[go: up one dir, main page]

TW201209404A - LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section - Google Patents

LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section Download PDF

Info

Publication number
TW201209404A
TW201209404A TW100119237A TW100119237A TW201209404A TW 201209404 A TW201209404 A TW 201209404A TW 100119237 A TW100119237 A TW 100119237A TW 100119237 A TW100119237 A TW 100119237A TW 201209404 A TW201209404 A TW 201209404A
Authority
TW
Taiwan
Prior art keywords
nucleic acid
hybrid
pcr
sample
amplification
Prior art date
Application number
TW100119237A
Other languages
Chinese (zh)
Inventor
Mehdi Azimi
Geoffrey Richard Facer
Kia Silverbrook
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201209404(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201209404A publication Critical patent/TW201209404A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A lab-on-a-chip (LOC) device for genetic analysis of a biological sample, the LOC device having an inlet for receiving the sample, a supporting substrate, a plurality of reagent reservoirs, a nucleic acid amplification section downstream of the incubation section for amplifying nucleic acid sequences in the sample, and, a dialysis section downstream of the nucleic acid amplification section for prehybridization filtration of amplicon produced by the nucleic acid amplification section, the dialysis section being configured to remove cell debris from the amplicon, wherein, the nucleic acid amplification section and the dialysis section are both supported on the supporting substrate.

Description

201209404 六、發明說明: 【發明所屬之技術領域】 本發明係關於採用微系統技術(MST )之診斷裝置。 更詳細地,本發明係關於用於分子診斷學之微流體的及生 化的處理及分析。 【先前技術】 分子診斷學已然興起成爲一種保證能在疾病症狀顯現 前即有效地早期偵測疾病之領域。分子診斷性測試可用來 偵測: •遺傳性疾病 •後天罹患之疾病 •感染性疾病 •易感染健康相關疾病之遺傳素質 由於分子診斷性測試具有高度精確性及快速週轉期, 故而有潛力可減少無效健康照護服務之發生、增進醫療成 效、改善疾病管理及提供個體化之患者照護。分子診斷學 之許多技術係基於對從生物樣本(例如血液或唾液)萃取 及擴增之特定核酸(包括去氧核糖核酸(DNA )及核糖核 酸(RNA )兩者)進行偵測及鑑定。核酸鹼基之互補特性 允許合成之DN A短序列(寡核苷酸)結合(雜合)到用於 核酸測試之特殊核酸序列上。若發生雜合,則互補序列會 出現在試樣中。如此一來,會令例如預測某人在未來可能 會發生的疾病、確定感染性病原體之身份及致病性、或者 -5- 201209404 確定某人對一藥物將有之反應等成爲可能。 以核酸爲基礎之分子診斷性測試 以核酸爲基礎之測試具有四個明確步驟: 1. 試樣製備 2. 核酸萃取 3 ·(任意地)核酸擴增 4- 偵測 許多試樣類型可用於基因分析,例如血液、尿液、痰 及組織試樣。由於並非所有試樣皆可代表疾病進程,所以 該診斷測試可決定所需之試樣類型。此等試樣具有多種不 同組成,不過通常僅有一種組成受到關注。舉例來說,血 液中紅血球濃度高會抑制對病原性有機體之偵測。因此, 在核酸測試開始時通常會需要進行純化及/或濃縮步驟。 血液爲一種較常採用之試樣類型。它具有三個主要的 成分:白血球(白細胞)、紅血球(紅細胞)及凝血細胞 (血小板)。凝血細胞可促進凝血且在細胞外仍有活性》 爲了抑制血液凝集,試樣在進行純化及濃縮之前會先混入 化學劑如乙二胺四乙酸(EDTA )。通常會把紅血球從試 樣中除去以濃縮目標細胞。於人類,紅血球約占血液細胞 物質之約99%,不過由於其不具細胞核所以不帶DNA。再 者,紅血球含有某些成分例如血紅素會干擾下游核酸擴增 過程(下文將予以說明)。除去紅血球一事可藉由以胞溶 溶液有區別地胞溶紅血球而保留其他細胞物質完整,然後 -6 - 201209404 利用離心把完整之細胞物質從試樣中分離出來而達成。如 此可提供目標細胞之濃縮液且從該等濃縮液中萃取出核酸 〇 用來萃取核酸之明確操作流程將視該試樣及欲進行之 診斷檢定而定。舉例來說,用來萃取病毒RNA所用之操作 流程就與用來萃取基因組DN A之操作流程顯著不同。然而 ,從目標細胞萃取核酸通常涉及了先進行細胞胞溶步驟, 接著再核酸純化。該細胞胞溶步驟會瓦解細胞及細胞膜, 釋出遺傳物質。此舉通常會使用胞溶清潔劑例如十二烷基 硫酸鈉來完成,其亦可令細胞內存在之大量蛋白質變性。 而後該核酸可用醇類(通常爲冰-冷卻乙醇或異丙醇 )沉澱步驟或者透過固相純化步驟來純化,該固相純化步 驟典型地係於氧化矽基質於管柱、樹脂或順磁性珠粒於存 在高濃度離液鹽下進行,接著清洗,而後以低離子強度緩 衝液來溶離。在核酸沉澱前之一任意步驟爲可添加蛋白酶 ,其可消化蛋白質以進一步純化試樣。 其他胞溶方法還包括透過超音波振盪之機械性胞溶及 把試樣加熱到94°C來瓦解細胞膜之熱胞溶。 已萃取的材料中可還含有極少量之目標DN A或RN A, 尤其是當該目標物係來自致病來源時更常如此。核酸擴增 法提供把低濃度之特定目標物選擇性地擴增(即複製)到 可偵測程度之濃度的能力。 最常使用之核酸擴增技術爲聚合酶連鎖反應(PCR ) 。PCR已爲此領域所習知且此類型反應之詳細說明可見於 201209404 E. van Pelt-Verkuil et a 1., Principles and Technical Aspects of PCR A m p 1 i f i c a t i ο n,S p r i n g e r,2 0 0 8。 PCR爲一種效力強大的技術,其可於複雜的DNA背景 中擴增一目標DNA序列。如果想要(藉著PCR )擴增RNA ,則必需先用被稱爲反轉錄酶之酵素來把RNA轉錄成 cDNA (互補DNA)。然後,所製成的cDNA再用PCR來擴 增。 PCR爲一種指數過程,只要支持該反應之條件允許, 該過程就會持續進行下去。該反應之成分有:201209404 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a diagnostic apparatus employing microsystem technology (MST). In more detail, the present invention relates to the processing and analysis of microfluidics and biosynthesis for molecular diagnostics. [Prior Art] Molecular diagnostics has emerged as an area that guarantees effective early detection of disease before the onset of disease symptoms. Molecular diagnostic tests can be used to detect: • Hereditary diseases • Acquired diseases • Infectious diseases • Genetic quality of susceptible diseases that are highly susceptible to health and high turnover due to the high degree of accuracy and rapid turnover of molecular diagnostic tests Invalid health care services, improve medical outcomes, improve disease management and provide individualized patient care. Molecular diagnostics Many techniques are based on the detection and identification of specific nucleic acids (both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobase allows the synthetic DN A short sequence (oligonucleotide) to bind (hybrid) to a particular nucleic acid sequence for nucleic acid testing. If a hybrid occurs, the complementary sequence will appear in the sample. This will, for example, make it possible to predict a person's future illness, determine the identity and pathogenicity of an infectious pathogen, or -5 - 201209404 to determine that someone will respond to a drug. Nucleic Acid-Based Molecular Diagnostic Testing Nucleic acid-based testing has four distinct steps: 1. Sample preparation 2. Nucleic acid extraction 3 (optional) nucleic acid amplification 4- Detection of many sample types available for genes Analysis, such as blood, urine, sputum and tissue samples. Since not all samples represent disease progression, this diagnostic test determines the type of sample required. These samples have a variety of different compositions, but usually only one composition is of interest. For example, high red blood cell concentrations in blood can inhibit the detection of pathogenic organisms. Therefore, purification and/or concentration steps are typically required at the beginning of the nucleic acid test. Blood is a type of sample that is more commonly used. It has three main components: white blood cells (white blood cells), red blood cells (red blood cells), and blood clotting cells (platelets). Blood coagulation cells promote coagulation and remain active outside the cell. In order to inhibit blood agglutination, the sample is mixed with a chemical such as ethylenediaminetetraacetic acid (EDTA) before purification and concentration. Red blood cells are usually removed from the sample to concentrate the target cells. In humans, red blood cells account for about 99% of blood cell material, but because they do not have a nucleus, they do not carry DNA. Furthermore, red blood cells containing certain components such as heme can interfere with downstream nucleic acid amplification processes (described below). Removal of red blood cells can be achieved by distinguishing cytolytic red blood cells in a cytolytic solution to preserve the integrity of other cellular material, and then -6 - 201209404 using centrifugation to separate intact cellular material from the sample. Thus, a concentrate of the target cells can be provided and the nucleic acid can be extracted from the concentrates. The precise procedure for extracting the nucleic acids will depend on the sample and the diagnostic assay to be performed. For example, the protocol used to extract viral RNA is significantly different from the protocol used to extract the genomic DNA DN A. However, the extraction of nucleic acids from a target cell typically involves a cell lysis step followed by nucleic acid purification. The cytolysis step of the cell disrupts the cells and cell membranes and releases the genetic material. This is usually done with a cytosolic detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cell. The nucleic acid can then be purified by an alcohol (usually ice-cooled ethanol or isopropanol) precipitation step or by a solid phase purification step, typically based on a ruthenium oxide substrate on a column, resin or paramagnetic beads. The granules are carried out in the presence of a high concentration of chaotropic salts, followed by washing, followed by dissolution with a low ionic strength buffer. Any step prior to precipitation of the nucleic acid is the addition of a protease that digests the protein to further purify the sample. Other methods of cytolysis also include mechanical cytolysis by ultrasonic oscillations and heating of the sample to 94 ° C to disintegrate the thermolysis of the cell membrane. The extracted material may also contain a very small amount of target DN A or RN A, especially when the target is from a pathogenic source. Nucleic acid amplification provides the ability to selectively amplify (i.e., replicate) a particular target at a low concentration to a detectable level. The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). PCR has been known in the art and a detailed description of this type of reaction can be found in 201209404 E. van Pelt-Verkuil et a 1., Principles and Technical Aspects of PCR A m p 1 i f i c a t i ο n, S p r i n g e r, 2 0 0 8. PCR is a powerful technique for amplifying a target DNA sequence in a complex DNA background. If you want to amplify RNA (by PCR), you must first use an enzyme called reverse transcriptase to transcribe RNA into cDNA (complementary DNA). Then, the prepared cDNA was further amplified by PCR. PCR is an exponential process that continues as long as the conditions supporting the reaction permit. The ingredients of this reaction are:

1 · 引子對:其爲與目標序列之側翼區互補且長約 10-30個核苷酸之單股短DNA 2. DNA聚合酶:一種能合成DNA之耐熱酶 3. 去氧核糖核苷三磷酸(dNTPs ):提供倂入新合 成之DNA股之核苷酸 4· 緩衝液:提供DNA合成之最佳化學環境 PCR典型地涉及把此等反應物加到含有萃取出之核酸 的小管(〜10-50微升)中。把該小管放到熱循環器(一種 裝置’其能讓反應在一系列不同溫度下反應不同長短的時 間)內。各個熱循環的標準操作流程涉及了變性期、結合 期及延伸期。延伸期有時被稱爲引子延伸期。除了這種三 步驟流程以外,也可採用兩步驟之熱流程,於此類流程中 是把結合期及延展期合倂。變性期典型地涉及把反應溫度 升高到90-95 °C以令DNA股變性;於結合期,溫度會被降 到約50-60 °C好讓引子結合;然後於延伸期,溫度會被升 201209404 高到最適合DNA聚合酶活動之60-72 °C以供引子延伸。此 過程會反覆循環約20-40次,最終的結果爲製造出數百萬 個兩引子之間的目標序列拷貝。 還有許多相對於該PCR標準流程之變化流程,其中有 例如多重PCR、連接子-帶頭(linker_primed ) PCR、直接 PCR、串聯PCR、即時PCR及逆轉錄酶pCR等,其現已發展 出來用於分子診斷上。 多重PCR係在單一PCR混合物中使用多個引子組以製 造對不同DN A序列特異之不同長短之擴增子。藉著同時瞄 準多個基因,可於單一測試-操作時得到更多的資訊,否 則會需要進行數個實驗才行。不過多重PCR的最適化更爲 困難且需要選取具有相似結合溫度之引子、具有類似長度 及鹼基組成之擴增子以確保各擴增子之擴增效能係相等的 〇 連接子-帶頭PCR (亦以接合接合器PCR爲人習知)爲 一種無需目標-特異性引子就能使複雜的DNA混合物中基 本上所有的DNΑ序列皆可進行核酸擴增之方法。該方法涉 及了首先先用適當的限制性內切酶(酵素)來消化目標 DNA族群。然後把具有適當懸垂端之雙股寡核苷酸連接子 (亦稱爲接合器)用接合酶酵素接合到目標DN A片段之末 端上。接著使用對該連接子序列特異之寡核苷酸引子來進 行核酸擴增。藉著此種方式,由連接子寡核苷酸包夾之所 有DNA源片段皆可被擴增。 直接PCR描述一種未進行任何核酸萃取或僅有些微核 -9- 201209404 酸萃取就直接在試樣上進行PCR之系統。人們早已同意未 純化之生物試樣內有多種成分(例如血液內的血紅素成分 )會抑制PCR反應。傳統地,PCR在製備反應混合物前需 要先把目標核酸徹底純化。然而,藉著適當的改變化學性 質及試樣濃度,可在僅有極少DNA純化下進行PCR或直接 PCR。直接PCR對PCR化學性質之調整包括增加緩衝液強 度、使用具有高活性及連續效能之聚合酶以及加入能螯合 可能的聚合酶抑制劑之添加劑。 串聯PCR係採用兩個獨立場次之核酸擴增反應以增加 對的擴增子被擴增的可能性。串聯PCR的一種形式爲巢床 (nested ) PCR,其係使用兩對PCR引子於各別的核酸擴增 場次中擴增單一基因座。第一對引子會雜合到位於該目標 核酸序列外之區域之核酸序列上。第二輪擴增所用之第二 對引子(巢床引子)會結合到該第一PCR產物內且製造出 含有該目標核酸之第二PCR產物,它會比第一 PCR產物更 短。此策略背後的邏輯爲:如果在第一輪酸擴增反應中有 不正確的基因座錯誤地被擴增,那麼該基因座被第二對引 子再次擴增的可能性會極低,如此一來即可確保其特異性 〇 即時PCR或者定量PCR係用來測量PCR產物的即時量 。藉著使用含有螢光團之探針或螢光染料以及一組反應標 準物,可以定量試樣中核酸的初始量。此舉對於分子診斷 特別有用,因爲於分子診斷中治療方案將因試樣內之病原 體載量(pathogen load)而異。 -10- 201209404 逆轉錄酶PCR(RT-PCR)係用來從RNA擴增DNA。逆 轉錄酶爲一種能把RNA逆轉錄成互補DNA ( cDNA )之酵素 ’該cDNA而後藉著PCR擴增。RT-PCR廣泛地用於基因表 現特徵描繪,用來決定基因表現或鑑定RNA轉錄物之序列 ,包括轉錄起始及終止位點。其亦可用來擴增RNA病毒像 是人體免疫缺損病毒或C型肝炎病毒。 等溫擴增是另一種核酸擴增形式,其擴增反應不靠目 標DN A之熱變性,所以不需要複雜的機械裝置。故而等溫 核酸擴增法可在原位進行或者於實驗室外的環境中輕易地 操作。已有多種等溫核酸擴增方法被描述,包括股置換擴 增法、轉錄媒介擴增法、核酸序列爲主擴增法、重組酶聚 合酶擴增法、滾環式擴增法、網狀分枝擴增法、解旋酶-依賴等溫DN A擴增法及環媒介等溫擴增法。 等溫核酸擴增方法不靠著對模板DN A持續加熱變性來 製造當作進一步擴增之模板之單股分子,而是於恆定溫度 下靠著其他方法例如利用特異限制性內切酶以酵素於DN A 分子上切出缺口,或使用酶來使DNA股分離。 股置換擴增法(SD A )係靠著特定的限制性內切酶於 半-修飾DNA中未修飾的那股切出缺口之能力以及5’_3’外 切酶-缺損聚合酶其延展及置換下游股鏈之能力。指數性 核酸擴增係藉著結合有意義反應及反意義反應來達成,其 中有意義反應股置換(得到之序列)會被當作反意義反應 之模板。此反應係採用切口酶(其不以傳統的方式切斷 DNA,而是在雙股DNA其中的一股切出缺口),例如N. -11 - 2012094041 · Primer pair: a single strand of short DNA complementary to the flanking region of the target sequence and about 10-30 nucleotides long. 2. DNA polymerase: a thermostable enzyme capable of synthesizing DNA 3. Deoxyribonucleoside III Phosphoric acid (dNTPs): provides nucleotides that are incorporated into newly synthesized DNA strands. 4. Buffer: The best chemical environment for DNA synthesis. PCR typically involves the addition of such reactants to small tubes containing extracted nucleic acids (~ 10-50 microliters). The tube is placed in a thermal cycler (a device that allows the reaction to react at different temperatures for varying lengths of time). The standard operating procedures for each thermal cycle involve the denaturation phase, the binding phase, and the extension phase. The extension period is sometimes referred to as the primer extension period. In addition to this three-step process, a two-step thermal process can be used, in which the combination period and extension period are combined. The denaturation period typically involves raising the reaction temperature to 90-95 °C to denature the DNA strand; during the binding phase, the temperature is lowered to about 50-60 °C to allow the primer to bind; then during the extension, the temperature is l 201209404 up to 60-72 °C for DNA polymerase activity for primer extension. This process is repeated approximately 20-40 times, with the end result of producing a copy of the target sequence between millions of two primers. There are also a number of variations relative to the PCR standard protocol, including, for example, multiplex PCR, linker-primed PCR, direct PCR, tandem PCR, real-time PCR, and reverse transcriptase pCR, which have been developed for use in Molecular diagnosis. Multiplex PCR uses multiple primer sets in a single PCR mix to create amplicons of different lengths that are specific for different DN A sequences. By targeting multiple genes at the same time, more information can be obtained in a single test-operation, otherwise several experiments will be required. However, the optimization of multiplex PCR is more difficult and it is necessary to select primers with similar binding temperatures and amplicon of similar length and base composition to ensure that the amplification efficiency of each amplicon is equal. Also known as junction adapter PCR is a method for nucleic acid amplification of substantially all of the DN(R) sequences in a complex DNA mixture without the need for a target-specific primer. This method involves first digesting the target DNA population with an appropriate restriction enzyme (enzyme). A double-stranded oligonucleotide linker (also known as an adaptor) having a suitable overhanging end is then ligated to the end of the target DN A fragment with a ligase enzyme. Nucleic acid amplification is then carried out using oligonucleotide primers specific for the linker sequence. In this way, all DNA source fragments that are sandwiched by the linker oligonucleotide can be amplified. Direct PCR describes a system for performing PCR directly on a sample without any nucleic acid extraction or only some micronucleus -9-201209404 acid extraction. It has long been agreed that various components (e.g., heme components in blood) in unpurified biological samples inhibit the PCR reaction. Traditionally, PCR requires thorough purification of the target nucleic acid prior to preparation of the reaction mixture. However, by appropriate changes in chemical properties and sample concentrations, PCR or direct PCR can be performed with minimal DNA purification. Direct PCR modulating PCR chemistry includes increasing buffer strength, using polymerases with high activity and continuous potency, and adding additives that sequester possible polymerase inhibitors. Tandem PCR uses two independent fields of nucleic acid amplification reactions to increase the likelihood that the pair of amplicons will be amplified. One form of tandem PCR is nested PCR, which uses two pairs of PCR primers to amplify a single locus in a separate nucleic acid amplification field. The first pair of primers will hybridize to the nucleic acid sequence located in the region outside the target nucleic acid sequence. A second pair of primers (nested bed primers) for the second round of amplification will be incorporated into the first PCR product and produce a second PCR product containing the target nucleic acid which will be shorter than the first PCR product. The logic behind this strategy is that if an incorrect locus is incorrectly amplified in the first round of acid amplification, the probability that the locus will be amplified again by the second pair of primers will be extremely low. To ensure its specificity, real-time PCR or quantitative PCR is used to measure the instantaneous amount of PCR products. The initial amount of nucleic acid in the sample can be quantified by using a probe containing a fluorophore or a fluorescent dye and a set of reaction standards. This is particularly useful for molecular diagnostics because the therapeutic regimen in molecular diagnostics will vary depending on the pathogen load within the sample. -10- 201209404 Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. The reverse transcriptase is an enzyme that reverse transcribes RNA into complementary DNA (cDNA), which is then amplified by PCR. RT-PCR is widely used for gene expression characterization to determine gene expression or to identify sequences of RNA transcripts, including transcription initiation and termination sites. It can also be used to amplify RNA viruses such as human immunodeficiency virus or hepatitis C virus. Isothermal amplification is another form of nucleic acid amplification whose amplification does not depend on the thermal denaturation of the target DN A, so no complicated mechanical means are required. Therefore, the isothermal nucleic acid amplification method can be carried out in situ or easily in an environment outside the laboratory. A variety of isothermal nucleic acid amplification methods have been described, including strand displacement amplification, transcription vector amplification, nucleic acid sequence amplification, recombinase polymerase amplification, rolling circle amplification, mesh Branch amplification, helicase-dependent isothermal DN A amplification and circular medium isothermal amplification. The isothermal nucleic acid amplification method does not rely on the continuous heat denaturation of the template DN A to produce a single strand of the molecule as a template for further amplification, but at a constant temperature by other methods such as the use of a specific restriction endonuclease to the enzyme. A gap is cut in the DN A molecule, or an enzyme is used to separate the DNA strand. The strand displacement amplification method (SD A ) relies on the ability of a specific restriction enzyme to cleave the unmodified gap in the semi-modified DNA and the 5'_3' exonuclease-deficient polymerase. The ability to replace the downstream strands. Exponential nucleic acid amplification is achieved by combining meaningful and antisense reactions, in which a meaningful reaction strand substitution (the resulting sequence) is used as a template for an antisense reaction. This reaction uses a nicking enzyme (which does not cut the DNA in a conventional manner, but instead cuts out a gap in the double-stranded DNA), such as N. -11 - 201209404

Alwl、N. BstNBl及Mlyl。SDA已藉著使用一·熱穩定限制 性內切酶(aval)及熱穩定外切酶缺損-聚合酶聚合 酶)之組合來改良。此組合顯示出能使擴增1 〇8倍之反應 的擴增效能增加到擴增1 01()倍,故而可使用此一技術來擴 增獨特的單拷貝分子。 轉錄媒介擴增法(TMA )及核酸序列爲主之擴增法( NASBA )係使用RNA聚合酶來複製RNA序列而非對應的基 因組DNA。此技術會使用兩個引子及兩或三種酶:RN A聚 合酶,逆轉錄酶及任意地RNase Η (若該逆轉錄酶不具有 RNase活性)。一引子含有RNA聚合酶之啓動子序列。於 核酸擴增之第一步驟中,此引子會雜合到該目標核糖體 RNA ( rRNA )之一既定位點。逆轉錄酶可藉著從該啓動子 引子之3 ’端延伸來製造出目標rRN A之DNA拷貝。於產生之 RNA : DNA雙股體中該RNA會被逆轉錄酶擁有的RNase活 性或者添加的RNase Η分解掉。接著,讓第二引子結合到 該DNA拷貝上。一股新的DN Α股藉著逆轉錄酶從該引子之 末端合成,而形成雙股DNA分子。RNA聚合酶可辨識出 DN A模板內的啓動子序列且引發轉錄。每一個新合成的 RNA擴增子會再-進入此過程且作爲新一輪複製的模板。 於重組酶聚合酶擴增法(RPA )中,特異DNA片段之 等溫擴增係藉著讓相反的寡核苷酸引子結合到模板DNAJi 且藉著DNA聚合酶之延長作用而達成。不需使用熱來令該 雙股DNA ( dsDNA )模板變性。替代地,RPA係採用重組 酶-引子複合體來掃描dsDNA且促進同源位點之股交換。生 -12- 201209404 成的結構會藉著單股DN A結合蛋白與被置換之模板股間的 交互作用穩定下來’如此可防止引子因分支遷移而被逐出 。分解酶的拆解作用留下了親股置換性DN A聚合酶之寡核 苷酸(例如枯草芽孢桿菌eaciZ/Ms Pol I ( Bsu)之 大片段)的3 ’端’接下來引子會延伸。指數性核酸擴增可 藉著循環地重覆此過程來完成。 解旋酶-依賴擴增法(HDA )係模擬活體系統,使用 DN A解旋酶來生成供引子雜合之單股模板且接著用DN A聚 合酶令引子延伸。於HAD反應之第一步驟中,該解旋酶會 沿著該目標DN A移動,瓦解連接兩股的氫鍵,爾後分離的 兩股會與單股結合蛋白結合》經解旋酶暴露出來之單股目 標區域允許引子結合。而後該DN A聚合酶會使用游離的去 氧核糖核苷三磷酸(dNTPs )從各引子之3’端延伸而形成 兩個DNA複製體。這兩個複製的dsDNA股會各別地進入下 一個HAD循環,造成該目標序列之指數性核酸擴增。 其他以DN A爲基礎之等溫技術包括滾環式擴增法( RCA),其中該DNA聚合酶可讓引子沿著環狀的DNA模板 不斷地延伸,而產生含有許多個環狀模板之重複拷貝之長 條DN A產物。在反應結束時,該聚合酶可生成數千個環狀 模板的拷貝,且此拷貝鏈會與原本的目標DN A繫在一起。 此舉可供該目標物作空間解析以及信號之快速核酸擴增。 在1小時內可產生高達101 2個模板拷貝。網狀分支擴增爲一 種RCA的變化,其採用閉鎖的環狀探針(C-探針)或鎖式 探針及具有高連續效能之DN A聚合酶於等溫條件下指數性 -13- 201209404 地擴增該C -探針。 環媒介等溫擴增法(LAMP )具有高選擇性且採用 DNA聚合酶及一組經過特別設計、可辨識該目標DNA上總 共六個獨特序列之四個引子。一個含有該目標DNA之有意 義股及反意義股序列之內引子能引發LAMP。後續由一外 引子帶頭之股置換DN A合成作用則釋放了單股DNA °此等 單股DN A可當作第二內引子及外引子(其雜合到該目標序 列的另一端)帶頭之DNA合成之模板,其可形成莖環狀 DNA結構。在接下來的LAMP循環中,一內引子會雜合到 該產物的環上且引發置換DN A合成反應,產生原本的莖環 狀DNA及新的莖環狀DNA (其莖長爲原本之兩倍)。該循 環反應持續著且不到一個小時即可累積1 〇9個目標物拷貝 。終產物爲具有數個目標物倒置複本及具有多環類花椰菜 結構(其係由目標物同一股內交錯倒置之複本相互結合所 形成)之莖環狀DNA。 在核酸擴增完成後,擴增產物必需加以分析以確定是 否已產生所需的擴增子(目標核酸之擴增量)。分析產物 的方法從簡單地透過凝膠電泳測定擴增子大小到使用DN A 雜合鑑定該擴增子之核苷酸組成。 凝膠電泳爲一種檢查核酸擴增反應是否產生所需擴增 子之最簡單的方法。凝膠電泳會對凝膠基質施加電場來讓 DN A片段分離開來。帶有負電荷之DN A片段會以不同速度 (主要是由其大小來決定)於該基質上移動。當電泳結束 後,可將凝膠內的片段染色令其肉眼可見。溴化乙錠爲一 -14- 201209404 種常用染料,其於UV光線下會發出螢光。 該等片段之大小係與DNA尺寸標準參照物(DNA階梯 ,其含有已知大小之DN A片段)比對來決定’該等參照物 會置於擴增子旁與其同時跑膠。因爲該寡核苷酸引子係結 合到包夾該目標DNA之特異位點上,所以該擴增產物的大 小可藉著凝膠上已知尺寸大小的譜帶來預估及偵測。爲了 可靠地鑑定該擴增子,或者是如果同時產生多個擴增子, 那麼通常會用DNA探針雜合該擴增子。 DN A雜合係指藉著互補鹼基的配對反應來形成雙股 DN A。用來正面鑑定一特異擴增產物所用之DN A雜合反應 需要使用長度約20個核苷酸長之DNA探針。如果該探針的 序列係與該擴增子(目標)DNA序列互補,那麼雜合反應 會在溫度、pH及離子強度之有利條件下發生。如果雜合發 生了,表示受到關注的基因或DN A序列已出現在原始試樣 中〇 光學偵測爲偵測雜合最常用的方法。擴增子或探針皆 可透過螢光或電化學發光來標記而放射出光線。此等方法 對於怎樣製造發光基團激發狀態之方式有所不同,不過兩 者都能共價標記核苷酸股鏈。於電化學發光(ECL ),光 線係在發光團分子或錯合物受到電流刺激後產生。於螢光 ,係使用能導致放射反應之激發光來照射。 螢光係使用一照明源(其能提供可被螢光分子吸收之 波長的激發光)及一偵測單元來偵測。該偵測單元包括一 能偵測放射信號之光感測器(例如光電倍增管或電荷耦合 -15- 201209404 裝置(CCD )陣列),以及防止激發光被含納於光感測器 輸出之機制(例如波長-選擇濾波器)。該螢光分子會放 射出斯托克斯頻移光線來對激發光反應,此放射光線會被 偵測單元匯集。斯托克斯頻移爲放射光線與被吸收之激發 光間的頻率差異或波長差異。 ECL發光係使用對所採用之ECL物種之放射波長敏感 之光感測器來偵測。舉例來說,過渡金屬-配體錯合物會 放射出可見光波長之光線,因此可採用傳統的光二極體及 CCD當作光感測器。ECL的一項優點爲:若排除掉周圍光 線,那麼ECL發光會是偵測系統中唯一存在的光線,其可 增進偵測敏感度。 微陣列允許同時進行數百或數千個DN A個雜合實驗。 微陣列爲分子診斷學中有力的工具,其可於單一測試中篩 選數千種疾病或偵測多種感染性病原體之存在。微陣列係 由許多固定在基材上、呈斑點狀之不同DN A探針所組成。 該目標DNA (擴增子)首先會先用一螢光或發光分子(可 於核酸擴增期間或之後)標記,然後施加到探針陣列中。 將該微陣列培育於控制溫度、潮溼的環境下數小時或數天 ,於這段期間探針與擴增子間會發生雜合。培育之後,必 需用一系列緩衝液來沖洗該微陣列以除去未結合之股鏈。 一旦清洗完畢’就用空氣注(通常爲氮氣注)來把微陣列 表面吹乾。雜合及清洗的嚴格性爲嚴苛程度。嚴格性不夠 會造成高度的非特異性結合。過度嚴格會導致無法適當地 結合,使得敏感度降低。雜合係透過已標記擴增子(其已 -16- 201209404 與互補探針形成雜合體)之光線放射來偵測。 微陣列發出之螢光會使用—微陣列掃描器來偵測,該 微陣列掃描器通常爲電腦控制之倒立式掃描性螢光共軛焦 顯微鏡,其典型地會使用雷射來激發螢光染料及使用光感 測器(例如光電倍增管或c c D )來偵測發射信號。該螢光 分子會放射出斯托克斯頻移光線(如上所述)’其會由偵 測單元予以匯集。 放射出的螢光必需予以匯集、將其與未吸收之激發光 波長分離開來且傳輸到偵測器。於微陣列掃描器中經常採 用共軛焦設計,藉著位於影像平面上的共軛焦針孔來除去 離焦資訊。此舉只容許對焦部份的光線被偵測。避免來自 物件焦距平面上方及下方之光線進入偵測器,藉此提高信 號對雜訊之比率。偵測到的螢光光子會被偵測器轉化成電 能,接著再轉化成一數位訊號。此數位訊號會譯成代表一 既定像素之螢光強度的數字。該陣列之每一特性皆由一或 多個此等像素所組成。掃描的最終結果爲陣列表面的影像 。微陣列上之各個探針的確切序列及位置乃爲已知,因此 可同時鑑定及分析該等雜合之目標序列。 更多關於螢光探針之資訊可見於: http://www.premierbiosoft.com/tech_notes/FRET_probe. html 以及 http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/ Fluorescence-Resonance-Energy-Transfer-FRET. html -17- 201209404 定點照護之分子診斷學 雖然分子診斷測試能提供這些好處,不過臨床實驗室 內此類型測試之增長卻比預期要慢且實驗室醫藥實務中此 等測試只佔極少部份。此主要是由於使用核酸之測試相較 於不涉及核酸之其他測試方法要更複雜且更昂貴。在臨床 環境中欲廣泛地採用分子診斷測試則與裝備儀器的開發密 切相關’該等裝備儀器必需能顯著地降低費用、提供從頭 (試樣加工)到尾(產生結果)快速且自動化的檢定,且 其無需大量人力干涉操作。 用以服務醫生診所、醫院臨床或甚至於用戶爲主的居 家場所之定點照護技術具有許多好處,包括: •可快速獲得結果’致使得以立即治療及改善照護品 質。 •只需測試極少試樣即可獲得實驗室品質之測試結果 之能力。 •減輕臨床工作量。 •減少實驗室負荷及藉著減少行政工作增進辦公效能 〇 •透過縮短滯院時間、首次就醫門診諮詢獲至結論所 需時間以及減少樣本處理、儲存及運輸時間來改善 每名患者之治療成本。 •加快達到臨床治理結論例如感染控制及抗生素使用 -18- 201209404 以晶片上實驗室(LOC)爲基礎之分子診斷學 以微流體技術爲基礎之分子診斷系統提供了能自動操 作且加速分子診斷檢定之裝置。更快速的偵測時間主要是 基於涉及之體積極小、採自動化操作及該微流體裝置之診 斷流程步驟爲低開銷內建級聯。體積爲奈升及微升規模亦 減少了試劑耗損及成本。晶片上實驗室(LOC )裝置爲一 種常見的微流體裝置之形式。LOC裝置具有整合於單一支 撐基材(通常爲矽)上之MST層內之MST結構(用來進行 流體處理)。使用半導體工業之VLSI (極大規模積體化) 鈾刻技術來製造可使LOC裝置之單位成本很低。然而,欲 控制流體流經該L Ο C裝置之流動、添加試劑、調控反應條 件等等則需要龐大的外接管路及電子器件。事實上把LOC 裝置連接到此等外部裝置限制了分子診斷用之LOC裝置在 實驗室環境的應用。此等外部設備之成本及其操作的複雜 性使得以LOC-爲基礎之分子診斷無法成爲定點照護設備之 實用方案。Alwl, N. BstNBl and Mlyl. SDA has been improved by the use of a combination of a thermostable restriction endonuclease (aval) and a thermostable exonuclease deficiency-polymerase polymerase. This combination shows an increase in amplification efficiency of amplification of 1 〇 8 fold response to amplification of 1 01 () times, so this technique can be used to amplify unique single copy molecules. Transcription vector amplification (TMA) and nucleic acid sequence-based amplification (NASBA) use RNA polymerase to replicate RNA sequences rather than corresponding genomic DNA. This technique uses two primers and two or three enzymes: RN A polymerase, reverse transcriptase and optionally RNase Η (if the reverse transcriptase does not have RNase activity). A primer contains a promoter sequence of RNA polymerase. In the first step of nucleic acid amplification, the primer is hybridized to one of the target ribosomal RNA (rRNA). The reverse transcriptase can produce a DNA copy of the target rRN A by extending from the 3' end of the promoter. In the resulting RNA: DNA, the RNA is decomposed by the RNase activity possessed by the reverse transcriptase or the added RNase. Next, the second primer is allowed to bind to the DNA copy. A new DN Α strand is synthesized from the end of the primer by reverse transcriptase to form a double stranded DNA molecule. RNA polymerase recognizes the promoter sequence within the DN A template and initiates transcription. Each newly synthesized RNA amplicon will re-enter this process and serve as a template for a new round of replication. In the recombinase polymerase amplification method (RPA), isothermal amplification of a specific DNA fragment is achieved by allowing the opposite oligonucleotide primer to bind to the template DNAJ and by the extension of the DNA polymerase. There is no need to use heat to denature the double strand DNA (dsDNA) template. Alternatively, RPA uses a recombinase-primer complex to scan dsDNA and facilitate share exchange of homologous sites. The structure of -12-201209404 is stabilized by the interaction between the single DN A binding protein and the replaced template strand. This prevents the primer from being ejected due to branch migration. The dissociation of the degrading enzyme leaves the 3' end of the oligonucleotide of the parental replacement DN A polymerase (e.g., a large fragment of Bacillus subtilis eaciZ/Ms Pol I (Bsu). Exponential nucleic acid amplification can be accomplished by cyclically repeating this process. The helicase-dependent amplification method (HDA) mimics the living system, using DN A helicase to generate a single-strand template for hybridization of the primer and then extending the primer with DN A polymerase. In the first step of the HAD reaction, the helicase moves along the target DN A, disintegrating the two hydrogen bonds, and the two separated molecules will bind to the single-stranded binding protein. Single-stranded target areas allow primer binding. The DN A polymerase then extends from the 3' end of each primer using free deoxyribonucleoside triphosphates (dNTPs) to form two DNA replicators. These two replicated dsDNA strands will each enter the next HAD cycle, causing exponential nucleic acid amplification of the target sequence. Other DN A-based isothermal techniques include rolling circle amplification (RCA), in which the DNA polymerase allows the primer to be extended along the circular DNA template to produce repeats containing a number of circular templates. Copy the strip of DN A product. At the end of the reaction, the polymerase generates a copy of thousands of circular templates that are linked to the original target DN A. This allows for spatial resolution of the target and rapid nucleic acid amplification of the signal. Up to 101 2 template copies can be produced in one hour. The reticular branch is amplified as a change in RCA using a locked circular probe (C-probe) or a padlock probe and a high continuous potency DN A polymerase under isothermal conditions exponential-13- The C-probe was amplified by 201209404. The circular medium isothermal amplification method (LAMP) is highly selective and employs DNA polymerase and a set of four primers that are specifically designed to recognize a total of six unique sequences on the target DNA. An inducible strand containing the target DNA and an intron within the antisense strand sequence can trigger LAMP. Subsequent replacement of DN A by an external leader leads to the release of single-stranded DNA. These single-stranded DN A can be used as a second intro and an external primer (which is heterozygous to the other end of the target sequence). A template for DNA synthesis that forms a stem-loop DNA structure. In the next LAMP cycle, an internal primer will hybridize to the loop of the product and initiate a replacement DN A synthesis reaction, producing the original stem-loop DNA and the new stem-loop DNA (the stem length is twice the original ). This cycle of reaction continues and less than an hour can accumulate 1 〇 9 copies of the target. The final product is a stem-loop DNA having a plurality of inverted copies of the target and a polycyclic broccoli structure formed by the incorporation of a replica of the target in the same strand. After completion of the nucleic acid amplification, the amplification product must be analyzed to determine if the desired amplicon (amplification amount of the target nucleic acid) has been produced. The method of analyzing the product is to determine the nucleotide composition of the amplicon by simply measuring the size of the amplicon by gel electrophoresis to heterozygous using DN A. Gel electrophoresis is the easiest way to check if a nucleic acid amplification reaction produces the desired amplicon. Gel electrophoresis applies an electric field to the gel matrix to separate the DN A fragments. The negatively charged DN A fragment moves at different speeds (mainly by its size) on the substrate. When the electrophoresis is over, the fragments in the gel can be stained to make them visible to the naked eye. Ethidium bromide is a commonly used dye of -14-201209404, which emits fluorescence under UV light. The size of the fragments is aligned with a DNA size standard reference (DNA ladder containing DN A fragments of known size) to determine that the reference will be placed next to the amplicon and run at the same time. Since the oligonucleotide primer binds to a specific site that encloses the target DNA, the size of the amplification product can be estimated and detected by a known size spectrum on the gel. In order to reliably identify the amplicon, or if multiple amplicons are simultaneously produced, the amplicon is usually hybridized with a DNA probe. DN A heterozygous refers to the formation of a double-stranded DN A by a pairing reaction of complementary bases. The DN A hybridization reaction used to positively identify a specific amplification product requires the use of a DNA probe of about 20 nucleotides in length. If the sequence of the probe is complementary to the amplicon (target) DNA sequence, the hybridization reaction will occur under favorable conditions of temperature, pH and ionic strength. If heterozygous occurs, the gene or DN A sequence indicating interest has been found in the original sample. Optical detection is the most common method for detecting heterozygosity. Amplicon or probe can be labeled by fluorescence or electrochemiluminescence to emit light. These methods differ in how the luminescent group is excited to form, but both can covalently label the nucleotide strand. In electrochemiluminescence (ECL), the light line is produced after the luminophore molecules or complexes are stimulated by current. In the case of fluorescence, it is irradiated with excitation light that causes a radiation reaction. The fluorescent system uses an illumination source (which provides excitation light of a wavelength that can be absorbed by the fluorescent molecules) and a detection unit to detect. The detecting unit includes a photo sensor capable of detecting a radiation signal (for example, a photomultiplier tube or a charge coupled -15-201209404 device (CCD) array), and a mechanism for preventing excitation light from being included in the output of the photo sensor. (eg wavelength-select filter). The fluorescent molecules emit Stokes-shifted light to react to the excitation light, which is collected by the detection unit. Stokes shifts the frequency difference or wavelength difference between the emitted light and the absorbed excitation light. The ECL illumination is detected using a light sensor that is sensitive to the radiation wavelength of the ECL species being used. For example, a transition metal-ligand complex will emit light at visible wavelengths, so conventional photodiodes and CCDs can be used as photosensors. An advantage of ECL is that if the ambient light is excluded, the ECL illumination is the only light present in the detection system that enhances detection sensitivity. Microarrays allow hundreds or thousands of DN A heterozygous experiments to be performed simultaneously. Microarrays are powerful tools in molecular diagnostics that can screen thousands of diseases or detect the presence of multiple infectious pathogens in a single test. The microarray consists of a number of different DN A probes that are fixed to the substrate and are spotted. The target DNA (amplicon) is first labeled with a fluorescent or luminescent molecule (either during or after nucleic acid amplification) and then applied to the probe array. The microarray is incubated in a controlled temperature, humid environment for hours or days, during which time the probe and the amplicon will hybridize. After incubation, the microarray must be rinsed with a series of buffers to remove unbound strands. Once cleaned, air jets (usually nitrogen) are used to dry the surface of the microarray. The stringency of hybridization and cleaning is severe. Insufficient stringency can result in a high degree of non-specific binding. Excessive rigor can result in inability to properly combine, resulting in reduced sensitivity. The heterozygous line is detected by the emission of light from the labeled amplicons, which have been hybridized with complementary probes from -16 to 201209404. Fluorescence from the microarray is detected using a microarray scanner, typically a computer-controlled inverted scanning fluorescent conjugated focus microscope that typically uses a laser to excite the fluorescent dye. And using a light sensor (such as a photomultiplier tube or cc D ) to detect the transmitted signal. The fluorescent molecules emit Stokes-shifted light (as described above) which are collected by the detection unit. The emitted fluorescence must be collected, separated from the wavelength of the unabsorbed excitation light, and transmitted to the detector. Conjugate focal designs are often used in microarray scanners to remove defocus information by conjugated pinholes located on the image plane. This will only allow the light in the focus portion to be detected. Avoid light from above and below the object's focal plane into the detector, thereby increasing the ratio of signal to noise. The detected fluorescent photons are converted into electrical energy by the detector and then converted into a digital signal. This digital signal is translated into a number representing the intensity of the fluorescence of a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. The exact sequence and position of each probe on the microarray is known, so that the hybrid target sequences can be identified and analyzed simultaneously. More information on fluorescent probes can be found at: http://www.premierbiosoft.com/tech_notes/FRET_probe.html and http://www.invitrogen.com/site/us/en/home/References/Molecular- Probes-The-Handbook/Technical-Notes-and-Product-Highlights/ Fluorescence-Resonance-Energy-Transfer-FRET. html -17- 201209404 Molecular Diagnostics for Point-of-care Although molecular diagnostic tests can provide these benefits, clinical laboratories The growth of this type of test is slower than expected and these tests are only a small part of the laboratory medical practice. This is primarily due to the fact that testing with nucleic acids is more complicated and more expensive than other testing methods that do not involve nucleic acids. The widespread use of molecular diagnostic tests in clinical settings is closely related to the development of equipped instruments. These instruments must be able to significantly reduce costs and provide fast and automated verification from scratch (sample processing) to tail (resulting results). And it does not require a lot of human intervention. The point-of-care technology used to serve doctors' clinics, hospital clinics, or even home-based homes has many benefits, including: • Rapid results can be achieved, resulting in immediate treatment and improved care quality. • Ability to obtain laboratory-quality test results by testing very few samples. • Reduce clinical effort. • Reduce laboratory load and improve office performance by reducing administrative work. • Improve the cost of treatment for each patient by reducing the time spent on hospitalization, the time required to reach a conclusion for first-time medical outpatient consultation, and reducing the time spent on sample handling, storage, and transportation. • Accelerate clinical governance conclusions such as infection control and antibiotic use -18- 201209404 On-wafer laboratory (LOC)-based molecular diagnostics Micro-fluid-based molecular diagnostic systems provide automated and accelerated molecular diagnostic assays Device. The faster detection time is mainly based on the active small size of the body involved, the automated operation and the diagnostic process steps of the microfluidic device as a low overhead built-in cascade. The volume of nanoliters and microliters also reduces reagent wear and cost. The on-wafer laboratory (LOC) device is in the form of a common microfluidic device. The LOC unit has an MST structure (for fluid processing) integrated into the MST layer on a single struts (usually ruthenium). The use of the VLSI (very large scale integrated) uranium engraving technology of the semiconductor industry can make the unit cost of the LOC device very low. However, large amounts of external piping and electronics are required to control the flow of fluid through the L Ο C device, to add reagents, to regulate reaction conditions, and the like. In fact, the connection of LOC devices to such external devices limits the use of LOC devices for molecular diagnostics in laboratory environments. The cost of such external devices and the complexity of their operation make LOC-based molecular diagnostics a practical solution for point-of-care devices.

基於以上觀點’人們需要一種能用於定點照護之LOC 裝置爲主之分子診斷系統。 【發明內容】 發明槪述 本發明之不同態樣描述於以下編號的段落中。 GCF028.1 本發明之此態樣係提供一種用於生物試 樣之基因分析之晶片上實驗室(LOC)裝置,該LOC裝置 -19- 201209404 包含: 一接受試樣之置入口; 一支撐基材; 一把較小成分與較大成分分離之透析裝置,該較小成 分小於一既定閾値大小且該較大成分大於該既定閾値大小 :及 一用以擴增該基因材料內之核酸序列之核酸擴增區; 其中 該透析區及核酸擴增區兩者都被支撐在該支撐基材上 〇 GCF028.2 較佳地,該LOC裝置還有一光感測器及 —位於該核酸擴增區下游之雜合區,該雜合區具有一雜合 探針陣列以與核酸擴增區產生之擴增子內的目標核酸序列 雜合,該探針被設計成能與該等目標核酸序列雜合而形成 探針-目標物雜合體,其中該光感測器係被配置成能偵測 該探針-目標物雜合體。 GCF028.3 較佳地,該較大成分包括病原體及大於 既定閎値大小之細胞,該等病原體及大於既定閾値大小之 細胞包括含有分析用基因材料之目標細胞。 GCF02 8.4 較佳地,該透析區位於核酸擴增區之下 游及雜合區之上游以於雜合前過濾擴增子,該透析區被配 置成能從擴增子中除去細胞殘渣。 GCF02 8.5 較佳地’該LOC裝置於該核酸擴增區上 游還有一第一透析區以把試樣內之病原體及大於既定閾値 -20- 201209404 大小之細胞與較小成分分離開來,據此該大於既定閩値大 小之細胞包括含有分析用基因材料之目標細胞。 GCF02 8.6 較佳地,該第一透析區具有一與上游端 之置入口以流體連通之第一通道,一與下游端之廢棄物通 道以流體連通之第二通道,以及複數個比該等病原體及目 標細胞更小及比該等較小成分更大之小孔,該第二通道與 第一通道經由該等小孔以流體連通,使得該等病原體及目 標細胞被留在第一通道而該等較小成分則流入第二通道。 GCF028.7 較佳地,該第一通道及第二通道被配置 成能藉著毛細作用用該試樣來塡滿。 GCF028.8 較佳地,該第二透析區具有一大成分通 道、一小成分通道以及複數個能把該大成分通道以流體連 接到該小成分通道之第二小孔,該等第二小孔之大小可讓 核酸序列從該大成分通道流到該小成分通道內,同時大於 該第二小孔之細胞殘渣會被留在該大成分通道內,該小成 分通道則與該雜合區流體連通。 GCF028.9 較佳地,該核酸擴增區爲一等溫核酸擴 增區。 GCF028.1 0 較佳地,該LOC裝置還有一試劑貯存器 以容納用於等溫核酸擴增之試劑;及 一表面張力閥,其具有一小孔被配置成能固定該試劑 之彎液面,該彎液面能令試劑留在試劑貯存器中直到與流 體試樣接觸而除去該彎液面爲止,而後該試劑會流出該試 劑貯存器。 -21 - 201209404 GCF02 8.1 1 較佳地,該核酸擴增區爲聚合酶連鎖反 應(P C R )擴增區。 GCF02 8.1 2 較佳地,該LOC裝置還有CMOS電路、 一溫度感測器及一倂有該PCR區之微系統技術(MST )層 ,其中該CMOS電路係位在該支撐基材及該MST層之間, 該CMOS電路被配置成能使用該溫度感測器輸出來反饋控 制該P C R區。 GCF02 8. 1 3 較佳地,該PCR區具有一PCR微通道, 在使用期間該試樣被熱循環處理以擴增該等核酸序列,該 PCR微通道界定出該試樣之部份流路且其與流動垂直之橫 切面積小於100,〇〇〇平方微米。 GCF02 8.1 4 較佳地,該LOC裝置還具有至少一細長 形加熱元件以加熱細長形PCR微通道內之該等核酸序列, 該細長形加熱元件係與該PCR微通道平行地延伸出去。 GCF028.1 5 較佳地,該PCR微通道中至少有一區塊 形成一細長形PCR室。 GCF028.1 6 較佳地,該PCR區具有複數個分別由該 PCR微通道之各別區塊形成之細長形PCR室,該PCR微通 道具有由一連串寬曲流形成之蜿蜒構型,各個寬曲流即爲 一可形成該細長形PCR室之通道區塊。 GCF02 8.1 7 較佳地,該L0C裝置還有一試劑貯存器 以容納用於PCR之試劑;及 一表面張力閥,其具有一小孔被配置成能固定試劑彎 液面,因此在與流體試樣接觸而除去該彎液面之前,該彎 -22- 201209404 液面會令試劑留在該試劑貯存器內。 GCF028.1 8 較佳地,該LOC裝置在該第一透析區下 游及該PCR區上游還有一培育區,該培育區與一含有可與 該基因材料進行酵素性反應之酶類之試劑貯存器以流體連 通。 GCF02 8.1 9 較佳地,該光感測器爲一光二極體陣列 ,該等光二極體之位置與雜合室配準。 GCF028.20 較佳地,該PCR區具有一主動閥以於熱 循環期間令液體留在該PCR區內且對來自CMOS電路之活 化信號作出反應而讓液體流到雜合室。 此LOC裝置具有基於成分大小來把所需試樣成分與不 需試樣成分分離開來之優點,所採用之方法能減少堵塞所 以優於簡單過濾法。此LOC裝置具有序列-特異性擴增法提 供之優點,包括擴增提供之靈敏度、寬動態範圍及對目標 DNA序列之高特異性。 GCF03 1.1 本發明之此態樣係提供一種用於生物試 樣之病原體偵測及基因分析之晶片上實驗室(LOC )裝置 ,該LOC裝置包含: —接受含有基因材料之試樣之置入口; 一支撐基材; 複數個試劑貯存器; 一於該置入口下游之培育區,該培育區與一含有可與 基因材料進行酵素反應之酶類之試劑貯存器以流體連通; 及 -23- 201209404 一於該培育區下游之核酸擴增區以擴增該基因材料內 之核酸序列;及 一在該核酸擴增區下游之透析區以於雜合前過濾該核 酸擴增區產生之擴增子,該透析區被配置成能從該擴增子 中除去細胞殘渣;其中 該培育區、該核酸擴增區及該透析區都被支撐在該支 撐基材上。 GCF03 1.2 較佳地,該培育區具有一加熱器以把該 基因材料及酶加熱到既定之酵素反應溫度。 GCF03 1 .3 較佳地,該LOC裝置還有一光感測器及 一位於該核酸擴增區下游之雜合區,該雜合區具有一雜合 室陣列,各雜合室含有一不同探針以雜合基因材料內之目 標核酸序列,該探針被設計成能與該等目標核酸序列雜合 而形成探針-目標物雜合體,其中該光感測器&被配置成 能偵測該探針-目標物雜合體。 GCF03 1.4 較佳地,各雜合室具有小於900,000立 方微米之體積。 GCF031.5 較佳地,各雜合室具有小於200,000立 方微米之體積。 GCF031.6 較佳地,該透析區具有一大成分通道、 一小成分通道以及複數個能把該大成分通道以流體連接到 該小成分通道之小孔,該等小孔之大小可讓核酸序列從該 大成分通道流到該小成分通道,而大於該等小孔之細胞殘 渣被留在該大成分通道內,該小成分通道則與該雜合區以 -24- 201209404 流體連通。 GCF031.7 較佳地,該核酸擴增區爲一等溫核酸擴 增區。 GCF031.8 較佳地,該LOC裝置還有一試劑貯存器 以容納用於等溫核酸擴增之試劑:及 一表面張力閥,其具有一小孔被配置成能固定該試劑 之彎液面,因此在與流體試樣接觸而除去該彎液面之前, 該彎液面能令試劑留在試劑貯存器中。 GCF031.9 較佳地,該核酸擴增區爲聚合酶連鎖反 應(PCR)擴增區。 GCF03 1 . 1 0 較佳地,該LOC裝置還有CMOS電路、 —溫度感測器及一倂有該PCR區之微系統技術(MST )層 ,其中該CMOS電路係位在該支撐基材及該MST層之間, 該CMOS電路被配置成能使用該溫度感測器輸出來反饋控 制該P C R區。 GCF031.il 較佳地,該PCR區具有一PCR微通道, 在使用期間該試樣被熱循環處理以擴增該等核酸序列,該 PCR微通道界定出該試樣之部份流路且其與流動垂直之橫 切面積小於1〇〇,〇〇〇平方微米。 GCF031.12 較佳地,該LOC裝置還具有至少一細長 形加熱元件以加熱細長形PCR微通道內之核酸序列,該細 長形加熱元件係與該PCR微通道平行地延伸出去。 GCF031.13 較佳地,該PCR微通道中至少有一區塊 形成一細長形PCR室。 -25- 201209404 GCF031.14 較佳地’該PCR區具有複數個分別由該 PCR微通道之各別區塊形成之細長形PCR室,該PCR微通 道具有由一連串寬曲流形成之蜿蜒構型,各個寬曲流即爲 一可形成該細長形PCR室之通道區塊。 GCF03 1.15 較佳地,該LOC裝置還有—試劑貯存器 以容納用於PCR之試劑;及 一表面張力閥’其具有一小孔被配置成能固定該試劑 之彎液面,該彎液面能令試劑留在試劑貯存器中直到與流 體試樣接觸而除去該彎液面爲止,而後該試劑會流出該試 劑貯存器。 GCF031.16 較佳地’該雜合區具有一含有探針之雜 合室陣列’各雜合室內之探針被設計成能與諸目標核酸序 列中之一序列雜合。 GCF03 1 . 1 7 較佳地’該光感測器爲一光二極體陣列 ,該等光二極體位於其記發之雜合室內。 G C F 0 3 1 . 1 8 較佳地’該C Μ Ο S電路具有一數位記憶 體以儲存來自光感測器輸出之雜合資料,以及一資料界面 來把雜合資料傳輸到一外部裝置。 GCF031.19 較佳地’該PCR區具有一主動閥以於熱 循環期間令液體留在該PCR區內且對來自CMOS電路之活 化信號作出反應而讓液體流到雜合室。 GCF03 1.20 較佳地,該主動閥爲一沸騰起動閥,其 具有一彎液面錨且該彎液面錨被配置成能固定一彎液面以 阻滯該液體之毛細驅動流動’以及一加熱器來把該液體加 -26- 201209404 熱到沸騰以從該彎液面錨上解除該彎液面,使得毛細驅動 流動重新開始。 此LOC裝置具有基於成分大小來把所需試樣成分與不 需試樣成分分離開來之優點,所採用之方法能減少堵塞所 以優於簡單過濾法。此LOC設計之優點還有能富化試樣部 份之有效目標濃度以由該LOC裝置來作進一步處理。此 LOC裝置還具有序列-特異性擴增法提供之優點,包括擴增 提供之靈敏度、寬動態範圍及對目標DNA序列之高特異性 。此LOC裝置還有可讓試樣於控制條件下培育之優點。 GCF03 3.1 本發明之此態樣係提供一種用於生物試 樣之基因分析之晶片上實驗室(LOC )裝置,該LOC裝置 包含: 一接受試樣之置入口; 一支撐基材; 複數個試劑貯存器; 一於培育區下游之核酸擴增區以擴增該試樣內之核酸 序列;及 一在該核酸擴增區下游之透析區以於雜合前過濾該核 酸擴增區產生之擴增子,該透析區被配置成能從該擴增子 中除去細胞殘渣;其中 該核酸擴增區及該透析區都被支撐在該支撐基材上。 GCF03 3.2 較佳地,該LOC裝置還有一光感測器及 —位於該透析區下游之雜合區,該雜合區具有一雜合探針 陣列,該探針能與試樣內之目標核酸序列雜合而形成探 -27- 201209404 針-目標物雜合體,其中該光感測器係被配置成能偵測該 探針-目標物雜合體。 GCF0 3 3.3 方微米之體積。 較佳地’各雜合室具有小於900,000立 GCF033.4 方微米之體積。 較佳地’各雜合室具有小於200,000立 GCF 03 3.5 微米之體積。 較佳地,各雜合室具有小於40,000立方 GCF033.6 較佳地,該透析區具有一大成分通道、 一小成分通道以及複數個能把該大成分通道以流體連接到 該小成分通道之小孔,該等小孔之大小可讓核酸序列從該 大成分通道流到該小成分通道,而大於該等小孔之細胞殘 渣被留在該大成分通道內,該小成分通道則與該雜合區以 流體連通。 GCF03 3.7 增區。 較佳地,該核酸擴增區爲一等溫核酸擴 GCF03 3.8 較佳地,該LOC裝置還有一試劑貯存器 以容納用於等溫核酸擴增之試劑;及 一表面張力閥,其具有一小孔被配置成能固定該試劑 之彎液面,因此在與流體試樣接觸而除去該彎液面之前’ 該彎液面能令試劑留在試劑貯存器中。 GCF033.9 較佳地,該核酸擴增區爲聚合酶連鎖反 應(P C R )擴增區。 GCF033.10 較佳地,該LOC裝置還有CMOS電路、 -28- 201209404 一溫度感測器及一倂有該PCR區之微系統技術(MST )層 ,其中該CMOS電路係位在該支撐基材及該MST層之間, 該CMOS電路被配置成能使用該溫度感測器輸出來反饋控 制J該PCR區。 GCF03 3.il 較佳地,該PCR區具有一 PCR微通道, 在使用期間該試樣被熱循環處理以擴增該等核酸序列,該 PCR微通道界定出該試樣之部份流路且其與流動垂直之橫 切面積小於1 00,000平方微米。 GCF03 3.1 2 較佳地,該LOC裝置還具有至少一細長 形加熱元件以加熱細長形PCR微通道內之核酸序列,該細 長形加熱元件係與該PCR微通道平行地延伸出去。 GCF03 3.1 3 較佳地,該PCR微通道中至少有一區塊 形成一細長形PCR室。 GCF03 3.1 4 較佳地,該PCR區具有複數個分別由該 PCR微通道之各別區塊形成之細長形PCR室,該PCR微通 道具有由一連串寬曲流形成之蜿蜒構型,各個寬曲流即爲 一可形成該細長形PCR室之通道區塊。 GCF03 3.1 5 較佳地,該L0C裝置還有一試劑貯存器 以容納用於PCR之試劑;及 一表面張力閥,其具有一小孔被配置成能固定試劑彎 液面,因此在與流體試樣接觸而除去該彎液面之前,該彎 液面會令試劑留在該試劑貯存器內。 GCF03 3.1 6 較佳地,該雜合區属有一含有探針之雜 合室陣列,各雜合室內之探針被設計成能與諸目標核酸序 -29- 201209404 列中之一序列雜合。 GCF033.1 7 較佳地’該光感測器爲一光二極體陣列 ,該等光二極體之位置與雜合室配準。 GCF03 3.1 8 較佳地,該CMOS電路具有一數位記憶 體以儲存來自光感測器輸出之雜合資料,以及一資料界面 來把雜合資料傳輸到一外部裝置。 GCF033.1 9 較佳地’該PCR區具有一主動閥以於熱 循環期間令液體留在該PCR區內且對來自CMOS電路之活 化信號作出反應而讓液體流到雜合室。 GCF03 3.20 較佳地,該主動閥爲一沸騰起動閥,其 具有一彎液面錨且該彎液面錨被配置成能固定一彎液面以 阻滯該液體之毛細驅動流動,以及一加熱器來把該液體加 熱到沸騰以從該彎液面錨上解除該彎液面,使得毛細驅動 流動重新開始。 此L0C裝置具有基於成分大小來把所需試樣成分與不 需試樣成分分離開來之優點,所採用之方法能減少堵塞所 以優於簡單過濾法。此L0C裝置之設計的優點還有能富化 試樣部份之有效目標濃度以由該L0C裝置來作進一步處理 。此L0C裝置之設計還有能從已處理之混合物中除去可能 會干擾後續目標物偵測之不需成分之優點。 【實施方式】 較佳具體例之詳細說明 槪述 -30- 201209404 此槪述係界定一體現本發明諸多具體例之分子診斷系 統之主要構件。該系統整體結構及操作之全面詳細說明稍 後示於本專利說明書中。 參考第1、2、3、112及113圖,該系統具有以下頂層 構件: 測試模組10及11具有典型USB存儲器( memory key ) 之大小且製造十分便宜。測試模組1 0及1 1各含有一微流體 裝置’其典型地爲已預先裝有分子診斷檢定用之試劑及通 常超過1000個探針之晶片上實驗室(LOC)裝置30之形式 (參見第1圖及第1 1 2圖)。測試模組1 〇如第1圖示意顯示 地係採用螢光爲基礎之偵測技術來鑑定目標分子,而第 1 1 2圖之測試模組1 1則爲採用電化學發光爲基礎之偵測技 術。該LOC裝置30具有用於螢光或電化學發光偵測之積體 化光感測器44 (以下將詳加描述)。測試模組1 〇及1 1兩者 皆採用標準式微型(Micro ) -USB插頭14以傳輸電能、資 料及進行控制,兩者皆有印刷電路板(PCB ) 57,且兩者 皆有外部電源供應電容器32及電感器1 5。該測試模組1 〇及 1 1僅供單次使用,皆可大量生產且以無菌包裝配送即拆即 用。 外殼13具有收納生物試樣之大貯槽(macroreceptacle )24以及可拆除之無菌密封膠帶22,其較佳地具有低黏性 黏著劑,以於使用前覆蓋住該大貯槽。具有護膜罩410之 膜封條408構成外殼1 3的一部份以減少測試模組內之脫濕 現象同時提供釋壓作用以預防氣壓小輻波動。該護膜罩 -31 - 201209404 410可保護膜封條408免於損壞。 測試模組讀取器1 2係透過微型-U S B埠1 6來供應測試模 組1 0或1 1電力。該測試模組讀取器〗2可採用多種不同形式 且稍後將詳述此等選擇。第1、3及1 1 2圖所示之讀取器1 2 版本爲智慧型手機之例。該讀取器12之方塊圖示於第3圖 。處理器42可執行來自程式儲存器43之應用軟體。該處理 器42還界接顯示螢幕18及用戶界面(ui)觸控螢幕口及按 鍵19、蜂巢式無線電台21、無線網路連線23及衛星導航系 統2 5。該蜂巢式無線電台2 1及無線網路連線2 3係用於通訊 。衛星導航系統25可用位置資料更新流行病學資料庫。另 —選擇地,該位置資料可透過觸控螢幕17或按鍵19人爲地 輸入。資料儲存器2 7含有基因及診斷資訊、測試結果、患 者資訊、檢定及用以確認各探針及其陣列位置之探針資料 。資料儲存器27及程式儲存器43可共享同一記億裝置。安 裝在該測試模組讀取器1 2內之應用軟體可提供結果分析, 以及其他測試及診斷資訊。Based on the above observations, people need a molecular diagnostic system based on LOC devices that can be used for fixed-point care. SUMMARY OF THE INVENTION Various aspects of the invention are described in the following numbered paragraphs. GCF028.1 This aspect of the invention provides a wafer-on-lab (LOC) device for genetic analysis of a biological sample, the LOC device -19-201209404 comprising: a receiving inlet for a sample; a support base a dialysis device having a smaller component separated from a larger component, the smaller component being less than a predetermined threshold size and the larger component being greater than the predetermined threshold size: and a nucleic acid sequence for amplifying the genetic material a nucleic acid amplification region; wherein the dialysis region and the nucleic acid amplification region are both supported on the support substrate 〇GCF028.2. Preferably, the LOC device further has a photo sensor and is located in the nucleic acid amplification region. a downstream heterozygous region having a hybrid probe array for hybridization with a target nucleic acid sequence within an amplicon produced by the nucleic acid amplification region, the probe being designed to hybridize to the target nucleic acid sequence Together, a probe-target hybrid is formed, wherein the photosensor is configured to detect the probe-target hybrid. Preferably, the larger component comprises a pathogen and cells larger than a predetermined size, and the cells and cells larger than a predetermined threshold size include target cells containing the genetic material for analysis. GCF02 8.4 Preferably, the dialysis zone is located upstream of the nucleic acid amplification zone and upstream of the hybrid zone to filter the amplicons prior to hybridization, the dialysis zone being configured to remove cell debris from the amplicon. GCF02 8.5 preferably 'the LOC device further has a first dialysis zone upstream of the nucleic acid amplification region to separate the pathogen in the sample and the cells larger than the predetermined threshold 値-20-201209404 from the smaller component, according to The cells larger than the predetermined size include target cells containing the genetic material for analysis. GCF02 8.6 Preferably, the first dialysis zone has a first passage in fluid communication with the inlet of the upstream end, a second passage in fluid communication with the waste passage at the downstream end, and a plurality of such pathogens And a smaller pore and smaller pores than the smaller ones, the second channel being in fluid communication with the first channel via the pores such that the pathogens and target cells are left in the first channel and the The smaller components then flow into the second channel. GCF028.7 Preferably, the first channel and the second channel are configured to be filled with the sample by capillary action. GCF028.8 Preferably, the second dialysis zone has a large component channel, a small component channel, and a plurality of second apertures capable of fluidly connecting the large component channel to the small component channel, the second small The pores are sized to allow the nucleic acid sequence to flow from the large component channel into the small component channel, while cell debris larger than the second pore is retained in the large component channel, and the small component channel is associated with the hybrid region Fluid communication. GCF028.9 Preferably, the nucleic acid amplification region is an isothermal nucleic acid amplification region. GCF028.1 0 Preferably, the LOC device further has a reagent reservoir for containing reagents for isothermal nucleic acid amplification; and a surface tension valve having a small aperture configured to hold the meniscus of the reagent The meniscus allows the reagent to remain in the reagent reservoir until it contacts the fluid sample to remove the meniscus, and the reagent then flows out of the reagent reservoir. -21 - 201209404 GCF02 8.1 1 Preferably, the nucleic acid amplification region is a polymerase chain reaction (P C R ) amplification region. GCF02 8.1 2 Preferably, the LOC device further has a CMOS circuit, a temperature sensor and a microsystem technology (MST) layer having the PCR region, wherein the CMOS circuit is located on the support substrate and the MST Between the layers, the CMOS circuit is configured to use the temperature sensor output to feedback control the PCR region. GCF02 8.13 Preferably, the PCR region has a PCR microchannel that is thermally cycled during use to amplify the nucleic acid sequences, the PCR microchannel defining a portion of the flow path of the sample And its cross-sectional area perpendicular to the flow is less than 100, 〇〇〇 square micron. GCF02 8.1 4 Preferably, the LOC device further has at least one elongated heating element for heating the nucleic acid sequences within the elongate PCR microchannel, the elongate heating element extending parallel to the PCR microchannel. GCF028.1 5 Preferably, at least one of the PCR microchannels forms an elongated PCR chamber. GCF028.1 6 Preferably, the PCR region has a plurality of elongated PCR chambers respectively formed by respective blocks of the PCR microchannels, the PCR microchannels having a 蜿蜒 configuration formed by a series of wide meandering flows, each The wide meander stream is a channel block that forms the elongate PCR chamber. GCF02 8.1 7 Preferably, the LOC device further has a reagent reservoir for containing the reagent for PCR; and a surface tension valve having a small hole configured to fix the meniscus of the reagent, thus in the sample with the fluid The bend -22-201209404 level will leave the reagent in the reagent reservoir before contacting to remove the meniscus. GCF028.1 8 Preferably, the LOC device further has a cultivating zone downstream of the first dialysis zone and upstream of the PCR zone, the culturing zone and a reagent reservoir containing an enzyme capable of performing an enzymatic reaction with the genetic material Connected in fluid. GCF02 8.1 9 Preferably, the photo sensor is a photodiode array, and the positions of the photodiodes are registered with the hybrid chamber. GCF028.20 Preferably, the PCR zone has an active valve to allow liquid to remain in the PCR zone during thermal cycling and to react to the activation signal from the CMOS circuitry to allow liquid to flow to the hybrid chamber. This LOC device has the advantage of separating the desired sample components from the sample components based on the size of the components, and the method used to reduce clogging is superior to the simple filtration method. This LOC device has the advantages provided by sequence-specific amplification methods, including sensitivity provided by amplification, wide dynamic range, and high specificity for the target DNA sequence. GCF03 1.1 This aspect of the invention provides a on-wafer laboratory (LOC) device for pathogen detection and genetic analysis of biological samples, the LOC device comprising: - receiving a sample containing a sample of genetic material; a support substrate; a plurality of reagent reservoirs; a culture zone downstream of the inlet, the culture zone being in fluid communication with a reagent reservoir containing an enzyme capable of reacting with the genetic material; and -23-201209404 a nucleic acid amplification region downstream of the incubation region to amplify the nucleic acid sequence in the genetic material; and a dialysis region downstream of the nucleic acid amplification region to filter the amplicon produced by the nucleic acid amplification region before hybridization The dialysis zone is configured to remove cell debris from the amplicon; wherein the incubation zone, the nucleic acid amplification zone, and the dialysis zone are supported on the support substrate. GCF03 1.2 Preferably, the incubation zone has a heater to heat the genetic material and enzyme to a predetermined enzyme reaction temperature. Preferably, the LOC device further has a photo sensor and a hybrid region located downstream of the nucleic acid amplification region, the hybrid region having an array of hybrid chambers, each hybrid chamber containing a different probe The probe is designed to hybridize to the target nucleic acid sequence to form a probe-target hybrid, wherein the photosensor & is configured to detect The probe-target hybrid was measured. GCF03 1.4 Preferably, each of the hybrid chambers has a volume of less than 900,000 cubic microns. GCF031.5 Preferably, each of the hybrid chambers has a volume of less than 200,000 cubic microns. GCF031.6 Preferably, the dialysis zone has a large component channel, a small component channel, and a plurality of small holes capable of fluidly connecting the large component channel to the small component channel, the small holes being sized to allow nucleic acid A sequence flows from the large component channel to the small component channel, and cell debris larger than the small holes is retained in the large component channel, the small component channel being in fluid communication with the hybrid region at -24-201209404. GCF031.7 Preferably, the nucleic acid amplification region is an isothermal nucleic acid amplification region. GCF031.8 Preferably, the LOC device further has a reagent reservoir for containing reagents for isothermal nucleic acid amplification: and a surface tension valve having a small aperture configured to hold the meniscus of the reagent, The meniscus thus leaves the reagent in the reagent reservoir prior to contact with the fluid sample to remove the meniscus. GCF031.9 Preferably, the nucleic acid amplification region is a polymerase chain reaction (PCR) amplification region. Preferably, the LOC device further has a CMOS circuit, a temperature sensor, and a microsystem technology (MST) layer having the PCR region, wherein the CMOS circuit is located on the support substrate and Between the MST layers, the CMOS circuit is configured to use the temperature sensor output to feedback control the PCR region. GCF031.il preferably, the PCR region has a PCR microchannel that is thermally cycled to amplify the nucleic acid sequences during use, the PCR microchannel defining a portion of the flow path of the sample and The cross-sectional area perpendicular to the flow is less than 1 〇〇, 〇〇〇 square micron. GCF031.12 Preferably, the LOC device further has at least one elongated heating element for heating the nucleic acid sequence within the elongated PCR microchannel, the elongated heating element extending parallel to the PCR microchannel. GCF031.13 Preferably, at least one of the PCR microchannels forms an elongated PCR chamber. -25- 201209404 GCF031.14 Preferably, the PCR region has a plurality of elongated PCR chambers respectively formed by respective blocks of the PCR microchannel, the PCR microchannel having a structure formed by a series of wide meandering streams Type, each wide meander stream is a channel block that can form the elongated PCR chamber. GCF03 1.15 Preferably, the LOC device further has a reagent reservoir for containing reagents for PCR; and a surface tension valve having a small hole configured to fix a meniscus of the reagent, the meniscus The reagent can be left in the reagent reservoir until the meniscus is removed by contact with the fluid sample, and then the reagent will flow out of the reagent reservoir. Preferably, the GCF 031.16 probe of each of the hybrid chambers having a hybrid chamber array containing probes is designed to hybridize to one of the sequences of the target nucleic acid sequences. GCF03 1 .17 7 Preferably, the photosensor is an array of photodiodes, which are located in the hybrid chamber of which they are recorded. G C F 0 3 1 . 1 8 Preferably, the C Μ Ο S circuit has a digital memory for storing the hash data from the photosensor output, and a data interface for transmitting the hybrid data to an external device. GCF031.19 Preferably, the PCR zone has an active valve to allow liquid to remain in the PCR zone during thermal cycling and to react to the activation signal from the CMOS circuitry to allow liquid to flow to the hybrid chamber. GCF03 1.20 Preferably, the active valve is a boiling start valve having a meniscus anchor and the meniscus anchor is configured to fix a meniscus to block the capillary drive flow of the liquid and a heating The heater is added to the liquid -26-201209404 to boil to remove the meniscus from the meniscus anchor, so that the capillary drive flow resumes. This LOC device has the advantage of separating the desired sample components from the sample components based on the size of the components, and the method used to reduce clogging is superior to the simple filtration method. An advantage of this LOC design is that it can enrich the effective target concentration of the sample portion for further processing by the LOC device. This LOC device also has the advantages provided by sequence-specific amplification methods, including the sensitivity provided by amplification, wide dynamic range, and high specificity for the target DNA sequence. This LOC device also has the advantage that the sample can be grown under controlled conditions. GCF03 3.1 This aspect of the invention provides a wafer-on-lab (LOC) device for genetic analysis of a biological sample, the LOC device comprising: a receiving inlet for receiving a sample; a supporting substrate; a plurality of reagents a nucleic acid amplification region downstream of the incubation region to amplify the nucleic acid sequence in the sample; and a dialysis region downstream of the nucleic acid amplification region to filter the amplification region of the nucleic acid amplification region before hybridization The dialysis region is configured to remove cell debris from the amplicon; wherein the nucleic acid amplification region and the dialysis region are both supported on the support substrate. GCF03 3.2 Preferably, the LOC device further has a photo sensor and a hybrid region located downstream of the dialysis zone, the hybrid region having a hybrid probe array capable of interacting with a target nucleic acid in the sample The sequences are heterozygous to form a probe-target hybrid, wherein the photosensor is configured to detect the probe-target hybrid. GCF0 3 3.3 square micron volume. Preferably, each of the hybrid chambers has a volume of less than 900,000 angstroms GCF 033.4 square microns. Preferably, each of the hybrid chambers has a volume of less than 200,000 GCF 03 3.5 microns. Preferably, each of the hybrid chambers has less than 40,000 cubic GCF 033.6. Preferably, the dialysis zone has a large component channel, a small component channel, and a plurality of channels capable of fluidly connecting the large component channel to the small component channel. An aperture, the size of the aperture being such that a nucleic acid sequence flows from the large component channel to the small component channel, and cell debris larger than the small hole is retained in the large component channel, the small component channel The hybrid zone is in fluid communication. GCF03 3.7 extension. Preferably, the nucleic acid amplification region is an isothermal nucleic acid extension GCF03 3.8. Preferably, the LOC device further has a reagent reservoir for containing reagents for isothermal nucleic acid amplification; and a surface tension valve having a The orifice is configured to hold the meniscus of the reagent so that the meniscus leaves the reagent in the reagent reservoir prior to contact with the fluid sample to remove the meniscus. GCF033.9 Preferably, the nucleic acid amplification region is a polymerase chain reaction (P C R ) amplification region. GCF033.10 Preferably, the LOC device further has a CMOS circuit, a temperature sensor of -28-201209404, and a microsystem technology (MST) layer having the PCR region, wherein the CMOS circuit is located on the support base Between the material and the MST layer, the CMOS circuit is configured to use the temperature sensor output to feedback control the PCR region. GCF03 3.il Preferably, the PCR region has a PCR microchannel that is thermally cycled during use to amplify the nucleic acid sequences, the PCR microchannel defining a portion of the flow path of the sample Its cross-sectional area perpendicular to the flow is less than 100,000 square microns. GCF03 3.1 2 Preferably, the LOC device further has at least one elongated heating element for heating the nucleic acid sequence within the elongated PCR microchannel, the elongated heating element extending parallel to the PCR microchannel. GCF03 3.1 3 Preferably, at least one of the PCR microchannels forms an elongated PCR chamber. GCF03 3.1 4 Preferably, the PCR region has a plurality of elongated PCR chambers respectively formed by respective blocks of the PCR microchannel, the PCR microchannel having a 蜿蜒 configuration formed by a series of wide meandering flows, each width The meander stream is a channel block that forms the elongated PCR chamber. GCF03 3.1 5 Preferably, the LOC device further has a reagent reservoir for containing the reagent for PCR; and a surface tension valve having a small hole configured to fix the reagent meniscus, thus in the fluid sample The meniscus leaves the reagent in the reagent reservoir prior to contact to remove the meniscus. GCF03 3.1 6 Preferably, the hybrid region is an array of hybrid chambers containing probes, and the probes within each hybrid chamber are designed to hybridize to one of the sequences of the target nucleic acid sequence -29-201209404. GCF033.1 7 Preferably, the photosensor is an array of photodiodes whose positions are registered with the hybrid chamber. GCF03 3.1 8 Preferably, the CMOS circuit has a digital memory for storing the hash data from the photosensor output, and a data interface for transferring the hybrid data to an external device. GCF 033.1 9 Preferably, the PCR zone has an active valve to allow liquid to remain in the PCR zone during thermal cycling and to react to the activation signal from the CMOS circuitry to allow liquid to flow to the hybrid chamber. GCF03 3.20 Preferably, the active valve is a boiling start valve having a meniscus anchor and the meniscus anchor is configured to fix a meniscus to block the capillary drive flow of the liquid, and a heating The heater is used to heat the liquid to boiling to release the meniscus from the meniscus anchor, causing the capillary drive flow to resume. The L0C device has the advantage of separating the required sample components from the undesired sample components based on the size of the components, and the method used can reduce clogging superior to the simple filtration method. An advantage of the design of the L0C device is that it can enrich the effective target concentration of the sample portion for further processing by the LOC device. The design of the L0C device also has the advantage of removing unwanted components from the treated mixture that may interfere with subsequent target detection. [Embodiment] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Describing -30-201209404 This description defines a main component of a molecular diagnostic system embodying many specific examples of the present invention. A full detailed description of the overall structure and operation of the system is shown later in this patent specification. Referring to Figures 1, 2, 3, 112 and 113, the system has the following top-level components: Test modules 10 and 11 are typically USB memory (memory key) sizes and are very inexpensive to manufacture. Test modules 10 and 1 each contain a microfluidic device 'typically in the form of a wafer-on-lab (LOC) device 30 that has been pre-loaded with reagents for molecular diagnostic assays and typically more than 1000 probes (see Figure 1 and Figure 1 1 2). Test Module 1 As shown in Figure 1, the ground-based detection technique is used to identify the target molecules, while the test module 1 of Figure 1 1 2 is based on the detection of electrochemiluminescence. Testing technology. The LOC device 30 has an integrated photosensor 44 (described in detail below) for fluorescence or electrochemiluminescence detection. Both test modules 1 and 1 1 use a standard Micro-USB plug 14 to transfer power, data, and control, both of which have a printed circuit board (PCB) 57, and both have external power supplies. The capacitor 32 and the inductor 15 are supplied. The test modules 1 and 1 are for single use and can be mass produced and delivered in sterile packaging. The outer casing 13 has a macroreceptacle 24 for receiving a biological sample and a detachable sterile sealing tape 22, preferably having a low viscosity adhesive to cover the large sump prior to use. A film seal 408 having a film cover 410 forms part of the outer casing 13 to reduce dewetting in the test module while providing a pressure relief to prevent small fluctuations in air pressure. The film cover -31 - 201209404 410 protects the film seal 408 from damage. The test module reader 1 2 supplies the test module 10 or 11 power through the micro-U S B埠1 6 . The test module reader 2 can take a variety of different forms and will be detailed later. The reader 1 2 version shown in Figures 1, 3, and 1 2 is an example of a smart phone. The block diagram of the reader 12 is shown in Figure 3. The processor 42 can execute application software from the program storage 43. The processor 42 also interfaces the display screen 18 with a user interface (ui) touch screen port and buttons 19, a cellular radio station 21, a wireless network connection 23, and a satellite navigation system 25. The cellular radio station 2 1 and the wireless network connection 2 3 are used for communication. The satellite navigation system 25 can update the epidemiological database with location information. Alternatively, the location data can be manually input through the touch screen 17 or the button 19. The data storage device 27 contains genetic and diagnostic information, test results, patient information, assays, and probe data for confirming the position of each probe and its array. The data store 27 and the program store 43 can share the same device. The application software installed in the test module reader 12 provides results analysis, as well as other test and diagnostic information.

爲了進行診斷測試,把該測試模組1 0 (或測試模組1 1 )插到該測試模組讀取器1 2之微型-U S B埠1 6。把無菌密封 膠帶22撕開來且將生物試樣(呈液體形式)裝載到試樣大 貯槽24中。按下開始鈕20,透過應用軟體啓動測試。試樣 會流入該LOC裝置30且該板上檢定開始萃取、培育、擴增 以及用合成前之雜合-反應性寡核苷酸探針來與試樣核酸 (目標物)雜合。於測試模組1 〇 (其使用螢光爲基礎來偵 測)之例中,探針係以螢光標記且安裝於外殻1 3內之L E D -32- 201209404 2 6可提供引發已雜合探針放射螢光所需之激 1及2圖)。於測試模組1 1 (其係使用電化孽 來偵測),該LOC裝置30中裝有ECL探針( ),且不需要LED 26以產生發光放射。替代 極8 60及870提供激發電流(見第113圖)。 光性或發光性)係使用整合於各LOC裝置J 內之光感測器44來偵測。偵測訊號會被放大 輸出,其可用測試模組讀取器1 2來分析。然 顯不出結果。 此等資料可局部儲存及/或上傳至含有 路伺服器。將測試模組1 〇或1 1從該測試模組 除且妥善地丟棄。 第1、3及1 12圖顯示做成行動電話/智慧 試模組讀取器1 2。於其他形式中,該測試模 醫院、私人診所或實驗室使用之膝上型/筆言 專屬讀取器103、電子書讀取器107、平板賃 型電腦105 (見第114圖)》該讀取器可與廣 像是患者記錄、帳單、線上資料庫及多用戶 其亦可與多種地區性的或遠端的周邊設備例 者1C智慧卡界接》 現在參考第π 5圖’測試模組1 0產生的 取器12及網路125來更新流行病學資料主機? 行病學資料庫,基因資料主機系統113內之 電子健康記錄(EHR)主機系統115內之電 發光線(見第 【發光(ECL ) 如以上討論般 性地,係由電 放射作用(螢 二之CMOS電路 及轉變成數位 後該讀取器會 患者記錄之網 讀取器12上卸 型手機2 8之測 組讀取器可爲 己型電腦1 〇 1、 ΐ腦109或桌上 泛的其他應用 環境等界接。 如印表機或患 資料可透過讀 系統1 1 1內的流 基因資料庫、 子健康記錄、 -33- 201209404 電子病歷(EMR )主機系統121內之電子病歷以及個人健 康記錄(PHR)主機系統123內之個人健康記錄。反過來 地,流行病學資料主機系統1 1 1內的流行病學資料庫,基 因資料主機系統113內之基因資料庫、電子健康記錄( EHR )主機系統115內之電子健康記錄、電子病歷(EMR )主機系統121內之電子病歷以及個人健康記錄(PHR ) 主機系統123內之個人健康記錄亦可透過該網路125及讀取 器12來更新測試模組10之LOC裝置30內的數位記憶體。 現在回去參考第1、2、1 12及1 13圖,該讀取器12在行 動電話構型中係使用電池電力。該行動電話讀取器含有預 先載入之所有測試及診斷資訊。資料亦可透過多種無線或 接觸界面來載入或更新以與周邊裝置、電腦或線上伺服器 交流。提供微型-USB埠16以與電腦連通或者在電池充電時 維持電源供應。 第7 1圖顯示之測試模組1 〇之具體例其測試僅需顯示對 一特定目標物爲正反應或負反應的結果而已,像是測試某 人是否感染例如H1N1 A型流感病毒。爲特定目的建造之 唯USB電源/指示器模組47即很適合。無需其他讀取器或 應用軟體。於唯USB電源/指示器模組47上之指示器45會 顯示正反應或負反應結果之訊號。此構型相當適合大量篩 選。 此系統提供之其他項目還包含含有特定試樣之預處理 試劑之測試管,以及試樣採集用之壓舌板及刺血針。第7 1 圖顯示之測試模組具體例方便地含有用彈簧頂住之可縮式 -34- 201209404 刺血針390及刺血針釋放鈕392。在偏遠地區可使用衛星電 話。 測試模組電子設備 第2及1 1 3圖分別爲測試模組1 0及1 1之電子組件之方塊 圖。整合於LOC裝置30內之CMOS電路具有一 USB裝置驅動 器36、一控制器34、一 USB-相容LED驅動器29、時鐘33、 電源調節器3 1、RAM 3 8以及程式和資料快閃記憶體40。 此等設備提供整個測試模組1 〇或1 1之控制及記憶,其包括 光感測器44、溫度感測器1 70、液體感測器1 74、及不同的 加熱器152、154、182、234,以及伴隨之驅動器37及39及 暫存器35及41。只有該LED 26 (於測試模組10之例中)、 外部電源供應電容器32及該微型-USB插頭14係在該LOC裝 置30之外部。該LOC裝置30包括了與此等外部構件連接之 接合墊(bond-pads ) 。RAM 38及程式及資料快閃記億體 40具有應用軟體及超過1 000個探針之診斷及測試資訊(快 閃/安全儲存,例如透過加密)。於採用ECL偵測之測試模 組1 1之例,該模組並無LED 26 (見第1 12及1 13圖)。資料 被LOC裝置3 0加密以供安全儲存及與外部裝置安全通訊。 該L0C裝置30裝有電化學發光探針以及都有一對ECL激發 電極860及8 70之雜合室。 許多測試模組1 0類型係採用不同測試形式製造,很容 易立即使用。此等測試形式間的差異係在於使用諸試劑及 探針之板上檢定。 -35- 201209404 能以此系統快速地鑑定出來之感染性疾病的一些實例 包括: • 流行性感冒:流感病毒A、B、C型,傳染性鮭魚 貧血病毒(Isavirus),托高 土病毒(Thogotovirus) • 肺炎:呼吸道融合病毒(RSV )、腺病毒、間質 '性肺炎病毒、肺炎雙球菌(Streptococcus pneumoniae )、 金黃色葡萄球菌(Staphylococcus aureus) • 肺結核:結核分枝桿菌 (co 6α ci eh i w 6 e c: w / o i s )、牛型結核菌(6 o v ζ· ί )、非洲分枝桿菌( α/Wcflnwm)、卡氏分枝桿菌(caneii/)及田鼠分枝桿菌( microti ) • 惡性瘧原蟲(尸/a/c/parwm)、剛地弓 形蟲()及其他原蟲寄生蟲 • 傷寒:傷寒沙門氏菌 s er ον ar typhi) • 埃勃拉病毒(Ebola virus) • 人類免疫缺陷病毒(Human immunodeficiency virus ( HIV)) • 登革熱:黃病毒(F 1 avivirus ) • 肝炎(A到E型) • 醫院獲得性感染:例如艱難梭狀芽孢桿菌( Clostridium difficile )、耐萬古黴素之腸球菌 ( 五;及耐二甲氧苯青黴素之金黃色葡萄球菌 • 單純疱疹病毒(HSV) -36- 201209404 • 巨細胞病毒(Cytomegalovirus ( CMV)) • 伊斯坦巴病毒(Epstein-Barr virus ( EBV)) • 腦炎:日本腦炎病毒、章地埔拉病毒( Chandipura virus ) • 百日咳:百日咳嗜血桿菌(5orcfeie//a ) • 麻疹:副黏液病毒 • 腦膜炎:肺炎雙球菌及腦膜炎雙球菌( meningitidis ) • 炭疽病:炭疽芽孢桿菌(^aci/ZMsaniAz-aci·?) 能以此系統鑑定出來之遺傳性疾病之一些實例包括: • 囊性纖維變性 • 血友病 • 鐮刀細胞型貧血 • 黑朦性白癡 • 血色素沉著症 • 大腦動脈病 • 克羅恩氏病 • 多囊性腎病 • 先天性心臓病 • 瑞特氏症候群 一小群可用此診斷系統鑑定出來之癌症包括: • 卵巢癌 • 結腸癌 -37- 201209404 • 多發性內分泌腫瘤 • 視網膜母細胞瘤 • 透克氏症候群 以上表列並不詳盡且該診斷系統可被配置成能使用核 酸及蛋白質組分析來偵測極多不同種類的疾病和病況。 系統組件之詳細構造 LOC裝置 該LOC裝置3 0爲此診斷系統之中心。藉著使用微流體 平台,其能快速地進行以核酸爲基礎之分子診斷檢定之四 個主要步驟,亦即試樣製備、核酸萃取、核酸擴增及偵測 。該LO C裝置還有其他用途,此等用途稍後會詳加說明。 如以上討論地,測試模組1 0及1 1可採用許多不同構型以偵 測不同目標物。類似地,該L O C裝置3 0也有許多針對硏究 目標設計之不同具體例。一種LOC裝置30之形式爲採用螢 光偵測全血試樣中病原體之目標核酸序列的LOC裝置3 0 1 。爲了說明,該LOC裝置301之結構及操作現在參考第4至 26圖及第27至5 7圖來詳加描述。 第4圖爲該LOC裝置301整體結構之示意代表圖。爲求 方便,第4圖顯示之流程階段係以進行該流程階段之LOC 裝置301之功能性區域的參考編號來表示。與核酸爲基礎 之分子診斷檢定之各個主要步驟相關之流程階段亦已標示 爲:試樣置入及製備(sample input and preparation ) 2 8 8 ,萃取290、培育291、擴增292及偵測294。該LOC裝置 -38 - 201209404 3 0 1之不同貯存器、室、閥及其他構件將於稍後詳加描述 〇 第5圖爲該LOC裝置301之立體圖。其係採用高容積 CMOS及MST (微系統技術)製造技術製造。該LOC裝置 301之層狀結構示於第12圖之示意性(不按比例的)部份 剖面圖。該LOC裝置301具有一支撐著CMOS + MST晶片48 之矽基材84,含有CMOS電路86及MST層87,以及一覆蓋 在該MST層87上之頂蓋(cap ) 46。基於本專利說明書之 目的,術語“MST層”係指一群結構及膜層之集合,該等結 構及膜層會以不同試劑來處理試樣。據此,此等結構及構 件被配置成能界定具有特徵尺寸之流路,該特徵尺寸可於 試樣處理期間支持與該等試樣具有類似物理特性之液體的 毛細驅動流動。關於此點,該等MST層及諸構件典型地係 使用表面微細加工技術及/或體微細加工(bulk micromachining)技術來製造。不過,其他製造技術亦可 生產此等具有可產生毛細驅動流動之尺寸並能處理極微小 體積之結構及構件。此專利說明書中描述之明確具體例顯 示有MST層且以該MST層當作支撐在該CMOS電路86上之 結構及主動構件,卻排除掉該頂蓋46之特徵構件。不過’ 熟悉此技術之讀者應瞭解該MST層無需襯底之CMOS或實 際上的上覆頂蓋即可處理試樣。 於以下圖式中顯示之LOC裝置的整體大小爲1760 μπιχ 5 8 24 μηι。當然,不同應用之LOC裝置可具有不同尺寸大小 -39 - 201209404 第6圖顯示其上疊加有頂蓋特徵構件之MST層87之特 徵構件。第6圖顯示之插圖AA至AD、AG及AH分別於第13 、1 4、3 5、5 6、5 5及6 3圖中放大,且於下文中詳加描述以 讓人徹底瞭解該L0C裝置3〇1內的各個結構。第7至1〇圖則 獨立顯示該頂蓋46之特徵構件而第11圖則獨立顯示 CMOS + MST裝置48之結構。 層狀結構 第12及22圖乃爲草圖,其以圖顯示該CMOS + MST裝置 48、頂蓋46及這兩者間之流體互動的層狀結構。爲了說明 ,此等圖式並未按照實際比例大小顯示。第1 2圖爲通過試 樣置入口 68之示意剖面圖及第22圖爲通過貯存器54之示意 剖面圖。如第12圖最佳顯示地’該CMOS + MST裝置48具有 一矽基材84,其支撐著CMOS電路86而該電路能操控上方 MST層87內的主動元件。一鈍化層88密封及保護該CMOS 層8 6免於接觸到流經該MST層8 7之液流。 流體流經分別位於頂蓋層46之頂蓋通道94及位於MST 通道層100之MST通道90 (參見例如第7及16圖)。細胞運 輸發生在建於頂蓋46內之較大通道94,而生化處理則在較 小的M S T通道9 0內進行。細胞運輸通道的大小係能夠把試 樣內的細胞運送到該MST通道90內的預定位置。尺寸大於 20微米之細胞(例如,特定的白血球)的運輸需要通道的 管徑大於20微米,因而該通道與流動垂直之橫切面積會大 於400平方微米。MS Τ通道,特別是位在LOC內無需運輸細 -40- 201209404 胞之位置時,管徑顯著地較小。 應瞭解該頂蓋通道94及MST通道90都是通用的稱呼, 特別的MS T通道90可根據其特殊功能而被稱爲例如受熱微 通道或透析MS T通道。MST通道90係藉著蝕刻沉積在鈍化 層88上方之MS T通道層100且用光阻劑圖型化來形成。該 MST通道90係用頂壁層66圍住,該頂壁層構成該 CMOS + MST裝置48的頂端(相對於圖式顯示之方位來看) 〇 雖然有時候會以個別的膜層表示,不過該頂蓋通道層 8〇及該貯存器層78係在一整片物料上形成。當然,這片物 料可以不是單一整體的。這片物料係從兩面蝕刻以形成蝕 刻有頂蓋通道94之頂蓋通道層80以及蝕刻有貯存器54、56 ' 58、60及62之貯存器層78。另一選擇地,該貯存器及頂 蓋通道可用微成型法來形成。蝕刻及微成型技術兩者皆可 用來製造與流動垂直之橫切面大到20,000平方微米或者小 到8平方微米之通道。 在LOC裝置中,不同位置之通道其與流動垂直之橫切 面積大小可有廣泛的選擇。當通道中含有大量試樣時或者 所含試樣具大構造成分時,該通道之橫切面積可高達 20,〇〇〇平方微米(例如,於100微米厚之膜層中有200微米 寬的通道)。當通道中只含少量液體或者所含混合物沒有 大細胞存在時,該通道與流動垂直之橫切面積最好非常小 〇 下封條64圍住頂蓋通道94且上密封層82圍住貯存器54 -41 - 201209404 、56、 58、 60及62。 五個貯存器54、56、58、60及62中已先裝有檢定-特 異性試劑。在此所述之具體例中’該等貯存器內已預先裝 入以下試劑,不過很容易用其他試劑來取代: • 貯存器54 :抗凝血劑’任意地可含有紅血球胞溶 緩衝液 • 貯存器5 6 :胞溶試劑 • 貯存器5 8 :限制性內切酶、接合酶及連接子序列 (用於連接子-帶頭PCR (見第70圖,選自t. Stachan et al·,Human Molecular Genetics 2,Garland Science, NY and London, 1999)) • 貯存器60 :擴增混合物(dNTPs,引子,緩衝液 )及 • 貯存器62 : DNA聚合酶。 該頂蓋46及CMOS + MST層48會透過下封條64及頂壁層 6 6內對應之開口以流體連通。此等開口將視流體係從該 MST通道90流到頂蓋通道94或反向流動而被稱爲上導管( uptakes) 96 或下導管(downtake) 92。 LOC裝置操作 該LOC裝置3 01之操作將參考分析血液試樣內之病原 性DNA之情況以逐步的方式說明如下。當然,其他類型之 生物性或非生物性流體亦可使用適當的一組試劑、測試流 程、LO C變化型及偵測系統,或其組合來分析。回去參考 -42- 201209404 第4圖,有五個主要步驟涉及生物性試樣之分析’其包含 試樣置入及製備288、核酸萃取290、核酸培育291、核酸 擴增292以及偵測和分析294。 試樣置入及製備步驟288涉及把血液與抗凝血劑116混 合,然後於病原體透析區70把病原體與白血球及紅血球分 離開來。如第7及1 2圖最佳顯示地,血液試樣經由試樣置 入口 68進入裝置。毛細作用會把血液試樣沿著頂蓋通道94 拉引到貯存器54。當試樣血流打開表面張力閥Π8時抗凝 血劑會從貯存器54中釋出(見第15及22圖)。該抗凝血劑 可防止凝塊形成,凝塊會阻塞流動。 如第22圖最佳顯示地,抗凝血劑116藉著毛細作用從 貯存器54中被拉引出來且經由下導管92進入MST通道90。 該下導管92具有一毛細起動特徵構件(capillary initiation feature,CIF) 102以塑造彎液面之幾何性,使其不會固定 在該下導管92之邊沿。上封條82上之排氣孔122可在抗凝 血劑11 6被拉引出貯存器54時用空氣取代該抗凝血劑。 第22圖所示之MST通道90爲表面張力閥118之一部份 。抗凝血劑116會塡滿該表面張力閥118且把一彎液面120 固定在該上導管96之彎液面鋪(meniscus anchor) 98上。 使用前,該彎液面120保持著固定在上導管96上,因此抗 凝血劑不會流到頂蓋通道94內。當血液流經頂蓋通道94到 達上導管90時’彎液面120會被除去且抗凝血劑被引入液 流中。 .For the diagnostic test, the test module 10 (or the test module 1 1 ) is inserted into the micro-U S B埠16 of the test module reader 12. The sterile sealing tape 22 is torn open and a biological sample (in liquid form) is loaded into the sample sump 24. Press the start button 20 to start the test through the application software. The sample will flow into the LOC device 30 and the plate assay will begin to extract, incubate, amplify, and hybridize with the sample nucleic acid (target) using a hybrid-reactive oligonucleotide probe prior to synthesis. In the case of the test module 1 〇 (which uses fluorescence-based detection), the probe is fluorescently marked and mounted in the housing 13 - LED -32 - 201209404 2 6 to provide triggering The probes required to emit fluorescence are 1 and 2). In the test module 1 1 (which is detected using an electrochemical 孽), the LOC device 30 is equipped with an ECL probe ( ) and does not require the LED 26 to generate luminescent radiation. Alternative poles 8 60 and 870 provide excitation current (see Figure 113). Light or luminescence) is detected using a light sensor 44 integrated in each LOC device J. The detection signal will be amplified and output, which can be analyzed by the test module reader 12. However, no results were shown. This information can be stored locally and/or uploaded to the inclusion server. Test module 1 1 or 1 1 is removed from the test module and properly discarded. Figures 1, 3, and 1 show the making of a mobile phone/smart test module reader 1 2 . In other forms, the laptop/note-only reader 103, the e-book reader 107, and the tablet-type computer 105 (see Figure 114) used in the test model hospital, private clinic or laboratory are read. The device can be connected with the wide image as a patient record, a bill, an online database, and a multi-user. It can also be associated with a variety of regional or remote peripheral devices. 1C Smart Card is now referenced. Group 10 generated picker 12 and network 125 to update the epidemiological data host? The etiology database, the electro-luminescence line in the electronic health record (EHR) host system 115 in the gene data host system 113 (see [Luminescence (ECL), as discussed above, is based on electrical radiation (Firefly II) After the CMOS circuit and the digital device is converted into a digital position, the reader will record the network of the reader 12 on the network reader 12, and the test set reader can be a computer 1 〇 1, a camphor 109 or a table pan. Other application environments, such as printers or patient data can be read through the flow gene database in the system 1 1 1 , sub-health records, -33- 201209404 electronic medical record (EMR) host system 121 electronic medical records and individuals Health record (PHR) personal health record in the host system 123. Conversely, the epidemiological database in the epidemiological data host system 1 1 1 , the gene database in the gene data host system 113, and the electronic health record ( EHR) Electronic Health Record in Host System 115, Electronic Medical Record in Electronic Medical Record (EMR) Host System 121, and Personal Health Record (PHR) Personal Health Record in Host System 123 may also be transmitted through the network 125 The reader 12 updates the digital memory in the LOC device 30 of the test module 10. Referring now back to Figures 1, 2, 1 12 and 1 13, the reader 12 uses battery power in the mobile phone configuration. The mobile phone reader contains all pre-loaded test and diagnostic information. The data can also be loaded or updated via a variety of wireless or contact interfaces to communicate with peripheral devices, computers or online servers. Micro-USB埠16 is available. Connect to the computer or maintain the power supply while the battery is charging. Figure 7 shows the test module 1 具体 specific example of the test only needs to show the result of a positive or negative reaction to a specific target, such as testing Whether someone is infected with, for example, the H1N1 influenza A virus. A USB-only power/indicator module 47 built for a specific purpose is suitable. No other reader or application software is required. On the USB power/indicator module 47 The indicator 45 will display the signal of the positive or negative reaction result. This configuration is quite suitable for a large number of screenings. Other items provided by this system also include a test tube containing a pretreatment reagent for a specific sample, The tongue depressor and the lancet for sample collection. The specific example of the test module shown in Figure 7 conveniently contains the collapsible type that is held by the spring -34- 201209404 lancet 390 and lancet release button 392 Satellite phones can be used in remote areas. Test Module Electronics Devices 2 and 1 1 3 are block diagrams of the electronic components of test modules 10 and 11. The CMOS circuits integrated in LOC device 30 have a USB. A device driver 36, a controller 34, a USB-compatible LED driver 29, a clock 33, a power conditioner 3 1 , a RAM 38, and a program and data flash memory 40 are provided. These devices provide control and memory for the entire test module 1 or 11 including a photo sensor 44, a temperature sensor 170, a liquid sensor 1 74, and different heaters 152, 154, 182. 234, and the accompanying drivers 37 and 39 and the registers 35 and 41. Only the LED 26 (in the example of the test module 10), the external power supply capacitor 32, and the micro-USB plug 14 are external to the LOC device 30. The LOC device 30 includes bond-pads that are coupled to such external components. RAM 38 and program and data flashing billions of body 40 with application software and diagnostic and test information for more than 1 000 probes (flash / secure storage, such as through encryption). For the example of test module 1 using ECL detection, the module does not have LED 26 (see Figures 1 12 and 1 13). The data is encrypted by the LOC device 30 for secure storage and secure communication with external devices. The LOC device 30 is equipped with an electrochemiluminescent probe and a hybrid chamber having a pair of ECL excitation electrodes 860 and 870. Many test module types 10 are manufactured in different test formats and are easy to use immediately. The difference between these test formats is based on plate assays using reagents and probes. -35- 201209404 Some examples of infectious diseases that can be quickly identified by this system include: • Influenza: influenza A, B, C, infectious salmon virus Isavirus, Thogotovirus • Pneumonia: Respiratory tract fusion virus (RSV), adenovirus, interstitial pneumonia virus, Streptococcus pneumoniae, Staphylococcus aureus • Tuberculosis: Mycobacterium tuberculosis (co 6α ci eh iw) 6 ec: w / ois ), Bovine M. tuberculosis (6 ov ζ· ί ), Mycobacterium tuberculosis (α/Wcflnwm), Mycobacterium tuberculosis (caneii/) and Mycobacterium vaccae (microti) • Plasmodium falciparum Protozoa (corpse/a/c/parwm), Toxoplasma gondii () and other protozoan parasites • Typhoid: Salmonella typhimurium s er ον ar typhi) • Ebola virus • Human immunodeficiency virus ( Human immunodeficiency virus (HIV)) • Dengue fever: F 1 avivirus • Hepatitis (types A to E) • Hospital-acquired infections: such as Clostridium difficile Vancomycin-resistant enterococcus (5; and methicillin-resistant Staphylococcus aureus • Herpes simplex virus (HSV) -36- 201209404 • Cytomegalovirus (CMV) • Istamaba virus ( Epstein-Barr virus (EBV)) • Encephalitis: Japanese encephalitis virus, Chandipura virus • Pertussis: Haemophilus pertussis (5orcfeie//a) • Measles: Paramyxovirus • Meningitis: pneumonia Diplococcus and meningitidis • Anthracnose: Bacillus anthracis (^aci/ZMsaniAz-aci·?) Some examples of hereditary diseases that can be identified by this system include: • Cystic fibrosis • Hemophilia Disease • Sickle cell anemia • Black scorpion idiot • Hemochromatosis • Cerebral arterial disease • Crohn's disease • Polycystic kidney disease • Congenital heart disease • A small group of Reiter's syndrome can be identified with this diagnostic system Cancers include: • Ovarian cancer • Colon cancer -37- 201209404 • Multiple endocrine neoplasms • Retinoblastoma • List of Perk's syndrome Not exhaustive and the diagnostic system can be configured to detect many different types of diseases and conditions using nucleic acid and proteomic analysis. Detailed Configuration of System Components LOC Device The LOC device 30 is the center of this diagnostic system. By using a microfluidic platform, it is capable of rapidly performing four major steps in nucleic acid-based molecular diagnostic assays, namely sample preparation, nucleic acid extraction, nucleic acid amplification and detection. There are other uses for this LO C device, which will be explained in more detail later. As discussed above, test modules 10 and 1 1 can take many different configurations to detect different targets. Similarly, the L O C device 30 also has a number of specific examples for the design of the target. A LOC device 30 is in the form of a LOC device 310 that uses fluorescence to detect a target nucleic acid sequence of a pathogen in a whole blood sample. For purposes of illustration, the structure and operation of the LOC device 301 will now be described in detail with reference to Figures 4 through 26 and Figures 27 through 57. Fig. 4 is a schematic representation of the overall structure of the LOC device 301. For convenience, the process stage shown in Figure 4 is represented by the reference number of the functional area of the LOC device 301 performing the process stage. The process stages associated with each of the major steps in nucleic acid-based molecular diagnostic assays have also been identified as: sample input and preparation 2 8 8 , extraction 290, incubation 291, amplification 292, and detection 294 . The LOC device -38 - 201209404 3 0 1 different reservoirs, chambers, valves and other components will be described in detail later. 〇 Figure 5 is a perspective view of the LOC device 301. It is manufactured using high volume CMOS and MST (microsystem technology) manufacturing technology. The layered structure of the LOC device 301 is shown in a schematic (not to scale) partial cross-sectional view of Fig. 12. The LOC device 301 has a germanium substrate 84 supporting a CMOS + MST wafer 48, a CMOS circuit 86 and an MST layer 87, and a cap 46 overlying the MST layer 87. For the purposes of this patent specification, the term "MST layer" refers to a collection of structures and layers of film that will be treated with different reagents. Accordingly, the structures and members are configured to define flow paths having characteristic dimensions that support capillary drive flow of liquid having similar physical properties to the samples during sample processing. In this regard, the MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing techniques can also produce such structures and components that can be sized to produce capillary drive flow and that can handle very small volumes. The specific embodiment described in this patent specification shows the MST layer and the structure and active components supported on the CMOS circuit 86 with the MST layer, but the features of the top cover 46 are eliminated. However, readers familiar with this technology should be aware that the MST layer can handle samples without the need for a substrate CMOS or an actual overlying cap. The overall size of the LOC device shown in the following figures is 1760 μπιχ 5 8 24 μηι. Of course, LOC devices of different applications may have different sizes -39 - 201209404 Figure 6 shows the feature components of the MST layer 87 on which the cap features are superimposed. Figure 6 shows the illustrations AA to AD, AG, and AH magnified in Figures 13, 14, 4, 5, 5, 5, and 63, respectively, and is described in detail below to give a thorough understanding of the LOC. Each structure within the device 3〇1. Figures 7 through 1 show the features of the top cover 46 independently and the 11th view shows the structure of the CMOS + MST device 48 independently. Layered Structures Figures 12 and 22 are sketches showing the layered structure of the CMOS + MST device 48, the top cover 46, and the fluid interaction therebetween. For the sake of explanation, these drawings are not shown in the actual scale. Fig. 1 is a schematic cross-sectional view through the sample inlet 68 and Fig. 22 is a schematic cross-sectional view through the reservoir 54. As best shown in Fig. 12, the CMOS + MST device 48 has a germanium substrate 84 that supports a CMOS circuit 86 that can manipulate the active components within the upper MST layer 87. A passivation layer 88 seals and protects the CMOS layer 8.6 from contact with the flow of liquid through the MST layer 718. Fluid flows through the top cover channel 94 of the cap layer 46 and the MST channel 90 located at the MST channel layer 100 (see, for example, Figures 7 and 16). Cell transport occurs in a larger channel 94 built into the top cover 46, while biochemical treatment takes place in a smaller M S T channel 90. The size of the cell transport channel is capable of transporting cells within the sample to a predetermined location within the MST channel 90. The transport of cells larger than 20 microns (e. g., specific white blood cells) requires that the channel diameter be greater than 20 microns, so that the channel will have a cross-sectional area perpendicular to the flow that is greater than 400 square microns. The MS channel is significantly smaller when it is not in the LOC to transport the fine -40-201209404 cell position. It should be understood that the cap channel 94 and the MST channel 90 are common terms, and the particular MS T channel 90 can be referred to as a heated microchannel or a dialysis MS T channel, depending on its particular function. The MST channel 90 is formed by etching a MS T channel layer 100 deposited over the passivation layer 88 and patterning with a photoresist. The MST channel 90 is surrounded by a top wall layer 66 that forms the top end of the CMOS + MST device 48 (as viewed from the orientation of the drawing). Although sometimes represented by individual layers, The top channel layer 8 and the reservoir layer 78 are formed on a single piece of material. Of course, this piece of material may not be a single whole. The sheet material is etched from both sides to form a cap channel layer 80 etched with a cap channel 94 and a reservoir layer 78 etched with reservoirs 54, 56' 58, 60 and 62. Alternatively, the reservoir and cap channel can be formed by microforming. Both etching and microforming techniques can be used to create channels that are perpendicular to the cross-section of the flow up to 20,000 square microns or as small as 8 square microns. In LOC devices, the size of the cross-sectional area perpendicular to the flow of the channels at different locations is widely available. When the channel contains a large number of samples or when the sample contains a large structural component, the cross-sectional area of the channel can be as high as 20, 〇〇〇 square micron (for example, 200 micron wide in a 100 micron thick film layer) aisle). When the channel contains only a small amount of liquid or the mixture contains no large cells, the cross-sectional area of the channel perpendicular to the flow is preferably very small. The lower seal 64 encloses the top cover channel 94 and the upper sealing layer 82 encloses the reservoir 54. -41 - 201209404, 56, 58, 60 and 62. The assay-specific reagents have been previously installed in the five reservoirs 54, 56, 58, 60 and 62. In the specific examples described herein, the following reagents have been pre-loaded in the reservoirs, but are easily replaced with other reagents: • Reservoir 54: Anticoagulant 'optionally containing red blood cell lysis buffer• Reservoir 5 6 : lysing reagent • reservoir 5 8 : restriction endonuclease, ligase and linker sequence (for linker-to-head PCR (see Figure 70, selected from t. Stachan et al, Human) Molecular Genetics 2, Garland Science, NY and London, 1999)) • Reservoir 60: amplification mix (dNTPs, primers, buffer) and • reservoir 62: DNA polymerase. The top cover 46 and the CMOS + MST layer 48 are in fluid communication through the corresponding openings in the lower seal 64 and the top wall layer 66. These openings are referred to as uptakes 96 or downtakes 92 from the MST channel 90 to the cap channel 94 or to the reverse flow. LOC Device Operation The operation of the LOC device 310 will be described in a stepwise manner with reference to the analysis of pathogenic DNA in a blood sample. Of course, other types of biological or abiotic fluids can also be analyzed using a suitable set of reagents, test procedures, LO C variants and detection systems, or a combination thereof. Go back to the reference -42- 201209404 Figure 4, there are five main steps involved in the analysis of biological samples 'including sample placement and preparation 288, nucleic acid extraction 290, nucleic acid incubation 291, nucleic acid amplification 292 and detection and analysis 294. Sample placement and preparation step 288 involves mixing the blood with anticoagulant 116 and then separating the pathogen from the white blood cells and red blood cells in the pathogen dialysis zone 70. As best shown in Figures 7 and 12, the blood sample enters the device via sample inlet 68. Capillary action pulls the blood sample along the top cover channel 94 to the reservoir 54. The anticoagulant is released from the reservoir 54 when the sample blood flow opens the surface tension valve (8 (see Figures 15 and 22). The anticoagulant prevents clot formation and the clot blocks the flow. As best shown in Fig. 22, the anticoagulant 116 is drawn from the reservoir 54 by capillary action and into the MST channel 90 via the downcomer 92. The downcomer 92 has a capillary initiation feature (CIF) 102 to shape the geometry of the meniscus so that it does not rest on the rim of the downcomer 92. The venting opening 122 in the upper seal 82 can replace the anticoagulant with air as the anti-coagulant 116 is pulled out of the reservoir 54. The MST channel 90 shown in Fig. 22 is part of the surface tension valve 118. The anticoagulant 116 will fill the surface tension valve 118 and secure a meniscus 120 to the meniscus anchor 98 of the upper conduit 96. Prior to use, the meniscus 120 remains attached to the upper conduit 96 so that the anticoagulant does not flow into the canopy passage 94. As the blood flows through the canopy passage 94 to the upper conduit 90, the meniscus 120 is removed and the anticoagulant is introduced into the flow. .

第15到21圖顯示插圖AE,其爲第13圖所示之插圖AA -43- 201209404 的一部份。如第15、16及17圖所示,| 有三條分離的MST通道90於各別的下導 間延伸。表面張力閥內的MST通道90之 改變試劑流入試樣混合物之流動速度。 劑藉著擴散混合在一起時,試劑流出貯 決定該試劑於試樣流內的濃度。因此, 力閥會被配置成能符合所需之試劑濃度 然後血液流入病原體透析區70 (男 該處目標細胞透過採用具既定閩値大/] 陣列來從試樣中濃縮。小於該閾値之細 大細胞則無法通過該等小孔。無用的細 孔1 64陣列內之細胞或是通過小孔之細 廢棄物單元76而該等目標細胞則繼續留 定的一部份。 在此所述之病原體透析區70中,來 體會被濃縮以供微生物DN A分析。小孔 3微米之孔洞1 64所形成且能把頂蓋通道 流體連結到目標物通道74。直徑3微米二 目標物通道74之透析上導孔1 6 8則由一 204來連接(以第15及21圖最佳地表示 足以通過直徑3微米之小孔1 64且透過芬 滿目標物通道74。大於3微米之細胞例 則留在頂蓋46內之廢棄通道72,該通道 76 (見第7圖)。 |表面張力閥Π 8具 管92及上導管96之 數目可有所不同以 當試樣混合物及試 存器之流動速度會 各貯存器之表面張 〇 [第4及1 5圖)’於 、之孔徑之小孔1 6 4 胞會通過小孔而較 胞,其可爲卡在小 胞,會被重新導向 在檢定之中成爲檢 自全血試樣之病原 陣列係由許多直徑 9 4內的輸入液流以 匕小孔164以及通往 系列透析M S T通道 )。病原體會小得 i析MST通道204充 如紅血球及白血球 會通往廢棄貯存器 -44 - 201209404 可採用其他小孔形狀、尺寸及寬高比(aspect ratio ) 來分離特殊的病原體或其他目標細胞例如白血球以供人類 DNA分析。稍後會提供此透析區及透析變化型之更多細節 6¾S5 第存 考貯 參劑 次試 再溶 胞 達 7 拉閥 被力 流張 液面 ’ 表 圖之 到 4 7 道 通 物 標 巨 經 流 閥 力 張 面 表 該 有7條MST通道90在該胞溶試劑貯存器56及目標物通道74 之間延伸。當彎液面被試樣流瓦解時,來自全部7條MST 通道90之流動速度會比來自抗凝血劑貯存器54 (其表面張 力閥118具有3條MST通道90)之流動速度更快(假設該等 液流之物理特性大致相同)。因此,試樣混合物中該胞溶 試劑之比例會高於抗凝血劑之比例。 該胞溶試劑及目標細胞會在化學胞溶區130內之目標 物通道74中藉著擴散作用來混合。沸騰-起動閥(boiling-initiated valve) 126 能使液 流停止 —段足夠的時間以進ί了 擴散及胞溶,使得遺傳性物質從該等目標細胞中釋放出來 (見第6及7圖)。以下將參考第31及32圖更詳細地說明該 沸騰-起動閥之結構及運作。本案申請者亦已開發出其他 的主動閥類型(相對於被動閥例如表面張力閥1 1 8 ),其 可用來代替該沸騰-起動閥。此等另外的閥設計稍後也會 加以說明。 當沸騰-起動閥126打開時,已胞溶之細胞會流入混合 區1 3 1以供擴增前限制性內切酶消化及連接子接合。 現在參考第13圖,當液流瓦解混合區131起始處之表 -45- 201209404 面張力閥1 3 2的彎液面時,限制性內切酶、連接子及接合 酶會從貯存器5 8中釋出。混合物沿著混合區1 3 1全長流過 以進行擴散混合。混合區131之末端爲下導管134 ’其通往 培育區1〗4之培育區入口通道133 (見第13圖)。該培育區 入口通道133把混合物饋送到蜿蜒構型之受熱微通道210 ’ 其提供一用以容納試樣之培育室以進行限制性消化及連接 子接合(見第13及14圖)。 第23、24、25、26、27、28及29圖顯示第6圖之LOC 裝置301之插圖AB內部之膜層。各圖係顯示諸膜層之依序 增添過程以形成CMOS + MST層48及頂蓋46之結構。插圖AB 爲培育區1 14的終點及擴增區1 12的起點。如第14及23圖最 佳顯示地,液流會一直流進培育區1 1 4之微通道2 1 0直到抵 達沸騰-起動閥106爲止,於該處液流會停下來且進行擴散 。如以上所討論地,該沸騰-起動閥1 06上游之微通道2 1 0 會變成含有試樣、限制性內切酶、接合酶及連接子的培育 室。而後加熱器1 54會被啓動且於一段特定時間內維持著 恆定的溫度以進行限制酶消化及連接子接合。 熟悉此技術之工作者應瞭解此培育步驟291 (見第4圖 )爲可隨意選擇的且只有某些核酸擴增檢定類型才會需要 。再者,於某些例子中,在培育期結束時可能會需要一加 熱步驟以將溫度促升到高於培育溫度。溫度促升使得限制 性內切酶及接合酶在進入擴增區112前失活化。當採用等 溫核酸擴增法時該限制性內切酶及接合酶之失活化特別重 要。 -46- 201209404 培育之後,沸騰-起動閥106會被啓動(打開)且液流 重新進入擴增區112。參考第31及32圖,混合物會不斷地 流入蜿蜒構型之受熱微通道158 (其會構成一或多個擴增 室)直到液流抵達該沸騰-起動閥108爲止。如第30圖之示 意剖面圖最佳顯示地,擴增混合物(dNTPs、引子、緩衝 液)會從貯存器60中釋出且接著聚合酶從貯存器62釋出而 進入連接培育區及擴增區(分別爲1 14及1 12 )之中間MST 通道212。 第35至51圖顯示第6圖之LOC裝置301之插圖AC內部之 膜層。各圖係在顯示諸膜層之依序增添過程來形成 CMOS + MST裝置48及頂蓋46之結構。插圖AC爲擴增區112 的終點及雜合及偵測區52的起點。經過培育之試樣、擴增 混合物及聚合酶會流過微通道158抵達沸騰-起動閥108。 在擴散混合一段充裕時間後,微通道1 5 8內之加熱器1 54被 啓動以開始熱循環或等溫擴增。擴增混合物經過一既定次 數之熱循環或既定擴增時間以擴增足夠的目標DNA。在核 酸擴增流程之後,沸騰-起動閥1 08會打開且液流重新流入 該雜合及偵測區5 2。該沸騰-起動閥之運作將在稍後作更 詳細的說明。 如桌5 2圖顯不地,該雜合及偵測區5 2具有雜合室陣列 110。第52、53、54及56圖係顯示雜合室陣列11〇及詳細地 個別的雜合室180。該雜合室180之入口處爲一擴散屏障 175,其可防止目標核酸、探針股鏈及雜合探針在雜合期 間於雜合室1 80間擴散,以避免錯誤的雜合偵測結果。該 -47- 201209404 擴散屛障1 7 5與流路等長,其長得足以在探針及核酸雜合 及信號偵測期間防止目標序列及探針從一室擴散出來而污 染到另一室,如此一來即可避免錯誤的結果。 另一種預防錯誤讀取之機制爲於數個雜合室中使用同 樣的探針。CMOS電路86會從對應含有同樣探針之雜合室 1 8 0之光二極體1 8 4得到單一結果。於該單一結果之推衍中 不合理的結果會被淘汰或作不同的加權。 雜合所需之熱能係由CMOS·控制之加熱器182 (以下 將詳細說明)來提供。在加熱器被啓動後,互補的目標-探針序列間會發生雜合。於CMOS電路86中的LED驅動器 29會對位於測試模組10內之LED 2 6發出信號使其發光。此 等探針只在雜合發生時會發出螢光,如此一來可免除移去 未結合股鏈典型需要的清洗及乾燥步驟。如同稍後將更詳 細說明地,雜合迫使該FRET探針186之莖環結構打開,打 開的結構允許該螢光團對LED激發光線發出反應而放出螢 光能量。螢光可藉著襯於各雜合室180底部之CMOS電路86 內的光二極體1 84來偵測(見以下雜合室之說明)。所有 雜合室之光二極體184及相關的電子零件集合地構成光感 測器44 (見第65圖)。於其他具體例中,該光感測器可爲 一電荷耦合裝置之陣列(CCD陣列)。來自光二極體184 之偵測信號可被放大且轉變成數位輸出,其可用測試模組 讀取器1 2來分析。稍後將說明該偵測方法之更多細節。 LOC裝置之更多細節 -48 - 201209404 設計之模組化 該LOC裝置301具有許多功能區,包括試劑貯存器54 、56、58、60及62,透析區70、胞溶區130、培育區114及 擴增區112、多種閥類型、濕化器及濕度感測器。於該 LOC裝置之其他具體例中,此等功能區可被省略,可添加 其他功能區或該等功能區可被用於以上所述之其他目的。 舉例來說,該培育區114可被用來當作串聯擴增檢定 系統之第一擴增區1 12,且化學胞溶試劑貯存器56可用來 添加引子、dNTPs及緩衝液之第一擴增混合物,試劑貯存 器58可用來添加逆轉錄酶及/或聚合酶。如果要將試樣作 化學性胞溶,可把化學胞溶試劑與擴增混合物一起加到,貯 存器56中;另一選擇地,可藉著把試樣加熱一段既定時間 而於培育區中進行熱胞溶。於某些具體例中,如果需要進 行化學胞溶並讓該引子、dNTPs及緩衝液之混合物與化學 胞溶試劑分開,那麼可在緊接著該引子、dNTPs及緩衝液 之混合物之貯存器5 8上游處倂入額外的貯存器。 在某些情況下可能會需要省略某一步驟,例如培育步 驟291。於此例中,可以特別地製造一LOC裝置以省略該 試劑貯存器5 8及培育區1 1 4 ;或者簡單地不在貯存器中裝 入試劑;或者若有主動閥,可不啓動主動閥來把試劑配送 到試樣流內,從而把該培育區簡單地變成把試樣從胞溶區 1 3 0輸送到擴增區Π 2之通道。加熱器係獨立運作的,當反 應依賴熱時(例如熱胞溶)可啓動加熱器;但是在不需熱 胞溶之LOC裝置中,可用程式控制該加熱器,以確保此步 -49- 201209404 驟期間加熱器不會被啓動且熱胞溶不會發生。該透 可位於微流體裝置內微流體系統之起點如第4圖所 或者可位於該微流體裝置內之任何其他地方。舉例 在某些例子裡透析係在擴增期292之後進行,以於 偵測步驟294之前先行除去細胞殘渣,這樣會比較 另一選擇地,可在整個LOC裝置之任何地方倂入兩 透析區。類似地,也可以倂入更多擴增區1 1 2,如 可讓多個目標物在以特異性核酸探針雜合室檢定1 偵測之前,先於該等擴增區內同時地或連續地擴增 分析無需透析之試樣例如全血試樣,可以簡單地從 計之試樣置入及製備區2 8 8中省略掉透析區70。於 例中,即使在分析時不需要透析,也不用從LOC裝 去透析區70。如果透析區的存在不會對該檢定造成 阻礙,該LOC即使在試樣置入及製備區中還含有透 仍可使用而不會損失所需的功能性。 進一步地,該偵測區294可含有蛋白質組室檢 與雜合室檢定相同不過係裝入設計來與未擴增試樣 樣目標蛋白質接合或雜合之探針’而非設計來與目 序列雜合之核酸探針。 應瞭解用於此診斷系統之LOC裝置乃是依據特 應用而選擇之不同功能區之組合。對於裝 絕大部份的功能區很常見’具有新穎應用之另外的 置設計是從既存LOC裝置內所用之功能區作徹底的 編輯適當的功能區組合。 析區7 0 顯示, 來說, 雜合及 有利。 或多個 此一來 10進行 。爲了 LOC設 某些實 置中除 幾何性 析區7 0 定,其 內之試 標核酸 定LOC 置而言 LOC裝 選汰並 -50- 201209404 於此說明中只展示少數的LOC裝置,有更多裝置係示 意地顯示以展現此系統所用之L O C裝置之設計彈性。熟悉 此技術之人士可輕易地了解此等說明顯示之LOC裝置並沒 有完全列舉出來且許多另外的LOC設計則有關如何編輯適 當的功能區組合。 ’ 試樣類型 LOC變化型可接受及分析多種液體形式之試樣類型的 核酸或蛋白質內容物,此等試樣類型包括但不限於血液及 血液製品、唾液、腦脊髓液、尿液、精液、羊水、臍帶血 、乳汁、汗、胸腔積液、淚水、心包液、腹水、環境水試 樣及飲料試樣等。從宏觀核酸擴增法得到之擴增子可使用 該L0C裝置來分析;於這種情況下,所有的試劑貯存器將 是空的或被配置成不會釋出其內容物,該透析、胞溶、培 育及擴增區僅用來把試樣從試樣置入口 68運送到雜合室 1 8 0以作核酸偵測,如以上所述。 某些試樣類型會需要預處理步驟,例如在把精液及黏 液放進LOC裝置以前,該精液可能會需要先行液化而黏液 可能需要先用酶預處理以降低黏性。 試樣置入 參考第1及1 2圖,試樣被加到測試模組1 〇之大貯槽24 中。該大貯槽24爲一截頭圓錐,試樣可經由毛細作用饋入 該LOC裝置301之置入口 68。在此,試樣會流入該64 μηι寬 -51 - 201209404 X 60 μιη深之頂蓋通道94中,於該處試樣同樣透過毛細作 用被拉向抗凝血劑貯存器54。 試劑貯存器 使用微流體裝置之檢定系統(例如LOC裝置3 0 1 )所 需試劑的體積很小,使得各個試劑貯存器即使只有很小體 積也能含納生化處理所需之所有試劑。此體積可輕易地小 於1,000,000,000立方微米,於大部份的例子來說小於 300,000,000立方微米,典型地小於70,000,000立方微米且 於圖式中顯示之LOC裝置301則小於20,000,000立方微米。 透析區 參考第15至21、33及34圖,病原體透析區70被設計成 能從試樣中濃縮出病原性目標細胞。如先前所描述地,複 數個位於頂壁層66內呈直徑3微米孔洞164形式之小孔可從 試樣主體中過濾出目標細胞。當試樣流過直徑3微米小孔 1 64時,微生物性病原體會通過該等孔洞進入一系列透析 MST通道204且經由16μπα透析上導孔168流回該目標物通道 74 (參見第3 3及3 4圖)。試樣的剩餘部份(紅血球等等) 會留在頂蓋通道94中。在病原體透析區7〇的下游,頂蓋通 道94變成把廢棄物導到廢棄物貯存器76之廢棄物通道72。 對於會產生實質份量廢棄物之生物試樣類型,可把測試模 組1 〇外殼1 3內之泡沬插圖或其他有孔元件49配置成能與該 廢棄物貯存器76流體連通(見第1圖)。 -52- 201209404 該病原體透析區70完全靠流體試樣之毛細作用來發揮 功能。該病原體透析區70上游端之直徑3微米小孔164具有 毛細起動特徵構件(CIFs ) 166 (見第33圖),因此可把 流體向下拉引到下方的透析MST通道204。目標物通道74 之第一上導孔198也具有CIF 202 (見第15圖)以避免液流 簡易地把彎液面固定在整個透析上導孔168之孔口上。 於第79圖示意地顯示之小成分透析區682可具有類似 於該病原體透析區70之構造。該小成分透析區可藉由不同 大小(若有需要,藉由不同形狀)之小孔來把所有小目標 細胞或分子從試樣中分離出來,該等小孔可讓小目標細胞 或分子通過且進入目標物通道及繼續作進一步分析。較大 細胞或分子會被移到廢棄物貯存器766。因此,該LOC裝 置30 (見第1及112圖)並不限於只能分離出尺寸小於3微 米之病原體,也可用來分離任何所需大小之細胞或分子。 胞溶區 回去參考第7、11及13圖,試樣中之瀟傳性物質可藉 由化學性胞溶法從細胞中釋出。如同以上討論地,來自胞 溶貯存器56之胞溶試劑會在該胞溶貯存器56之表面張力閥 1 28下游之目標物通道74內與試樣流混合在一起。然而, 某些診斷檢定更適合採用熱胞溶法,甚至於結合化學胞溶 及熱胞溶來處理目標細胞。該LOC裝置301可藉著培育區 114之受熱微通道210來因應此一問題。試樣流塡滿該培育 區1Μ且於沸騰-起動閥1〇6處停下來。培育微通道210可把 -53- 201209404 試樣加熱到細胞膜瓦解之溫度。 於某些熱胞溶之應用中,化學胞溶區130內無需酵素 反應且熱胞溶徹底取代了化學胞溶區130內之酵素反應。 沸騰起動閥 如以上討論地,該LOC裝置301具有3個沸騰起動閥 126、106及108。此等閥之位置係示於第6圖。第31圖單獨 顯示位於擴增區112之受熱微通道158末端之沸騰起動閥 108的放大平面圖。 試樣流1 19藉由毛細作用沿著受熱微通道158被拉引到 沸騰起動閥108才停下來。該試樣流之前導彎液面丨2〇會固 定在閥入口 146之彎液面錨98上。該彎液面錨98之幾何性 令前行之彎液面停止而阻滯毛細流動。如第3 1及3 2圖顯示 地,該彎液面錨98爲一從MST通道90通往頂蓋通道94之上 導管開口提供之小孔。彎液面1 2 〇之表面張力令該閥關閉 。一環狀加熱器152圍在閥入口 146的四周’該環狀加熱器 152係透過沸騰起動閥加熱器接點153來由CMOS-控制。 爲了打開閥,該CMOS電路86把一電流脈衝送到該閥 加熱器接點1 53。該環狀加熱器1 52電阻性地加熱直到液態 試樣119沸騰爲止。沸騰瓦解了閥入口 146之彎液面120且 引發頂蓋通道94濕化.。一旦頂蓋通道94開始濕化’毛細流 動重新開始。流體試樣1 1 9充滿頂蓋通道94 ’流經閥下導 管1 5 0到達閥出口 1 4 8,於該處毛細驅動液流繼續沿著擴增 區出口通道160進入雜合及偵測區52。液體感測器174則放 -54- 201209404 置在該閥之前或之後以供診斷。 應瞭解一旦沸騰起動閥被打開,就無法再關上。不過 ,由於該LOC裝置3 0 1及測試模組1 0爲用過即丟裝置,所 以也無需再關閉此等閥。 培育區及核酸擴增區 第6、 7、 13、 14、 23、 24、 25、 35至45、 50及51圖係 顯示培育區1 1 4及擴增區1 1 2。培育區1 1 4具有一條蝕刻成 蜿蜒圖型之單一受熱培育微通道210,其位於下導管開口 134通往沸騰起動閥106之MST通道層100中(參見第13及 1 4圖)。對培育區1 1 4之溫度控制令酵素反應以更佳效能 來進行。類似地,該擴增區1 12有一條從沸騰起動閥1〇6連 到沸騰起動閥108且呈蜿蜒構型之受熱擴增微通道158 (見 第6及1 4圖)。此等閥能阻滯流動,使得目標細胞留在受 熱培育或擴增微通道2 1 0或1 5 8以進行混合、培育及核酸擴 增。該微通道之蜿蜒圖案亦加快(某些程度地)目標細胞 與試劑之混合。 於培育區1 1 4及擴增區1 1 2中’試樣細胞及試劑係採用 脈波寬度調變(PWM)之CMOS電路86調控之加熱器154加 熱。受熱培育微通道210及擴增微通道158之蜿蜒構型的各 個曲流皆有三個可各別操作之加熱器1 5 4於其個別的加熱 器接點156間延伸(見第14圖),該等接點可對輸入熱通 量密度作二維調控。如第5 1圖最佳顯示地,加熱器1 54係 由頂壁層66支撐且埋置·於下封條64中。加熱器材料爲TiA1 -55- 201209404 不過也可採用其他導電金屬。該等細長形加熱器154與各 通道區的縱向部份(其構成該蜿蜒形狀之寬曲流)平行。 於擴增區1 1 2中,各個寬曲流可透過個別的加熱器調控當 作各別的PCR室來操作。 採用微流體裝置之檢定系統例如LOC裝置301所需之 擴增子體積很微小,使得擴增區1 1 2之擴增混合物所需體 積也很小。此體積輕易地可小於400奈升,於絕大部份的 例子中係小於170奈升,典型地小於70奈升,於LOC裝置 3 0 1之例中則在2奈升到3 0奈升之間。 較高加熱速率及更佳的擴散混合 各通道區之橫切面小可增加擴增流體混合物之加熱速 度。所有流體與加熱器1 5 4間保持著相當短的距離。把通 道橫切面(此爲擴增微通道1 5 8之橫切面)縮小到小於 1 00,000平方微米比採用更“大尺寸”之設備者有高出許多的 加熱速率。蝕刻製造技術可令擴增微通道1 5 8與該流體-流 路垂直之橫切面積小於1 6,000平方微米,其可提供實質上 更高的加熱速率。藉著蝕刻技術可輕易地提供大小約1微 米等級之特徵構件。如果需要極小擴增子(如於LOC裝置 3 0 1之例),那麼橫切面積可被縮小到小於2,5 0 0平方微米 。對於位於LOC裝置上含有1,〇〇〇至2,000個探針且從“試樣 置入”到“結果輸出”必需短於1分鐘之診斷檢定而言,較佳 地其與流動垂直之橫切面積大小宜介於4 0 0平方微米到1平 方微米之間。 -56- 201209404 擴增微通道158內之加熱元件可用每秒超過80開( Kelvin (K))之速度,於大部份的情況下用每秒超過1〇〇 開之速度來加熱該等核酸序列。典型地,該加熱元件可用 每秒超過1,〇〇〇 K之速度加熱該等核酸序列,於許多例子 中該加熱元件係用每秒超過10,000 K之速度加熱該等核酸 序列。常見地,基於檢定系統之需求,該加熱元件可用每 秒超過100,000 K、每秒超過1,000,000 K、每秒超過 10.000. 000 K、每秒超過20,000,000 K、每秒超過 40.000. 000 K、每秒超過80,000,000 K及每秒超過 160.000. 000 K之速度來加熱該等核酸序列。 小橫切面面積之通道對於所有試劑與試樣流體之擴散 混合也有利。在擴散混合完成以前,一液體擴散到另一液 體之擴散作用係在接近兩者交界處最快。濃度隨著與交界 面間的距離增加而降低。採用與流動方向垂直之橫切面較 小之微通道,可使兩種流體皆貼近交界面流動而能更快速 地擴散混合。把通道橫切面縮小到小於1 00,000平方微米 比採用更“大尺寸”之設備者能提供高出許多之混合速率。 蝕刻製造技術可製得與流路垂直之橫切面積小於1 6,0 0 0平 方微米之微通道,其顯著地提供更高的混合速率。如果需 要微小的體積(如於LOC裝置301之例),那麼橫切面積 可被縮小到小於2,5 00平方微米。對於位於LOC裝置上、含 有1,000至2,000個探針且從“試樣置入”到“結果-輸出”必需 少於1分鐘之診斷檢定而言,該通道與流動垂直之橫切面 積宜於400平方微米到1平方微米之間。 -57- 201209404 短暫的熱循環時間 保持試樣混合物貼近加熱器且使用極微小的流體體積 可讓核酸擴增期間有快速的熱循環。對於最多150個鹼基 對(bp )長之目標序列而言,每一回熱循環(即變性、結 合及引子延長)係於少於3 0秒內完成。在大部份的診斷檢 定中’個別的熱循環時間爲少於1 1秒,大部份會少於4秒 。含有一些最常見之診斷檢定之LOC裝置30對於長達150 bp之目標序列的熱循環時間爲〇 · 4 5秒到1 · 5秒之間。此速度 之熱循環可令測試模組在遠少於1 0分鐘內,通常在少於 22〇秒內完成核酸擴增流程。對多數的檢定來說,該擴增 區可於少於80秒內從進入試樣置入口之試樣流體中產生足 夠的擴增子。對於眾多檢定來說,可於3 0秒內產生足夠擴 增子。 在完成現有次數之擴增循環後,擴增子可透過沸騰起 動閥1 〇 8被饋送到雜合及偵測區5 2。 雜合室 第52、53、54、56及57圖顯示雜合室檢定110之雜合 室180。該雜合及偵測區52具有24x45陣列之雜合室180陣 列1 10 ’各雜合室皆具有雜合反應性FRET探針186、加熱 元件182及整合之光二極體184。該光二極體184被倂入以 偵測目標核酸序列或蛋白質與F R E T探針1 8 6雜合產生之螢 光。各光二極體184由CMOS電路86獨立地控制。介於該 -58- 201209404 FRET探針186及光二極體184之間的任何物質對該放射光 線來說必需是透明的。據此,該探針186及光二極體184間 的壁區97對該放射光線來說亦爲光學透明的。於LOC裝置 301中,壁區97爲一層二氧化矽薄層(約0.5微米)。 直接在各雜合室180底下倂入光二極體184可令探針-目標物雜合體之體積很小同時仍能產生可偵測之螢光信號 (見第54圖)。微小的份量允許雜合室有微小的體積。可 偵測量之探針-目標物雜合體需要在雜合前先有一份量之 探針,該份量輕易地少於270微微克(相當於900,000立方 微米),於絕大部份的例子中爲少於60微微克(相當於 2 00,000立方微米),典型地少於12微微克(相當於40,000 立方微米),且於後附圖式顯示之LOC裝置301則少於2.7 微微克(相當於9,000立方微米之室體積)。當然,縮減 雜合室大小允許雜合室密度更高且因而該LOC裝置上可有 更多探針。於LOC裝置301中,該雜合區在1500微米乘以 1 5〇〇微米之面積內有超過1 〇〇〇個室(亦即,每室面積少於 2250平方微米)。較小的體積也縮短反應時間,使得雜合 及偵測更快。各室所需探針之份量少之另一優點爲LOC裝 置製造期間只需要把極少量探針溶液點加入各室即可。於 本發明之LOC裝置之具體例中可點加1微微升或更少體積 之探針溶液。 於核酸擴增後,沸騰起動閥1 〇8被活化且擴增子沿著 流路176流入各雜合室18〇中(見第52及56圖)。當雜合室 18〇充滿擴增子時’一終點液體感測器178會顯示此現象且 -59- 201209404 加熱器1 8 2被啓動。 經過一段充裕的雜合時間後,該LED 26 (見第2圖) 會被啓動。各雜合室180之開口提供一光學窗口 136好讓 FRET探針186暴露在激發輻射下(見第52、54及56圖)。 讓LED 2 6被照射一段夠長的時間以引發探針發出高強度之 螢光信號。激發期間,光二極體U4會短路。經過一段程 式化前時間延遲300 (見第2圖)以後,該光二極體184會 被激活且在沒有激發光時偵測螢光放射現象。照射在光二 極體184之活性區域185 (見第54圖)上之入射光會被轉變 成光電流,其而後用CMOS電路86來測量。 各雜合室1 80皆裝有用來偵測單一目標核酸序列之探 針。若有需要’各雜合室1 8 0可裝有能偵測超過1 〇〇〇種不 同目標物之探針。另一選擇地,可於許多或所有的雜合室 中裝入同樣探針以重覆地偵測同一目標核酸。於整個雜合 室陣列1 1 0中以此方式重覆裝入此等探針可以增加所得結 果之可信度;若有需要’此等結果可藉著緊鄰此等雜合室 之光二極體合倂成單一結果。熟悉此技術之人士將瞭解視 檢定之規格而定’該雜合室陣列11〇上可有1到超過1〇〇〇種 不同探針。 濕化器及濕度感測器 第6圖之插圖AG指出濕化器i96之位置。該濕化器可 防止試劑及探針於L Ο C裝置3 0 1操作期間蒸發。如第5 5圖 之放大圖最佳顯示地’一貯水器! 8 8會與三個蒸發器1 9 〇以 -60- 201209404 流體相連。該貯水器i 8 8會在製造期間裝入分子生物學-級 水並密封。如第55及68圖最佳顯示地,水被拉入三個下導 管194且藉著毛細作用沿著個別的供水通道i92流入蒸發器 190之三個上導管193組。—彎液面固定於各個上導管193 口以留住水。該蒸發器具有圍住上導管193之環形加熱器 191。該環狀加熱器191藉著連通到金屬頂層195之傳導管 柱3 76連接到CMOS電路86 (見第37圖)。當環狀加熱器 191被啓動時,該加熱器會加熱水而造成蒸發且濕化該裝 置之周圍部份。 濕度感測器232之位置亦示於第6圖。然而,如第63圖 之插圖AH之放大圖最佳顯示地,該濕度感測器具有電容 性梳狀結構。一用蝕刻技術蝕刻之第一電極296及另一用 蝕刻技術蝕刻之第二電極29 8彼此面對面且其梳齒間插交 錯。相反電極形成具有一電容量之電容器,其可用CMOS 電路86來監測。當濕度增加時,電極間之空氣間隙的介電 常數會增加,因此電容量也會增加。該濕度感測器23 2與 雜合室陣列1 1 0相鄰,於該處濕度測量是最重要的,以減 緩含有已暴露探針之溶液的蒸發現象。 反饋感測器 把溫度及液體感測器倂入到整個L0C裝置3〇1中以於 裝置運作期間提供反饋及診斷。參考第35圖’有9個溫度 感測器170散佈在整個擴增區112°類似地’培育區114也 有9個溫度感測器1 70 °這些感測器皆使用2x2陣列之雙極 -61 - 201209404 性接面電晶體(BJTs)來監測流體溫度及對CM〇s電路86 提供反饋。該CMOS電路86使用此反饋以精確地控制核酸 擴增期間之熱循環及熱胞溶及培育期間的加熱作用。 於雜合室180中’該CMOS電路86使用雜合加熱器182 作爲溫度感測器(見第56圖)。該雜合加熱器182之電阻 與溫度相關且該CMOS電路86利用此特性來推衍出各個雜 合室1 8 0之溫度讀數。 該LOC裝置301也有數個MST通道液體感測器174及頂 蓋通道液體感測器208。第35圖顯示在受熱微通道158內於 每條間隔曲流之一端有一排M S T通道液體感測器丨74。如 第3 7圖最佳顯示地,該MST通道液體感測器1 74乃爲由 CMOS結構86內之金屬頂層195之暴露區域所形成之一對電 極。液體會關閉電極間的電路而指出在該感測器的位置有 液體的存在。 第25圖顯示頂蓋通道液體感測器208之放大立體圖。 相反電性之TiAl電極對218及22〇被沉積在頂壁層66上。於 電極2 1 8及2 2 0之間爲間隙2 2 2,其可於無液體時保持電路 暢通。液體之存在會關閉此電路且CMOS電路86採用此反 饋來監測液流。 重力不相關性 測試模組1 〇不受方位影響。它們無需固定在平穩表面 上操作。以毛細驅動液流流動且無外接管路連接輔助設備 ,使得該等模組具有真正的可攜帶性且可簡單地插入類似 -62 - 201209404 的可攜式手持讀取器例如行動電話。具有與重力不相關之 操作意指該等測試模組在所有實用層級上亦與加速度不相 關。它們能耐劇烈震蕩及振動且可於移動交通工具上或者 隨身攜代行動電話時操作。 透析變化型 白血球目標物 於LOC裝置30 1內上述之透析設計係瞄準病原體。第 64圖爲設計成可從血液試樣中濃縮出白血球以供人類Dna 分析之透析區328之示意剖面圖。應瞭解此結構基本上與 以上所述之病原體目標物透析區70之結構相同,只是以直 徑7.5微米之孔洞165形式之小孔來限制白血球,使其無法 從頂蓋通道94流到透析MST通道204而已。於分析試樣爲 全血試樣且來自紅血球之血紅素會干擾後續反應步驟之情 況下,除了加入貯存器54之抗凝血劑以外還加入紅血球胞 溶緩衝液(見第22圖)將可確保能於透析步驟期間把大部 份已胞溶之紅血球(從而其血紅素)從試樣中除去。一種 常用的紅血球胞溶緩衝液爲0.15M NH4CL、10mM KHC03 、O.lmM EDTA、pH 7.2-7.4,不過熟悉此技術之人士知道 任何可有效胞溶紅血球之緩衝液皆可使用。 在白血球透析區328之下游,該頂蓋通道94變成目標 物通道74,因此白血球繼續留下來成爲檢定的一部份。進 —步地,於此例中該透析上導管孔1 68會通往廢棄物通道 72而移除掉試樣內之所有較小細胞及成分。應注意此透析 -63- 201209404 變化型只會減少目標物通道74內之無用樣本之濃度。 第80圖示意地顯示也能從試樣中分離出任何大目標成 分之大成分透析區6 8 6。此透析區之小孔的大小及形狀被 設計成能把欲硏究之大目標成分留在目標物通道中以進一 步分析。當採用以上描述之白血球透析區時’大部份(但 不是所有)尺寸較小之細胞、有機體或分子會流到廢棄物 貯存器768。因此,該LOC裝置之其他具體例並不限於只 能分離出尺寸大於7.5微米之白血球,也可用來分離出任 何所需大小之細胞、有機體或分子。 以流動通道防止截留氣泡之透析區 以下說明爲被稱爲LOC變化型VIII 518之LOC裝置的 具體例且示於第73、74、75及76圖。該LOC裝置具有一透 析區,其內充滿流體試樣且沒有截留於通道內之氣泡。 LOC變化型VIII 518還有額外一層被稱爲界面層594之材料 層。該界面層594係位於CMOS + MST裝置48之頂蓋通道層 80及MST通道層100之間。該界面層594可在不增加矽基材 8 4大小下允許試劑貯存器及M S T層8 7間有更複雜的流體互 連。 參考第74圖,旁路通道600係設計來於流體試樣流從 界面廢棄物通道604流到界面目標物通道602時導入時間延 遲。此時間延遲使得該流體試樣得以流經透析MST通道 2 04而來到固定有一彎液面之透析上導管168。藉著位於旁 路通道600通往界面目標物通道602之上導管之毛細起動特 -64- 201209404 徵構件(CIF ) 202,來自透析MST通道204之試樣流體會 從所有透析上導管1 68上游之一點開始逐漸充滿界面目標 物通道602。 沒有該旁路通道6 00時,該界面目標物通道6 02仍會從 上游端開始充塡,不過向前推進的彎液面最後仍會到達且 越過尙未裝滿之MST通道之上導管,而將空氣截留於此點 。被截留的空氣會降低試樣流流經白血球透析區3 28之流 動速度。 雜合前過濾 —LOC裝置之變化型,LOC變化型XII 75 8,係採用一 置於擴增區112出口之小成分透析區682 (見第96到103圖 )。該小成分透析區6 82提供一雜合前過濾純化期293 (見 第96圖)。雜合前過濾可除去細胞胞溶後留在試樣流內之 細胞殘渣。雜合效能會受到細胞殘渣影響,因此在雜合前 先降低細胞殘渣的濃度很有用。 ‘ 參考第101、102及103圖,該小成分透析區682具有三 條建於底通道層100內之相鄰通道:—大成分通道760,其 被包夾在兩條小成分通道762之間。沿著該大成分通道760 之兩側有一連串呈倒錐形開口 764形式之孔口’該等孔口 可令該大成分通道7 6 0流體連接到該等小成分通道762。在 多數實際應用中,該孔口爲1到8微米寬及1到8微米高。當 試樣向下流到該大成分通道760時’小得足以通過該倒錐 開口之顆粒(例如該擴增子)會流入該等小成分通道762 -65- 201209404 ’而較大顆粒(例如細胞殘渣)則留在大成 大成分通道最後以一封閉端766收尾。較小 成分通道繼續流到雜合室陣列1 1 〇之相對兩 者都循著蜿蜒路徑通過陣列而來到各自的妾 第1 〇 3圖)。在偵測前該等小成分擴增子會 別雜合室1 8 0。Figures 15 through 21 show an illustration AE, which is part of the illustration AA-43-201209404 shown in Figure 13. As shown in Figures 15, 16 and 17, there are three separate MST channels 90 extending between the respective lower guides. The MST channel 90 in the surface tension valve changes the flow rate of the reagent into the sample mixture. When the agents are mixed together by diffusion, the reagents flow out and store the concentration of the reagents in the sample stream. Therefore, the force valve will be configured to meet the desired reagent concentration and then the blood will flow into the pathogen dialysis zone 70 (the male target cell is concentrated from the sample by using a predetermined large /] array. Less than this threshold Large cells are unable to pass through the pores. Cells in the array of useless pores 1 64 or through the fine waste unit 76 of the pores and the target cells continue to remain. In the pathogen dialysis zone 70, the body is concentrated for analysis by the microorganism DN A. A small hole 3 micron hole 1 64 is formed and can fluidly connect the cap channel to the target channel 74. The diameter of 3 micrometers of the target channel 74 The dialysis upper pilot hole 168 is connected by a 204 (preferably in Figures 15 and 21 is sufficient to pass through the small hole 1 64 having a diameter of 3 μm and passing through the expansive target channel 74. For cells larger than 3 μm, The waste passage 72 remaining in the top cover 46, the passage 76 (see Fig. 7). | Surface tension valve Π The number of the tube 92 and the upper conduit 96 may vary to be used as the sample mixture and the test reservoir. The flow rate will be the surface of each reservoir. 4 and 1 5)) The pores of the pores of the pores of the cells are passed through the pores, which can be stuck in the small cells and will be redirected in the assay to become samples from the whole blood. The pathogen array consists of a number of input streams within a diameter of 94 with a small orifice 164 and a series of dialysis MST channels. Pathogens will be small enough to analyze MST channel 204 as red blood cells and white blood cells will lead to waste storage -44 - 201209404 Other pore shapes, sizes and aspect ratios can be used to isolate specific pathogens or other target cells such as White blood cells for human DNA analysis. More details of this dialysis area and dialysis change will be provided later. 63⁄4S5 The first test and storage reagents will be re-dissolved up to 7 times. The valve is pulled by the force flow. The surface of the sample is 4-7. The flow valve force sheet has seven MST channels 90 extending between the lysate reservoir 56 and the target channel 74. When the meniscus is collapsed by the sample stream, the flow velocity from all seven MST channels 90 will be faster than the flow rate from the anticoagulant reservoir 54 (the surface tension valve 118 has three MST channels 90) ( It is assumed that the physical properties of the streams are approximately the same). Therefore, the proportion of the lysing reagent in the sample mixture will be higher than the ratio of the anticoagulant. The cytolytic reagent and target cells are mixed by diffusion in the target channel 74 in the chemical cytolytic zone 130. Boiling-initiated valve 126 can stop the flow - enough time for diffusion and cytolysis to release hereditary material from the target cells (see Figures 6 and 7) . The structure and operation of the boiling-starting valve will be described in more detail below with reference to Figures 31 and 32. The applicant has also developed other active valve types (relative to passive valves such as surface tension valves 1 18) that can be used in place of the boiling-start valve. These additional valve designs are also described later. When the boiling-start valve 126 is opened, the lysed cells will flow into the mixing zone 133 for pre-amplification restriction endonuclease digestion and linker ligation. Referring now to Figure 13, when the flow disrupts the meniscus of the surface-45-201209404 surface tension valve 133 at the beginning of the mixing zone 131, the restriction enzyme, linker and ligase will be from the reservoir 5. Released in 8. The mixture flows along the entire length of the mixing zone 133 for diffusion mixing. The end of the mixing zone 131 is the lower conduit 134' which leads to the cultivation zone inlet passage 133 of the cultivation zone 1 > 4 (see Figure 13). The incubation zone inlet channel 133 feeds the mixture to a heated microchannel 210' of the crucible configuration which provides a chamber for holding the sample for restriction digestion and linker ligation (see Figures 13 and 14). Figures 23, 24, 25, 26, 27, 28 and 29 show the film layers inside the inset AB of the LOC device 301 of Figure 6. Each of the figures shows a sequential addition process of the layers to form the structure of the CMOS + MST layer 48 and the cap 46. The illustration AB is the end point of the incubation zone 1 14 and the starting point of the amplification zone 1 12 . As best shown in Figures 14 and 23, the flow will continue to flow into the microchannel 2 1 0 of the incubation zone until it reaches the boiling-start valve 106 where it will stop and diffuse. As discussed above, the microchannel 2 10 upstream of the boiling-start valve 106 becomes a chamber containing a sample, restriction enzyme, ligase, and linker. The heater 1 54 is then activated and maintains a constant temperature for a limited period of time for restriction enzyme digestion and linker ligation. Workers familiar with this technique should be aware that this incubation step 291 (see Figure 4) is optional and will only be required for certain nucleic acid amplification assay types. Again, in some instances, a heating step may be required at the end of the incubation period to raise the temperature above the incubation temperature. The temperature increase causes the restriction endonuclease and ligase to be deactivated before entering the amplification zone 112. The inactivation of the restriction enzymes and ligases is particularly important when isothermal nucleic acid amplification is employed. -46- 201209404 After incubation, the boiling-start valve 106 will be activated (opened) and the flow re-entered the amplification zone 112. Referring to Figures 31 and 32, the mixture will continuously flow into the heated microchannels 158 of the crucible configuration (which will constitute one or more amplification chambers) until the liquid stream reaches the boiling-start valve 108. As best shown in the schematic cross-sectional view of Figure 30, amplification mixtures (dNTPs, primers, buffers) are released from reservoir 60 and then polymerase is released from reservoir 62 into the junction incubation zone and expanded. The intermediate MST channel 212 of the zones (1 14 and 1 12 respectively). Figs. 35 to 51 show the film layers inside the illustration AC of the LOC device 301 of Fig. 6. Each of the figures shows a sequential addition process of the layers to form the structure of the CMOS + MST device 48 and the top cover 46. The illustration AC is the endpoint of the amplification zone 112 and the beginning of the hybrid and detection zone 52. The incubated sample, amplification mixture, and polymerase will flow through the microchannel 158 to the boiling-start valve 108. After diffusion mixing for a sufficient period of time, the heater 1 54 in the microchannel 1 58 is activated to initiate thermal cycling or isothermal amplification. The amplification mixture is subjected to a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target DNA. After the nucleic acid amplification process, the boiling-start valve 108 will open and the flow will re-flow into the hybrid and detection zone 52. The operation of the boiling-starting valve will be described in more detail later. As shown in Table 52, the hybrid and detection zone 52 has a hybrid chamber array 110. Figures 52, 53, 54 and 56 show a hybrid chamber array 11 and a detailed individual hybrid chamber 180. The entrance of the hybrid chamber 180 is a diffusion barrier 175, which prevents the target nucleic acid, the probe strand and the hybrid probe from diffusing in the hybrid chamber during the hybridization period to avoid erroneous hybrid detection. result. The -47-201209404 diffusion barrier 1 7 5 is equal in length to the flow path, and is long enough to prevent the target sequence and probe from diffusing out of one chamber and contaminating another chamber during probe and nucleic acid hybridization and signal detection. In this way, you can avoid erroneous results. Another mechanism to prevent erroneous reading is to use the same probe in several hybrid chambers. The CMOS circuit 86 will obtain a single result from the photodiode 1 8 4 corresponding to the hybrid chamber containing the same probe. Unreasonable results in the derivation of this single result are eliminated or weighted differently. The thermal energy required for hybridization is provided by a CMOS-controlled heater 182 (described in detail below). Hybridization occurs between complementary target-probe sequences after the heater is activated. The LED driver 29 in the CMOS circuit 86 signals the LEDs 26 located in the test module 10 to illuminate. These probes fluoresce only when the hybrid occurs, thus eliminating the need to remove the cleaning and drying steps typically required for unbound strands. As will be explained in more detail later, hybridization forces the stem-loop structure of the FRET probe 186 to open, and the open structure allows the fluorophore to react to the LED excitation light to emit fluorescent energy. Fluorescence can be detected by photodiode 1 84 lining the CMOS circuit 86 at the bottom of each of the hybrid chambers 180 (see description of the hybrid chamber below). The light diodes 184 of all of the hybrid chambers and associated electronic components collectively form a light sensor 44 (see Figure 65). In other embodiments, the photosensor can be an array of charge coupled devices (CCD arrays). The detection signal from photodiode 184 can be amplified and converted to a digital output, which can be analyzed by test module reader 12. More details of this detection method will be explained later. More details of the LOC device - 48 - 201209404 Modularization of the design The LOC device 301 has a number of functional areas including reagent reservoirs 54, 56, 58, 60 and 62, dialysis zone 70, cytolysis zone 130, incubation zone 114 And the amplification zone 112, various valve types, humidifiers and humidity sensors. In other specific examples of the LOC device, such functional areas may be omitted, other functional areas may be added or the other functional areas may be used for other purposes as described above. For example, the incubation zone 114 can be used as the first amplification zone 12 of the tandem amplification assay system, and the chemical lysate reagent reservoir 56 can be used to add primers, dNTPs, and first amplification of the buffer. The mixture, reagent reservoir 58 can be used to add reverse transcriptase and/or polymerase. If the sample is to be chemically lysed, the chemical lysing reagent may be added to the reservoir 56 along with the amplification mixture; alternatively, the sample may be heated in the incubation zone for a predetermined period of time. Perform thermocytolysis. In some embodiments, if chemical cytolysis is required and the mixture of primers, dNTPs, and buffers is separated from the chemical lysing reagent, then a reservoir of the mixture of the primers, dNTPs, and buffer can be used. Additional reservoirs are inserted upstream. In some cases it may be necessary to omit a step, such as incubation step 291. In this case, a LOC device may be specially fabricated to omit the reagent reservoir 58 and the incubation zone 1 14; or simply do not load the reagent in the reservoir; or if there is an active valve, the active valve may not be activated. The reagent is dispensed into the sample stream, thereby simply changing the incubation zone into a channel for transporting the sample from the cytolytic zone 1 30 to the amplification zone Π 2 . The heater operates independently, and the heater can be activated when the reaction is dependent on heat (eg, hot cytolysis); however, in a LOC device that does not require thermolysis, the heater can be programmed to ensure this step -49- 201209404 The heater will not be activated during the time and the thermolysis will not occur. The permeable may be located at the beginning of the microfluidic system within the microfluidic device as shown in Figure 4 or may be located anywhere within the microfluidic device. By way of example, in some instances the dialysis system is performed after the amplification period 292 to remove the cell debris prior to the detection of step 294, which would alternatively enter the two dialysis zones anywhere in the entire LOC device. Similarly, more amplification regions 1 1 2 can also be inserted, such as allowing multiple targets to be simultaneously or simultaneously in the amplification region prior to detection by the specific nucleic acid probe hybrid chamber assay 1 Continuous amplification analysis of a sample that does not require dialysis, such as a whole blood sample, can be simply omitted from the sample placement and preparation zone 28 8 . In this example, the dialysis zone 70 is not loaded from the LOC even if dialysis is not required for analysis. If the presence of the dialysis zone does not impede the assay, the LOC can be used even if it is contained in the sample placement and preparation zone without loss of the desired functionality. Further, the detection zone 294 may contain a probe that is the same as the proteomic chamber assay and the hybrid chamber assay, but is designed to be conjugated or hybridized with the unamplified sample-like target protein, rather than being designed and sequenced. Hybrid nucleic acid probe. It should be understood that the LOC device used in this diagnostic system is a combination of different functional zones selected for a particular application. It is common to install most of the functional areas. Another design with novel applications is to thoroughly edit the appropriate combination of functional areas from the functional areas used in existing LOC devices. The analysis area 7 0 shows that, for example, heterozygous and advantageous. Or more than one. In order to set the LOC in some implementations, except for the geometric resolution zone, the LOC of the test nucleic acid is set to be selected and the LOC is selected. -50-201209404 Only a few LOC devices are shown in this description. Multiple devices are shown schematically to demonstrate the design flexibility of the LOC device used in this system. Those skilled in the art will readily appreciate that the LOC devices shown in these descriptions are not fully enumerated and many other LOC designs are related to how to edit the appropriate combination of functional areas. 'Sample type LOC variants accept and analyze nucleic acid or protein contents of sample types in a variety of liquid forms, including but not limited to blood and blood products, saliva, cerebrospinal fluid, urine, semen, Amniotic fluid, cord blood, milk, sweat, pleural effusion, tears, pericardial fluid, ascites, environmental water samples and beverage samples. Amplicon obtained from macronucleic acid amplification can be analyzed using the LOC device; in this case, all reagent reservoirs will be empty or configured to not release their contents, the dialysis, cell The solubilizing, incubation and amplification zone is only used to transport the sample from the sample inlet 68 to the hybrid chamber 180 for nucleic acid detection, as described above. Some sample types may require a pretreatment step. For example, the semen may need to be liquefied prior to placing the semen and mucus into the LOC device. The mucus may need to be pretreated with an enzyme to reduce viscosity. Sample Placement Referring to Figures 1 and 12, the sample is applied to a large sump 24 of the test module 1 。. The large sump 24 is a truncated cone and the sample can be fed into the inlet 68 of the LOC unit 301 via capillary action. Here, the sample will flow into the 64 μηι wide -51 - 201209404 X 60 μηη deep top cover channel 94 where the sample is also pulled through the capillary action to the anticoagulant reservoir 54. Reagent reservoirs The volume of reagents required for assay systems using microfluidic devices (e.g., LOC device 301) is small, such that each reagent reservoir contains all of the reagents required for biochemical treatment, even if it has a small volume. This volume can easily be less than 1,000,000,000 cubic microns, in most cases less than 300,000,000 cubic microns, typically less than 70,000,000 cubic microns and the LOC device 301 shown in the figures is less than 20,000,000 cubic microns. . Dialysis Zone Referring to Figures 15 through 21, 33 and 34, the pathogen dialysis zone 70 is designed to concentrate pathogenic target cells from the sample. As previously described, a plurality of apertures in the form of a 3 micron diameter hole 164 in the top wall layer 66 filter the target cells from the sample body. As the sample flows through a 3 micron diameter orifice 1 64, microbial pathogens enter the series of dialysis MST channels 204 through the holes and flow back to the target channel 74 via the 16μπα dialysis upper pilot hole 168 (see paragraph 3 3 3 4 picture). The remainder of the sample (red blood cells, etc.) will remain in the top cover channel 94. Downstream of the pathogen dialysis zone, the canopy channel 94 becomes a waste channel 72 that directs waste to the waste reservoir 76. For a type of biological sample that will produce a substantial amount of waste, the bubble illustration or other apertured element 49 in the test module 1 〇 housing 13 can be configured to be in fluid communication with the waste reservoir 76 (see paragraph 1) Figure). -52- 201209404 The pathogen dialysis zone 70 is fully functional by the capillary action of the fluid sample. The 3 micron diameter orifice 164 at the upstream end of the pathogen dialysis zone 70 has capillary actuation features (CIFs) 166 (see Figure 33) so that fluid can be pulled down to the dialysis MST channel 204 below. The first upper pilot hole 198 of the target channel 74 also has a CIF 202 (see Figure 15) to avoid fluid flow to simply secure the meniscus to the orifice of the entire dialysis upper pilot hole 168. The small component dialysis zone 682, shown schematically at Figure 79, can have a configuration similar to the pathogen dialysis zone 70. The small component dialysis zone can separate all small target cells or molecules from the sample by small holes of different sizes (if desired, by different shapes), which allow small target cells or molecules to pass through. And enter the target channel and continue for further analysis. Larger cells or molecules are moved to waste reservoir 766. Thus, the LOC device 30 (see Figures 1 and 112) is not limited to isolation of pathogens less than 3 microns in size, and can be used to isolate cells or molecules of any desired size. Cytolysis zone Referring back to Figures 7, 11, and 13, the ruminant material in the sample can be released from the cell by chemical cytolysis. As discussed above, the lysing reagent from the lysis reservoir 56 will mix with the sample stream within the target channel 74 downstream of the surface tension valve 128 of the lysate reservoir 56. However, some diagnostic tests are more suitable for the treatment of target cells by thermocytolysis, even in combination with chemical cytolysis and thermocytolysis. The LOC device 301 can accommodate this problem by the heated microchannel 210 of the incubation zone 114. The sample stream was filled 1 in the incubation zone and stopped at the boiling-starting valve 1〇6. Incubating the microchannel 210 heats the -53-201209404 sample to the temperature at which the cell membrane collapses. In some thermocytolytic applications, the enzyme reaction is not required in the chemical cytolysis zone 130 and the thermocytolysis completely replaces the enzyme reaction in the chemical cytolysis zone 130. Boiling Start Valve As discussed above, the LOC unit 301 has three boiling start valves 126, 106 and 108. The location of these valves is shown in Figure 6. Figure 31 shows an enlarged plan view of the boiling start valve 108 at the end of the heated microchannel 158 of the amplification zone 112. The sample stream 1 19 is pulled by the capillary action along the heated microchannel 158 to the boiling start valve 108 to stop. The meniscus 丨2〇 before the sample flow is fixed to the meniscus anchor 98 of the valve inlet 146. The geometry of the meniscus anchor 98 stops the forward meniscus and blocks capillary flow. As shown in Figures 31 and 3, the meniscus anchor 98 is an aperture provided from the MST channel 90 to the conduit opening above the canopy channel 94. The surface tension of the meniscus 1 2 令 causes the valve to close. An annular heater 152 surrounds the valve inlet 146. The annular heater 152 is CMOS-controlled through the boiling start valve heater contact 153. To open the valve, the CMOS circuit 86 sends a current pulse to the valve heater contact 153. The annular heater 152 is resistively heated until the liquid sample 119 is boiled. Boiling disintegrates the meniscus 120 of the valve inlet 146 and causes the cap passage 94 to wet. . Once the top cover passage 94 begins to wet, the capillary flow resumes. The fluid sample 1 1 9 is filled with the top cover channel 94 'flows through the valve down conduit 1 50 to the valve outlet 1 4 8 where the capillary drive flow continues along the amplification zone exit channel 160 into the hybrid and detection zone 52. The liquid sensor 174 is placed before or after the valve for diagnosis. It should be understood that once the boiling start valve is opened, it cannot be closed. However, since the LOC device 310 and the test module 10 are used and lost, it is not necessary to close the valves. Incubation area and nucleic acid amplification area Figures 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50 and 51 show the incubation area 1 14 and the amplification area 1 1 2 . The incubation zone 141 has a single heated incubation microchannel 210 etched into a sputum pattern that is located in the lower conduit opening 134 leading to the MST channel layer 100 of the boiling starter valve 106 (see Figures 13 and 14). Temperature control of the incubation zone 1 14 allows the enzyme reaction to proceed with better performance. Similarly, the amplification zone 112 has a heated amplifying microchannel 158 that is connected to the boiling starter valve 108 from the boiling start valve 1〇6 in a 蜿蜒 configuration (see Figures 6 and 14). These valves block the flow so that the target cells remain in the heat-cultured or amplified microchannels 210 or 158 for mixing, incubation, and nucleic acid amplification. The ruthenium pattern of the microchannel also accelerates (to some extent) the mixing of target cells with reagents. The sample cells and reagents in the incubation zone 1 14 and the amplification zone 1 1 2 are heated by a heater 154 controlled by a pulse width modulation (PWM) CMOS circuit 86. Each of the meandering configurations of the heated incubation microchannel 210 and the amplification microchannel 158 has three independently operable heaters 154 extending between their individual heater contacts 156 (see Figure 14). These contacts provide two-dimensional regulation of the input heat flux density. As best shown in Figure 51, the heater 1 54 is supported by the top wall layer 66 and embedded in the lower seal 64. The heater material is TiA1 -55- 201209404, but other conductive metals can also be used. The elongated heaters 154 are parallel to the longitudinal portions of the respective channel regions which form the wide meandering shape of the meandering shape. In the amplification zone 112, each wide stream can be manipulated as a separate PCR chamber by individual heaters. The size of the amplicon required for an assay system employing a microfluidic device, such as LOC device 301, is so small that the desired volume of the amplification mixture of the amplification zone 112 is also small. This volume can easily be less than 400 nanoliters, and in most cases it is less than 170 nanoliters, typically less than 70 nanoliters, and in the case of LOC device 310, it is 2 nanoliters to 30 nanoliters. between. Higher heating rates and better diffusion mixing Small cross-sections of each channel zone increase the heating rate of the augmentation fluid mixture. All fluids are kept at a fairly short distance from the heaters 154. Reducing the cross-section of the channel (this is the cross-section of the augmented microchannels 158) to less than 100,000 square microns is much higher than that of devices with more "large size". The etch fabrication technique allows the ablation microchannels 158 to have a cross-sectional area perpendicular to the fluid-flow path of less than 1 6,000 square microns, which provides a substantially higher heating rate. The feature members of the size of about 1 micrometer are easily provided by etching techniques. If a very small amplicon is required (as in the case of the LOC device 310), the cross-sectional area can be reduced to less than 2,500 square microns. For diagnostic assays containing 1, 〇〇〇 to 2,000 probes on the LOC device and requiring less than 1 minute from "sample placement" to "result output", preferably perpendicular to the flow The size of the area should be between 400 square microns and 1 square micron. -56- 201209404 The heating element in the amplification microchannel 158 can be heated at a rate of more than 80 Kelvin (K) per second, and in most cases at a rate of more than 1 sec per second. sequence. Typically, the heating element can heat the nucleic acid sequences at a rate of more than one, 〇〇〇 K per second, and in many instances the heating elements heat the nucleic acid sequences at a rate of more than 10,000 K per second. Frequently, based on the requirements of the calibration system, the heating element can be used in excess of 100,000 K per second, over 1,000,000 K per second, and over 10. per second. 000.  000 K, more than 20,000,000 K per second, more than 40 per second. 000.  000 K, over 80,000,000 K per second and over 160 per second. 000.  A speed of 000 K to heat the nucleic acid sequences. The passage of the small cross-sectional area is also advantageous for diffusion mixing of all reagents with the sample fluid. Before the diffusion mixing is completed, the diffusion of one liquid to the other is the fastest near the junction. The concentration decreases as the distance from the interface increases. By using a microchannel with a smaller cross-section perpendicular to the flow direction, both fluids can flow close to the interface and diffuse and mix more quickly. Shrinking the cross-section of the channel to less than 100,000 square microns provides a much higher mixing rate than a device that uses a larger "large size". The etch fabrication technique produces microchannels having a cross-sectional area perpendicular to the flow path of less than 1600 square microns, which significantly provides a higher mixing rate. If a small volume is required (as in the case of LOC device 301), the cross-sectional area can be reduced to less than 2,500 square microns. For diagnostic tests that have 1,000 to 2,000 probes on the LOC device and must be less than 1 minute from "sample placement" to "result-output", the cross-sectional area of the channel perpendicular to the flow is preferably 400 Between square microns and 1 square micron. -57- 201209404 Short Thermal Cycle Time Keeping the sample mixture close to the heater and using a very small fluid volume allows for rapid thermal cycling during nucleic acid amplification. For a target sequence of up to 150 base pairs (bp) long, each regenerative cycle (i.e., denaturation, binding, and primer extension) is completed in less than 30 seconds. In most diagnostic tests, 'individual thermal cycling time is less than 11 seconds, and most will be less than 4 seconds. The LOC device 30, which contains some of the most common diagnostic tests, has a thermal cycle time of between 145 and 1.25 seconds for a target sequence of up to 150 bp. This rate of thermal cycling allows the test module to complete the nucleic acid amplification process in less than 10 minutes, usually in less than 22 seconds. For most assays, the amplification zone produces sufficient amplicons from the sample fluid entering the sample inlet in less than 80 seconds. For many verifications, enough amplification can be generated in 30 seconds. After completing the current number of amplification cycles, the amplicon can be fed to the hybrid and detection zone 52 via the boiling start valve 1 〇 8. Hybrid Chambers Figures 52, 53, 54, 56, and 57 show the hybrid chamber 180 of the hybrid chamber assay 110. The hybrid and detection zone 52 has a 24x45 array of hybrid chambers. The array of arrays 1 10 ′ each has a hybrid reactive FRET probe 186, a heating element 182, and an integrated photodiode 184. The photodiode 184 is inserted to detect fluorescence generated by the target nucleic acid sequence or protein hybridized with the F R E T probe 186. Each photodiode 184 is independently controlled by a CMOS circuit 86. Any substance between the -58-201209404 FRET probe 186 and the photodiode 184 must be transparent to the radiation. Accordingly, the wall region 97 between the probe 186 and the photodiode 184 is also optically transparent to the emitted light. In the LOC device 301, the wall region 97 is a thin layer of cerium oxide (about 0. 5 microns). Incorporating the photodiode 184 directly under each of the hybrid chambers 180 allows the probe-target hybrid to be small in size while still producing a detectable fluorescent signal (see Figure 54). The small amount allows the hybrid chamber to have a small volume. The detectable amount of probe-target hybrid requires a probe before the hybridization, which is easily less than 270 pg (equivalent to 900,000 cubic microns), in the vast majority of cases Less than 60 picograms (equivalent to 200,000 cubic micrometers), typically less than 12 picograms (equivalent to 40,000 cubic micrometers), and the LOC device 301 shown in the following figures is less than 2. 7 picograms (equivalent to a chamber volume of 9,000 cubic microns). Of course, reducing the size of the hybrid chamber allows for a higher density of hybrid chambers and thus more probes can be placed on the LOC device. In LOC device 301, the hybrid region has more than one chamber (i.e., less than 2250 square microns per chamber) in an area of 1500 microns by 15 microns. The smaller volume also reduces reaction time, making hybridization and detection faster. Another advantage of the small amount of probe required for each chamber is that only a small amount of probe solution needs to be added to each chamber during manufacture of the LOC device. In the specific example of the LOC device of the present invention, a probe solution of 1 picoliter or less may be added. After nucleic acid amplification, the boiling start valve 1 〇 8 is activated and the amplicon flows along the flow path 176 into each of the hybrid chambers 18 (see Figures 52 and 56). When the hybrid chamber 18 is filled with amplicons, an endpoint liquid sensor 178 will display this phenomenon and -59-201209404 heater 1 8 2 will be activated. After ample mixing time, the LED 26 (see Figure 2) will be activated. The opening of each of the hybrid chambers 180 provides an optical window 136 for exposing the FRET probe 186 to excitation radiation (see Figures 52, 54 and 56). The LED 26 is illuminated for a period of time sufficient to cause the probe to emit a high intensity fluorescent signal. During the excitation, the photodiode U4 is short-circuited. After a period of time delay of 300 (see Figure 2), the photodiode 184 is activated and detects fluorescence emission when there is no excitation light. The incident light that is incident on the active region 185 (see Fig. 54) of the photodiode 184 is converted into a photocurrent, which is then measured by a CMOS circuit 86. Each of the hybrid chambers 180 is equipped with a probe for detecting a single target nucleic acid sequence. If necessary, each of the hybrid chambers can be equipped with probes capable of detecting more than one different target. Alternatively, the same probe can be loaded into many or all of the hybrid chambers to repeatedly detect the same target nucleic acid. Repeating the loading of such probes in this manner across the array of hybrid chambers 1 10 can increase the confidence of the results obtained; if desired, such results can be obtained by light diodes in close proximity to such hybrid chambers. Combine into a single result. Those skilled in the art will be aware of the specifications of the inspection. There may be from 1 to more than one different probes on the array 11 of the hybrid chamber. Humidifier and Humidity Sensor The illustration AG of Figure 6 indicates the location of the humidifier i96. The humidifier prevents reagents and probes from evaporating during operation of the L Ο C unit. The magnified view of Figure 5 is best shown as a water reservoir! 8 8 will be connected to the three evaporators 1 9 〇 with -60- 201209404 fluid. The reservoir i 8 8 is loaded with molecular biology-grade water and sealed during manufacture. As best shown in Figures 55 and 68, water is drawn into the three lower conduits 194 and flows into the three upper conduits 193 of the evaporator 190 along the individual water supply passages i92 by capillary action. - The meniscus is fixed to each of the upper ducts 193 to retain water. The evaporator has an annular heater 191 that encloses the upper conduit 193. The ring heater 191 is connected to the CMOS circuit 86 by a conductive stem 768 connected to the metal top layer 195 (see Fig. 37). When the ring heater 191 is activated, the heater heats the water to cause evaporation and humidify the surrounding portion of the device. The position of the humidity sensor 232 is also shown in Figure 6. However, as best shown in the enlarged view of the illustration AH of Fig. 63, the humidity sensor has a capacitive comb structure. A first electrode 296 etched by an etching technique and another second electrode 298 etched by an etching technique face each other and the comb teeth are interleaved. The opposite electrode forms a capacitor having a capacitance that can be monitored by CMOS circuitry 86. As the humidity increases, the dielectric constant of the air gap between the electrodes increases, so the capacitance also increases. The humidity sensor 23 2 is adjacent to the hybrid chamber array 110, where humidity measurement is of the utmost importance to mitigate evaporation of the solution containing the exposed probe. The feedback sensor insulates the temperature and liquid sensors into the entire L0C device 3〇1 to provide feedback and diagnostics during operation of the device. Referring to Figure 35, there are nine temperature sensors 170 scattered throughout the amplification zone 112° similarly. The incubation zone 114 also has nine temperature sensors 1 70 ° These sensors all use a 2x2 array of bipolar-61 - 201209404 Contact Junction Transistors (BJTs) to monitor fluid temperature and provide feedback to CM〇s circuit 86. The CMOS circuit 86 uses this feedback to precisely control the thermal cycling during thermal amplification and the thermal lysis and incubation during incubation. In the hybrid chamber 180, the CMOS circuit 86 uses a hybrid heater 182 as a temperature sensor (see Fig. 56). The resistance of the hybrid heater 182 is temperature dependent and the CMOS circuit 86 utilizes this characteristic to derive temperature readings for each of the hybrid chambers 180. The LOC device 301 also has a plurality of MST channel liquid sensors 174 and a cap channel liquid sensor 208. Figure 35 shows a row of M S T channel liquid sensors 丨 74 at one end of each of the spaced meanders in the heated microchannel 158. As best shown in FIG. 3, the MST channel liquid sensor 1 74 is a pair of electrodes formed by exposed regions of the metal top layer 195 within the CMOS structure 86. The liquid closes the circuit between the electrodes and indicates the presence of liquid at the location of the sensor. Figure 25 shows an enlarged perspective view of the top cover channel liquid sensor 208. Opposite electrical TiAl electrode pairs 218 and 22 are deposited on top wall layer 66. Between the electrodes 2 18 and 2 2 0 is a gap 2 2 2 which keeps the circuit clear when there is no liquid. The presence of liquid shuts down this circuit and CMOS circuit 86 uses this feedback to monitor the flow. Gravity Irrelevance Test Module 1 is not affected by orientation. They do not need to be fixed to operate on a smooth surface. The capillary drive flow flows and no external tubing is connected to the auxiliary device, making the modules truly portable and simply plugging in a portable handheld reader such as a mobile phone like -62 - 201209404. Operations that are not related to gravity mean that the test modules are also unrelated to acceleration at all utility levels. They are resistant to violent vibrations and vibrations and can be operated on mobile vehicles or when carrying mobile phones with them. Dialysis-Modified White Blood Cell Target The dialysis design described above in the LOC device 30 1 targets the pathogen. Figure 64 is a schematic cross-sectional view of a dialysis zone 328 designed to concentrate white blood cells from a blood sample for human DNA analysis. It should be understood that this structure is substantially identical in structure to the pathogen dialysis zone 70 described above, but with a diameter of 7. A small hole in the form of a 5 micron hole 165 limits the white blood cell from flowing from the canopy channel 94 to the dialysis MST channel 204. In the case where the analysis sample is a whole blood sample and the hemoglobin from the red blood cells interferes with the subsequent reaction step, addition of the red blood cell cytolysis buffer (see Fig. 22) in addition to the anticoagulant added to the reservoir 54 will be available. It is ensured that most of the lysed red blood cells (and thus their heme) can be removed from the sample during the dialysis step. A commonly used red blood cell lysis buffer is 0. 15M NH4CL, 10mM KHC03, O. lmM EDTA, pH 7. 2-7. 4. However, those skilled in the art know that any buffer that is effective for lytic red blood cells can be used. Downstream of the leukocyte dialysis zone 328, the cap channel 94 becomes the target channel 74, so the white blood cells continue to remain as part of the assay. Further, in this example, the dialysis upper tube aperture 168 will lead to the waste channel 72 to remove all of the smaller cells and components within the sample. It should be noted that this dialysis -63-201209404 variant will only reduce the concentration of unwanted samples in the target channel 74. Fig. 80 is a schematic view showing a large component dialysis zone 668 which can also separate any large target component from the sample. The pores of this dialysis zone are sized and shaped to retain the large target component of interest in the target channel for further analysis. When using the leukocyte dialysis zone described above, most, but not all, of the smaller cells, organisms or molecules will flow to the waste reservoir 768. Therefore, other specific examples of the LOC device are not limited to being able to separate only larger than 7. A 5 micron white blood cell can also be used to isolate cells, organisms or molecules of any desired size. Dialysis zone for preventing trapped air bubbles by flow channels The following is a specific example of a LOC device called LOC variant VIII 518 and is shown in Figures 73, 74, 75 and 76. The LOC device has a dialysis zone filled with a fluid sample and without trapped bubbles within the channel. The LOC variant VIII 518 also has an additional layer of material known as interface layer 594. The interface layer 594 is located between the top pass channel layer 80 and the MST channel layer 100 of the CMOS + MST device 48. The interfacial layer 594 allows for more complex fluid interconnections between the reagent reservoir and the M S T layer 87 without increasing the size of the crucible substrate 84. Referring to Fig. 74, the bypass passage 600 is designed to introduce a time delay when the fluid sample stream flows from the interface waste passage 604 to the interface target passage 602. This time delay allows the fluid sample to flow through the dialysis MST channel 240 to the dialysis upper conduit 168 where a meniscus is secured. The sample fluid from the dialysis MST channel 204 will flow from all of the dialysis upper conduits 1 68 by capillary actuation of the conduits located in the bypass passage 600 to the conduit above the interface target passage 602 (CIF) 202. One point begins to gradually fill the interface target channel 602. Without the bypass channel 6 00, the interface target channel 62 will still be charged from the upstream end, but the forward-moving meniscus will eventually reach and pass over the unfilled MST channel. And trap the air at this point. The trapped air reduces the flow rate of the sample stream through the white blood cell dialysis zone 3 28 . Pre-hybridization filtration - a variant of the LOC device, LOC Variant XII 75 8 uses a small component dialysis zone 682 placed at the exit of the amplification zone 112 (see Figures 96-103). The small component dialysis zone 682 provides a pre-hybrid filtration purification period of 293 (see Figure 96). Filtration before hybridization removes cell debris that remains in the sample stream after cell lysis. Hybridization is affected by cell debris, so it is useful to reduce the concentration of cell debris before mixing. Referring to Figures 101, 102 and 103, the small component dialysis zone 682 has three adjacent channels built into the bottom channel layer 100: a large component channel 760 sandwiched between two small component channels 762. Along the sides of the large component channel 760, there are a series of apertures in the form of inverted tapered openings 764 that allow the large component channels 760 to be fluidly coupled to the small component channels 762. In most practical applications, the orifice is 1 to 8 microns wide and 1 to 8 microns high. When the sample flows down to the large component channel 760, particles that are small enough to pass through the inverted cone opening (eg, the amplicon) will flow into the small component channels 762-65-201209404' while larger particles (eg, cells) The residue is left in the Dacheng large component channel and ends at a closed end 766. The smaller component channels continue to flow to the hybrid chamber array 1 〇 and the opposite ones follow the 蜿蜒 path through the array to their respective 妾 11 3). These small component amplicons will be in the hybrid chamber 180 before detection.

核酸擴增變化型 直接PCR 傳統地’ PCR需要在製備反應混合物前 徹底的純化。然而,藉由適當的變更化學性 ’可以在些微DNA純化後進行核酸擴增或者 擴增。當核酸擴增流程爲PCR時,此方法被 。當LOC裝置中核酸擴增係在控制的恆定溫 此方法爲直接等溫擴增法。直接核酸擴增技 置時’特別是所需之流體設計的簡化方面, 。直接P C R或直接等溫擴增法對擴增化學性 增加緩衝液強度、使用具有高活性及連續效 以及可螯合潛在聚合酶抑制劑之添加劑。試 稀釋也很重要。 爲了利用直接核酸擴增技術之優勢,該 計倂入了兩個額外的特徵構件。第一個特徵 存器(例如第8圖之貯存器5 8 ),其大小剛 份量之擴增混合物或稀釋劑,因此可能會干 分通道內,該 顆粒則沿著小 側,於此處兩 ί閉端768 (見 塡滿所有的個 將目標D Ν Α作 質及試樣濃度 直接進行核酸 稱爲直接PCR 度下進行時, 術用於L Ο C裝 有相當多優點 質之調整包括 能之聚合酶, 樣內抑制劑之 LOC裝置之設 構件爲試劑貯 好可供應足夠 擾擴增化學之 -66- 201209404 試樣成分之終濃度會低得足以成功的進行核酸擴增。非細 胞之試樣成分所需的稀釋程度爲5X到20X的範圍。在能適 當地確定目標核酸序列之濃度被維持在足以擴增及偵測之 高程度的情況下,可以採用不同的LOC結構例如第4圖之 病原體透析區70。於此具體例(進一步地於第6圖中顯示 )中,於試樣萃取區290之上游有一透析區,其能有效地 濃縮小得足以進入擴增區292之病原體,並拒斥較大細胞 而把較大細胞送至廢棄物貯槽76。於另一具體例中,係使 用透析區來選擇性地除去血漿中的蛋白質及鹽類而保留欲 硏究之細胞。 第二個能支持直接核酸擴增之LOC構造特性爲藉著通 道寬高比之設計以調整試樣及擴增混合物成分之混合比例 。舉例來說,爲了確保單一混合步驟可將試樣中伴隨之抑 制劑稀釋到較佳的5X到2 0X之範圍,因此試樣及試劑通道 之長度及橫切面都經過設計,使得開始發生混合之位置上 游處的試樣通道造成的流動阻抗高出試劑混合物流動通道 之流動阻抗4X到1 9X。對微通道內流動阻抗之控制可透過 設計幾何特性的控制輕易地達成。當橫切面大小一定時, 微通道之流動阻抗隨著通道長度的增加而線性地提高。對 混合設計很重要地,微通道之流動阻抗更主要地視最小的 橫切面尺寸大小而定。例如,當寬高比非常不一致時,具 有長方型橫切面之微通道的流動阻抗係與最小正交尺寸之 立方體呈反比。 -67- 201209404 逆轉錄酶PCR ( RT-PCR) 當被分析或萃取之試樣核酸物種爲RNA例如來自RNA 病毒或信使RN A之RNA時,在進行PCR擴增前必需先把該 RNA逆轉錄爲互補DNA(cDNA)。該逆轉錄反應可於進行 PCR之同一室進行(單步驟RT-PCR)或其可由各別的初始 反應來進行(兩步驟RT-PCR )。於在此所述之LOC變化型 中,單步驟RT-PCR可簡單地藉著把逆轉錄酶以及聚合酶 加到試劑貯存器62中且以程式控制該加熱器1 54,使得溫 度循環先適於逆錄步驟而後再進入核酸擴增步驟。兩步驟 RT-PCR亦可輕易地藉著使用試劑貯存器58來儲存及配送 緩衝液 '引子、dN TPs及逆轉錄酶,且於培育區114進行逆 轉錄步驟接著以常見方式於擴增區1 1 2進行擴增來達成。 等溫核酸擴增 對於某些應用來說,等溫核酸擴增爲一種較佳的核酸 擴增方法,其可避免以不同的溫度循環重覆地循環加熱反 應成分之需求而替代性地把擴增區維持在一恆定溫度(典 型地約3 7 °C到4 1 °C )下。現在已有數種等溫核酸擴增法已 被描述,包括股置換擴增(SDA )、轉錄媒介擴增法( TMA)、核酸序列爲主之擴增法(NASBA ) '重組酶聚合 酶擴增法(RPA )、解旋酶-依賴等溫DNA擴增法(HDA ) 、滾環式擴增法(RCA )、網狀分枝擴增法(RAM )及環 媒介等溫擴增法(L A Μ P ),任何一種此等等溫擴增法或 其他等溫擴增法皆可用於在此所述之LOC裝置之詳細具體 -68- 201209404 例中。 爲了進行等溫核酸擴增,臨近擴增區之試劑貯存器60 及62中不再裝入PCR擴增混合物及聚合酶而替代地裝入該 特定等溫法之適用試劑。例如,就SDA方法而言,試劑貯 存器60含有擴增緩衝液、引子及dNTPs而試劑貯存器62則 含有適當的切口酶及Exo-DNA聚合酶。就RPA方法而言, 試劑貯存器60含有擴增緩衝液、引子、dN TPs及重組酶蛋 白質而試劑貯存器62則含有股替換性DNA聚合酶例如 。類似地,就HDA方法而言,試劑貯存器60含有擴增緩衝 液、引子及dNTPS而試劑貯存器62則含有適當的DNA聚合 酶及解旋酶以代替熱來把雙股DNA鏈解開來。熟悉此技術 人士將瞭解所需的試劑可用適合該核酸擴增方法之任何方 式分置於兩個試劑貯存器中。 對於來自RN A病毒例如HI V或C型肝炎病毒之病毒性核 酸的擴增而言’ NASB A或TM A方法很適合因爲它們不需要 先把RNA轉錄成cDNA。於此實例中,試劑貯存器60內裝 有擴增緩衝液、引子及dNTPs而試劑貯存器62則裝有RNA 聚合酶、逆轉錄酶及任意地RNase Η。 就某些形式之等溫核酸擴增法來說,在維持溫度以進 行等溫核酸擴增之前可能會需要先有一初步的變性循環來 把雙股DN Α模板分離開來。於在此所述之所有LOC裝置之 具體例中此目的可以很容易地達成,因爲擴增區112內之 混合物之溫度可由擴增微通道158內之加熱器154小心地控 制(見第14圖)。 -69- 201209404 等溫核酸擴增法對於試樣內可能的抑制劑較有耐受性 ,因此當需要從試樣作直接核酸擴增時此等方法通常較爲 適合。故而,等溫核酸擴增法有時可用在LOC變化型XLIII 673、LOC變化型 XLIV 674 及 LOC變化型 XLVII 677,此 等變化型分別見於第81、82及84圖。直接等溫擴增法亦可 結合一或多個擴增前(pre-amplification)透析步驟70、 686或682 (如第81及84圖所示)及/或雜合前(prehybridization) 透 析步驟 682 ( 如第 82圖所示 ) , 分 別有助 於在核酸擴增前部份地濃縮試樣內的目標細胞或者在試樣 進入雜合室陣列1 1 〇前除去的細胞殘渣。熟悉此技術者應 瞭解可採用任何擴增前透析及雜合前透析之任何組合。 等溫核酸擴增如第72、77及78圖示意表示般也可在平 行擴增區中進行,多重等溫核酸擴增法及有些等溫核酸擴 增法例如LAMP則可與一開始的逆轉錄步驟相容以擴增 RNA。 螢光偵測系統之更多細節 第58及59圖顯示雜合-反應性FRET探針2 3 6。此等探針 通常被稱爲分子指標且爲由單股核酸產生之莖環探針,其 在雜合到互補核酸時會發出螢光。第58圖顯示與目標核酸 序列2 3 8雜合前之單一 FRET探針23 6。該探針具有環240、 莖242、於5’端之螢光團246及於3’端之淬熄物248。環240 係由與目標核酸序列23 8互補之序列所構成。於探針序列 兩側之互補序列相互結合在一起而形成莖2 4 2。 -70- 201209404 在沒有互補目標序列時,該探針如第5 8圖所示般保持 著閉合。莖242使得螢光團-淬熄物對彼此很接近,因此這 兩者間可發生明顯的共振能量轉移,而實質地消滅了該螢 光團受到激發光線244照射後發出螢光的能力。 第59圖顯示打開或雜合構型之FRET探針236。在雜合 到互補目標核酸序列23 8以後,該莖環結構會瓦解,該螢 光團及淬熄物在空間上分隔開來,因此該螢光團246重獲 發射螢光之能力。螢光發射250可光學地偵測到而作爲該 探針已雜合之指標。 由於探針之莖螺旋係設計成比起不互補之單一核苷酸 的探針-目標物螺旋更穩定,所以此等探針會以極高的特 異性與互補目標物雜合。因爲雙股DNA相對地較剛硬,所 以探針-目標物螺旋及莖螺旋共存就空間上來說是不可能 的。 引子-連結探針 引子-連結之莖環探針及引子-連結之線性探針(另以 蠍探針爲人所知)爲另一種分子指標且可用於LOC裝置之 即時及定量核酸擴增。即時擴增係在LOC裝置之雜合室中 直接進行。使用引子連結探針的好處是探針元件會物理性 地連結上引子,因此在核酸擴增期間只需發生單一雜合事 件而不需要將引子及探針各別地雜合上去。如此一來可確 保此反應比使用各別的引子及探針能更有效地立即發生且 產生較強的信號、較短反應時間及更好的鑑別能力。該探 -71 - 201209404 針(以及聚合酶及擴增混合物)在製造期間被沉積在雜合 室1 80內,故而該LOC裝置上不需要個別的擴增區。另一 選擇地,可將該擴增區保留不用或者用於其他反應。 引子·連結之線性探針 第8 6及8 7圖分別顯示於首輪核酸擴增期間該引子-連 結之線性探針692以及後續核酸擴增期間呈雜合構型之該 探針。參考第86圖,該引子-連結之線性探針6 92具有雙股 之莖節段242。其中一股會倂入已與引子連結之探針序列 696,該序列與目標核酸696之一區域同源且於其5’端已用 螢光團246標記,於3’端則透過擴增阻斷物694連接到一寡 核苷酸引子700。該莖242之另一股於3’端用淬熄物基團 248標記。在首輪核酸擴增完成後,該探針會再圈成環狀 且以現在互補之序列69 8雜合到該延伸股上。在首輪核酸 擴增期間,該寡核苷酸引子7〇〇會結合到目標DNA 23 8上( 見第86圖)且然後延伸,形成同時含有探針序列及擴增產 物之DN A股鏈。擴增阻斷物694會防止聚合酶讀取並拷貝 探針區域696。於後續的變性過程中,延伸的寡核苷酸引 子700/模板雜合體會脫離,同樣地該引子-連結之線性探針 之雙股莖部242也會脫離而釋放該淬熄物248。一旦溫度降 低以進行結合及延伸步驟時,該引子-連接之線性探針之 引子連結探針序列696會捲曲起來且雜合到該延伸股上之 擴增互補序列6 9 8上且被偵測到螢光而顯示有目標DNA存 在。未延伸之引子連結之線性探針則保有它們的雙股莖部 -72- 201209404 且螢光仍維持在淬熄狀態。此偵測方法特別適合快速偵測 系統,因爲它依靠單-分子流程。 引子連結之莖環探針 第88 A至88 F圖顯示引子-連結之莖環探針7〇4之操作。 參考第88A圖,該引子-連結之莖環探針7〇4具有互補之雙 股DNA的莖部242及倂有探針序列之環部240。其中一股莖 部股70 8於5’端用螢光團246標記。另一股710於3’端用淬熄 物248標記且攜有擴增阻斷物694及寡核苷酸引子700。於 最初變性期期間(見第88B),目標核酸23 8之雙股彼此分 離,如同該引子-連結之莖環探針704之莖部242—般。當 溫度在結合期冷卻時(見第88C圖),於引子-連結之莖環 探針704上之寡核苷酸引子700會雜合到該目標核酸序列 23 8上。於延伸期間(見第88D圖),該目標核酸序列238 之互補體706被合成且形成同時含有探針序列704及擴增產 物兩者之DNA股。該擴增阻斷物694可防止聚合酶讀取及 拷貝該探針區域704。在變性之後探針接著結合時,該引 子-連結之莖環探針之環節段240之探針序列(見第88F圖 )會結合到該延伸股上的互補序列706上。此構型把螢光 團246留在離淬熄物248相對遙遠處,使得螢光發射顯著提 高。 控制探針 雜合室陣列11 〇包含一些具有正控制探針及負控制探 -73- 201209404 針之雜合室180以供檢定品質控制。第108及109圖示意地 顯示不含螢光團之負控制探針<796,第11〇及in圖則爲不 含淬熄物之正控制探針7 9 8之略圖。該正控制及負控制探 針具有類似上述FRET探針之莖環結構。然而,不論該等 探針係雜合成開放構型還是保持著閉鎖狀態,螢光信號 250總會由正控制探針798發射出來且負控制探針796則從 不發射出螢光信號250。 參考第108及109圖,負控制探針796不具螢光團(及 可有或不含淬熄物248)。因此,不論該目標核酸序列238 是否與探針雜合在一起(見第109圖),或者探針仍保持 著莖環構型(見第108圖),對激發光線244之反應皆可忽 略。另一選擇地,負控制探針796可被設計成總是保持著 淬熄狀態。例如,藉著把環部24〇合成成所含探針序列不 會雜合到硏究試樣內之任何核酸序列上,使得該探針分子 之莖部2 42與自身再雜合且螢光團及淬熄物維持著很接近 而不會有可察覺的螢光信號發射出來。此負控制信號相當 於雜合室180之低量發射,於雜合室中該等探針還沒有雜 合但淬熄物並沒有淬熄掉所有播報器之發射。 相反地,該正控制探針7 9 8可如第1 1 0及1 1 1圖所示地 被建構成不含淬熄物。不論該正控制探針7 98是否與目標 核酸序列23 8雜合,沒有任何東西會淬熄螢光團246對激發 光線244反應產生之螢光發射250。 第5 2圖顯示遍佈於雜合室陣列1 1 0之該正控制及負控 制探針(分別爲378及3 80 )之可能分佈。該等控制探針 -74- 201209404 378及380被置於雜合室180中排成一排橫跨該雜合室陣列 1 1 0。不過,陣列內控制探針之配置是隨意的(如同雜合 室陣列.1 10之構型般)。 螢光團設計 需要長螢光壽命之螢光團好讓該激發光線有足夠的時 間衰減到低於該螢光發射之強度,於這段時間內光感測器 44會被激活以提供足夠的信號對雜訊比。同樣地,較長螢 光壽命可轉化成較大之整合螢光光子計數(integrated fluorescence photon count )。 該螢光團246 (見第59圖)之螢光壽命會大於100奈秒 ,通常會大於200奈秒,更常見地大於300奈秒且於多數例 子中大於400奈秒。 以過渡金屬或鑭系金屬爲主之金屬-配體錯合物具有 長壽命(從數百奈秒到數毫秒)、適當的量子產率以及高 熱學、化學及光化學穩定性,此等特性都是螢光偵測系統 需要之有利性質。 一種以過渡金屬釕離子(Ru( II))爲主、經過特別詳 細地探討之金屬-配體錯合物爲三(2,2’-聯吡啶)釕(II) ([Ru(bpy)3]2+ ),其具有約1微秒(μβ)壽命。此錯合物 可從Biosearch Technologies公司以商標名Pulsar 650購得 -75- 201209404 表1 : Pulsar 6 5 0之光物理性質(釕螯合物)Nucleic Acid Amplification Variants Direct PCR Traditionally, PCR requires thorough purification prior to preparation of the reaction mixture. However, nucleic acid amplification or amplification can be performed after purification of some microDNA by appropriately changing the chemicality. This method is used when the nucleic acid amplification process is PCR. When the nucleic acid amplification in the LOC device is at a controlled constant temperature, this method is a direct isothermal amplification method. In the case of direct nucleic acid amplification techniques, it is particularly a simplified aspect of the desired fluid design. Direct P C R or direct isothermal amplification increases the buffer strength for amplification chemistry, uses additives with high activity and continuous efficacy, and sequesters potential polymerase inhibitors. Trial dilution is also important. In order to take advantage of the direct nucleic acid amplification technology, the program incorporates two additional features. The first feature register (such as the reservoir 58 of Figure 8), which is just the size of the amplification mixture or diluent, may therefore dry in the channel, the particles along the small side, here two ί Closed end 768 (see 塡 所有 将 将 将 将 将 将 将 将 将 将 将 将 将 将 将 将 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 768 The polymerase, the component of the LOC device of the intra-inhibitor is a reagent that can be supplied with sufficient scrambling chemistry. 66-201209404 The final concentration of the sample component will be low enough for successful nucleic acid amplification. The dilution required for the sample component is in the range of 5X to 20X. Different LOC structures such as the fourth can be used in cases where it is possible to appropriately determine that the concentration of the target nucleic acid sequence is maintained at a sufficient level for amplification and detection. The pathogen dialysis zone 70. In this specific example (further shown in Figure 6), there is a dialysis zone upstream of the sample extraction zone 290 which is effective to concentrate pathogens small enough to enter the amplification zone 292. And reject The large cells are sent to the waste storage tank 76. In another embodiment, the dialysis zone is used to selectively remove proteins and salts from the plasma while retaining the cells to be studied. The second one can support The LOC structural property of direct nucleic acid amplification is designed by adjusting the aspect ratio of the channel to adjust the mixing ratio of the sample and the components of the amplification mixture. For example, to ensure a single mixing step, the accompanying inhibitor in the sample can be diluted to Preferably, the range of 5X to 20X, so the length and cross section of the sample and reagent channels are designed such that the flow impedance of the sample channel upstream of the point at which mixing begins to occur is higher than the flow impedance of the reagent mixture flow channel. 4X to 1 9X. The control of the flow impedance in the microchannel can be easily achieved by the control of the design geometry. When the cross-section size is constant, the flow impedance of the microchannel increases linearly with the increase of the channel length. Very importantly, the flow impedance of the microchannel is more primarily dependent on the size of the smallest cross-section. For example, when the aspect ratio is very inconsistent, The flow impedance of a microchannel with a rectangular cross section is inversely proportional to the cube of the smallest orthogonal size. -67- 201209404 Reverse transcriptase PCR (RT-PCR) When the sample nucleic acid species being analyzed or extracted is RNA, for example from RNA of RNA virus or messenger RN A must be reverse transcribed into complementary DNA (cDNA) before PCR amplification. The reverse transcription reaction can be performed in the same chamber for PCR (single-step RT-PCR) or It can be performed by a separate initial reaction (two-step RT-PCR). In the LOC variants described herein, single-step RT-PCR can be performed simply by adding reverse transcriptase and polymerase to the reagent reservoir. The heater 1 54 is programmed and controlled in a manner such that the temperature cycle is first adapted to the reverse recording step and then to the nucleic acid amplification step. Two-step RT-PCR can also be used to store and dispense buffer 'primers, dN TPs, and reverse transcriptases by using reagent reservoir 58 and perform reverse transcription steps in incubation zone 114 followed by amplification in zone 1 1 2 amplification is achieved. Isothermal Nucleic Acid Amplification For some applications, isothermal nucleic acid amplification is a preferred method of nucleic acid amplification that avoids the need to repeatedly circulate and heat the reaction components at different temperature cycles. The build-up zone is maintained at a constant temperature (typically about 37 ° C to 41 ° C). Several isothermal nucleic acid amplification methods have been described, including strand displacement amplification (SDA), transcription vector amplification (TMA), and nucleic acid sequence-based amplification (NASBA) 'recombinase polymerase amplification. Method (RPA), helicase-dependent isothermal DNA amplification (HDA), rolling circle amplification (RCA), reticular amplification (RAM) and circular medium isothermal amplification (LA) Μ P ), any of these isothermal amplification methods or other isothermal amplification methods can be used in the detailed description of the LOC device described herein - 68-201209404. For isothermal nucleic acid amplification, the PCR amplification mixture and polymerase are no longer loaded into the reagent reservoirs 60 and 62 adjacent to the amplification zone, and the appropriate reagents for the particular isothermal method are instead loaded. For example, in the case of the SDA method, the reagent reservoir 60 contains amplification buffers, primers, and dNTPs, while the reagent reservoir 62 contains appropriate nicking enzymes and Exo-DNA polymerase. In the case of the RPA method, the reagent reservoir 60 contains amplification buffer, primers, dN TPs, and recombinase proteins, while the reagent reservoir 62 contains a stock-replacement DNA polymerase, for example. Similarly, in the case of the HDA method, the reagent reservoir 60 contains amplification buffer, primers and dNTPS and the reagent reservoir 62 contains the appropriate DNA polymerase and helicase to replace the heat to unwind the double stranded DNA strand. . Those skilled in the art will appreciate that the reagents required can be placed in two reagent reservoirs in any manner suitable for the nucleic acid amplification method. For the amplification of viral nucleic acids from RN A viruses such as HI V or hepatitis C virus, the 'NASB A or TM A method is well suited because they do not require transcription of the RNA into cDNA first. In this example, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, while reagent reservoir 62 contains RNA polymerase, reverse transcriptase, and optionally RNase®. For some forms of isothermal nucleic acid amplification, a preliminary denaturation cycle may be required to separate the double-stranded DN Α template prior to maintaining the temperature for isothermal nucleic acid amplification. This object can be readily achieved in the specific examples of all of the LOC devices described herein because the temperature of the mixture within the amplification zone 112 can be carefully controlled by the heater 154 within the amplification microchannel 158 (see Figure 14). ). -69- 201209404 Isothermal nucleic acid amplification is more tolerant to possible inhibitors in the sample, so these methods are generally suitable when direct nucleic acid amplification from the sample is required. Therefore, isothermal nucleic acid amplification methods are sometimes used in LOC variant XLIII 673, LOC variant XLIV 674 and LOC variant XLVII 677, which are found in Figures 81, 82 and 84, respectively. Direct isothermal amplification may also be combined with one or more pre-amplification dialysis steps 70, 686 or 682 (as shown in Figures 81 and 84) and/or prehybridization dialysis step 682. (as shown in Figure 82), respectively, to facilitate partial concentration of target cells in the sample prior to nucleic acid amplification or cell debris removed prior to entry of the sample into the array of hybrid chambers. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybrid dialysis can be employed. Isothermal nucleic acid amplification can also be performed in parallel amplification regions as shown schematically in Figures 72, 77, and 78. Multiple isothermal nucleic acid amplification methods and some isothermal nucleic acid amplification methods such as LAMP can be used with the initial The reverse transcription step is compatible to amplify the RNA. Further details of the fluorescence detection system Figures 58 and 59 show the hybrid-reactive FRET probe 2 3 6 . These probes are often referred to as molecular indicators and are stem-loop probes produced from single-stranded nucleic acids that fluoresce when hybridized to a complementary nucleic acid. Figure 58 shows a single FRET probe 23 6 prior to hybridization with the target nucleic acid sequence 2 3 8 . The probe has a ring 240, a stem 242, a fluorophore 246 at the 5' end, and a quencher 248 at the 3' end. Loop 240 is composed of a sequence complementary to the target nucleic acid sequence 238. The complementary sequences flanking the probe sequence are joined to each other to form stem 24 2 . -70- 201209404 When there is no complementary target sequence, the probe remains closed as shown in Figure 58. The stems 242 are such that the fluorophore-quenching species are in close proximity to each other, so that significant resonance energy transfer occurs between the two, substantially eliminating the ability of the fluorophore to emit fluorescence upon exposure to the excitation light 244. Figure 59 shows the FRET probe 236 in an open or hybrid configuration. After hybridization to the complementary target nucleic acid sequence 23 8 , the stem-loop structure collapses, and the fluorophore and quencher are spatially separated, so that the fluorophore 246 regains the ability to emit fluorescence. Fluorescent emission 250 is optically detectable as an indicator that the probe has been hybridized. Since the stem helix of the probe is designed to be more stable than the probe-target helix of a non-complementary single nucleotide, these probes will hybridize to the complementary target with very high specificity. Since the double-stranded DNA is relatively rigid, it is spatially impossible to coexist with the probe-target helix and the stem helix. Primer-Linked Probes Primer-linked stem-loop probes and primer-linked linear probes (also known as 蝎 probes) are another molecular indicator and can be used for both real-time and quantitative nucleic acid amplification of LOC devices. The immediate amplification is performed directly in the hybrid chamber of the LOC device. The advantage of using a primer to link the probe is that the probe element is physically linked to the primer, so that only a single hybrid event occurs during nucleic acid amplification without the need to separately mix the primer and the probe. This ensures that the reaction occurs more efficiently and with greater efficiency, shorter reaction times, and better discrimination than with the use of separate primers and probes. The probe -71 - 201209404 needle (and polymerase and amplification mixture) are deposited in the hybrid chamber 180 during manufacture, so that no separate amplification regions are required on the LOC device. Alternatively, the amplification region can be left unused or used in other reactions. Primer-Linked Linear Probes Figures 8 6 and 8 7 show the primer-ligated linear probe 692 and the probe in a heterozygous configuration during subsequent nucleic acid amplification, respectively, during the first round of nucleic acid amplification. Referring to Fig. 86, the primer-linked linear probe 6 92 has a double-stranded stem segment 242. One of them will break into a probe sequence 696 that has been linked to a primer, which is homologous to a region of the target nucleic acid 696 and has been labeled with a fluorophore 246 at its 5' end and amplifying at the 3' end. The fragment 694 is coupled to an oligonucleotide primer 700. The other strand of the stem 242 is labeled with a quencher group 248 at the 3' end. Upon completion of the first round of nucleic acid amplification, the probe will be looped again and hybridized to the extended strand with the now complementary sequence 69 8 . During the first round of nucleic acid amplification, the oligonucleotide primer binds to the target DNA 23 8 (see Figure 86) and then extends to form a DN A strand that contains both the probe sequence and the amplified product. Amplification blocker 694 prevents the polymerase from reading and copying probe region 696. During subsequent denaturation, the extended oligonucleotide primer 700/template hybrid will detach, and likewise the double stem stem 242 of the primer-ligated linear probe will also detach and release the quencher 248. Once the temperature is lowered for the binding and extension steps, the primer-ligated linear probe primer-linking probe sequence 696 is curled and hybridized to the amplified complementary sequence 6.8 on the stretched strand and detected Fluorescent shows the presence of target DNA. Linear probes with unextended primers retain their twin stems -72 - 201209404 and the fluorescence remains quenched. This detection method is especially suitable for fast detection systems because it relies on a single-molecule process. Primer-Linked Stem Ring Probes Figures 88A through 88F show the operation of the primer-ligated stem loop probe 7〇4. Referring to Fig. 88A, the primer-ligated stem-loop probe 7〇4 has a stem portion 242 of complementary double-stranded DNA and a loop portion 240 having a probe sequence. One of the stem strands 70 8 is marked with a fluorophore 246 at the 5' end. Another strand 710 is labeled with quencher 248 at the 3' end and carries amplification blocker 694 and oligonucleotide primer 700. During the initial degeneration period (see 88B), the double strands of the target nucleic acid 23 8 are separated from each other, as is the stem portion 242 of the primer-linked stem-loop probe 704. When the temperature is cooled during the binding phase (see Figure 88C), the oligonucleotide primer 700 on the primer-ligated stem loop probe 704 will hybridize to the target nucleic acid sequence 23 8 . During extension (see Figure 88D), the complement 706 of the target nucleic acid sequence 238 is synthesized and forms a DNA strand containing both the probe sequence 704 and the amplified product. The amplification blocker 694 prevents the polymerase from reading and copying the probe region 704. Upon subsequent binding of the probe after denaturation, the probe sequence of the link segment 240 of the primer-ligated stem-loop probe (see Figure 88F) will bind to the complementary sequence 706 on the extended strand. This configuration leaves the fluorophore 246 relatively remote from the quencher 248, resulting in a significant increase in fluorescence emission. Control Probes The Hybrid Chamber Array 11 contains a number of hybrid chambers 180 with positive control probes and negative control probes -73-201209404 for quality control. Figures 108 and 109 schematically show the negative control probes without fluorophores <796, and the 11th and in maps are thumbnails of the positive control probes 798 without quenching. The positive and negative control probes have a stem-loop structure similar to the FRET probe described above. However, regardless of whether the probes are in a heterozygous open configuration or remain locked, the fluorescent signal 250 will always be emitted by the positive control probe 798 and the negative control probe 796 will never emit the fluorescent signal 250. Referring to Figures 108 and 109, the negative control probe 796 does not have a fluorophore (and may or may not contain quencher 248). Thus, regardless of whether the target nucleic acid sequence 238 is hybridized to the probe (see Figure 109), or the probe remains in the stem-loop configuration (see Figure 108), the response to the excitation ray 244 is negligible. Alternatively, the negative control probe 796 can be designed to remain in a quenched state at all times. For example, by synthesizing the loop portion 24 into a contained probe sequence, it does not hybridize to any of the nucleic acid sequences in the sample, such that the stem portion 2 42 of the probe molecule is hybridized with itself and the fluorophore The quenching material is kept in close proximity without a noticeable fluorescent signal being emitted. This negative control signal is equivalent to the low amount of emission in the hybrid chamber 180 where the probes are not hybridized but the quencher does not quench the emission of all of the reporters. Conversely, the positive control probe 798 can be constructed to be free of quenching as shown in Figures 1 1 and 1 1 1 . Regardless of whether the positive control probe 7 98 is heterozygous to the target nucleic acid sequence 23 8 , nothing will quench the fluorescent emission 250 produced by the reaction of the fluorophore 246 with the excitation light 244. Figure 5 2 shows the possible distribution of the positive and negative control probes (378 and 380, respectively) throughout the hybrid chamber array 110. The control probes -74 - 201209404 378 and 380 are placed in the hybrid chamber 180 in a row across the array of hybrid chambers 110. However, the configuration of the control probes within the array is arbitrary (as in the configuration of the hybrid chamber array. 1 10). The fluorophore design requires a long fluorescent lifetime fluorophore so that the excitation light has sufficient time to decay below the intensity of the fluorescent emission, during which time the photo sensor 44 is activated to provide sufficient Signal to noise ratio. Similarly, a longer fluorescence lifetime can be converted to a larger integrated fluorescence photon count. The fluorescence lifetime of the fluorophore 246 (see Figure 59) will be greater than 100 nanoseconds, typically greater than 200 nanoseconds, more typically greater than 300 nanoseconds, and greater than 400 nanoseconds in most instances. Metal-ligand complexes based on transition metals or lanthanide metals have long lifetimes (from hundreds of nanoseconds to milliseconds), appropriate quantum yields, and high thermal, chemical, and photochemical stability. It is a beneficial property of the need for a fluorescent detection system. A metal-ligand complex which is mainly composed of transition metal ruthenium ions (Ru(II)) and which has been studied in detail is tris(2,2'-bipyridyl) ruthenium (II) ([Ru(bpy)3) ]2+), which has a lifetime of about 1 microsecond (μβ). This complex is available from Biosearch Technologies under the trade name Pulsar 650 -75- 201209404 Table 1: Photophysical properties of Pulsar 6 50 (ruthenium chelate)

參數 符號 數値 單位 吸收波長 ^abs 460 nm 發射波長 ^em 650 nm 消光係數 E 14800 M-1cm-1 螢光壽命 Tf 1.0 μs 量子產率 Η 1 (去氧化) N/A 铽螯合物,一種鑭系金屬-配體錯合物已成功地顯示 爲FRET探針系統之螢光播報器且具有ι600μ3之長壽命。Parameter symbol number 値 unit absorption wavelength ^abs 460 nm emission wavelength ^em 650 nm extinction coefficient E 14800 M-1cm-1 fluorescence lifetime Tf 1.0 μs quantum yield Η 1 (deoxidation) N/A bismuth chelate, a kind Lanthanide metal-ligand complexes have been successfully shown as fluorescent reporters for the FRET probe system and have a long lifetime of ι 600 μ3.

表2 :铽螯合; 吻之光物理性質 參數 符號 數値 單位 吸收波長 ^abs 330-350 nm 發射波長 λέπι 548 nm 消光係數 Ε 13800 (kbs及配體依賴性, 可高達30000 @ λε = 340 nm) 螢光壽命 Xf 1600 (已雜合探針) Ms 量子產率 Η 1 (配體依賴性) N/A 該LOC裝置3 01所用之螢光系統不使用濾鏡除去無用 之背景螢光。故而,爲了增加信號對雜訊比,如果該淬熄 物248沒有本質發射(native emission)會很有利。沒有本 質發射時,淬熄物248不會提供背景螢光。高淬熄效率也 很重要,如此一來要直到有雜合事件發生才會有螢光。來 自 Novato California 之 Biosearch Technologies, Inc.公司提 -76- 201209404 供之黑洞淬熄物(Black Hole Quenchers (BHQ))沒有本 質發射且具高淬熄效率,很適合本系統之淬熄物。BHQ-1 最大吸光度於534 nm,淬熄範圍爲480-580 nm,使其適合 作爲Tb-螯合物螢光團之淬熄物。BHQ-2最大吸光度於579 nm,淬熄範圍爲560-670 nm,使其適合作爲Pulsar 650之 淬熄物。 由愛荷華州之 Integrated DNA Technologies of Coralville 公司提供之愛荷華黑粹熄物(Iowa Black Quenchers ( Iowa Black FQ及RQ))具有很小或毫無背景發射爲另一 種適當的淬熄物。愛荷華黑FQ具有420-620 nm之淬熄範圍 ,最大吸光度於531 nm且因此爲適合Tb-螯合物螢光團之 淬熄物。愛荷華黑RQ最大吸光度於65 6 nm,具有500-700 nm之淬熄範圍,使其爲Pulsar 650之理想淬熄物。 於在此所述之具體例中,該淬熄物248爲一最初依附 在探針上之功能基團,不過於其他具體例中該淬熄物也可 爲游離在溶液中之個別分子。 激發源 於在此所述之螢光偵測爲基礎之具體例中,基於低耒毛 電、低成本及體積小之考量,係選用LED爲激發源來取代 雷射二極體、高功率電燈或雷射。參考第89圖,該LED 26 係直接位在該LOC裝置3〇1外表面於雜合室陣列1 1〇上方。 於該雜合室陣列1 1 〇對邊上是光感測器44,其係由光二極 體184之陣列所組成(見第53、54及65圖)以偵測來自各 -77- 201209404 雜合室之螢光信號。 第90、91及92圖示意地顯示把探針曝露在激發光線下 之其他具體例。於第90圖顯示之LOC裝置30中,激發LED 26產生之激發光線20藉著透鏡254被導到雜合室陣列n〇 上。該激發LED 2 6被脈衝式地驅動且用光感測器44來偵測 螢光發射。 於第91圖顯示之LOC裝置30中,該激發LED 26產生之 激發光線244藉著透鏡254、第一光學稜鏡712及第二光學 稜鏡714導引到雜合室陣列110上。該激發LED 26被脈衝式 地驅動且用光感測器44來偵測螢光發射。 類似地,於第92圖顯示之LOC裝置30中,該激發LED 26產生之激發光線244藉著透鏡254、第一面鏡716及第二 面鏡71 8導引到雜合室陣列1 10上。再次地,該激發LED 26 被脈衝式地驅動且用光感測器44來偵測螢光發射。 LED 26之激發波長視選用之螢光染料而定。菲利普( Philips ) LXK2-PR14-R00爲一種適合 Pulsar 6 5 0 染料之激 發源。SET UVT0P 3 3 5 T039BL LED爲一種適合Tb -螯合物 標記之激發源。 表 3 : Philips LXK2-PR14-R00 LED規格Table 2: 铽 chelation; kiss light physical property parameter number of symbols 値 unit absorption wavelength ^abs 330-350 nm emission wavelength λ έ πι 548 nm extinction coefficient Ε 13800 (kbs and ligand dependence, up to 30000 @ λε = 340 nm ) Fluorescence lifetime Xf 1600 (hybrid probe) Ms Quantum yield Η 1 (ligand dependent) N/A The fluorescent system used in the LOC device 3 01 does not use filters to remove unwanted background fluorescence. Therefore, in order to increase the signal-to-noise ratio, it would be advantageous if the quencher 248 had no native emission. Quenching 248 does not provide background fluorescence when there is no intrinsic emission. High quenching efficiency is also important, so that there is no fluorescence until a heterozygous event occurs. Black Hole Quenchers (BHQ) from Biosearch Technologies, Inc. of Novato California, with no organic emission and high quenching efficiency, is suitable for quenching of this system. The maximum absorbance of BHQ-1 is 534 nm and the quenching range is 480-580 nm, making it suitable as a quencher for Tb-chelate fluorophores. BHQ-2 has a maximum absorbance of 579 nm and a quenching range of 560-670 nm, making it suitable as a quencher for Pulsar 650. The Iowa Black Quenchers (Iowa Black FQ and RQ) supplied by Integrated DNA Technologies of Coralville, Iowa, have little or no background emission and are another suitable quencher. Iowa Black FQ has a quenching range of 420-620 nm with a maximum absorbance of 531 nm and is therefore suitable for quenching of Tb-chelate fluorophores. The Iowa Black RQ has a maximum absorbance of 65 6 nm and a quenching range of 500-700 nm, making it an ideal quench for the Pulsar 650. In the specific examples described herein, the quencher 248 is a functional group that is initially attached to the probe, although in other embodiments the quencher may be an individual molecule that is free in solution. The excitation is based on the specific example of the fluorescence detection described herein. Based on the consideration of low-calorie power, low cost and small volume, the LED is used as the excitation source instead of the laser diode and the high-power electric lamp. Or a laser. Referring to Fig. 89, the LED 26 is placed directly on the outer surface of the LOC device 3〇1 above the array of hybrid cells 1 1〇. On the opposite side of the hybrid cell array 1 1 is a photo sensor 44 consisting of an array of photodiodes 184 (see Figures 53, 54 and 65) to detect from each -77-201209404 Fluorescent signal of the room. Figures 90, 91 and 92 schematically show other specific examples of exposing the probe to excitation light. In the LOC device 30 shown in Fig. 90, the excitation light 20 generated by the excitation LED 26 is directed through the lens 254 to the array of hybrid cells n. The excitation LED 26 is pulsed and the photodetector 44 is used to detect the fluorescent emission. In the LOC device 30 shown in FIG. 91, the excitation light 244 generated by the excitation LED 26 is directed to the hybrid chamber array 110 by the lens 254, the first optical 稜鏡 712, and the second optical 稜鏡 714. The excitation LED 26 is pulsed and the photodetector 44 is used to detect the fluorescent emission. Similarly, in the LOC device 30 shown in Fig. 92, the excitation light 244 generated by the excitation LED 26 is guided to the hybrid chamber array 110 by the lens 254, the first mirror 716 and the second mirror 71 8 . . Again, the excitation LED 26 is pulsed and the photodetector 44 is used to detect the fluorescent emissions. The excitation wavelength of LED 26 depends on the fluorescent dye selected. Philips LXK2-PR14-R00 is an exciting source for Pulsar 6 5 0 dyes. SET UVT0P 3 3 5 T039BL LED is an excitation source suitable for Tb-chelate labeling. Table 3: Philips LXK2-PR14-R00 LED Specifications

參數 符號 數値 單位 波長 ^ex 460 nm 發射頻率 Vem 6.52(10)14 Hz 輸出功率 Pi 0.515(min) @ ΙΑ W 輻射圖案 朗伯氏曲線(Lambertian profile) N/A -78- 201209404 表 4 : SET UVT0P334T039BL LED規格Parameter symbol number 値 unit wavelength ^ex 460 nm Transmit frequency Vem 6.52(10)14 Hz Output power Pi 0.515(min) @ ΙΑ W Radiation pattern Lambertian profile N/A -78- 201209404 Table 4: SET UVT0P334T039BL LED Specifications

參數 符號 數値 單位 波長 λο 340 nm 發射頻率 Ve 8.82(10)14 Hz 功率 Pi 0.000240 (min) @ 20mA W 瞬間正向脈衝電流 I 200 mA 輻射圖案 朗伯氏(Lambertian) N/A 紫外線激發光線 矽吸收極少UV光譜之光線。因此,使用UV激發光線 很有用。可使用UV LED激發源,不過該LED 26之寬光譜 會降低此方法之效率。爲了處理這個問題,可採用過濾之 UV LED。任意地,除非對於特定測試模組市場來說採用 雷射之較高成本使其難以實行,否則也可任意地使用UV 雷射當作激發源。 LED驅動器 LED驅動器29會以穩定電流持續一段所需時間來驅動 該LED 26。一低功率USB 2.0 -可證式裝置(USB 2.0-certifiable device)可用4.4V之最小操作電壓得到最大1單 位載量(1〇〇 mA)。一標準式功率調節電路可用於此目的 光二極體 第54圖顯示整合於該LOC裝置301之CMOS電路86之光 二極體184。該光二極體184是在沒有額外遮罩或步驟下當 -79- 201209404 作CMOS電路86之一部份來製造。這是CM OS光二極體優於 CCD之一項顯著的優點,CCD爲另一種感測技術,其可使 用非標準式加工步驟整合到同一晶片上或者製於相鄰晶片 上。晶片上偵測的成本很低且可縮小該檢定系統之尺寸。 較短的光學路徑可減少周圍環境之雜訊以有效地收集螢光 信號及消除對透鏡及濾鏡之傳統光學組件之需求。 光二極體184之量子效率爲撞擊在有效區域185而有效 地被轉變成光-電子之光子的分率。對於標準矽製程來說 ,量子效率於可見光下係在0.3到0.5之範圍,視方法參數 例如該覆蓋層之份量及吸光性質而定。 光二極體1 84之偵測閾値決定可被偵測之螢光信號之 最小強度。該偵測閩値也能決定光二極體1 8 4之大小,因 此也決定了於雜合及偵測區52中雜合室180的數目(見第 52圖)。室的大小及數目爲技術參數,其受到LOC裝置尺 寸大小(於LOC裝置301之例中,該尺寸爲1760μηιχ 5 824 μιη )限制,實際的估計値要在其他功能性模組例如病 原體透析區70及(一或多個)擴增區112被倂入後才能得 知。 對於標準矽製程來說,光二極體1 84可偵測到最少5個 光子。然而,爲了確保有可靠的偵測,其最小量可設爲10 個光子。故而在量子效率爲0.3到0.5之範圍時(如以上所 討論地),探針的螢光發射應爲最少1 7個光子,不過宜當 作3 0個光子以倂入適當的可靠偵測之誤差邊際。 -80- 201209404 校準室 該光二極體184之電學特性不一致、自發螢光 沒徹底衰減掉之殘餘激發光子通量等等會引入背景 偏移到輸出信號內。此背景雜訊可使用一或多個校 從各輸出信號中除去。校準信號可藉著把陣列內之 個校準光二極體184暴露於各別校準源來產生。使 準源來測定目標物不與探針發生反應之負結果。使 準源作爲指示出現探針-目標物錯合體之正結果的 於在此所述之具體例中,該低校準光源係由雜合 110內之校準室3 8 2來提供,其: 不含任何探針; 所含探針不具螢光播報器;或 含有具有播報器及淬熄物之探針,但被設計成 淬熄狀態。 來自此等校準室382之輸出信號與雜訊非常接 偏移到LOC裝置內之所有雜合室之輸出信號中。從 合室產生之輸出信號中扣除掉該校準信號會實質地 景雜訊且留下該螢光發射(若有)產生之信號。室 域之周圍光線產生之信號也會被扣掉。 應瞭解上述(參考第1〇8至111圖)之負控制探 於校準室中。然而如第94及95圖(其爲LOC變化g 之插圖DG及DH之放大圖)及第93圖顯示地,另一 爲令該校準室3 82與擴增子流體性地分離獨立出來 雜訊及偏移之測量可藉著讓流體性孤立之諸室空置 以及還 雜訊且 準信號 一或多 用低校 用高校 指標。 室陣列 總處於 近且會 其他雜 除去背 陣列區 針可用 ί X 728 種方案 。背景 、或者 -81 - 201209404 讓含有不具播報器之探針的諸室,或者含有任何具有播報 器及淬熄物兩者之“正常”探針的諸室藉著流體孤立排除掉 雜合情況來進行。 該校準室382可提供高校準源以於對應光二極體中產 生強信號。該強信號對應於已雜合諸室之所有探針。具有 播報器但沒有淬熄物或者只有播報器之播放探針可以持續 地提供信號,其近似於已雜合之雜合室(其內優勢數量之 探針都已雜合)發出之信號。應瞭解可使用校準室382來 取代控制探針或者除了使用控制探針以外還採用校準室 3 82 » 遍佈雜合室陣列之校準室3 82的數目及配置係隨意的 。不過’如果光二極體184是由較接近的校準室382來校準 時,校準會比較精確。參考第56圖,該雜合室陣列110每 八個雜合室180中就有一個校準室382。亦即,校準室382 係位於排成3 X 3正方形形狀之雜合室1 8 0的中央。於此構型 中,雜合室180係由緊鄰之校準室382來校準。 第】07圖顯示一微分影像器電路(differential imager circuit ) 788,其可從環繞周圍之雜合室180發出之螢光信 號中扣除掉對應校準室382之光二極體184因應激發光線發 出之信號。該微分影像器電路788會從像素790及“虛擬”像 素792中採樣信號。於一具體例中,該“虛擬”像素792被遮 住而不受光照,因此其輸出信號可作爲本底暗參考信號( dark reference)。另一選擇地,該“虛擬”像素792可與陣 列剩下的部份暴露在激發光線下。於“虛擬”像素7 9 2受到 -82- 201209404 光照之具體例中,由室陣列區域之周圍光線產生的信號也 會被扣除下來。來自像素790之信號很微弱(即,接近本 底暗信號),在沒有比對暗程度之參考信號時是很難區別 背景信號及極弱信號。 使用期間,“讀取列(read_ro w ) ”794及“讀取列d ( read_row — d) ”795被活化且M4 797及MD4 801電晶體被啓 動。開關807及809被關閉,使得來自像素790及“虛擬”像 素792之輸出分別被儲存於像素電容器8 03及虛擬像素電容 器805中。在像素信號被儲存以後,開關807及809會失活 化。而後該“讀取行(read_C〇l ) ”開關81 1及虛擬“讀取行” 開關813會被關閉且輸出之切換式電容放大器815會放大該 微分信號8 1 7。 光二極體之抑制及激活(enablement) 在用LED 26激發期間需抑制光二極體184而在螢光期 則間需激活該光二極體184。第66圖爲單一光二極體184之 電路圖且第67圖爲該光二極體控制信號之時間變化圖。該 電路具有光二極體184及六個MOS電晶體-MShunt 394,Mtx 3 96,Mreset 3 98,Msf 400,Mread 402 及 Mbias 404。於激發循 環一開始(tl),電晶體MShUnt 3 94及Mreset 3 9 8藉著把 Mshunt閘384及重設閘3 88拉高來啓動。在這段期間,激發 光子會在光二極體184內產生載子(carriers )。此等載子 必須被除去,因爲產生之載子量要足以滿足該光二極體 184。在此循環期間,Mshunt 3 94會直接除去光二極體184 -83- 201209404 產生之載子,而Mreset 3 98則會重設累積在節點‘NS’ 406之 所有載子,該等累積係因爲電晶體之滲漏或由於基材內激 發-產生之載子擴散所造成。在激發之後,捕獲循環於t4開 始。於此循環期間,螢光團之發射反應被捕捉且整合在節 點‘NS’406之電路內。此可藉著把^閘3 8 6拉高來達成,其 可啓動電晶體Mtx 3 96及把累積在光二極體184上之所有載 子轉移到節點‘ NS ’ 406。該捕獲循環之持續時間可與螢光 團發射一樣久。雜合室陣列11〇內之所有光二極體184之輸 出可同時被捕獲》 在捕獲循環t5結束及讀取循環t6開始之間有時間延遲 。此延遲是因爲捕獲循環結束後必需要各別讀取雜合室陣 列110內(見第52圖)之各個光二極體184。第一個被讀取 之光二極體1 8 4其讀取循環前之時間延遲最短,而最後一 個光二極體1 8 4其讀取循環前之時間延遲最長。讀取期間 ,藉著拉高讀取閘3 93來啓動電晶體Mread 402。該‘NS’節 點406電壓可使用源極隨稱器電晶體(source-follower transistor) MSf 400來緩衝及讀取出來。 可激活或抑制該等光二極體之更多可選擇的方法討論 如下: 1 . 抑制方法Parameter symbol number 値 unit wavelength λο 340 nm Transmitting frequency Ve 8.82(10)14 Hz Power Pi 0.000240 (min) @ 20mA W Instantaneous forward pulse current I 200 mA Radiation pattern Lambertian N/A Ultraviolet excitation light 矽Absorbs light from the UV spectrum very little. Therefore, it is useful to use UV to excite light. A UV LED excitation source can be used, but the broad spectrum of the LED 26 reduces the efficiency of the method. To handle this problem, a filtered UV LED can be used. Arbitrarily, UV lasers can be used arbitrarily as an excitation source unless the higher cost of the laser is made difficult for a particular test module market. The LED driver LED driver 29 will drive the LED 26 for a desired period of time at a steady current. A low-power USB 2.0-certifiable device (USB 2.0-certifiable device) can achieve a maximum of 1 unit load (1 〇〇 mA) with a minimum operating voltage of 4.4V. A standard power conditioning circuit can be used for this purpose. Photodiode Figure 54 shows the photodiode 184 integrated into the CMOS circuit 86 of the LOC device 301. The photodiode 184 is fabricated as part of the CMOS circuit 86 from -79 to 201209404 without additional masking or steps. This is a significant advantage of CM OS photodiodes over CCDs, another sensing technique that can be integrated onto the same wafer or fabricated on adjacent wafers using non-standard processing steps. The cost of detection on the wafer is low and the size of the assay system can be reduced. The shorter optical path reduces noise in the surrounding environment to efficiently collect fluorescent signals and eliminate the need for conventional optical components for lenses and filters. The quantum efficiency of the photodiode 184 is a fraction of photons that are effectively converted into photo-electrons by impinging on the effective region 185. For the standard tantalum process, the quantum efficiency is in the range of 0.3 to 0.5 under visible light, depending on the method parameters such as the amount of the cover layer and the light absorbing properties. The detection threshold of the photodiode 1 84 determines the minimum intensity of the fluorescent signal that can be detected. The detection 闽値 can also determine the size of the photodiode 128, and thus the number of hybrid chambers 180 in the hybrid and detection zone 52 (see Figure 52). The size and number of chambers are technical parameters that are limited by the size of the LOC device (in the case of LOC device 301, which is 1760μηιχ 5 824 μιη), and the actual estimates are in other functional modules such as the pathogen dialysis zone 70. The amplification zone 112 (one or more) is not known until it is inserted. For standard 矽 process, photodiode 1 84 can detect a minimum of 5 photons. However, to ensure reliable detection, the minimum amount can be set to 10 photons. Therefore, when the quantum efficiency is in the range of 0.3 to 0.5 (as discussed above), the fluorescent emission of the probe should be at least 17 photons, but it should be treated as 30 photons to break into the appropriate reliable detection. Error margin. -80- 201209404 Calibration Chamber The inconsistent electrical characteristics of the photodiode 184, the spontaneous excitation of the photon flux that is not completely attenuated, etc., introduce a background shift into the output signal. This background noise can be removed using one or more calibration outputs. The calibration signal can be generated by exposing the calibration photodiode 184 within the array to a respective calibration source. A quasi-source is used to determine the negative result of the target not reacting with the probe. Using the quasi-source as a positive result indicating the presence of the probe-target complex, in the specific example described herein, the low calibration source is provided by a calibration chamber 382 in the hybrid 110, which: Any probe; the probe contained does not have a fluorescent reporter; or contains a probe with a sniffer and quencher, but is designed to quench. The output signals from these calibration chambers 382 are very closely offset from the noise to the output signals of all of the hybrid chambers within the LOC device. Deducting the calibration signal from the output signal generated by the combination will substantially distort the noise and leave the signal generated by the fluorescent emission (if any). Signals generated by the ambient light around the room are also deducted. It should be understood that the negative control described above (refer to Figures 1 to 8 to 111) is detected in the calibration chamber. However, as shown in Figures 94 and 95 (which are magnified views of the illustrations DG and DH of the LOC change g) and Fig. 93, the other is to separate the calibration chamber 382 from the ampersons by fluid separation. And the measurement of the offset can be made by leaving the fluid-isolated rooms vacant and also noise and quasi-signal one or more low-school college indicators. The array of chambers is always close and will be miscellaneous. The back array area is available for needles ί X 728 schemes. Background, or -81 - 201209404 Let chambers containing probes without a sniffer, or chambers containing any "normal" probes with both a sniffer and quencher, isolate the heterozygous condition by fluid isolation get on. The calibration chamber 382 can provide a high calibration source to generate a strong signal in the corresponding photodiode. This strong signal corresponds to all probes that have been hybridized to each chamber. A playback probe with a broadcaster but no quenching or only a broadcaster can continuously provide a signal that approximates the signal from a hybrid hybrid chamber in which a dominant number of probes have been hybridized. It will be appreciated that the calibration chamber 382 can be used in place of or in addition to the control probe. The number and configuration of the calibration chambers 3 82 throughout the array of hybrid chambers are arbitrary. However, if the photodiode 184 is calibrated by a closer calibration chamber 382, the calibration will be more accurate. Referring to Fig. 56, the hybrid chamber array 110 has one calibration chamber 382 in every eight of the hybrid chambers 180. That is, the calibration chamber 382 is located at the center of the hybrid chamber 180 which is arranged in a 3 X 3 square shape. In this configuration, the hybrid chamber 180 is calibrated by the calibration chamber 382 in the immediate vicinity. FIG. 07 shows a differential imager circuit 788 which can subtract the signal emitted by the light-emitting diode 184 corresponding to the calibration chamber 382 from the fluorescent signal emitted from the surrounding hybrid chamber 180 by the stress light-emitting line. . The differential imager circuit 788 samples the signal from the pixels 790 and the "virtual" pixels 792. In one embodiment, the "virtual" pixel 792 is obscured from illumination, so its output signal can be used as a dark reference. Alternatively, the "virtual" pixel 792 can be exposed to the excitation light with the remainder of the array. In the specific case where the "virtual" pixel 7 9 2 is subjected to -82-201209404 illumination, the signal generated by the ambient light in the array area of the room is also deducted. The signal from pixel 790 is very weak (i.e., close to the background dark signal), and it is difficult to distinguish between the background signal and the very weak signal when there is no reference signal to the darkness level. During use, the "read column (read_ro w)" 794 and "read column d (read_row - d)" 795 are activated and the M4 797 and MD4 801 transistors are activated. Switches 807 and 809 are turned off such that the outputs from pixel 790 and "virtual" pixel 792 are stored in pixel capacitor 803 and virtual pixel capacitor 805, respectively. After the pixel signal is stored, switches 807 and 809 are deactivated. The "read line (read_C〇l)" switch 81 1 and the virtual "read line" switch 813 are then turned off and the output switched capacitor amplifier 815 amplifies the differential signal 8 1 7 . The suppression and activation of the photodiode requires suppression of the photodiode 184 during excitation with the LED 26 and activation of the photodiode 184 during the illumination period. Fig. 66 is a circuit diagram of a single photodiode 184 and Fig. 67 is a timing diagram of the photodiode control signal. The circuit has a photodiode 184 and six MOS transistors - MShunt 394, Mtx 3 96, Mreset 3 98, Msf 400, Mread 402 and Mbias 404. At the beginning of the excitation cycle (tl), the transistors MShUnt 3 94 and Mreset 3 9 8 are activated by pulling the Mshunt gate 384 and the reset gate 3 88 high. During this period, the excitation photons will generate carriers in the photodiode 184. These carriers must be removed because the amount of carriers produced is sufficient to satisfy the photodiode 184. During this cycle, Mshunt 3 94 will directly remove the carriers generated by photodiodes 184 -83 - 201209404, while Mreset 3 98 will reset all the carriers accumulated in node 'NS' 406. Leakage of the crystal or due to diffusion of the carrier generated by the excitation in the substrate. After excitation, the capture cycle begins at t4. During this cycle, the emission response of the fluorophore is captured and integrated into the circuit of node 'NS' 406. This can be achieved by pulling the gate 386 high, which activates the transistor Mtx 3 96 and transfers all of the carriers accumulated on the photodiode 184 to the node 'NS' 406. The capture cycle can last as long as the fluorophore emission. The output of all of the photodiodes 184 in the hybrid cell array 11 can be simultaneously captured. There is a time delay between the end of the capture cycle t5 and the beginning of the read cycle t6. This delay is due to the fact that each photodiode 184 within the hybrid cell array 110 (see Figure 52) must be read separately after the capture cycle is completed. The first read photodiode 1 8 4 has the shortest time delay before the read cycle, while the last photodiode 184 has the longest time delay before the read cycle. During reading, the transistor Mread 402 is activated by pulling the read gate 3 93 high. The 'NS' node 406 voltage can be buffered and read using a source-follower transistor MSf 400. More alternative methods for activating or suppressing such photodiodes are discussed below: 1. Suppression methods

第104、105及1〇6圖顯示Mshunt電晶體394之三種可能 的構型77 8、780及782。Mshunt電晶體3 94於最大値|FCi| = 5 V (於激發期間被激活)時具有極高的關比値(off ratio ) -84- 201209404 。如第104圖所顯示地,該Mshunt閘3 84可被配置成在光二 極體184之邊緣。任意地,如第105圖所顯示般’該Mshunt 閘3 84可被配置成在光二極體184之周圍。如第106圖顯示 地,第三種方案係把Mshun々1 3 84配置在光二極體184之內 部。於第三種方案中光二極體之活性面積185會較小。 這三種構型778、780及782可以減少光二極體184內所 有位置到該Mshunt閘384之間的路徑平均長度。於第1〇4圖 中,該Mshunt閘384係位在該光二極體184之一側》此構型 製造最簡單且對光二極體活性面積185之衝擊最小。然而 ,逗留在該光二極體1 84遠側之所有載子要花較長時間才 能散播到該^^^閘3 84處。 於第105圖中,該Mshunt閘384環繞著光二極體184»此 進一步減少光二極體184內之載子到該Mshunt閘3 84間之路 徑平均長度。然而,把該Mshunt閘3 84沿著該光二極體181 2 3 之周邊延伸會大輻減少該光二極體之活性面積185。第106 圖之構型782把Mshunt閘3 84放在該活性區域185內。如此一 來可提供到Mshunt閘3 84之最短路徑平均長度及因而有最短 的遷移時間。然而,其對活性面積185之衝擊最大。其還 提供更廣的滲漏路徑。 -85- 1 激活方.法 2 a. 以觸發光二極體(trigger photodiode )經一段固 定長短之時間延遲來驅動分流電晶體。 3 b. 以觸發光二極體經程式控制時間長短之延遲時間 201209404 來驅動分流電晶體。 C. 該分流電晶體係以一段固定長短之時間延遲用 LED驅動器脈衝式地驅動。 d. 該分流電晶體如2c所述般但以程式控制時間長短 之延遲時間來驅動。 第69圖爲通過雜合室180、顯示出埋置在CMOS電路86 內之光二極體184及觸發二極體187之示意剖面圖。於該光 二極體184轉角處之一小塊區域用觸發光二極體187取代。 —小塊面積的觸發光二極體187就夠了,因爲與螢光發射 量相比該激發光線之強度已經很高。觸發光二極體1 8 7對 激發光線244很敏感。該觸發光二極體18 7會自動記錄該激 發光線244經過一段短暫的時間延遲At 3 00後已消失了並活 化光二極體184 (見第2圖)。此時間延遲可讓螢光光二極 體184在沒有激發光線244下偵測來自FRET探針186之螢光 發射。此舉令偵測得以施行並改善信號對雜訊比。 光二極體184及觸發光二極體187兩者皆爲在各雜合室 180下方之CMOS電路86內。該等光二極體陣列以及適當的 電子零件組合形成光感測器44 (見第65圖)。該光二極體 184係在製造CMOS結構時沒有用額外遮罩或步驟下以pn_ 接面製造。於MST製造期間,於該光二極體184上方之介 電層(未顯示)可使用標準M S T光蝕刻技術任意地薄化好 讓該目 到 射 照 線 光 光 螢 多 更 具 4 發 8 1 體 體合 極雜 二物 光標 針 探 18之 域內 區80 性 活 之 螢 上 面 表 器 8 1 領 室感 合該 雜到 1該射 體得入 極使可 一一 Τ號 光^信 該罾光 有之 出 -86- 201209404 光光線被轉變成光電流’其而後可用CMOS電路86來偵測 〇 另一選擇地’可對一或多個雜合室180只提供觸發光 二極體187。此等方案可用於以上2a及巧之組合。 螢光之延遲偵測 以下推導係在說明使用長壽命螢光團之時間延遲的螢 光偵測,該長壽命螢光團係用於上述之LED/螢光團組合。 如第60圖所示,螢光強度乃爲於時間〇到〇間以固定強度ie 之理想脈衝來激發後之時間函數推衍出來。 令[S1](0等於時間t之激態密度,而後於激發期間及激 發之後,每單位體積每單位時間之激態數目可用以下微分 方程式來說明: 迴⑺+腿上 ...(!) dt tf hve 其中C爲螢光團之莫耳濃度,ε爲莫耳消光係數,爲消光 頻率, 及 h = 6.62606896(1 0)-34,Js 爲卜朗克常數。 此微分方程式具有通式: ^-+p(x)y = g(x) 其解爲: ..•(2) | P(x)dx q(x)dx + k ΛΧ) = —— 現在利用此式解方程式(1 ) -87- 201209404 [sim=l^LL+ke-^ ...(3) hVe 且從式(3 ) 現在於時間ί i時,[1 ] (i,) Ι^εοτ f . /r k = -~~f-e'lTf ...(4) hv· 把式(4 )代入式 [幻]⑴ K£cxf lescTj _(ί_,ι)/Τ(. ---g hve hve 於時間O時: …(5) hve hvc 當GO時,激態會指數地衰減且其可用下式表示 [幻](0 =[幻]⑹〆…⑹ 把式(5)代入式(6): _)=与2[1- β-(/2-«,)/Γ/]β-(/-ί2)/ν ⑺ kVe 螢光強度可由以下方程式提供:Figures 104, 105 and 1-6 show three possible configurations 77, 780 and 782 of Mshunt transistor 394. Mshunt transistor 3 94 has a very high off ratio of -84 - 201209404 when the maximum 値|FCi| = 5 V (activated during excitation). As shown in Fig. 104, the Mshunt gate 3 84 can be configured to be at the edge of the photodiode 184. Optionally, the Mshunt gate 3 84 can be configured to be around the photodiode 184 as shown in FIG. As shown in Fig. 106, the third scheme is to arrange Mshun々1 3 84 inside the photodiode 184. In the third scheme, the active area 185 of the photodiode will be small. These three configurations 778, 780, and 782 can reduce the average path length between all locations within the photodiode 184 to the Mshunt gate 384. In Figure 1, Figure 4, the Mshunt Gate 384 is located on one side of the photodiode 184. This configuration is the simplest to manufacture and has the least impact on the active area 185 of the photodiode. However, it takes a long time for all the carriers staying on the far side of the photodiode 1 84 to be spread to the ^^^ gate 3 84. In Fig. 105, the Mshunt gate 384 surrounds the photodiode 184» which further reduces the average length of the path between the carrier in the photodiode 184 to the Mshunt gate 3 84. However, extending the Mshunt gate 3 84 along the perimeter of the photodiode 1812 3 will greatly reduce the active area 185 of the photodiode. The configuration 782 of Fig. 106 places the Mshunt gate 3 84 within the active region 185. This provides the shortest path average length to Mshunt Gate 3 84 and thus the shortest migration time. However, it has the greatest impact on the active area 185. It also provides a wider leak path. -85- 1 Activated Method. Method 2 a. Drive the shunt transistor with a time delay of a fixed length of the trigger photodiode. 3 b. Drive the shunt transistor with the delay time of the trigger photodiode controlled by the program length of time 201209404. C. The shunt cell system is pulsed with an LED driver for a fixed length of time delay. d. The shunt transistor is driven as described in 2c but with a delay time of program control time. Fig. 69 is a schematic cross-sectional view showing the photodiode 184 and the trigger diode 187 embedded in the CMOS circuit 86 through the hybrid chamber 180. A small area at the corner of the photodiode 184 is replaced with a trigger photodiode 187. - A small area of the triggering light diode 187 is sufficient because the intensity of the excitation light is already high compared to the amount of fluorescent emission. The trigger photodiode 1 8 7 is sensitive to the excitation light 244. The triggering photodiode 18 7 automatically records that the laser beam 244 has disappeared after a brief time delay At 3 00 and activates the photodiode 184 (see Figure 2). This time delay allows the fluorescent photodiode 184 to detect fluorescent emissions from the FRET probe 186 without the excitation light 244. This allows detection to be implemented and improves the signal-to-noise ratio. Both the photodiode 184 and the triggering photodiode 187 are within the CMOS circuit 86 below each of the hybrid chambers 180. The array of photodiodes and appropriate electronic components are combined to form a photosensor 44 (see Figure 65). The photodiode 184 is fabricated without the use of an additional mask or step with a pn_ junction when fabricating the CMOS structure. During the MST manufacturing process, the dielectric layer (not shown) above the photodiode 184 can be arbitrarily thinned using standard MST photolithography techniques to make the target illumination line more than 4 hairs. Body fit very two objects cursor needle probe 18 area within the area 80 Sexual Firefly above the table 8 1 The collar chamber feels the miscellaneous to the 1 body to enter the pole to make one by one nickname light ^ letter the light In the case of -86-201209404, the light is converted into a photocurrent, which can then be detected by the CMOS circuit 86. Alternatively, one or more of the hybrid chambers 180 can be provided with a triggering photodiode 187. These schemes can be used in the combination of the above 2a and skillfully. Fluorescence Delay Detection The following derivation is a description of the time-delayed fluorescence detection using a long-lived fluorophore for the above LED/fluorescent combination. As shown in Fig. 60, the fluorescence intensity is derived as a function of time after excitation from the time 〇 to the ideal pulse of the fixed intensity ie. Let [S1] (0 is equal to the excimer density of time t, and then during excitation and after excitation, the number of excitations per unit volume per unit time can be explained by the following differential equation: Back (7) + Legs... (!) Dt tf hve where C is the molar concentration of the fluorophore, ε is the molar extinction coefficient, is the extinction frequency, and h = 6.62606896(1 0)-34, Js is the Braun constant. This differential equation has the general formula: ^-+p(x)y = g(x) The solution is: ..•(2) | P(x)dx q(x)dx + k ΛΧ) = —— Now solve the equation (1) using this equation -87- 201209404 [sim=l^LL+ke-^ ...(3) hVe and from equation (3) now at time ί i, [1 ] (i,) Ι^εοτ f . /rk = - ~~f-e'lTf ...(4) hv· Substituting equation (4) into [magic] (1) K£cxf lescTj _(ί_, ι)/Τ(. ---g hve hve at time O : ...(5) hve hvc When GO, the excitatory state decays exponentially and it can be expressed as [phantom] (0 = [magic] (6) 〆... (6) Substituting equation (5) into equation (6): _) = And 2[1- β-(/2-«,)/Γ/]β-(/-ί2)/ν (7) kVe Fluorescence intensity can be provided by the following equation:

If{t) = -^^-hv/nl …(8) αχ 其中V/爲螢光頻率,η爲量子產率且1爲光學路徑長度。 現在從式(7 ): 蚵 S1K0 dtIf{t) = -^^-hv/nl (8) αχ where V/ is the fluorescence frequency, η is the quantum yield and 1 is the optical path length. Now from equation (7): 蚵 S1K0 dt

…(9) 把式(9)代入式(8):...(9) Substituting equation (9) into equation (8):

If (〇 = Ι(εαΙη-^[\ -e'Vl"')lTr ...(10)If (〇 = Ι(εαΙη-^[\ -e'Vl"')lTr ...(10)

For ^ 〇〇, I At) -> ΙεεαΙη^β'(,~,ι),Τί -88- 201209404 故而,我們可寫出以下近似方程式以說明'經 '過足夠久 之激發脈衝刺激之後的蛋光強度時間延遲現 象: /,⑴=/e£c/;7」^ (' ’2>/r/ for Q G …(11) ^ e 於前個段落中,我們總結出當㈠-ii>>Tf時, 對id2而言,心W =人 ^ e 從以上方程式中,我們可以推出下式: n f{t) = ne£c/77e~(,~,2>/r/ ...(12) 其中 ^ (0 = :^爲每單位面積每單位時間之螢光光子數目,及 hvf & =·^-爲每單位面積每單位時間之激發光子數目, Αν, 從而, 00 \(,) = ]·〜(_ ...(13) h 其中七爲每單位面積之螢光光子數目,ο爲光二極體被啓 動之瞬時時間。把式(1 2 )代入式(1 3 ): βθ nf =^neec^e~{l~h)lTfdt ...(14) >} 現在,每單位面積每單位時間達到光二極體之螢光光 子數目,七(0,可由下式提供: ns(〇 = ^fm -(15) 其中九爲該光學系統之光線收集效率。 把式(1 2 )代入式(i 5 )我們發現 -89 - 201209404 η!{ΐ) = φύηίεοΙηβ~{ι^)Ι^ ...(16) 類似地,每單位螢光面積達到光二極體之螢光光子數 目纪將如下所示: 屺=(ί)及代入(1 6 )且積分: hs =φ0η(,εαΙητ/β~(1ί~'ι)/Τ/ 因此, ns =φ0ήίεοΙητ/β^'Τί ...(17) 由於激發光子流衰減得比螢光光子流要快得多,所以 當光二極體184因螢光光子產生電子之速率變得與光二極 體184因激發光子產生電子之速率相同時就是之最佳値。 因螢光產生之每單位螢光面積之感應器電子輸出速率 爲: 其中命爲該螢光波長下感應器之量子效率。 代入(1 7 )我們可得到: β/(ί) = φ/φ0ή€εαΙηβ-{,-,ΐ)ΙΤ/ ...(18) 類似地,因激發光子產生之每單位螢光面積之感應器 電子輸出速率爲: 其中九爲該激發波長下感應器之量子效率,且爲相 當於該激發LED之“關”特性之時間常數。當時間爲t2時’ 該LED衰減之光子通量將會增加螢光信號之強度且延長其 衰減時間,不過我們係假設此對於If(〇只有微不足道之影 響,因此採用保守性策略。 -90 - 201209404 現在,如稍早提到地, 當Ά(ί3)=·έ·β(ί3)時,有最佳的ί3値。 因此’從式(18 )及(1 9 )我們得到: ΦΑΙεοΙψ” :ne-ih_hVr. 經過重新整理我們發現:For ^ 〇〇, I At) -> ΙεεαΙη^β'(,~,ι),Τί -88- 201209404 Therefore, we can write the following approximate equation to illustrate the egg after the 'sufficiently long excitation pulse stimulation Light intensity time delay phenomenon: /, (1)=/e£c/;7"^ (' '2>/r/ for QG ...(11) ^ e In the previous paragraph, we concluded that when (a)-ii>&gt ;Tf, for id2, heart W = person ^ e From the above equation, we can introduce the following formula: nf{t) = ne£c/77e~(,~,2>/r/ ...( 12) where ^ (0 = :^ is the number of fluorescent photons per unit area per unit time, and hvf & =·^- is the number of excitation photons per unit area per unit time, Αν, thus, 00 \(, ) = ]·~(_ ...(13) h where seven is the number of fluorescent photons per unit area, ο is the instantaneous time at which the photodiode is activated. Substituting equation (1 2 ) into equation (1 3 ): Βθ nf =^neec^e~{l~h)lTfdt (14) >} Now, the number of fluorescent photons of the photodiode is reached per unit area per unit time, seven (0, which can be provided by: Ns(〇= ^fm -(15) where nine are the light of the optical system Efficiency. Substituting the formula (1 2 ) into the formula (i 5 ) we find that -89 - 201209404 η!{ΐ) = φύηίεοΙηβ~{ι^)Ι^ (16) Similarly, the fluorescence area per unit reaches the light II The number of fluorescent photons of a polar body will be as follows: 屺=(ί) and substituting (1 6 ) and integrating: hs =φ0η(,εαΙητ/β~(1ί~'ι)/Τ/ Therefore, ns =φ0ήίεοΙητ /β^'Τί (17) Since the excitation photon flow is attenuated much faster than the fluorescent photon flow, when the photodiode 184 is excited by the photon due to the photon, the photodiode 184 is excited by the photodiode 184. The photon is the best when the photon generation rate is the same. The electron output rate of the sensor per unit of fluorescence area produced by the fluorescence is: where is the quantum efficiency of the inductor at the wavelength of the fluorescence. Substitution (1 7) We can get: β/(ί) = φ/φ0ή€εαΙηβ-{,-,ΐ)ΙΤ/ (18) Similarly, the sensor electron output rate per unit of fluorescence area due to excitation photons is : 9 is the quantum efficiency of the inductor at the excitation wavelength and is the time constant equivalent to the "off" characteristic of the excited LED. For the time between t2 'attenuation of the photon flux of the LED will increase the intensity of the fluorescence signal and to extend its decay time, but we assume that this line to the If (the square only a negligible impact, so a conservative policy. -90 - 201209404 Now, as mentioned earlier, when Ά(ί3)=·έ·β(ί3), there is the best ί3値. So 'from equations (18) and (1 9 ) we get: ΦΑΙεοΙψ” :ne-ih_hVr. After rearranging we found:

In(响 M) ,3-,2=—i~f— -(20)In (ring M), 3-, 2=-i~f— (20)

Xf Xe 從前兩個段落,我們得到以下兩個運算方程式: ns =ΦΰΚΡτίβ~6"Τ/ …(21) φ \ / -(22)Xf Xe From the first two paragraphs, we get the following two equations of operation: ns =ΦΰΚΡτίβ~6"Τ/ ...(21) φ \ / -(22)

Xf Xe 其中尸= £C/;7且ΔΠ3-ί2。我們還知道實際上。 使用 Philips LXK2-PR14-ROO LED 及 Pulsar 650 染料之 螢光偵測最佳時間及所測得之螢光光子數目如以下來決定 〇 該最佳偵測時間係使用式(22 )來決定: ’調出擴增子之濃度,假設所有擴增子都雜合,那麼發 出螢光之螢光團濃度爲:c = 2.89(l〇V6mol/L 該室高度爲最佳路徑之長度1 = 8(1〇Γό m。 我們視螢光面積等於我們的光二極體面積,然而我們 實際的螢光面積基本上會大於我們的光二極體之面積;從 而我們約略地假設所用光學系統之光線收集效率九=0.5。 從光二極體之特性來看,對於該螢光波長下該光二極體之 -91 - 201209404 量子效率對該激發波長下其量子效率之比値而言f=i〇爲 非常保守的數値。 在' =0.5 ns之典型LED衰減壽命下及採用Pulsar 650規 格,可測定Δί : F = [1.48(10)6][2.89(10)-6][8(10)'6](l) = 3.42(10)5 _ ln([3.42(10)-5](10)(0.5)) _ _1___1_ 1(10)-6 ~ 0.5(10)-9 =4.34(1 〇y9s 所偵測之光子數目係用式(2 1 )來決定。首先’每單 位時間發射之激發光子數目乂係藉由檢測以下發射幾何特 性來決定。 該Philips LXK2-PR14-R00 LED具有朗伯氏輻射圖案 ,故而: Η·, = )ϊ/0 cos ⑹ ...(23) 其中h•,爲偏離該LED前軸向Θ角之每單位立體角每單位時 間發射之光子數目,且^爲於前軸向之β値。 每單位時間LED發射之光子總數爲: «, = Π =Jnl0 cos(9)dQ η 現在, -92- …(24) 201209404 ΑΩ = 2π[1 — cos(0 + A0)] - 2/τ[1 — cos(0)] ΔΩ = 2^-[cos(0) - cos(^ + Δ^)] sin〔专)+ 4;r cos(0) sin2 (专 dfl = 2Trsin(0)d0 把此式代入式(24) π 2 ή, =j2ml0cos(9)sin(e)de 0 = ^/0 重新整理,我們得到: «,0=^ ...(26) π 該LED之輸出功率爲0.515 W且ve= 6.52(10) 14 Hz ,故而: =_0.515_ ~[6.63(1〇Γ34][6.52(10)14] = 1.19(10)18 光子/s 把此數代入式(2 6 ),我們得到: …1.19(10)18 71,0 = π = 3.79(10)17 光子/s/sr 參考第61圖,其示意地表示LED 26之光學中心252及 透鏡254。該光二極體爲16 μηιχ16 μηι,且對於陣列中央之 光二極體而言’從LED 26發出之光線到達該光二極體184 之錐體之立體角(Ω)約爲: Ω =感測器面積/r2 93 - 201209404 [16 (10)-6][16(10)-6] 2.825(10)'3]2 = 3.21(l〇)'5 sr 應瞭解係採用該光二極體陣列44之中心光二極體184 於此計算。位於陣列邊緣之感測器於雜合時在朗伯氏激發 源強度分佈下只接收到少於2%光子。 每單位時間發射之激發光子數目爲: ne = ή,Ω ...(28) = [3.79(10)17][3.21(1〇Γ5] =1.22(10)13 光子/s 現在參考式(2 9 ): ns=</>0neFTfe~^ ns = (0.5)[1.22(10),3][3.42(10)-5][l(10)-6]e-J,34(,〇r,/l(10)"6 = 2 0 8光子數目/感測器 故而,使用 Philips LXK2-PR14-R00 LED^ Pulsar 650 螢光團時,我們可輕易地偵測到發射出此數目之發射光子 之任何雜合事件。 該SET LED發射幾何示於第62圖。於ID = 20 mA時,該 LED具有中心在λε = 340 nm (該铽螯合物之吸光波長)之最 小光學功率輸出pi = 240 μ\ν。以ID = 200 mA驅動該LED會使 該輸出功率線性地提高到Pl = 2.4 mW。藉著把該LED光學中 心2 5 2放置到離該雜合室陣列i丨0約1 7.5 m m處,我們可把 此輸出通量聚集到直徑最大2 mm之圓斑範圍。 可由式(27)可得知遠離雜合平面之2 mm-直徑斑點 之光子通量。 -94- 201209404 «/= Ρι Ave 2.4(10)-3 ~[6.63(10)-34][8.82(10)14] = 4.10(10)15 光子/s 從式(28 )我們得知: he = =4·10⑽15·)72_ 4i(i〇r3]2 = 3.34(10)11 光子/s 現在,調出式(22 )且使用先前列示之Tb螯合物性質 ln[(6.94(10)-s)(10)(0.5)] _1___1_ 1(10)-3 _ 0.5(10)-9 = 3.98(10)'9s 現在,從式(21 ): ns = (0.5)[3.34(10)u][6.94(10)-5][l(10)"3>-J-98(1〇r,/,(I〇rl =1 1,600光子/感測器 可以輕易地偵測到採用SET LED及铽螯合系統於雜合 事件中發射出光子的數目可達到其理論數目且遠超過上述 之可信偵測所需之30個光子之最小數目。 探針及光二極體間之最大間距 雜合之晶片上偵測可避免經由共焦顯微鏡來偵測之需 求(見發明背景)。此舉悖離傳統偵測技術乃爲本系統節 省時間及成本之重要因素。傳統偵測需要使用透鏡或彎曲 鏡面來光學成像。藉著採用非光學成像,該診斷系統可避 -95- 201209404 免對複雜及龐大光學元件串之需求。把光二極體緊密 於探針旁具有提供極高集光效率之優點:當探針及光 體間之材料厚度係在1微米之層級時,該發射光線之 角度會高達173°。此角度係考慮從最接近該光二極體 具有與該雜合室表面平行之平坦活性表面)之雜合室 的形心處之探針發射出之光線來計算。光線可被光二 吸收之發射角圓錐係定義成以發射探針爲頂角且以感 角落爲其平坦面之周界。對於16微米χ16微米之感測 言,此圓錐之頂角角度爲170°;於極限例中(其中光 體鋪展開來,使其面積能匹配29微米χ19.75微米雜合 面積),該頂角角度爲173°。可以輕易地令室表面與 極體活性表面間有1微米或更小分隔。 採用非光學成像方案需要光二極體184與雜合室 接近以收集足夠的螢光發射光子。光二極體及探針間 大間距可用以下方式參考第54圖來決定。 使用一铽螯合物螢光團及SET UVTOP3 3 5T039BL ,我們計算出有1 1 600個光子從個別雜合室18〇到達我 微米X16微米之光二極體184。在進行此計算時,我們 我們的雜合室180之集光區具有與我們光二極體之活 積185相同之底面積,全部的雜合光子中有二分之一 該光二極體1 84。亦即,該光學系統之光線蒐集 & = 0 · 5。 更精確地我們可以寫出么=[(雜合室集光區之底 )/ (光二極體面積)][Ω/4π],其中Ω =於雜合室基底 地置 二極 收集 (其 表面 極體 測器 器而 —極 室之 光二 非常 之最 LED 們16 假設 性面 到達 效率 面積 之代 -96 201209404 表點之光二極體對向之立體角。對於正四角錐幾何來說: Q = 4arcsin ( a2/(4d〇2 + a2)),其中 d〇 =該室與光二極體 間之距離,且a爲該光二極體之尺寸。 各雜合室可釋出23200個光子。所選用之光二極體之 偵測閾値爲1 7個光子;故而,所需之最小光學效率爲: φΰ = 1 7/23 200 = 7.3 3 x 1 0'4 該雜合室180之集光區的底面積爲29微米χ19.75微米 〇 求解do,我們得到我們雜合室底與光二極體1 84間的 最大極限距離d〇 = 249微米。於此限制內,以上定義之收集 錐體角度只有〇.8°。應注意此分析忽略折射的些微影響。 L O C變化型 在此所述及以上顯示之所有LOC裝置301只是許多可 能之LOC裝置設計的其中之一而已。使用上述不同功能區 進行不同組合之LOC裝置變化將從試樣置入到偵測一路描 述下來及/或以示意流程圖來顯示以展現一些可能的組合 。在適當的情況下,該流程圖會被區分成試樣置入及製備 階段28 8、萃取階段290、培育階段291、擴增階段292、雜 合前階段293及偵測階段294。對於以上簡述或僅以示意形 式表示之所有LOC變化型而言,爲求簡潔明瞭,並沒有顯 示所有隨同的完整佈局。同樣地爲求清楚起見,並沒有顯 示較小的功能性單元例如液體感測器及溫度感測器,不過 應理解於各個以下LOC裝置設計中此等單元已被倂入適當 "97 - 201209404 的位置。Xf Xe where corpse = £C/; 7 and ΔΠ3-ί2. We also know the truth. The best time to detect fluorescence using the Philips LXK2-PR14-ROO LED and Pulsar 650 dye and the number of measured photons are determined as follows: The best detection time is determined using equation (22): ' The concentration of the amplicon is called, and assuming that all the amplicons are heterozygous, the concentration of the fluorescent fluorophore is: c = 2.89 (l〇V6mol/L, the height of the chamber is the length of the optimal path 1 = 8 ( 1〇Γό m. We see that the area of the fluorescent light is equal to the area of our photodiode, but our actual fluorescent area is basically larger than the area of our photodiode; thus we roughly assume the light collection efficiency of the optical system used. =0.5. From the characteristics of the photodiode, f = i 〇 is very conservative for the quantum efficiency of the photodiode at the fluorescence wavelength of -91 - 201209404. Number 値. Under the typical LED attenuation lifetime of '=0.5 ns and using the Pulsar 650 specification, Δί : F = [1.48(10)6][2.89(10)-6][8(10)'6]( l) = 3.42(10)5 _ ln([3.42(10)-5](10)(0.5)) _ _1___1_ 1(10)-6 ~ 0.5(10)-9 =4.34(1 〇y9s Detected The number of photons is determined by equation (2 1 ). First, the number of excitation photons emitted per unit time is determined by detecting the following emission geometry. The Philips LXK2-PR14-R00 LED has a Lambertian radiation pattern. Therefore: Η·, = )ϊ/0 cos (6) (23) where h• is the number of photons emitted per unit time from the unit solid angle of the front axial angle of the LED, and ^ is the front axle To β値 The total number of photons emitted by the LED per unit time is: «, = Π =Jnl0 cos(9)dQ η Now, -92- ...(24) 201209404 ΑΩ = 2π[1 — cos(0 + A0)] - 2/τ[1 — cos(0)] ΔΩ = 2^-[cos(0) - cos(^ + Δ^)] sin[specific]+ 4;r cos(0) sin2 (specifically dfl = 2Trsin( 0)d0 Substituting this formula into equation (24) π 2 ή, =j2ml0cos(9)sin(e)de 0 = ^/0 Rearrange, we get: «,0=^ ...(26) π This LED The output power is 0.515 W and ve= 6.52(10) 14 Hz, so: =_0.515_ ~[6.63(1〇Γ34][6.52(10)14] = 1.19(10)18 photon/s For equation (2 6 ), we get: ...1.19(10)18 71,0 = π = 3.79(10)17 photons/s/sr refer to Fig. 61, which schematically shows the LED Optical center 252 and lens 254 of 26. The photodiode is 16 μηιχ16 μηι, and for the photodiode at the center of the array, the solid angle (Ω) of the light emitted from the LED 26 to the photodiode 184 is approximately: Ω = sensor area /r2 93 - 201209404 [16 (10)-6][16(10)-6] 2.825(10)'3]2 = 3.21(l〇)'5 sr It should be understood that the center of the photodiode array 44 is used. The photodiode 184 is calculated here. Sensors located at the edge of the array receive only less than 2% of photons at the Langber's excitation source intensity distribution when heterozygous. The number of excitation photons emitted per unit time is: ne = ή, Ω ... (28) = [3.79(10)17][3.21(1〇Γ5] =1.22(10)13 Photon/s Reference now (2 9): ns=</>0neFTfe~^ ns = (0.5)[1.22(10),3][3.42(10)-5][l(10)-6]eJ,34(,〇r, /l(10)"6 = 2 0 8 photon number/sensors. When using the Philips LXK2-PR14-R00 LED^ Pulsar 650 fluorophore, we can easily detect the emission of this number of emitted photons. Any of the hybrid events. The SET LED emission geometry is shown in Figure 62. At ID = 20 mA, the LED has a minimum optical power output centered at λε = 340 nm (the absorption wavelength of the ruthenium chelate) pi = 240 μ\ν. Driving the LED with ID = 200 mA linearly increases the output power to Pl = 2.4 mW by placing the LED optical center 2 5 2 about 1 from the hybrid array i丨0 At 7.5 mm, we can concentrate this output flux to a circle with a diameter of up to 2 mm. The photon flux of 2 mm-diameter spots away from the hybrid plane can be seen by equation (27). -94- 201209404 « /= Ρι Ave 2.4(10)-3 ~[6.63(10)-34][8.82(10)14] = 4.10(10)15 Photon /s From equation (28) we know: he = =4·10(10)15·)72_ 4i(i〇r3]2 = 3.34(10)11 photons/s Now, call up equation (22) and use the previously listed Tb chelate property ln[(6.94(10)-s)(10)(0.5)] _1___1_ 1(10)-3 _ 0.5(10)-9 = 3.98(10)'9s Now, from equation (21) : ns = (0.5)[3.34(10)u][6.94(10)-5][l(10)"3>-J-98(1〇r,/,(I〇rl =1 1,600 The photon/sensor can easily detect that the number of photons emitted by the SET LED and the 铽 chelating system in a hybrid event can reach its theoretical number and far exceed the 30 photons required for the above-mentioned trusted detection. The minimum number of probes and the maximum pitch between the photodiodes is detected on the wafer to avoid the need to detect via confocal microscopy (see background of the invention). This is a saving from the traditional detection technology. An important factor in time and cost. Traditional detection requires the use of a lens or curved mirror for optical imaging. By using non-optical imaging, the diagnostic system avoids the need for complex and bulky optical components. Keeping the photodiode close to the probe provides the advantage of providing extremely high collection efficiency: when the material thickness between the probe and the light is at the 1 micron level, the angle of the emitted light can be as high as 173°. This angle is calculated by considering the light emitted from the probe at the centroid of the hybrid chamber closest to the photodiode having a flat active surface parallel to the surface of the hybrid chamber. The emission angle cone in which light can be absorbed by light is defined as the perimeter of the emission probe and the perimeter of the flat surface. For a 16 micron χ 16 micrometer sense, the apex angle of the cone is 170°; in the extreme case (where the light body is spread out so that its area matches the 29 micron χ 19.75 micron hybrid area), the top The angular angle is 173°. It is easy to separate the chamber surface from the polar active surface by 1 micron or less. The use of a non-optical imaging scheme requires that the photodiode 184 be in close proximity to the hybrid chamber to collect sufficient fluorescent emission photons. The large spacing between the photodiode and the probe can be determined in the following manner with reference to Figure 54. Using a chelating chelate fluorophore and SET UVTOP3 3 5T039BL, we calculated that 1 1 600 photons were arriving from my individual hybrid chambers 18 〇 to my micron X 16 micron photodiode 184. In doing this calculation, the collection area of our hybrid chamber 180 has the same bottom area as our photodiode 185, and one-half of all the hybrid photons have the photodiode 1 84. That is, the light collection of the optical system & = 0 · 5. More precisely, we can write out = [(the bottom of the divergent chamber light collection area) / (photodiode area)] [Ω / 4π], where Ω = the second pole collection on the base of the hybrid chamber (the surface Polar body detector - the light of the pole room is the most LEDs 16 The hypothetical surface reaches the generation of the efficiency area -96 201209404 The solid angle of the light diode of the point. For the regular pyramid geometry: Q = 4arcsin ( A2/(4d〇2 + a2)), where d〇=the distance between the chamber and the photodiode, and a is the size of the photodiode. Each of the hybrid chambers can release 23,200 photons. The detection threshold of the polar body is 11 photons; therefore, the minimum optical efficiency required is: φΰ = 1 7/23 200 = 7.3 3 x 1 0'4 The bottom area of the collection area of the hybrid chamber 180 is 29 micron χ 19.75 micron 〇 solve do, we get the maximum limit distance between our hybrid chamber bottom and the light diode 1 84 d 〇 = 249 microns. Within this limit, the above defined cone angle is only 〇.8 °. It should be noted that this analysis ignores the slight effects of refraction. LOC variants all LOC devices 3 described and above. 01 is just one of many possible LOC device designs. LOC device changes using different combinations of the different functional areas described above will be described by placing the sample into the detection and/or displaying it in a schematic flow chart to show some Possible combinations. Where appropriate, the flow chart will be divided into sample insertion and preparation stages 28 8 , extraction stage 290, incubation stage 291, amplification stage 292, pre-hybrid stage 293, and detection stage 294 For all of the LOC variants described above or only in schematic form, for the sake of brevity and clarity, not all of the accompanying complete layouts are shown. Also for clarity, no smaller functional units are shown. For example, liquid sensors and temperature sensors, it should be understood that these units have been incorporated into the appropriate "97 - 201209404 position in each of the following LOC device designs.

LOC變化型XII LOC變化型XII 758係示於第96到103圖。此LOC裝置 會萃取2 9 0、培育2 9 1、擴增2 9 2及偵測2 9 4病原體D N A,且 使用雜合前純化步驟293以增加雜合效率》該試樣(例如 全血)被加到試樣置入口 6 8 (見第9 8圖)且毛細作用會把 該試樣拉引到表面張力閥118處,於該處會加入來自貯存 器54之抗凝血劑。該試樣會繼續留在頂蓋通道94中流到病 原體透析區70。透析區70具有旁路通道600以防止截留氣 泡(見第98圖)。 經過病原體透析區7 〇透析以後,該紅血球及白血球液 流會通往廢棄物貯存器76而該等病原體則繼續於試樣流中 流到表面張力閥1 2 8,於該處加入來自貯存器5 6之胞溶試 劑。藉著沸騰-起動閥206把試樣留在化學胞溶室130內並 充滿該化學胞溶室直到胞溶試劑已擴散到整個試樣中且釋 放出大部份(若非全部)的病原體DNA。當沸騰起動閥 2 0 6打開時,該試樣會流到表面張力閥1 3 2,於該處加入來 自貯存器58之限制酶、接合酶及連接子引子。試樣會塡滿 培育區1 1 4且被加熱同時進行病原體DN A之限制酶消化及 連接子接合作用(見第98圖)。 在經過限制酶消化及連接子接合以後,該沸騰起動閥 2 0 7會打開好讓試樣流到擴增區Π 2內。透過表面張力閥 138加入來自貯存器60之擴增混合物且當試樣流到擴增區 -98- 201209404 112時來自貯存器62之聚合酶會通過該表面張力閥140。在 該沸騰起動閥1 〇 8打開以讓擴增子流到小成分透析區6 8 2並 除去大組份以前(見第98圖)該病原體DNA會先用熱循環 來擴增。 如第101及102圖最佳顯示地’該小成分透析區682於 建於底通道層100內之兩條小成分通道762間有—條大成分 通道760 (見第97圖)。該大成分通道760透過一連串呈倒 錐形開口 764形式之孔口被連接到該等小成分通道762。在 多數實際應用中,該孔口爲1到8微米寬及1到8微米高。當 擴增子流到該大成分通道760時,小成分(比該倒錐開口 764還小)開始擴散到該等小成分通道762內。當試樣流繼 續流到該小成分透析區682之下游端時,於大成分通道760 內之小成分濃度會降低。微製造孔口之其他優點還有沿著 通道每單位長度之孔口數目非常高,因此該分離更有效。 爲了有效分離出具有所需大小之成分,相鄰孔口間之間距 爲1微米到10微米之間;於第102圖所示之具體例中,相鄰 孔口間之間距爲8微米。 第103圖顯示小成分透析區682之下游端。該大成分通 道760分支成寬曲流末梢,其具有封閉端766可當作廢棄物 貯存器。兩條小成分通道762通往雜合示陣列1 1 〇之對側’ 於該處這兩條通道都循著蜿蜒路徑通過該陣列來到各自的 封閉端768。小成分擴增子先塡滿所有個別雜合室180 ’然 後再定時啓動雜合加熱器以及進行後續之探針-目標物雜 合體的偵測(如先前所述般)。 •99- 201209404 該小成分透析區6 82能除去在細胞胞溶以後還留在試 樣流內之細胞殘渣。細胞殘渣會干擾雜合效率。The LOC variant XII LOC variant XII 758 is shown in Figures 96 to 103. The LOC device extracts 290, culturing 291, amplifying 292 and detecting 294 pathogen DNA, and using a pre-hybridization purification step 293 to increase hybrid efficiency. The sample (eg whole blood) It is applied to the sample inlet 6 8 (see Figure 9 8) and the capillary action pulls the sample to the surface tension valve 118 where the anticoagulant from the reservoir 54 is added. The sample will continue to flow in the cap channel 94 to the pathogen dialysis zone 70. The dialysis zone 70 has a bypass passage 600 to prevent entrapment of air bubbles (see Figure 98). After dialysis by the pathogen dialysis zone 7 〇, the red blood cell and white blood cell streams will lead to the waste reservoir 76 and the pathogens continue to flow in the sample stream to the surface tension valve 1 2 8 where they are added from the reservoir 5 6 cytosolic reagent. The sample is left in the chemical cell chamber 130 by the boiling-start valve 206 and fills the chemical cell chamber until the lysing reagent has diffused throughout the sample and releases most, if not all, of the pathogen DNA. When the boiling start valve 206 is opened, the sample will flow to the surface tension valve 132 where the restriction enzyme, ligase and linker primer from the reservoir 58 are added. The sample will fill the incubation zone 1 14 and be heated while performing restriction enzyme digestion of the pathogen DN A and linker ligation (see Figure 98). After restriction enzyme digestion and ligation of the linker, the boiling starter valve 72 is opened to allow the sample to flow into the amplification zone Π2. The amplification mixture from reservoir 60 is added through surface tension valve 138 and polymerase from reservoir 62 passes through surface tension valve 140 as it flows to amplification zone -98-201209404112. The pathogen DNA is first amplified by thermal cycling before the boiling start valve 1 〇 8 is opened to allow the amplicon to flow to the small component dialysis zone 682 and the large component is removed (see Figure 98). As shown in Figures 101 and 102, the small component dialysis zone 682 has a large component channel 760 between the two small component channels 762 built into the bottom channel layer 100 (see Figure 97). The large component channel 760 is coupled to the small component channels 762 through a series of apertures in the form of inverted cone openings 764. In most practical applications, the orifice is 1 to 8 microns wide and 1 to 8 microns high. As the amplicon flows to the large component channel 760, small components (smaller than the inverted cone opening 764) begin to diffuse into the small component channels 762. As the sample stream continues to flow to the downstream end of the small component dialysis zone 682, the concentration of small components in the large component channel 760 decreases. Other advantages of microfabricated orifices are that the number of orifices per unit length along the channel is very high, so the separation is more efficient. In order to effectively separate the components having the desired size, the distance between adjacent orifices is between 1 micrometer and 10 micrometers; in the specific example shown in Fig. 102, the distance between adjacent orifices is 8 micrometers. Figure 103 shows the downstream end of the small component dialysis zone 682. The large component channel 760 branches into a wide meandering tip with a closed end 766 that acts as a waste reservoir. The two small component channels 762 lead to the opposite side of the hybrid array 1 1 'where the two channels follow the path through the array to the respective closed ends 768. The small component amplicon first fills all individual hybrid chambers 180' and then periodically starts the hybrid heater and performs subsequent probe-target hybrid detection (as previously described). •99- 201209404 This small component dialysis zone 6 82 removes cell debris that remains in the sample stream after cell lysis. Cell debris can interfere with heterozygous efficiency.

LOC變化型XLIV 第82圖顯示LOC變化型XLIV 674,其可經由核酸擴增 來偵測病原體。試樣被加到試樣置入口 68且毛細作用會把 試樣拉引到表面張力閥1 1 8。貯存器5 4內之試劑經過表面 張力閥11 8與試樣混合且液流繼續流到擴增相292。試劑貯 存器54若有需要也可含有化學胞溶試劑。經由表面張力閥 138加入貯存器60之擴增混合物且經由表面張力閥140加入 貯存器6 2之聚合酶。擴增區1 1 2之熱循環會擴增來自任何 胞溶細胞之遺傳性物質。在進行熱循環以前,可於該擴增 區112內進行化學胞溶及/或熱胞溶。當產生足夠擴增子以 後,該沸騰起動閥1 08會打開以讓毛細驅動流流到該小成 分透析區6 8 2中。小試樣成分例如已溶解分子及已擴增核 酸會被留在試樣中。大成分例如細胞膜殘渣及任何未胞溶 之病原體會流到廢棄物貯存器766中。已純化試樣中之小 成分繼續流到雜合室陣列11 〇中以供光感測器44作雜合體 偵測。LOC Variant XLIV Figure 82 shows LOC variant XLIV 674, which can detect pathogens via nucleic acid amplification. The sample is applied to the sample inlet 68 and the capillary action pulls the sample to the surface tension valve 1 18 . The reagent in reservoir 54 is mixed with the sample via surface tension valve 187 and the flow continues to flow to phase 292. The reagent reservoir 54 may contain a chemical cytolytic reagent if desired. The amplification mixture of reservoir 60 is added via surface tension valve 138 and the polymerase of reservoir 62 is added via surface tension valve 140. The thermal cycling of the amplification zone 112 will amplify genetic material from any cytolytic cell. Chemical cytolysis and/or thermocytolysis can be carried out in the amplification zone 112 prior to thermal cycling. When sufficient amplicons are generated, the boiling start valve 108 opens to allow the capillary drive flow to flow into the small component dialysis zone 682. Small sample components such as dissolved molecules and amplified nucleic acids are left in the sample. Large components such as cell membrane debris and any uncytosoluble pathogens will flow into the waste reservoir 766. The small components in the purified sample continue to flow into the hybrid chamber array 11 for the photodetector 44 to be detected by the hybrid.

LOC變化型XLVI 第83圖示意地顯示LOC變化型XLVI 676,其可使用大 成分透析區686、培育區114、擴增區112、雜合室陣列11〇 及光感測器44來偵測病原體。該大成分透析區68 6被設計 -100- 201209404 成能留下大於特定閾値大小之成分(包括病原體)。小於 該閾値之成分被轉移到廢棄物貯存器768。已純化之試樣 繼續流入培育相291,於該處經由表面張力閥132倂入來自 貯存器58之限制酶、接合酶及連接子引子且於培育區114 中進行限制酶消化及連接子接合。消化以後,該沸騰起動 閥108會打開且試樣進入擴增區112,於該處經由表面張力 閥138加入貯存器60之擴增混合物且經由表面張力閥140加 入貯存器62之聚合酶。於核酸擴增以後,該等擴增子進入 雜合前純化期293。小成分透析區682會從來自擴增區1 12 之擴增子中除掉大成分。該等大成分例如細胞、病原體、 顆粒及殘渣被轉移到第二廢棄物貯存器766中而留在試樣 中吃較小成分例如擴增子則會充滿雜合室陣列1 1 0。該等 雜合體係用光感測器44來偵測。LOC Variant XLVI Figure 83 shows schematically LOC Variant XLVI 676, which can use a large component dialysis zone 686, incubation zone 114, amplification zone 112, hybrid chamber array 11 and photosensor 44 to detect pathogens. . The large component dialysis zone 68 6 is designed to retain components (including pathogens) that are larger than a particular threshold size. Components smaller than the threshold are transferred to the waste reservoir 768. The purified sample continues to flow into the incubation phase 291 where it is introduced into the restriction enzyme, ligase and linker primer from the reservoir 58 via the surface tension valve 132 and subjected to restriction enzyme digestion and linker ligation in the incubation zone 114. After digestion, the boiling start valve 108 opens and the sample enters the expansion zone 112 where it is added to the amplification mixture of reservoir 60 via surface tension valve 138 and to the polymerase of reservoir 62 via surface tension valve 140. After amplification of the nucleic acid, the amplicon enters the pre-hybridization purification phase 293. The small component dialysis zone 682 will remove large components from the amplicon from the amplification zone 1 12 . The large components such as cells, pathogens, particles and debris are transferred to the second waste reservoir 766 and left in the sample to eat smaller components such as amplicons which will be filled with the hybrid chamber array 110. The hybrid systems are detected by photosensor 44.

LOC變化型XLVIII 第85圖示意地顯示LOC變化型XLVIII 67 8,其可使用 限制酶、接合酶及連接子培育區1 1 4、擴增區1 1 2、小成分 透析區682、雜合室陣列1 10及光感測器44來偵測病原體。 試樣被加到試樣置入口 6 8且毛細作用會把試樣拉引到表面 t 張力閥118。含有化學胞溶劑之貯存器54內之試劑透過表 面張力閥1 18與試樣混合且液流繼續流入培育相291。在此 試樣透過表面張力閥1 32合倂來自貯存器5 8之限制酶、接 合酶及連接子且於培育區1 1 4中進行限制酶消化及連接子 接合直到位於該培育區1 14出口之沸騰起動閥1〇8打開且毛 -101 - 201209404 細驅動流重新進入擴增相2 9 2。透過表面張力閥1 3 8加入貯 存器60之擴增混合物且透過表面張力閥140加入貯存器62 之聚合酶。擴增區Π2之熱循環會擴增來自任何胞溶細胞 之遺傳物質。當產生足夠擴增子以後,該沸騰起動閥108 會打開以讓毛細驅動流流到該小成分透析區68 2中。小試 樣成分例如已溶解分子及已擴增核酸會被留在試樣中。大 成分例如細胞膜殘渣及任何未胞溶病原體會流到該廢棄物 貯存器766中。於已純化試樣中之小成分繼續流到雜合室 陣列1 1 〇中以供光感測器44作雜合體偵測。 結論 在此所述之裝置、系統及方法能促使人們於看護地點 且以低成本快速地進行分子診斷測試。以上所述之系統及 其構件純粹是顯示用且此領域之技術人士能輕易瞭解不悖 離本發明廣義發明槪念之精神及範疇之眾多變化及修正。 【圖式簡單說明】 本發明之較佳具體例現在將參考後附圖式藉由實施例 來說明,其中: 第1圖顯示採用螢光偵測之測試模組及測試模組讀取 器; 第2圖爲採用螢光偵測之測試模組內電子構件之示意 槪視圖: 第3圖爲該測試模組讀取器內電子構件之示意槪視圖 -102- 201209404 第4圖爲該LOC裝置之整體結構之示意代表圖; 第5圖爲該LOC裝置之立體圖; 第6圖爲LOC裝置及其相互層疊之全部膜層之特徵構 件及結構之平面圖; 第7圖爲單獨顯示出頂蓋結構之L0C裝置平面圖; 第8圖爲該頂蓋之頂視立體圖且以虛線表示內部通道 及貯存器; 第9圖爲該頂蓋之分解頂視立體圖且以虛線表示內部 通道及貯存器; 第10圖爲顯示頂蓋之上通道構型之底視立體圖; 第11圖爲單獨顯示該CMOS + MST裝置之結構之LOC裝 置之平面圖; 第12圖爲該LOC裝置於試樣置入口之示意剖面圖; 第13圖爲第6圖所示之插圖AA之放大圖; 第14圖爲第6圖所示之插圖AB之放大圖; 第15圖爲第13圖所示之插圖AE之放大圖; 第16圖爲顯示該LOC裝置於插圖AE內之層狀結構之部 份立體圖; 第17圖爲顯示該LOC裝置於插圖AE內之層狀結構之部 份立體圖; 第18圖爲顯示該LOC裝置於插圖AE內之層狀結構之部 份立體圖; 第19圖爲顯示該LOC裝置於插圖AE內之層狀結構之部 -103- 201209404 份立體圖; 第20圖爲顯示該LOC裝置於插圖AE內之層狀結構之部 份立體圖; 第21圖爲顯示該LOC裝置於插圖AE內之層狀結構之部 份立體圖; 第22圖爲第2 1圖顯示之胞溶試劑貯存器之示意剖面圖 > 第23圖爲顯示該LOC裝置於插圖AB內之層狀結構之部 份立體圖; 第24圖爲顯示該LOC裝置於插圖AB內之層狀結構之部 份立體圖; 第25圖爲顯示該LOC裝置於插圖AI內之層狀結構之部 份立體圖; 第26圖爲顯示該LOC裝置於插圖AB內之層狀結構之部 份立體圖; 第27圖爲顯示該LOC裝置於插圖AB內之層狀結構之部 份立體圖; 第28圖爲顯示該l〇C裝置於插圖AB內之層狀結構之部 份立體圖: 第29圖爲顯示該LOC裝置於插圖ab內之層狀結構之部 份立體圖; 第3 0 I®爲該擴增混合物貯存器及聚合酶貯存器之示意 剖面圖; 第31圖單獨顯示一沸騰起動閥之特徵構件; -104- 201209404 第3 2圖爲顯示於第3 1圖之行經線3 3 -3 3沸騰起動閥之 示意剖面圖; 第33圖爲第15圖顯示之插圖AF之放大圖; 第34圖爲顯示於第33圖之行經線35-35之透析區上游 端之示意剖面圖; 第35圖爲第6圖顯不之插圖AC之放大圖, 第36圖爲插圖AC內部之擴增區之進一步放大圖; 第37圖爲插圖AC內部之擴增區之進一步放大圖; 第38圖爲插圖AC內部之擴增區之進一步放大圖; 第39圖爲第38圖顯示之插圖AK內部之進一步放大圖 1 第40圖爲插圖AC內部之擴增室之進一步放大圖; 第41圖爲插圖AC內部之擴增區之進一步放大圖; 第42圖爲插圖AC內部之擴增室之進一步放大圖; 第43圖爲第42圖顯示之插圖AL內部之進一步放大圖; 第44圖爲插圖AC內部之擴增區之進一步放大圖; 第45圖爲第44圖顯示之插圖AM內部之進一步放大圖 i 第46圖爲插圖AC內部之擴增室之進一步放大圖; 第47圖爲第46圖顯示之插圖AN內部之進一步放大圖 * ^ 第48圖爲插圖AC內部之擴增室之進一步放大圖; 第49圖爲插圖AC內部之擴增室之進一步放大圖; 第5 0圖爲插圖AC內部之擴增區之進一步放大圖; -105- 201209404 第5 1圖爲該擴增區之示意剖面圖; 第52圖爲該雜合區之放大平面圖; 第53圖爲兩單離之雜合室之進一步放大平面圖; 第54圖爲單一雜合室之示意剖面圖; 第55圖爲第6圖顯示之插圖AG內之濕化器之放大圖; 第56圖爲第52圖顯示之插圖AD之放大圖; 第57圖爲插圖AD內該LOC裝置之分解立體圖; 第58圖爲密閉構型之FRET探針之圖; 第59圖爲開放及雜合構型之FRET探針之圖; 第60圖爲激發光線強度隨著時間之變化圖; 第6 1圖爲該雜合室陣列之激發性發光幾何圖; 第62圖爲感測器電子技術(Sensor Electronic Technology )LED發光幾何圖; 第63圖爲顯示於第6圖之插圖AH內之濕度感測器之放 大平面圖; 第64圖爲一白血球目標物透析區之示意剖面圖; 第65圖爲顯示該光感測器之部份光二極體陣列之示意 圖; 第66圖爲單一光二極體之電路圖; 第67圖爲該光二極體控制信號之時序圖; 第68圖爲示於第55圖之插圖AP內之蒸發器放大圖; 第69圖爲通過具有一偵測光二極體及觸發光二極體( trigger photodiode)之雜合室之示意剖面圖; 第70圖爲連接子·帶頭PCR( linker-primed PCR)之圖 -106- 201209404 第7 1圖爲一具刺血針之測試模組之示意代表圖; 第72圖爲LOC變化型VII之整體結構之圖解代表圖; 第73圖爲LOC變化型VIII及其相互層疊之全部膜層之 特徵構件及結構之平面圖; 第74圖爲示於第73圖之插圖CA之放大圖;LOC Variant XLVIII Figure 85 schematically shows LOC variant XLVIII 67 8, which can use restriction enzymes, ligase and linker incubation zone 1 14 , amplification zone 1 1 2, small component dialysis zone 682, hybrid compartment Array 1 10 and light sensor 44 are used to detect pathogens. The sample is applied to the sample inlet 6 8 and the capillary action pulls the sample to the surface t tension valve 118. The reagent in the reservoir 54 containing the chemical cytosol is mixed with the sample through the surface tension valve 186 and the flow continues into the incubation phase 291. The sample is passed through a surface tension valve 1 32 to bind the restriction enzyme, ligase and linker from the reservoir 58 and subjected to restriction enzyme digestion and linker ligation in the incubation zone 1 14 until exiting at the incubation zone 1 14 The boiling start valve 1〇8 is opened and the capillary-101 - 201209404 fine drive flow re-enters the amplification phase 2 9 2 . The amplification mixture of reservoir 60 is introduced through surface tension valve 138 and polymerase of reservoir 62 is passed through surface tension valve 140. The thermal cycle of the amplification region Π2 amplifies the genetic material from any cytolytic cell. When sufficient amplicons are generated, the boiling start valve 108 opens to allow the capillary drive flow to flow into the small component dialysis zone 68 2 . Small sample components such as dissolved molecules and amplified nucleic acids are left in the sample. Large components such as cell membrane debris and any non-lytic pathogens will flow into the waste reservoir 766. The small components in the purified sample continue to flow into the hybrid chamber array 1 1 for the photodetector 44 for hybrid detection. Conclusion The devices, systems, and methods described herein enable people to perform molecular diagnostic tests at a care location and at a low cost. The above-described systems and their components are purely for display and can be easily understood by those skilled in the art from the numerous variations and modifications of the spirit and scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present invention will now be described with reference to the following drawings, wherein: FIG. 1 shows a test module and a test module reader using fluorescence detection; Figure 2 is a schematic view of the electronic components in the test module using the fluorescence detection: Figure 3 is a schematic view of the electronic components in the test module reader -102-201209404 Figure 4 is the LOC device A schematic representation of the overall structure; Figure 5 is a perspective view of the LOC device; Figure 6 is a plan view of the LOC device and its features and structures of all layers laminated to each other; Figure 7 is a separate view of the top cover structure Figure 8 is a top perspective view of the top cover and the internal passages and reservoirs are indicated by dashed lines; Figure 9 is an exploded top perspective view of the top cover and the internal passages and reservoirs are indicated by dashed lines; The figure shows a bottom perspective view of the channel configuration above the top cover; Figure 11 is a plan view of the LOC device showing the structure of the CMOS + MST device separately; Figure 12 is a schematic cross-sectional view of the LOC device at the sample inlet. Figure 13 is Figure 6 is an enlarged view of the illustration AA shown in Figure 6; Figure 14 is an enlarged view of the illustration AB shown in Figure 6; Figure 15 is an enlarged view of the illustration AE shown in Figure 13; A partial perspective view of the layered structure of the LOC device in the inset AE; Figure 17 is a partial perspective view showing the layered structure of the LOC device in the inset AE; Figure 18 is a layer showing the LOC device in the inset AE Partial perspective view of the structure; Figure 19 is a perspective view showing the layered structure of the LOC device in the illustration AE -103 - 201209404; Figure 20 is a view showing the layered structure of the LOC device in the illustration AE Fig. 21 is a partial perspective view showing the layered structure of the LOC device in the inset AE; Fig. 22 is a schematic sectional view of the lysing reagent reservoir shown in Fig. 2; Fig. 23 is a view A partial perspective view of the layered structure of the LOC device in the inset AB; Fig. 24 is a partial perspective view showing the layered structure of the LOC device in the inset AB; Fig. 25 is a view showing the LOC device in the illustration AI Partial perspective view of the layered structure; Figure 26 shows the illustration of the LOC device Partial perspective view of the layered structure in AB; Figure 27 is a partial perspective view showing the layered structure of the LOC device in the inset AB; Figure 28 is a layered structure showing the l〇C device in the inset AB Partial perspective view: Figure 29 is a partial perspective view showing the layered structure of the LOC device in the inset ab; Section 30I® is a schematic sectional view of the amplification mixture reservoir and the polymerase reservoir; The figure shows a characteristic component of a boiling start valve separately; -104- 201209404 Figure 3 2 is a schematic sectional view of the boiling start valve of the 3 3 -3 3 line shown in Figure 31; Figure 33 shows the 15th figure Fig. 34 is a schematic cross-sectional view showing the upstream end of the dialysis zone of the line 35-35 of Fig. 33; Fig. 35 is an enlarged view of the illustration AC of Fig. 6, the 36th The figure is a further enlarged view of the amplification region inside the illustration AC; Fig. 37 is a further enlarged view of the amplification region inside the illustration AC; Fig. 38 is a further enlarged view of the amplification region inside the illustration AC; Figure 38 shows the further enlargement of the inside of the illustration AK Figure 1 Figure 40 is an illustration of AC Further enlarged view of the amplification chamber; Fig. 41 is a further enlarged view of the amplification region inside the illustration AC; Fig. 42 is a further enlarged view of the amplification chamber inside the illustration AC; Fig. 43 is a diagram showing the 42 A further enlarged view of the inside of the illustration AL; Fig. 44 is a further enlarged view of the amplification area inside the illustration AC; Fig. 45 is a further enlarged view of the inside of the illustration AM shown in Fig. 44. Fig. 46 is an enlarged view of the interior of the illustration AC. Further enlarged view of the expansion chamber; Fig. 47 is a further enlarged view of the inside of the illustration AN shown in Fig. 46. ^ Fig. 48 is a further enlarged view of the amplification chamber inside the illustration AC; Fig. 49 is an enlarged view of the interior of the illustration AC A further enlarged view of the expansion chamber; Figure 50 is a further enlarged view of the amplification region inside the illustration AC; -105- 201209404 Figure 51 is a schematic sectional view of the amplification region; Figure 52 is the hybrid region A magnified plan view; Fig. 53 is a further enlarged plan view of the two separate compartments; Fig. 54 is a schematic sectional view of a single hybrid chamber; and Fig. 55 is a humidifier of the illustration AG shown in Fig. 6. Magnified image; Figure 56 is the illustration of Figure 52 showing AD Figure 57 is an exploded perspective view of the LOC device in the illustration AD; Figure 58 is a diagram of the FRET probe in a closed configuration; Figure 59 is a diagram of the FRET probe in an open and hybrid configuration; The figure shows the intensity of the excitation light as a function of time; Figure 6 is the excitation illuminating geometry of the hybrid chamber array; Figure 62 is the sensor electronic technology (Sensor Electronic Technology) LED illuminating geometry; The figure is an enlarged plan view of the humidity sensor shown in the illustration AH of Fig. 6; Fig. 64 is a schematic sectional view of a white blood cell target dialysis area; Fig. 65 is a view showing a part of the photodiode of the light sensor Figure 66 is a circuit diagram of a single photodiode; Fig. 67 is a timing diagram of the photodiode control signal; and Fig. 68 is an enlarged view of the evaporator shown in the illustration AP of Fig. 55; Figure 69 is a schematic cross-sectional view through a hybrid chamber with a detection photodiode and a trigger photodiode; Figure 70 is a diagram of linker-primed PCR-106-201209404 Figure 7 1 shows a test module for a lancet Figure 72 is a graphical representation of the overall structure of the LOC variant VII; Figure 73 is a plan view of the LOC variant VIII and the features and structures of all layers laminated to each other; Figure 74 is shown in Figure An enlarged view of the illustration CA of Fig. 73;

第75圖爲第73圖顯示之插圖CA內部之LOC變化型VIII 之層狀結構之部份立體圖; 第76圖爲示於第74圖之插圖CE之放大圖; 第77圖爲LOC變化型VIII之整體結構之圖解代表圖; 第78圖爲LOC變化型XIV之整體結構之示意圖; 第79圖爲LOC變化型XLI之整體結構之示意圖; 第80圖爲LOC變化型XLII之整體結構之示意圖; 第81圖爲LOC變化型XLIII之整體結構之示意圖; 第82圖爲LOC變化型XLIV之整體結構之示意圖; 第83圖爲LOC變化型XLVI之整體結構之示意圖; 第84圖爲LOC變化型XLVII之整體結構之示意圖; 第85圖爲LOC變化型XLVIII之整體結構之示意圖; 第8 6圖爲初始擴增期間該引子-連接子之線性螢光探 針圖 第8 7圖爲後續擴增循環期間該引子-連接子之線性蛮 光探針圖; 第88A至88F圖係圖解顯示引子-連接子之營光莖環探 針之熱循環變化; -107- 201209404 第89圖爲相對於該雜合室陣列及該等光二極體之激發 LED之示意圖; 第90圖爲導引光線朝向該LOC裝置之雜合室陣列之激 發LED及光學透鏡之示意圖; 第91圖爲導引光線朝向該LOC裝置之雜合室陣列之激 發LED、光學透鏡及光學稜鏡之示意圖; - 第92圖爲導引光線朝向該LOC裝置之雜合室陣列之激 發LED、光學透鏡及面鏡設置之示意圖; 第93圖爲顯示相互層疊之所有特徵構件及顯示插圖 DA至DK之位置之平面圖; 第94圖爲第93圖所示之插圖DG之放大圖; 第95圖爲第93圖所示之插圖DH之放大圖; 第96圖爲LOC變化型XII之整體結構之圖解*代表圖; 第97圖爲LOC變化型XII之立體圖; 第98圖爲顯示LOC變化型XII中相互層疊之所有特徵構 件及插圖FA至FC位置之平面圖; 第99圖爲單獨顯示LOC變化型XII之頂蓋特徵構件之平 面圖; 第100圖爲單獨顯示該LOC變化型XII之CMOS + MST裝 置之結構之平面圖; · 第101圖爲第98圖所示之插圖FA之放大圖; 第102圖爲第98圖所示之插圖FB之放大圖; 第103圖爲第98圖所示之插圖FC之放大圖; 第1 04圖爲該等光二極體用之分流電晶體之具體例; -108- 201209404 第105圖爲該等光二極體用之分流電晶體之具體例; 第106圖爲該等光二極體用之分流電晶體之具體例; 第107圖爲微分影像器(differential imager)之電路 圖, 第108圖示意地顯示呈莖環構型之負控制螢光探針; 第109圖示意地顯示該第108圖之負控制螢光探針呈開 放構型之情形; 第110圖示意地顯示呈莖環構型之正控制螢光探針; 第1 1 1圖示意地顯示該第1 1 0圖之正控制螢光探針呈開 放構型之情形; 第1 12圖顯示採用ECL偵測之測試模組及測試模組讀取 器; 第1 1 3圖爲採用ECL偵測之測試模組內之電子構件之示 意槪視圖; 第U 4圖顯示一測試模組及另一測試模組讀取器; 第115圖顯示一測試模組及主機系統內裝有不同資料 庫之測試模組讀取器; 【主要元件符號說明】 I 〇 :測試模組 II :測試模組 1 2 :測試模組讀取器 13 :外殼 14 :微型_USB插頭 109 201209404 1 5 :電感器 1 6 :微型-U S B埠 17:用戶界面(UI)觸控螢幕 18 :顯示螢幕 19 :按鈕 2 0 :開始鈕 2 1 :蜂巢式無線電台 22:無菌密封膠帶 2 3 :無線網路連線 2 4 :大貯槽 25 :衛星導航系統Figure 75 is a partial perspective view showing the layered structure of the LOC variation type VIII inside the inset CA of Fig. 73; Fig. 76 is an enlarged view of the illustration CE shown in Fig. 74; Fig. 77 is the LOC variation type VIII. A schematic diagram of the overall structure; Figure 78 is a schematic diagram of the overall structure of the LOC variant XIV; Figure 79 is a schematic diagram of the overall structure of the LOC variant XLI; Figure 80 is a schematic diagram of the overall structure of the LOC variant XLII; Figure 81 is a schematic diagram of the overall structure of the LOC variant XLIII; Figure 82 is a schematic diagram of the overall structure of the LOC variant XLIV; Figure 83 is a schematic diagram of the overall structure of the LOC variant XLVI; Figure 84 is a LOC variant XLVII Schematic diagram of the overall structure; Figure 85 is a schematic diagram of the overall structure of the LOC variant XLVIII; Figure 8 is a linear fluorescent probe map of the primer-linker during the initial amplification. Figure 8 7 shows the subsequent amplification cycle. During the introduction of the primer-linker linear luminescence probe map; the 88A to 88F diagram shows the thermal cycle change of the primer-linker luminaire ring probe; -107- 201209404 Figure 89 is relative to the miscellaneous Array of rooms and such light II Schematic diagram of the excited LED of the body; Figure 90 is a schematic diagram of the excitation LED and the optical lens guiding the light toward the array of hybrid chambers of the LOC device; Figure 91 is the excitation of the guiding light toward the array of hybrid chambers of the LOC device Schematic diagram of LEDs, optical lenses, and optical cymbals; - Figure 92 is a schematic diagram of the arrangement of the excitation LEDs, optical lenses, and mirrors that direct the light toward the array of hybrid chambers of the LOC device; Figure 93 shows all of the stacked layers. The feature member and the plan view showing the position of the illustration DA to DK; Fig. 94 is an enlarged view of the illustration DG shown in Fig. 93; Fig. 95 is an enlarged view of the illustration DH shown in Fig. 93; Fig. 96 is the LOC Graphical representation of the overall structure of the variant XII; Figure 97 is a perspective view of the LOC variant XII; Figure 98 is a plan view showing the FA to FC position of all the features and illustrations of the LOC variant XII; The figure is a plan view showing the top cover feature of the LOC variant XII separately; Fig. 100 is a plan view showing the structure of the CMOS + MST device of the LOC variant XII alone; · Fig. 101 is an illustration FA shown in Fig. 98 Put Figure 102 is an enlarged view of the illustration FB shown in Figure 98; Figure 103 is an enlarged view of the illustration FC shown in Figure 98; Figure 1 04 is the shunt transistor for the photodiode Specific examples; -108- 201209404 Figure 105 is a specific example of the shunt transistor for the photodiode; Figure 106 is a specific example of the shunt transistor for the photodiode; Figure 107 is a differential imager (differential imager) circuit diagram, FIG. 108 schematically shows a negative control fluorescent probe in a stem-loop configuration; and FIG. 109 is a schematic view showing the negative control fluorescent probe of the 108th aspect in an open configuration; Fig. 110 is a view schematically showing a positive control fluorescent probe in a stem-and-loop configuration; FIG. 11 is a view schematically showing a case where the positive-controlled fluorescent probe of the first aspect is in an open configuration; The figure shows the test module and test module reader using ECL detection; the first 1 3 is a schematic view of the electronic components in the test module using ECL detection; the U 4 figure shows a test module And another test module reader; Figure 115 shows a test module and a host system with different Test module reader of the database; [Key component symbol description] I 〇: Test module II: Test module 1 2: Test module reader 13: Shell 14: Micro_USB plug 109 201209404 1 5 : Inductor 1 6 : Micro-USB埠17: User Interface (UI) Touch Screen 18: Display Screen 19: Button 2 0: Start Button 2 1 : Honeycomb Radio 22: Aseptic Sealing Tape 2 3 : Wireless Network Connection Line 2 4: Large tank 25: satellite navigation system

26 : LED 2 7 :資料存儲器 29 : USB-相容LED驅動器 30: LOC 裝置 3 1 :電源調節器 3 2 :電源供應電容器 3 3 :時鐘 3 4 :控制器 3 5 :暫存器 36: USB裝置驅動器 3 7 :驅動器 38 : RAM 3 9 :驅動器 -110 - 201209404 40 :程式和資料快閃記憶體 41 :暫存器 42 :處理器 43 :程式儲存器 44 :光感測器 45 :指示器 46 :頂蓋 47 : _ USB電源/指示器模組 48 : CMOS + MST晶片(裝置) 49 :泡沫插圖或其它有孔元件 54 :(抗凝血劑)貯存器 56 :(胞溶試劑)貯存器 5 7 :印刷電路板(P C B ) 5 8 :貯存器 60 :貯存器 62 :貯存器 64 :下封條 66 :頂壁層 6 8 :試樣置入口 7 0 :透析區 72 :廢棄物通道 74 :目標物通道 7 6 :廢棄物單元 78 :貯存器層 -111 - 201209404 8 0 :頂蓋通道層 8 2 :上封條層 8 4 :矽基材 86 : CMOS電路 87 : MST層 8 8 :鈍化層 90 : MST通道 92 :下導管 94 :頂蓋通道 96 :上導管 9 7.壁區 9 8 :彎液面錨 1 00 : MST通道層 101 :膝上型/筆記型電腦 102 :毛細起動特徵構件 103 :專屬讀取器 105 :桌上型電腦 1 〇 6 :沸騰-起動閥 107 :電子書讀取器 1 〇 8 :沸騰-起動閥 1 〇 9 :平板電腦 1 1 〇 :雜合室陣列 1 1 1 :流行病學資料 1 1 2 :擴增區 -112 - 201209404 1 13 :基因資料 1 1 4 :培育區 1 15 :電子健康記錄(HER ) 1 1 6 :抗凝血劑 1 1 8 :表面張力閥 1 1 9 :試樣流 1 2 0 :彎液面 121 :電子病歷(EMR ) 122 :排氣孔 123 :個人健康記錄(PHR) 125 :網路 1 2 6 :沸騰-起動閥 1 2 8 :表面張力閥 1 3 0 :化學胞溶區 1 3 1 :混合區 132 :表面張力閥 1 3 3 :培育區入口通道 1 3 4 :下導管(開口) 1 36 :光學窗口 1 4 6 :閥入口 1 5 0 :閥下導管 1 5 2 :加熱器 153 :沸騰-起動閥加熱器接點 1 5 4 :加熱器 -113- 201209404 1 5 6 :加熱器接點 158 :微通道 160:擴增區出口通道 1 6 4 :小孔 1 6 6 :毛細起動特徵構件 1 6 8 :透析上導管孔 170 :溫度感測器 174 :液體感測器 1 7 5 :擴散屏障 1 7 6 :流路 1 7 8 :液體感測器 1 80 :雜合室 1 8 2 :加熱器 1 84 :光二極體 1 8 5 :活性區域 186: FRET 探針 187 :觸發光二極體 1 8 8 :貯水器 190 :蒸發器 1 9 1 :加熱器 192 :供水通道 1 93 :上導管 1 94 :下導管 1 9 5 :金屬頂層 -114- 201209404 1 9 6 :濕化器26 : LED 2 7 : Data memory 29 : USB-compatible LED driver 30 : LOC device 3 1 : Power conditioner 3 2 : Power supply capacitor 3 3 : Clock 3 4 : Controller 3 5 : Register 36: USB Device driver 3 7 : drive 38 : RAM 3 9 : drive - 110 - 201209404 40 : program and data flash memory 41 : register 42 : processor 43 : program memory 44 : light sensor 45 : indicator 46: Top cover 47: _ USB power/indicator module 48: CMOS + MST chip (device) 49: Foam illustration or other perforated element 54: (anticoagulant) reservoir 56: (cytosol) storage 5 7 : Printed circuit board (PCB) 5 8 : reservoir 60 : reservoir 62 : reservoir 64 : lower seal 66 : top wall layer 6 8 : sample inlet 7 0 : dialysis zone 72 : waste channel 74 : target channel 7 6 : waste unit 78 : reservoir layer - 111 - 201209404 8 0 : top cover channel layer 8 2 : upper seal layer 8 4 : tantalum substrate 86 : CMOS circuit 87 : MST layer 8 8 : passivation Layer 90: MST channel 92: Downcomer 94: Top cover channel 96: Upper tube 9 7. Wall area 9 8: Meniscus anchor 1 00: MST channel layer 101: Laptop/note Computer 102: Capillary start feature 103: Dedicated reader 105: Desktop computer 1 〇 6: Boiling-start valve 107: E-book reader 1 〇 8: Boiling-starting valve 1 〇 9: Tablet 1 1 〇: Hybrid chamber array 1 1 1 : Epidemiological data 1 1 2 : Amplification area -112 - 201209404 1 13 : Genetic data 1 1 4 : Cultivation area 1 15 : Electronic health record (HER) 1 1 6 : Resistance Coagulant 1 18 : Surface tension valve 1 1 9 : Sample flow 1 2 0 : Meniscus 121 : Electronic medical record (EMR ) 122 : Vent hole 123 : Personal health record (PHR) 125 : Network 1 2 6: Boiling-starting valve 1 2 8 : Surface tension valve 1 3 0 : Chemical cytolytic zone 1 3 1 : Mixing zone 132 : Surface tension valve 1 3 3 : Incubation zone inlet channel 1 3 4 : Downcomer (opening) 1 36: Optical window 1 4 6 : Valve inlet 1 5 0 : Valve down conduit 1 5 2 : Heater 153 : Boiling - Start valve heater contact 1 5 4 : Heater-113- 201209404 1 5 6 : Heater connection Point 158: Microchannel 160: Amplification zone outlet channel 1 6 4 : Small hole 1 6 6 : Capillary starting characteristic member 1 6 8 : Dialysis upper catheter hole 170: Temperature sensor 174: Liquid sensor 1 7 5 : Diffusion barrier 1 7 6 : Flow path 1 7 8 : Liquid sensor 1 80 : Hybrid chamber 1 8 2 : Heater 1 84 : Light diode 1 8 5 : Active area 186: FRET Probe 187 : Trigger light diode 1 8 8 : Water reservoir 190 : Evaporator 1 9 1 : Heater 192 : Water supply channel 1 93 : Upper pipe 1 94 : Down pipe 1 9 5 : Metal top layer - 114 - 201209404 1 9 6 : Humidifier

198 :第一上導管孔 202 : CIF 204 :透析MST通道 206 :沸騰起動閥 207 :沸騰起動閥 208 :頂蓋通道液體感測器 210 :受熱微通道 212:中間MST通道 2 1 8 : T i A1 電極 220 : TiAl電極 222 :間隙 23 2 :濕度感測器 2 3 4 :加熱器 23 6 : FRET 探針 23 8 :目標核酸序列 240 :環 242 :莖節段 244 :激發光線 246 :螢光團 248 :淬熄物 25 0 :螢光發射 2 5 4 :透鏡 28 8 :試樣置入及製備 -115- 201209404 290 :核酸萃取 2 9 1 :核酸培育 292 :核酸擴增 2 94 :偵測及分析 2 9 6 :第一電極 29 8 :第二電極 3 00 :程式化前延遲 301 : LOC 裝置 328:白血球透析區 3 7 6 :傳導管柱 3 7 8 :正向控制探針 3 8 0 :反向控制探針 3 8 2 :校準室 3 8 4 : Mshunt 閘 3 8 8 :重設閘 3 9 0 :刺血針 3 92 :刺血針釋放鈕 3 9 3 :讀取閘 3 94 : MOS電晶體 Mshun 396 : MOS電晶體 Mtx 3 98 : MOS電晶體 Mrese 400: MOS電晶體 Msf 402 : MOS電晶體 Mread 404: MOS電晶體 Mbias 201209404 4 0 6 :節點,N S ’ 408 :膜封條 4 1 0 :護膜罩198: first upper conduit hole 202: CIF 204: dialysis MST channel 206: boiling start valve 207: boiling start valve 208: top cover channel liquid sensor 210: heated microchannel 212: intermediate MST channel 2 1 8 : T i A1 electrode 220: TiAl electrode 222: gap 23 2 : humidity sensor 2 3 4 : heater 23 6 : FRET probe 23 8 : target nucleic acid sequence 240 : ring 242 : stem segment 244 : excitation light 246 : fluorescence Group 248: Quenching 25 0 : Fluorescence emission 2 5 4 : Lens 28 8 : Sample placement and preparation -115- 201209404 290 : Nucleic acid extraction 2 9 1 : Nucleic acid incubation 292 : Nucleic acid amplification 2 94 : Detection And analysis 2 9 6 : first electrode 29 8 : second electrode 3 00 : pre-programming delay 301 : LOC device 328 : white blood cell dialysis zone 3 7 6 : conductive column 3 7 8 : forward control probe 3 8 0 : Reverse control probe 3 8 2 : Calibration chamber 3 8 4 : Mshunt gate 3 8 8 : Reset gate 3 9 0 : Lancet 3 92 : Lancet release button 3 9 3 : Read gate 3 94 : MOS transistor Mshun 396 : MOS transistor Mtx 3 98 : MOS transistor Mrese 400: MOS transistor Msf 402 : MOS transistor Mread 404: MOS transistor Mbias 201209404 4 0 6 : node, N S ' 408 : film seal 4 1 0 : film cover

518 : LOC變化型 VIII 5 9 4 :界面層 600 :旁路通道 602 :界面目標物通道 6 04 :界面廢棄物(廢棄細胞)通道518 : LOC variant VIII 5 9 4 : Interfacial layer 600 : Bypass channel 602 : Interface target channel 6 04 : Interface waste (abandoned cell) channel

673 : LOC變化型 XLIII 674 : LOC變化型 XLIV 6 76 : LOC變化型 XLVI 677 : LOC變化型 XLVII 678: LOC變化型 XLVIII 6 8 2 :小成分透析區 686:大成分透析區 6 9 2 :線性探針 694 :擴增阻斷物 696 :探針序列 698 :互補序列 700 :寡核苷酸引子 704 :莖環探針 7 0 8 :莖股鏈 7 1 〇 :另一股 7 1 2 :第一光學棱鏡 -117- 201209404673 : LOC variant XLIII 674 : LOC variant XLIV 6 76 : LOC variant XLVI 677 : LOC variant XLVII 678: LOC variant XLVIII 6 8 2 : small component dialysis zone 686: large component dialysis zone 6 9 2 : linear Probe 694: amplification blocker 696: probe sequence 698: complementary sequence 700: oligonucleotide primer 704: stem loop probe 7 0 8 : stem strand 7 1 〇: another strand 7 1 2 : An optical prism-117- 201209404

7 1 4 :第二光學稜鏡 7 1 6 :第一面鏡 7 1 8 :第二面鏡 728:LOC變化型 X 75 8 : LOC變化型 XII 760 :大成分通道 7 6 2 :小成分通道 764 :開口 766 :封閉端 76 8 :封閉端 7 7 8 :構型 780 :構型 782 :構型 7 8 8 :微分影像器電路 7 9 0 :像素 792 : “虛擬”像素 794 : “讀取列” 79 5 : “讀取列d” 7 9 6 :負控制探針 797 : M4電晶體 7 9 8 :正控制探針 8 0 1 : M D 4電晶體 8 0 3 :像素電容器 805:虛擬像素電容器 201209404 8 〇 7 :開關 8 〇 9 :開關 81 1 : “讀取行”開關 8 13 :虛擬“讀取行”開關 8 1 5 :電容放大器 8 1 7 :微分信號 860: ECL激發電極(陰極) 8 70 : ECL激發電極(陽極) -119-7 1 4 : second optical 稜鏡 7 1 6 : first mirror 7 1 8 : second mirror 728 : LOC variant X 75 8 : LOC variant XII 760 : large component channel 7 6 2 : small component channel 764: opening 766: closed end 76 8 : closed end 7 7 8 : configuration 780 : configuration 782 : configuration 7 8 8 : differential imager circuit 7 9 0 : pixel 792 : "virtual" pixel 794 : "read Column" 79 5 : "Read column d" 7 9 6 : Negative control probe 797 : M4 transistor 7 9 8 : Positive control probe 8 0 1 : MD 4 transistor 8 0 3 : Pixel capacitor 805: Virtual pixel Capacitor 201209404 8 〇7: Switch 8 〇9: Switch 81 1 : "Read Row" Switch 8 13 : Virtual "Read Row" Switch 8 1 5 : Capacitor Amplifier 8 1 7 : Differential Signal 860: ECL Excitation Electrode (Cathode 8 70 : ECL excitation electrode (anode) -119-

Claims (1)

201209404 七、申請專利範圍: 1 . 一種用於生物試樣之基因分析之晶片上實驗室( LOC)裝置,該LOC裝置包含: 一用以接受該試樣之置入口; 一支撐基材; 複數個試劑貯存器; 一位於該培育區下游用以擴增試樣中之核酸序列之核 酸擴增區;及 一位於該核酸擴增區下游用以雜合前過濾該核酸擴增 區產生之擴增子之透析區,該透析區被配置成能從擴增子 中除去細胞殘渣:其中 該核酸擴增區及透析區兩者皆被承載在該支撐基材上 〇 2.如申請專利範圍第1項之LOC裝置,其於該透析區下 游還包含一光感測器及一雜合區,該雜合區具有一雜合探 針陣列以與試樣內之目標核酸序列形成探針-目標物雜合 體,其中該光感測器被配置成能偵測該探針-目標物雜合 體。 3 _如申請專利範圍第2項之LOC裝置,其中各雜合室之 體積小於900,000立方微米。 4. 如申請專利範圍第3項之LOC裝置,其中各雜合室之 體積小於200,000立方微米。 5. 如申請專利範圍第4項之LOC裝置,其中各雜合室之 體積小於40,000立方微米。 -120- 201209404 6. 如申請專利範圍第1項之LOC裝置,其中該透析區具 有一大成分通道、一小成分通道以及能把該大成分通道流 體連接到該小成分通道之複數個小孔,該等小孔之大小可 讓核酸序列從該大成分通道流到該小成分通道,同時大於 該小孔之細胞殘渣會被留在該大成分通道內,該小成分通 道則與雜合區流體連通。 7. 如申請專利範圍第1項之LOC裝置,其中該核酸擴增 區爲一等溫核酸擴增區。 8. 如申請專利範圍第7項之LOC裝置,其還包含一試劑 貯存器以容納用於等溫核酸擴增之試劑;及 一表面張力閥,其具有一小孔被配置成能固定該試劑 之彎液面,因此在與流體試樣接觸而除去該彎液面之前, 該彎液面能令試劑留在試劑貯存器中。 9. 如申請專利範圍第1項之LOC裝置,其中該核酸擴增 區爲聚合酶連鎖反應(PCR)擴增區。 10. 如申請專利範圍第9項之LOC裝置’其還包含CMOS 電路、一溫度感測器及一倂有該PCR區之微系統技術( MST)層,其中該CMOS電路係位在該支撐基材及該MST 層之間,該CMOS電路被配置成能使用該溫度感測器輸出 來反饋控制該PCR區。 11. 如申請專利範圍第10項之L0C裝置,其中該PCR區 具有一 PCR微通道,在使用期間,該試樣被熱循環處理以 擴增該等核酸序列,該PCR微通道界定出該試樣之部份流 路,且其與流動垂直之橫切面積小於100,〇00平方微米。 -121 - 201209404 12. 如申請專利範圍第1 1項之LOC裝置’其中該PCR區 還包含至少一細長形加熱兀件’以加熱細長形PCR微通道 內之核酸序列’該細長形加熱元件係與該PCR微通道呈平 行延伸。 13. 如申請專利範圍第12項之LOC裝置,其中該PCR微 通道中至少有一區塊形成一細長形PCR室。 14. 如申請專利範圍第13項之LOC裝置,其中該PCR區 具有複數個分別由該PCR微通道之各別區塊形成之細長形 PCR室,該PC R微通道具有由一連串寬曲流形成之蜿蜒構 型’各個寬曲流爲一可形成該細長形PCR室之通道區塊。 1 5.如申請專利範圍第14項之LOC裝置,其還包含一試 劑貯存器以容納用於P CR之試劑;及 一表面張力閥,其具有一小孔被配置成能固定該試劑 之彎液面’因此在與流體試樣接觸而除去該彎液面之前, 該彎液面能令試劑留在試劑貯存器中。 16.如申請專利範圍第15項之l〇c裝置,其中該雜合區 具有一含有探針之雜合室陣列,使得各雜合室內之探針被 配置成能與諸目標核酸序列中之一序列雜合。 1 7 ·如申請專利範圍第〗6項之[〇 c裝置,其中該光感測 器爲一光二極體陣列,該等光二極體之位置與雜合室配準 〇 1 8·如申請專利範圍第16項之L0C裝置,其中該CMOS 電路具有一數位記憶體以儲存來自光感測器輸出之雜合資 料’以及一資料界面來把雜合資料傳輸到一外部裝置。 -122- 201209404 19. 如申請專利範圍第16項之LOC裝置,其中該PCR區 具有一主動閥以於熱循環期間令液體留在該PCR區內且對 來自CMOS電路之活化信號作出反應而讓液流流到雜合室 〇 20. 如申請專利範圍第19項之LOC裝置,其中該主動閥 爲一沸騰起動閥,其具有一彎液面錨且該彎液面錨被配置 成能固定一彎液面以阻滯該液體之毛細驅動流動’以及一 加熱器來把該液體加熱到沸騰以從該彎液面錨上解除該彎 液面,使得毛細驅動流動重新開始。 -123-201209404 VII. Patent Application Range: 1. A wafer-on-lab (LOC) device for genetic analysis of biological samples, the LOC device comprising: a receiving inlet for receiving the sample; a supporting substrate; a reagent reservoir; a nucleic acid amplification region located downstream of the incubation region for amplifying a nucleic acid sequence in the sample; and an amplification located downstream of the nucleic acid amplification region for filtering the nucleic acid amplification region before hybridization a dialysis zone of the extensor, the dialysis zone being configured to remove cell debris from the amplicon: wherein both the nucleic acid amplification zone and the dialysis zone are carried on the support substrate 〇2. The LOC device of item 1 further comprises a photo sensor and a hybrid region downstream of the dialysis zone, the hybrid region having a hybrid probe array to form a probe-target with the target nucleic acid sequence in the sample A hybrid, wherein the photosensor is configured to detect the probe-target hybrid. 3 _ The LOC device of claim 2, wherein the volume of each hybrid chamber is less than 900,000 cubic microns. 4. The LOC device of claim 3, wherein each of the hybrid chambers has a volume of less than 200,000 cubic microns. 5. The LOC device of claim 4, wherein each of the hybrid chambers has a volume of less than 40,000 cubic microns. -120-201209404 6. The LOC device of claim 1, wherein the dialysis zone has a large component channel, a small component channel, and a plurality of small holes capable of fluidly connecting the large component channel to the small component channel The pores are sized to allow a nucleic acid sequence to flow from the large component channel to the small component channel, while cell debris larger than the small pore is retained in the large component channel, the small component channel and the hybrid region Fluid communication. 7. The LOC device of claim 1, wherein the nucleic acid amplification region is an isothermal nucleic acid amplification region. 8. The LOC device of claim 7, further comprising a reagent reservoir for containing reagents for isothermal nucleic acid amplification; and a surface tension valve having a small aperture configured to immobilize the reagent The meniscus is such that the meniscus allows the reagent to remain in the reagent reservoir prior to contact with the fluid sample to remove the meniscus. 9. The LOC device of claim 1, wherein the nucleic acid amplification region is a polymerase chain reaction (PCR) amplification region. 10. The LOC device of claim 9 which further comprises a CMOS circuit, a temperature sensor and a microsystem technology (MST) layer having the PCR region, wherein the CMOS circuit is located on the support base Between the material and the MST layer, the CMOS circuit is configured to use the temperature sensor output to feedback control the PCR region. 11. The L0C device of claim 10, wherein the PCR region has a PCR microchannel, and during use, the sample is thermally cycled to amplify the nucleic acid sequences, the PCR microchannel defining the test Part of the flow path, and its cross-sectional area perpendicular to the flow is less than 100, 00 square microns. -121 - 201209404 12. The LOC device as claimed in claim 1 wherein the PCR region further comprises at least one elongated heating element to heat the nucleic acid sequence in the elongated PCR microchannel 'the elongated heating element system It extends in parallel with the PCR microchannel. 13. The LOC device of claim 12, wherein at least one of the PCR microchannels forms an elongated PCR chamber. 14. The LOC device of claim 13, wherein the PCR region has a plurality of elongated PCR chambers respectively formed by respective blocks of the PCR microchannel, the PC R microchannel having a series of wide meandering flows The respective configuration of each of the wide curved streams is a channel block that forms the elongated PCR chamber. 1. The LOC device of claim 14, further comprising a reagent reservoir for containing the reagent for the CR; and a surface tension valve having a small aperture configured to secure the bend of the reagent The liquid level 'Therefore, the meniscus can leave the reagent in the reagent reservoir before contacting the fluid sample to remove the meniscus. 16. The device of claim 15, wherein the hybrid region has an array of hybrid chambers containing probes such that probes within each hybrid chamber are configured to be capable of interacting with target nucleic acid sequences A sequence of heterozygous. 1 7 · If the device is in the 〇c device, the photo sensor is a photodiode array, and the position of the photodiode is registered with the hybrid chamber. The L0C device of claim 16, wherein the CMOS circuit has a digital memory for storing the hybrid data from the photosensor output and a data interface for transmitting the hybrid data to an external device. -122-201209404 19. The LOC device of claim 16, wherein the PCR zone has an active valve to allow liquid to remain in the PCR zone during thermal cycling and to react to activation signals from the CMOS circuit The liquid flow to the hybrid chamber 〇20. The LOC device of claim 19, wherein the active valve is a boiling start valve having a meniscus anchor and the meniscus anchor is configured to be fixed The meniscus drives the capillary drive flow of the liquid and a heater heats the liquid to boiling to release the meniscus from the meniscus anchor, causing the capillary drive flow to resume. -123-
TW100119237A 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section TW201209404A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201209404A true TW201209404A (en) 2012-03-01

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification

Family Applications After (20)

Application Number Title Priority Date Filing Date
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification

Country Status (1)

Country Link
TW (22) TW201211540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500002A (en) * 2012-10-05 2016-01-07 カリフォルニア インスティテュート オブ テクノロジー Methods and systems for microfluidic imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
WO2016004539A1 (en) * 2014-07-11 2016-01-14 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
JP2016148574A (en) * 2015-02-12 2016-08-18 セイコーエプソン株式会社 Electronic component conveying device and electronic component inspection device
US20160340632A1 (en) * 2015-04-22 2016-11-24 Berkeley Lights, Inc. Culturing station for microfluidic device
EP3275992A1 (en) * 2016-07-29 2018-01-31 Bayer Aktiengesellschaft Adapter for cell-culture vessel
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
US11441701B2 (en) 2017-07-14 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic valve
MX2020005123A (en) * 2017-11-17 2020-11-06 Siemens Healthcare Diagnostics Inc Sensor assembly and method of using same.
TWI804560B (en) * 2018-01-11 2023-06-11 美商奈諾卡福有限責任公司 Microfluidic cellular device and methods of use thereof
JP7172988B2 (en) 2018-02-01 2022-11-16 東レ株式会社 Apparatus for evaluating particles in liquid and method for operating the same
EP3560593B1 (en) * 2018-04-25 2024-06-05 OPTOLANE Technologies Inc. Cartridge for digital real-time pcr
TWI853851B (en) * 2018-11-15 2024-09-01 中國商深圳華大智造科技有限公司 Microfluidic apparatus and method of making
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure
JP2023522696A (en) * 2020-04-21 2023-05-31 エフ. ホフマン-ラ ロシュ アーゲー High-throughput nucleic acid sequencing using single-molecule sensor arrays
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
CN115494833B (en) * 2021-06-18 2024-10-22 广州视源电子科技股份有限公司 Robot control method and device
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same
TWI840226B (en) * 2023-05-17 2024-04-21 博錸生技股份有限公司 Automatic sample preparation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device

Also Published As

Publication number Publication date
TW201219115A (en) 2012-05-16
TW201211243A (en) 2012-03-16
TW201209405A (en) 2012-03-01
TW201209158A (en) 2012-03-01
TW201209407A (en) 2012-03-01
TW201211538A (en) 2012-03-16
TW201211539A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201209406A (en) 2012-03-01
TW201219770A (en) 2012-05-16
TW201211532A (en) 2012-03-16
TW201211240A (en) 2012-03-16
TW201219776A (en) 2012-05-16
TW201211244A (en) 2012-03-16
TW201211540A (en) 2012-03-16
TW201209159A (en) 2012-03-01
TW201211534A (en) 2012-03-16
TW201211242A (en) 2012-03-16
TW201211241A (en) 2012-03-16
TW201211533A (en) 2012-03-16
TW201209403A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
TW201209404A (en) LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
US8354074B2 (en) Test module with low-volume reagent reservoir
JP6014227B2 (en) Integrated device for nucleic acid detection and identification