量液體或無大細胞存在之混合物時,較佳之 橫越流體之截面積係非常小。 下密封層64封閉上蓋通道94,上密封層82封閉貯器 54、 56、 58、 60 和 62° 五個貯器54、56、58、60和62預載特定分析之試劑 。於此描述之實施例中,該等貯器預載下列試劑,但可輕 # 易地更換爲其他試劑: •貯器54 :抗凝血劑,選擇性包括紅血球溶胞液 •貯器56 :溶胞試劑 •貯器58:限制酶、接合酶和連接子(用於連接子引 發 PCR(見圖 62,節錄自 T.Stachan et al.,Human Molecular Genetics 2,Garland Science, NY and London, 1 9 9 9)) •貯器60 :擴增混合物(dNTP、引子、緩衝液),及 •貯器62 : DNA聚合酶。 上蓋46和CMOS + MST層48經由在下密封64和頂部 -245- 201211533 層66中之對應開口呈流體相通。這些開口根據流體係自 MST通道90流至上蓋通道94或相反而被稱爲上升口 96 及下降口 92。 L Ο C裝置操作 LOC裝置3 0 1之操作以血液樣品中致病性DN A之分 析爲例逐步描述於下。當然’其他類型之生物或非生物流 體亦可利用適當之試劑、試驗規程、L〇C變體和檢測系統 之組或組合加以分析。參考圖4,分析生物樣品主要分成 五個步驟,包含樣品輸入及製備2 8 8、核酸萃取290、核 酸培養291、核酸擴增292和檢測及分析294。 樣品輸入及製備步驟2 8 8涉及混合血液與抗凝血劑 116,接著在病原體透析部70分離病原體與白血球及紅血 球。如圖7及1 2所清楚顯示,血液樣品經由樣品入口 68 進入裝置。毛細作用吸引該血液樣品沿著上蓋通道94到 達貯器54 »當樣品血液流開啓貯器54之表面張力閥1 1 8 時’抗凝血劑自貯器54釋出(見圖15和22)。抗凝血劑防 止血塊形成以免阻礙流動。 如圖22最佳顯示,抗凝血劑丨]6係藉由毛細作用自 貯器54吸出及經由下降口 92進入MST通道90。下降口 92具有毛細起始特徵(CIF)1〇2以控制彎液面之幾何形狀 以使彎液面不固定在下降口 92之邊緣。在上密封層82之 通氣孔122能讓空氣取代自貯器54被吸出之抗凝血劑n6 -246- 201211533 圖22所示之MST通道90爲表面張力閥118之一部 分。抗凝血劑116充滿表面張力閥118,並固定彎液面 120於上升口 96之彎液面錨定器98。在使用前,彎液面 120保持固定於上升口 96處,因此抗凝血劑不會流入上蓋 通道94。當血液流經上蓋通道94到達上升口 96時,該彎 液面120被移除並將抗凝血劑吸入液流中。 圖15至21顯示AE區,該AE區係圖13所示之AA φ 區之一部分。如圖15、16和17所示,表面張力閥118具 有三個分開之MST通道90,這些通道延伸於各別之下降 口 92及上升口 96之間。在表面張力閥中之MST通道90 之數目可以不同以改變試劑進入樣品混合物之流速。當樣 品混合物和試劑係藉由擴散混合時,流出貯器之流速決定 試劑在樣品流中之濃度。因此,各貯器之表面張力閥係經 配置以符合所需之試劑濃度。 血液進入病原體透析部70(見圖4和15),該處利用根 # 據預定閥値制定大小之孔陣列1 64自樣品濃縮標靶細胞。 小於閥値之細胞通過該孔,而大細胞不能通過該孔。非所 欲之細胞不是被孔陣列164阻擋之較大細胞就是通過該孔 之較小細胞,它們被轉導至廢料單元76,然而標靶細胞仍 爲分析之一部分。 在此處描述之病原體透析部70中,來自全血樣品之 病原體係經濃縮以供微生物DNA分析。孔陣列係由眾多3 微米直徑之孔1 64形成,該孔流體連通上蓋通道94中之 ,輸入流至標靶通道74。該3微米直徑之孔1 64和標靶通道 -247- 201211533 74中之透析上升孔168係由一系列透析MST通道204連 接(最佳顯示於圖1 5和2 1)。病原體之體積很小,因此可 通過3微米直徑之孔164並經由透析MST通道204充滿 標靶通道74。大於3微米之細胞諸如紅血球和白血球留在 上蓋46之廢料通道72中,該廢料通道通向廢料貯器76( 見圖7)。 可利用其他孔形狀、大小和長寬比以分離特定病原體 或其他標靶細胞,諸如用於人DNA分析之白血球。有關 透析部和透析變體之詳細說明於後提供。 再次參照圖6和7,流體被吸入通過標靶通道74而到 達溶胞試劑貯器56之表面張力閥128。表面張力閥128具 有七個MST通道90,該等通道延伸於溶胞試劑貯器56和 標靶通道74之間。當彎液面被樣品流移除時,來自所有 七個MST通道90之流速將大於來自抗凝血劑貯器54之 流速,其中貯器54之表面張力閥118具有三個MST通道 9〇(假設該些液體之物理特性爲大致相等)。因此溶胞試劑 於樣品混合物中之比例係大於抗凝血劑於樣品混合物中之 比例。 溶胞試劑和標靶細胞在化學溶胞部130內之標靶通道 7 4中藉由擴散混合。沸騰啓動閥1 2 6停止該液流,直到經 過足以發生擴散和溶胞之時間,以使基因物質自該標靶細 胞釋放(見圖6和7)。沸騰啓動閥之結構和操作參考圖3 1 和32於下詳細描述。其他主動閥類型(與像是表面張力閥 118之被動閥相反)亦已由申請人開發,該些其他類型之主 -248- 201211533 動閥可被用於此處以取代沸騰啓動閥。這些替代閥設計亦 描述於下。 當沸騰啓動閥1 26打開時,經溶胞之細胞流入混合部 1 3 1以進行擴增前之限制酶剪切以及連接子接合。 參考圖13,當流體移除在混合部131起始處之表面張 力閥132之彎液面時,限制酶、連接子和接合酶自貯器58 釋放。該混合物流經混合部131之長度以擴散混合。混合 φ 部131之末端爲通向培養部114之培養器入口通道133的 下降口 134(見圖13)。該培養器入口通道133將混合物饋 入呈彎繞配置之加熱微通道210,該微通道提供在限制酶 剪切以及連接子接合期間用來容納樣品之培養室(見圖1 3 及 14)。 圖 23、24、25、26、27、28 及 29 顯示 LOC 裝置 301 在圖6之AB區內之層。各圖顯示連續疊加(addition)之層 以形成CMOS + MST層48和上蓋46之結構。AB區顯示培 • 養部1 14之終點和擴增部1 12之起點。如圖14及23最佳 顯示’流體充滿培養部114之微通道210直到抵達沸騰啓 動閥1 〇6 ’流體停在該處以令擴散發生。如上討論,在沸 騰啓動閥1 06上游之微通道2 1 0成爲含有樣品、限制酶、 接合酶和連接子之培養室。加熱器154接著啓動並於一段 特定時間維持穩定溫度以使限制酶剪切和連接子接合發生 〇 熟此技藝者將理解此培養步驟291 (見圖4)係可任選的 ’僅爲一些核酸擴增分析類型所需。另外在一些例子中, -249- 201211533 可·能需要在培養期結束時提供加熱步驟以使溫度急升至培 養溫度以上°該溫度急升會使限制酶和接合酶在進入擴增 部1 1 2前去活。去活限制酶和接合酶對於採用等溫核酸擴 增時特別重要^ 在培養後’沸騰啓動閥106被啓動(打開)並使流體繼 續進入擴增部112。參考圖31及32,該混合物充滿呈彎 繞配置之加熱微通道〗58直到到達沸騰啓動閥1〇8,該微 通道形成一或更多擴增室。如圖30之剖面示意圖清楚顯 示’擴增混合物(dNTP、引子、緩衝液)自貯器60釋放及 聚合酶接著自貯器62釋放而進入連接培養部和擴增部(分 別爲114及112)之中間MST通道212。 圖35至51顯示LOC裝置301在圖6之AC區內之層 。各圖顯示連續疊加(addition)之層以形成CMOS + MST裝 置48和上蓋46之結構。AC區係擴增部112之終點和雜 交及檢測部52之起點。該經培養之樣品、擴增混合物和 聚合酶流經微通道158到達沸騰啓動閥108。在經足夠時 間之擴散混合後,在微通道1 58中之加熱器1 54被啓動以 進行熱循環或等溫擴增。該擴增混合物經歷預定次數的熱 循環或預設之擴增時間以擴增足夠之標靶DNA。在核酸擴 增程序之後,沸騰啓動閥〗〇8打開且流體繼續進入雜交及 檢測部52。沸騰啓動閥之操作於下詳加描述。 如圖52所示,該雜交及檢測部52具有雜交室陣列 110。圖52、53、54及56詳細顯示雜交室陣列110和單 一雜交室18〇°在雜交室180之入口設有擴散屏障175’ -250- 201211533 其可防止標靶核酸、探針股和經雜交之探針在雜交期間於 雜交室180之間擴散,以防止錯誤的雜交檢測結果。擴散 屏障1 75代表長度夠長之流動路徑,以防止標靶序列和探 針在該探針和核酸雜交及訊號被檢測所需之時間內擴散出 —室且污染另一室,因此避免錯誤結果。 另一防止錯誤結果之機制是在多個雜交室中含有相同 探針。CMOS電路86自對應於包含相同探針之雜交室180 φ 的光電二極體184導出單一結果。在推導單一結果時,異 常結果可被忽略或給予不同權重。 雜交所需之熱能係由CMOS控制之加熱器182提供( 於下詳加描述)。在啓動加熱器後,雜交發生於互補之標 靶-探針序列之間。CMOS電路86中之LED驅動器29傳 送訊息給位於測試模組1 0中之LED 26以使之發光。這些 探針僅於雜交發生時發出螢光,因此省略爲了移除未結合 之股通常所需之清洗和乾燥步驟。雜交強制FRET探針 # 186之莖環結構打開,這使得螢光團得以回應LED激發光 而發射螢光能量,於下詳加描述。螢光係由位於各雜交室 180下方之CMOS電路86中之光電二極體184所檢測(見 以下關於雜交室之說明)。用於所有雜交室之光電二極體 184及相關之電子裝置共同形成光感應器44(見圖60)。在 其他實施例,光感應器可爲電荷耦合裝置之陣列(CCD陣 列)。該來自光電二極體184之檢測信號經過放大,並轉 換成數位輸出以供測試模組閱讀器1 2分析。檢測方法之 進一步細節係描述於下。 -251 - 201211533 LOC裝置之其他詳細說明 模組化設計 LOC裝置301具有許多功能部(包括試劑貯器54、56 、58、60及62、透析部70、溶胞部1 30、培養部1 14及 擴增部U 2)、閥類型、增濕器及濕度感測器。於其他實施 態樣之LOC裝置中,這些功能部可被省略,然可增加另 外的功能部或該等功能部可被用於與上述不同之用途。 舉例來說,培養部1 1 4可被用來作爲串聯擴增分析系 統之第一擴增部112,且該化學溶胞試劑貯器56被用來添 加第一擴增之引子、dNTP及緩衝液之混合物,及試劑貯 器5 8被用來添加反轉錄酶及/或聚合酶。若樣品需進行化 學溶胞’亦可在貯器5 6中加入化學溶胞試劑(連同擴增混 合物)’或替代性地,可藉由加熱樣品一段預定的時間以 在培養部中發生熱溶胞。在一些實施態樣中,若需要化學 溶胞並且希望使化學溶胞試劑與引子' dNTP及緩衝液之 混合物分開’可在緊鄰該混合物之貯器5 8之上游處倂入 額外貯器。 於—些情況中可能希望省略步驟,諸如培養步驟29 1 。於此情況中’可特別製造L0C裝置以免去試劑貯器58 及培養部1 1 4 ’或可簡單地不在該貯器裝載試劑,或者若 存有主動閥時,該主動閥不被啓動以釋放試劑至樣品流中 ’因此該培養部就變成僅將樣品自溶胞部1 3 0傳送至擴增 部1 1 2之通道。加熱器係可獨立操作,因此當反應仰賴加 -252- 201211533 熱時’諸如熱溶胞反應,設定加熱器不於此步驟期間啓動 可確保熱溶胞不會發生在不需熱溶胞之LOC裝置中。透 析部70可位於如圖4所示之微流體裝置內之流體系統之 起點’或可位於該微流體裝置內之任何其他位置。舉例來 說’在一些情況下,於擴增階段292之後透析以在雜交及 檢測步驟294之前移除細胞碎片可能有利。或者,可於 LOC裝置中之任何位置倂入二或多個透析部。同樣地,有 φ 可能倂入額外之擴增部112以使得多重標靶在雜交室陣列 110中以特定核酸探針進行檢測之前,能同時或連續進行 擴增。以分析例如全血之樣品而言不需要進行透析,因此 簡單地於LOC設計之樣品輸入及製備部28 8省略透析部 70。在一些情況下,並不一定要省略LOC裝置之透析部 70,即使該分析不需進行透析。若透析部的存在不會對該 分析造成幾何性阻礙,仍可使用於樣品輸入及製備部具有 透析部7〇之LOC而不喪失所需之功能。 φ 此外,檢測部294可包括蛋白質體室陣列,其係與雜 交室陣列相同,但載有設計成與存在於非擴增之樣品中之 樣品標靶蛋白質共軛或雜交之探針,而不是設計用來與標 靶核酸序列雜交之核酸探針。 將了解的是,爲用於此診斷系統而製造之LOC裝置 係根據特定LOC應用加以選擇之功能部的不同組合。絕 大部分之功能部對許多LOC裝置而言係爲相同,而針對 新應用之額外LOC裝置之設計係關於自現存LOC裝置中 所使用之各種功能部選項中彙整適當之功能部組合。 -253- 201211533 本說明中僅顯示少數LOC裝置,更多LOC裝置係以 圖式說明以闡述爲此系統製造之LOC裝置的設計彈性。 熟此技藝者將可輕易地明白本說明書所說明之LOC裝置 並非窮舉,且許多另外的LOC設計係關於彙整適當之功 能部組合。 樣品類型 LOC變體可接受及分析各種呈液體形式之樣品類型之 核酸或蛋白質內容,該樣品類型包括但不限於血液及血液 產物、唾液、腦脊髓液、尿液、精液、羊膜液、臍帶血、 母乳、汗液、肋膜積液、淚液、心囊液、腹腔液、環境水 樣品及歆料樣品。自巨觀核酸擴增獲得之擴增子亦可利用 該LOC裝置進行分析;於此情況中,所有試劑貯器將爲 空的或經配置爲不釋出其內容物,而該透析、溶胞、培養 及擴增部將僅被用來將樣品從樣品入口 6 8輸送至雜交室 1 80以如上述進行核酸檢測。 —些樣品類型在輸入LOC裝置之前需要預處理之步 驟,例如精液可能需要經液化及黏液可能需要經酵素預處 理以減低黏性。 樣品輸入GLY004. Preferably, the test module also has a hybridization portion downstream of the PCR portion, the hybridization portion having a probe array for hybridization with a predetermined target nucleic acid sequence in the amplicon from the PCR portion; A light sensor for detecting probe hybridization in the probe array. -227- 201211533 GLY004. Preferably, the hybridization portion has an electrode placed to receive an electrical pulse, and the probe is an electrochemiluminescence (ECL) probe for hybridizing with the target nucleic acid sequence to form a probe-target hybrid. The probe-target hybridization system is configured to be excited by the current between the electrodes to emit photons of the stomach. GLY004. Preferably, the light sensor is positioned to respectively register the photodiode array of the ECL probe. The easy-to-use, mass-produced, inexpensive, and portable genetic test module accepts biochemical samples, utilizes chemical lysis subunits to lyse cells or cells, and treats the lysate. The lysis process is performed by cell extraction analysis and diagnostics in the sample, and subsequent processing and analysis of the targets are provided. Integrating this lysis unit into the module provides a simple detection step and low detection system complexity, resulting in an inexpensive detection system. GLY005. 1 This aspect of the invention provides a test module for dissolving cells in a fluid, the test module comprising: a housing having a container for receiving a sample, the sample being a fluid containing cells; in fluid communication with the container a lysate for retaining the fluid during cell lysis; and a lysis heater for heating the fluid in the lysate to dissolve the cells; wherein the test module is configured for use by capillary Acting from the container to attract fluid to the lysis unit β -228- 201211533 GLY005. Preferably, the lysis portion is configured to attract a lytic microchannel of fluid from the inlet by capillary action, the lysis portion having an active valve located at a downstream end of the lysis microchannel for use in The fluid is retained during cell lysis. GLY005. Preferably, the active valve is provided with a boiling start valve of a meniscus anchor, the anchor is for retaining fluid in the lysis unit, and the boiling start valve also has a valve heater, It is used to boil the liquid so that the meniscus is released from the meniscus anchor to recover the capillary drive and flow out of the lysate. GLY005. Preferably, the microchannel has a cross-sectional area of the fluid ranging from 1 square micron to 400 square micrometers. GLY005. Preferably, the test module also has a support substrate, wherein the lysis unit is supported by the support substrate and configured as a lab-on-lab (LOC) device. GLY005. Preferably, the test module also has a CMOS circuit between the supporting φ substrate and the lysis unit, the CMOS circuit configured to operate and control the lysis heater and located at a downstream end of the microchannel Valve heater. GLY00 5. Preferably, the test module also has a polymerase chain reaction (PCR) portion provided with at least one heater for heating the circulating fluid to amplify the nucleic acid sequence released from the cells. GLY005. Preferably, the test module also has at least one sensor, wherein the CMOS circuit is configured to use the sensor to feedback control the at least one PCR heater. -229- 201211533 GLY005. Preferably, the test module also has at least one temperature sensor and at least one liquid sensor, wherein the PCR portion has a plurality of heaters to cause the CMOS circuit to respond to at least one liquid sensor to control the The heater is initially activated and at least one temperature sensor is returned to control the heater power. GLY005. Preferably, each of the plurality of heaters is independently operable. GLY005. Il preferably, the PCR portion is configured to have a PCR microchannel having the same cross-section as the lysing microchannel, the PCR portion also having an active valve located downstream of the PCR microchannel for use during amplification of the nucleic acid sequence The fluid is retained. GLY005. Preferably, the test module also has a PCR mixture reservoir and a polymerase reservoir, wherein the PCR mixture reservoir comprises dNTPs, primers and buffer solutions and the polymerase reservoir comprises a polymerase. GLY005. Preferably, the test module also has an upper cover defining the PCR mixture reservoir and the polymerase reservoir, wherein the lysis portion and the PCR portion are interposed between the upper cover and the support substrate. GLY005. Preferably, the test module also has a dialysis section, wherein the cells in the fluid are different in size, and the dialysis section is configured to separate a sample larger than a predetermined valve to a part of the sample, and the sample of the part is The remaining samples containing only cells smaller than the predetermined valve are treated separately. GLY005. Preferably, the nucleic acid sequence is from a cell that is less than the predetermined valve. GLY005. Preferably, the test module also has an anticoagulant reservoir - 230 - 201211533, wherein the flow system is a whole blood sample such that the anticoagulant is added to the whole blood upstream of the dialysis section. GLY005. Preferably, the test module also has a hybridization portion downstream of the PCR portion, the hybridization portion having a probe array for hybridization with a predetermined target nucleic acid sequence in the amplicon from the PCR portion; A light sensor for detecting probe hybridization in the probe array. GLY005. Preferably, the hybridization portion has an electrode placed to receive an electrical φ pulse, and the probe is an electrochemiluminescence (ECL) probe for hybridizing with the target nucleic acid sequence to form a probe-target hybrid. The probe-target hybridization system is configured to emit photons of light when excited by current between the electrodes. GLY005. Preferably, the photosensor is positioned to respectively register the photodiode array of the ECL probe. The easy-to-use, mass-produced, inexpensive, and portable genetic test module accepts biochemical samples, utilizes hot lytic units to dissolve cells or cells, and treats the lysate. The lysis process is performed by cell extraction analysis and diagnostics in the sample, and subsequent processing and analysis of the targets are provided. Integrating this lysis unit into the module provides a simple detection step and low detection system complexity, resulting in an inexpensive detection system. This thermal lysis process simplifies the need for detection chemistry and provides the ability to handle a wide range of species. GD A001. 1 Aspects of the invention provide a microfluidic device for simultaneously detecting multiple states of a patient, the microfluidic device comprising: -231 - 201211533 an inlet for receiving a sample of biological material extracted from the patient a microsystem technology (MS T) layer having a detection portion having a probe array for reacting with a target molecule in the sample to form a probe-target complex, the target molecule being the medicine of the patient An indication of the state; and a light sensor for detecting the probe-target complex; wherein the probe array has more than 1,000 probes. GDA001. Preferably, the target molecule is labeled with a nucleic acid sequence and the probe array has a probe configured to hybridize to the target nucleic acid sequence to form a probe-target hybrid. GDA001. Preferably, the target molecule is a protein of interest and the probe array has a probe configured to hybridize or conjugate with the target protein to form a probe-target complex. GDA001. Preferably, the microfluidic device also has a CMOS circuit and a supporting substrate. The CMOS circuit is located between the MST layer and the supporting substrate, wherein the light sensor is inserted into the photodiode array of the CMOS circuit. GDA001. Preferably, the microfluidic device also has an array of hybridization chambers containing probes, wherein each of the probes has a nucleic acid sequence complementary to one of the target nucleic acid sequences and an electrochemiluminescence (ECL) luminophore, and each hybridization chamber An electrode having an excited state for generating the ECL luminophore, wherein the ECL luminophore emits photons of light in an excited state. GDA001. Preferably, the microfluidic device also has a nucleic acid amplification portion upstream of the hetero-232-201211533 compartment array, the nucleic acid amplification portion being configured to amplify the target nucleic acid sequence. GDA001. Preferably, the nucleic acid amplification portion is a polymerase chain reaction (PCR) portion for amplifying the target nucleic acid sequence before the target nucleic acid sequence hybridizes to the ECL probe. GDA001. Preferably, the MST layer has a plurality of MST channels configured to draw fluid containing the nucleic acid sequence of the target by capillary action through the PCR portion and into the hybridization chamber. GDA0 01. Preferably, the CMOS circuit has a pad for electrically connecting to an external device, wherein the CMOS circuit is configured to convert an output from the photodiode to show that the ECL probe hybridizes to the target nucleic acid sequence Signal and provide the signal to the pad for transmission to the external device. GDA001. Preferably, each of the probes has a functional portion that is resonated by resonance energy to quench photon emission from the ECL luminophore. # GDA001. Il preferably, the probe is configured such that when the probe forms a probe-target hybrid, the functional moiety for quenching photon emission from the ECL luminophore is further derived from the ECL luminescence group. GDA001. Preferably, the CMOS circuit is configured to provide an electrical pulse to the electrode, the electrical pulse period being less than zero. 69 seconds. GDA001. 13 Preferably, the current of the electrical pulse is between 0. 1 nai to 69. 0 nai pei. GDA001. Preferably, the CMOS circuit is configured to control the temperature of the hybridization chamber during the period of hybridization of the probe to the target nucleic acid sequence. 233- 201211533 GDA001. Preferably, the microfluidic device also has a hybrid heater. The hybrid heater is controlled by the CMOS circuit to provide thermal energy for hybridization. GDA001. Preferably, the microfluidic device also has a fluid flow path from the PCR portion to the end liquid sensor, the hybrid chamber being disposed along both sides of the fluid flow path. GDA001. Preferably, the fluid flow path is configured to draw fluid from the PCR portion to the liquid end point sensor by capillary action, and each of the hybrid chambers is configured to be filled with the fluid flow path by capillary action The fluid' is such that during use, the CMOS circuit activates the hybrid heater by reacting an output from the liquid endpoint sensor indicating that the fluid has reached the output of the liquid endpoint sensor. GDA001. Preferably, each of the hybridization chambers has a volume of less than 9,000 cubic microns. GDA001. Preferably, the distance between the photodiode and the ECL probe is less than 1,600 microns. GDA00 1. 20 Preferably, the microfluidic device also has a plurality of reagent reservoirs for treating the different reagents required for the fluid, wherein the flow system is attracted to the endpoint sensor from the inlet by capillary action without adding a source of liquid outside the microfluidic device. This easy-to-use mass-produced, inexpensive, and portable diagnostic test module accepts biological samples and processes and analyzes the samples, detecting and identifying combinations of diseases and conditions. The diagnostic capabilities of the test module provide reliability and speed for diagnosing diseases and combinations, ease of use and very low diagnostic costs. [234] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is directed to the main components of a molecular diagnostic system embodying an embodiment of the present invention. The full details of the system structure and operation are discussed in the following description. Referring to Figures 1, 2, 3, 104 and 105, the system has the following most important components: The test modules 1 and 1 are the same size as the conventional U S B flash drive, which can be produced very cheaply. Test modules 1 and 1 each comprise a microfluidic device, typically in the form of a lab-on-lab (LOC) device 30, which preloads reagents and typically more than one probe for molecular diagnostic analysis. (See Figures 1 and 104). The test module 10 illustrated in Figure 1 uses a fluorescent substrate detection technique to identify the target molecule, whereas the test module 1 1 of Figure 104 uses the detection technique of the electrochemiluminescence substrate. The LOC device 30 has an integrated light sensor 44 (described in detail below) for fluorescence or electrochemiluminescence detection. Test modules 10 and 11 use standard micro-USB connector 14 for power supply, data and control. Both test modules have printed circuit board (PCB) 5 7 and external power supply capacitor 3 2 and inductor 1 5 » test Modules 10 and 1 1 are for single use only, and are mass-produced and distributed for aseptic packaging for immediate use. The outer casing 13 has a large container 24 that accepts biological samples and a removable -235-201211533 sterile sealing tape 22, which preferably has a low viscosity adhesive to cover the large container prior to use. The membrane seal 408 having the membrane shield member 410 forms a portion of the outer casing 13 to reduce the humidity reduction in the test module while providing a pressure relief effect when the atmospheric pressure changes. Membrane guard 4 10 protective film seal 408 is protected from damage. The test module reader 1 2 supplies power to the test module 1 〇 or 1 1 via the micro-U S B埠1 6 . The test module reader 12 can be in many different forms, the choice of which is described later. The version of the reader 12 shown in Figures 1, 3 and 104 is an implementation of the smart phone. A block diagram of this reader 12 is shown in Figure 3. The processor 42 executes the application software from the program storage 43. The processor 42 is also interfaced with a display screen 18 and a user interface (UI) touch screen 17 and buttons 19, a cellular radio 21, a wireless network connection 23, and a satellite navigation system 25. Honeycomb radio 2 1 and wireless network connection 23 are used for communication. The satellite navigation system 25 is used to update the epidemiological database with location information. The location data can optionally be manually entered via touch screen i 7 or button 19. The data store 27 stores genetic and diagnostic information, test results, patient information, analysis and probe data for identifying the position of each probe and its array. The data storage 27 and the program storage 43 can be shared by a common device. Test module reader! The application software installed in 2 provides results analysis and other test and diagnostic information. To perform a diagnostic test, insert the test module i (or test module n) into the mini_USB port on the test module reader 12. The sterile sealing tape 22 is torn back and the biological sample (in liquid form) is loaded into the sample large container 24. Press the start button 2 to start the test via the application software. Sample stream -236-201211533 into the LOC device 30 and the device is subjected to on-board analysis to extract, culture, amplify and pre-synthesize a hybrid-reactive oligonucleotide probe with the sample nucleic acid (target) Hybrid. In the case of test module 10 (which uses detection of a fluorescent substrate), the probes are fluorescently labeled and provide the necessary excitation light by LEDs 26 mounted in the housing 13 to induce hybridized probes. Fluorescent emission (see Figures 1 and 2). In the case of test module 1 (which uses electrochemiluminescence (ECL) detection), the LOC device 30 is loaded with an ECL probe (as described above) and LED φ 26 is not required to produce luminescent emissions. In fact, the excitation current is provided by electrodes 860 and 870 (see Figure 105). The emission (fluorescence or illumination) is detected by a light sensor 44 integrated into the CMOS circuitry of each LOC device. The detection signal is amplified and converted to a digital output for analysis by the test module reader. The reader then displays the results. This information can be stored locally and/or uploaded to a network server containing patient records. The test module 10 or 1 1 is removed from the test module reader 12 and processed appropriately. # Figure 1, 3 and 104 show a test module reader 12 designed as a mobile phone/smartphone 28. Other forms of test module readers may be laptops/notebooks 101, dedicated readers 103, e-book readers 107, tablets 109 or desktop computers 105 for use in hospitals, private clinics or laboratories ( See Figure 106). The reader can interface with additional applications such as patient records, accounting, online databases and multi-user environments. It can also interface with some local or remote peripherals, such as printers and patient smart cards. Referring to FIG. 1 07, the data generated by the test module 1 can be used to update the epidemiological database and the genetic data host system stored in the epidemiological data host system 111 through the reader-237-201211533 12 and the network 125. 1 1 3 stored genetic database, electronic health record (EHR) host system 115 stored electronic health record, electronic medical record (EMR) host system 1 2 1 stored electronic medical records, and individuals Health Record (P HR) Personal health record stored by host system 123. Conversely, the epidemiological data stored in the epidemiological data host system 1 1 1 , the genetic data stored in the genetic data host system 113, and the electronic data stored in the electronic health record (EHR) host system 1 1 5 The health record, the electronic medical record stored in the electronic medical record (EMR) host system 121, and the personal health record stored in the personal health record (PHR) host system 123 can be used to access the network 1 2 5 And the reader 12 to update the digital memory in the LOC 30 of the test module 10. Referring to Figures 1, 2, 104 and 010, the reader in the mobile phone configuration uses battery power. The mobile phone reader contains all pre-loaded test and diagnostic information. Data can also be downloaded or uploaded via some wireless or contact interface to enable communication with peripheral devices, computers or online servers. The micro USB port 16 is used to connect a computer or a primary power supply for charging the battery. Figure 63 shows an embodiment of a test module 10 for a positive or negative test result requiring only a particular target, such as for testing whether a human is infected with, for example, influenza A virus H1N1. Only the USB power/indicator module 47 built for a particular purpose is required. No other readers or application software is required. The indicator 45 on the USB power/indicator module 47 alone displays a positive or negative result. This configuration is ideal for large screenings. -238- 201211533 Other items that may be provided by this system may include test tubes containing reagents for pre-treatment of specific samples and spatula and lancets for sample collection. Figure 63 shows an embodiment of a test module with a spring loaded telescopic lancet 3 90 and a lancet release button 3 92 for convenience. Satellite phones are available in remote locations. Test Module Electronics φ Figures 2 and 1 0 5 are block diagrams of the electronic components in test modules 10 and 11. The CMOS circuit integrated in the LOC device 30 has a USB device driver 36, a controller 34, a USB compatible LED driver 29, a clock 3 3, a power conditioner 3 1 , a RAM 3 8 and a program and data flash memory 40. These components provide for the entire test module 1 or 11 including the light sensor 44, temperature sensor 170, liquid sensor 174 and various heaters 152, 154, 182, 234 and associated drivers 37 and 39 and temporary storage The control of the devices 35 and 41 is 100 million. Only LED 26 (with test module 10 as an example), external power supply capacitor 32 and micro USB connector 14 are located outside of LOC device 30. LOC device 30 includes pads for connection to these external components. RAM 38 and program and data flash memory 40 have over 1,000 probe applications and diagnostic and test information (flash/security storage, such as by encryption). In the test module 1 1 designed for ECL detection, the test module 1 1 does not contain the LED 26 (see Figs. 04 and 105). The data is encrypted by the LOC device 30 for secure storage and secure communication with external devices. The LOC device 30 is loaded with electrochemiluminescent probes each having a pair of ECL excitation electrodes 860 and 870. -239- 201211533 Many types of test modules 1 are manufactured in several test formats for stock use. The difference between the different test formats is the reagents and probes for the onboard analysis. Some examples of infectious diseases that can be quickly identified using this system include: • Influenza-influenza virus A, B, C, infectious salmon virus (Isavirus), Tohogotovirus (phogotovirus) • Pneumonia-respiratory fusion Virus (RSV), adenovirus, interstitial pneumonia virus, pneumococci, staphylococcus aureus, tuberculosis, mycobacterium tuberculosis, mycobacterium bovis, mycobacteria, mycobacteria, and mycobacteria • Plasmodium falciparum, Toxoplasma gondii and other parasitic protozoa • Typhoid- typhoid bacillus • Ebola virus • Human immunodeficiency virus (HIV) • Dengue fever – Yellow fever virus • Hepatitis (A to E) • Medical source Sexual infections - such as Clostridium pneumoniae, vancomycin-resistant enterococci and drug-resistant Staphylococcus aureus • Herpes simplex virus (HSV) • Cytomegalovirus (CMV) • Epstein Barr virus (EBV) • Brain Inflammation - Japanese encephalitis virus, Zhangdipula virus • Pertussis - pertussis • Measles - paramyxovirus -240- 201211533 (Neisseria • Meningitis - Streptococcus pneumoniae and Neisseria meningi Tidis) • Anthracnose-Bacillus anthracis Examples of some genetic diseases that can be identified using this system include • Cystic fibrosis • Hemophilia • Sickle cell anemia Φ • Black Mongolian idiots • Hemochromatosis • Cerebral arterial disease • Crohn's disease • Polycystic kidney disease • Congenital heart disease • Leier's disease A few examples of cancers identified by this diagnostic system include: # • Ovarian cancer • Colon cancer • Multiple endocrine neoplasms • Retinal blastoma • Tucker Turcot Syndrome Using Nucleic Acids The above list is incomplete and the diagnostic system can be configured to detect more diverse diseases and conditions with proteomic analysis. " Detailed Structure of System Components -241 - 201211533 LOC Device The LOC device 30 is the core of this diagnostic system. The device rapidly performs the four major steps of nucleic acid substrate molecular diagnostic analysis on a microfluidic platform, i.e., sample preparation, nucleic acid extraction, nucleic acid amplification, and detection. The LOC device is also of a selective use and will be described in detail below. As discussed above, test modules 1 and 11 can take many different configurations to detect different targets. Similarly, the 'LOC device 30 can also be used to create a variety of different embodiments for the target of interest. One form of LOC device 3 0. A LOC device 310 for use in fluorescent detection of a target nucleic acid sequence of a pathogen in a whole blood sample. For the purpose of the description, the structure and operation of the LOC device 301 will now be described in detail with reference to Figs. 4 to 26 and 27 to 57. 4 is a representative diagram of the structure of the LOC device 301. For the sake of convenience, the processing stages shown in Fig. 4 are denoted by the component symbols corresponding to the functional portions of the LOC device 301 that implements the processing stage. The processing stages associated with each of the major steps in the molecular diagnostic analysis of the nucleic acid substrate are also shown: sample input and preparation 288, extraction 290, culture 291, amplification 292, and detection 2 94. The various reservoirs, chambers, valves and other components of the LOC device 301 will be described more closely below. Figure 5 is a perspective view of the LOC device 301. The device is fabricated using high volume CMOS and MST (microsystem technology) fabrication techniques. The layered structure of the LOC device 30 1 is illustrated in a schematic (not to scale) partial cross-sectional view of Figure 12. The LOC device 301 has a germanium substrate 84 that supports a COMS + MST wafer 48 that includes a CMOS circuit 86 and an MST layer 87 and has a cover 46 overlying the MST layer 87. For the purposes of this patent specification, the term "MST layer" refers to a collection of structures and layers of a sample treated with various reagents. Accordingly, these structures and components are configured to define a flow path having a feature size that will support capillary flow to drive the flow of liquid similar to the physical properties of the sample at the processing stage. In view of this, the MST layers and components are typically fabricated using surface micromachining techniques and/or stereo micromachining techniques. However, other manufacturing methods can also produce structures and components that are sized for capillary drive flow and for handling very small samples. The particular embodiment described in the specification φ shows that the MST layer is a structure and active component supported by the CMOS circuit 86, but does not have the features of the upper cover 46. However, those skilled in the art will appreciate that the MST layer does not require the underlying CMOS or even the upper cover to process the sample. The overall dimensions of the LOC device shown in the following figures are 1,760 microns X5, 8 24 microns. Of course, LOC devices made for different applications can be of different sizes. Figure 6 shows the features of the MST layer 87 that overlaps the features of the upper cover. Φ The AA to AD, AG, and AH regions shown in FIG. 6 are enlarged in FIGS. 13, 14, 3, 5, 5, 5, and 5, respectively, and are described in detail below to fully understand each of the LOC devices 301. structure. Figures 7 through 10 show the features of the upper cover 46 independently, while Figure 11 shows the structural layered structure of the CMOS + MST device 48 independently. Figures 12 and 22 illustrate the fluid interaction between the CMOS + MST device 48, the upper cover 46 & Hierarchical structure. These figures are not drawn to scale for the purpose of illustrating -243-201211533. Figure 12 is a schematic cross-sectional view through the sample inlet 68, and Figure 22 is a schematic cross-sectional view through the reservoir 54. Figure 12 clearly shows that CMOS + MST device 48 has a germanium substrate 84 that supports CMOS circuitry 86 that operates the active components within MST layer 87 thereon. The passivation layer 88 seals and protects the CMOS layer 86 from flowing into the MST layer 87. The liquid flows through both the upper cap layer 46 and the M ST channel layer 1 and the upper cap channel 94 and the MST channel 90 (see, for example, FIG. 7). And 16) » Cell transport occurs in the larger channel 94 made in the upper cover 46, while biochemical treatment takes place in the smaller MST channel 90. The size of the cell delivery channel is designed to deliver cells in the sample to a predetermined location in the MS channel 90. Cells that transport greater than 20 microns (e.g., certain white blood cells) require channel sizes greater than 20 microns, so the cross-sectional area across the flow must be greater than 400 square microns. The position of the MST channel, particularly in the LOC where no cells need to be transported, can be significantly smaller. It will be understood that the upper cover channel 94 and the MST channel 90 are generic and that the particular MST channel 90 may also be referred to as, for example, a heated microchannel or a dialysis MST channel due to its particular function. The MST channel 90 is formed by saturating the MST channel layer 100 deposited on the passivation layer 88 and patterned by a photoresist. The MST channel 90 is closed by a top layer 66 that forms the top of the CMOS + MST device 48 (shown in the figure). Although sometimes shown in separate layers, the upper cover channel layer 8 and the Benin layer 78 are formed from a single piece of material. Of course, the sheet material can also be non-unitary. Both sides of the sheet material are etched to form an upper cover channel layer 8 and a -244-201211533 reservoir layer 78, and an upper cover channel 94' is etched in the upper cover channel layer 80. The reservoirs 54, 56 are etched in the reservoir layer 78, 58, 60 and 62. Alternatively, the reservoir and the upper cover channel are formed by micromolding. Both etching and micromolding techniques are used to fabricate channels having a cross-sectional area across the fluid of up to 20,000 square microns and a minimum of 8 square microns. For various locations in the LOC device, a variety of suitable channel cross-sectional areas across the fluid can be selected. When a large number of samples or samples having a large φ composition are accommodated in the channel, a cross-sectional area of up to 20,000 square microns (e.g., a channel having a width of 200 μm in a layer having a thickness of 100 μm) is appropriate. When the channel contains a small amount of liquid or a mixture free of large cells, it is preferred that the cross-sectional area across the fluid is very small. The lower sealing layer 64 encloses the upper cover passage 94, and the upper sealing layer 82 closes the reservoirs 54, 56, 58, 60 and 62. The five reservoirs 54, 56, 58, 60 and 62 preload the reagents for the particular analysis. In the embodiments described herein, the reservoirs are preloaded with the following reagents, but can be easily replaced with other reagents: • Reservoir 54: anticoagulant, optionally including red blood cell lysate • reservoir 56: Lysis Reagents • Reservoir 58: restriction enzymes, ligases, and linkers (for linker initiation PCR (see Figure 62, excerpt from T. Stachan et al. , Human Molecular Genetics 2, Garland Science, NY and London, 1 9 9 9)) • Reservoir 60: amplification mixture (dNTPs, primers, buffers), and • reservoir 62: DNA polymerase. Upper cover 46 and CMOS + MST layer 48 are in fluid communication via corresponding openings in lower seal 64 and top -245 - 201211533 layer 66. These openings are referred to as riser 96 and descending port 92 from the MST passage 90 to the upper cover passage 94 or vice versa depending on the flow system. L Ο C device operation The operation of the LOC device 310 is described step by step as an example of pathogenic DN A in a blood sample. Of course, other types of biological or non-biological fluids can also be analyzed using appropriate reagents, test protocols, L〇C variants, and combinations or combinations of detection systems. Referring to Figure 4, the analysis of the biological sample is largely divided into five steps, including sample input and preparation 288, nucleic acid extraction 290, nucleic acid culture 291, nucleic acid amplification 292, and detection and analysis 294. The sample input and preparation steps 2 8 8 involve mixing the blood with the anticoagulant 116, followed by separation of the pathogen from the pathogen dialysis unit 70 with white blood cells and red blood cells. As best seen in Figures 7 and 12, the blood sample enters the device via sample inlet 68. Capillary action draws the blood sample along the upper lid passage 94 to the reservoir 54. - When the sample blood flow opens the surface tension valve 1 18 of the reservoir 54, the anticoagulant is released from the reservoir 54 (see Figures 15 and 22). . Anticoagulants prevent clot formation from obstructing flow. As best shown in Fig. 22, the anticoagulant agent 6 is aspirated from the reservoir 54 by capillary action and enters the MST channel 90 via the descending port 92. The lowering port 92 has a capillary initiation feature (CIF) of 1 〇 2 to control the geometry of the meniscus such that the meniscus is not fixed at the edge of the descending opening 92. The venting opening 122 in the upper sealing layer 82 allows air to replace the anticoagulant n6-246-201211533 that is aspirated from the reservoir 54. The MST channel 90 shown in Figure 22 is part of the surface tension valve 118. The anticoagulant 116 fills the surface tension valve 118 and secures the meniscus 120 to the meniscus anchor 98 of the riser 96. The meniscus 120 remains fixed to the riser 96 prior to use so that the anticoagulant does not flow into the upper cover passage 94. As blood flows through the upper cover passage 94 to the ascending port 96, the meniscus 120 is removed and the anticoagulant is drawn into the flow. 15 to 21 show an AE area which is a part of the AA φ area shown in Fig. 13. As shown in Figures 15, 16 and 17, surface tension valve 118 has three separate MST passages 90 extending between respective lower and upper risers 92, 96. The number of MST channels 90 in the surface tension valve can vary to change the flow rate of reagent into the sample mixture. When the sample mixture and reagents are mixed by diffusion, the flow rate out of the reservoir determines the concentration of the reagent in the sample stream. Thus, the surface tension valves of each reservoir are configured to meet the desired reagent concentration. The blood enters the pathogen dialysis section 70 (see Figures 4 and 15) where the target array is concentrated from the sample using a predetermined number of pore arrays 1 64. Cells smaller than the valve plaque pass through the well, while large cells cannot pass through the well. The undesired cells are either larger cells that are blocked by the well array 164 or smaller cells that pass through the well, which are transduced to the waste unit 76, whereas the target cells are still part of the assay. In the pathogen dialysis section 70 described herein, the pathogen system from the whole blood sample is concentrated for microbial DNA analysis. The array of holes is formed by a plurality of 3 micron diameter holes 1 64 that are in fluid communication with the upper cover channel 94 and input to the target channel 74. The 3 micron diameter hole 1 64 and the dialysis upwelling hole 168 in the target channel -247-201211533 74 are connected by a series of dialysis MST channels 204 (best shown in Figures 15 and 21). The pathogen is small in volume and can therefore be filled through the 3 micron diameter well 164 and filled through the target channel 74 via the dialysis MST channel 204. Cells larger than 3 microns, such as red blood cells and white blood cells, remain in the waste channel 72 of the upper cover 46, which leads to the waste receptacle 76 (see Figure 7). Other pore shapes, sizes, and aspect ratios can be utilized to isolate specific pathogens or other target cells, such as white blood cells for human DNA analysis. Detailed instructions for the dialysis section and dialysis variants are provided below. Referring again to Figures 6 and 7, fluid is drawn through target channel 74 to surface tension valve 128 of lysis reagent reservoir 56. The surface tension valve 128 has seven MST channels 90 that extend between the lysis reagent reservoir 56 and the target channel 74. When the meniscus is removed by the sample stream, the flow rate from all seven MST channels 90 will be greater than the flow rate from the anticoagulant reservoir 54, where the surface tension valve 118 of the reservoir 54 has three MST channels 9 ( It is assumed that the physical properties of the liquids are approximately equal). Thus the ratio of lytic reagent to the sample mixture is greater than the ratio of anticoagulant to the sample mixture. The lysis reagent and the target cells are mixed by diffusion in the target channel 74 in the chemical lysis unit 130. The boiling start valve 1 2 6 stops the flow until sufficient time for diffusion and lysis has occurred to release the genetic material from the target cells (see Figures 6 and 7). The structure and operation of the boiling start valve are described in detail below with reference to Figures 31 and 32. Other active valve types (as opposed to passive valves such as surface tension valve 118) have also been developed by the applicant, and other types of main-248-201211533 moving valves can be used here to replace the boiling start valve. These alternative valve designs are also described below. When the boiling start valve 126 is opened, the lysed cells flow into the mixing section 1 31 to perform restriction enzyme cleavage and linker ligation before amplification. Referring to Figure 13, when the fluid removes the meniscus of the surface tension valve 132 at the beginning of the mixing portion 131, the restriction enzyme, linker and ligase are released from the reservoir 58. This mixture flows through the length of the mixing portion 131 to be diffused and mixed. The end of the mixed φ portion 131 is a descending port 134 leading to the incubator inlet passage 133 of the culture portion 114 (see Fig. 13). The incubator inlet channel 133 feeds the mixture into a heated microchannel 210 in a crimped configuration that provides a culture chamber for holding the sample during restriction enzyme cleavage and linker ligation (see Figures 13 and 14). Figures 23, 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 301 in the AB zone of Figure 6. The figures show successive layers of addition to form the structure of CMOS + MST layer 48 and upper cover 46. The AB region shows the end point of the culture unit 1 14 and the starting point of the amplification unit 1 12 . As best seen in Figures 14 and 23, the fluid fills the microchannel 210 of the culture portion 114 until it reaches the boiling start valve 1 〇 6 ' where the fluid stops to allow diffusion to occur. As discussed above, the microchannels 210 in the upstream of the boiling start valve 106 become the culture chamber containing the sample, restriction enzyme, ligase, and linker. The heater 154 is then activated and maintains a stable temperature for a specific period of time to allow for restriction enzyme cleavage and linker ligation to occur. Those skilled in the art will appreciate that this culturing step 291 (see Figure 4) is optional 'only for some nucleic acids. Required for amplification analysis type. In addition, in some examples, -249-201211533 may be required to provide a heating step at the end of the incubation period to raise the temperature above the culture temperature. The temperature rise will cause the restriction enzyme and the ligase to enter the amplification unit 1 1 2 go live. Deactivation of restriction enzymes and ligases is particularly important for the use of isothermal nucleic acid amplification. ^ After the incubation, the boiling start valve 106 is activated (opened) and the fluid continues to enter the amplification section 112. Referring to Figures 31 and 32, the mixture is filled with heated microchannels 58 in a curved configuration until reaching the boiling start valve 1〇8, which forms one or more amplification chambers. The cross-sectional view of Figure 30 clearly shows that the 'amplification mixture (dNTP, primer, buffer) is released from the reservoir 60 and the polymerase is then released from the reservoir 62 into the junction culture and amplification (114 and 112, respectively). The middle MST channel 212. Figures 35 through 51 show the layers of the LOC device 301 in the AC region of Figure 6. The figures show the layers of successive additions to form the structure of the CMOS + MST device 48 and the upper cover 46. The AC region is the end point of the amplification unit 112 and the starting point of the hybridization and detection unit 52. The cultured sample, amplification mixture, and polymerase flow through microchannel 158 to boiling start valve 108. After sufficient time of diffusion mixing, the heaters 1 54 in the microchannels 1 58 are activated for thermal cycling or isothermal amplification. The amplification mixture undergoes a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target DNA. After the nucleic acid amplification procedure, the boiling start valve 〇8 is opened and the fluid continues to enter the hybridization and detection portion 52. The operation of the boiling start valve is described in detail below. As shown in Fig. 52, the hybridization and detection unit 52 has a hybridization chamber array 110. Figures 52, 53, 54 and 56 show in detail the hybridization chamber array 110 and a single hybridization chamber 18[deg.] at the inlet of the hybridization chamber 180 with a diffusion barrier 175'-250-201211533 which prevents target nucleic acids, probe strands and hybridization. The probes diffuse between hybridization chambers 180 during hybridization to prevent erroneous hybridization assay results. The diffusion barrier 1 75 represents a flow path of sufficient length to prevent the target sequence and probe from diffusing out of the chamber and contaminating another chamber during the time required for the probe and nucleic acid hybridization and signal to be detected, thus avoiding erroneous results . Another mechanism to prevent erroneous results is to include the same probe in multiple hybridization chambers. The CMOS circuit 86 derives a single result from the photodiode 184 corresponding to the hybridization chamber 180 φ containing the same probe. When deriving a single result, the anomalous results can be ignored or given different weights. The thermal energy required for hybridization is provided by a CMOS controlled heater 182 (described in more detail below). After activation of the heater, hybridization occurs between complementary target-probe sequences. The LED driver 29 in the CMOS circuit 86 transmits a message to the LED 26 located in the test module 10 to illuminate it. These probes only fluoresce when hybridization occurs, so the cleaning and drying steps typically required to remove unbound strands are omitted. Hybrid forced FRET probe #186 has a stem-loop structure that allows the fluorophore to emit fluorescent energy in response to the LED excitation light, as described in more detail below. Fluorescence is detected by photodiode 184 located in CMOS circuit 86 below each hybridization chamber 180 (see description of hybridization chamber below). The photodiode 184 and associated electronics for all of the hybridization chambers together form a light sensor 44 (see Figure 60). In other embodiments, the light sensor can be an array of charge coupled devices (CCD arrays). The detection signal from the photodiode 184 is amplified and converted to a digital output for analysis by the test module reader 12. Further details of the detection method are described below. -251 - 201211533 Other Detailed Description of LOC Device The modular design LOC device 301 has a number of functional components (including reagent reservoirs 54, 56, 58, 60 and 62, dialysis section 70, lysis section 130, culture section 1 14 And the expansion unit U 2), valve type, humidifier and humidity sensor. In other embodiments of the LOC device, these functional portions may be omitted, but additional functional portions may be added or the functional portions may be used for different purposes than those described above. For example, the culture portion 1 14 can be used as the first amplification portion 112 of the tandem amplification analysis system, and the chemical lysis reagent reservoir 56 is used to add the first amplification primer, dNTP, and buffer. A mixture of liquids, and a reagent reservoir 58 are used to add reverse transcriptase and/or polymerase. If the sample is subjected to chemical lysis, a chemical lysing reagent (along with the amplification mixture) may be added to the reservoir 56' or alternatively, the sample may be heated for a predetermined period of time to cause thermal dissolution in the culture section. Cell. In some embodiments, if chemical lysis is desired and it is desirable to separate the chemical lysis reagent from the primer 'dNTP and buffer mixture', an additional reservoir can be introduced upstream of the reservoir 58 adjacent to the mixture. In some cases it may be desirable to omit steps, such as incubation step 29 1 . In this case, the L0C device can be specially manufactured to avoid the reagent reservoir 58 and the culture portion 1 14 4 or the reagent can be simply not loaded in the reservoir, or if an active valve is present, the active valve is not activated to release The reagent is passed into the sample stream. Therefore, the culture portion becomes a channel for transferring only the sample from the lysis portion 1 30 to the amplification portion 112. The heaters can be operated independently, so when the reaction relies on the addition of -252-201211533 heat, such as a hot lysis reaction, setting the heater to not start during this step ensures that hot lysis does not occur in LOCs that do not require hot lysis. In the device. The dialysis unit 70 can be located at the beginning of the fluid system within the microfluidic device as shown in Figure 4 or can be located at any other location within the microfluidic device. By way of example, in some cases, it may be advantageous to dialyze after amplification stage 292 to remove cell debris prior to hybridization and detection step 294. Alternatively, two or more dialysis sections can be inserted at any location in the LOC device. Similarly, φ may be incorporated into the additional amplification portion 112 such that the multiplex target can be amplified simultaneously or sequentially before being detected by the specific nucleic acid probe in the hybridization chamber array 110. It is not necessary to perform dialysis for analyzing a sample such as whole blood, so the dialysis portion 70 is simply omitted from the sample input and preparation portion 28 of the LOC design. In some cases, it is not necessary to omit the dialysis section 70 of the LOC device, even if the analysis does not require dialysis. If the presence of the dialysis section does not cause a geometrical impediment to the analysis, the sample input and preparation section can still be used to have the LOC of the dialysis section without losing the desired function. φ In addition, the detection portion 294 can include a protein body array array that is identical to the hybrid chamber array but carries a probe that is designed to conjugate or hybridize to the sample target protein present in the non-amplified sample, rather than A nucleic acid probe designed to hybridize to a target nucleic acid sequence. It will be appreciated that the LOC devices manufactured for use with this diagnostic system are different combinations of functional components selected for a particular LOC application. The vast majority of functional units are the same for many LOC devices, and the design of additional LOC devices for new applications relates to the combination of appropriate functional components from the various functional options used in existing LOC devices. -253- 201211533 Only a few LOC devices are shown in this description. More LOC devices are illustrated in a diagram to illustrate the design flexibility of the LOC devices manufactured for this system. Those skilled in the art will readily appreciate that the LOC devices described in this specification are not exhaustive, and that many additional LOC designs are related to integrating appropriate functional combinations. Sample Type LOC Variants can accept and analyze a variety of nucleic acid or protein contents in a liquid form, including but not limited to blood and blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, cord blood. , breast milk, sweat, pleural effusion, tears, pericardial fluid, peritoneal fluid, environmental water samples and dip samples. Amplicon obtained from macroscopic nucleic acid amplification can also be analyzed using the LOC device; in this case, all reagent reservoirs will be empty or configured to not release their contents, and the dialysis, lysis The culture and amplification section will only be used to deliver the sample from the sample inlet 68 to the hybridization chamber 1 80 for nucleic acid detection as described above. - Some sample types require pre-treatment steps prior to input into the LOC device. For example, semen may require liquefaction and mucus may require pre-treatment with enzyme to reduce viscosity. Sample input

參照圖1及1 2,樣品被添加至測試模組丨〇之大容器 24。該大容器24係經截短之圓錐體,其藉由毛細作用饋 入LOC裝置301之入口 68。樣品於此處流入64μηι寬X -254- 201211533 6 0 μπι深之上蓋通道94中,並亦藉由毛細作用被吸引至抗 凝血劑貯器54。 試劑貯器 使用微流體裝置諸如LOC裝置301之分析系統所需 之小量試劑,允許該等試劑貯器以各個具有小體積之試劑 貯器包含生化處理所需之所有試劑。此體積一定小於 φ 1,〇〇〇,〇〇〇,〇〇〇立方微米,多半小於300,000,000立方微米 ,通常小於7〇,00〇,〇00立方微米,而以圖式顯示之LOC 裝置301而言小於20,000,000立方微米。 透析部 參照圖15至21、33及34,病原體透析部70係經設 計以濃縮來自樣品之病原體標靶細胞。如前所述,複數個 在頂部層66中呈3微米直徑洞口之孔164過濾來自樣品 # 主體之標靶細胞。當樣品流經3微米直徑之孔164時,微 生物病原體通過洞口而進入一系列透析MST通道204並 經由16μιη透析上升孔168流回標靶通道74中(見圖33及 3 4)。剩餘之樣品(紅血球等)留在上蓋通道94中。於病原 體透析部70之下游,上蓋通道94變成通往廢料儲器76 之廢料通道72。對於產生大量廢物之生物樣品類型,測試 模組10之外殻13內之泡沫體(foam)插入物或其他多孔元 件49係經配置成與廢料貯器76呈流體相通(見圖1)。 病原體透析部7〇之功能完全依賴流體樣品之毛細作 -255- 201211533 用。在病原體透析部70上游端之直徑3微米之孔164具 有毛細起始特徵(CIF)166(見圖33),以使流體被向下吸引 至其下方之透析MST通道204之中。標靶通道74之第一 上升孔198亦具有CIF 202(見圖15)以防止流體在透析上 升孔168輕易地形成彎液面。 圖71槪要顯示之小組分透析部682可具有與病原體 透析部70類似之結構。該小組分透析部藉由孔之大小(及 形狀若有需要)以分離來自樣品之任何小標靶細胞或分子 ,該孔適合允許小標靶細胞或分子通過進入標靶通道並繼 續進一步分析。大尺寸之細胞或分子被移除至廢料貯器 766。因此,該LOC裝置30(見圖1及104)並不受限於分 離尺寸小於3 μιη之病原體,亦可用於分離任何所欲尺寸 之細胞或分子。 溶胞部 再次參照圖7、1 1及1 3,樣品中之基因物質係藉化學 溶胞處理自細胞釋出。如上所述,來自溶胞貯器56之溶 胞試劑係與溶胞貯器56之表面張力閥1 28下游之標靶通 道74中之樣品流混合。然而,一些診斷分析較適合使用 熱溶胞處理,或甚至是標靶細胞之化學及熱溶胞的組合。 該LOC裝置301將此配合培養部1 14之加熱微通道210。 該樣品流充滿培養部1 1 4並停止於沸騰啓動閥1 〇6。該培 養微通道2 1 0將樣品加熱至細胞膜破裂之溫度。 在一些熱溶胞應用中不需要化學溶胞部130中之酶反 -256- 201211533 應,由熱溶胞完全取代化學溶胞部130中之酶反應。 沸騰啓動閥 如上所述,該LOC裝置301具有三個沸騰啓動閥126 、106及108。這些閥之位置係顯示於圖6。圖31爲單獨 顯示之沸騰啓動閥108之放大平面圖,其位於擴增部112 之加熱微通道158之末端。 φ 該樣品流1 1 9藉由毛細作用被吸引通過該加熱微通道 158直至到達該沸騰啓動閥108。該樣品流之前導彎液面 120固定於該閥入口 146之彎液面錨定器98。該彎液面固 定器98之幾何形狀停止該前進彎液面以阻止毛細作用流 。如圖31及32中所示,該彎液面錨定器98係由自MST 通道90至上蓋通道94之上升開口所提供之孔/該彎液面 120之表面張力使該閥保持閉合。環形加熱器152位於閥 入口 1 46之周圍》該環形加熱器1 52係經由沸騰啓動閥加 • 熱器接點153而受CMOS控制。 要打開該閥,該CMOS電路86傳送電脈衝至該閥加 熱器接點1 53。該環形加熱器1 52經電阻加熱直到該液體 樣品119沸騰爲止。該沸騰使彎液面120自閥入口 146移 除並開始濕潤上蓋通道94。一旦開始濕潤該上蓋通道94 ’便可恢復毛細作用。該流體樣品1 1 9充滿上蓋通道94 且流經閥下降口 150至閥出口 148,該處之毛細作用驅動 之液流繼續沿著擴增部出口通道160前進至雜交及檢測部 52。液體感測器1 74被置於該閥之前及之後以供診斷之用 -257- 201211533 將了解的是’一旦沸騰啓動閥被打開就無法再被關上 。然而由於該LOC裝置3 0 1及該測試模組1 〇係單次使用 裝置,因此不需要再關閉該閥。 培養部及核酸擴增部 圖 6、 7、 13、 14、 23、 24、 25、 35 至 45、 50 及 51 顯示培養部114及擴增部112。培養部114具有單一條加 熱培養微通道210,其係於MST通道層1〇〇中經蝕刻成彎 繞圖案,始於下降口 134及終於沸騰啓動閥1〇6(見圖13 及1 4)。控制培養部1 1 4之溫度能讓酶反應以更高效率發 生。類似地,擴增部〗1 2具有始於沸騰啓動閥1 06通向沸 騰啓動閥108之呈彎繞結構之加熱擴增微通道158(見圖6 及14)。當混合、培養及核酸擴增發生時,這些閥停止液 流,以保留該等標靶細胞於該經加熱之培養或擴增微通道 210或158中。該等微通道之彎繞圖案亦促進(在某種程度 上)標靶細胞與試劑之混合。 在該培養部Π 4及擴增部1 1 2中,樣品細胞及試劑係 經由使用脈衝寬度調變(PWM)之CMOS電路86所控制之 加熱器1 54加熱。該經加熱之培養微通道2 1 0及擴增微通 道158之彎繞結構的每個彎道具有三個可獨立操作之加熱 器154(延伸於彼等之個別加熱器接點156之間(見圖14)) ,其提供輸入熱通量密度之二維控制。如最佳於圖5 1中 所示者,該加熱器154係由頂部層66支持並包埋於下密 -258- 201211533 封層64。該加熱器之材料爲TiAl,但許多其他的傳導性 金屬也適用。該長型加熱器154係與形成彎繞結構之寬彎 道的各通道部之縱向長度平行。於擴增部112中,各個寬 彎道可經由個別加熱器控制以作爲分開之P C R室。 使用微流體裝置諸如LOC裝置301之分析系統所需 之小體積的擴增子,允許於擴增部112中使用小體積之擴 增混合物以供擴增。此體積一定小於400奈升,多半小於 φ 17〇奈升,通常小於70奈升,而以該LOC裝置301爲例 係介於2奈升至30奈升。 加熱速率增加及較佳擴散混合 各通道部的小截面積提高擴增流體混合物之加熱速率 。所有流體與加熱器154之間的距離都相當短。減少該通 道截面積(即擴增微通道158截面)至小於1〇〇,〇〇〇平方微 米相較於“大規模”設備可達顯著較高之加熱速率。微影 • 製造技術使得該擴增微通道158具有小於1 6,000平方微 米之橫越液流路徑之截面積,其提供實質上較高之加熱速 率。利用微影製造技術可輕易地獲得1微米級之尺寸特徵 。若僅需要非常小量之擴增子(以LOC裝置301而言),可 使該截面積減少至小於2,500平方微米。以在具有1,000 至2,000個探針之LOC裝置上進行且要求在丨分鐘內“輸 入樣品 '得到結果”之診斷分析而言,介於400平方微米 至1平方微米之間的橫越流體之截面積係爲適當。 在擴增微通道158中之加熱器元件以每秒大於80絕 -259- 201211533 對溫度(K)之速率加熱核酸序列’大多數之情況下爲每秒 大於100 Κ之速率。通常該加熱器元件以每秒大於1,000 Κ之速率加熱核酸序列,且該加熱器元件經常以每秒大於 10,000 Κ之速率加熱核酸序列。通常根據分析系統之需求 ,該加熱器元件以每秒大於1 00,000 Κ、每秒大於1,000,000 Κ、每秒大於 10,000,000 Κ、每秒大於 20,000,000 Κ、每 秒大於40,000,000 Κ、每秒大於80,000,000 Κ及每秒大於 160,000,000 Κ之速率加熱核酸序列。 小截面積通道亦有益於任何試劑與樣品流體之擴散性 混合。於擴散性混合完成之前,一種液體擴散至另一液體 之現象在靠近兩液體間之界面處最爲顯著。濃度隨著與界 面之距離增加而減少。使用具有相對微小之橫越流體方向 之截面積的微通道使兩種流體流動靠近界面以更爲快速地 擴散混合。減少該通道截面積至小於1 00,000平方微米相 較於“大規模”設備可達顯著較高之混合速率。微影製造 技術允許微通道之橫越液流路徑之截面積小於1 6,000平 方微米,其提供顯著較高之混合速率。若僅需要非常小量 之體積(以LOC裝置301而言),可使該截面積減少至小於 2,500平方微米。以在具有1,〇〇〇至2,000個探針之LOC 裝置上進行且要求在1分鐘內“輸入樣品、得到結果”之 診斷分析而言’介於4 00平方微米至1平方微米之間的橫 越流體之截面積係爲適當。 快速熱循環時間 -260- 201211533 使樣品混合物保持接近加熱器且使用極小之流體量得 以在核酸擴增期間進行快速之熱循環。以最多150驗基對 (bp)長度之標靶序列而言,每次熱循環(即變性、黏著及引 子延伸)係於不到30秒內完成。在絕大多數之診斷分析中 ,該個別熱循環時間係小於1 1秒,大部分係小於4秒。 以進行一些最常見診斷分析之LOC裝置30而言,最多 150鹼基對(bp)長之標靶序列的熱循環時間係介於0.45秒 Φ 至1 .5秒之間。此速度之熱循環允許該測試模組能在遠短 於10分鐘之內完成核酸擴增程序;通常不到220秒即可 完成。針對大多數分析而言,該擴增部在樣品流體進入樣 品入口 80秒以內產生足夠之擴增子。許多分析在30秒內 即產生足夠之擴增子。 當完成預設數目之擴增循環時,該擴增子係經由沸騰 啓動閥108饋入雜交及檢測部52。 • 雜交室 圖52、53、54、56及57顯示在雜交室陣列Π0中之 雜交室180。該雜交及檢測部52具有24x45陣列1 10之雜 交室180,該雜交室各具有雜交-反應性FRET探針186、 加熱器元件182及整合之光電二極體184。該光電二極體 1 84係經倂入以檢測由標靶核酸序列或蛋白質與該FRET 探針186雜交所產生之螢光。各個光電二極體184係由 CMOS電路86獨立控制。在該FRET探針1 86與該光電二 極體1 84之間的任何物質必須可被發射光穿透。因此,在 -261 - 201211533 該探針186與光電二極體184之間的壁部97亦可被發射 光光學穿透。於LOC裝置301中,壁部97爲二氧化矽之 薄層(約0.5微米)。 於各雜交室180下方直接倂入光電二極體184允許由 雖然極小之探針-標靶雜交體體積但仍產生可檢測之螢光 信號(見圖54)。該小量允許使用小體積之雜交室。可檢測 之探針-標靶雜交體之量所需之雜交前之探針量一定小於 270微微克(picogram)(對應900,000立方微米),於大多數 的情況中小於60微微克(對應2〇〇,〇〇〇立方微米),通常小 於12微微克(對應40,000立方微米),並以隨附圖式所示 之LOC裝置301爲例係小於2.7微微克(對應9,000立方 微米之室體積)。當然,縮小雜交室之尺寸容許更高密度 之室,因此容許該LOC裝置具有更多探針。於LOC裝置 301中,該雜交部在1,500微米乘1,500微米之面積內具 有超過1,000個室(即每個室小於2,2 5 0平方微米)。較小 之體積亦減少反應時間,因此雜交及檢測可更爲快速°另 一個在各室中需要少量探針之優點在於,在製造該L0C 裝置期間僅需點樣極小量之探針溶液至各室之中。本發明 之LOC裝置之實施態樣可利用體積1奈升或更少之探針 溶液點樣。 於核酸擴增之後’沸騰啓動閥1〇8被啓動且該擴增子 沿著流路176流動並流進各雜交室180(見圖52及56) °終 點液體感測器1 7 8顯示雜交室1 8 0充滿擴增子及可啓動加 熱器1 8 2之時點。 -262- 201211533 經過充分之雜交時間後,LED 26(見圖2)係經啓動 各雜交室180中之開口設有光窗136以暴露FRET探 186至激發輻射(見圖52、54及56)。該LED 26發光夠 的時間以誘發來自探針之高強度螢光信號。於激發期間 光電二極體184短路(shorted)。經預編程延遲300(見圖 之後,該光電二極體184係在無激發光存在下被致 (enabled)及檢測螢光發射。在該光電二極體1 84之主動 Φ 185(見圖54)上的入射光轉換成接著可利用CMOS電路 測量之光電流。 雜交室180各載有供檢測單一標靶核酸序列之探針 若有需要,各雜交室180可載有檢測超過1,000種不同 靶之探針。或者,許多或所有雜交室可載有相同探針以 複檢測相同之標靶核酸。以此方式在雜交室陣列1 1 0中 製探針導致所獲得之結果的可信度增加,若希望可藉由 倂相鄰該些雜交室之光電二極體的結果以提供單一結果 Φ 熟此技藝者將了解,於雜交室陣列110上有可能具有1 超過1,000種不同的探針,依據該分析規格而定。 以電化學發光檢測之雜交室 圖9 7、120、138及139顯示在該LOC裝置之ECL 體L0C變體L 729中所使用之雜交室180。在此L0C 置之實施態樣中,雜交室1 80之24x45陣列1 10各具有 交反應性ECL探針2 3 7,該陣列係位於與整合至CMOS 之光電二極體184之對應陣列配準。與經配置以用於螢 針 長 9 2) 能 86 〇 標 重 複 合 〇 至 變 裝 雜 中 光 -263- 201211533 檢測之LOC裝置類似,各光電二極體184係經倂入以用 於檢測由標的核酸序列或蛋白質與ECL探針23 7雜交所產 生之ECL。各個光電二極體184係由CMOS電路86獨立 控制。同樣地,在該探針1 86與光電二極體1 84之間的透 明壁部97可被發射光穿透。 緊鄰各雜交室180之光電二極體184允許該極小量之 探針-標靶雜交體仍產生可檢測之ECL信號(見圖97)。該 小量允許使用小體積之雜交室。探針-標的雜交體之可檢 測量所需之雜交前之探針量一定小於270皮克(piCOgram)( 對應900,000立方微米之室體積),於大多數的情況中小於 6〇皮克(對應2 00,000立方微米),通常小於12皮克(對應 40,000立方微米),並以圖式所示之LOC裝置爲例係小於 2.7皮克(對應9,000立方微米之室體積)。當然,縮小雜交 室之尺寸容許更高密度之室,因此容許該LOC裝置具有 更多探針。於所示之LOC裝置中,該雜交部在1,500微米 乘1,500微米之面積內具有超過1,〇〇〇個室(即每個室小於 2,250平方微米)。較小之體積亦減少反應時間,因此雜交 及檢測可更爲快速。另一個在各室中需要少量探針之優點 在於,在製造該L0C裝置期間僅需點樣極小量之探針溶 液至各室之中。以圖式說明中之LOC裝置爲例,該所需 量之探針可利用1皮升或更少之溶液體積點樣。 於核酸擴增之後,該沸騰啓動閥108被啓動且該擴增 子沿著流路】76流動並流進各雜交室180(見圖52及139) °終點液體感測器1 7 8顯示該雜交室1 8 0充滿擴增子之時 -264- 201211533 點,以使該加熱器1 8 2可被啓動。 在經過足夠之雜交時間之後,該光電二極體184被致 能以收集該ECL信號。接著該ECL激發驅動器39(見圖 105)活化該ECL電極860及870 —段預定時間。該光電二 極體184在該ECL激發電流停止後維持短時間之活性以最 大化該信噪比。舉例來說,若該光電二極體1 84維持活性 的時間爲該發光發射衰減壽命之5倍,該信號將衰減至小 φ 於該初始値之1%。射入該光電二極體184之光被轉換成 光電流,該光電流接著可利用CMOS電路86測量。 蛋白質體檢測室 一些LOC變體諸如LOC變體L 729係經配置以在蛋 白質體檢測室陣列(見例如圖1 16及120之124.1至124.3) 內之粗細胞溶解物上進行均質蛋白質檢測以檢測宿主細胞 及/或致病性蛋白質。該蛋白質體檢測室陣列1 24.1至 Φ 124.3之製造及配置係和雜交室陣列完全相同(見圖52、53 、54及56)。各蛋白質體檢測室在入口處具有擴散屏障 1 75以防止樣品及試劑在室之間擴散,因此避免錯誤結果( 見圖84及85,彼等係圖81之DC區及DD區)。當需要蛋 白質雜交或共軛時,熱能量係由各室中經CMOS控制之加 熱器1 82提供。在一些實施態樣中,終點液體感測器1 78 係用來顯示該蛋白質體檢測室充滿樣品之時點,以使該加 熱器1 82可被啓動。經過足夠之時間後,該在蛋白質識別 後所產生之螢光或電化學發光信號係由該光感應器44檢 -265- 201211533Referring to Figures 1 and 12, the sample is added to the large container 24 of the test module. The large container 24 is a truncated cone that is fed by capillary action into the inlet 68 of the LOC unit 301. The sample is here flowed into a 64 μηη wide X-254-201211533 60 μm deep upper cap channel 94 and is also attracted to the anticoagulant reservoir 54 by capillary action. Reagent Reservoirs A small amount of reagents required for the analysis system of a microfluidic device, such as LOC device 301, are used to allow the reagent reservoirs to contain all of the reagents required for biochemical treatment in each of the reagent reservoirs having a small volume. This volume must be less than φ 1, 〇〇〇, 〇〇〇, 〇〇〇 cubic micron, mostly less than 300,000,000 cubic micrometers, usually less than 7 〇, 00 〇, 〇 00 cubic micrometers, while the LOC device 301 is shown Less than 20,000,000 cubic microns. Dialysis Section Referring to Figures 15 through 21, 33 and 34, the pathogen dialysis section 70 is designed to concentrate pathogen target cells from the sample. As previously described, a plurality of wells 164 having a 3 micron diameter opening in the top layer 66 filter the target cells from the sample #body. As the sample flows through a 3 micron diameter well 164, the microbial pathogen enters a series of dialysis MST channels 204 through the opening and flows back into the target channel 74 via the 16 μιη dialysis upwelling 168 (see Figures 33 and 34). The remaining sample (red blood cells, etc.) remains in the upper cover channel 94. Downstream of the pathogen dialysis section 70, the upper cover passage 94 becomes a waste passage 72 to the waste reservoir 76. For a biological sample type that produces a large amount of waste, a foam insert or other porous member 49 within the outer casing 13 of the test module 10 is configured to be in fluid communication with the waste reservoir 76 (see Figure 1). The function of the pathogen dialysis section is completely dependent on the capillary work of the fluid sample -255- 201211533. A 3 micron diameter hole 164 at the upstream end of the pathogen dialysis section 70 has a capillary initiation feature (CIF) 166 (see Figure 33) to allow fluid to be drawn downward into the dialysis MST channel 204 below it. The first rising aperture 198 of the target channel 74 also has a CIF 202 (see Figure 15) to prevent fluid from easily forming a meniscus on the dialysis upwell 168. The small component dialysis section 682 shown in Fig. 71 may have a structure similar to that of the pathogen dialysis section 70. The small component dialysis section separates any small target cells or molecules from the sample by the size of the well (and shape if desired) which is adapted to allow small target cells or molecules to pass through the target channel and continue to be further analyzed. Large size cells or molecules are removed to waste receptacle 766. Thus, the LOC device 30 (see Figures 1 and 104) is not limited to pathogens having a size of less than 3 μηη, and can be used to isolate cells or molecules of any desired size. Lysis section Referring again to Figures 7, 11 and 13, the genetic material in the sample is released from the cell by chemical lysis. As described above, the lysing reagent from lysis vessel 56 is mixed with the sample stream in target channel 74 downstream of surface damper valve 128 of lysis vessel 56. However, some diagnostic assays are more suitable for use with hot lysis, or even a combination of chemical and thermal lysis of target cells. The LOC device 301 cooperates with the heating microchannel 210 of the culture portion 146. The sample stream is filled with the culture portion 1 14 and stopped at the boiling start valve 1 〇6. The culture microchannel 210 heats the sample to a temperature at which the cell membrane ruptures. In some hot lysis applications, the enzyme in the chemical lysis unit 130 is not required to be reversed, and the enzyme reaction in the chemical lysis unit 130 is completely replaced by the hot lysis. Boiling Start Valve As described above, the LOC unit 301 has three boiling start valves 126, 106 and 108. The position of these valves is shown in Figure 6. Figure 31 is an enlarged plan view showing the boiling start valve 108 shown separately at the end of the heating microchannel 158 of the amplifying portion 112. φ The sample stream 1 1 9 is drawn through the heated microchannel 158 by capillary action until reaching the boiling start valve 108. The meniscus 120 is fixed to the meniscus anchor 98 of the valve inlet 146 prior to the sample flow. The geometry of the meniscus holder 98 stops the advancing meniscus to prevent capillary flow. As shown in Figures 31 and 32, the meniscus anchor 98 is maintained by the surface tension provided by the raised opening from the MST passage 90 to the upper cover passage 94/the meniscus 120. The annular heater 152 is located around the valve inlet 146. The annular heater 152 is CMOS controlled via the boiling start valve heater contact 153. To open the valve, the CMOS circuit 86 delivers an electrical pulse to the valve heater contact 153. The ring heater 152 is heated by electrical resistance until the liquid sample 119 is boiled. This boiling causes the meniscus 120 to be removed from the valve inlet 146 and begin to wet the upper cover passage 94. Once the upper cover passage 94' is wetted, the capillary action is restored. The fluid sample 112 is filled with the upper lid passage 94 and flows through the valve lowering port 150 to the valve outlet 148 where the capillary action driven liquid flow continues along the amplifying portion outlet passage 160 to the hybridization and detection portion 52. The liquid sensor 1 74 is placed before and after the valve for diagnosis -257- 201211533 It will be understood that once the boiling start valve is opened, it can no longer be closed. However, since the LOC device 301 and the test module 1 are single-use devices, there is no need to close the valve. Culture section and nucleic acid amplification section The culture section 114 and the amplification section 112 are shown in Figs. 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50, and 51. The culture portion 114 has a single strip of heated culture microchannels 210 which are etched into a meandering pattern in the MST channel layer 1〇〇, starting at the lowering port 134 and finally boiling the activation valve 1〇6 (see FIGS. 13 and 14). . Controlling the temperature of the culture section 1 14 allows the enzyme reaction to occur with higher efficiency. Similarly, the amplifying portion 12 has a heated amplifying microchannel 158 (see Figs. 6 and 14) that begins in a curved structure with the boiling start valve 106 leading to the boiling start valve 108. When mixing, culture, and nucleic acid amplification occurs, the valves stop the flow to retain the target cells in the heated culture or amplification microchannel 210 or 158. The curved pattern of the microchannels also promotes (to some extent) the mixing of the target cells with the reagents. In the culture unit 4 and the amplification unit 1 1 2, the sample cells and reagents are heated by a heater 1 54 controlled by a pulse width modulation (PWM) CMOS circuit 86. Each curved corner of the heated culture microchannel 210 and the expanded microchannel 158 has three independently operable heaters 154 extending between the individual heater contacts 156 (see Figure 14)), which provides two-dimensional control of the input heat flux density. As best shown in Figure 51, the heater 154 is supported by the top layer 66 and embedded in the lower layer - 258 - 201211533. The material of the heater is TiAl, but many other conductive metals are also suitable. The elongated heater 154 is parallel to the longitudinal length of each of the channel portions forming the wide bend of the curved structure. In the amplifying portion 112, each wide curve can be controlled via a separate heater as a separate P C R chamber. The use of a small volume of amplicons required for the analysis system of the microfluidic device, such as LOC device 301, allows for the use of a small volume of amplification mixture in amplification portion 112 for amplification. This volume must be less than 400 nanoliters, mostly less than φ 17 〇 liters, usually less than 70 liters, and the LOC device 301 is exemplified by 2 nanoliters to 30 nanoliters. Increased heating rate and better diffusion mixing The small cross-sectional area of each channel section increases the heating rate of the amplification fluid mixture. The distance between all fluids and heater 154 is quite short. Reducing the cross-sectional area of the channel (i.e., the cross section of the augmented microchannel 158) to less than 1 〇〇, the squared micrometer can achieve a significantly higher heating rate than the "large scale" device. Photolithography • Manufacturing techniques such that the amplifying microchannel 158 has a cross-sectional area of less than 1 6,000 square micrometers across the flow path, which provides a substantially higher heating rate. Dimensional features of 1 micron are easily obtained using lithography manufacturing techniques. If only a very small amount of amplicons are required (in the case of LOC device 301), the cross-sectional area can be reduced to less than 2,500 square microns. A traversing fluid between 400 square microns and 1 square micrometer for a diagnostic analysis performed on a LOC device with 1,000 to 2,000 probes and requiring "input sample to get results" within one minute The cross-sectional area is appropriate. The heater element in the amplification microchannel 158 heats the nucleic acid sequence at a rate of greater than 80 -259 - 201211533 per second to temperature (K) in most cases, at a rate of greater than 100 Torr per second. Typically, the heater element heats the nucleic acid sequence at a rate greater than 1,000 psi per second, and the heater element often heats the nucleic acid sequence at a rate greater than 10,000 Torr per second. Typically, depending on the requirements of the analytical system, the heater element is greater than 100,000 sec per second, greater than 1,000,000 sec per second, greater than 10,000,000 sec per second, greater than 20,000,000 sec per second, and greater than 40,000,000 per second. The nucleic acid sequence is heated at a rate of greater than 80,000,000 每秒 per second and greater than 160,000,000 每秒 per second. The small cross-sectional area channel is also beneficial for the diffusive mixing of any reagent with the sample fluid. The phenomenon of one liquid diffusing to another liquid is most pronounced near the interface between the two liquids before diffusion mixing is completed. The concentration decreases as the distance from the interface increases. The use of microchannels having a relatively small cross-sectional area across the fluid direction causes the two fluids to flow closer to the interface for faster diffusion mixing. Reducing the cross-sectional area of the channel to less than 100,000 square microns provides a significantly higher mixing rate than "large scale" equipment. The lithography manufacturing technique allows the microchannel to cross the flow path with a cross-sectional area of less than 1 6,000 square microns, which provides a significantly higher mixing rate. If only a very small volume (in terms of LOC device 301) is required, the cross-sectional area can be reduced to less than 2,500 square microns. 'Between 400 cm and 1 square micron for diagnostic analysis on a LOC device with 1, 〇〇〇 to 2,000 probes and requiring "input sample, result" in 1 minute The cross-sectional area across the fluid is appropriate. Rapid Thermal Cycle Time -260- 201211533 Keep the sample mixture close to the heater and use a very small amount of fluid to perform a rapid thermal cycle during nucleic acid amplification. For a target sequence of up to 150 base pairs (bp) in length, each thermal cycle (i.e., denaturation, adhesion, and extension of the primer) is completed in less than 30 seconds. In most diagnostic analyses, the individual thermal cycle time is less than 11 seconds and most are less than 4 seconds. For LOC device 30, which performs some of the most common diagnostic assays, the thermal cycle time for a target sequence of up to 150 base pairs (bp) is between 0.45 seconds Φ and 1.5 seconds. This rate of thermal cycling allows the test module to complete the nucleic acid amplification process in as little as 10 minutes; usually less than 220 seconds. For most analyses, the amplification produces enough amplicons within 80 seconds of the sample fluid entering the sample inlet. Many analyses produce enough amplicons in 30 seconds. When a predetermined number of amplification cycles are completed, the amplicon is fed to the hybridization and detection portion 52 via the boiling start valve 108. • Hybridization Chambers Figures 52, 53, 54, 56 and 57 show hybridization chambers 180 in the hybridization chamber array Π0. The hybridization and detection section 52 has a 24x45 array 1 10 of hybrid chambers 180 each having a hybrid-reactive FRET probe 186, a heater element 182, and an integrated photodiode 184. The photodiode 1 84 is introgressed to detect fluorescence produced by hybridization of the target nucleic acid sequence or protein to the FRET probe 186. Each photodiode 184 is independently controlled by a CMOS circuit 86. Any substance between the FRET probe 186 and the photodiode 1 84 must be transparent to the emitted light. Therefore, the wall portion 97 between the probe 186 and the photodiode 184 can also be optically transmitted by the emitted light at -261 - 201211533. In LOC device 301, wall portion 97 is a thin layer of hafnium oxide (about 0.5 microns). Direct incorporation of photodiode 184 beneath each hybridization chamber 180 allows for a detectable fluorescent signal to be produced by the extremely small probe-target hybrid volume (see Figure 54). This small amount allows the use of a small volume of hybridization chamber. The amount of detectable probe-target hybrid required for pre-hybridization probes must be less than 270 picograms (corresponding to 900,000 cubic micrometers), in most cases less than 60 picograms (corresponding to 2〇) 〇, 〇〇〇 cubic micron), typically less than 12 picograms (corresponding to 40,000 cubic micrometers), and is less than 2.7 picograms (corresponding to a chamber volume of 9,000 cubic micrometers), as exemplified by the LOC device 301 shown in the drawings. Of course, reducing the size of the hybridization chamber allows for a higher density chamber, thus allowing the LOC device to have more probes. In LOC unit 301, the hybrid has more than 1,000 chambers (i.e., less than 2,250 square microns per chamber) in an area of 1,500 microns by 1,500 microns. The smaller volume also reduces reaction time, so hybridization and detection can be faster. Another advantage of requiring a small number of probes in each chamber is that only a very small amount of probe solution needs to be spotted during manufacture of the LOC device. In the room. Embodiments of the LOC device of the present invention can be spotted using a probe solution having a volume of 1 liter or less. After the nucleic acid amplification, the boiling start valve 1〇8 is activated and the amplicon flows along the flow path 176 and flows into each of the hybridization chambers 180 (see FIGS. 52 and 56). The end point liquid sensor 187 shows hybridization. The chamber 180 is filled with the amplicon and the point at which the heater can be activated. -262- 201211533 After a sufficient hybridization time, LED 26 (see Figure 2) is actuated by opening the openings in each of the hybridization chambers 180 to provide a light window 136 to expose the FRET probe 186 to the excitation radiation (see Figures 52, 54 and 56). . The LED 26 is illuminated for a time sufficient to induce a high intensity fluorescent signal from the probe. The photodiode 184 is shorted during excitation. The preprogrammed delay 300 (see, after the reference, the photodiode 184 is enabled and detected in the presence of no excitation light. The active Φ 185 at the photodiode 1 84 (see Figure 54) The incident light is converted into a photocurrent that can then be measured using a CMOS circuit. The hybridization chambers 180 each carry a probe for detecting a single target nucleic acid sequence, and each hybridization chamber 180 can carry more than 1,000 detections if desired. Probes of different targets. Alternatively, many or all of the hybridization chambers may carry the same probe to repeatedly detect the same target nucleic acid. In this manner, the preparation of the probe in the hybridization chamber array 110 results in a credible result. If the degree is increased, if it is desired to provide a single result by entanglement of the photodiodes adjacent to the hybridization chambers, the skilled artisan will appreciate that there may be more than 1,000 different probes on the hybridization chamber array 110. The needle is determined according to the analytical specification. Hybridization chambers for electrochemiluminescence detection Figures VII, 120, 138 and 139 show the hybridization chamber 180 used in the ECL variant L0C variant L 729 of the LOC device. In the implementation, the 24x45 array of hybridization chambers Columns 1 10 each have a cross-reactive ECL probe 2 3 7 that is in registration with a corresponding array of photodiodes 184 integrated into CMOS. It is configured for use with a fluorescent needle length of 9 2) 86 〇 The weighted composite enthalpy to the variable-packaged light-263-201211533 is similar to the LOC device detected, and each photodiode 184 is intrusive for detecting the hybridization of the target nucleic acid sequence or protein with the ECL probe 23 7 ECL. Each of the photodiodes 184 is independently controlled by a CMOS circuit 86. Similarly, the transparent wall portion 97 between the probe 186 and the photodiode 1 84 can be transmitted by the emitted light. Photodiode 184 in close proximity to each hybridization chamber 180 allows the very small amount of probe-target hybrid to still produce a detectable ECL signal (see Figure 97). This small amount allows the use of a small volume of hybridization chamber. The detectable amount of the probe-target hybrid requires a probe amount prior to hybridization of less than 270 picograms (corresponding to a chamber volume of 900,000 cubic micrometers), and in most cases less than 6 picograms (corresponding to 2 00,000 cubic micrometers, typically less than 12 picograms (corresponding to 40,000 cubic micrometers), and is less than 2.7 picograms (corresponding to a chamber volume of 9,000 cubic micrometers) as an example of a LOC device as shown. Of course, reducing the size of the hybrid chamber allows for a higher density chamber, thus allowing the LOC device to have more probes. In the LOC device shown, the hybrid has more than one, one chamber (i.e., less than 2,250 square microns per chamber) in an area of 1,500 microns by 1,500 microns. Smaller volumes also reduce reaction time, so hybridization and detection can be faster. Another advantage of requiring a small number of probes in each chamber is that only a very small amount of probe solution needs to be spotted into each chamber during manufacture of the LOC device. Taking the LOC device in the illustrated example as an example, the required amount of probe can be spotted with a solution volume of 1 picoliter or less. After nucleic acid amplification, the boiling start valve 108 is activated and the amplicon flows along the flow path 76 and flows into each of the hybridization chambers 180 (see Figures 52 and 139). The end liquid sensor 178 shows the The hybridization chamber 180 is filled with the -264-201211533 point of the amplicon so that the heater 108 can be activated. The photodiode 184 is enabled to collect the ECL signal after sufficient hybridization time. The ECL excitation driver 39 (see Figure 105) then activates the ECL electrodes 860 and 870 for a predetermined period of time. The photodiode 184 maintains a short period of activity after the ECL excitation current is stopped to maximize the signal to noise ratio. For example, if the photodiode 1 84 remains active for 5 times the decay lifetime of the luminescent emission, the signal will decay to a small φ of 1% of the initial enthalpy. Light incident on the photodiode 184 is converted into a photocurrent, which can then be measured using a CMOS circuit 86. Protein Body Detection Chambers Some LOC variants, such as the LOC variant L 729, are configured to perform homogeneous protein detection on crude cell lysates in a protein body detection chamber array (see, eg, Figures 1216 to 124.3 of Figures 16 and 120) for detection. Host cells and/or pathogenic proteins. The production and configuration of the protein body detection chamber arrays 1 24.1 to Φ 124.3 are identical to the hybrid chamber arrays (see Figures 52, 53, 54, and 56). Each protein body detection chamber has a diffusion barrier 175 at the inlet to prevent diffusion of the sample and reagents between the chambers, thus avoiding erroneous results (see Figures 84 and 85, which are in the DC and DD regions of Figure 81). When protein hybridization or conjugation is desired, thermal energy is provided by CMOS controlled heaters 182 in each chamber. In some embodiments, the endpoint liquid sensor 1 78 is used to display the point at which the protein body detection chamber is full of samples so that the heater 1 82 can be activated. After sufficient time, the fluorescent or electrochemiluminescent signal generated after protein recognition is detected by the light sensor 44 -265 - 201211533

增濕器及濕度感測器 圖6之AG區指示增濕器1 96的位置。增濕器防止試 劑及探針在LOC裝置301操作期間蒸發。最佳如圖55之 放大圖所示,貯水器1 88係與三個蒸發器1 90流體相通。 貯水器188盛裝分子生物等級用水且於製造期間被密封。 最佳如圖55及61所示,水藉由毛細作用被抽吸至三個下 降口 194且沿著個別供水通道192到達蒸發器190之三個 上升口 193組。彎液面固定於各個上升口 193以保留水。 蒸發器具有環形加熱器191,其環繞上升口 193。該環形 加熱器191係藉由導電柱376連接至CMOS電路86之頂 金屬層195 (見圖37)。於啓動時,環形加熱器191加熱該 水使之蒸發並濕潤周圍的裝置。 圖6亦顯示濕度感測器23 2之位置。然而,最佳如圖 58之AH區的放大圖所示,該濕度感測器具有電容式梳狀 結構。經微影蝕刻之第一電極296與經微影蝕刻之第二電 極298彼此相對,使得彼等之齒交插。該相對之電極形成 電容器,其具有可由CMOS電路86監測之電容。隨著濕 度增加,該等電極間之空氣隙的電容率增加,致使電容亦 增加。該濕度感測器23 2係鄰接雜交室陣列1 1 0 ’該處之 濕度測量至爲重要以減緩含有該暴露探針之溶液蒸發。 反饋感測器 -266- 201211533 溫度及液體感測器被倂入LOC裝置 裝置操作期間之反饋及診斷。參照圖3 5, 170被分配至擴增部112各處》同樣地, 有九個溫度感測器1 70。這些感測器各使 極接面電晶體(BJT)以監測流體溫度及提 電路86 »該CMOS電路86利用此以準確 期間的熱循環以及熱溶胞及培養期間之任 於雜交室180中,CMOS電路86使月 作爲溫度感測器(見圖56)。該雜交加熱器 度依賴性,且該 CMOS電路86利用此 180之溫度讀數。 該 LOC裝置 301亦具有一些MST 174及上蓋通道液體感測器208。圖35顯 158之每隔一個彎道之一端的一排MST 174。最佳如圖37所示,該MST通道液 由該CMOS結構86中之頂金屬層195之 之一對電極。液體封閉電極間的電流以指 器的位置。 圖25顯示上蓋通道液體感測器208 相對之TiAl電極對218及220係沉積於I 電極218及220之間爲間隙222,該間隙 之情況下保持電路開啓。液體存在時_ CMOS電路86利用此反饋以監測流動。 3 0 1各處以提供 九個溫度感測器 培養部1 1 4亦具 用2x2陣列之雙 供反饋至CMOS 地控制核酸擴增 何加熱。 3雜交加熱器182 182之電阻係溫 以導出各雜交室 通道液體感測器 示在加熱微通道 通道液體感測器 體感測器174係 暴露區域所形成 示其存在於感測 之放大透視圖。 頁部層66上。在 用於在缺少液體 i閉該電路且該 -267- 201211533 非重力依賴性 測試模組1 〇係非方向依賴性。該等模組不需被固定 至平穩表面才能操作。因毛細作用驅動之流體流以及不須 連接至輔助設備之外部管路,使該模組確實爲可攜式並可 簡易地插入至類似的可攜式手持閱讀器,諸如行動電話。 具有非重力依賴性之操作代表該等測試模組亦有助於獨立 於所有實用範圍。彼等可耐受衝擊及振動,它們能在移動 之載具上操作,或是當行動電話在移動時操作。 透析變體 白血球標的 LOC裝置301如上所述之透析設計以病原體爲標的。 圖5 9係透析部3 2 8之截面示意圖,其係經設計以自血液 樣品濃縮白血球以用於人DNA分析。將了解的是,該結 構實質上係與上述之病原體標的透析部70的結構相同, 除了呈7.5微米直徑洞1 6 5形式之孔限制白血球從該上蓋 通道94通過至該透析MST通道204。在被分析之樣品係 血液且來自紅血球之血紅素之存在干擾後續反應步驟之情 況中,隨著貯器54中之抗凝血劑(見圖22)添加紅血球溶 胞緩衝液將確保大部分經溶解之紅血球(及因此血紅素)將 在此透析步驟中自該樣品被移除。經常使用之紅血球溶胞 緩衝液係 0.15M NH4CL、10mM KHC03、O.lmM EDTA pH 7.2-7.4,但該領域之技藝人士將了解任何有效溶解紅血球 之緩衝液皆可被使用。 -268- 201211533 在該白血球透析部328之下游處,該上蓋通道94變 成標的通道74以使該等白血球繼續爲該檢測之一部分。 另外在此情況中,該透析上升口 1 68通向廢料通道72以 使該樣品中所有較小細胞及成分皆被移除。應注意的是’ 此透析變體僅降低該非所欲樣本在該標的通道74中之濃 度。 圖72示意說明也自樣品分離任何大標的組分之大組 φ 分透析部68 6。在此透析部中之孔係經訂造以使其大小及 形狀可保留該受關注之大標的組分於該標的通道以供進一 步分析。當使用上述之白血球透析部,大部分(但非所有) 尺寸較小之細胞、有機體或分子流至廢料貯器768 »因此 ,該LOC裝置之其他實施態樣並不受限於分離尺寸大於 7.5 μπι之白血球,其亦可被用於分離任何所欲尺寸之細胞 、有機體或分子。 # 具有流通道以防止氣泡被困住之透析部 以下描述稱爲LOC變體VIII 518之LOC裝置的實施 態樣,如圖65、66、67及68所示。此LOC裝置具有透 析部,該透析部充滿流體樣品且不會有氣泡被困在通道中 。LOC變體VIII 518亦具有被稱爲界面層594之其他材料 層。該界面層594係位於該上蓋通道層80與該CMOS + MST裝置48之MST通道層100之間。該界面層594允 許該等試劑貯器與該MST層87之間更複雜的流體互通而 不增加該矽基板84之尺寸。 -269- 201211533 參照圖66 ’該旁通道600係經設計以在該流體樣品自 該界面廢料通道604流至該界面標的通道602時導入時間 延遲。此時間延遲使該流體樣品得以流經該透析MST通 道204至該透析上升口 168,在該處形成彎液面。藉由自 旁通道600至界面標的通道602之上升口處的毛細起始特 徵(CIF)202,該樣品流體從所有該透析MST通道204之透 析上升口 168上游之點塡充該界面標的通道6〇2。 若沒有該旁通道600,該界面標的通道602仍從該上 游端開始塡充,但最後該前進之彎液面到達且超過尙未被 塡滿之MST通道之上升口,導致在該處形成氣泡。被困 住之空氣降低該樣品流過該白血球透析部3 2 8之速率。Humidifier and Humidity Sensor The AG zone of Figure 6 indicates the location of the humidifier 1 96. The humidifier prevents the reagents and probes from evaporating during operation of the LOC device 301. Preferably, as shown in the enlarged view of Figure 55, the reservoir 188 is in fluid communication with the three evaporators 1 90. The water reservoir 188 holds molecular biological grade water and is sealed during manufacture. As best seen in Figures 55 and 61, water is drawn by capillary action to the three lower rise ports 194 and along the individual water supply passages 192 to the three riser ports 193 of the evaporator 190. The meniscus is fixed to each of the risers 193 to retain water. The evaporator has a ring heater 191 that surrounds the riser 193. The ring heater 191 is connected to the top metal layer 195 of the CMOS circuit 86 by a conductive post 376 (see Figure 37). At startup, the ring heater 191 heats the water to evaporate and wet the surrounding devices. Figure 6 also shows the position of the humidity sensor 23 2 . However, as best shown in the enlarged view of the AH zone of Fig. 58, the humidity sensor has a capacitive comb structure. The lithographically etched first electrode 296 and the lithographically etched second electrode 298 are opposed to each other such that their teeth are interleaved. The opposing electrode forms a capacitor having a capacitance that can be monitored by CMOS circuit 86. As the humidity increases, the permittivity of the air gap between the electrodes increases, causing the capacitance to increase. It is important that the humidity sensor 23 2 is adjacent to the humidity of the hybridization chamber array 1 10 ' to slow the evaporation of the solution containing the exposed probe. Feedback Sensor -266- 201211533 Temperature and liquid sensors are injected into the LOC device for feedback and diagnosis during device operation. Referring to Fig. 35, 170 is distributed to the entire portion of the amplifying portion 112. Similarly, there are nine temperature sensors 170. Each of the sensors causes a pole junction transistor (BJT) to monitor the fluid temperature and the circuit 86 » the CMOS circuit 86 utilizes this for accurate thermal cycling and thermal lysis and incubation in the hybrid chamber 180, The CMOS circuit 86 makes the month a temperature sensor (see Fig. 56). The hybridization heater is temperature dependent and the CMOS circuit 86 utilizes the 180 temperature reading. The LOC device 301 also has a number of MST 174 and an upper cover channel liquid sensor 208. Figure 35 shows a row of MST 174 at one of the other corners of 158. Preferably, as shown in FIG. 37, the MST channel liquid is opposed to one of the top metal layers 195 of the CMOS structure 86. The liquid closes the current between the electrodes to the position of the finger. Figure 25 shows that the upper cover channel liquid sensor 208 is deposited between the I electrodes 218 and 220 relative to the TiAl electrode pairs 218 and 220 as a gap 222 in which the circuit is held open. CMOS circuit 86 utilizes this feedback to monitor flow when liquid is present. 3 0 1 everywhere to provide nine temperature sensors. The culture unit 1 1 4 also uses a 2x2 array of doubles for feedback to CMOS to control nucleic acid amplification. 3 The resistance temperature of the hybrid heater 182 182 is derived to derive the hybrid chamber channel liquid sensor shown in the heated microchannel channel liquid sensor body sensor 174 exposed area to form an enlarged perspective view of the presence of the sensing . On the page layer 66. In the absence of liquid i shut the circuit and the -267- 201211533 non-gravity dependent test module 1 is non-directional dependent. These modules do not need to be fixed to a smooth surface to operate. The fluid flow driven by the capillary action and the external tubing that does not have to be connected to the auxiliary device make the module truly portable and can be easily inserted into a similar portable handheld reader, such as a mobile phone. Operation with non-gravity dependence means that these test modules also contribute to all practical applications. They can withstand shock and vibration, they can operate on moving vehicles, or when the mobile phone is moving. Dialysis variants The dialysis design of the white blood cell marker LOC device 301 as described above is labeled with the pathogen. Figure 5 is a schematic cross-sectional view of a dialysis section 3 2 8 designed to concentrate white blood cells from a blood sample for human DNA analysis. It will be appreciated that the structure is substantially identical in construction to the dialysis section 70 of the above-described pathogen, except that a hole in the form of a 7.5 micron diameter hole 165 restricts the passage of white blood cells from the upper cap passage 94 to the dialysis MST channel 204. In the case where the sample is analyzed and the presence of hemoglobin from the red blood cells interferes with the subsequent reaction step, the addition of red blood cell lysis buffer with the anticoagulant (see Figure 22) in reservoir 54 will ensure that most of the The dissolved red blood cells (and therefore the hemoglobin) will be removed from the sample during this dialysis step. Frequently used red blood cell lysis buffers are 0.15 M NH4CL, 10 mM KHC03, O.lmM EDTA pH 7.2-7.4, but those skilled in the art will appreciate that any buffer that effectively dissolves red blood cells can be used. -268- 201211533 At the downstream of the leukocyte dialysis section 328, the capping channel 94 becomes the target channel 74 to continue the leukocytes as part of the detection. Also in this case, the dialysis riser 1 68 leads to the waste channel 72 to remove all of the smaller cells and components in the sample. It should be noted that this dialysis variant only reduces the concentration of the undesired sample in the target channel 74. Figure 72 schematically illustrates a large group of φ divided dialysis portions 68 6 that also separate any large components from the sample. The pores in the dialysis section are custom-made such that their size and shape retain the component of the subject of interest in the target channel for further analysis. When using the leukocyte dialysis section described above, most, but not all, of the smaller cells, organisms or molecules flow to the waste reservoir 768. Therefore, other embodiments of the LOC device are not limited to separation sizes greater than 7.5. A white blood cell of μπι, which can also be used to isolate cells, organisms or molecules of any desired size. # Dialysis section having a flow passage to prevent trapping of air bubbles The following describes an embodiment of the LOC apparatus called LOC variant VIII 518, as shown in Figs. 65, 66, 67 and 68. This LOC device has a dialysis section that is filled with a fluid sample and that no air bubbles are trapped in the channel. LOC Variant VIII 518 also has other layers of material known as interface layer 594. The interface layer 594 is between the upper cap channel layer 80 and the MST channel layer 100 of the CMOS + MST device 48. The interfacial layer 594 allows for more complex fluid intercommunication between the reagent reservoirs and the MST layer 87 without increasing the size of the tantalum substrate 84. -269- 201211533 Referring to Figure 66, the bypass channel 600 is designed to introduce a time delay as the fluid sample flows from the interface waste channel 604 to the channel 602 of the interface. This time delay allows the fluid sample to flow through the dialysis MST channel 204 to the dialysis riser 168 where a meniscus is formed. The sample fluid is filled from the point upstream of the dialysis riser 168 of all of the dialysis MST channels 204 by the capillary initiation feature (CIF) 202 at the riser of the channel 602 from the bypass channel 600. 〇 2. Without the bypass channel 600, the channel 602 of the interface still begins to charge from the upstream end, but finally the advancing meniscus reaches and rises beyond the rising mouth of the MST channel that is not full, resulting in the formation of bubbles there. . The trapped air reduces the rate at which the sample flows through the leukocyte dialysis unit 3 28 .

核酸擴增變體 直接PCR 習慣上,P CR需要在製備反應混合物之前廣泛地純化 標靶DNA。然而,利用化學性質及樣品濃度之適當變化, 有可能僅需最少之DNA純化即可進行核酸擴增或直接擴 增。當該核酸擴增程序係PCR時,此方法便稱做直接PCR 。當核酸擴增係於經控制之恆溫下之LOC裝置中進行時 ,此方法係直接恆溫擴增。直接核酸擴增技術用於LOC 裝置時具有顯著優勢,尤其是關於簡化所需之流體設計。 直接PCR或直接恆溫擴增之擴增化學的調整包括提高緩衝 液強度,使用具高活性及處理性(pr〇cessivity)之聚合酶及 與潛在聚合酶抑制劑螯合之添加物。稀釋樣品中之抑制劑 -270- 201211533 亦爲重要的。 爲了利用直接核酸擴增技術,該LOC裝置 兩個額外特徵。該第一特徵爲試劑貯器(例如圖 器5 8)’其係經適當地尺寸化以供應充分量之擴 合物或稀釋劑,以使可能干擾擴增化學之該樣品 終濃度夠低以允許成功地進行核酸擴增。該非細 成分之所欲稀釋倍數係介於5倍至20倍。當適 φ 用不同的LOC結構以確認維持夠高之標靶核酸 以供擴增及檢測,例如圖4中之病原體透析部7 0 施態樣中(進一步於圖6中說明),在樣品萃取部 使用有效地濃縮小到得以進入擴增部292之病原 並將較大細胞排出至廢料容器76之透析部。於 態樣中,使用透析部以選擇性地去除血漿中之蛋 而保留受到關注之細胞。 支持直接核酸擴增之第二LOC結構性特徵 • 寬比之設計以調整該樣品及擴增混合成分之間的 舉例來說,爲確保與該樣品有關之抑制劑經由單 驟而被稀釋至較佳的5倍至20倍範圍中,該樣 通道之長度與截面係經設計以使位於混合開始位 的樣品通道具有相較於該試劑混合物流動之通道 高出4倍至1 9倍之流阻抗。經由控制設計幾何 控制微通道之流阻抗。以固定之截面積而言,微 阻抗隨通道長度呈線性增加。對於混合設計而言 ,微通道中之流阻抗最主要取決於最小之截面積 設計倂入 8中之貯 增反應混 成分的最 胞性樣品 當時會使 序列濃度 。於此實 290上游 體的濃度 另一實施 白質及鹽 爲通道深 混合比。 一混合步 品及試劑 置之上游 的流阻抗 可輕易地 通道之流 重要的是 尺寸。例 -271 - 201211533 如,當深寬比極爲不均一時,具有方形截面之微通道的流 組抗與最小垂直尺寸之立方成反比。 反轉錄酶PCR(RT-PCR) 當分析或萃取之樣品核酸種類係RNA時,諸如來自 RNA病毒或信使RNA,首先必須將RNA反轉錄爲互補 DNA(cDNA)然後才能進行PCR擴增。該反轉錄反應可於 與PCR相同之室中實施(一步驟RT-PCR),或是其可爲分 開進行之初始反應(二步驟RT-PCR)。於此所述之LOC變 體中,一步驟RT-PCR可簡單地藉由添加反轉錄酶至含有 聚合酶之試劑貯器62及程式化該加熱器1 54以先進行反 轉錄步驟然後才進行核酸擴增步驟加以實施。二步驟RT-PCR亦可藉由利用該試劑貯器58以儲存及分配該等緩衝 液、引子、dNTP及反轉錄酶,利用培養部114以進行反 轉錄步驟,接著於擴增部112中以普通方式進行擴增加以 簡單地完成。 · 恆溫核酸擴增 針對一些應用而言,恆溫核酸擴增係較佳之核酸擴增 方法,因此該反應成分不需要經過不同溫度之重複循環, 而是使該擴增部維持於通常約爲3 7 °C至4 1°C之恆溫下。 —些恆溫核酸擴增方法已被描述’包括股取代擴增(SDA) 、轉錄介導擴增(TMA)、核酸序列基底擴增(NASBA)、重 組酶聚合酶擴增(RPA)、解螺旋酶依賴性恆溫DNA擴增 -272- 201211533 (HDA)、滾動循環擴增(RCA)、分枝型擴增(ram)及環媒介 性恆溫擴增(LAMP),這些方法中之任何方法或其他恆溫 擴增方法可被用於此處所述之LOC裝置之特定實施態樣 中。 爲了實施恆溫核酸擴增,該鄰接擴增部之試劑貯器60 及62將載有用於特定恆溫方法之適當的試劑而不是載有 PCR擴增混合物及聚合酶。例如以SDA而言,該試劑貯 參 器60含有擴增緩衝液、引子及dNTP,該試劑貯器62含 有適當之核酸內切酶及外切-DN A聚合酶。以RP A而言, 該試劑貯器60含有擴增緩衝液、引子、dNTP及重組酶蛋 白’該試劑貯器62含有股取代DNA聚合酶,諸如Bsu。 同樣地,以HD A而言,該試劑貯器60含有擴增緩衝液、 引子及dNTP,該試劑貯器62含有適當之DNA聚合酶及 解螺旋酶以解開雙股DNA而非使用熱。熟此技藝者將了 解’可將必要試劑以任何適用於該核酸擴增法之方式分配 Φ 於該兩個試劑貯器。 以擴增來自RN A病毒諸如HIV或C型肝炎病毒之病 毒性核酸而言,NASBA或TMA係適當的因其不需先將 RNA轉錄成cdNA。於此實例中,試劑貯器60塡充有擴 增緩衝液、引子及dNTP,試劑貯器62塡充有RNA聚合 酶、反轉錄酶及任意的RNase Η。 一些恆溫核酸擴增之形式必須具有初始變性循環以分 開雙股之DNA模板,然後才維持適合恆溫核酸擴增之溫 度以利反應進行。此可於本文描述之所有LOC裝置之實 -273- 201211533 施態樣中輕易達成,因爲在擴增部112中之混合的溫度可 藉由該擴增微通道158中之加熱器154加以仔細控制(見 圖 14)。 恆溫核酸擴增對於樣品中潛在的抑制劑之耐受性較高 ,因而通常適用於希望自樣品進行直接核酸擴增之情況。 因此,恆溫核酸擴增有時可用於分別顯示於圖73、74及 75 中之 LOC 變體 XLIII 673、LOC 變體 XLIV 674 及 LOC 變體XL VII 677等。直接恆溫擴增亦可與如圖73及75中 所示之一或多個擴增前透析步驟70、686或682,及/或如 圖74中所示之雜交前透析步驟682組合,以分別於核酸 擴增之前幫助樣品中之標靶細胞的部份濃縮,或是於樣品 進入雜交室陣列11〇前移除不想要之細胞碎片。熟此技藝 者將了解任何擴增前透析及雜交前透析之組合皆可被使用 〇 恆溫核酸擴增亦可於平行的擴增部諸如圖64、69及 所示意者中進行,多工及一些恆溫核酸擴增之方法諸如 LAMP係與初始反轉錄步驟相容以擴增RNA。 其他設計變體 流速感測器 除了溫度及液體感測器之外,該LOC裝置亦可倂有 經C Μ 0 S控制之流速感測器7 4 0,如圖9 4及L Ο C變體X 72 8 (見圖76至92)中之圖示說明。該等感測器被用於以二 個步驟測定流速。在第一步驟中,該彎繞加熱器元件8 1 4 -274- 201211533 之溫度係藉由施加低電流及測量電壓以決定該彎繞加熱器 元件8 1 4之電阻加以測定,因此該元件8 1 4之溫度係利用 該加熱器元件之電阻與溫度之間的已知關係計算。在此階 段中,很少熱在該元件814中消退,在該通道中之液體的 溫度係等於該元件814之計算溫度。在第二步驟中’更高 之電流被施加至該彎繞加熱器元件8 1 4以使該元件8 1 4之 溫度增加且一些熱係流失至該流動液體。藉由再次測量當 φ 施加較高電流時該元件8 1 4之電壓,該元件8 1 4之新電阻 係經測定且由該CMOS電路86再次計算該增加之溫度。 利用該彎繞加熱器元件8 1 4之新溫度及在該第一步驟中計 算之樣品液體之已知溫度,決定該液體之流動速度。從該 已知之通道截面幾何及該流動速度,計算該通道中該液體 之流速。 蛋白質檢測變體 # 該LOC裝置之一些實施態樣使用均質蛋白質檢測分 析以偵測在粗細胞溶解物內之特定蛋白質。多種爲了在該 LOC裝置之實施態樣中使用之均質蛋白質檢測分析已被發 展。通常,這些分析利用抗體或適體以捕捉該標的蛋白質 〇 在一種類型之分析中,與特定蛋白質142結合之適體 141係經兩個不同的螢光團或發光團143及144標示,彼 等之功能係在螢光共振能量轉移(FRET)或電化學發光共振 能量轉移(ERET)反應中作爲捐贈者及接受者(見圖ι〇8Α及 -275- 201211533 108B)»捐贈者M3及接受者144兩者皆與該相同適體141 連接,且分離改變係由當結合該標的蛋白質142時之構型 變化所造成。舉例來說,在該標的不存在時,適體141形 成該捐贈者與接受者呈緊密靠近之構型(見圖108A);當與 該標的結合時,該新構型導致該捐贈者與接受者之間的較 大分離(見圖108B)。當該接受者係淬熄劑且該捐贈者係發 光團時,與該標的結合之效應係光發射2 5 0或8 62之增加 (見圖 1 0 8 B)。 第二種類型之分析利用必須獨立地與該標的蛋白質 142之不同、非重疊表位或區域結合之二個抗體145或二 個適體141(見圖109A、109B、110A及110B)。這些抗體 145或適體141係經不同之螢光團或發光團143及I44標 示,彼等之功能係在螢光共振能量轉移(FRET)或電化學發 光共振能量轉移(ERET)反應中作爲捐贈者及接受者。該螢 光團或發光團143及M4形成一對短互補寡核苷酸147之 —部分,該等寡核苷酸147經由長、可彎折之連接子149 與該等抗體或適體連接(見圖109A及110A)。一旦該等抗 體145或適體141與該標的蛋白質M2結合,該等互補寡 核苷酸147找到彼此且互相雜交(見圖109B及1 10B)。此 讓該等捐贈者及接受者143及144彼此緊密靠近’導致用 來作爲標的蛋白質檢測之信號的有效FRET 25〇或ERET 862 » 爲了確保沒有或很少背景信號(因爲與該二個抗體1 45 或適體141連接之寡核苷酸在彼等不與該蛋白質142 -276- 201211533 結合時彼此雜交所致),必須小心地選擇該等互補寡核苷 酸147之長度及序列,以使該雙股之解離常數(kd)相對地 高(〜5 μΜ)。因此當經這些寡核苷酸標示之游離抗體或適體 係以奈莫耳之濃度(遠低於彼等之kd的濃度)混合時,該雙 股形成之可能性及所產生之FRET 250或ERET 8 62信號 可被忽略。然而,當二個抗體145或二個適體141皆與該 標的蛋白質142結合時,該寡核苷酸147之局部濃度將遠 φ 高於彼等之kd導致幾乎完全雜交及產生可檢測之FRET 250 或 ERET 862 信號。 當設計均質蛋白質檢測分析時,該螢光團及發光團之 選擇係一項重要的考量。粗細胞溶解物通常混濁,且可能 包含具自體螢光之物質。在該等情況中,使用具有長時間 螢光或電化學發光及經最佳化以產生最大FRET 250或 ERET 8 62之捐贈者-接受者對143及144之分子係爲所欲 。一種該捐贈者-接受者對係銪螯合物及Cy 5,其在之前已 # 經顯示相較於其他捐贈者-接受者對能顯著提高該系統之 信號-背景比,藉由允許在干擾性背景螢光、電化學發光 或散射光已衰減後讀取該信號。銪螯合物及 AlexaFluor 647或铽螯合物及螢光素FRET或ERET對亦具良好效果 。此方法之敏感性及特異性類似酶連接免疫吸附測定 (ELISA),但不需要樣品處理。 在該LOC裝置之一些實施態樣中,該等抗體M5中 之一者或該等適體141中之一者係與該蛋白質體檢測室 124之底連接(見例如圖1 16及120),且該蛋白質溶解物係 -277- 201211533 於在該化學溶胞部130內之溶解期間與該另一抗體145 適體1 4 1組合,以在進入該蛋白質體檢測室丨24之前促 與該第一抗體145或適體141之結合。此增加後續可檢 之信號產生之速度,因爲只需要在該蛋白質體檢測室內 行一個共軛或雜交事件。 光電二極體 圖54顯示光電二極體184,其倂入LOC裝置301 CMOS電路86。該光電二極體184係在沒有額外遮罩或 驟下製成CMOS電路86之部分。此爲CMOS光電二極 優於CCD之顯著優點,CCD是一種替代性感測技術, 可使用非標準處理步驟被整合於相同晶片上或於鄰近晶 上製造。晶片上檢測之花費低廉且縮小陣列系統之尺寸 該較短之光學路徑長度降低來自週遭環境的雜訊以有效 集螢光訊號,以及減少對於透鏡及濾鏡之傳統光學總成 需求。 光電二極體184之量子效率係指衝撞其主動區185 光子中被有效轉換成光電子之光子的分率。以標準矽處 而言,可見光之量子效率係介於0.3至0.5之範圍,根 處理參數諸如覆蓋層之量及吸收特性而定。 光電二極體1 84之檢測閥値決定可被檢測之螢光訊 的最小強度。該檢測閥値亦決定該光電二極體1 84之尺 大小,因此亦決定在該雜交及檢測部5 2中之雜交室1 之數目(見圖52)。該等室之尺寸大小和數量係受限於 或 進 測 進 之 步 體 其 片 〇 收 之 之 理 據 號 寸 80 該 -278- 201211533 LOC裝置之尺寸(以LOC裝置301爲例,其尺寸爲1,760 微米χ5,824微米)以及倂入其他功能性模組諸如病原體透 析部70及擴增部112之後可用空間之尺寸的技術參數。 以標準矽處理而言,該光電二極體184檢測最低5個 光子。然而,爲了確保可信賴之檢測,最小値可被設爲1 〇 個光子。因此以0.3至0.5之量子效率範圍而言(如上所討 論),自該等探針之螢光發射最少應爲17個光子,但30 φ 個光子將包含可靠檢測之適當誤差範圍。 電化學發光作爲選擇性檢測方法 電化學發光(ECL)涉及在電極表面產生物種,該物種 接著進行電子轉移反應以形成發射光之激發狀態。電化學 發光與正常化學發光不同之處在於該激發物種之形成有賴 於該發光團或共反應物在電極之氧化或還原。在此情況中 之共反應物係添加至該ECL溶液中之額外試劑,其提高 # ECL發射之效率。在正常化學發光中,該激發物種純粹經 由與適當試劑混合形成。該發射原子或複合物被慣稱爲發 光團。簡言之,ECL依賴產生該發光團之激發狀態,在該 狀態下光子將被發射。如同任何該等方法,有可能從該激 發狀態採取替代途徑以不導致該所欲之光發射(即淬熄)^ 該使用ECL取代螢光檢測之測試模組之實施態樣不需 要激發LED。電極係經建造於該等雜交室內以提供用於產 生ECL之電脈衝及利用該光感應器44檢測該等光子。該 電脈衝之期間及電壓係經控制;在一些實施態樣中,選擇 -279- 201211533 性地使用控制電流以控制電壓。 發光團及淬熄劑 先前描述之用來作爲該等探針之螢光報告子之釕複合 物[Ru(bpy)3]2 +亦可被用來作爲該雜交室中之ECL反應之 發光團,以TPrA (三正丙胺(CH3CH2-CH2)3N)作爲共反應 物。共反應物ECL的好處在於,在光子發射後發光團不會 被消耗且該等試劑可被重複使用。另外,該[Ru(bpy)3]2 + /TPrA E C L系統在近似生理p Η條件之水性溶液中提供良好信號 水平。可產生和TPrA與釕複合物相等或更佳結果之替代 性共反應物係N-丁基二乙醇胺及2-(二丁基胺基)乙醇。 圖95說明在ECL過程中所發生之反應,其中 [Ru(bpy)3]2 +係發光團864且TPrA係共反應物866。在該 [Ru(bpy)3]2 + /TPrA ECL系統中之ECL發射8 62發生在該 陽極處8 60之Ru(bpy)32 +及TPrA氧化之後。該等反應係 如下述:Nucleic Acid Amplification Variants Direct PCR Conventionally, P CR requires extensive purification of target DNA prior to preparation of the reaction mixture. However, with appropriate changes in chemical properties and sample concentrations, it is possible to perform nucleic acid amplification or direct amplification with minimal DNA purification. When the nucleic acid amplification program is PCR, this method is called direct PCR. When the nucleic acid amplification is carried out in a controlled constant temperature LOC unit, the method is directly thermostated. Direct nucleic acid amplification techniques have significant advantages when used in LOC devices, especially with regard to simplifying the fluid design required. Adjustments to the amplification chemistry of direct PCR or direct isothermal amplification include increasing buffer strength, using highly active and pr〇cessivity polymerases and additions to potential polymerase inhibitors. It is also important to dilute the inhibitor in the sample -270- 201211533. In order to utilize direct nucleic acid amplification techniques, the LOC device has two additional features. The first feature is a reagent reservoir (eg, imager 58) that is suitably sized to supply a sufficient amount of the extender or diluent to minimize the final concentration of the sample that may interfere with the amplification chemistry. Allows for successful nucleic acid amplification. The desired dilution factor of the non-fine component is between 5 and 20 times. When using different LOC structures to confirm the maintenance of a sufficiently high target nucleic acid for amplification and detection, such as in the pathogen dialysis section of Figure 4 (further illustrated in Figure 6), in sample extraction The dialysis section is used to effectively concentrate the pathogens that are small enough to enter the amplification section 292 and discharge the larger cells to the waste container 76. In the aspect, the dialysis section is used to selectively remove the eggs in the plasma while retaining the cells of interest. A second LOC structural feature that supports direct nucleic acid amplification • a broad ratio design to adjust between the sample and the amplified mixed component, for example, to ensure that the inhibitor associated with the sample is diluted to a single step In the preferred range of 5 to 20 times, the length and cross section of the channel are designed such that the sample channel at the mixing start has a flow impedance four to nine times higher than the channel through which the reagent mixture flows. . The flow impedance of the microchannel is controlled via control design geometry. In terms of a fixed cross-sectional area, the micro-impedance increases linearly with the length of the channel. For hybrid designs, the flow impedance in the microchannel is most dependent on the minimum cross-sectional area. The most cytosolic sample of the mixed reaction component in the design of the intrusion 8 will then have a sequence concentration. In this case, the concentration of the upstream body is 290. The other implementation of white matter and salt is the channel deep mixing ratio. A mixed step and reagent flow upstream of the flow impedance can easily flow through the channel. Important is the size. Example -271 - 201211533 For example, when the aspect ratio is extremely non-uniform, the flow resistance of a microchannel with a square cross section is inversely proportional to the cube of the smallest vertical dimension. Reverse Transcriptase PCR (RT-PCR) When the sample nucleic acid species analyzed or extracted are RNA, such as from RNA viruses or messenger RNAs, the RNA must first be reverse transcribed into complementary DNA (cDNA) before PCR amplification. The reverse transcription reaction can be carried out in the same chamber as the PCR (one-step RT-PCR), or it can be an initial reaction (two-step RT-PCR). In the LOC variants described herein, a one-step RT-PCR can be performed by simply adding a reverse transcriptase to a reagent reservoir 62 containing the polymerase and staging the heater 1 54 to perform the reverse transcription step. The nucleic acid amplification step is carried out. The two-step RT-PCR can also perform the reverse transcription step by using the reagent reservoir 58 to store and distribute the buffer, the primer, the dNTP, and the reverse transcriptase, and then perform the reverse transcription step in the amplification portion 112. Amplification in the usual manner is simply accomplished. Constant Temperature Nucleic Acid Amplification For some applications, thermostatic nucleic acid amplification is a preferred method of nucleic acid amplification, so that the reaction component does not need to be subjected to repeated cycles of different temperatures, but the amplification is maintained at about 3 7 °C to 4 1 °C at constant temperature. Some thermostated nucleic acid amplification methods have been described as 'including strand-substituted amplification (SDA), transcription-mediated amplification (TMA), nucleic acid sequence basal amplification (NASBA), recombinase polymerase amplification (RPA), unwinding Enzyme-dependent thermostated DNA amplification -272-201211533 (HDA), rolling-cycle amplification (RCA), branched-type amplification (ram), and circular mediation-enhanced amplification (LAMP), any of these methods or others The isothermal amplification method can be used in a particular embodiment of the LOC device described herein. In order to perform a thermostatic nucleic acid amplification, the reagent reservoirs 60 and 62 adjacent to the amplification section will carry appropriate reagents for a particular constant temperature method rather than carrying a PCR amplification mixture and a polymerase. For example, in the case of SDA, the reagent sump 60 contains amplification buffer, primers, and dNTPs, and the reagent reservoir 62 contains appropriate endonucleases and exo-DN A polymerase. In the case of RP A, the reagent reservoir 60 contains amplification buffer, primer, dNTP and recombinase protein. The reagent reservoir 62 contains a strand-substituted DNA polymerase such as Bsu. Similarly, in the case of HD A, the reagent reservoir 60 contains amplification buffer, primers and dNTPs, which contain appropriate DNA polymerase and helicase to unwind the double strand DNA instead of using heat. Those skilled in the art will appreciate that the necessary reagents can be dispensed into the two reagent reservoirs in any manner suitable for the nucleic acid amplification method. To amplify a viral nucleic acid from an RN A virus such as HIV or hepatitis C virus, NASBA or TMA is appropriate because it does not require transcription of the RNA to cdNA first. In this example, the reagent reservoir 60 is filled with an expansion buffer, an initiator, and dNTP, and the reagent reservoir 62 is filled with an RNA polymerase, a reverse transcriptase, and an arbitrary RNase. Some forms of thermostatic nucleic acid amplification must have an initial denaturation cycle to separate the double stranded DNA template before maintaining the temperature suitable for constant temperature nucleic acid amplification for the reaction to proceed. This can be easily achieved in all of the LOC devices described herein - 273 - 201211533, since the temperature of the mixing in the amplification section 112 can be carefully controlled by the heater 154 in the amplification microchannel 158. (See Figure 14). Thermostatic nucleic acid amplification is more tolerant to potential inhibitors in the sample and is therefore generally suitable for situations where direct nucleic acid amplification from the sample is desired. Therefore, thermostatic nucleic acid amplification is sometimes used for LOC variant XLIII 673, LOC variant XLIV 674 and LOC variant XL VII 677, etc., respectively, shown in Figures 73, 74 and 75. Direct thermostatic amplification can also be combined with one or more of the pre-amplification dialysis steps 70, 686 or 682 as shown in Figures 73 and 75, and/or the pre-hybridization dialysis step 682 as shown in Figure 74, respectively. Part of the target cells in the sample are concentrated prior to nucleic acid amplification, or unwanted cell debris is removed before the sample enters the array of hybridization chambers. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybridization dialysis can be used. Thermostatic nucleic acid amplification can also be performed in parallel amplification sections such as Figures 64, 69 and illustrated, multiplex and some Methods of thermostatic nucleic acid amplification such as the LAMP line are compatible with the initial reverse transcription step to amplify RNA. Other design variant flow rate sensors In addition to the temperature and liquid sensors, the LOC device can also be equipped with a C Μ 0 S-controlled flow rate sensor 704, as shown in Figure 9.4 and L Ο C variants. Graphical illustration in X 72 8 (see Figures 76 to 92). These sensors are used to measure the flow rate in two steps. In the first step, the temperature of the bent heater element 8 1 4 - 274 - 201211533 is determined by applying a low current and measuring the voltage to determine the resistance of the bent heater element 8 14 , so the element 8 The temperature of 14 is calculated using the known relationship between the resistance of the heater element and the temperature. In this stage, very little heat subsides in the element 814, and the temperature of the liquid in the channel is equal to the calculated temperature of the element 814. In the second step, a higher current is applied to the bent heater element 8 1 4 to increase the temperature of the element 8 14 and some of the heat is lost to the flowing liquid. By again measuring the voltage of the element 8 14 when φ is applied with a higher current, the new resistance of the element 8 14 is measured and the increased temperature is again calculated by the CMOS circuit 86. The flow rate of the liquid is determined by the new temperature of the bent heater element 814 and the known temperature of the sample liquid calculated in the first step. From the known channel cross-section geometry and the flow rate, the flow rate of the liquid in the channel is calculated. Protein Detection Variants # Some embodiments of this LOC device use homogeneous protein detection to detect specific proteins in the crude cell lysate. A variety of homogeneous protein detection assays for use in the implementation of this LOC device have been developed. Typically, these assays utilize antibodies or aptamers to capture the target protein. In one type of assay, aptamer 141 bound to a particular protein 142 is labeled with two different fluorophores or luminescent groups 143 and 144, The function is as a donor and recipient in fluorescence resonance energy transfer (FRET) or electrochemiluminescence resonance energy transfer (ERET) reactions (see Figure 〇 8〇 and -275- 201211533 108B) » Donor M3 and recipients 144 is both linked to the same aptamer 141, and the separation alteration is caused by a change in configuration when the target protein 142 is bound. For example, in the absence of the target, the aptamer 141 forms a configuration in which the donor is in close proximity to the recipient (see Figure 108A); when combined with the target, the new configuration results in the donor and acceptance Large separation between the two (see Figure 108B). When the recipient is a quencher and the donor is a luminescent group, the effect of combining with the target is an increase in light emission of 250 or 8 62 (see Figure 10 8 B). The second type of assay utilizes two antibodies 145 or two aptamers 141 (see Figures 109A, 109B, 110A and 110B) that must bind independently of the target protein 142, non-overlapping epitopes or regions. These antibodies 145 or aptamer 141 are labeled by different fluorophores or luminescent groups 143 and I44, and their functions are donated in fluorescence resonance energy transfer (FRET) or electrochemiluminescence resonance energy transfer (ERET) reactions. And recipients. The fluorophore or luminophore 143 and M4 form part of a pair of short complementary oligonucleotides 147 that are linked to the antibodies or aptamers via a long, bendable linker 149 ( See Figures 109A and 110A). Once the antibodies 145 or aptamers 141 bind to the target protein M2, the complementary oligonucleotides 147 find each other and hybridize to each other (see Figures 109B and 10B). This allows the donors and recipients 143 and 144 to be in close proximity to each other 'causing effective FRET 25〇 or ERET 862 as a signal for target protein detection » in order to ensure no or little background signal (because with the two antibodies 1 45 or aptamer 141-linked oligonucleotides are caused by hybridization to each other when they are not bound to the protein 142-276-201211533), the length and sequence of the complementary oligonucleotides 147 must be carefully selected so that The dissociation constant (kd) of the double strands is relatively high (~5 μΜ). Thus, when the free antibody or system indicated by these oligonucleotides is mixed at a concentration of nanomolar (far less than the concentration of kd), the possibility of double-strand formation and the resulting FRET 250 or ERET 8 62 signals can be ignored. However, when two antibodies 145 or two aptamers 141 are bound to the target protein 142, the local concentration of the oligonucleotide 147 will be much higher than φ, resulting in almost complete hybridization and a detectable FRET. 250 or ERET 862 signal. The choice of fluorophores and luminophores is an important consideration when designing homogeneous protein assays. The crude cell lysate is usually turbid and may contain substances with autofluorescence. In such cases, donor-recipient pairs 143 and 144 with long-term fluorescence or electrochemiluminescence and optimized to produce maximum FRET 250 or ERET 8 62 are desired. One such donor-recipient pair of ruthenium chelate and Cy 5, which has previously been shown to significantly increase the signal-to-background ratio of the system compared to other donor-recipient pairs, by allowing interference The background is read after the fluorescent, electrochemiluminescence or scattered light has decayed. The ruthenium chelate and AlexaFluor 647 or ruthenium chelate and fluorescein FRET or ERET pair also have good effects. The sensitivity and specificity of this method is similar to enzyme-linked immunosorbent assay (ELISA), but does not require sample processing. In some embodiments of the LOC device, one of the antibodies M5 or one of the aptamers 141 is linked to the bottom of the protein body detection chamber 124 (see, eg, Figures 1 16 and 120), And the protein lysate system -277-201211533 is combined with the other antibody 145 aptamer 141 during the dissolution in the chemical lysis unit 130 to promote the first step before entering the protein body detection chamber 丨24. A combination of antibody 145 or aptamer 141. This increases the rate at which subsequent detectable signals are generated, since only one conjugate or hybrid event is required within the proteomic detection chamber. Photodiode Figure 54 shows a photodiode 184 that is shunted into the LOC device 301 CMOS circuit 86. The photodiode 184 is part of the CMOS circuit 86 without additional masking or smearing. This is a significant advantage of CMOS photodiodes over CCDs, an alternative to the sensing technique that can be integrated on the same wafer or fabricated on adjacent wafers using non-standard processing steps. On-wafer inspection is inexpensive and reduces the size of the array system. This shorter optical path length reduces noise from surrounding environments to effectively collect fluorescent signals and reduce the need for conventional optical assemblies for lenses and filters. The quantum efficiency of the photodiode 184 refers to the fraction of photons that are effectively converted into photoelectrons in the active region 185 photons. In terms of standard enthalpy, the quantum efficiency of visible light ranges from 0.3 to 0.5, depending on the root processing parameters such as the amount of cover layer and absorption characteristics. The detection valve of the photodiode 1 84 determines the minimum intensity of the fluorescent light that can be detected. The detection valve 値 also determines the size of the photodiode 1 84 and therefore the number of hybridization chambers 1 in the hybridization and detection section 52 (see Figure 52). The size and quantity of the chambers are limited by the size of the measurement system. The size of the LOC device is the size of the LOC device 301. The size of the LOC device is 301. , 760 micron χ 5,824 micrometers) and technical parameters of the size of available space after intrusion into other functional modules such as pathogen dialysis unit 70 and amplification unit 112. The photodiode 184 detects a minimum of 5 photons in terms of standard 矽 processing. However, to ensure reliable detection, the minimum chirp can be set to 1 光 photons. Thus, in the quantum efficiency range of 0.3 to 0.5 (as discussed above), the fluorescence emission from the probes should be at least 17 photons, but 30 φ photons will contain an appropriate margin of error for reliable detection. Electrochemiluminescence as a Selective Detection Method Electrochemiluminescence (ECL) involves the generation of species on the surface of an electrode that is then subjected to an electron transfer reaction to form an excited state of the emitted light. Electrochemiluminescence differs from normal chemiluminescence in that the formation of the excited species depends on the oxidation or reduction of the luminophore or co-reactant at the electrode. The co-reactant in this case is added to the additional reagent in the ECL solution, which increases the efficiency of # ECL emission. In normal chemiluminescence, the excited species is formed purely by mixing with appropriate reagents. The emitting atom or complex is known as a luminescent group. In short, ECL relies on generating an excitation state of the luminophore in which photons will be emitted. As with any such method, it is possible to take an alternative route from the excited state to not cause the desired light emission (i.e., quenching). The embodiment of the test module using ECL instead of fluorescent detection does not require excitation of the LED. Electrodes are built into the hybrid chambers to provide electrical pulses for generating ECL and to detect such photons using the light sensor 44. The period of the electrical pulse and the voltage are controlled; in some implementations, the control current is selected to control the voltage using -279-201211533. Luminescent Groups and Quenchers The ruthenium complex [Ru(bpy)3]2 + previously described as a fluorescent reporter for such probes can also be used as a luminophore for ECL reactions in the hybridization chamber. TPrA (tri-n-propylamine (CH3CH2-CH2) 3N) was used as a co-reactant. The benefit of the co-reactant ECL is that the luminophores are not consumed after photon emission and the reagents can be reused. In addition, the [Ru(bpy)3]2 + /TPrA E C L system provides good signal levels in aqueous solutions at approximately physiological p Η conditions. Alternative co-reactants, N-butyldiethanolamine and 2-(dibutylamino)ethanol, which produce equal or better results than TPrA and ruthenium complexes. Figure 95 illustrates the reaction that occurs during the ECL process in which [Ru(bpy)3]2+ is a luminophore 864 and the TPrA is a co-reactant 866. The ECL emission 8 62 in the [Ru(bpy)3]2 + /TPrA ECL system occurs after the oxidation of Ru(bpy)32+ and TPrA at the anode 860. These reactions are as follows:

Ru(bpy)32+ -e' ->Ru(bpy)33+ (1) TPrA-e' ^[TPrA*]+ TPrA* + H+ ⑵Ru(bpy)32+ -e' ->Ru(bpy)33+ (1) TPrA-e' ^[TPrA*]+ TPrA* + H+ (2)

Ru(bpy)33+ +TPrA* -> Ru(bpy)3*2+ + products ⑶Ru(bpy)33+ +TPrA* -> Ru(bpy)3*2+ + products (3)

Ru(bpy)3*2+ -> Ru(bpy)32+ +hu ⑷Ru(bpy)3*2+ -> Ru(bpy)32+ +hu (4)

該發射光8 62之波長係約620奈米’且在Ag/AgCl參 考電極上之陽極電位係約1.1 V。以該[Ru(bpy)3]2 + /TPrA -280- 201211533 ECL系統而言’先前描述之黑洞淬熄劑BHQ RQ將是適當之淬熄劑。於本文所述之實施 劑爲初始時即附著於探針之功能性部分,但 樣中’淬熄劑有可能是游離於溶液中之分開: 用於ECL檢測之雜交探針 圖129及130顯示雜交-反應性ECL探 # 探針經常被稱爲分子信標,係爲由單股核酸 針,當與互補核酸雜交時發光。圖129顯示 序列238雜交前之單一ECL探針237。該探 、莖242、於5’端之發光團864及於3’端之 該環240係由與標靶核酸序列238互補之序 針序列兩側之互補序列黏合在一起以形成莖 當互補性標靶序列不存在時,該探針如[ 持閉合。該莖242保持該發光團-淬熄劑對 • 使彼等之間可發生顯著之共振能量轉移,實 光團在電化學激發後發射光之能力。 圖130顯示呈打開或經雜交構型之ECL 與互補性標靶核酸序列23 8雜交時,該莖環 該發光團864及淬熄劑248於空間上分離, 光團864發射光之能力。該ECL發射862係 作爲該探針已雜交之指標。 該探針以極高之專一性與互補標靶雜交 之莖螺旋被設計成相較於具有不互補之單· 2或愛荷華黑 態樣中,淬熄 於其他實施態 分子。 針2 3 7。這些 產生之莖環探 在與標靶核酸 針具有環240 淬熄劑2 4 8。 列組成。該探 242 〇 圏129所示維 互相靠近,以 質上消除該發 探針237。當 結構被破壞, 因此恢復該發 經光學檢測以 ,因爲該探針 一核苷酸之探 -281 - 201211533 針-標靶螺旋更爲穩定。由於雙股DNA相當堅固,因此該 探針-標靶螺旋與莖螺旋不可能在立體空間中共存。 與引子連接之ECL探針 與引子連接之莖環探針及與引子連接之線性探針(又 名蠍子型探針)係替代性之分子信標,可被用於LOC裝置 中以供即時及定量核酸擴增。即時擴增係直接在該LOC 裝置之雜交室中進行。使用與引子連接之探針之優點爲該 探針元件係實際與引子連接,因此在核酸擴增期間僅需發 生單次雜交事件而不需要分開的引子雜交及探針雜交。此 確保即時有效地反應,相較於使用分開的引子及探針時產 生更強·的信號、更短的反應時間且具有更佳的識別度。該 等探針(與聚合酶及擴增混合物)將於製造期間被沉積在雜 交室180中,不需在該LOC裝置上設置擴增部。或者, 該擴增部未被使用或用於其他反應。 與引子連接之線性ECL探針 圖1 3 1及1 32分別顯示在第一輪核酸擴增期間與引子 連接之線性ECL探針693及在後續核酸擴增期間呈雜交組 態之與引子連接之線性探針。參照圖1 3 1,該與引子連接 之線性ECL探針693具有雙股之莖區段242。其中一股倂 入與標靶核酸上之區域696同源之與引子連接之探針序列 696,且在彼之5’端係以發光團864標記,在彼之3’端係 經擴增阻斷物694與寡核苷酸引子700連接。該莖242之 -282- 201211533 另一股之3’端係以淬熄劑分子248標記。在完成第一輪之 核酸擴增之後,該探針可捲起並與具有序列69 8 (現呈互補 )之延伸股雜交。於首輪核酸擴增期間,該寡核苷酸引子 700與該標靶DNA 23 8 (見圖131)黏合然後延伸,形成含 有該探針序列及擴增產物兩者之DNA股。該擴增阻斷物 694防止聚合酶讀取及複製該探針區域696。當後續變性 時,該經延伸之寡核苷酸引子700/模板雜交體係經分離, φ 該與引子連接之線性探針之雙股莖242亦經分離,因此釋 放淬熄劑248。當溫度降低以進行黏合及延伸步驟時,該 與引子連接之線性ECL探針與引子連接之探針序列696捲 起,並與該延伸股上經擴增之互補序列69 8雜交,並可檢 測出顯示該標靶DNA存在之光發射。未經延伸之與引子 連接之線性ECL探針保留彼等之雙股莖且光發射保持淬熄 。此檢測方法特別適用於快速檢測系統,因其只需單一分 子處理。 與引子連接之莖環ECL探針 圖133A至133F顯示與引子連接之莖環ECL探針705 之操作。參照圖133A,該與引子連接之莖環ECL探針 705具有互補雙股DNA之莖242及倂有探針序列之環240 。其中一個莖股708之5’端係經發光團804標記。另一股 710係經3’-端淬熄劑248標記,且帶有擴增阻斷物694及 寡核苷酸引子700兩者。於初始變性相期間(見圖133B), 該標靶核酸23 8之股分開,該與引子連接之莖環ECL探針 -283- 201211533 705之莖242亦分開。當溫度冷卻以進行黏合相時(見圖 133C),在該與引子連接之莖環ECL探針705上之寡核苷 酸引子700與該標靶核酸序列23 8雜交。於延伸期間(見 圖133D),該標靶核酸序列23 8之互補序列706係經合成 以形成含有該探針序列705及擴增產物兩者之DNA股。 該擴增阻斷物694防止聚合酶讀取及複製該探針區域705 。當該探針在變性之後進行黏合時(見圖133E),該與引子 連接之莖環探針之環區段240之探針序列(見圖133 F)與該 延伸股上之互補序列706黏合。此構型使得該發光團864 與淬熄劑248相距甚遠,造成顯著增強之光發射。 ECL對照探針 雜交室陣列1 1 0包括具有用於分析品質控制之陽性及 陰性ECL對照探針之一些雜交室180。圖134及135示意 說明不含發光團之陰性對照ECL探針786,圖136及137 顯示不含淬熄劑之陽性對照E C L探針7 8 7。該陽性及陰性 對照ECL探針具有如前述之ECL探針之莖環結構。然而 ’不論該等探針係雜交成爲開放構型或保持封閉,該陽性 對照ECL探針787 —定會發射ECL信號862(見圖130), 而該陰性對照ECL探針78 6永遠不發射ECL信號862。 參照圖134及I35,該陰性對照ECL探針786不具發 光團(其可具有或不具有淬熄劑248)。因此,不論該標的 核酸序列2 3 8係如圖1 3 5所示與該探針雜交,或該探針維 持如圖1 34所示之莖242及環24〇構型,該ECL信號係經 201211533 忽略。或者,可設計陰性對照ECL探針以使其永遠保持淬 熄。舉例來說,藉由具有不與該硏究樣品中之任何核酸序 列雜交之人工探針(環)序列240,該探針分子之莖242將 自行重新雜交,而使該發光團及淬熄劑保持緊密相鄰而無 法檢測到可識別之ECL信號。若該淬熄不完全,此陰性對 照將造成可能發生之任何低量發射。 相反地,不含淬熄劑之陽性對照EC L探針7 8 7係如圖 φ 136及137中所示建構。不論該陽性對照探針787是否與 標靶核酸序列23 8雜交,皆無物質淬熄來自該發光團864 之ECL發射862。 圖123及124顯示建構陽性對照室之另一可能性。在 此例中’該等與擴增子(或任何含有標的分子之流)封閉隔 離之校準室382可塡充ECL發光團溶液,以使陽性信號— 定會在該電極處被檢測。 同樣地,該等對照室可爲陰性對照室,因爲缺乏入口 ® 防止任何標的到達該探針以使ECL信號永遠不會被檢測到 〇 圖52顯示雜交室陣列110中陽性及陰性對照探針(分 別爲378及38 0)之可能分佈。以ECL而言,陽性及陰性 對照ECL探針78 6及7 87將分別取代對照螢光探針3 78及 380°該等對照探針被放置在橫跨該雜交室陣列11〇之對 角線上的雜交室180中。然而,該等對照探針於陣列內之 配置係任意的(如同雜交室陣列1 1 〇之組態)。 -285- 201211533 用於ECL檢測之校準室 該光電二極體184之電學特性的不均一性、對任 在於該感測器陣列中之周圍光之反應及源自該陣列中 位置之光將背景雜訊及偏移導入輸出訊號。此背景係 該雜交室陣列110中之校準室3 82自各輸出訊號移除 等校準室不包含任何探針、包含不具有ECL發光團之 、或包含具有經配置以使淬熄永遠會發生之發光團及 劑之探針。校準室382在雜交室陣列各處之數量和安 隨意的。然而,若光電二極體184係由相對較近之校 382校準,該校準將更爲準確。參考圖139,該雜交 列110針對每八個雜交室180具有一個校準室382。 是說,校準室382係安置於每三乘三之雜交室180方 中間。在此組態中,該等雜交室1 8 0係由緊鄰的校 3 8 2校準。 圖93顯示差分成像儀電路788,該差分成像儀係 從該周圍之雜交室180的ECL訊號減去對應該校準室 之光電二極體184因爲該施加之電脈衝而產生之訊號 差分成像儀電路78 8自像素790和“虛擬”像素792 訊號。自室陣列之區域中的環境光線所產生之訊號亦 除。來自像素790的訊號非常微弱(即接近暗訊號), 有暗訊號位準之參考下將難以分辨背景値與非常微弱 號。 在使用期間’該“讀取_列” 794和“讀取_列_(1” 係經啓動,且M4 797和MD4 8 0 1電晶體被開啓。 何存 其他 藉由 ,該 探針 淬熄 排係 準室 室陣 也就 塊的 準室 用來 382 。該 取樣 被去 在沒 之訊 795 開關 -286- 201211533 807和809被關閉以使來自該像素790及“虛擬”像素 792之輸出被分別儲存於像素電容器803及虛擬像素電容 器8 05。在該像素訊號被儲存後,停用開關807和8 09。 接著該“讀取_行”開關811和虛擬“讀取_行”開關813 被關閉,在輸出處之開關電容放大器815放大該示差訊號 8 17° φ ECL量及信號效率 ECL效率之正常測量標準係每個「法拉第(Faradaic)」 電子即參與該電化學中之每個電子所獲得之光子數。該 ECL效率係以<()ecl表不:The wavelength of the emitted light 8 62 is about 620 nm' and the anode potential on the Ag/AgCl reference electrode is about 1.1 V. The black hole quencher BHQ RQ previously described as the [Ru(bpy)3]2 + /TPrA -280- 201211533 ECL system will be a suitable quencher. The agent described herein is initially attached to the functional portion of the probe, but in the sample, the quencher may be separated from the solution: hybridization probes for ECL detection are shown in Figures 129 and 130. Hybrid-reactive ECL probes are often referred to as molecular beacons by a single-stranded nucleic acid needle that luminesces when hybridized to a complementary nucleic acid. Figure 129 shows a single ECL probe 237 prior to hybridization of sequence 238. The probe, stem 242, the luminophore 864 at the 5' end, and the loop 240 at the 3' end are bonded together by complementary sequences flanking the sequence of the sequence of the complementary nucleic acid sequence 238 to form a stem complementarity. When the target sequence is absent, the probe is [closed. The stem 242 maintains the luminophore-quenching agent pair. • A significant resonance energy transfer between them can occur, and the ability of the photocell to emit light after electrochemical excitation. Figure 130 shows the ability of the luminescent group 864 and the quencher 248 to spatially separate when the ECL in the open or hybridized configuration hybridizes to the complementary target nucleic acid sequence 23 8 and the light 864 emits light. The ECL emission 862 is used as an indicator that the probe has hybridized. The probe's stem helix hybridized with a highly specific specificity to a complementary target is designed to be quenched in other embodiments of the molecule compared to a non-complementary mono 2 or Iowa black state. Needle 2 3 7. These produced stem loops have a ring 240 quencher 2 4 8 with a target nucleic acid needle. Column composition. The dimensions shown by the probes 242 〇 129 are close to each other to qualitatively eliminate the probe 237. When the structure is destroyed, the hair is recovered optically, because the probe-nuclear probe-281 - 201211533 needle-target helix is more stable. Since the double-stranded DNA is quite robust, the probe-target helix and the stem helix cannot coexist in the stereoscopic space. The stem-loop probe linked to the primer and the linear probe connected to the primer (also known as the scorpion probe) can be used in the LOC device for immediate and Quantitative nucleic acid amplification. The immediate amplification is performed directly in the hybridization chamber of the LOC device. An advantage of using a probe coupled to a primer is that the probe element is actually linked to the primer, so that only a single hybridization event is required during nucleic acid amplification without the need for separate primer hybridization and probe hybridization. This ensures an immediate and efficient response, resulting in a stronger signal, shorter reaction times and better recognition than when using separate primers and probes. The probes (and polymerase and amplification mixture) will be deposited in the hybrid chamber 180 during manufacture without the need to provide an amplification portion on the LOC device. Alternatively, the amplification portion is not used or used for other reactions. Linear ECL probes linked to primers Figures 13 1 and 1 32 show linear ECL probes 693 linked to primers during the first round of nucleic acid amplification, respectively, and primers linked to hybridization during subsequent nucleic acid amplification. Linear probe. Referring to Figure 133, the linear ECL probe 693 coupled to the primer has a double-stranded stem segment 242. One of the probes 696, which is homologous to the region 696 on the target nucleic acid, is linked to the primer, and is labeled with a luminescent group 864 at the 5' end, and is amplified by the 3' end. The fragment 694 is linked to the oligonucleotide primer 700. The stem 242 is -282-201211533 and the other 3' end is labeled with a quencher molecule 248. After completion of the first round of nucleic acid amplification, the probe can be tucked up and hybridized to an extended strand having sequence 69 8 (now complementary). During the first round of nucleic acid amplification, the oligonucleotide primer 700 is affixed to the target DNA 23 8 (see Figure 131) and then extended to form a DNA strand containing both the probe sequence and the amplification product. The amplification blocker 694 prevents the polymerase from reading and replicating the probe region 696. Upon subsequent denaturation, the extended oligonucleotide primer 700/template hybridization system is separated, and the double-strand 242 of the linear probe linked to the primer is also separated, thereby releasing the quencher 248. When the temperature is lowered for the bonding and extension step, the primer-ligated linear ECL probe and the primer-ligated probe sequence 696 are rolled up and hybridized with the amplified complementary sequence 69 8 on the extended strand, and can be detected. Light emission showing the presence of the target DNA is displayed. Linear ECL probes that are not extended and connected to the primer retain their double stems and the light emission remains quenched. This test method is especially suitable for fast detection systems because it requires only a single molecule. Stem-loop ECL probe attached to the primer Figure 133A to 133F show the operation of the stem-loop ECL probe 705 attached to the primer. Referring to Figure 133A, the stem-loop ECL probe 705 attached to the primer has a stem 242 of complementary double stranded DNA and a loop 240 with a probe sequence. The 5' end of one of the stems 708 is labeled with a luminophore 804. Another 710 is labeled with a 3'-end quencher 248 and carries both amplification blocker 694 and oligonucleotide primer 700. During the initial denaturing phase (see Figure 133B), the strands of the target nucleic acid 23 8 are separated, and the stem 242 of the stem-loop ECL probe-283-201211533 705 linked to the primer is also separated. When the temperature is cooled to effect the binding phase (see Figure 133C), the oligonucleotide primer 700 on the stem-loop ECL probe 705 attached to the primer hybridizes to the target nucleic acid sequence 23 8 . During extension (see Figure 133D), the complementary sequence 706 of the target nucleic acid sequence 23 is synthesized to form a DNA strand containing both the probe sequence 705 and the amplification product. The amplification blocker 694 prevents the polymerase from reading and replicating the probe region 705. When the probe is ligated after denaturation (see Figure 133E), the probe sequence (see Figure 133 F) of the loop segment 240 of the stem-loop probe attached to the primer is affixed to the complementary sequence 706 on the extension strand. This configuration is such that the luminophore 864 is at a great distance from the quencher 248, resulting in significantly enhanced light emission. ECL Control Probes Hybridization chamber arrays 110 include some hybridization chambers 180 with positive and negative ECL control probes for analytical quality control. Figures 134 and 135 schematically illustrate a negative control ECL probe 786 that does not contain a luminophore, and Figures 136 and 137 show a positive control E C L probe 7 8 7 without a quencher. The positive and negative control ECL probes have a stem-loop structure as described above for the ECL probe. However, regardless of whether the probes hybridize to an open configuration or remain closed, the positive control ECL probe 787 will emit an ECL signal 862 (see Figure 130), and the negative control ECL probe 78 6 will never emit an ECL. Signal 862. Referring to Figures 134 and I35, the negative control ECL probe 786 does not have a luminescent group (which may or may not have a quencher 248). Thus, whether the target nucleic acid sequence 2 3 8 is hybridized to the probe as shown in Figure 135, or the probe maintains the stem 242 and loop 24 〇 configurations as shown in Figure 34, the ECL signal is 201211533 Ignore. Alternatively, a negative control ECL probe can be designed to remain quenched forever. For example, by having an artificial probe (loop) sequence 240 that does not hybridize to any of the nucleic acid sequences in the study sample, the stem 242 of the probe molecule will self-hybridize itself to render the luminophore and quencher Stay close enough to detect identifiable ECL signals. If the quenching is not complete, this negative control will result in any low volume emissions that may occur. Conversely, the positive control EC L probe 7 8 7 without quencher was constructed as shown in Figures φ 136 and 137. Regardless of whether the positive control probe 787 hybridizes to the target nucleic acid sequence 23 8 , no material quenches the ECL emission 862 from the luminophore 864. Figures 123 and 124 show another possibility to construct a positive control chamber. In this case, the calibration chamber 382, which is closed to the amplicon (or any stream containing the target molecule), can be filled with the ECL luminophore solution so that a positive signal will be detected at the electrode. Likewise, the control chambers can be negative control chambers because of the lack of an inlet® to prevent any target from reaching the probe so that the ECL signal is never detected. Figure 52 shows the positive and negative control probes in the hybridization chamber array 110 ( Possible distributions of 378 and 38 0) respectively. In the case of ECL, the positive and negative control ECL probes 78 6 and 7 87 will be substituted for the control fluorescent probes 3 78 and 380, respectively, and the control probes are placed across the diagonal of the hybrid chamber array 11 In the hybridization room 180. However, the configuration of the control probes within the array is arbitrary (like the configuration of the hybrid chamber array 1 1 )). -285- 201211533 Calibration Chamber for ECL Detection The heterogeneity of the electrical characteristics of the photodiode 184, the reaction to ambient light in the sensor array, and the light originating from the position in the array will be background Noise and offset import output signals. The background is that the calibration chamber in the hybridization chamber array 110 is removed from each output signal, etc. The calibration chamber does not contain any probes, contains no ECL luminophores, or contains illumination that is configured to cause quenching to occur forever. Probes for group and agent. The number of calibration chambers 382 throughout the array of hybridization chambers is arbitrary. However, if the photodiode 184 is calibrated by a relatively close calibration 382, the calibration will be more accurate. Referring to Figure 139, the hybrid column 110 has a calibration chamber 382 for every eight hybridization chambers 180. That is to say, the calibration chamber 382 is placed in the middle of each of the three-by-three hybrid chambers. In this configuration, the hybrid chambers 180 are calibrated by the immediate calibration. Figure 93 shows a differential imager circuit 788 that subtracts the signal differential imager circuit generated from the ECL signal of the surrounding hybridization chamber 180 from the photodiode 184 corresponding to the calibration chamber due to the applied electrical pulse. 78 8 from pixel 790 and "virtual" pixel 792 signal. The signal generated by ambient light in the area of the chamber array is also removed. The signal from pixel 790 is very weak (i.e., close to the dark signal), and it is difficult to distinguish between the background and the very weak number with the reference of the dark signal level. During use, the "read_column" 794 and "read_column_(1" are activated, and the M4 797 and MD4 8 0 1 transistors are turned on. What else is left, the probe is quenched The quasi-room arsenal is also used for the block 382. The sample is taken in the no message 795 switch -286 - 201211533 807 and 809 are turned off so that the output from the pixel 790 and the "virtual" pixel 792 is Stored in the pixel capacitor 803 and the virtual pixel capacitor 850 respectively. After the pixel signal is stored, the switches 807 and 809 are disabled. Then the "read_row" switch 811 and the virtual "read_row" switch 813 are Turn off, the switched capacitor amplifier 815 at the output amplifies the differential signal 8 17 ° φ ECL amount and the signal efficiency ECL efficiency of the normal measurement standard is that each "Faradaic" electron is involved in each electron in the electron The number of photons obtained. The ECL efficiency is expressed by <()ecl:

® 其中I係每秒之光子的強度,i係電流安培,F係法拉第常 數,且Να係亞佛加厥(Avogadro’s)常數。 共反應物ECL之效率 在去氧、非質子溶液(例如充氮乙腈溶液)中很容易進 行消滅ECL以允許效率測量,φΕ(:ι_之共識値大約5%。然 而,直接測量共反應物系統之效率已被公認不具有意義。 相反地’發射強度係與在該相同形式中所測量之容易製備 之標準溶液諸如Ru(bpy)32+的結果相關。文獻(見例如j. -287- 201211533 K. Lei and and M. J. Powell, J.Electrochem. Soc·,137,3127( 1990)及 R. Pyati and Μ. M· Richter,Annu. Rep. Prog· Chem.C, 1 03, 1 2-78(2007))顯示(不含增強子諸如界面活性劑),含 TPrA共反應物之Ru(bpy)32 + ECL效率在相當於乙腈中之消 滅ECL 5%之量時達到最高(例如2%效率:見I. Rubinstein & A. J. Bard, J. Am. Chem. Soc., 1 03 5 1 2 - 5 1 6 ( 1 9 8 1 ))。 ECL電位® where I is the intensity of photons per second, i is the current amperage, F is the Faraday constant, and Να is the Avogadro's constant. The efficiency of the co-reactant ECL is easily eliminated in a deoxygenated, aprotic solution (eg, a nitrogen-laden acetonitrile solution) to allow for efficiency measurements, φΕ (: ι_ consensus 値 approximately 5%. However, direct measurement of the co-reactant The efficiency of the system has been recognized as meaningless. Conversely the 'emission intensity' is related to the results of standard solutions such as Ru(bpy)32+, which are readily prepared in this same form. Literature (see for example j.-287- 201211533 K. Lei and and MJ Powell, J. Electrochem. Soc·, 137, 3127 (1990) and R. Pyati and Μ. M· Richter, Annu. Rep. Prog·Chem.C, 1 03, 1 2-78 (2007)) shows (without enhancers such as surfactants) that the Ru(bpy)32 + ECL efficiency of the TPrA-containing co-reactant is highest (e.g., 2% efficiency) in an amount equivalent to 5% of the ECL elimination in acetonitrile. : See I. Rubinstein & AJ Bard, J. Am. Chem. Soc., 1 03 5 1 2 - 5 1 6 (1 9 8 1 )). ECL potential

Ru(bpy)32 + /TPrA系統之工作電極的電壓係約+1,1 V( 在文獻中通常在參考 Ag/AgCl電極上測量)。這麼高的電 壓縮短電極壽命,但對於一次性使用之裝置諸如本發明之 診斷系統所使用之LO C裝置而言不是問題。 該陽極與陰極之間的理想電壓取決於溶液成分和電極 材料之組合。選擇正確電壓可能需要在最高信號量、試劑 及電極穩定性和活化非所欲副作用諸如該室中之水的電解 之間妥協。在緩衝水性Ru(bpy)32 + /共反應物溶液及鉑電極 進行之測試中,該ECL發射在2.1_2.2 V時最大化(取決於 該共反應物選擇)。當電壓低於1.9 V及高於2.6V,發射 強度下降至最高値之<75%,當電壓低於1.7 V及高於2.8 V,發射強度下降至最高値之<50%。因此該等ECL操作系 統之較佳陽極-陰極電壓差異係1 . 7至2 · 8 V,特別較佳者 爲1.9至2.6 V之範圍。此允許最大化隨電壓變化之發射 強度,同時避免在電極處觀察到顯著氣體析出之電壓。 -288- 201211533 ECL發射波長 來自ECL之發射光862的波長在約620奈米處 峰(在空氣或真空中測量),該發射橫跨相當廣之波 。顯著發射發生在約550奈米至700奈米之波長。 該尖峰發射波長可因爲在該活性物種周圍之化學環 變而造成約10%之差異。此處所描述之LOC裝置 樣不倂有特定波長過濾器,以如此寬廣多變之光譜 • 號具有二項優點。該第一項優點係敏感性:任何波 濾器減少光穿透,甚至在彼之通帶內,因此藉由不 濾器可提高效率。第二項優點爲適應性:在少量試 後不需要調整過濾器通帶,且該信號較不取決該輸 之非標的成分之輕微差異。 參與ECL之溶液體積 ECL依賴溶液中發光團(及共反應物)之可得性 ® ’如圖97所示,該激發物種868僅在靠近該電極 87〇之溶液872中產生。此處所顯示之模型中的參 層深度係在該電極860周圍之溶液872層的深度, 激發物種8 6 8係經產生。 此爲簡圖,因爲溶液動力學可驅使可用濃度往 下: •增加可用性:擴散及電泳效應將允許交換更 〇 •減少可用性:試劑可被吸附在電極上,變成 具有強 長範圍 另外, 境的改 實施態 捕捉信 長之過 包括過 劑改變 入樣品 。然而 860及 數邊界 其中該 上或往 多溶液 無法被 -289- 201211533 ECL過程使用。 以邊界層深度値〇·5微米而言,做出下列觀察: 在與直徑最高4.5微米之磁珠共軛係用來吸引發光團 864至陽極860的實驗中觀察到ECL。The voltage of the working electrode of the Ru(bpy)32 + /TPrA system is about +1,1 V (usually measured in the literature on the reference Ag/AgCl electrode). Such a high electrical compression short electrode life is not a problem for a single use device such as the LO C device used in the diagnostic system of the present invention. The ideal voltage between the anode and the cathode depends on the combination of solution composition and electrode material. Choosing the correct voltage may require compromising between the highest semaphore, reagent and electrode stability, and activation of unwanted side effects such as electrolysis of the water in the chamber. In tests conducted with buffered aqueous Ru(bpy)32+/co-reactant solutions and platinum electrodes, the ECL emission was maximized at 2.1-2.2 V (depending on the co-reactant selection). When the voltage is lower than 1.9 V and higher than 2.6 V, the emission intensity drops to a maximum of < 75%. When the voltage is lower than 1.7 V and higher than 2.8 V, the emission intensity drops to a maximum of < 50%. Therefore, the preferred anode-cathode voltage difference for such ECL operating systems is from 1.7 to 20.8 V, particularly preferably in the range of 1.9 to 2.6 V. This allows to maximize the emission intensity as a function of voltage while avoiding the observation of significant gas evolution at the electrodes. -288- 201211533 ECL Emission Wavelength The wavelength of the emitted light 862 from the ECL is at a peak of about 620 nm (measured in air or vacuum) that spans a fairly broad wave. Significant emissions occur at wavelengths between about 550 nm and 700 nm. The peak emission wavelength can be varied by about 10% due to chemical cycling around the active species. The LOC device described here does not have a specific wavelength filter, so that such a broad and varied spectrum has two advantages. This first advantage is sensitivity: any filter reduces light penetration, even within the passband, so efficiency can be improved by the filter. The second advantage is adaptability: there is no need to adjust the filter passband after a small number of trials, and the signal is less dependent on the slight difference in the non-standard components of the input. Solution Volume Participating in ECL The availability of luminophores (and co-reactants) in the ECL-dependent solution ® ' As shown in Figure 97, the excited species 868 is only produced in solution 872 near the electrode 87 。. The depth of the reference layer in the model shown here is the depth of the layer 872 of the solution around the electrode 860, and the excited species 868 is produced. This is a simplified diagram because solution kinetics can drive the available concentrations down: • Increase usability: diffusion and electrophoresis effects will allow for more exchanges • Reduced usability: reagents can be adsorbed on the electrodes and become strong and long range The change of the implementation state captures the signal length including the change of the agent into the sample. However, the 860 and the number of boundaries where the above or more solutions cannot be used by the -289-201211533 ECL process. With the boundary layer depth of 値〇·5 μm, the following observations were made: ECL was observed in an experiment in which a magnetic bead conjugate with a diameter of up to 4.5 μm was used to attract the luminophore 864 to the anode 860.

Ru(bpy)32 + /TPrA ECL發射862隨電極間隔改變,以 指叉電極陣列而言,發現在0 · 8微米電極間隔時最大化。 當電極間隔係約2微米時,可去除在水性溶液8 72中之共 反應物866之需求。此顯示該激發物種8 68擴散數微米, 這暗示處於基態之物種以類似規模擴散交換。 穩定狀態及脈衝作業 在脈衝活化該等電極860及870期間,該ECL發射 862之強度(見圖130)通常係高於來自穩定狀態活化該等電 極之發射8 62的強度。因此,到該等電極860及870之活 化信號係經該CMOS電路86之脈衝寬度調變(PWM)(見圖 102) 〇 試劑再循環及物種壽命 該Ru錯合物不會在RU(bpy)32 + /TPrA ECL系統中消耗 ,因此該發射862之強度不會隨連續反應循環降低。該速 率限制步驟之壽命係約0 · 2毫秒,因此總反應循環時間約 爲1毫秒。 電泳效應及其他限制 -290- 201211533 由於該雜交室中之溶液的複雜性,當該ECL電壓打開 時發生許多現象。大分子之電泳、歐姆傳導及來自小離子 移動之電容效應同時發生。 寡核苷酸(探針及擴增子)之電泳可使該探針-標的雜交 體之檢測複雜化,因爲DNA帶有高度負電且被陽極860 吸引。此動作之時間通常很短(以毫秒計)。即使電壓僅爲 中度(1 V)該電泳效應仍然很強,因爲該陽極860與陰極 φ 87〇之間的間隔很小。 電泳在該LOC裝置之一些實施態樣中提高該ECL發 射8 62,在其他實施態樣中降低該發射。此藉由增加或減 少電極間隔以得到該相關之增加或降低電泳效應達成。該 陽極8 60和陰極870在該光電二極體184之上指叉代表極 小化此間隔之極端情況。該種安排產生ECL,即使在碳電 極8 60及870處沒有共反應物8 66。 # 歐姆加熱(DC電流) 維持ECL電壓約2.2 V所需之電流係如下決定,參考 圖98中示意說明之ECL細胞874。 通過該室之DC電流係由二個電阻決定:在該電極 8 60和8 70與該溶液本體之間的界面電阻Ri,及由該本體 溶液電阻率與傳導途徑幾何所推導之溶液電阻Rs。以離子 強度與該LOC裝置中之條件有關之溶液而言,該室電阻 係由該電極860及870處之界面電阻所主導,Rs可被忽略 -291 - 201211533 界面電阻之效應係由流經該LOC裝置中之電極幾何 之類似溶液之巨觀電流之標定測量値估計。 取得通過鉑電極處之類似溶液之電流密度之巨觀測量 値。和所採用之最壞情況(高電流)一致,在測試溶液中之 整體離子強度及ECL反應物濃度係高於在該LOC裝置中 所使用者。該陽極區係小於該陰極區,且被具有相當面積 之呈環狀幾何之陰極圍繞。以由直徑2 mm之圓組成之陽 極而言,所測得之電流係1 . 1 m A,得到電流強度爲350 A/m2。 在加熱模型中,該電極區係如圖9 8所示意說明之正 方環狀幾何。該陽極係寬1微米及厚1微米之環。表面積 係196平方微米,因此該計算出之電流1 = 69 nA。 加熱(功率=V2/R)係以最壞狀況爲模型,其中所有熱 能用於提高在該室中之水之溫度。此導致以5 . 8 °C /s加熱 室內容物,電壓差2.2V,若不修正由該LOC裝置本體所 移除之熱。 加熱該室約2 0 °C可造成大部分雜交探針變性。以用於 突變檢測之高度特異性探針而言,較佳係進一步限制加熱 至41或更少。藉由此程度之溫度穩定性,利用適當設計 之序列使單一鹼基錯誤配對敏感性雜交變得可行。此允許 在單一核苷酸多形性之層面上檢測突變及等位基因差異。 因此該DC電流被施加至電極860及8 70 0.69秒,以限制 該加熱至4°C。 約69 nA之電流通過該室係遠超過由該ECL物種在微 -292 - 201211533 莫耳濃度下可容納之法拉第電流。因此,以低工作週期脈 衝該電極860及870進一步減少加熱(至i°C或更少)同時 維持足夠之ECL發射862,不導致與試劑消耗有關之副作 用。在其他實施態樣中,該電流被降低至0.1 nA,此去除 脈衝活化該等電極之需要。即使電流低至0.1 nA,該ECL 發射8 62係限制於發光團。 φ 室及電極幾何 最大化ECL發光與光感應器之間的光耦合 ECL發光之直接化學前體係於該工作電極數奈米之內 產生。再次參照圖97,光發射(該激發物種868)通常發生 在該位置之數微米或更短距離以內。因此緊鄰該工作電極 (陽極8 60)之體積可被該光感應器44之對應光電二極體 184看見。有鑑於此,該等電極860及870係緊鄰該光感 應器44中之對應光電二極體184之主動表面區域185。另 # 外,該陽極8 60之形狀被建造成增加其被該光電二極體 184看見之側周邊。此舉之目的爲最大化可被該下方光電 二極體184檢測到之激發物種868之體積。 圖96示意說明該陽極860之三個實施態樣。梳狀結 構陽極878具有該平行手指狀構造880可與陰極8 70之手 指狀構造交叉之優點。該指叉構型係顯示於圖1〇3,及如 圖120及124所示之LOC部分配置圖。該指叉構型提供 相當窄(1至2微米)之一致介電間隙876(見圖97),且該 指叉梳狀結構對於微影製造過程而言相當簡單。如上討論 -293- 201211533 ,在該電極860及870之間相當窄之介電間隙8 76免除在 —些溶液872中之共反應物之需要,因爲該激發物種868 將在陽極和陰極之間擴散。移除共反應物之需求去除該共 反應物對各種檢測化學之潛在化學影響且提供更廣泛範圍 之可能的檢測選項。 再次參照圖96,該陽極8 60之一些實施態樣具有彎繞 構型882。爲了達成高周邊長度同時維持對製造錯誤之耐 受性,很方便的是形成寬、矩形之彎道884。 φ 該陽極可具有更複雜之構型886若有需要或希望如此 。舉例來說,其可能具有齒狀構造8 8 8、分支結構8 90或 二者之組合。倂有分支結構8 90之LOC設計的部分圖係 如圖138及139所示。該更複雜之構型諸如8 86提供長度 很長之側周邊,最適合用於其中採用共反應物之溶液化學 ,因爲圖案化緊密間隔之對側陰極更爲困難》 電極厚度 ♦ 通常,ECL細胞涉及從外部看來爲平面之工作電極。 另外,慣用於金屬層之微建造技術傾向導致金屬厚度約1 微米之平面結構。如前所述及圖96、99及1〇〇所示,增 加側周邊之長度促進該ECL發射與該光電二極體1 84之間 的耦合。 要進一步增加由該光電二極體184收集發射光862(見 圖130)之效率的第二種策略係增加該陽極860之厚度。此 示意顯示於圖97。鄰近該工作電極之壁的參與體積892之 ⑧ 201211533 部分係與該光電二極體184最有效耦合之區域。因此,以 給定寬度之工作電極8 60而言,該發射光862之整體收集 效率可藉由增加該電極之厚度提高。另外,因爲不需要攜 帶電容之高電流,該工作電極860之寬度係盡可能地減少 。該等電極8 6 0及8 7 0之厚度不可無限制地增加。注意到 該等電極之特徵及間隔大小可能在1微米之等級,且液體 塡充使得寬度大於深度之間隙較爲不利,因此該等電極之 φ 理想實際厚度係0.25微米至2微米。 電極間隙 電極860及8 70之間的間隙對於LOC裝置中之信號 品質非常重要,特別是在該等電極互相指叉之實施態樣中 。在其中該陽極8 60係分支結構之實施態樣中,諸如圖96 及圖1 00所示,鄰近元件之間的間隙也非常重要。ECL發 射效率及該發射光之收集效率二者皆應被最大化。 # 產生ECL發射傾向偏好1微米或更小之電極間隙。當 ECL在共反應物不存在時進行,小間隙特別有吸引力。該 間隙可相當於該發射光8 62之波長之事實不具重要性。因 此,在許多該發射光862(見圖130)係於不需要該光穿過該 電極860及870之間的位置測量之實施態樣中,使該電極 間隙盡可能地小通常係爲目標。然而,在其中該發射光 8 6 2必須穿過該電極8 6 0及8 7 0之間的實施態樣中,變成 必須不僅考慮該ECL發射過程,還必須考慮該光之波長性 質。 -295- 201211533 來自Ru(bpy)32 +之ECL的發射光8 62之波長係約620 奈米,因此在水中爲460奈米(0.46微米)。在其中該光電 二極體184及該ECL激發物種8 68係位於該電極結構之不 同側,且該電極結構係金屬的實施態樣中,該發射光8 62 必須通過在該等金屬結構元件之間的間隙。若此間隙係與 該光之波長相同,繞射通常減少到達該光電二極體184之 傳播光的強度。然而,若其中該發射光862係以大角度入 射在該間隙上,消減模式耦合可被利用以加強收集信號之 強度。在該LOC裝置中採用二種方法以增進該光電二極 體184與該發射光8 62之間的耦合效率。 第一,金屬元件之間的間隙並不減少至大約該發射光 在水中之波長以下,即約0.4微米。當與其他關於指叉電 極之間的小間隙之觀察結合時,此顯示該電極間隔之最佳 範圍係0.4至2微米。 第二,該元件之間的間隙至該光電二極體1 84之距離 係經最小化在此處所描述之LOC裝置實施態樣中,此顯 示在該等電極8 60及8 7 0與光電二極體184之間之層的總 厚度係1微米或更小。在其中該等電極與該光電二極體之 間存在多層之實施態樣中,安排彼等之厚度爲四分之一波 長或四分之三波長層具有抑制該發射光862反射之額外好 處。 電極模型 圖97係雜交室中之電極860及870之部分截面示意 -296- 201211533 圖。在該陽極8 60之側周邊周圍的體積係由該激發物種 868所佔據,該體積有時被稱爲參與體積8 92。在該陽極 8 60上方之封閉區域894被忽略,因爲其與該光電二極體 184之光耦合可被忽略。 以下參照圖98、99及100描述用於測定特定電極構 型是否爲下方之光電二極體184提供ECL發射862之基礎 量之技術。 φ 圖98係一環狀構型,其中該陽極8 60位於該光電二 極體184之邊緣周圍。在圖99中,該陽極860位於該光 電二極體184之周邊以內。圖1〇〇顯示更複雜之構型,其 中該陽極8 60具有一系列平行手指狀構造8 8 0以增加彼之 側邊長度。 就以上所有構型而言,該模型計算係如下述。以溶液 VECL之參與體積892而言,發射子Nem之總有效數係: ^ Nem = Nium. τρ / Tecl = VeclClNa . Tp/TECL ⑹ 其中發光團之參與數Nlum = VECLCLNA,r ECL係ECL過程之 壽命,CL係發光團濃度,rp係脈衝期間及Na係亞佛加厥 (Avogadro’s)數。 各向同性發射之光子數Nph()t係: ⑺The Ru(bpy)32 + /TPrA ECL emission 862 varies with electrode spacing and is found to be maximized at 0. 8 micron electrode spacing for the interdigitated electrode array. When the electrode spacing is about 2 microns, the need for a co-reactant 866 in the aqueous solution 826 can be removed. This shows that the excited species 8 68 diffuses a few microns, suggesting that the species in the ground state are diffusion exchanged on a similar scale. Steady State and Pulse Operation During pulse activation of the electrodes 860 and 870, the intensity of the ECL emission 862 (see Figure 130) is generally higher than the intensity of the emission 8 62 from the steady state activation of the electrodes. Thus, the activation signals to the electrodes 860 and 870 are pulse width modulated (PWM) by the CMOS circuit 86 (see Figure 102). 〇Reagent recycling and species lifetime The Ru complex will not be in RU(bpy) The 32 + /TPrA ECL system is consumed, so the intensity of this emission 862 does not decrease with the continuous reaction cycle. The life of the rate limiting step is about 0. 2 milliseconds, so the total reaction cycle time is about 1 millisecond. Electrophoretic effects and other limitations -290- 201211533 Due to the complexity of the solution in the hybrid chamber, many phenomena occur when the ECL voltage is turned on. Electrophoresis of large molecules, ohmic conduction, and capacitive effects from small ion movements occur simultaneously. Electrophoresis of oligonucleotides (probes and amplicons) complicates the detection of the probe-target hybrid because the DNA is highly negatively charged and attracted to the anode 860. The time for this action is usually very short (in milliseconds). Even if the voltage is only moderate (1 V), the electrophoretic effect is still strong because the interval between the anode 860 and the cathode φ 87 很小 is small. Electrophoresis increases the ECL emission 826 in some embodiments of the LOC device, which is reduced in other embodiments. This is achieved by increasing or decreasing the electrode spacing to achieve this correlation increase or decrease the electrophoretic effect. The anode 8 60 and cathode 870 above the photodiode 184 represent the extremes of minimizing this spacing. This arrangement produces an ECL even without co-reactants 8 66 at carbon electrodes 8 60 and 870. # 欧姆加热 (DC Current) The current required to maintain the ECL voltage of approximately 2.2 V is determined as follows, with reference to ECL cells 874 as illustrated schematically in Figure 98. The DC current through the chamber is determined by two resistances: the interfacial resistance Ri between the electrodes 8 60 and 8 70 and the body of the solution, and the solution resistance Rs derived from the bulk solution resistivity and conduction path geometry. In the case of a solution having an ionic strength associated with the conditions in the LOC device, the chamber resistance is dominated by the interface resistance at the electrodes 860 and 870, and Rs can be ignored -291 - 201211533 The effect of the interface resistance is passed through The calibration of the macroscopic current of a similar solution of the electrode geometry in the LOC device is estimated. A giant measurement of the current density through a similar solution at the platinum electrode is obtained. Consistent with the worst case (high current) employed, the overall ionic strength and ECL reactant concentration in the test solution is higher than that of the user in the LOC device. The anode region is smaller than the cathode region and is surrounded by a cathode having a relatively large area of annular geometry. In the case of an anode consisting of a circle having a diameter of 2 mm, the measured current is 1.1 m A, resulting in a current intensity of 350 A/m2. In the heating model, the electrode zone is illustrated as a square annular geometry as illustrated in Figure 98. The anode is a ring that is 1 micron wide and 1 micron thick. The surface area is 196 square microns, so the calculated current is 1 = 69 nA. Heating (power = V2/R) is modeled on the worst case where all of the heat is used to increase the temperature of the water in the chamber. This results in heating the contents of the chamber at 5.8 °C / s with a voltage difference of 2.2 V, if the heat removed by the LOC device body is not corrected. Heating the chamber at about 20 °C can cause most of the hybrid probe to denature. For highly specific probes for mutation detection, it is preferred to further limit the heating to 41 or less. With this degree of temperature stability, it is possible to make a single base mismatched sensitive hybridization with a suitably designed sequence. This allows for the detection of mutations and allelic differences at the level of single nucleotide polymorphism. The DC current was therefore applied to electrodes 860 and 8 70 for 0.69 seconds to limit the heating to 4 °C. A current of about 69 nA passes through the chamber far beyond the Faraday current that can be accommodated by the ECL species at a micro-292 - 201211533 molar concentration. Thus, pulsing the electrodes 860 and 870 with a low duty cycle further reduces heating (to i ° C or less) while maintaining sufficient ECL emission 862 without causing side effects associated with reagent consumption. In other embodiments, the current is reduced to 0.1 nA, which removes the need for the electrodes to activate the electrodes. Even with currents as low as 0.1 nA, the ECL emission 8 62 is limited to luminophores. φ chamber and electrode geometry Maximize the optical coupling between the ECL luminescence and the light sensor. The direct chemical pre-system of ECL luminescence is generated within a few nanometers of the working electrode. Referring again to Figure 97, light emission (the excited species 868) typically occurs within a few microns or less of the location. Thus the volume adjacent to the working electrode (anode 8 60) can be seen by the corresponding photodiode 184 of the light sensor 44. In view of this, the electrodes 860 and 870 are in close proximity to the active surface region 185 of the corresponding photodiode 184 in the photosensor 44. In addition, the shape of the anode 8 60 is structured to increase the side periphery thereof as seen by the photodiode 184. The purpose of this is to maximize the volume of the excited species 868 that can be detected by the lower photodiode 184. Figure 96 schematically illustrates three embodiments of the anode 860. The comb structure anode 878 has the advantage that the parallel finger configuration 880 can intersect the finger configuration of the cathode 870. The interdigitated configuration is shown in Figures 1 and 3, and the LOC portion configuration as shown in Figures 120 and 124. The interdigitated configuration provides a relatively narrow (1 to 2 micron) uniform dielectric gap 876 (see Figure 97), and the interdigitated comb structure is relatively simple for the lithography manufacturing process. As discussed above - 293-201211533, a relatively narrow dielectric gap 8 76 between the electrodes 860 and 870 eliminates the need for co-reactants in the solution 872 because the excited species 868 will diffuse between the anode and the cathode. . The need to remove the co-reactant removes the potential chemical effects of the co-reactant on various detection chemistries and provides a wider range of possible detection options. Referring again to Figure 96, some embodiments of the anode 860 have a bent configuration 882. In order to achieve a high perimeter length while maintaining tolerance to manufacturing errors, it is convenient to form a wide, rectangular corner 884. φ The anode can have a more complex configuration 886 if needed or desired. For example, it may have a toothed configuration 880, a branching structure 8 90, or a combination of the two. A partial diagram of the LOC design with branch structure 8 90 is shown in Figures 138 and 139. This more complex configuration, such as 8 86, provides a long-length side perimeter that is best suited for solution chemistry where co-reactants are used, since patterning closely spaced opposite cathodes is more difficult. Electrode thickness ♦ Typically, ECL cells are involved. The working electrode is a flat surface from the outside. In addition, micro-fabrication techniques conventionally used for metal layers tend to result in planar structures having a metal thickness of about 1 micron. As previously described and shown in Figures 96, 99 and 1 ,, increasing the length of the side perimeter promotes coupling between the ECL emission and the photodiode 1 84. A second strategy to further increase the efficiency of collecting the emitted light 862 (see Figure 130) by the photodiode 184 is to increase the thickness of the anode 860. This illustration is shown in Figure 97. The portion of the participating volume 892 adjacent to the wall of the working electrode 8 201211533 is the region where the photodiode 184 is most effectively coupled. Thus, with a given width of working electrode 860, the overall collection efficiency of the emitted light 862 can be increased by increasing the thickness of the electrode. In addition, the width of the working electrode 860 is reduced as much as possible because of the high current required to carry the capacitor. The thickness of the electrodes 860 and 870 cannot be increased without limitation. It is noted that the characteristics and spacing of the electrodes may be on the order of 1 micron, and liquid charging makes the gap larger than the depth unfavorable, so that the ideal thickness of the electrodes is 0.25 to 2 micrometers. Electrode Gap The gap between electrodes 860 and 870 is very important for the signal quality in the LOC device, particularly in the implementation of the electrodes interdigitated. In embodiments in which the anode 8 60-branch structure, such as shown in Figures 96 and 00, the gap between adjacent elements is also very important. Both the ECL emission efficiency and the collection efficiency of the emitted light should be maximized. # Generate ECL emission propensity to prefer an electrode gap of 1 micron or less. Small gaps are particularly attractive when ECL is carried out in the absence of a co-reactant. The fact that the gap can correspond to the wavelength of the emitted light 8 62 is not of importance. Thus, in many embodiments where the emitted light 862 (see Figure 130) is in a positional measurement where the light is not required to pass between the electrodes 860 and 870, making the electrode gap as small as possible is generally a goal. However, in an embodiment in which the emitted light 826 has to pass between the electrodes 860 and 870, it becomes necessary to consider not only the ECL emission process but also the wavelength property of the light. -295- 201211533 The emission of light from the Ru(bpy)32+ ECL 8 62 is about 620 nm, so it is 460 nm (0.46 μm) in water. In the embodiment in which the photodiode 184 and the ECL excitation species 6.8 are located on different sides of the electrode structure, and the electrode structure is a metal, the emitted light 8 62 must pass through the metal structural elements. The gap between them. If the gap is the same as the wavelength of the light, the diffraction generally reduces the intensity of the propagating light reaching the photodiode 184. However, if the emitted light 862 is incident on the gap at a large angle, the subtractive mode coupling can be utilized to enhance the intensity of the collected signal. Two methods are employed in the LOC device to increase the coupling efficiency between the photodiode 184 and the emitted light 826. First, the gap between the metal elements is not reduced to about the wavelength of the emitted light below the water, i.e., about 0.4 microns. When combined with other observations regarding the small gap between the finger electrodes, this shows that the optimum range of the electrode spacing is 0.4 to 2 microns. Second, the distance between the elements to the photodiode 180 is minimized in the LOC device implementation described herein, which is shown at the electrodes 8 60 and 807 and the photodiode The total thickness of the layers between the polar bodies 184 is 1 micron or less. In embodiments in which there are multiple layers between the electrodes and the photodiode, arranging their thickness to a quarter-wavelength or three-quarters wavelength layer has the added benefit of suppressing reflection of the emitted light 862. Electrode Model Figure 97 is a partial cross-sectional view of electrodes 860 and 870 in a hybridization chamber -296-201211533. The volume around the side periphery of the anode 860 is occupied by the excited species 868, which is sometimes referred to as the participating volume 892. The enclosed region 894 above the anode 860 is ignored because its optical coupling with the photodiode 184 can be ignored. Techniques for determining whether a particular electrode configuration is the underlying photodiode 184 providing an ECL emission 862 will be described below with reference to Figures 98, 99 and 100. φ Figure 98 is an annular configuration in which the anode 860 is located around the edge of the photodiode 184. In Fig. 99, the anode 860 is located within the periphery of the photodiode 184. Figure 1A shows a more complex configuration in which the anode 860 has a series of parallel finger-like configurations 800 to increase the length of the sides. For all of the above configurations, the model calculation is as follows. In terms of the participating volume 892 of the solution VECL, the total effective number of the emitter Nem is: ^ Nem = Nium. τρ / Tecl = VeclClNa . Tp/TECL (6) where the number of participants of the luminophore Nlum = VECLCLNA, r ECL is the ECL process Lifetime, CL-based luminophore concentration, rp-pulse period, and Na-type Avogador's number. Number of photons emitted by isotropic emission Nph()t: (7)

Nph〇t= φε〇ί Nem -297- 201211533 其中φΕα係ECL效率’定義爲由單一發光團之ECL反應 所發射之光子的平均數。 接著來自該光電二極體之電子信號數S係 S=Nph〇t. φοφς, (8) 其中Φ。係光耦合效率(由光電二極體184所吸收之光子數) 且^係光電二極體量子效率。因此該信號爲: ·Nph〇t = φε〇ί Nem -297- 201211533 wherein φΕα-based ECL efficiency is defined as the average number of photons emitted by the ECL reaction of a single luminophore. Then, the number S of electronic signals from the photodiode is S=Nph〇t. φοφς, (8) where Φ. The optical coupling efficiency (the number of photons absorbed by the photodiode 184) and the quantum efficiency of the photodiode. Therefore the signal is:

TECL 以圖98及99之電極構型而言,φ。係: ())。==(被導向光電二極體〗84之光子之25%)χ(未被反射之光子之10%) 即如圖98及99所示之構型(|)。= 2.5% 以圖100所示之電極構型而言,50%之光子被發射至 0 指向該光電二極體184之方向,但該吸收效率爲角度之函 數則不變,因此 小。=(被導向光電二極體之光子之50%)χ(未被反射之光子之10%) 即如圖100所示之構型= 5 % 該參與體積8 92取決於電極構型,細節描述於對應章 節之中。 用於計算之輸入參數列於下表: -298- ⑧ 201211533TECL is in the electrode configuration of Figures 98 and 99, φ. Department: ()). == (25% of photons directed to photodiode 84) χ (10% of unreflected photons) is the configuration (|) shown in Figures 98 and 99. = 2.5% In the electrode configuration shown in Fig. 100, 50% of the photons are emitted to the direction of 0 to the photodiode 184, but the function of the absorption efficiency for the angle is constant and therefore small. = (50% of the photons directed to the photodiode) χ (10% of the unreflected photons) ie the configuration shown in Figure 100 = 5 % The participating volume 8 92 depends on the electrode configuration, a detailed description In the corresponding chapter. The input parameters used for the calculation are listed in the following table: -298- 8 201211533

表5 :輸入參數 參數 數値 註解 發光團濃度Cl 2.89 μιη 先前計算之探針濃度 ECL再循環期間(壽命)rECL 1 ms 發光團之反應步驟的組合壽命 邊界層深度D 0.5 μπι 參與ECL之溶液的有效體積 (包括擴散及電泳) 施加電流期間r p 0.69 s 經選擇以限制歐姆加熱至4°C (如前所述) 室X尺寸 28 μιη 室Y尺寸 28 μπα 室高度Z 8 μιη 光電二極體X尺寸 16 μπι 光電二極體Y尺寸 16 μιη 電極厚度(即暴露之邊緣高度) 1 μηι 電極層最小寬度及間隙 1 μιη 過程關鍵尺寸 電極界面電流密度 350 A/m2 用於歐姆加熱 溶液體積電阻率 0.5 Q.m 用於歐姆加熱 施加之電壓差(工作-相對電極) 2.2 V 在光電二極體周邊之環幾何 參照圖98,該陽極8 60係位於該光電二極體184邊緣 周圍之環。在此構型中,該參與體積892係:Table 5: Input Parameter Number of Parameters 値 Note Luminescence Concentration Cl 2.89 μιη Previously Calculated Probe Concentration ECL Recycling Period (Lifetime) rECL 1 ms Combination Life of Luminescence Reaction Step Boundary Depth D 0.5 μπι Participation in ECL Solution Effective volume (including diffusion and electrophoresis) During application of current rp 0.69 s is selected to limit ohmic heating to 4 ° C (as previously described) Chamber X size 28 μιη Room Y size 28 μπα Chamber height Z 8 μιη Photodiode X Size 16 μπι Photodiode Y size 16 μιη electrode thickness (ie exposed edge height) 1 μηι Electrode layer minimum width and gap 1 μιη Process critical dimension electrode interface current density 350 A/m2 for ohmic heating solution volume resistivity 0.5 Qm is used for ohmic heating applied voltage difference (working-opposite electrode) 2.2 V ring geometry around the photodiode Referring to Figure 98, the anode 860 is a ring around the edge of the photodiode 184. In this configuration, the participating volume 892 is:

Vecl = 4x[(在電極壁旁之層)+ (在電極壁上之四分之一圓柱)] 計算結果: 自0.5微米邊界層所產生之光子:3.lxlO5 在光電二極體中之電子數:2.3χ103 此信號可被該LOC裝置光感應器44之下方光電二極 -299- 201211533 體184輕易地檢測。 增加邊緣長度之額外手指狀構造 參照圖100,平行手指狀構造880被加至該陽極860 各處。只有在圖中顯示之水平邊緣有助於該參與體積892 ,以避免重複計算該垂直邊緣。因此該參與體積8 92爲: VECL=(8x2)x[(在電極壁旁之層)+ (在電極壁上之四分之一圓柱)] 圖100構型之計算結果爲: 自0.5微米邊界層所產生之光子:l.lxlO6 在光電二極體1 8 4中之電子數:8.0 X 1 03 此信號可在光電二極體1 84中輕易地檢測。 完整覆蓋 在圖101及圖102中顯示之此構型被包括以作爲最大 表面區域耦合之極限情況》實際上,該電極表面區域與該 光電二極體184之主動表面區域185之間90%或更佳之耦 合達到幾乎最佳結果,即使該光電二極體主動表面區域 185與該電極表面區域耦合50%提供該完全覆蓋構型之大 部分好處。完整覆蓋可在二個實施態樣中達成:第一,如 圖101所示,藉由在與該光電二極體184平行之平面上使 用透明陽極860及使該透明陽極之面積配合該光電二極體 之面積,且安排該陽極緊鄰該光電二極體1 84,以使發射 -300 - 201211533 光8 62通過該陽極到達該光電二極體。在如圖102所示之 第二實施態樣中,該陽極8 60同樣與該光電二極體區域平 行及配準,但該溶液8 72塡充該陽極8 60與該光電二極體 184之間的空間。以完整覆蓋構型之信號模型而言,假設 該陽極爲在該光電二極體184以上之完整層,有一半之光 子被引導至該光電二極體184(吸收效率仍爲10%)。 自0.5微米邊界層所產生之光子:7.7xl05 φ 在光電二極體中之電子數:1.2x1 04 藉由使用界面活性劑及固定在該陽極之探針,有可能 增進信號及除了上述模型以外之檢測。 ECL探針與光電二極體之間的最大間隔 在晶片上檢測雜交不需要以共軛焦顯微鏡(見先前技 術)進行檢測。此項與傳統檢測技術不同之處代表此系統 得以節省時間和成本上之重要因素。傳統檢測需要必須使 ♦ 用透鏡和彎曲鏡面之成像光學。藉由採用非成像光學,該 診斷系統避免複雜及笨重的光學元件串之需求。將光電二 極體放置於非常靠近探針具有極高收集效率之優點:當在 該探針和光電二極體之間的材料厚度爲1微米級時,該發 射光之收集角係高達174°。此角度藉由考慮自最靠近該光 電二極體之雜交室表面中心的探針發射的光來計算,該光 電二極體具有平行於該室表面的平面主動表面。在光發射 角錐內之光可被光電二極體吸收,該發射角錐係定義爲在 其頂點和在其平面之周圍上的感測器角落具有發射探針。 -301 - 201211533 以16微米χ16微米之感測器爲例,此角錐之頂角爲170。 ;在該光電二極體經擴展使得其面積符合該28微米x2 6.5 微米之雜交室面積的極限情況中,該頂角爲174°。在該室 表面和光電二極體主動表面之間的間隔爲1微米或更小是 容易達成的。 應用非成像光學方法確實需要該光電二極體184非常 靠近雜交室以收集足量之螢光發射光子。該光電二極體和 探針之間的最大間隔係如下述決定。 φ 利用釕螯合物發光團和圖100之電極構型,我們算出 27,000個光子自各自雜交室180被我們的16微米X16微 米之感測器吸收,以產生8,000個電子(假設感測器量子效 率爲30%)。在進行此計算時,我們假設該雜交室之光收 集區域具有與我們的感測器相同之底面積,該雜交光子之 總數的四分之一係經調整角度以到達該感測器,且保守預 估1 〇%之光子比例不會自該感測器介電界面偏折散開。也 就是說,該光學系統之光收集效率爲φο = 〇.025。 鲁 更精確的說,我們可以寫出<h = [(雜交室之光收集區域 的底面積)/(光檢測器面積)][Ω/4 7Γ ][10%吸收],其中Ω =在 雜交室之基底上的代表點之光檢測器所對向之立體角。以 正四方錐之幾何而言: Q = 4arcsin(a2/(4d〇2 + a2)),其中d〇 =該室與光電二極體之間 的距離,且a爲該光電二極體之尺寸。 各雜交室釋放l.lxl 〇6個光子。該經選擇之光檢測器 具有1 7個光子之檢測低限値,以大於該感測器大小1 0倍 -302- 201211533 之dG値而言(即實質上垂直入射),該不反射在該感 面之光子比例可自10%增加至90%。因此,該所需 光學效率爲: φ〇 = 17/(1.1χ106χΟ.9)=1.72xl0'5 該雜交室180之光發射區域的底面積爲29 φ 19.75 微米。 解出dQ,將得到在該雜交室與光檢測器之間的 制距離爲dQ=l,600微米。在此限制下,如上所定義 錐角僅爲〇. 8°。應注意的是此分析忽略折射可忽略 LOC變體 以上所有描述及說明之LOC裝置30 1僅爲許 # 的LOC裝置設計中之一者。使用上述各種功能部 組合的LOC裝置從樣品入口至檢測之變異現將加 及/或以示意流程圖顯示,以示範一些可能的組合 流程圖在適當時被分成樣品輸入及製備階段28 8、 段290、培養階段291、擴增階段292、雜交前階段 檢測階段294。對於所有該等僅經簡單說明或以示 示之LOC變體而言,彼等之完整配置並不顯示以 簡潔。同樣爲求清楚之故,較小之功能單位諸如液 器及溫度感測器不被顯示,但應了解的是,這些單 測器表 之最小 微米X 最大限 之收集 之影響 多可能 之不同 以說明 。該等 萃取階 293及 意圖顯 求清楚 體感測 位已被 -303- 201211533 倂入下列各種LOC裝置設計中之適當位置。 具有ECL檢測之LOC裝置 圖111至127顯示具有電化學發光(ECL)檢測之LOC 變體729。此LOC裝置準備288、萃取290、培養291、 擴增292及檢測294人及病原體之核酸,也能進行人及病 原體之蛋白質檢測。ECL係用於雜交室陣列及蛋白質體檢 測室陣列以檢測標的。 最佳如圖1 1 7所示,生物樣品(例如全血)被添加至該 樣品入口 68。該樣品流經該上蓋通道94到達該抗凝血劑 表面張力閥118。該上蓋46係經建造以具有位於該上蓋通 道層80與該CMOS + MST裝置48之MST通道層100之間 的界面層594(見圖112)。該界面層594允許該等試劑貯器 與該MST層87之間更複雜的流體互通而不增加該矽基板 84之尺寸。 圖113顯示可在該CMOS+MST裝置48之上部表面上 看見之該MST層87。圖114顯示在該上蓋46下側之上蓋 通道層80»圖115重疊顯示該等貯器、該等上蓋通道94 及該等界面通道,以說明由倂有界面層594之上蓋46所 達成之更爲複雜之通道系統。 最佳如圖117所示,該界面層594要求該抗凝血劑表 面張力閥118具有二個界面通道596及598。貯器側界面 通道5 96連接該貯器出口與該下降口 92及樣品側界面通 道598連接該上升口 96與該上蓋通道94° -304- 201211533 來自貯器54之抗凝血劑經由該貯器側界面通道596 流經該MST通道90以在上升口 96形成彎液面。在該上 蓋通道94中之樣品流下降至該樣品側界面通道5 9 8以移 除該彎液面以使該抗凝血劑與該血液樣品在繼續前往該白 血球透析部328途中組合。 該白血球透析部328倂有旁通道600以用於塡充該等 流通道結構而不困住氣泡(見圖117及126)。該血液樣品 φ 流經上蓋通道94到達該大組分界面通道730之上游端。 該大組分界面通道730係經由呈7.5微米直徑洞165形式 之孔與該透析MST通道204流體相通(見圖126)。 參照圖126,各該等透析MST通道2 04從該7.5微米 直徑洞165至各自之透析上升口 168。該等透析上升口 1 68係開放至該小組分界面通道73 2。然而該等上升口係 經配置以固定彎液面而不是允許毛細驅動流繼續前進。屬 於該旁通道600之上升口具有毛細起始特徵202,其係經 ® 配置以啓動毛細驅動流進入該小組分界面通道732。此確 保該流始於該小組分界面通道732之上游端,且隨著該流 朝下游前進時依序釋放在該透析上升口 168處之彎液面。 圖121顯示該白血球透析部328之下游端。該大組分 界面通道73 0饋料進入該大組分上蓋通道736,且該小組 分界面通道732饋料進入該小組分上蓋通道734 »最佳如 圖115所示,該大組分上蓋通道736經由該溶胞表面張力 閥128.1饋送白血球(及任何其他大組分)至該化學溶胞部 130.1,在該溶胞表面張力閥128.;ι處添加來自貯器56.1 -305- 201211533 之溶胞試劑。該化學溶胞部130.1在出口處具有3微米過 濾下降口 7 3 8 (見圖1 17)。該過濾下降口確保沒有大組分到 達該溶胞室出口之沸騰啓動閥206 »經過足夠時間後,該 沸騰啓動閥206打開該化學溶胞部1 30. 1之出口,該樣品 流分成兩路流動。最佳如圖1 1 7所示,一路流至該第一限 制酶、接合酶及連接子貯器58.1之表面張力閥132.1處, 另一路沿著溶胞白血球旁通道742被直接吸引至該雜交及 檢測部294中之蛋白質體檢測室陣列1 24.1。在此處該樣 品塡充該蛋白質體檢測室陣列124.1(見圖1 19),其含有探 針以用於與標的人蛋白質雜交。探針-標的雜交體係由光 感應器44檢測(見圖1 1 1)。該另一路與來自貯器58.1之 限制酶、接合酶及連接子引子一起流進該白血球培養部 114.1。 參照圖1 1 8,在經限制酶消化及連接子接合之後,該 培養部出口閥207(亦爲沸騰啓動閥)打開且流體繼續前進 至該白血球DNA擴增部112.1。在貯器60.1及62.1中之 擴增混合物及聚合酶分別經由表面張力閥138.1及140.1 添加。參照圖119,在加熱循環之後,該沸騰啓動閥108 打開以讓該擴增子進入該含有用於人DNA標的之探針的 雜交室陣列110.1。探針-標的雜交體係由該光感應器44 檢測。 來自該白血球透析部3 2 8之紅血球及病原體經由該上 蓋通道73 4被饋送至該病原體透析部70(見圖117及127) 。此以和該白血球透析部328相同之方式操作,除了該過 -306- 201211533 濾下降口具有3微米之孔164而非白血球透析所使用之 7.5微米之孔165。該紅血球維持在該大組分界面通道730 中,而該病原體擴散至該小組分界面通道73 2。 圖122顯示該病原體透析部70之下游端。該紅血球 流進該大組分上蓋通道736中,該病原體塡充該小組分上 蓋通道734。將了解的是,「大組分」及「小組分」係以相對 意義使用,因爲該病原體透析部之大組分輸出係該白血球 φ 透析部之小組分輸出之一部分。在該特定透析部內之大組 分上蓋73 6或界面通道中之組分單純地大於該小組分上蓋 734或界面通道中之組分。最佳如圖1 1 5和1 16所示,在 該大組分上蓋通道73 6中之紅血球被引導至該溶胞試劑貯 器56.3之表面張力閥128.3。當該樣品流體塡充該化學溶 胞部130.3時,該溶胞試劑與該紅血球組合。在該第三化 學溶胞部130.3出口處之沸騰啓動閥20 6保留該病原體直 到溶胞完全。當該沸騰啓動閥206打開時,該紅血球DNA # 直接流進該蛋白質體檢測室陣列124.3以供蛋白質分析及 藉由該光感應器44檢測(見圖1 19)。 在該小組分上蓋通道734中之病原體被引導至該第二 溶胞試劑貯器56.2之表面張力閥128.2。當該樣品流體塡 充該第二化學溶胞部130.2時,該溶胞試劑與該病原體組 合。經過足夠時間後,該沸騰啓動閥206打開該化學溶胞 部130.2之出口,該樣品流分成兩路流動。最佳如圖116 及118所示,一路流至該第二限制酶、接合酶及連接子貯 器58.2之表面張力閥132.2處,另一路沿著旁通道744被 -307- 201211533 直接吸引至該雜交及檢測部294。在此處該樣品塡充該蛋 白質體檢測室陣列124.2(見圖119),其含有探針以用於與 標的病原體蛋白質或其他生物分子雜交。探針-標的雜交 體係由該光感應器44檢測(見圖1 1 1 )。 該另一路與來自貯器58.2之限制酶、接合酶及連接 子引子一起流進該病原體培養部1 1 4.2。在經限制酶消化 及連接子接合之後,該培養部出口閥207(亦爲沸騰啓動閥 )打開且流體繼續前進至該病原體DNA擴增部112.2(見圖 118)。當塡充該室時,在貯器60.2及62.2中之擴增混合 物及聚合酶分別經由表面張力閥138.2及140.2添加。在 加熱循環之後,該沸騰啓動閥1 08打開以讓該擴增子流進 該含有用於病原體DNA標的之探針的第二雜交室陣列 1 10.2。探針-標的雜交體係由該光感應器44檢測(見圖 1 1 9卜 參照圖120,該雜交室陣列110.1及110.2和蛋白質 體檢測室陣列124.1至124.3具有由氮化鈦之長條製成之 加熱器元件1 8 2 »由終點液體感測器1 7 8偵測該流體何時 到達該雜交室陣列或蛋白質體檢測室陣列之終點,經過一 段時間延遲後該加熱器1 82接著被活化。流速感測器74〇( 見圖125)被包括在該病原體培養部114.2以決定該時間延 遲。 圖123及124顯示該等校準室382。它們被用來校準 該光電二極體1 84以調整系統雜訊及背景値。該光電二極 體之反應及電雜訊特徵可隨位置及加熱變化而有所不同° -308- 201211533 來自不包含任何探針之校準室382之輸出信號密切近似 自所有室之輸出信號中的雜訊及背景。自其他雜交室所 生之輸出訊號減去校準訊號實質上移除雜訊,留下由該 化學發光(若有的話)所產生之訊號。同樣地,陽性及陰 對照ECL探針786及787可被放置在一些雜交室180中 供分析品質控制。 參照圖116,由貯水器188及蒸發器190組成之增 φ 器196係位於該裝置之左上方。該濕度感測器232之位 係鄰接雜交室陣列1 1 〇,該處之濕度測量至爲重要以減 含有該暴露探針之溶液蒸發。 藉由結合該白血球及病原體輸出透析部以產生三個 出流(白血球、紅血球及病原體和其他生物分子),該三 輸出流被分開處理以允許更高之敏感性及平行分析。來 各流之輸出係經溶解且被分開引導至蛋白質體檢測室陣 以用於檢測蛋白質。該經溶解之白血球及病原體亦被分 # 引導至該培養部1 1 4及擴增部1 1 2以用於擴增’然後藉 雜交以用於核酸檢測。 具有隔熱溝之LOC裝置 最佳如圖1 2 8所示,溝8 9 6係經蝕刻至該矽基板 之背部。該溝之目的係熱隔絕該擴增部1 1 2與該雜交室 列1 1 0。該雜交陣列包含在高溫下可降解之檢測探針。 溝塡充空氣時具有小於該矽基板6,000倍之導熱性’藉 顯著減少進入該LOC裝置之鄰近部分之熱通量° 來 產 電 性 以 濕 置 緩 輸 個 白 列 開 由 84 陣 該 此 -309- 201211533 此提供二個主要優點:增加該擴增部1 1 2中之加熱效 率;及減少該鄰近雜交部1 1 〇中非所欲之溫度上升。改善 加熱效率表示需要較少電力以加熱該擴增部112且該溫度 更快地且在該擴增部內更具空間一致性地到達彼之所欲終 點溫度。減少在該雜交部110中之溫度上升允許更廣泛範 圍之探針化學及優良之信號品質。 該溝可被放置在該LOC裝置上之任何區域周圍以熱 隔離在該區中之組件。該溝896之寬度及深度可經變化以 適合該特定應用。 結論 本文所述之裝置、系統及方法促進快速便宜及適合就 地醫護之分子診斷試驗。上述之系統及其成分僅爲說明用 途,且在不背離本發明的精神及廣義發明槪念的範圍下, 此領域中之熟知技藝者將輕易地了解許多變化及修飾。 【圖式簡單說明】 本發明之較佳實施態樣現將參照隨附之圖式僅作爲示 範說明,其中: 圖1顯示經配置以用於螢光偵測之測試模組及測試模 組閱讀器; 圖2係經配置以用於螢光偵測之測試模組中之電子組 件之圖式槪要; 圖3係測試模組閱讀器中之電子組件之圖式槪要; -310- 201211533 圖4係LOC裝置之結構之代表圖式; 圖5係LOC裝置之透視圖; 圖6係LOC裝置之平面圖,所有層之特徵及結構彼 此交疊顯示; 圖7係LOC裝置之平面圖,其單獨顯示上蓋之結構 t 圖8爲上蓋之上視圖,以虛線顯示內部通道及貯器; • 圖9爲上蓋之分解上視圖,以虛線顯示內部通道及貯 器: 圖10爲上蓋之下視圖,其顯示上方通道之配置;Vecl = 4x [(the layer beside the electrode wall) + (a quarter of the cylinder on the electrode wall)] Calculation result: Photons generated from the 0.5 micron boundary layer: 3.lxlO5 electrons in the photodiode Number: 2.3χ103 This signal can be easily detected by the lower photodiode-299-201211533 body 184 of the LOC device light sensor 44. Additional Finger Shape Construction to Increase Edge Length Referring to Figure 100, a parallel finger configuration 880 is applied throughout the anode 860. Only the horizontal edges shown in the figure contribute to the participating volume 892 to avoid double counting the vertical edges. Thus the participating volume 8 92 is: VECL = (8x2) x [(layer next to the electrode wall) + (quarter of the cylinder on the electrode wall)] Figure 100 configuration calculated as: From 0.5 micron boundary Photons generated by the layer: l.lxlO6 Electron number in the photodiode 184: 8.0 X 1 03 This signal can be easily detected in the photodiode 184. The complete coverage shown in Figures 101 and 102 is included as a limit for maximum surface area coupling. In fact, the electrode surface area is 90% between the active surface area 185 of the photodiode 184 or Better coupling achieves nearly optimal results, even though the photodiode active surface region 185 is 50% coupled to the electrode surface region to provide most of the benefits of the fully covered configuration. The complete coverage can be achieved in two implementations: first, as shown in FIG. 101, by using a transparent anode 860 on a plane parallel to the photodiode 184 and matching the area of the transparent anode to the photodiode The area of the pole body is arranged adjacent to the photodiode 1 84 such that the emitter -300 - 201211533 light 8 62 passes through the anode to the photodiode. In the second embodiment shown in FIG. 102, the anode 860 is also parallel and registered with the photodiode region, but the solution 8 72 is filled with the anode 860 and the photodiode 184. Space between. In the case of a signal model of the full coverage configuration, assuming that the anode is a complete layer above the photodiode 184, half of the photons are directed to the photodiode 184 (absorption efficiency is still 10%). Photons generated from a 0.5 micron boundary layer: 7.7xl05 φ Number of electrons in the photodiode: 1.2x1 04 By using a surfactant and a probe fixed to the anode, it is possible to enhance the signal and in addition to the above model. Detection. Maximum separation between the ECL probe and the photodiode The detection of hybridization on the wafer does not require detection with a conjugated focal microscope (see prior art). This difference from traditional inspection techniques represents an important factor in saving time and cost. Traditional inspections require imaging optics that use lenses and curved mirrors. By employing non-imaging optics, the diagnostic system avoids the need for complex and cumbersome strings of optical components. The placement of the photodiode in close proximity to the probe has the advantage of extremely high collection efficiency: when the material thickness between the probe and the photodiode is 1 micron, the emission angle of the emitted light is as high as 174°. . This angle is calculated by considering the light emitted from the probe closest to the center of the surface of the hybridization chamber of the photodiode, the photodiode having a planar active surface parallel to the surface of the chamber. Light within the light emitting pyramid can be absorbed by the photodiode, which is defined as having a firing probe at its apex and at the sensor corners around its plane. -301 - 201211533 For example, a 16 micron χ 16 micron sensor has an apex angle of 170. The apex angle is 174° in the extreme case where the photodiode is expanded such that its area conforms to the 28 micron x 2 6.5 micron hybrid cell area. It is easily achieved that the interval between the surface of the chamber and the active surface of the photodiode is 1 micron or less. The application of non-imaging optical methods does require that the photodiode 184 be placed very close to the hybridization chamber to collect a sufficient amount of fluorescent emission photons. The maximum spacing between the photodiode and the probe is determined as follows. Using the ruthenium chelate luminophore and the electrode configuration of Figure 100, we calculated that 27,000 photons were absorbed from our respective hybridization chambers 180 by our 16 micron X 16 micron sensor to produce 8,000 electrons (assuming sensor quantum The efficiency is 30%). In doing this calculation, we assume that the light collection area of the hybridization chamber has the same bottom area as our sensor, and that a quarter of the total number of hybrid photons is adjusted to reach the sensor and is conservative It is estimated that 1 〇% of the photon ratio will not be scattered from the sensor interface. That is, the light collection efficiency of the optical system is φο = 〇.025. Lu more precisely, we can write <h = [(the bottom area of the light collection area of the hybridization chamber) / (photodetector area)] [Ω / 4 7 Γ ] [10% absorption], where Ω = The solid angle to which the photodetector of the representative point on the substrate of the hybridization chamber opposes. In terms of the geometry of the regular square pyramid: Q = 4arcsin(a2/(4d〇2 + a2)), where d〇 = the distance between the chamber and the photodiode, and a is the size of the photodiode . Each hybridization chamber releases l.lxl 〇6 photons. The selected photodetector has a detection low limit of 17 photons, which is greater than the dG値 of the sensor size of 10×302-201211533 (ie, substantially perpendicular incidence), and the non-reflection is in the The proportion of photons in the face can be increased from 10% to 90%. Therefore, the required optical efficiency is: φ 〇 = 17 / (1.1 χ 106 χΟ. 9) = 1.72 x 10 '5 The light-emitting region of the hybridization chamber 180 has a bottom area of 29 φ 19.75 μm. Decomposing dQ will result in a distance dQ = 1,600 microns between the hybridization chamber and the photodetector. Under this limitation, the taper angle as defined above is only 〇. 8°. It should be noted that this analysis ignores the negligible negligible LOC variant. All of the LOC devices 30 1 described and illustrated above are only one of the LOC device designs. Variations from the sample inlet to the detection using the LOC devices of the various functional combinations described above will now be added and/or shown in a schematic flow diagram to demonstrate some possible combinations of flow charts that are divided into sample input and preparation stages as appropriate. 290. Culture stage 291, amplification stage 292, and pre-hybridization stage detection stage 294. For all such LOC variants that are only briefly described or indicated, their complete configuration is not shown to be concise. Also for the sake of clarity, smaller functional units such as liquid and temperature sensors are not shown, but it should be understood that the impact of the minimum micron X maximum limit of these single detector tables may vary. Description. These extraction steps 293 and the intention to show that the somatosensory position has been broken into the appropriate positions in the following LOC device designs by -303- 201211533. LOC Device with ECL Detection Figures 111 through 127 show LOC Variant 729 with Electrochemiluminescence (ECL) detection. The LOC device prepares 288, extracts 290, cultures 291, expands 292, and detects nucleic acids of 294 humans and pathogens, as well as protein detection of humans and pathogens. ECL is used in hybrid chamber arrays and protein body assay chamber arrays to detect targets. Preferably, as shown in Figure 117, a biological sample (e.g., whole blood) is added to the sample inlet 68. The sample flows through the capping channel 94 to the anticoagulant surface tension valve 118. The upper cover 46 is constructed to have an interface layer 594 (see FIG. 112) between the upper cover channel layer 80 and the MST channel layer 100 of the CMOS + MST device 48. The interfacial layer 594 allows for more complex fluid intercommunication between the reagent reservoirs and the MST layer 87 without increasing the size of the crucible substrate 84. Figure 113 shows the MST layer 87 that can be seen on the upper surface of the CMOS+MST device 48. Figure 114 shows the cover channel layer 80 on the underside of the upper cover 46. Figure 115 overlays the reservoirs, the upper cover channels 94 and the interface channels to illustrate the more achieved by the upper cover 46 of the interface layer 594. For complex channel systems. Preferably, as shown in FIG. 117, the interface layer 594 requires the anticoagulant surface tension valve 118 to have two interface channels 596 and 598. The reservoir side interface channel 5 96 is connected to the outlet of the reservoir and the descending port 92 and the sample side interface channel 598 are connected to the rising port 96 and the upper cover channel 94° -304 - 201211533. The anticoagulant from the reservoir 54 is passed through the reservoir. The device side interface channel 596 flows through the MST channel 90 to form a meniscus at the riser 96. The sample stream in the capping channel 94 is lowered to the sample side interface channel 598 to remove the meniscus to combine the anticoagulant with the blood sample on the way to the leukocyte dialysis section 328. The white blood cell dialysis section 328 has a bypass channel 600 for accommodating the flow channel structure without trapping air bubbles (see Figures 117 and 126). The blood sample φ flows through the upper cover passage 94 to the upstream end of the large component interface passage 730. The large component interface channel 730 is in fluid communication with the dialysis MST channel 204 via a hole in the form of a 7.5 micron diameter hole 165 (see Figure 126). Referring to Figure 126, each of the dialysis MST channels 206 is from the 7.5 micron diameter hole 165 to a respective dialysis riser 168. The dialysis rise ports 1 68 are open to the small component interface channel 73 2 . However, the risers are configured to hold the meniscus rather than allowing the capillary drive flow to continue. The riser port of the bypass channel 600 has a capillary initiation feature 202 that is configured to initiate a capillary drive flow into the small component interface channel 732. This ensures that the flow begins at the upstream end of the small component interface channel 732 and sequentially releases the meniscus at the dialysis riser 168 as the flow progresses downstream. Figure 121 shows the downstream end of the white blood cell dialysis section 328. The large component interface channel 73 0 feeds into the large component upper cover channel 736, and the small component interface channel 732 feeds into the small component upper cover channel 734 » as best shown in FIG. 115, the large component upper cover channel 736 feeds white blood cells (and any other large components) to the chemical lysis portion 130.1 via the lysis surface tension valve 128.1, and dissolves from the reservoir 56.1 - 305 - 201211533 at the lysis surface tension valve 128. Cell reagent. The chemical lysis section 130.1 has a 3 micron filtration drop port 7 3 8 at the outlet (see Figure 17). The filter lowering port ensures that no large component reaches the boiling start valve 206 of the lysate outlet. After a sufficient time, the boiling start valve 206 opens the outlet of the chemical lysis unit 1 30. 1 , the sample flow is divided into two paths. flow. Preferably, as shown in Figure 117, all the way to the surface tension valve 132.1 of the first restriction enzyme, ligase and linker reservoir 58.1, and the other route is directly attracted to the hybrid along the lytic leukocyte channel 742. And the protein body detection chamber array 1 24.1 in the detecting unit 294. Here the sample is filled with the protein body detection chamber array 124.1 (see Figure 19), which contains a probe for hybridization with the target human protein. The probe-target hybridization system is detected by light sensor 44 (see Figure 1 1 1). This other route flows into the white blood cell culture section 114.1 together with the restriction enzyme, ligase, and linker primer from the reservoir 58.1. Referring to Figure 181, after restriction enzyme digestion and linker ligation, the culture outlet valve 207 (also a boiling start valve) is opened and fluid continues to advance to the white blood cell DNA amplification portion 112.1. The amplification mixture and polymerase in reservoirs 60.1 and 62.1 were added via surface tension valves 138.1 and 140.1, respectively. Referring to Figure 119, after the heating cycle, the boiling activation valve 108 is opened to allow the amplicon to enter the hybridization chamber array 110.1 containing probes for human DNA targets. The probe-target hybridization system is detected by the light sensor 44. Red blood cells and pathogens from the leukocyte dialysis section 3 28 are fed to the pathogen dialysis section 70 via the capping channel 73 4 (see Figs. 117 and 127). This operates in the same manner as the white blood cell dialysis section 328 except that the -306-201211533 filter down port has a 3 micron aperture 164 rather than a 7.5 micron aperture 165 used for leukocyte dialysis. The red blood cells are maintained in the large component interface channel 730 and the pathogen diffuses to the small component interface channel 73 2 . Figure 122 shows the downstream end of the pathogen dialysis section 70. The red blood cells flow into the large component capping channel 736 which fills the small component capping channel 734. It will be understood that "large components" and "small components" are used in a relative sense because the large component output of the pathogen dialysis section is part of the small component output of the white blood cell φ dialysis section. The components of the large component upper cover 73 6 or interface channel within the particular dialysis section are simply larger than the components of the small component upper cover 734 or interface channel. Preferably, as shown in Figures 1 1 5 and 16 16, the red blood cells in the large component upper cover channel 73 6 are directed to the surface tension valve 128.3 of the lysis reagent reservoir 56.3. The lysis reagent is combined with the red blood cells when the sample fluid is filled with the chemical lysis portion 130.3. The boiling start valve 206 at the exit of the third chemical lysis section 130.3 retains the pathogen until the lysis is complete. When the boiling start valve 206 is opened, the red blood cell DNA # flows directly into the protein body detection chamber array 124.3 for protein analysis and detection by the light sensor 44 (see Fig. 19). The pathogen in the small component capping channel 734 is directed to the surface tension valve 128.2 of the second lysis reagent reservoir 56.2. The lysis reagent is combined with the pathogen when the sample fluid is flooded with the second chemical lysis portion 130.2. After sufficient time, the boiling start valve 206 opens the outlet of the chemical lysis section 130.2, and the sample stream is split into two paths. Preferably, as shown in Figures 116 and 118, one way flows to the surface tension valve 132.2 of the second restriction enzyme, ligase and linker 58.2, and the other path is directly attracted to the side channel 744 by -307-201211533. Hybridization and detection unit 294. Here the sample is filled with the protein plastid detection chamber array 124.2 (see Figure 119) containing probes for hybridization with the target pathogen protein or other biomolecule. The probe-target hybridization system is detected by the light sensor 44 (see Figure 1 1 1). This other route flows into the pathogen culture unit 1 1 4.2 together with the restriction enzyme, ligase and linker primer from the reservoir 58.2. After restriction enzyme digestion and linker ligation, the culture outlet valve 207 (also a boiling start valve) is opened and fluid continues to advance to the pathogen DNA amplification portion 112.2 (see Figure 118). When the chamber is filled, the amplification mixture and polymerase in reservoirs 60.2 and 62.2 are added via surface tension valves 138.2 and 140.2, respectively. After the heating cycle, the boiling start valve 108 is opened to allow the amplicon to flow into the second hybridization chamber array 1 10.2 containing the probe for the pathogen DNA target. The probe-target hybridization system is detected by the light sensor 44 (see Figure 119, referring to Figure 120, the hybridization chamber arrays 110.1 and 110.2 and the protein body detection chamber arrays 124.1 to 124.3 are made of strips of titanium nitride. The heater element 1 8 2 » is detected by the end liquid sensor 178 when the fluid reaches the end of the hybrid chamber array or the protein body detection chamber array, and the heater 108 is then activated after a delay. A flow rate sensor 74A (see Figure 125) is included in the pathogen culture portion 114.2 to determine the time delay. Figures 123 and 124 show the calibration chambers 382. They are used to calibrate the photodiode 1 84 to adjust System noise and background 値. The response and electrical noise characteristics of the photodiode can vary with position and heating. -308- 201211533 The output signal from the calibration chamber 382 without any probe is closely related to Noise and background in the output signals of all chambers. Subtracting the calibration signal from other hybrid chambers removes the noise substantially to remove the noise, leaving the signal generated by the chemiluminescence (if any). Ground The positive and negative control ECL probes 786 and 787 can be placed in some of the hybridization chambers 180 for analytical quality control. Referring to Figure 116, the phisizer 196 consisting of a reservoir 188 and an evaporator 190 is located at the upper left of the device. The humidity sensor 232 is located adjacent to the hybridization chamber array 1 1 , where the humidity measurement is important to reduce the evaporation of the solution containing the exposed probe. The dialysis portion is output by combining the white blood cells and the pathogen to generate three Outflows (white blood cells, red blood cells and pathogens and other biomolecules), the three output streams are treated separately to allow for higher sensitivity and parallel analysis. The output of each stream is dissolved and separately directed to the protein body detection chamber The array is used for detecting proteins. The dissolved white blood cells and pathogens are also directed to the culture portion 1 14 and the amplification portion 1 1 2 for amplification 'and then hybridized for nucleic acid detection. The hot groove LOC device is preferably as shown in Fig. 1 2 8 , and the groove 869 is etched to the back of the ruthenium substrate. The purpose of the groove is to thermally isolate the amplification portion 1 1 2 from the hybridization chamber column 1 1 0. The hybrid array Contains a detection probe that is degradable at high temperatures. The trench has a thermal conductivity less than 6,000 times that of the tantalum substrate when filling the air' by significantly reducing the heat flux entering the adjacent portion of the LOC device. The input of the white column is made up of 84 arrays. This - 309-201211533 provides two main advantages: increasing the heating efficiency in the amplification section 1 1 2; and reducing the undesired temperature rise in the adjacent hybridization section 1 1 〇 Improving the heating efficiency means that less power is required to heat the amplifying portion 112 and the temperature reaches the desired end temperature more quickly and more spatially consistent within the amplifying portion. Reducing the temperature rise in the hybridization section 110 allows for a wider range of probe chemistry and superior signal quality. The trench can be placed around any area on the LOC device to thermally isolate components in the region. The width and depth of the groove 896 can be varied to suit the particular application. Conclusion The devices, systems, and methods described herein facilitate rapid, inexpensive, and suitable molecular diagnostic testing for local care. The above-described system and its components are merely illustrative, and many variations and modifications will be readily apparent to those skilled in the art without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which: FIG. 1 shows a test module and test module configured for fluorescence detection. Figure 2 is a schematic diagram of the electronic components in the test module configured for fluorescence detection; Figure 3 is a schematic diagram of the electronic components in the test module reader; -310- 201211533 Figure 4 is a schematic view of the structure of the LOC device; Figure 5 is a perspective view of the LOC device; Figure 6 is a plan view of the LOC device, the features and structures of all layers are overlapped with each other; Figure 7 is a plan view of the LOC device, which is separate Figure 8 is a top view of the upper cover, with internal lines and receptacles shown in dashed lines; • Figure 9 is an exploded top view of the upper cover, with internal lines and receptacles shown in dashed lines: Figure 10 is a lower view of the upper cover, Display the configuration of the upper channel;

圖11係LOC裝置之平面圖,其獨立顯示CMOS + MST 裝置之結構; 圖12係LOC裝置之樣本入口之截面示意圖; 圖13係圖6所示之AA區的放大圖; 圖14係圖6所示之AB區的放大圖; • 圖15係圖13所示之AE區的放大圖; 圖16之部份透視圖說明AE區內LOC裝置之分層結 構; 圖17之部份透視圖說明AE區內LOC裝置之分層結 構; 圖18之部份透視圖說明AE區內LOC裝置之分層結 構; 圖19之部份透視圖說明AE區內LOC裝置之分層結 .構; -311 - 201211533 圖20之部份透視圖說明AE區內LOC裝置之分層結 雄 · 構, 圖21之部份透視圖說明AE區內LOC裝置之分層結 構: 圖2 2係圖2 1所示之溶胞試劑貯器之截面示意圖; 圖23之部份透視圖說明AB區內LOC裝置之分層結 構; 圖24之部份透視圖說明AB區內LOC裝置之分層結 構: 圖25之部份透視圖說明AI區內LOC裝置之分層結 挫 · 稱, 圖26之部份透視圖說明AB區內LOC裝置之分層結 構; 圖27之部份透視圖說明AB區內LOC裝置之分層結 構; 圖28之部份透視圖說明AB區內LOC裝置之分層結 構; 圖29之部份透視圖說明AB區內LOC裝置之分層結 構; 圖30係擴增混合貯器及聚合酶貯器之截面示意圖; 圖31獨立顯示沸騰啓動閥之特徵; 圖32係沸騰啓動閥之截面示意圖,該截面沿著圖31 中所示之線3 3 - 3 3取得; 圖33係圖15所示之AF區的放大圖; -312- 201211533 圖34係透析部之上游端之截面示意圖,該截面沿著 圖3 3中所示之線3 5 -3 5取得; 圖35係圖6所示之AC區的放大圖; 圖36係AC區之再放大圖,該圖顯示擴增部; 圖37係AC區之再放大圖,該圖顯示擴增部; 圖38係AC區之再放大圖,該圖顯示擴增部; 圖39係圖38所示之AK區的再放大圖;Figure 11 is a plan view of the LOC device, showing the structure of the CMOS + MST device independently; Figure 12 is a schematic cross-sectional view of the sample inlet of the LOC device; Figure 13 is an enlarged view of the AA region shown in Figure 6; Figure 14 is Figure 6 Figure 15 is an enlarged view of the AE area shown in Figure 13; a partial perspective view of Figure 16 illustrates the layered structure of the LOC unit in the AE area; Figure 17 is a partial perspective view illustrating the AE The layered structure of the LOC device in the zone; the partial perspective view of Figure 18 illustrates the layered structure of the LOC device in the AE zone; the partial perspective view of Figure 19 illustrates the layered structure of the LOC device in the AE zone; -311 - 201211533 A partial perspective view of Figure 20 illustrates the layered structure of the LOC device in the AE area. A partial perspective view of Figure 21 illustrates the layered structure of the LOC device in the AE area: Figure 2 2 is a diagram of Figure 2 A schematic cross-sectional view of the lysis reagent reservoir; a partial perspective view of Figure 23 illustrates the layered structure of the LOC device in zone AB; and a partial perspective view of Figure 24 illustrates the layered structure of the LOC device in zone AB: Figure 25 The perspective view illustrates the layered frustration of the LOC device in the AI zone. The partial perspective view of Figure 26 illustrates the LOC device in the AB zone. Layered structure; Figure 27 is a partial perspective view showing the layered structure of the LOC device in the AB zone; Figure 28 is a partial perspective view showing the layered structure of the LOC device in the AB zone; Figure 29 is a partial perspective view illustrating the AB zone Figure 30 is a schematic cross-sectional view of the augmentation mixing reservoir and the polymerase reservoir; Figure 31 shows the characteristics of the boiling start valve independently; Figure 32 is a schematic cross-sectional view of the boiling start valve, the cross-section along the figure Figure 33 is an enlarged view of the AF area shown in Figure 15; -312-201211533 Figure 34 is a schematic cross-sectional view of the upstream end of the dialysis section, the section along Figure 3 Figure 35 is an enlarged view of the AC region shown in Figure 6; Figure 36 is a re-enlarged view of the AC region, which shows the amplification portion; Figure 37 is the AC region again. Enlarged view, the figure shows an amplifying part; Fig. 38 is a re-enlarged view of the AC area, which shows an amplifying part; Figure 39 is a re-enlarged view of the AK area shown in Figure 38;

圖40係AC區之再放大圖,該圖顯示擴增室; 圖41係AC區之再放大圖,該圖顯示擴增部; 圖42係AC區之再放大圖,該圖顯示擴增室: 圖43係圖42所示之AL區的再放大圖; 圖44係AC區之再放大圖,該圖顯示擴增部; 圖45係圖44所示之AM區的再放大圖; 圖46係AC區之再放大圖,該圖顯示擴增室; 圖47係圖46所示之AN區的再放大圖; 圖48係AC區之再放大圖,該圖顯示擴增室; 圖49係AC區之再放大圖,該圖顯示擴增室; 圖50係AC區之再放大圖,該圖顯示擴增部; 圖51係擴增部之截面示意圖; 圖52係雜交部之放大平面圖; 圖53係二個獨立雜交室之再放大平面圖; 圖54係單一雜交室之截面示意圖; 圖55係圖6所示之AG區中之增濕器的放大圖; 圖56係圖52所示之AD區的放大圖; -313- 201211533 圖57係AD區之LOC裝置之分解透視圖; 圖58係圖6之AH區所示之濕度感測器之放大平面 圖, 圖59係白血球標的透析部之截面示意圖; 圖60示意顯示光感應器之光電二極體陣列之部分; 圖61係圖55之AP區所示之蒸發器之放大圖; 圖62顯示連接子引發之PCR ; 圖6 3爲具刺血針之測試模組之代表圖; 鲁 圖64爲LOC變體VII之結構之代表圖; 圖65係LOC變體VIII之平面圖,所有層之特徵及結 構彼此交疊顯示; 圖66係圖65所示之CA區的放大圖; 圖67之部份透視圖說明LOC變體VIII於圖05中所 示之CA區內之分層結構; 圖68係圖66所示之CE區的放大圖; 圖69爲LOC變體VIII之結構之代表圖; Φ 圖70爲LOC變體XIV之結構之代表圖; 圖7 1爲LOC變體XLI之結構之代表圖: 圖72爲LOC變體XLII之結構之代表圖; 圖73爲LOC變體XLIII之結構之代表圖: 圖74爲LOC變體XLIV之結構之代表圖: 圖75爲LOC變體XLVII之結構之代表圖; 圖76爲LOC變體X之結構之代表圖; 圖77係LOC變體X之透視圖; -314· ⑧ 201211533 圖78係LOC變體X之平面圖,其獨立顯示CM0S + MST裝置之結構; 圖7 9係上盘之下側透視圖,該等試劑貯器以虛線表 示; 圖80係僅獨立顯示上蓋特徵之平面圖; 圖81係顯示所有特徵彼此互相交疊之平面圖,並標 示DA至DK區之位置;Figure 40 is a re-enlarged view of the AC region, which shows an amplification chamber; Figure 41 is a re-enlarged view of the AC region, which shows an amplification portion; Figure 42 is a re-enlarged view of the AC region, which shows an amplification chamber Figure 43 is a re-enlarged view of the AL region shown in Figure 42; Figure 44 is a re-enlarged view of the AC region, which shows an amplification portion; Figure 45 is a re-enlarged view of the AM region shown in Figure 44; A re-enlarged view of the AC region, which shows an amplification chamber; Figure 47 is a re-enlarged view of the AN region shown in Figure 46; Figure 48 is a re-enlarged view of the AC region, which shows an amplification chamber; A re-enlarged view of the AC region, which shows an amplification chamber; Figure 50 is a re-enlarged view of the AC region, which shows an amplification portion; Figure 51 is a schematic cross-sectional view of the amplification portion; Figure 52 is an enlarged plan view of the hybridization portion; Figure 53 is a re-enlarged plan view of two independent hybridization chambers; Figure 54 is a schematic cross-sectional view of a single hybridization chamber; Figure 55 is an enlarged view of the humidifier in the AG region shown in Figure 6; Figure 56 is a diagram of Figure 52 Enlarged view of the AD area; -313- 201211533 Figure 57 is an exploded perspective view of the LOC device of the AD area; Figure 58 is an enlarged plan view of the humidity sensor shown in the AH area of Figure 6, Figure 59 A cross-sectional view of the dialysis section of the white blood cell; Fig. 60 is a schematic view showing a portion of the photodiode array of the photosensor; Fig. 61 is an enlarged view of the evaporator shown in the AP area of Fig. 55; Fig. 62 shows the PCR initiated by the linker; Figure 6 is a representative diagram of a test module with a lancet; Lutu 64 is a representative view of the structure of the LOC variant VII; Figure 65 is a plan view of the LOC variant VIII, the features and structures of all layers overlap each other Figure 66 is an enlarged view of the CA area shown in Figure 65; a partial perspective view of Figure 67 illustrates the layered structure of the LOC variant VIII in the CA area shown in Figure 05; Figure 68 is shown in Figure 66. Figure 69 is a representative view of the structure of the LOC variant XIV; Figure 71 is a representative representation of the structure of the LOC variant XLI: Figure 72 is a representation of the structure of the LOC variant XLI; Representative of the structure of the LOC variant XLII; Figure 73 is a representative representation of the structure of the LOC variant XLIII: Figure 74 is a representative representation of the structure of the LOC variant XLIV: Figure 75 is a representative representation of the structure of the LOC variant XLVII; 76 is a representative diagram of the structure of the LOC variant X; Fig. 77 is a perspective view of the LOC variant X; -314· 8 201211533 Fig. 78 is a LO A plan view of C variant X, which independently shows the structure of the CMOS + MST device; Figure 7 9 is a perspective view of the lower side of the upper disc, the reagent receptacles are indicated by dashed lines; Figure 80 is a plan view showing only the features of the upper cover independently; The 81 series shows a plan view in which all features overlap each other and indicates the position of the DA to DK zone;

圖82係圖81所示之DA區的放大圖; 圖83係圖81所示之DB區的放大圖; 圖84係圖81所不之DC區的放大圖; 圖85係圖81所示之DD區的放大圖; 圖86係圖81所示之DE區的放大圖; 圖87係圖81所示之DF區的放大圖; 圖88係圖81所示之DG區的放大圖; 圖89係圖81所示之DH區的放大圖; φ 圖90係圖81所示之DJ區的放大圖: 圖91係圖81所不之DK區的放大圖; 圖92係圖81所不之DL區的放大圖: 圖93係差分成像儀之電路圖; 圖94示意說明經CMOS控制之流速感測器; 圖95說明在電化學發光(ECL)過程期間發生之反應; 圖96示意說明三種不同的陽極構型: 圖97係雜交室中之陽極與陰極之部分截面示意圖; 圖98示意說明環繞光電二極體周邊邊緣呈環形幾何 -315- 201211533 之陽極: 圖99示意說明在光電二極體周邊邊緣之內呈環形幾 何之陽極; 圖1 〇〇示意說明具有指系列之陽極以增加彼之側面邊 緣之長度; 圖101示意說明使用透明陽極以最大化表面積耦合及 E C L信號檢測; 圖102示意說明使用固定在該雜交室頂部之陽極以最 大化表面積耦合及EC L信號檢測; 圖103示意說明與陰極指叉之陽極; 圖1 04顯示經配置以用於ECL偵測之測試模組及測試 模組閱讀器; 圖1 05係經配置以用於ECL偵測之測試模組中之電子 組件之圖式槪要; 圖1 06顯示測試模組及選擇性測試模組閱讀器; 圖1 07顯示測試模組及測試模組閱讀器與儲存各種資 料庫的主機系統; 圖108A及108B說明適體與蛋白質之結合以產生可檢 測之信號; 圖109A及109B說明二個適體與蛋白質之結合以產生 可檢測之信號; 圖1 10A及1 10B說明二個抗體與蛋白質之結合以產生 可檢測之信號; 圖1 1 1爲具有ECL檢測之LOC變體L之結構代表圖; -316- 201211533 圖1 12係L〇C變體L之透視圖; 圖113係LOC變體L之平面圖,其獨立顯示 CMOS + MST裝置之結構; 圖1 14係LOC變體L之上蓋的下側透視圖,該等試 劑貯器以虛線表示; 圖115係LOC變體L之平面圖,其單獨顯示上蓋之 特徵; # 圖1 16係顯示LOC變體L所有特徵彼此互相交疊之 平面圖,並標示GA至GL區之位置; 圖117係圖116所示之GA區的放大圖; 圖118係圖116所示之GB區的放大圖; 圖119係圖116所示之GC區的放大圖; 圖120係圖1 16所示之GD區的放大圖; 圖121係圖116所示之GE區的放大圖; 圖122係圖116所示之GF區的放大圖; # 圖I23係圖1 16所示之GG區的放大圖: 圖124係圖116所示之GH區的放大圖; 圖125係圖1 16所示之GJ區的放大圖; 圖126係圖1 16所示之GK區的放大圖; 圖127係圖1 16所示之GL區的放大圖; 圖128爲具有隔熱溝之LOC裝置之代表圖; 圖1 29係呈封閉構型之電化學發光共振能量轉移探針 之圖式; 圖130係呈開放雜交構型之電化學發光共振能量轉移 -317- 201211533 探針之圖式; 圖1 3 1爲第一輪擴增期間與引子連接之發光線性探針 之圖; 圖1 32爲後續擴增週期期間與引子連接之發光線性探 針之圖; 圖133A至133F以圖式說明與引子連接之發光莖環探 針之加熱循環; 圖〗3 4示意說明陰性對照發光探針之莖環構型; 圖1 3 5示意說明圖1 3 4之陰性對照發光探針之開放構 型; 圖1 3 6示意說明陽性對照發光探針之莖環構型; 圖1 3 7示意說明圖1 3 6之陽性對照發光探針之開放構 型; 圖138係LOC變體L之雜交室的放大圖: 圖139係LOC變體L之雜交室陣列的放大圖,其顯 示該等雜交室之分布。 【主要元件符號說明】 I 〇 :測試模組 II :測試模組 1 2 :測試模組閱讀器 13 :外殻 14 :微型USB接頭 1 5 :電感器 -318- 201211533 1 6 :微型U S B埠 17 :觸控螢幕 1 8 :顯示螢幕 19 :按鍵 20 :開始鍵 21 :蜂巢式無線電 22 :無菌密封膠帶 φ 2 3 :無線網路連接 24 :大容器 2 5 :衛星導航系統 26 :發光二極體 2 7 :資料儲存器 28 :行動電話/智慧型手機 2 9 : U S B相容性L E D驅動器 30 :實驗室晶片(LOC)裝置 φ 3 1 :電源調節器 3 2 :電容器 33 :時鐘 34 :控制器 35 :暫存器 36 : USB裝置驅動器 3 7 :驅動器 38 : RAM 3 9 :驅動器 -319- 201211533 40 :程式及資料快閃記憶體 41 :暫存器 42 :處理器 43 :程式儲存器 44 :光感應器 45 :指示器 46 :上蓋82 is an enlarged view of the DA area shown in FIG. 81; FIG. 83 is an enlarged view of the DB area shown in FIG. 81; FIG. 84 is an enlarged view of the DC area shown in FIG. 81; An enlarged view of the DD area; Fig. 86 is an enlarged view of the DE area shown in Fig. 81; Fig. 87 is an enlarged view of the DF area shown in Fig. 81; Fig. 88 is an enlarged view of the DG area shown in Fig. 81; Fig. 81 is an enlarged view of the DH area shown in Fig. 81; Fig. 90 is an enlarged view of the DJ area shown in Fig. 81: Fig. 91 is an enlarged view of the DK area not shown in Fig. 81; Fig. 92 is a DL of Fig. 81 Magnified view of the area: Figure 93 is a circuit diagram of a differential imager; Figure 94 is a schematic illustration of a CMOS controlled flow rate sensor; Figure 95 illustrates the reaction occurring during the electrochemiluminescence (ECL) process; Figure 96 schematically illustrates three different Anode configuration: Figure 97 is a partial cross-sectional view of the anode and cathode in the hybridization chamber; Figure 98 is a schematic illustration of the anode surrounding the peripheral edge of the photodiode with a circular geometry - 315 - 201211533: Figure 99 is schematically illustrated around the photodiode A ring-shaped geometric anode within the edge; Figure 1 〇〇 schematically illustrates the anode of the series to increase the side edge of the Figure 101 illustrates the use of a transparent anode to maximize surface area coupling and ECL signal detection; Figure 102 illustrates the use of an anode fixed to the top of the hybrid chamber to maximize surface area coupling and EC L signal detection; Figure 103 schematically illustrates the cathode Figure 1 04 shows a test module and test module reader configured for ECL detection; Figure 1 05 is a diagram of electronic components in a test module configured for ECL detection Figure 1 06 shows the test module and the selective test module reader; Figure 1 07 shows the test module and test module reader and the host system that stores various databases; Figure 108A and 108B illustrate the aptamer and Protein binding to produce a detectable signal; Figures 109A and 109B illustrate the binding of two aptamers to a protein to produce a detectable signal; Figure 1 10A and 1 10B illustrate the binding of two antibodies to a protein to produce a detectable signal Figure 1 1 1 is a structural representation of the LOC variant L with ECL detection; -316- 201211533 Figure 1 is a perspective view of the L〇C variant L; Figure 113 is a plan view of the LOC variant L, which is independent Figure 1 is a bottom perspective view of the upper cover of the LOC variant L, the reagent reservoirs are shown in phantom; Figure 115 is a plan view of the LOC variant L, which separately shows the features of the upper cover; Figure 16 is a plan view showing that all features of the LOC variant L overlap each other and indicates the position of the GA to GL region; Figure 117 is an enlarged view of the GA region shown in Figure 116; Figure 118 is the GB shown in Figure 116 Figure 119 is an enlarged view of the GC region shown in Figure 116; Figure 120 is an enlarged view of the GD region shown in Figure 16; Figure 121 is an enlarged view of the GE region shown in Figure 116; Fig. I23 is an enlarged view of the GG area shown in Fig. 116: Fig. 124 is an enlarged view of the GH area shown in Fig. 116; Fig. 125 is shown in Fig. Figure 126 is an enlarged view of the GK area shown in Figure 16; Figure 127 is an enlarged view of the GL area shown in Figure 16; Figure 128 is a representative view of the LOC device with insulated grooves Figure 1 is a schematic diagram of an electrochemiluminescence resonance energy transfer probe in a closed configuration; Figure 130 is an electrochemiluminescence resonance energy transfer in an open hybrid configuration -31 7- 201211533 Probe pattern; Figure 1 3 1 is a diagram of the light-emitting linear probe connected to the primer during the first round of amplification; Figure 1 32 is a diagram of the light-emitting linear probe connected to the primer during the subsequent amplification period Figure 133A to 133F illustrate the heating cycle of the illuminating stem-loop probe connected to the primer; Figure 3-4 shows the stem-loop configuration of the negative control luminescent probe; Figure 1 3 5 schematically illustrates Figure 134 The open configuration of the negative control luminescent probe; Figure 136 schematically illustrates the stem-loop configuration of the positive control luminescent probe; Figure 137 illustrates the open configuration of the positive control luminescent probe of Figure 136; Figure 138 An enlarged view of the hybridization chamber of LOC variant L: Figure 139 is an enlarged view of the array of hybridization chambers of LOC variant L showing the distribution of such hybridization chambers. [Main component symbol description] I 〇: Test module II: Test module 1 2: Test module reader 13: Case 14: Micro USB connector 1 5: Inductor-318- 201211533 1 6 : Micro USB port 17 : Touch screen 1 8 : Display screen 19 : Button 20 : Start button 21 : Honeycomb radio 22 : Aseptic sealing tape φ 2 3 : Wireless network connection 24 : Large container 2 5 : Satellite navigation system 26 : Light-emitting diode 2 7 : Data storage 28 : Mobile phone / smart phone 2 9 : USB compatible LED driver 30 : Laboratory chip (LOC) device φ 3 1 : Power conditioner 3 2 : Capacitor 33 : Clock 34 : Controller 35: register 36: USB device driver 3 7 : drive 38 : RAM 3 9 : drive -319 - 201211533 40 : program and data flash memory 41 : register 42 : processor 43 : program memory 44 : Light sensor 45: indicator 46: upper cover

47 : USB電力/指示器模組 48: COMS + MST 晶片 4 9 :多孔元件 5 2 :雜交及檢測部 5 4 :貯器 5 6 :貯器 57 :印刷電路板(PCB)47 : USB Power / Indicator Module 48 : COMS + MST Chip 4 9 : Porous Element 5 2 : Hybridization and Detection Department 5 4 : Reservoir 5 6 : Reservoir 57 : Printed Circuit Board (PCB)

5 8 :貯器 60 :貯器 62 :貯器 6 4 :下密封層 66 :頂部層 6 8 :樣品入口 70 :病原體透析部 72 :廢料通道 74 :標靶通道 76 :廢料單元(貯器) -320- ⑧ 201211533 7 8 :貯器層 80 :上蓋通道層 8 2 :上密封層 8 4 :矽基板 86 : CMOS 電路 87 : MST 層 8 8 :鈍化層 φ 90 : MST 通道 92 :下降口 94 :上蓋通道 96 :上升口 97 :壁部 98 :彎液面錨定器 1 00 : MST通道層 101 :膝上型電腦/筆電 • 102 :毛細起始特徵(CIF) 103 :專用閱讀器 1 〇 5 :桌上型電腦 106 :沸騰啓動閥 107 :電子書閱讀器 108 :沸騰啓動閥 109 :平板電腦 1 1 〇 :雜交室陣列 η 1 :流行病學資料主機系統 -321 - 201211533 1 12 :擴增部 1 1 3 :基因資料主機系統 1 1 4 :培養部 1 15 :電子化健康記錄(EHR)主機系統 1 1 6 :抗凝血劑 1 1 8 :表面張力閥 1 1 9 :樣品流 1 2 0 :彎液面 121 :電子化醫療記錄(EMR)主機系統 1 2 2 :通氣孔 123 :個人健康記錄(P HR)主機系統 124 :蛋白質體檢測室陣列 1 2 5 :網路 126 :沸騰啓動閥 1 2 8 :表面張力閥 1 3 0 :化學溶胞部 1 3 1 :混合部 1 3 2 :表面張力閥 1 3 3 :培養器入口通道 1 34 :下降口 1 36 :光窗 1 38 :表面張力閥 140·聚合酶表面張力閥 141 :適體 -322- 201211533 142 :特定蛋白質 143 :捐贈者 144 :接受者 145 :抗體 146 :閥入口 147 :寡核苷酸 1 48 :閥出口 φ 149 :連接子 1 50 :下降口 1 5 2 :加熱器 1 5 3 :閥加熱器接點 1 5 4 :加熱器 1 5 6 :加熱器接點 158 :微通道 160 :擴增部出口通道 φ 164 :孔陣列 165 :洞 166 :毛細起始特徵 168 :透析上升孔 170 :溫度感測器 174 :液體感測器 175 :擴散屏障 1 7 6 :流路 178 :終點液體感測器 -323 201211533 1 80 :雜交室 1 8 2 :加熱器 1 84 :光電二極體 1 85 :主動區 186 :寡核苷酸FRET探針 187:觸發光電二極體 1 8 8 :貯水器 190 :蒸發器 1 9 1 :加熱器 192 :供水通道 1 93 :上升口 1 94 :下降口 1 9 5 :頂金屬層 1 9 6 :增濕器 198 :第一上升孔 202:毛細起始特徵 204:透析MST通道 206 :閥 207 :閥 208 :液體感測器 210 :微通道 212:中間MST通道 218 : TiA1 電極 220 : TiA1 電極 -324- 201211533 222 :間隙 23 2 :濕度感測器 2 3 4 :加熱器 237: ECL 探針 23 8 :標靶核酸序列 240 :環 242 :莖 φ 248 :淬熄劑 2 5 0 :螢光發射 28 8 :樣品輸入及製備 2 9 0 :萃取 2 9 1 :培養 2 9 2 :擴增 29 3 :雜交前 294 :檢測 • 296 :第一電極 29 8 :第二電極 3 〇 0 :預編程延遲 301 :實驗室晶片(LOC)裝置 3 2 8 :透析部 3 7 6 :導電柱 3 7 8 :陽性對照探針 3 8 0 :陰性對照探針 3 8 2 :校準室 -325 201211533 3 9 0 :刺血針 3 92 :刺血針釋放鍵 4 0 8 :膜密封件 4 1 0 :膜防護件5 8 : receptacle 60 : reservoir 62 : reservoir 6 4 : lower sealing layer 66 : top layer 6 8 : sample inlet 70 : pathogen dialysis section 72 : waste channel 74 : target channel 76 : waste unit (reservoir) -320- 8 201211533 7 8 : Reservoir layer 80 : upper cover channel layer 8 2 : upper sealing layer 8 4 : 矽 substrate 86 : CMOS circuit 87 : MST layer 8 8 : passivation layer φ 90 : MST channel 92 : drop port 94 : Upper cover channel 96 : Riser 97 : Wall 98 : Meniscus anchor 1 00 : MST channel layer 101 : Laptop / notebook • 102 : Capillary start feature (CIF) 103 : Dedicated reader 1 〇5: Desktop computer 106: Boiling start valve 107: E-book reader 108: Boiling start valve 109: Tablet computer 1 1 〇: Hybridization room array η 1 : Epidemiological data host system -321 - 201211533 1 12 : Amplification unit 1 1 3 : Gene data host system 1 1 4 : Culture unit 1 15 : Electronic health record (EHR) host system 1 1 6 : Anticoagulant 1 1 8 : Surface tension valve 1 1 9 : Sample flow 1 2 0 : meniscus 121: electronic medical record (EMR) host system 1 2 2 : vent 123: personal health record (P HR) host system 124 : protein Phytobody detection chamber array 1 2 5 : Network 126 : Boiling start valve 1 2 8 : Surface tension valve 1 3 0 : Chemical lysis part 1 3 1 : Mixing part 1 3 2 : Surface tension valve 1 3 3 : Incubator Inlet channel 1 34 : Drop port 1 36 : Light window 1 38 : Surface tension valve 140 · Polymerase surface tension valve 141 : Aptamer - 322 - 201211533 142 : Specific protein 143 : Donor 144 : Recipient 145 : Antibody 146 : Valve inlet 147: Oligonucleotide 1 48: Valve outlet φ 149 : Connector 1 50 : Drop port 1 5 2 : Heater 1 5 3 : Valve heater contact 1 5 4 : Heater 1 5 6 : Heater Contact 158: Microchannel 160: Amplification section outlet channel φ 164: Hole array 165: Hole 166: Capillary initiation feature 168: Dialysis riser hole 170: Temperature sensor 174: Liquid sensor 175: Diffusion barrier 1 7 6 : Flow path 178 : End point liquid sensor - 323 201211533 1 80 : Hybridization chamber 1 8 2 : Heater 1 84 : Photodiode 1 85 : Active area 186 : Oligonucleotide FRET probe 187: Triggering photoelectric Diode 1 8 8 : Water reservoir 190 : Evaporator 1 9 1 : Heater 192 : Water supply channel 1 93 : Riser 1 94 : Descent 1 9 5 : Top metal layer 1 9 6 : Humidification 198: first rising hole 202: capillary starting feature 204: dialysis MST channel 206: valve 207: valve 208: liquid sensor 210: microchannel 212: intermediate MST channel 218: TiA1 electrode 220: TiA1 electrode -324 - 201211533 222: gap 23 2 : humidity sensor 2 3 4 : heater 237: ECL probe 23 8 : target nucleic acid sequence 240 : ring 242 : stem φ 248 : quencher 2 5 0 : fluorescence emission 28 8 : Sample input and preparation 2 90: Extraction 2 9 1 : Culture 2 9 2 : Amplification 29 3 : Before hybridization 294 : Detection • 296 : First electrode 29 8 : Second electrode 3 〇 0 : Preprogrammed delay 301 : Experiment Chamber wafer (LOC) device 3 2 8 : dialysis unit 3 7 6 : conductive column 3 7 8 : positive control probe 3 8 0 : negative control probe 3 8 2 : calibration chamber -325 201211533 3 9 0 : lancet 3 92 : lancet release button 4 0 8 : membrane seal 4 1 0 : membrane guard

5 1 8 : LOC 變體 VIII 5 94 :界面層 596 :界面通道 598 :界面通道 600 :旁通道 602 :界面標的通道 604 :界面廢料通道5 1 8 : LOC variant VIII 5 94 : Interface layer 596 : Interface channel 598 : Interface channel 600 : Side channel 602 : Interface target channel 604 : Interface waste channel

673 : LOC 變體 XLIII673 : LOC variant XLIII

674 : LOC 變體 XLIV 677 : LOC 變體 XLVII 679 : LOC 變體 XLIX 6 8 2 :小組分透析部 6 8 6 :透析部 694 :擴增阻斷物 696 :探針序列 698 :序列 700 :寡核苷酸引子 705 : ECL 探針 706 :互補序列 708 :莖股 -326- 201211533674 : LOC variant XLIV 677 : LOC variant XLVII 679 : LOC variant XLIX 6 8 2 : small component dialysis section 6 8 6 : dialysis section 694 : amplification blocker 696 : probe sequence 698 : sequence 700 : oligo Nucleotide primer 705: ECL probe 706: complementary sequence 708: stem stock-326- 201211533

7 1 0 :另一股 728 : LOC 變 729 : LOC 變 73 0 :界面通 7 3 2 :界面通 734 :小組分 7 3 6 :大組分 73 8 :下降口 7 4 0 :流速感 766 :廢料貯 7 6 8 :廢料貯 7 8 6 :陰性對 7 8 7 :陽性對 7 8 8 :差分成 7 9 0 :像素 7 9 2 :虛擬像 794 :讀取 795 :讀取 797 : M4 801 : MD47 1 0 : Another strand 728 : LOC change 729 : LOC change 73 0 : interface pass 7 3 2 : interface pass 734 : small component 7 3 6 : large component 73 8 : drop port 7 4 0 : flow rate sense 766 : Waste storage 7 6 8 : Waste storage 7 8 6 : Negative pair 7 8 7 : Positive pair 7 8 8 : Difference into 7 9 0 : Pixel 7 9 2 : Virtual image 794 : Read 795 : Read 797 : M4 801 : MD4

8 0 3 :像素電 805 :虛擬像 8 0 7 :開關 809 :開關 體X 體L 道 道 上蓋通道 上蓋通道 測器 器 器 照ECL探針 照ECL探針 像儀電路 素 ] J d 容器 素電容器 201211533 81 1 : “讀取—行”開關 8 13 :虛擬“讀取_行”開關 8 1 4 :彎繞加熱器元件 8 1 5 :開關電容放大器 8 1 7 :示差訊號 8 60 : ECL激發電極 8 62 :光發射 8 64 :發光團 8 66 :共反應物 868 :激發物種 8 70 : ECL激發電極 872 :溶液 8 74 : ECL 細胞 8 7 6 :介電間隙 8 7 8 :梳狀結構陽極 8 8 0 :手指狀構造 8 8 2 :彎繞構型 8 84 :彎道 8 8 6 :構型 8 8 8 :齒狀構造 8 9 0 :分支結構 892 :體積 8 94 :封閉區域 8 96 :溝 -328-8 0 3 : Pixel power 805 : virtual image 8 0 7 : switch 809 : switch body X body L channel upper cover channel upper cover channel detector device ECL probe according to ECL probe image circuit element] J d container capacitor 201211533 81 1 : "Read - Line" switch 8 13 : Virtual "Read_Line" switch 8 1 4 : Bending heater element 8 1 5 : Switched capacitor amplifier 8 1 7 : Differential signal 8 60 : ECL excitation electrode 8 62: Light emission 8 64 : Luminous group 8 66 : Co-reactant 868 : Excited species 8 70 : ECL excitation electrode 872 : Solution 8 74 : ECL cell 8 7 6 : Dielectric gap 8 7 8 : Comb structure anode 8 8 0: finger-like structure 8 8 2 : curved configuration 8 84 : curve 8 8 6 : configuration 8 8 8 : tooth structure 8 9 0 : branch structure 892 : volume 8 94 : closed area 8 96 : groove - 328-

Claims (1)

201211533 七、申請專利範圍: 1. 一種用於同時偵測病患之多重狀態之微流體裝置, 該微流體裝置包含: 入口,該入口係用於接受抽取自該病患之生物材料樣 品; 具有偵測部之微系統技術(MST)層,該層具有用於與 該樣品中之標的分子反應以形成探針-標的複合體之探針 φ 陣列,該標的分子係該病患之醫學狀態的指徵;及 光感應器,該光感應器係用於偵測該探針-標的複合 體;其中, 該探針陣列具有超過1,000個探針。 2 ·如申請專利範圍第1項之微流體裝置,其中該標的 分子係標的核酸序列且該探針陣列具有經配置以與該標的 核酸序列雜交以形成探針-標的雜交體之探針。 3. 如申請專利範圍第1項之微流體裝置,其中該標的 # 分子係標的蛋白質且該探針陣列具有經配置以與該標的蛋 白質雜交或共軛以形成探針-標的複合體之探針。 4. 如申請專利範圍第2項之微流體裝置,其另包含 CMOS電路及支持基板,該CMOS電路係位於該MST層與 該支持基板之間,其中該光感應器係倂入該CMOS電路之 光電二極體陣列。 5. 如申請專利範圍第4項之微流體裝置,其另包含含 有探針之雜交室陣列,其中各該探針具有與該標的核酸序 列之一互補之核酸序列及電化學發光(ECL)發光團,且各 -329- 201211533 雜交室具有用於產生該ECL發光團呈激發狀態之電極,其 中在激發狀態下之該ECL發光團發射光之光子。 6. 如申請專利範圍第5項之微流體裝置,其另包含位 於該雜交室陣列上游之核酸擴增部,該核酸擴增部係經配 置以用於擴增該標的核酸序列。 7. 如申請專利範圍第6項之微流體裝置,其中該核酸 擴增部係在該標的核酸序列與該ECL探針雜交前用於擴增 該標的核酸序列之聚合酶連鎖反應(PCR)部。 8. 如申請專利範圍第1項之微流體裝置,其中該MST 層具有多個MST通道,該等MST通道係經配置以藉由毛 細作用吸取含有該標的核酸序列之流體通過該P C R部並進 入該雜交室。 9. 如申請專利範圍第8項之微流體裝置,其中該 CMOS電路具有用於與外部裝置電連接之銲墊,其中該 CMOS電路係經配置以轉換來自該光電二極體之輸出成顯 示該ECL探針與該標的核酸序列雜交之信號,且提供該信 號至銲墊以供傳輸至該外部裝置。 10. 如申請專利範圍第9項之微流體裝置,其中各該 探針具有藉由共振能量轉移以淬熄該ECL發光團之光子發 射之功能性部分。 1 1 .如申請專利範圍第9項之微流體裝置,其中該探 針係經配置以使當該探針形成探針-標的雜交體時,該用 於淬熄該ECL發光團之光子發射之功能性部分係進一步源 自該ECL發光團。 -330- 201211533 12. 如申請專利範圍第5項之微流體裝置,其中該 CMOS電路係經配置以提供電脈衝至該電極,該電脈衝期 間小於〇 . 6 9秒。 13. 如申請專利範圍第12項之微流體裝置,其中該電 脈衝之電流係介於0.1奈安培至6 9.0奈安培。 1 4·如申請專利範圔第5項之微流體裝置,其中該 CMOS電路係經配置以控制在該探針與該標的核酸序列雜 φ 交期間該雜交室之溫度》 15. 如申請專利範圍第14項之微流體裝置,其另包含 雜交加熱器,該雜交加熱器係由該CMOS電路控制以提供 雜交用之熱能。 16. 如申請專利範圍第15項之微流體裝置,其另包含 自該PCR部至終點液體感應器之流體流路,該雜交室係沿 著該流體流路之二側配置。 1 7 .如申請專利範圍第丨6項之微流體裝置,其中該流 Φ 體流路係經配置以藉由毛細作用自該PCR部吸取流體至該 液體終點感應器’且各該雜交室係經配置以藉由毛細作用 充滿來自該流體流路之流體,使得在使用期間,該CMOS 電路反應來自該液體終點感應器顯示該流體已經到達該液 體終點感應器之輸出而活化該雜交加熱器。 1 8 .如申請專利範圍第丨7項之微流體裝置,其中各該 雜交室之體積小於9,〇〇〇立方微米。 1 9 .如申請專利範圍第5項之微流體裝置,其中該光 電二極體距離該ECL探針小於L600微米。 -331 - 201211533 2 0.如申請專利範圍第16項之微流體裝置,其另包含 多個處理該流體所需之不同試劑的試劑貯器,其中該流體 係藉由毛細作用自該入口吸取至該終點感應器,且不需添 加來自該微流體裝置外之來源之液體。 -332-201211533 VII. Patent application scope: 1. A microfluidic device for simultaneously detecting multiple states of a patient, the microfluidic device comprising: an inlet for receiving a sample of biological material extracted from the patient; a microsystem technology (MST) layer of the detection portion, the layer having a probe φ array for reacting with a target molecule in the sample to form a probe-target complex, the target molecule being in the medical state of the patient And a light sensor for detecting the probe-target complex; wherein the probe array has more than 1,000 probes. 2. The microfluidic device of claim 1, wherein the target molecular tag nucleic acid sequence and the probe array has a probe configured to hybridize to the target nucleic acid sequence to form a probe-target hybrid. 3. The microfluidic device of claim 1, wherein the target molecule is a protein and the probe array has a probe configured to hybridize or conjugate with the target protein to form a probe-target complex. . 4. The microfluidic device of claim 2, further comprising a CMOS circuit and a support substrate, the CMOS circuit being located between the MST layer and the support substrate, wherein the light sensor is inserted into the CMOS circuit Photodiode array. 5. The microfluidic device of claim 4, further comprising an array of hybridization chambers comprising probes, wherein each probe has a nucleic acid sequence complementary to one of the target nucleic acid sequences and electrochemiluminescence (ECL) illumination The group, and each -329-201211533 hybridization chamber has an electrode for generating an excited state of the ECL luminophore, wherein the ECL luminophore emits photons of light in an excited state. 6. The microfluidic device of claim 5, further comprising a nucleic acid amplification portion upstream of the hybridization chamber array, the nucleic acid amplification portion being configured to amplify the target nucleic acid sequence. 7. The microfluidic device of claim 6, wherein the nucleic acid amplification portion is used to amplify a polymerase chain reaction (PCR) portion of the target nucleic acid sequence before the target nucleic acid sequence hybridizes to the ECL probe. . 8. The microfluidic device of claim 1, wherein the MST layer has a plurality of MST channels configured to aspirate a fluid containing the target nucleic acid sequence by capillary action through the PCR portion and enter The hybridization chamber. 9. The microfluidic device of claim 8, wherein the CMOS circuit has a pad for electrically connecting to an external device, wherein the CMOS circuit is configured to convert an output from the photodiode to display the A signal that the ECL probe hybridizes to the target nucleic acid sequence and provides the signal to a pad for transmission to the external device. 10. The microfluidic device of claim 9, wherein each of the probes has a functional portion of photon emission that is quenched by resonance energy transfer to quench the ECL luminophore. The microfluidic device of claim 9, wherein the probe is configured to quench photon emission of the ECL luminophore when the probe forms a probe-target hybrid. The functional moiety is further derived from the ECL luminophore. The microfluidic device of claim 5, wherein the CMOS circuit is configured to provide an electrical pulse to the electrode, the electrical pulse period being less than 6.9 seconds. 13. The microfluidic device of claim 12, wherein the electrical current of the electrical pulse is between 0.1 nanoamperes and 69.0 nanoamperes. The microfluidic device of claim 5, wherein the CMOS circuit is configured to control the temperature of the hybridization chamber during the hybridization of the probe to the target nucleic acid sequence. The microfluidic device of clause 14, further comprising a hybrid heater controlled by the CMOS circuit to provide thermal energy for hybridization. 16. The microfluidic device of claim 15 further comprising a fluid flow path from the PCR portion to the end liquid sensor, the hybrid chamber being disposed along two sides of the fluid flow path. The microfluidic device of claim 6, wherein the flow Φ body flow path is configured to draw fluid from the PCR portion to the liquid end point sensor by capillary action and each of the hybrid chambers The fluid from the fluid flow path is configured to be filled by capillary action such that during use, the CMOS circuit reacts to activate the hybridization heater from the liquid endpoint sensor indicating that the fluid has reached the output of the liquid endpoint sensor. 18. The microfluidic device of claim 7, wherein each of the hybridization chambers has a volume of less than 9, 〇〇〇 cubic micrometers. The microfluidic device of claim 5, wherein the photodiode is less than L600 microns from the ECL probe. The microfluidic device of claim 16, further comprising a plurality of reagent reservoirs for treating different reagents required for the fluid, wherein the flow system is drawn from the inlet by capillary action to The endpoint sensor does not require the addition of liquid from a source other than the microfluidic device. -332-
TW100119241A 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient TW201211533A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201211533A true TW201211533A (en) 2012-03-16

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality

Family Applications Before (8)

Application Number Title Priority Date Filing Date
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles

Family Applications After (13)

Application Number Title Priority Date Filing Date
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality

Country Status (1)

Country Link
TW (22) TW201211534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150247190A1 (en) * 2012-10-05 2015-09-03 California Institute Of Technology Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
CN106715673A (en) * 2014-07-11 2017-05-24 先进诊疗公司 Point of care polymerase chain reaction device for disease detection
JP2016148574A (en) * 2015-02-12 2016-08-18 セイコーエプソン株式会社 Electronic component conveying device and electronic component inspection device
AU2016250580B2 (en) * 2015-04-22 2021-02-25 Berkeley Lights, Inc. Culturing station for microfluidic device
EP3275992A1 (en) * 2016-07-29 2018-01-31 Bayer Aktiengesellschaft Adapter for cell-culture vessel
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
US11441701B2 (en) * 2017-07-14 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic valve
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device
US12072311B2 (en) 2017-11-17 2024-08-27 Siemens Healthcare Diagnostics Inc. Sensor assembly and method of using same
EP3737502A4 (en) * 2018-01-11 2021-03-10 Nanocav, LLC Microfluidic cellular device and methods of use thereof
CN111656162B (en) 2018-02-01 2023-09-01 东丽株式会社 Device for evaluating particles in liquid and method for operating same
EP3560593B1 (en) * 2018-04-25 2024-06-05 OPTOLANE Technologies Inc. Cartridge for digital real-time pcr
TWI853851B (en) 2018-11-15 2024-09-01 中國商深圳華大智造科技有限公司 Microfluidic apparatus and method of making
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
WO2021216627A1 (en) * 2020-04-21 2021-10-28 Roche Sequencing Solutions, Inc. High-throughput nucleic acid sequencing with single-molecule sensor arrays
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
CN115494833B (en) * 2021-06-18 2024-10-22 广州视源电子科技股份有限公司 Robot control method and device
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same
TWI840226B (en) * 2023-05-17 2024-04-21 博錸生技股份有限公司 Automatic sample preparation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure

Also Published As

Publication number Publication date
TW201209407A (en) 2012-03-01
TW201219770A (en) 2012-05-16
TW201219115A (en) 2012-05-16
TW201211241A (en) 2012-03-16
TW201211242A (en) 2012-03-16
TW201211540A (en) 2012-03-16
TW201209404A (en) 2012-03-01
TW201211534A (en) 2012-03-16
TW201211240A (en) 2012-03-16
TW201211532A (en) 2012-03-16
TW201219776A (en) 2012-05-16
TW201211539A (en) 2012-03-16
TW201211244A (en) 2012-03-16
TW201209158A (en) 2012-03-01
TW201211243A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201209403A (en) 2012-03-01
TW201209405A (en) 2012-03-01
TW201211538A (en) 2012-03-16
TW201209159A (en) 2012-03-01
TW201209406A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
TW201211533A (en) Microfluidic device for simultaneous detection of multiple conditions in a patient
US8398938B2 (en) Microfluidic thermal bend actuated pressure pulse valve
Hart et al. Point‐of‐care oral‐based diagnostics
KR20220167379A (en) High-plex guide pooling for nucleic acid detection