TW201209405A - Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles - Google Patents
Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles Download PDFInfo
- Publication number
- TW201209405A TW201209405A TW100119245A TW100119245A TW201209405A TW 201209405 A TW201209405 A TW 201209405A TW 100119245 A TW100119245 A TW 100119245A TW 100119245 A TW100119245 A TW 100119245A TW 201209405 A TW201209405 A TW 201209405A
- Authority
- TW
- Taiwan
- Prior art keywords
- sample
- channel
- nucleic acid
- probe
- microfluidic device
- Prior art date
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
201209405 六、發明說明: 【發明所屬之技術領域】 本發明關於使用微系統技術(MST )之診斷裝置。特 別是本發明關於用於分子診斷之微流體和生化之處理及分 析。 【先前技術】201209405 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a diagnostic apparatus using microsystem technology (MST). In particular, the present invention relates to the processing and analysis of microfluidics and biochemicals for molecular diagnostics. [Prior Art]
分子診斷已用於:可於病徵顯現之前,提供早期疾病 檢測預示之領域。分子診斷試驗係用於檢測: •遺傳病症 •後天病症 •傳染性疾病 •與健康有關情況之基因易致病因素 因高準確度及快速處理時間,分子診斷試驗得以減少 無效健康照護的發生、增進病患預後(patient outcome) 、改進疾病管理及個體化患者照護。分子診斷的許多技術 係基於自生物樣本(諸如血液或唾液)萃取及擴增之特定 核酸(去氧核糖核酸(DNA)以及核酸核酸(RNA)兩者 )的檢測及辨識。核酸鹼基的互補特徵使得經合成DNA ( 寡核苷酸)短序列結合(雜交)至用於核酸試驗之特定核 酸序列。若發生雜交,則互補序列存在於樣本中。此使得 例如預測個人未來會得到的疾病、判定感染性病原體的種 類及致病性’或判定個人對藥物的反應成爲可能。 201209405 以核酸爲基礎之分子診斷試驗 以核酸爲基之試驗具有四個獨立步驟: 1. 樣本製備 2. 核酸萃取 3. 核酸擴增(選用的) 4. 檢測Molecular diagnostics have been used to provide an early indication of disease detection before the onset of symptoms. Molecular diagnostic tests are used to detect: • genetic disorders • acquired diseases • infectious diseases • genes associated with health-related genetic factors due to high accuracy and rapid processing time, molecular diagnostic tests can reduce the occurrence and improvement of ineffective health care Patient outcome, improved disease management, and individualized patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids (both DNA and nucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobases allows for the binding (hybridization) of synthetic DNA (oligonucleotide) short sequences to specific nucleic acid sequences for nucleic acid assays. If hybridization occurs, the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease that an individual will get in the future, to determine the type and pathogenicity of an infectious pathogen, or to determine an individual's response to a drug. 201209405 Nucleic Acid-Based Molecular Diagnostic Tests Nucleic acid-based assays have four separate steps: 1. Sample preparation 2. Nucleic acid extraction 3. Nucleic acid amplification (optional) 4. Detection
許多樣本類型,諸如血液、尿液、痰和組織樣本’係 用於基因分析。診斷試驗判定所需的樣本類型,因並非所 有樣本代表疾病進程。這些樣本具有各種組份,但通常只 有其中之一受到關注。例如,在血液中,高濃度的紅血球 可抑制致病微生物的檢測。因此,於核酸試驗開始時經常 需要純化及/或濃縮步驟。Many sample types, such as blood, urine, sputum, and tissue samples, are used for genetic analysis. Diagnostic tests determine the type of sample required, as not all samples represent disease progression. These samples have various components, but usually only one of them is of interest. For example, in the blood, high concentrations of red blood cells can inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are often required at the beginning of a nucleic acid assay.
血液爲較常尋求的樣本類型之一。其具有三種主要組 份:白血球、紅血球及血栓細胞(血小板)。血栓細胞促 進凝集且在體外維持活性。爲抑制凝聚作用,在純化及濃 縮之前令試樣與諸如乙二胺四乙酸(EDTA )之試劑混合 。通常自樣本移除紅血球以濃縮標靶細胞。在人體中,紅 血球佔細胞物質之約99%,但其不帶有DN A因彼不具細胞 核。此外,紅血球含有諸如血紅素之可能干擾下游核酸擴 增程序(描述於下)的成分。可藉由示差(differentially )溶胞於溶胞溶液中之紅血球來移除紅血球,而留下剩餘 的完整細胞物質,其可接著使用離心而與樣本分離。此提 供自其萃取核酸之濃縮標靶細胞。 用於萃取核酸之確切規程(protocol)取決於樣本及Blood is one of the more commonly sought sample types. It has three main components: white blood cells, red blood cells, and thrombocytes (platelets). Thrombotic cells promote agglutination and maintain activity in vitro. To inhibit coacervation, the sample is mixed with a reagent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In humans, red blood cells account for about 99% of cellular material, but they do not carry DN A because they do not have a nucleus. In addition, red blood cells contain components such as heme that may interfere with downstream nucleic acid amplification procedures (described below). The red blood cells can be removed by differentially lysing the red blood cells in the lysis solution leaving the remaining intact cellular material which can then be separated from the sample using centrifugation. This provides a concentrated target cell from which the nucleic acid is extracted. The exact protocol used to extract the nucleic acid depends on the sample and
-6- S 201209405 待實施之診斷分析。例如,用於萃取病毒RN A之規程與用 於萃取基因組DN A之規程相當不同。然而,自標靶細胞 萃取核酸通常包含細胞溶胞步驟及接續的核酸純化。細胞 溶胞步驟使細胞及細胞核膜破裂,而釋放出遺傳物質。此 經常使用溶胞清潔劑來完成,溶胞清潔劑係諸如十二烷基 硫酸鈉,其亦使存在於細胞中之大量蛋白質變性。-6- S 201209405 Diagnostic analysis to be performed. For example, the protocol used to extract viral RN A is quite different from the protocol used to extract genomic DN A. However, self-targeting cell extraction of nucleic acids typically involves a cell lysis step followed by subsequent nucleic acid purification. The cell lysis step ruptures the cell and nuclear membrane and releases the genetic material. This is often done using a lysing detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cells.
接著於清洗之前在高濃度的離液鹽(chaotropic salt )存在下,通常於分餾塔中的氧化矽基質、樹脂或順磁性 珠上,以醇類[通常爲冰乙醇或異丙醇]沉澱步驟,或是經 由固相純化步驟純化核酸,接著以低離子強度緩衝液進行 洗提。核酸沉澱之前之任意的步驟爲添加剪切蛋白質之蛋 白酶,以進一步純化樣本。 其他的溶胞方法包括經由超聲振動之機械式溶胞以及 將樣本加熱至94°C以破壞細胞膜之熱溶胞。 標靶DNA或RNA可以極小量存在於經萃取之物質中, 尤其是若標靶來自致病性來源。核酸擴增提供選擇性擴增 (即’複製)特定標靶(就可檢測程度而言爲低濃度者) 的能力。 最常使用之核酸擴增技術爲聚合酶鏈反應(PCR)。 PCR係業界已知悉,以及於E. van Pelt-Verkuil等人之 Principles and Technical Aspects of PCR Amplification, Springer, 2008中提供此類反應之綜合理解性描述。 PCR爲有用的技術’其相對複雜DNA背景而擴增標靶 DNA序列。若欲(藉由PCR )擴增RNA,則首先必須使用 201209405 名爲反轉錄酶之酵素將之轉錄爲cDNA (互補DNA )。隨 後,藉由PCR擴增得到的cDNA。 PCR爲指數型方法,只要維持反應的條件爲可接受的 則其可繼續進行。反應之成分爲·’The precipitation step is followed by an alcohol (usually ice ethanol or isopropanol) in the presence of a high concentration of chaotropic salt, usually in a cerium oxide matrix, resin or paramagnetic beads in a fractionation column prior to washing. Alternatively, the nucleic acid is purified via a solid phase purification step followed by elution with a low ionic strength buffer. Any step prior to precipitation of the nucleic acid is the addition of a protein-cleaving proteinase to further purify the sample. Other lysis methods include mechanical lysis via ultrasonic vibration and heating of the sample to 94 °C to disrupt thermal lysis of the cell membrane. Target DNA or RNA can be present in the extracted material in very small amounts, especially if the target is from a pathogenic source. Nucleic acid amplification provides the ability to selectively amplify (i.e., 'copy) a particular target (in the case of a low concentration in terms of detectability). The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). The PCR is known in the art and provides a comprehensive and comprehensible description of such reactions in E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 2008. PCR is a useful technique to amplify target DNA sequences against a relatively complex DNA background. If RNA is to be amplified (by PCR), it must first be transcribed into cDNA (complementary DNA) using the 201209405 enzyme called reverse transcriptase. Subsequently, the obtained cDNA was amplified by PCR. PCR is an exponential method which can be continued as long as the conditions for maintaining the reaction are acceptable. The composition of the reaction is ·’
1. 引子對-具有約10-30個與毗鄰(flanking)標靶序列 區互補之核苷酸的短單股DNA 2. DNA聚合酶-合成DNA之熱穩定性酶1. Primer pair - a short single strand of DNA having about 10-30 nucleotides complementary to the flanking target sequence region 2. DNA polymerase-synthesis DNA thermostable enzyme
3. 去氧核糖核苷三磷酸(dNTP )-提供整合至新合成 之DNA股之核苷酸 '4.緩衝液-提供DN A合成之最佳化學環境3. Deoxyribonucleoside triphosphate (dNTP) - provides nucleotides integrated into newly synthesized DNA strands. 4. Buffer - provides the best chemical environment for DN A synthesis
PCR—般包含將這些反應物置於含有經萃取之核酸的 小管(~10-50微升)。將管放置於熱循環器(thermal cycler )中;一種令反應經受一連串不等量時間之不同溫 度的儀器。各熱循環的標準規程包括變性相、黏著相及延 伸相。延伸相有時代表引子延伸相。除了此三-步驟規程 外,可採用二-步驟熱規程,於其中黏著及延伸相合倂。 變性相一般包含將反應溫度升溫至9 0-9 5 °C以使DN A股變 性;於黏著相中,將溫度降低至〜50-6(TC以供引子黏著; 接著於延伸相中,將溫度升溫至最佳DNA聚合酶活性溫度 60-72 °C,以供引子延伸。此方法重複循環約20-40次,最 終結果爲產生數百萬拷貝之引子間的標靶序列。 已發展出用於分子診斷之許多標準PCR規程之變體, 其中包括諸如多引子組PCR、聯結子引發(linker-primed )PCR、直接PCR、重複序歹IJ ( tandem ) PCR、即時PCR以 • 8 -PCR generally involves placing these reactants in vials (~10-50 microliters) containing the extracted nucleic acids. The tube is placed in a thermal cycler; an instrument that subjects the reaction to a series of different temperatures for varying amounts of time. Standard procedures for each thermal cycle include the denatured phase, the adhesive phase, and the extended phase. The extension phase sometimes represents the primer extension phase. In addition to this three-step procedure, a two-step thermal procedure can be employed in which the adhesion and extension are combined. The denatured phase generally comprises heating the reaction temperature to 90-95 ° C to denature the DN A-strand; in the adhesive phase, lowering the temperature to ~50-6 (TC for adhesion of the primer; then in the extended phase, The temperature is raised to an optimum DNA polymerase activity temperature of 60-72 ° C for extension of the primer. This method repeats the cycle for about 20-40 times, and the final result is to generate a target sequence between millions of copies of the primer. Variants of many standard PCR protocols for molecular diagnostics, including, for example, multiple primer set PCR, linker-primed PCR, direct PCR, repeat sequence IJ (tandem) PCR, real-time PCR to • 8 -
S 201209405 及反轉錄酶PCR。 多引子組PCR使用單一 PCR混合物中之多重引子組以 產生對不同DNA序列具特異性之不同大小之擴增子。藉由 —次標靶多個基因,由單一試驗可得到額外的資訊(以其 他方式則需要數次試驗)。最佳化多引子組PCR更爲困難 ’因其需要選取具近似黏著溫度之引子及具近似長度與鹼 基組成之擴增子以確保各擴增子之擴增效率相等。S 201209405 and reverse transcriptase PCR. Multiple primer set PCR uses multiple primer sets in a single PCR mix to generate different sizes of amplicons specific for different DNA sequences. Additional information can be obtained from a single experiment by sub-targeting multiple genes (in other ways, several trials are required). It is more difficult to optimize multi-initiator PCR because of the need to select primers with approximate adhesion temperature and amplicons with approximate length and base composition to ensure equal amplification efficiency of each amplicon.
聯結子引發PCR,又稱爲接合接合子(ligation adaptor ) PCR,爲用於致能複雜DNA混合物中實質上所有 DNA序列之核酸擴增的方法,而不需要標靶-特異性引子 。此方法首先以合適的限制性內核酸酶(酵素)來剪切( digest )標靶DNA群體。使用接合酶酵素,具有合適的懸 伸(overhanging)端之雙股寡核苷酸聯結子(亦稱爲接合 子)接著與標靶DNA片段之端子接合。接下來使用對聯結 子序列具有特異性之寡核苷酸引子實施核酸擴增。藉此, 可擴增毗鄰聯結子寡核苷酸之DN A來源的所有片段。 直接PCR描述一種直接於樣本上實施PCR而不需要任 何核酸萃取(或最少核酸萃取)之系統。長久以來認爲, P C R反應受到存在於未純化的生物樣本中之許多成分的抑 制,諸如血液中的原血紅素成分。傳統上,於製備反應混 合物之前,PCR需要加強純化標靶核酸。然而,利用化學 性質的適當變化及樣本濃縮,可以最少化DNA純化而進行 PCR或進行直接PCR。用於直接PCR之PCR化學性質的調整 包括加強緩衝液強度、使用高活性及進行性(processivity 201209405 )之聚合酶及與潛在聚合酶抑制劑螯合之添加物。Linker-initiated PCR, also known as ligation adaptor PCR, is a method for enabling nucleic acid amplification of substantially all DNA sequences in complex DNA mixtures without the need for target-specific primers. This method first digests the target DNA population with a suitable restriction endonuclease (enzyme). Using a zymase enzyme, a double-stranded oligonucleotide linker (also known as a conjugate) with a suitable overhanging end is then ligated to the terminal of the target DNA fragment. Nucleic acid amplification is next carried out using oligonucleotide primers specific for the linker sequence. Thereby, all fragments of the DN A source adjacent to the linker oligonucleotide can be amplified. Direct PCR describes a system that performs PCR directly on a sample without any nucleic acid extraction (or minimal nucleic acid extraction). It has long been believed that the P C R reaction is inhibited by many components present in unpurified biological samples, such as the original heme component in the blood. Traditionally, PCR requires enhanced purification of target nucleic acids prior to preparation of the reaction mixture. However, with appropriate changes in chemical properties and sample concentration, PCR can be performed or direct PCR can be performed with minimal DNA purification. Modification of PCR chemistries for direct PCR involves potentiating buffer strength, using high activity and progressive (processivity 201209405) polymerases and additives chelated with potential polymerase inhibitors.
重複序列PCR利用兩次獨立的核酸擴增以增進擴增正 確擴增子的機率。重複序列PCR中的一類型爲巢式PCR, 其中使用兩對PCR引子,以於分別的核酸擴增進行單一基 因座擴增。第一對引子與標靶核酸序列外部區域的核酸序 列雜交。第二次擴增中所使用的第二對引子(巢式引子) 結合於第一 PCR產物中並且產生含有標靶核酸的第二PCR 產物(較第一PCR產物爲短)。此策略所運用的論理爲: 若於第一次核酸擴增期間因失誤而擴增錯誤的基因座,由 第二對引子再次擴增錯誤的基因座的機率非常低,因此確 保了特異性。Repetitive PCR utilizes two independent nucleic acid amplifications to increase the probability of amplifying the correct amplicon. One type of repeat PCR is nested PCR in which two pairs of PCR primers are used to perform single-nucleotide amplification for separate nucleic acid amplification. The first pair of primers hybridize to the nucleic acid sequence of the outer region of the target nucleic acid sequence. The second pair of primers (nested primers) used in the second amplification binds to the first PCR product and produces a second PCR product (short in the first PCR product) containing the target nucleic acid. The rationale used in this strategy is: If the wrong locus is amplified due to a mistake during the first nucleic acid amplification, the probability of re-amplifying the wrong locus by the second pair of primers is very low, thus ensuring specificity.
使用即時PCR或定量PCR以即時量測PCR產物之量。 藉使用含有螢光團之探針或螢光染料以及反應中的一套參 考標準’可測定樣本中之核酸的最初含量。此特別有用於 分子診斷’其中治療選擇可能取決於樣本中所載病原體而 有所不同。 反轉錄酶PCR ( RT-PCR )係用於自RNA來擴增DNA。 反轉錄酶爲將RNA反轉錄成互補DNA ( cDNA )之酵素,接 著藉由PCR擴增cDNA。RT-PCR廣泛地用於表現型態( expression profiling )以判定基因的表現或辨識RNA轉錄 本(包括轉錄起始及終止位址)之序列。其亦用於擴增 RN A病毒,諸如人類免疫缺乏病毒或C型肝炎病毒。 恆溫擴增爲另一種類型的核酸擴增,其不依靠擴增反 應期間之標靶DNA的熱變性,因此不需要複雜的機械。恆Instant PCR or quantitative PCR was used to measure the amount of PCR product in real time. The initial amount of nucleic acid in the sample can be determined by using a probe containing a fluorophore or a fluorescent dye and a set of reference standards in the reaction. This is particularly useful for molecular diagnostics where treatment options may vary depending on the pathogen contained in the sample. Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. A reverse transcriptase is an enzyme that reverse transcribes RNA into a complementary DNA (cDNA), which is then amplified by PCR. RT-PCR is widely used in expression profiling to determine the expression of a gene or to identify sequences of RNA transcripts, including transcription initiation and termination sites. It is also used to amplify RN A viruses, such as human immunodeficiency virus or hepatitis C virus. Constant temperature amplification is another type of nucleic acid amplification that does not rely on thermal denaturation of the target DNA during the amplification reaction, and thus does not require complicated machinery. Constant
-10- S 201209405-10- S 201209405
溫核酸擴增方法可因此原始位置進行或於實驗室環境外易 於被操作。包括股取代擴增(Strand Displacement Amplification )、轉錄介導擴增(Transcription Mediated Amplification )、依賴核酸序列擴增(Nucleic Acid Sequence Based Amplification)、重組酵素聚合酶擴增( Recombinase Polymerase Amplification)、滾動循環擴增 (Rolling Circle Amplification )、分枝型擴增( Ramification Amplification )、解旋恆溫 DNA 擴增( Helicase-Dependent I s o t h e r m al D N A A mp 1 i f i c a t i ο η )及環 形恒溫擴增(Loop-Mediated Isothermal Amplification) 之一些恆溫核酸擴增方法已被敘述。 恆溫核酸擴增法不依賴模板DN A之持續加熱變性來產 生作爲進一步擴增之模板的單股分子,而是依賴諸如於常 溫下藉由特異性限制內核酸酶之DNA分子的酵素性切割, 或是利用酵素分開DNA股之其他方法。 股取代擴增(SDA )依賴特定限制性酵素的能力以切 割半修飾(hemi-modified) DNA之未經修飾股,及5’-3’外 核酸酶-缺乏之聚合酶的能力以延伸並取代下游股。然後 藉由偶合義(sense)與反義(antisense)反應而達成指數 性核酸擴增,其中來自義反應之股取代作爲反義反應之模 板。使用不以慣例方式切割DNA而是於DNA之一股上產生 切口之切口酶(諸如N. Alwl, N. BstNBl及Mlyl)係有用 於此反應。藉使用熱穩定限制性酵素(J να 1 )及熱穩定性 外-聚合酶(聚合酶)之組合已改進SDA。此組合顯現 -11 - 201209405 出使反應的擴增效率由l〇8倍擴增增加至101()倍擴增,以致 可使用此技術來擴增獨特的單拷貝分子。The warm nucleic acid amplification method can be performed at the original location or outside the laboratory environment. Including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Amplification, Rolling Cycle Expansion Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent I sotherm DNA A mp 1 ificati ο η and Loop-Mediated Isothermal Amplification Some methods of constant temperature nucleic acid amplification have been described. The thermostatic nucleic acid amplification method does not rely on the continuous heat denaturation of the template DN A to produce a single-stranded molecule as a template for further amplification, but relies on an enzymatic cleavage such as a DNA molecule that specifically limits an endonuclease at a normal temperature, Or other methods of using enzymes to separate DNA strands. The ability of strand-substituted amplification (SDA) to rely on specific restriction enzymes to cleave unmodified strands of hemi-modified DNA, and 5'-3' exonuclease-deficient polymerases to extend and replace Downstream stocks. An exponential nucleic acid amplification is then achieved by a coupling sense and an antisense reaction in which the strands from the sense reaction are substituted as a template for the antisense reaction. A nicking enzyme (such as N. Alwl, N. BstNBl and Mlyl) which produces a nick on one of the strands of DNA using a DNA which is not cleaved in a conventional manner is useful for this reaction. SDA has been improved by the use of a combination of a thermostable restriction enzyme (J να 1 ) and a thermostable exo-polymerase (polymerase). This combination appears -11 - 201209405 The amplification efficiency of the reaction is increased from 10 to 8 fold amplification to 101 (fold) amplification, so that this technique can be used to amplify unique single copy molecules.
轉錄介導擴增(ΤΜΑ)及依賴核酸序列擴增(NASBA )使用RNA聚合酶以複製RN Α序列而非對應之基因組 DN A。此技術使用兩種引子及兩或三種酵素、RNA聚合酶 、反轉錄酶及任意的RNase Η (若反轉錄酶不具有RNase活 性)。一種引子含有供RNA聚合酶之啓動子序列。在核酸 擴增的第一步驟中,此引子於限定的位置與標靶核糖體 RNA ( rRNA )雜交。藉由自啓動子引子的3'端開始延伸, 反轉錄酶產生標靶rRNA之DNA拷貝。若存在另外的RNase Η,則所得的RNA : DNA雙股中的RNA經由反轉錄酶之 RNase活性而被分解。接著,第二引子結合至DNA拷貝。 藉反轉錄酶自此引子的末端合成新的DNA股而產生雙股 DN A分子。RN A聚合酶辨識DN A模板中的啓動子序列,並 開始轉錄。各個新合成的RNA擴增子再進入過程中並作爲 新的複製之模板。Transcription-mediated amplification (ΤΜΑ) and nucleic acid sequence-dependent amplification (NASBA) use RNA polymerase to replicate the RN Α sequence rather than the corresponding genomic DN A. This technique uses two primers and two or three enzymes, RNA polymerase, reverse transcriptase, and any RNase Η (if the reverse transcriptase does not have RNase activity). One primer contains a promoter sequence for RNA polymerase. In the first step of nucleic acid amplification, the primer hybridizes to the target ribosomal RNA (rRNA) at a defined position. The reverse transcriptase produces a DNA copy of the target rRNA by extension from the 3' end of the promoter primer. If another RNase is present, the RNA in the obtained RNA:DNA double strand is decomposed by the RNase activity of the reverse transcriptase. Next, the second primer binds to the DNA copy. A double-stranded DN A molecule is produced by synthesizing a new DNA strand from the end of the primer by reverse transcriptase. RN A polymerase recognizes the promoter sequence in the DN A template and initiates transcription. Each newly synthesized RNA amplicon re-enters the process and serves as a template for new replication.
於重組酵素聚合酶擴增(RPA )中,藉結合相對的寡 核苷酸引子至模板DN A並且由DNA聚合酶將之延伸而達成 特定DNA片段之恆溫擴增。變性雙股DNA ( dsDNA )模板 不需要熱》反之,RP A利用重組酵素-引子錯合體來掃描 dsDNA及促進同源(cognate)位置處的股交換。藉由單股 DN A結合蛋白與經取代模板股的交互作用來穩定所得到的 結構,因此防止引子因分支遷移而放出。重組酵素分解離 開可爲股取代DNA聚合酶(諸如Pol I -12- s 201209405 (hw)的大片段)所接近之寡核苷酸的3'端,且引子接著開 始延伸。藉循環重複此步驟而達到指數性核酸擴增。In recombinant enzyme polymerase amplification (RPA), constant temperature amplification of a particular DNA fragment is achieved by binding the opposite oligonucleotide primer to template DN A and extending it by DNA polymerase. Denatured double-stranded DNA (dsDNA) template does not require heat. Instead, RP A uses recombinant enzyme-primer mismatches to scan dsDNA and promote share exchange at cognate locations. The resulting structure is stabilized by the interaction of a single DN A binding protein with a substituted template strand, thus preventing the primer from being released due to branch migration. The recombinant enzyme decomposes to the 3' end of the oligonucleotide to which the strand replaces the DNA polymerase (such as a large fragment of Pol I -12-s 201209405 (hw)), and the primer then begins to extend. This step is repeated by cycling to achieve exponential nucleic acid amplification.
解旋酶擴增(HDA )模擬活體內系統,於活體內系統 中使用DN Α解旋酶來產生用於引子雜交之單股模板並接著 以DNA聚合酶延伸引子。於HDA反應的第一步驟中,解旋 酶穿過標靶DNA,破壞聯結兩股的氫鍵,此二股隨後由單 股結合蛋白所結合。由解旋酶所暴露之單股標靶區域使引 子得以黏著。DN A聚合酶使用自由的去氧核糖核苷三磷酸 (dNTP )以接著延伸各引子的3’端,以產生兩個DNA複製 (replicate )。兩個複製的d s D N A股獨立地進入下一個 HDA循環,造成標靶序列之指數性核酸擴增。 其他的基於DNA之恆溫技術包括滾動循環擴增(RCA ),於其中DNA聚合酶繞環狀DNA模板持續地延伸引子而 產生由許多環狀重複拷貝所組成之長的DN A產物。藉由終 止反應,聚合酶產生數千拷貝之環狀模板,其具有栓繫至 原始標靶DN A的拷貝鏈。此致使標靶之空間解析度及信號 之快速核酸擴增。於1小時內至多可產生1〇12拷貝之模板。 分枝型擴增爲RCA之變體,並利用封閉的環狀探針(C-探 針)或扣鎖探針及具高進行性之DNA聚合酶,以於常溫情 況下指數地擴增C-探針。 環形恆溫擴增(LAMP )提供高選擇性且利用DMA聚 合酶及含有四個特別設計的引子之引子組’引子組辨識標 靶DNA上總共六個不同的序列。含有標靶DNA之義股及反 義股序列的內引子起始LAMP。由外引子引發之後續股取 201209405The helicase amplification (HDA) mimics the in vivo system, using DN Α helicase in an in vivo system to generate a single-strand template for primer hybridization and then extending the primer with a DNA polymerase. In the first step of the HDA reaction, the helicase passes through the target DNA, destroying the hydrogen bonds that bind the two strands, which are then bound by a single-stranded binding protein. The single-strand target region exposed by the helicase allows the primer to adhere. DN A polymerase uses free deoxyribonucleoside triphosphate (dNTP) to subsequently extend the 3' end of each primer to produce two DNA replicas. The two replicated ds D N A strands independently enter the next HDA cycle, causing exponential nucleic acid amplification of the target sequence. Other DNA-based thermostating techniques include rolling cycle amplification (RCA) in which a DNA polymerase continuously extends a primer around a circular DNA template to produce a long DN A product consisting of a number of circular repeat copies. By terminating the reaction, the polymerase produces thousands of copies of the circular template with a copy strand tethered to the original target DN A . This results in a spatial resolution of the target and rapid nucleic acid amplification of the signal. A template of up to 1 copy can be produced in one hour. Branch-type amplification is a variant of RCA, and a circular probe (C-probe) or a latching probe and a highly progressive DNA polymerase are used to exponentially expand C at room temperature. - Probe. Circular thermostat amplification (LAMP) provides high selectivity and utilizes DMA polymerase and a primer set containing four specially designed primers to identify a total of six different sequences on the target DNA. The inner primer, which contains the sense strand of the target DNA and the antisense strand sequence, initiates the LAMP. Subsequent stocks triggered by external primers 201209405
代DNA合成釋出單股DNA。 此作爲由第二內及外引子所 引發之DN A合成的模板,第二內及外引子與標靶之另—端 雜交’產生莖-環(stem-loop ) DNA結構。於接續的LAMP 循環中’內引子與產物上的環形雜交並起始取代DNA合成 ’產生原始莖-環DNA及具有兩倍莖長度之新莖-環DNA。 於少於一小時內持續循環反應而聚積109拷貝之標靶。最 終產物爲具有數個反相重複標靶之莖-環DNA,以及具有 多個環形(交替黏著相同股中之反相重複標靶所形成)之 花椰菜狀結構。 * 於完成核酸擴增之後,必須分析擴增的產物以判定是 否產生預期的擴增子(標靶核酸之擴增量)。分析產物的 方法有透過膠體電泳簡單測定擴增子的大小、使用DNA雜 交以識別擴增子之核苷酸組成。Generation of DNA is released by generation of DNA. This serves as a template for the synthesis of DN A initiated by the second internal and external primers, and the second internal and external primers hybridize to the other end of the target to produce a stem-loop DNA structure. In the subsequent LAMP cycle, the 'inner primer hybridizes to the loop on the product and initiates the replacement DNA synthesis' to produce the original stem-loop DNA and the new stem-loop DNA with twice the stem length. The cyclic reaction was continued for less than one hour to accumulate 109 copies of the target. The final product is stem-loop DNA with several inverted repeat targets, and a broccoli-like structure with a plurality of loops (formed alternately with inverted repeat targets in the same strand). * After completion of nucleic acid amplification, the amplified product must be analyzed to determine whether the expected amplicon (amplification amount of the target nucleic acid) is produced. The method of analyzing the product is to simply measure the size of the amplicon by colloidal electrophoresis and use DNA hybridization to identify the nucleotide composition of the amplicon.
膠體電泳爲檢查核酸擴增步驟是否產生預期之擴增子 之最簡單方式之一。膠體電泳利用施加至膠體基質之電場 來分離DN A片段。帶負電的DN A片段將以不同速率(主要 取決於其大小)移動通過基質。於電泳完成之後,可染色 膠體中的片段使其成爲可見。於UV光下發螢光之溴化乙 菲錠爲最常用的染劑。 藉由與DNA大小標記(DNA標準片段(DNA ladder ) )相比較來判定片段的大小,DNA大小標記含有已知大小 的DNA片段,其與擴增子一同跑膠。因寡核苷酸引子結合 至毗鄰標靶DN A之特定位置,經擴增之產物的大小可被預 測且以膠體上已知大小的帶被檢測。爲確認擴增子爲何或 • 14-Colloidal electrophoresis is one of the simplest ways to check if a nucleic acid amplification step produces the desired amplicon. Colloidal electrophoresis utilizes an electric field applied to the colloidal matrix to separate the DN A fragment. Negatively charged DN A fragments will move through the matrix at different rates, depending primarily on their size. After the electrophoresis is completed, the fragments in the colloid can be stained to make them visible. Brominated phenanthrenequinone, which is fluorescent under UV light, is the most commonly used dye. The size of the fragment is determined by comparison with a DNA size marker (DNA ladder) which contains a DNA fragment of a known size which is run along with the amplicon. Since the oligonucleotide primer binds to a specific position adjacent to the target DN A, the size of the amplified product can be predicted and detected as a band of known size on the colloid. To confirm why the amplicon or • 14-
S 201209405 若產生數種擴增子時,常利用DN A探針與擴增子雜交。 DNA雜交意指藉由互補鹼基配對而形成雙股〇ΝΑ。用 於特定擴增產物之正面識別的DN A雜交需使用長度爲約20 個核苷酸的DN A探針。若探針具有與擴增子(標靶)DN A 序列互補的序列,則雜交將於有利的溫度、pH及離子濃度 條件下發生。若發生雜交,則表示關注的基因或DN A序列 出現於原始樣本中。S 201209405 When several amplicon are produced, the DN A probe is often used to hybridize with the amplicon. DNA hybridization means the formation of a double-stranded ruthenium by complementary base pairing. A DN A probe of about 20 nucleotides in length is required for DN A hybridization for positive recognition of a particular amplification product. If the probe has a sequence complementary to the amplicon (target) DN A sequence, hybridization will occur at favorable temperature, pH and ion concentration conditions. If hybridization occurs, the gene or DN A sequence of interest is present in the original sample.
光學檢測爲最常見之檢測雜交的方法。標記擴增子或 是探針以經由發螢光或電致化學發光而發光。這些方法之 引發產光部分之激發態的方式不同,但兩者同樣致能核苷 酸股之共價標記。於電致化學發光(ECL ),當以電流刺 激時,由發光團分子或錯合體產生光。於發螢光時,以造 成發射之激發光來發光。 使用發光源以檢測螢光,發光源提供波長爲螢光分子 吸收之激發光以及檢測單元。檢測單元包含光感測器(諸 如光電倍增管或電荷耦合裝置(CCD )陣列)以檢測發射 的信號,以及防止激發光被包含於光感測器輸出之機構( 諸如波長-選擇濾波器)。回應激發光,螢光分子發射斯 托克斯位移(Stokes-shifted)光,以及此發射的光由檢測 單元收集。托克斯位移爲發射的光與吸收的激發光之間之 頻率差或波長差。 使用光感測器來檢測ECL發射,光感測器對於所採用 之ECL種類之發射波長爲敏感。例如,過渡金屬配位錯合 體發射可見波長的光,因而採用傳統光二極體及CCD作爲 -15- 201209405 光感測器。ECL之優勢爲,若排除周圍光線,ECL發射可 爲檢測系統中唯一存在的光,因而增進靈敏度。Optical detection is the most common method of detecting hybridization. The amplicon or probe is labeled to emit light via fluorescing or electrochemiluminescence. These methods have different ways of inducing the excited state of the luminescent moiety, but both are equally capable of covalent labeling of the nucleoside stock. In electrochemiluminescence (ECL), when excited by a current, light is generated by a luminophore molecule or a complex. When the fluorescent light is emitted, the emitted light is emitted to emit light. The illuminating source is used to detect fluorescence, and the illuminating source provides excitation light having a wavelength absorbed by the fluorescent molecules and a detecting unit. The detection unit includes a photosensor (such as a photomultiplier tube or a charge coupled device (CCD) array) to detect the transmitted signal and a mechanism (such as a wavelength-select filter) that prevents the excitation light from being included in the output of the photosensor. Back stress illuminates, the fluorescent molecules emit Stokes-shifted light, and the emitted light is collected by the detection unit. The Tox shift is the frequency difference or wavelength difference between the emitted light and the absorbed excitation light. A light sensor is used to detect ECL emissions, and the light sensor is sensitive to the emission wavelength of the ECL type employed. For example, transition metal coordination complexes emit light of visible wavelengths, thus using conventional photodiodes and CCDs as -15-201209405 photosensors. The advantage of ECL is that if ambient light is excluded, the ECL emission can be the only light present in the detection system, thus increasing sensitivity.
微陣列使數十萬的DNA雜交試驗得以同時進行。微陣 列爲有用的分子診斷工具,其可篩檢數千種遺傳疾病或於 單一試驗中檢測是否存在數種感染性病原體。微陣列由許 多不同的固定於基板上且成點狀之DN A探針所組成。首先 以螢光或發光分子標記標靶DNA (擴增子)(於核酸擴增 期間或之後),然後將其施加至探針陣列。於經控制的溫 度下、潮濕的環境中培養微陣列數小時或數天,此時探針 及擴增子之間發生雜交。於培養後,必須以一連串緩衝液 清洗微陣列以移除未經結合股。一旦清洗後,以氣流(通 常爲氮)乾燥微陣列表面。雜交及清洗的嚴格度很重要。 不夠嚴格可能導致高度非特異性結合。過度嚴格可能導致 無法適當進行結合而造成減低的靈敏度。藉由檢測來自經 標記之與互補探針形成雜交的擴增子之光發射而辨識雜交Microarrays allow hundreds of thousands of DNA hybridization experiments to be performed simultaneously. Microarrays are useful molecular diagnostic tools that can screen thousands of genetic diseases or detect the presence of several infectious pathogens in a single experiment. The microarray consists of a number of different DN A probes that are attached to the substrate and are in the form of dots. The target DNA (amplicon) is first labeled with fluorescent or luminescent molecules (during or after nucleic acid amplification) and then applied to the probe array. The microarray is cultured for several hours or days at a controlled temperature in a humid environment where hybridization occurs between the probe and the amplicon. After incubation, the microarray must be washed with a series of buffers to remove unbound strands. Once cleaned, the surface of the microarray is dried with a stream of air (usually nitrogen). The stringency of hybridization and cleaning is important. Less stringent may result in highly non-specific binding. Excessive rigor may result in inability to properly combine and result in reduced sensitivity. Identification of hybridization by detecting light emission from a labeled amplicon that hybridizes to a complementary probe
使用微陣列掃描器檢測來自微陣列的螢光,微陣列掃 描器通常爲經電腦控制的反相掃描式螢光共軛焦顯微鏡, 其一般使用激發螢光染料的雷射及光感測器(諸如光電倍 增管或CCD )以檢測發射的信號。螢光分子發射經下轉換 的光(如上述),而光被檢測單元收集。 發射的螢光必須被收集、與未經吸收的激發波長分離 ,並被傳送至檢測器。於微陣列掃描器中常使用共軛焦配 置以藉由位於影像平面的共軛焦針孔來刪除失焦資訊。此Fluorescence from the microarray is detected using a microarray scanner, typically a computer-controlled, inverting scanning fluorescent conjugated focus microscope that typically uses a laser and photosensor that excites the fluorescent dye ( Such as a photomultiplier tube or CCD) to detect the emitted signal. The fluorescent molecules emit down-converted light (as described above) and the light is collected by the detection unit. The emitted fluorescence must be collected, separated from the unabsorbed excitation wavelength, and transmitted to the detector. A conjugate focal configuration is often used in microarray scanners to remove out-of-focus information by conjugated focal pinholes located in the image plane. this
S •16- 201209405 使得僅檢測光的聚焦部分。防止於物之焦點平面之上方或 下方的光進入檢測器,藉此增加信號對雜訊比。檢測器將 經檢測的螢光光子轉換成電能,電能並接著被轉換成數位 信號。此數位信號轉變成代表來自給定像素之螢光強度的 數字。陣列的各特徵係由一或多個此像素所構成。掃描的 最終結果爲陣列表面影像。由於已知微陣列上每一個探針 的確切序列及位置,因此可同時識別及分析雜交的標靶序S •16- 201209405 makes it possible to detect only the focused portion of the light. Light that is prevented above or below the focal plane of the object enters the detector, thereby increasing the signal-to-noise ratio. The detector converts the detected fluorescent photons into electrical energy, which is then converted into a digital signal. This digital signal is converted to a number representing the intensity of the fluorescence from a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. Since the exact sequence and position of each probe on the microarray is known, the hybrid target sequence can be simultaneously identified and analyzed.
可於下列找到更多有關螢光探針之資訊: http://www. premierbiosoft. com/tech_notes/FRETjprobe_ html 以及 http ://www. invitrogen. com/site/us/en/home/References/Molecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET. html 就地醫護分子診斷 儘管分子診斷試驗提供了優勢,臨床檢驗中此類型試 φ 驗的成長不如預期且仍僅占檢驗醫學之實施的小部分。此 主要歸因於,與基於非關核酸方法之試驗相比,核酸試驗 相關之複雜度與成本。分子診斷試驗之於臨床處理的廣泛 適用性係與可顯著降低成本、提供自始(樣本處理)至終 (產生結果)之快速及自動化分析,以及不需大量人爲操 作之儀器發展息息相關。 用於醫師診所、鄰近的或基於使用者的醫院、家中之 就地醫護技術提供以下優點: •快速得到結果而致能快速促進治療及改進照護品質 -17- 201209405 •經由試驗極少量樣本而得到檢驗値的能力。 •減少臨床工作量。 •減少實驗室工作量並因減少管理工作而增進工作效 率。Find out more about fluorescent probes here: http://www. premierbiosoft.com/tech_notes/FRETjprobe_ html and http://www.invitrogen.com/site/us/en/home/References/Molecular -Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET. html In-situ medical molecular diagnostics Although molecular diagnostic tests provide advantages, this type of test in clinical tests Growth is not as good as expected and still only accounts for a small portion of the implementation of laboratory medicine. This is mainly due to the complexity and cost associated with nucleic acid testing compared to experiments based on non-amino acid methods. The broad applicability of molecular diagnostic tests to clinical treatment is closely related to the rapid and automated analysis that can significantly reduce costs, provide initial (sample processing) to final (results), and the development of instruments that do not require extensive human manipulation. For physicians' clinics, proximity or user-based hospitals, home-based in-home healthcare technologies offer the following benefits: • Quickly get results that quickly promote treatment and improve care quality -17- 201209405 • Get a very small sample by experiment The ability to test defects. • Reduce clinical workload. • Reduce laboratory workload and increase work efficiency by reducing management efforts.
•因減少住院時間、門診病人於首次就診得知結果, 及簡化樣本的處理、儲存及運送而改善每個病人所 需成本。 •促進臨床管理決策,諸如感染控制及抗生素使用。 以晶片上實驗室(LOC)爲基之分子診斷• Improve the cost per patient by reducing hospital stays, getting results from outpatient visits at the first visit, and simplifying the handling, storage and delivery of samples. • Promote clinical management decisions such as infection control and antibiotic use. Molecular diagnosis based on on-wafer laboratory (LOC)
以微流體技術爲基礎之分子診斷系統提供可自動化及 加速分子診斷分析之裝置。較短之檢測時間主要是因爲所 需之樣本體積極少、自動化及在微流體裝置內之低開銷內 置級聯式之診斷方法步驟。以奈升及微升爲規模之體積亦 減少試劑消耗及成本。晶片上實驗室(LOC )裝置係常見 之微流體裝置形式。LOC裝置具有在MST層內之MST結構 以用於將流體處理整合至單一支撐基材(通常爲矽)上。 利用半導體產業之VLSI (超大型積體電路)平版印刷技術 製造使各LOC裝置之單位成本非常低廉。然而,控制流體 流經LOC裝置、添加試劑、控制反應條件等等需要大型之 外部管路及電子裝置。連接LOC裝置至這些外部裝置大幅 地限制LOC裝置之分子診斷用途於實驗室環境中。外部儀 器之費用及其操作複雜性排除以LOC爲基之分子診斷作爲Molecular diagnostic systems based on microfluidics provide devices that automate and accelerate molecular diagnostic analysis. The shorter detection time is primarily due to the fact that the required sample volume is less active, automated, and low-cost built-in cascaded diagnostic method steps within the microfluidic device. The volume of nanoliters and microliters also reduces reagent consumption and cost. On-wafer laboratory (LOC) devices are in the form of common microfluidic devices. The LOC device has an MST structure within the MST layer for integrating fluid processing onto a single support substrate (typically helium). Utilizing the VLSI (Ultra Large Integrated Circuit) lithography technology of the semiconductor industry, the unit cost of each LOC device is very low. However, controlling the flow of fluid through the LOC unit, adding reagents, controlling reaction conditions, and the like requires large external piping and electronics. Connecting the LOC devices to these external devices substantially limits the molecular diagnostic use of the LOC devices in a laboratory environment. The cost of external instruments and their operational complexity excludes LOC-based molecular diagnostics as a basis for
S -18- 201209405 就地醫護環境中之實用選擇。 鑒於上述,需要一種用於就地醫護之基於LOC裝置之 分子診斷系統。 【發明內容】S -18- 201209405 Practical choice in a local healthcare environment. In view of the above, there is a need for a molecular diagnostic system based on LOC devices for in situ care. [Summary of the Invention]
本發明之不同樣態現在描述於下列數個段落。 GVA022.1 本發明之樣態提供一種微流體裝置,包含 :具有入口、出口以及在入口和出口間之孔的通道;其中 孔具有不允許液體流之彎液面固定至孔的幾何形狀, 使得自入口流向出口之液體流不被中斷。 GVA022.2 較佳地,通道被配置以藉由毛細作用將液 體自入口吸取至出口。 GVA022.3 較佳地,孔具有毛細起始特徵以在孔成形 彎液面,使得表面張力吸取至少一部分之彎液面通過孔並The different states of the invention are now described in the following paragraphs. GVA022.1 provides a microfluidic device comprising: a passage having an inlet, an outlet, and a bore between the inlet and the outlet; wherein the orifice has a geometry that prevents the meniscus of the liquid flow from being fixed to the orifice, such that The flow of liquid from the inlet to the outlet is not interrupted. GVA 022.2 Preferably, the passage is configured to draw liquid from the inlet to the outlet by capillary action. GVA022.3 Preferably, the aperture has a capillary initiation feature to form a meniscus in the aperture such that surface tension draws at least a portion of the meniscus through the aperture and
GVA022.4 較佳地,微流體裝置亦具有: 支撐基材: 支撐基材上之微系統技術(MST)層;及, 覆蓋在MS T層上之蓋,蓋具有在蓋與MST層間之複數 個流體連通以供液體流自MST層流到蓋及供液體流自蓋流 到MST層;其中, 至少蓋與MST層間的流體連通之一者係爲孔。 GVA022.5 較佳地,通道延伸通過MST層且蓋連接至 -19- 201209405 少一些流體連通。 GVA022.6 較佳地’ MST層具有頂部層及孔係部份形 成於頂部層中。 GVA022.7 較佳地,頂部層係小於5微米厚。 GVA022.8 較佳地,在MST層內之通道部具有橫跨流 體方向之截面積小於400平方微米。GVA022.4 Preferably, the microfluidic device also has: a support substrate: a microsystem technology (MST) layer on the support substrate; and a cover overlying the MS T layer, the cover having a plurality of layers between the cover and the MST layer The fluid is in fluid flow from the MST layer to the cap and the liquid stream is flowed from the cap to the MST layer; wherein at least one of the fluid communication between the cap and the MST layer is a hole. GVA022.5 Preferably, the channel extends through the MST layer and the cover is connected to -19-201209405 with less fluid communication. GVA 022.6 preferably has a top layer and a hole portion formed in the top layer. GVA022.7 Preferably, the top layer is less than 5 microns thick. GVA 022.8 Preferably, the channel portion in the MST layer has a cross-sectional area across the fluid direction of less than 400 square microns.
GVA022.9 較佳地,液體包含包括不同大小細胞之生 物樣本,且至少流體連通之一者係爲避免大於預定閾限値 之細胞通過之大小的孔陣列。 GVA022.1 0 較佳地,孔陣列爲一部份的透析部,透 析部係配置以分開大於預定閾限値之細胞至一部份的樣本 ,其係與僅含小於預定閾限値之細胞的剩餘樣本分開處理 GVA022.il 較佳地,孔口係經配置使得小於預定閾 限値之細胞包括病原體。GVA 022.9 Preferably, the liquid comprises a biological sample comprising cells of different sizes, and at least one of the fluid communication is an array of pores sized to avoid passage of cells larger than a predetermined threshold. GVA022.1 0 Preferably, the array of holes is a portion of the dialysis section, and the dialysis section is configured to separate cells larger than a predetermined threshold to a portion of the sample, and the cells containing only less than a predetermined threshold The remaining samples are processed separately. GVA022.il Preferably, the orifices are configured such that cells less than a predetermined threshold include pathogens.
GVA022.1 2 較佳地,微流體裝置亦具有溶胞部,溶 胞部係經配置以溶胞病原體和釋放其中之遺傳物質。 GVA022.1 3 較佳地,微流體裝置亦具有聚合酶連鎖 反應(PCR )部以擴增液體中之核酸序列。 GVA022.1 4 較佳地,微流體裝置亦具有CMOS電路 ,其設置於支撐基材與MST層之間以操作性控制PCR部。 GVA022.1 5 較佳地,微流體裝置亦具有培養部以在 擴增液體中之核酸序列前培養液體。 GVA022.1 6 較佳地,微流體裝置亦具有雜交部,其GVA022.1 2 Preferably, the microfluidic device also has a lysis unit configured to lyse the pathogen and release the genetic material therein. GVA022.1 3 Preferably, the microfluidic device also has a polymerase chain reaction (PCR) moiety to amplify the nucleic acid sequence in the liquid. GVA022.1 4 Preferably, the microfluidic device also has a CMOS circuit disposed between the support substrate and the MST layer to operatively control the PCR portion. GVA022.1 5 Preferably, the microfluidic device also has a culture section to culture the liquid prior to amplifying the nucleic acid sequence in the liquid. GVA022.1 6 Preferably, the microfluidic device also has a hybridization portion,
-20- S 201209405 具有用以與由PCR部擴增之標靶核酸序列雜交之探針陣列 GVA022.1 7 較佳地,微流體裝置亦具有用以在探針 陣列內檢測探針之雜交的光二極體陣列。 GVA022.1 8 較佳地,微流體裝置亦具有接合墊且係 經配置用以傳送雜交資料至外部裝置。 GVA022.1 9 較佳地,PCR部具有熱循環時間爲少於4-20-S 201209405 has a probe array GVA022.1 7 for hybridization with a target nucleic acid sequence amplified by a PCR portion. Preferably, the microfluidic device also has a hybridization method for detecting a probe within the probe array. Photodiode array. GVA022.1 8 Preferably, the microfluidic device also has a bond pad and is configured to deliver the hybridization data to an external device. GVA022.1 9 Preferably, the PCR section has a thermal cycle time of less than 4
秒。 GVA022.20 較佳地,PCR部具有熱循環時間在0.45 秒與1.5秒間。 微流體孔使用簡易製造且精準地平版步驟在兩個微流 層級間提供可靠的液體未固定流徑。 GDI014.1 本發明之態樣提供微流體裝置以處理液體 樣本,微流體裝置包含: 第一通道,配置藉由毛細作用以樣本塡滿; 第二通道,配置藉由毛細作用以樣本塡滿; 在第一通道以及第二通道間之複數個流體連通’流體 連通之一者具有主動閥以阻止樣本流至第二通道’且剩餘 之流體連通係各配置以固定樣本之彎液面,其阻止在第一 通道與第二通道間之毛細管流,具有主動閥之流體連通係 爲剩餘之流體連通之上游;其中在使用期間, 進入第二通道之樣本流係由主動閥的啓動而引發,使 得在第二通道中之樣本流逐漸地移除在各彎液面固定器之 彎液面。 -21 - 201209405 GDI014.2 較佳地,剩餘流體連通之一者具有用以觸 發主動閥之啓動的液體感測器。 GDI014.3 較佳地,樣本係包含不同大小組份之生物 樣本,且複數個流體連通具有依照預定尺寸閾限値大小製 作之孔,使得流入第二通道之組份爲小於預定尺寸閾限値 之較小組份,而留在第一通道之組份包括大於預定尺寸閾 限値之較大組份。second. GVA022.20 Preferably, the PCR section has a thermal cycle time between 0.45 seconds and 1.5 seconds. The microfluidic holes are easily fabricated and precisely lithographically stepped to provide a reliable liquid unfixed flow path between the two microfluidic stages. GDI014.1 Aspects of the present invention provide a microfluidic device for processing a liquid sample, the microfluidic device comprising: a first channel configured to be filled with a sample by capillary action; and a second channel configured to be filled with a sample by capillary action; A plurality of fluid communication 'one of the fluid communication between the first channel and the second channel has an active valve to prevent sample flow to the second channel' and the remaining fluid communication configurations are configured to fix the meniscus of the sample, which blocks In the capillary flow between the first channel and the second channel, the fluid communication with the active valve is upstream of the remaining fluid communication; wherein during use, the sample flow entering the second channel is initiated by activation of the active valve, such that The sample stream in the second channel is gradually removed from the meniscus of each meniscus holder. -21 - 201209405 GDI014.2 Preferably, one of the remaining fluid connections has a liquid sensor for triggering activation of the active valve. GDI014.3 Preferably, the sample comprises biological samples of different size components, and the plurality of fluid communication holes having a size according to a predetermined size threshold, such that the components flowing into the second channel are less than a predetermined size threshold. The smaller component, while the component remaining in the first channel includes a larger component that is greater than a predetermined size threshold.
GDI014.4 較佳地,主動閥爲具有固定液體之彎液面 之彎液面固定器的沸騰引發閥,彎液面阻止流體,以及加 熱器經設置鄰近於彎液面固定器,使得加熱器之啓動沸騰 彎液面固定器上之液體以移除彎液面以使流體復流。 GDI014.5 較佳地,主動閥具有彎液面固定器以固定 液體之彎液面,彎液面阻止流體,並且,彎折致動器經配 置以在啓動時彎折,並且自彎液面固定器移開彎液面而恢 復流體。GDI014.4 Preferably, the active valve is a boiling initiation valve of a meniscus holder having a meniscus of a fixed liquid, the meniscus blocks fluid, and the heater is disposed adjacent to the meniscus holder such that the heater The liquid on the boiling meniscus holder is activated to remove the meniscus to reflow the fluid. GDI014.5 Preferably, the active valve has a meniscus holder to fix the meniscus of the liquid, the meniscus blocks fluid, and the bending actuator is configured to bend at startup and from the meniscus The retainer removes the meniscus to restore fluid.
GDI014.6 較佳地,第一通道、第二通道和複數個流 體連通係微流體裝置中之部份透析部,用以分開處理較小 組份及/或較大組份。 GDI014.7 較佳地,生物樣本係血液,以及較大組份 包括白血球,而較小組份包括紅血球。 GDI014.8 較佳地,微流體裝置亦具有MST層用以分 析白血球中之遺傳物質,其中MS T層具有溶胞部用以溶胞 白血球以釋放其中之標靶核酸序列。 GDI014.9 較佳地,MST層具有用以擴增標靶核酸之GDI 014.6 Preferably, the first channel, the second channel, and the plurality of fluid communication portions are part of the dialysis unit for separately processing the smaller component and/or the larger component. GDI014.7 Preferably, the biological sample is blood, and the larger components include white blood cells, while the smaller components include red blood cells. GDI 014.8 Preferably, the microfluidic device also has an MST layer for analyzing genetic material in the white blood cells, wherein the MS T layer has a lysis unit for lysing the white blood cells to release the target nucleic acid sequence therein. GDI014.9 Preferably, the MST layer has a molecule for amplifying the target nucleic acid
-22- S 201209405 核酸擴增部。 GDI014.10 較佳地,微流體裝置亦具有雜交部,其 具有用以與標靶核酸序列雜交之探針陣列,標靶核酸序列 由核酸擴增部擴增。 GDI014.il 較佳地,探針係配置以與標靶核酸序列 形成探針-標靶雜交體,探針-標靶雜交體係回應激發光而 發出螢光。-22- S 201209405 Nucleic Acid Amplification Department. GDI014.10 Preferably, the microfluidic device also has a hybridization portion having a probe array for hybridization with the target nucleic acid sequence, the target nucleic acid sequence being amplified by the nucleic acid amplification portion. GDI014.il Preferably, the probe system is configured to form a probe-target hybrid with the target nucleic acid sequence, and the probe-target hybrid system emits fluorescence in response to the excitation light.
GDI0 1 4.1 2 較佳地,微流體裝置亦具有CMOS電路以 操作性控制PCR部,CMOS電路具有用以感測來自探針-標 靶雜交體之螢光發射之光感測器。 GDI014.13 較佳地,雜交部具有包含用以與標靶核 酸序列雜交之探針的雜交陣列腔室。 GDI014.14 較佳地,光感測器係設置鄰近於各自之 雜交腔室之光二極體陣列。 GDI014.15 較佳地,光二極體離對應的雜交腔室小 於2 4 9微米。 GDI014.16 較佳地,探針係螢光共振能量轉移( FRET)探針。 GDI014.17 較佳地,雜交腔室具有光學窗,其設置 以將FRET探針暴露於激發光。 GDI0M.18 較佳地,FRET探針各具有螢光團以及淬 熄劑,當FRET探針已形成探針-標靶雜交體時,螢光團係 配置以發射螢光訊號至光二極體以回應激發光,CMOS電 路係配置以在預定延遲後致能光二極體,預定延遲發生於 -23- 201209405 激發光被消光後,數位記憶體含有預定延遲。 GDI0 1 4.1 9 較佳地,CMOS電路具有接合墊以電性連 接至外部裝置,以及配置以將自光二極體之輸出轉換成指 示與標靶核酸序列雜交之fret探針之訊號,並提供訊號 至接合墊以傳送至外部裝置。 GDI014.20 較佳地,微流體裝置亦具有複數個貯槽 以保留用以加入樣本之液體試劑。GDI0 1 4.1 2 Preferably, the microfluidic device also has a CMOS circuit for operative control of the PCR portion, the CMOS circuit having a photosensor for sensing the fluorescent emission from the probe-target hybrid. GDI014.13 Preferably, the hybridization portion has a hybridization array chamber comprising a probe for hybridizing to a target nucleic acid sequence. GDI014.14 Preferably, the photosensors are arranged in an array of photodiodes adjacent to the respective hybridization chambers. GDI014.15 Preferably, the photodiode is less than 24.9 microns from the corresponding hybridization chamber. GDI014.16 Preferably, the probe is a fluorescence resonance energy transfer (FRET) probe. GDI014.17 Preferably, the hybridization chamber has an optical window arranged to expose the FRET probe to excitation light. GDI0M.18 Preferably, the FRET probes each have a fluorophore and a quencher. When the FRET probe has formed a probe-target hybrid, the fluorophore is configured to emit a fluorescent signal to the photodiode. Back to stress illumination, the CMOS circuit is configured to enable the photodiode after a predetermined delay, with a predetermined delay occurring at -23-201209405. After the excitation light is extinction, the digital memory contains a predetermined delay. GDI0 1 4.1 9 Preferably, the CMOS circuit has a bond pad electrically connected to the external device, and is configured to convert the output from the photodiode into a signal indicative of a fret probe that hybridizes to the target nucleic acid sequence, and provides a signal To the bond pad for transfer to an external device. GDI014.20 Preferably, the microfluidic device also has a plurality of reservoirs for retaining liquid reagents for incorporation into the sample.
簡單可使用、可大量製造並且便宜之微流體裝置接收 生物樣本,使用透析部以分離不同尺寸之細胞,並且分開 處理以其尺寸爲標準分離之細胞的核酸內容物。 透析部功能自樣本萃取額外資訊,並增加分析系統之 靈敏度、訊號雜訊比以及動態範圍。透析部係倂入裝置, 提供低系統元件數以及簡單製造步驟,導致便宜的分析系 統。特別具有主動閥之流體-通道結構提供透析部之毛細 現象驅動起始而沒有捕集之氣泡。The microfluidic device, which is simple to use, can be mass-produced and inexpensive, receives the biological sample, uses the dialysis section to separate cells of different sizes, and separately processes the nucleic acid contents of the cells separated by their size. The dialysis function extracts additional information from the sample and increases the sensitivity, signal-to-noise ratio, and dynamic range of the analysis system. The dialysis unit is a device that provides low system components and simple manufacturing steps, resulting in an inexpensive analytical system. A fluid-channel structure, particularly with an active valve, provides a capillary phenomenon of the dialysis section that drives the start without trapping bubbles.
【實施方式】 較佳具體實施例之詳細說明 總論 此總論指明包含本發明具體實施例之分子診斷系統的 主要組件。該系統構造及操作之綜合細節於以下說明書中 說明。 參照圖1,2,3,118和119,該系統具有下列最重要的 組件: -24- 201209405[Embodiment] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Overview This general specification indicates the main components of a molecular diagnostic system incorporating a specific embodiment of the present invention. The details of the construction and operation of this system are described in the following description. Referring to Figures 1, 2, 3, 118 and 119, the system has the following most important components: -24- 201209405
試驗模組10和11爲典型USB隨身碟的尺寸且非常便宜 可以製得。試驗模組1 0和1 1各包含微流體裝置,典型地呈 晶片上實驗室(LOC )裝置30的形式,且預載有試劑以及 典型地1000個以上之用於該分子診斷分析的探針(見圖i 和1 1 8 )。當在圖1 1 8中之試驗模組1 1使用以電致化學發光 爲基礎的檢測技術同時,槪示於圖1之試驗模組1 0使用以 螢光爲基礎的檢測技術以辨識標靶分子。該LOC裝置30具 有用於螢光或電致化學發光檢測(詳述於下)之整合光感 測器44。試驗模組1 0和1 1兩者皆使用用於電源、數據和控 制之標準微型USB接頭14,均具有印刷電路板(PCB ) 57 ,且均具有外部供電之電容器3 2和電感器15。該試驗模組 10和11兩者均爲僅供大量製造之單一用途且以可供使用之 無菌包裝分銷。 外殼13具有用於接收生物樣本之大容器24及可移除之 無菌密封帶22,其較佳具低黏性黏著劑,以於使用前覆蓋 大容器。具有膜防護件410之膜密封件408形成部份外殼13 以減少試驗模組中之抗濕性,而由小氣壓變動提供釋壓作 用。膜防護件4 10保護膜密封件408免於損傷。 經由微型-USB埠16,試驗模組讀取器12供電給試驗模 組1 〇或1 1。試驗模組讀取器1 2可爲許多不同形式,及其選 擇係描述於後。圖1、3及118中所示之讀取器12版本爲智 慧型電話之具體實施例。讀取器1 2之方塊圖係示於圖3中 。處理器42執行來自程式儲存器43的應用軟體。處理器42 亦與顯示螢幕18及使用者界面(UI )觸控螢幕17及按鈕19 -25- 201209405 、蜂巢式無線電2 1、無線網路連接2 3,以及衛星導航系統 25界接。蜂巢式無線電21及無線網路連接23係用於通訊。 衛星導航系統25係用於以位置資料更新流行病學資料庫。 替代性地,能夠以觸控螢幕1 7或按鈕1 9手動輸入位置資料 。資料儲存器27保有遺傳及診斷資訊、試驗結果、患者資 訊、用於識別各探針之分析及探針數據及其陣列位置。胃 料儲存器27及程式儲存器43可共享於共同記億體設備。試 驗模組讀取器I2中安裝的應用軟體提供結果分析與另外的 試驗及診斷資訊。 爲執行診斷試驗,將試驗模組1 0 (或試驗模組1 1 )插 入至試驗模組讀取器12上的微型- USB埠16。將無菌密封帶 22翻起並將生物樣本(呈液體形式)載入至樣本大容器24 中。按下開始按鈕20以藉由應用軟體來起始試驗。樣本流 進LOC裝置30且以機載分析(on-board assay)萃取、培養 、擴增及以預合成的雜交-反應性寡核苷酸探針與樣本核 酸(標靶)雜交。於試驗模組1 〇的情況中(其使用基於螢 光的檢測),探針係經螢光標記且置於殻1 3中的LED 2 6提 供必要激發光以誘發自經雜交探針的螢光發射(見圖1及2 )。於試驗模組1 1中(其使用基於電致化學發光(ECL ) 的檢測),LOC裝置30載有ECL探針(如上述)且LED 26 對於產生發光並非必要。反之,電極8 60及8 70提供激發電 流(見圖119)。使用與各LOC裝置上之CMOS電路整合的 光感測器44來檢測發射(螢光或光致發光)。擴增所檢測 的信號並將其轉換成藉由試驗模組讀取器1 2分析之數位輸 201209405 出。讀取器接著顯示結果。 可本地儲存數據及/或將數據上傳至含有患者記錄之 網路伺服器。自試驗模組讀取器1 2移除試驗模組1 0或1 1並 將彼等適當處理。Test modules 10 and 11 are typical USB flash drives and are very inexpensive to manufacture. The test modules 10 and 1 each comprise a microfluidic device, typically in the form of a lab-on-lab (LOC) device 30, preloaded with reagents and typically more than 1000 probes for diagnostic analysis of the molecule. (See Figures i and 1 18). When the test module 1 1 in Fig. 118 uses an electrochemiluminescence-based detection technique, the test module 10 shown in Fig. 1 uses a fluorescence-based detection technique to identify the target. molecule. The LOC device 30 has an integrated light sensor 44 for fluorescence or electrochemiluminescence detection (described in more detail below). Both test modules 10 and 1 1 use standard micro USB connectors 14 for power, data, and control, each having a printed circuit board (PCB) 57 and each having an externally powered capacitor 32 and an inductor 15. Both test modules 10 and 11 are single use for mass production only and are distributed in sterile packaging for use. The outer casing 13 has a large container 24 for receiving biological samples and a removable sterile sealing strip 22 which preferably has a low viscosity adhesive to cover the large container prior to use. The membrane seal 408 having the membrane shield 410 forms part of the outer casing 13 to reduce the moisture resistance in the test module while providing a pressure relief effect by small pressure changes. Membrane guard 4 10 protects membrane seal 408 from damage. The test module reader 12 supplies power to the test module 1 or 11 via the micro-USB port 16. The test module reader 12 can be in many different forms, and its selection is described later. The reader 12 version shown in Figures 1, 3 and 118 is a specific embodiment of a smart phone. A block diagram of the reader 12 is shown in FIG. The processor 42 executes application software from the program storage 43. The processor 42 is also interfaced with the display screen 18 and the user interface (UI) touch screen 17 and buttons 19-25-201209405, the cellular radio 2 1 , the wireless network connection 23, and the satellite navigation system 25. The cellular radio 21 and the wireless network connection 23 are used for communication. The satellite navigation system 25 is used to update the epidemiological database with location data. Alternatively, the location data can be manually entered using touch screen 1 7 or button 1 9 . The data store 27 holds genetic and diagnostic information, test results, patient information, analysis and probe data for identifying each probe, and its array position. The gastric reservoir 27 and the program storage 43 can be shared by a common device. The application software installed in the test module reader I2 provides results analysis and additional test and diagnostic information. To perform a diagnostic test, the test module 10 (or test module 1 1) is inserted into the micro-USB port 16 on the test module reader 12. The sterile sealing strip 22 is turned up and the biological sample (in liquid form) is loaded into the large sample container 24. The start button 20 is pressed to initiate the test by applying the software. The sample is passed to LOC unit 30 and extracted by on-board assay, cultured, amplified and hybridized with sample nucleic acid (target) using a pre-synthesized hybrid-reactive oligonucleotide probe. In the case of the test module 1 ( (which uses fluorescence-based detection), the probe is fluorescently labeled and the LEDs 26 placed in the shell 13 provide the necessary excitation light to induce the self-hybridization probe. Light emission (see Figures 1 and 2). In test module 11 (which uses electrochemiluminescence (ECL) based detection), LOC device 30 carries an ECL probe (as described above) and LED 26 is not necessary to produce illumination. Conversely, electrodes 8 60 and 8 70 provide an excitation current (see Figure 119). The light sensor 44 integrated with the CMOS circuitry on each LOC device is used to detect the emission (fluorescence or photoluminescence). The detected signal is amplified and converted into a digital transmission 201209405 by the test module reader 12. The reader then displays the result. Data can be stored locally and/or uploaded to a web server containing patient records. The test module 10 or 1 1 is removed from the test module reader 1 2 and processed as appropriate.
圖1、3及1 1 8顯示組態成行動電話/智慧型電話2 8之試 驗模組讀取器1 2。於其他形式中,試驗模組讀取器爲醫院 、私人診所或實驗室中使用之膝上型電腦/筆記型電腦1 0 1 、專用讀取器103、電子書讀取器107、平板電腦109或桌 上型電腦105 (見圖120)。讀取器可與一些額外的應用程 式界接,諸如病患記錄、帳務、線上資料庫及多使用者環 境。其亦可與一些本地或遠端周邊設備界接,諸如印表機 及病患智慧卡。 參照圖121,透過讀取器12及網路125,由試驗模組1〇 產生之資料可用來更新用於流行病學資料111之主機系統 所載有之流行病學資料庫、用於遺傳資料1 1 3之主機系統 φ 所載有之遺傳資料庫、用於電子化健康記錄(EHR ) 1 1 5 之主機系統所載有之電子化健康記錄、用於電子化醫療記 錄(EMR) 121之主機系統所載有之電子化醫療記錄,以 及用於個人健康記錄(PHR ) 123之主機系統所載有之個 人健康記錄。相反地,經由網路125及讀取器12,用於流 行病學資料1 1 1之主機系統所載有之流行病學資料、用於 遺傳資料113之主機系統所載有之遺傳資料、用於電子化 健康記錄(EHR ) U 5之主機系統所載有之電子化健康記 錄、用於電子化醫療記錄(EMR) 121之主機系統所載有 -27- 201209405 之電子化醫療記錄,以及用於個人健康記錄(PHR ) 123 之主機系統所載有之個人健康記錄可用以更新試驗模組10 LOC 30中之數位記憶體。Figures 1, 3 and 1 18 show a test module reader 12 that is configured as a mobile/smartphone 28. In other forms, the test module reader is a laptop/notebook computer 101 used in a hospital, private clinic or laboratory, a dedicated reader 103, an e-book reader 107, a tablet 109 Or desktop computer 105 (see Figure 120). The reader can be interfaced with additional applications such as patient records, accounting, online databases and multi-user environments. It can also interface with some local or remote peripherals, such as printers and patient smart cards. Referring to FIG. 121, the data generated by the test module 1 through the reader 12 and the network 125 can be used to update the epidemiological database contained in the host system for the epidemiological data 111 for genetic data. 1 1 3 The host system φ contains the genetic database, the electronic health record contained in the host system for the electronic health record (EHR) 1 1 5, for the electronic medical record (EMR) 121 The electronic medical records contained in the host system and the personal health records contained in the host system for personal health records (PHR) 123. Conversely, via the network 125 and the reader 12, the epidemiological data contained in the host system for the epidemiological data 1 1 1 , the genetic data contained in the host system for the genetic data 113, The electronic health record contained in the electronic health record (EHR) U 5 host system, the host system for electronic medical record (EMR) 121 contains electronic medical records of -27-201209405, and A personal health record contained in the host system of the Personal Health Record (PHR) 123 can be used to update the digital memory in the test module 10 LOC 30.
再次參照圖1、2、1 1 8及1 1 9,於行動電話組態中’讀 取器12使用電池電力。行動電話讀取器含有所有預載的試 驗及診斷資訊。經由一些無線或接觸界面亦可載入或更新 資料以致能與週邊裝置、電腦或線上伺服器連通。設置微 型-USB埠16以連接電腦或主要電力供應以再充電電池。 圖7 1顯示試驗模組1 0之具體實施例,其係用於僅需要 得知特定標靶存在與否之試驗,諸如試驗個人是否受到例 如A型流行性感冒病毒H1N1感染。僅作爲內建之僅供USB 電力/指示器之模組47爲適當的。不需要其他讀取器或應 用軟體。僅供USB電力/指示器之模組47上之指示器45示出 正或負結果。此組態非常適於大量篩檢。Referring again to Figures 1, 2, 1 18 and 119, the reader 12 uses battery power in a mobile telephone configuration. The mobile phone reader contains all preloaded test and diagnostic information. Data can also be loaded or updated via some wireless or contact interface to enable communication with peripheral devices, computers or online servers. Set the Micro-USB port 16 to connect the computer or main power supply to recharge the battery. Figure 71 shows a specific embodiment of the test module 10 for testing that only requires the presence or absence of a particular target, such as whether the test individual is infected with, for example, influenza A virus H1N1. It is only suitable as a built-in module 47 for USB power/indicator only. No other readers or application software is required. The indicator 45 on the module 47 of the USB power/indicator only shows a positive or negative result. This configuration is ideal for large screenings.
供應給系統的額外物件可包括含有供預處理特定樣本 之試劑的試驗管,及包含供樣本收集之壓舌板及刺血針。 爲便利之故,圖7 1顯示之具體實施例的試驗模組包括有簧 壓式可伸縮刺血針390及刺血針釋出按鈕3 92。可於遠端地 區使用衛星電話。 試驗模組電子裝置 圖2和1 1 9各自爲試驗模組1 〇和1 1中之電子組件的方塊 圖。整合於該晶片上實驗室裝置30之該CMOS電路具有 USB裝置驅動器36、控制器34、USB相容LED驅動器29、Additional items supplied to the system may include test tubes containing reagents for pre-treating a particular sample, and a tongue depressor and lancet containing sample collection. For convenience, the test module of the embodiment shown in Fig. 71 includes a spring-loaded retractable lancet 390 and a lancet release button 3 92. Satellite phones can be used in remote areas. Test Module Electronics Figure 2 and 1 1 9 are block diagrams of the electronic components in Test Modules 1 and 11. The CMOS circuit integrated in the lab device 30 on the wafer has a USB device driver 36, a controller 34, a USB compatible LED driver 29,
S -28- 201209405S -28- 201209405
計時器3 3、電源調節器3丨、RAM3 8和程式及資料快閃記億 體4 0。這些提供用於整個包括該光感測器44、該溫度感測 器170、該液體感測器174和各種加熱器152、154、182、 234之試驗模組1〇或11以及關聯的驅動器37和39以及暫存 器3 5和41的控制和記憶體。僅該LED26 (在試驗模組1〇的 例子中)、外部電源電容器32和該微型USB接頭14在晶片 上實驗室裝置30的外部。該晶片上實驗室裝置30包括用於 連結至這些外部組份的黏合墊。該RAM3 8及該程式和資料 快閃記憶體40具有用於1 000個探針之應用軟體和診斷與檢 測資訊(快閃/保全儲存,例如經由加密)。在配置以ECL 探測之試驗模組1 1的例子中,無LED26 (見圖1 18和1 19 ) 。資料由該晶片上實驗室裝置30加密以保全儲存及與外部 裝置通訊。該晶片上實驗室裝置3〇以電致化學發光探針和 該雜交腔室負載,各具有ECL激發電極對860和870。 試驗模組1 〇的許多類型以一些檢測形式製造’準備好 可現成使用。該等檢測形式之不同在於試劑和探針之機載 分析。 快速以此系統鑑別的感染性疾病的一些例子包括: .流行性感冒-流行性感冒病毒A、B、C、傳染性鮭魚 貧血病毒、托尚土病毒 •肺炎-呼吸道融合病毒(RSV )、腺病毒、間質肺炎 病毒、肺炎雙球菌、金黃色葡萄球菌 •結核病·結核分枝桿菌、牛型分枝桿菌、非洲分枝桿 菌、卡氏分枝桿菌和田鼠分枝桿菌 ;,> -29- 201209405 •惡性瘧原蟲、弓漿蟲和其他寄生性原生蟲病 •傷寒-傷寒桿菌 •伊波拉病毒 •人類免疫不全病毒(HIV) •登革熱-黃病毒 •肝炎(A到E)Timer 3 3, power conditioner 3 丨, RAM 3 8 and program and data flash 400 million. These are provided for test modules 1 or 11 and associated drivers 37 including the photosensor 44, the temperature sensor 170, the liquid sensor 174 and the various heaters 152, 154, 182, 234. And 39 and the control and memory of the registers 35 and 41. Only the LED 26 (in the example of the test module 1), the external power supply capacitor 32, and the micro USB connector 14 are external to the lab device 30 on the wafer. The on-wafer laboratory device 30 includes an adhesive pad for joining to these external components. The RAM 38 and the program and data flash memory 40 have application software and diagnostic and detection information for 1 000 probes (flash/security storage, such as via encryption). In the example of the test module 1 1 configured with ECL detection, there is no LED 26 (see Figures 1 18 and 1 19). The data is encrypted by the lab device 30 on the wafer to preserve storage and communicate with external devices. The lab device on the wafer is loaded with electrochemiluminescent probes and the hybridization chamber, each having ECL excitation electrode pairs 860 and 870. Many types of test modules 1 are manufactured in some form of inspection and are ready for ready use. These assay formats differ in the onboard analysis of reagents and probes. Some examples of infectious diseases that are rapidly identified by this system include: Influenza-influenza virus A, B, C, infectious salmon anemia virus, Tossin virus • Pneumonia-respiratory fusion virus (RSV), gland Virus, interstitial pneumonia virus, pneumococci, staphylococcus aureus, tuberculosis, mycobacterium tuberculosis, mycobacterium bovis, mycobacteria, mycobacteria, and mycobacteria;, > -29 - 201209405 • Plasmodium falciparum, Toxoplasma gondii and other parasitic protozoa • Typhoid- typhoid bacillus • Ebola virus • Human immunodeficiency virus (HIV) • Dengue fever - flavivirus • Hepatitis (A to E)
•醫源性感染-例如難養芽孢梭菌、抗萬古黴素腸球菌 以及抗藥性金黃色葡萄球菌 •單純泡疹病毒(HSV) •巨大細胞病毒(CMV ) •愛彼斯坦-巴爾病毒(EBV) •腦炎-日本腦炎病毒、章地埔拉病毒 •百日咳-百日咳菌 •麻疼-副黏液病毒 •腦膜炎·肺炎鏈球菌和腦膜炎雙球菌 . •炭疽病-炭疽桿菌 以此系統鑑別的遺傳性疾病的一些例子包括: •褒性纖維變性 •血友病 •鐮狀細胞貧血病 •黑朦性白癡病 •血色素沉著症 •腦動脈病 •克隆氏病• Iatrogenic infections - such as Clostridium pneumoniae, vancomycin-resistant enterococci, and drug-resistant Staphylococcus aureus • Herpes simplex virus (HSV) • Giant cell virus (CMV) • Epstein-Barr virus (EBV) • Encephalitis - Japanese Encephalitis Virus, Zhangdipula Virus • Pertussis - Pertussis • Hemp - Paramyxovirus • Meningitis • Streptococcus pneumoniae and Meningococcus. • Anthracnose - Bacillus anthracis Some examples of hereditary diseases include: • spastic fibrosis • hemophilia • sickle cell anemia • sable idiots • hemochromatosis • cerebral arterial disease • Crohn's disease
S -30-S -30-
201209405 •多囊性腎臟病 •先天性心臟病 •蕾特氏症 由該診斷系統鑑別之癌症的少數選擇包括: •卵巢癌 •結腸癌 •多發性內分泌腫瘤 •視網膜母細胞瘤 •透克氏症(Turcot syndrome) 上述清單並非詳盡無疑的,且該診斷系統可被配 使用核酸和蛋白質體分析檢測許多不同疾病以及症狀 系統組份的詳細結構 LOC裝置 LOC裝置30爲診斷系統之中心。其使用微流體平 % 速實施以核酸爲基礎之分子診斷分析的四個重要步驟 樣本製備、核酸萃取、核酸擴增和檢測。LOC裝置亦 替代的用途’並將詳述於下。如上述討論,試驗模組 1 1可採取許多不同組態以檢測不同的標靶。同樣地, 裝置30具有很多針對關注的標靶打造之不同具體實施 LOC裝置30之一種形式爲用於全血樣本之病原體中的 核酸序列之螢光檢測之LOC裝置301。爲了闡述的目 LOC裝置301的結構和操作係參考圖4至26及27至57而 描述。 置以 台快 ,即 具有 10及 LOC 例。 標靶 的, 詳細 -31 - 201209405 圖4爲LOC裝置3 01結構之圖式槪要。爲了便利性,顯 示於圖4的處理階段係以相應於實施處理階段之L0C裝置 3〇1的功能部之元件符號表示。與各個以核酸爲基礎的分 子診斷分析的主要步驟有關的處理階段亦表示:樣本輸入 及製備28 8、萃取290、培養291、擴增292以及檢測294。 LOC裝置301之各種貯槽、腔室、閥以及其他組件將於以 下更仔細的描述。201209405 • Polycystic kidney disease • Congenital heart disease • Leier's disease A few options for cancer identified by this diagnostic system include: • Ovarian cancer • Colon cancer • Multiple endocrine neoplasms • Retinoblastoma • Turkic disease (Turcot syndrome) The above list is not exhaustive, and the diagnostic system can be configured to detect the structure of many different diseases and symptomatic system components using nucleic acid and proteomic analysis. The LOC device LOC device 30 is the center of the diagnostic system. It uses microfluidic flow to perform four important steps in nucleic acid-based molecular diagnostic analysis: sample preparation, nucleic acid extraction, nucleic acid amplification, and detection. The LOC device is also an alternative use' and will be described in detail below. As discussed above, the test module 1 1 can take many different configurations to detect different targets. Similarly, device 30 has a number of different implementations for the target of interest. One form of LOC device 30 is a LOC device 301 for fluorescence detection of nucleic acid sequences in a pathogen of a whole blood sample. The structure and operation of the LOC device 301 for purposes of illustration are described with reference to Figures 4 through 26 and 27 through 57. Set to stand fast, that is, with 10 and LOC. Target, detail -31 - 201209405 Figure 4 is a schematic diagram of the LOC device 3 01 structure. For the sake of convenience, the processing stages shown in Fig. 4 are denoted by the component symbols corresponding to the functional portions of the LOC device 3〇1 that implements the processing stage. The processing stages associated with the main steps of each of the nucleic acid-based molecular diagnostic assays also represent: sample input and preparation 28, extraction 290, culture 291, amplification 292, and detection 294. The various reservoirs, chambers, valves, and other components of the LOC device 301 will be described more closely below.
圖5爲LOC裝置301之透視圖。其使用高容積CMOS和 MST (微系統技術)製造技術而製造。LOC裝置301之層狀 構造以圖1 2之槪要部分剖面圖(非按比例)闡述。LOC裝 置301具有支持COMS + MST晶片48之矽基板84,包含CMOS 電路86和MST層87,以蓋46覆蓋MST層87。爲了本專利說 明書目的,術語“ MST層”關於以不同試劑處理樣本之結 構和層之集合。因此,這些結構和組件經組態以定義具有 特性尺寸的流動路徑,其支持具處理期間之物理性質與樣 本之物理性質相似之毛細作用驅動之液體流。據此,MST 層和組件通常使用面型微加工技術和/或體型微加工技術 製造。然而,其他製造方法亦可製造針對毛細作用驅動之 液體流及加工非常小容積而尺寸化的結構和組件。描述於 本說明書之特定具體實施例顯示MST層爲支持在CMOS電 路86上之結構和主動組件,但排除蓋46之特徵。然而,熟 此技藝者將理解MST層不需要下方的CMOS或甚至不需要 上覆的蓋來使其處理該樣本。 顯示於下列圖式的LOC裝置之整體尺寸爲1760微米x •32-FIG. 5 is a perspective view of the LOC device 301. It is manufactured using high volume CMOS and MST (microsystem technology) manufacturing techniques. The layered construction of the LOC device 301 is illustrated in a partial cross-sectional view (not to scale) of Figure 12. The LOC device 301 has a germanium substrate 84 supporting a COMS + MST wafer 48, including a CMOS circuit 86 and an MST layer 87, covering the MST layer 87 with a cover 46. For the purposes of this patent specification, the term "MST layer" relates to a collection of structures and layers of a sample treated with different reagents. Accordingly, these structures and components are configured to define a flow path having a characteristic size that supports a capillary action driven liquid flow having physical properties similar to the physical properties of the sample during processing. Accordingly, MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing methods can also produce structures and assemblies that are sized for liquid flow driven by capillary action and that are processed to very small volumes. The particular embodiment described in this specification shows that the MST layer is a structural and active component that is supported on CMOS circuitry 86, but excludes the features of cover 46. However, those skilled in the art will appreciate that the MST layer does not require the underlying CMOS or even the overlying cover to handle the sample. The overall size of the LOC device shown in the following figure is 1760 microns x • 32-
S 201209405 5824微米。當然,爲了不同應用而製造的LOC裝置可具有 不同的尺寸。 圖6顯示與蓋特徵疊置之M ST層8 7的特徵。顯示於圖6 中之插圖ΑΑ至AD、AG和ΑΗ個別放大於圖13、14、35、56 、55和63中,且對LOC裝置301內之各個結構的充分了解 詳細描述於下。當圖11獨立顯示CMOS + MST裝置48結構時 ,圖7至10獨立顯示蓋46的特徵。S 201209405 5824 microns. Of course, LOC devices made for different applications can have different sizes. Figure 6 shows the features of the M ST layer 87 that overlaps the cover feature. The illustrations AD to AD, AG and ΑΗ shown in Fig. 6 are individually enlarged in Figs. 13, 14, 35, 56, 55 and 63, and a sufficient understanding of the respective structures in the LOC device 301 is described in detail below. When FIG. 11 independently shows the structure of the CMOS + MST device 48, FIGS. 7 through 10 independently show the features of the cover 46.
層狀構造 圖12和22爲槪略顯示該CMOS + MST裝置48之層狀構造 、該蓋46以及該兩者之間的流體交互作用之略圖。該些圖 表爲了圖示說明目的所以沒有依照比例繪製。圖1 2爲通過 該樣本入口 68之槪要剖面圖且圖22爲通過該貯槽54之槪要 剖面圖。如最佳顯示於圖12,該CMOS + MST裝置48具有矽 基板84,其支撐著操作上述該MST層87內之有效元件之該 φ CMOS電路86。鈍化層88密封且保護該CMOS層86免於流體 流經該M S T層8 7。 流體流經於該蓋層46及MST通道層100中之各自地該 蓋通道94及該MST通道90兩者(見例如圖7和16 )。當在 該較小的MST通道90實施生化處理同時,細胞運送發生在 於該蓋46中製造之該較大的通道94中。細胞運送通道按尺 寸製作以便能運送該樣本中之細胞至該MST通道90中之預 定點。運送尺寸大於20微米的細胞(例如,某些白血球) 需要通道尺寸大於20微米,且因此橫跨該流的截面積大於 -33- 201209405 400平方微米。特別在不需要運送細胞的L0C中的位置之 MST通道可以顯著地小。Layered Structure Figures 12 and 22 are schematic views showing the layered configuration of the CMOS + MST device 48, the cover 46, and the fluid interaction therebetween. The figures are not drawn to scale for illustrative purposes. Figure 12 is a cross-sectional view through the sample inlet 68 and Figure 22 is a cross-sectional view through the sump 54. As best shown in FIG. 12, the CMOS + MST device 48 has a germanium substrate 84 that supports the φ CMOS circuit 86 that operates the active components in the MST layer 87 described above. Passivation layer 88 seals and protects CMOS layer 86 from fluid flow through the M S T layer 87. Fluid flows through both the cover channel 94 and the MST channel 90 in the cap layer 46 and the MST channel layer 100 (see, for example, Figures 7 and 16). While biochemical treatment is being performed on the smaller MST channel 90, cell transport occurs in the larger channel 94 made in the cover 46. The cell transport channel is sized to carry the cells in the sample to a predetermined point in the MST channel 90. Transporting cells larger than 20 microns in size (e.g., certain white blood cells) requires channel sizes greater than 20 microns, and thus the cross-sectional area across the flow is greater than -33 - 201209405 400 square microns. The MST channel, particularly at locations in the LOC that do not need to transport cells, can be significantly smaller.
將理解的是蓋通道94和MST通道90爲通用的指稱’特 別的M S T通道9 0亦可根據其特定的功能而指(例如)經加 熱的微通道或透析MST通道。MST通道90藉由蝕刻通過在 該鈍化層88上沉積且以光阻劑圖案化之MS Τ通道層100形 成。該MST通道90由頂部層66環繞,該頂部層形成該 CMOS + MST裝置48之頂部(相對於顯示於圖中之方位)。It will be understood that the cover channel 94 and the MST channel 90 are generic referenced. The special M S T channel 90 can also be referred to, for example, as a heated microchannel or a dialysis MST channel, depending on its particular function. The MST channel 90 is formed by etching through the MS channel layer 100 deposited on the passivation layer 88 and patterned with a photoresist. The MST channel 90 is surrounded by a top layer 66 that forms the top of the CMOS + MST device 48 (relative to the orientation shown in the figure).
儘管有時作爲獨立的層顯示,該蓋通道層8〇和該貯存 層78係自單一材料片形成。當然,該材料片亦可爲非單一 性。材料片係自兩邊蝕刻以形成蓋通道層80與貯存層78 ’ 在蓋通道層80中蝕刻該蓋通道94,在貯存層78中蝕刻貯槽 54' 56、58、60和62。另外,該貯槽和該蓋通道由微成形 加工方法形成。蝕刻和微成形加工技術兩者皆用以製造具 有橫跨該流體的截面積與2 0,000平方微米一樣大及與8平 方微米一樣小的通道。 於該LOC裝置中不同位置有針對橫跨該流體之通道的 截面積之一系列適當的選擇。其中大量的樣本或具有大組 份的樣本係容納於該通道,高於20,000平方微米之截面積 (例如’在100微米厚之層中的200微米寬的通道)是適合 的。其中少量的液體或無大細胞存在的混合物係容納於該 通道’較佳係橫跨該流體之非常小的截面積。 下密封部64環繞該蓋通道94且該上密封層82環繞該貯 槽54、 56、 58、 60和 62° -34- 201209405 該五個貯槽54、56、58、60和62係預裝載分析特定之 試劑。此描述的具體實施例中,該貯槽預裝載下列試劑, 但可簡易的以其他試劑取代: 貯槽54 :抗凝血劑’其具有包括紅血球溶胞緩衝液的 選擇 •貯槽56 :溶胞試劑Although sometimes shown as a separate layer, the cover channel layer 8 and the reservoir layer 78 are formed from a single piece of material. Of course, the sheet of material may also be non-unitary. The sheet of material is etched from both sides to form a lid channel layer 80 and a reservoir layer 78'. The lid channel 94 is etched in the lid channel layer 80, and the reservoirs 54' 56, 58, 60 and 62 are etched in the reservoir layer 78. Further, the sump and the cover passage are formed by a micro-forming process. Both etching and microforming techniques are used to fabricate channels having a cross-sectional area across the fluid that is as large as 20,000 square microns and as small as 8 square microns. There are a series of suitable choices for one of the cross-sectional areas of the channels across the fluid at different locations in the LOC device. A large number of samples or samples having a large component are accommodated in the channel, and a cross-sectional area of more than 20,000 square micrometers (e.g., a 200 micrometer wide channel in a layer of 100 micrometers thick) is suitable. A small amount of liquid or a mixture free of large cells is contained in the channel' preferably a very small cross-sectional area across the fluid. A lower seal 64 surrounds the cover channel 94 and the upper seal layer 82 surrounds the sump 54, 56, 58, 60 and 62° - 34 - 201209405. The five sump 54, 56, 58, 60 and 62 are preloaded to analyze specific Reagents. In the particular embodiment described, the reservoir is preloaded with the following reagents, but can be easily replaced with other reagents: sump 54: anticoagulant' which has the option of including red blood cell lysis buffer. • Storage tank 56: lysis reagent
•貯槽5 8 :限制酵素、接合酶和聯結子(用於聯結 子-引發 PCR (見圖 70,自 t. Stachan et al·,Human Molecular Genetics 2,Garland Science, NY and London, 1 9 9 9節錄) •貯槽60 :擴增混合物(去氧核苷酸三磷酸(dNTPs )、引子、緩衝液)以及 •貯槽62 : DNA聚合酶 該蓋46和該CMOS + MST層48經由在該下密封部64和該 頂部層66中之相應的開口流體連通。該等開口係依據流體 φ 是否自該MST通道9〇流至該蓋通道94或相反而代表上管道 96及下管道92。 LOC裝置操作 該LOC裝置301的操作係參考在血液樣本中之分析病 原體DNA逐步描述於下。當然,其他生物或非生物液體的 種類亦使用適當的試劑、檢測規程、LOC變體和檢測系統 之套組或組合分析。再參考圖4,分析生物樣本涉及五個 主要步驟,包含:樣本輸入和製備288、核酸萃取290、核 -35- 201209405 酸培養291、核酸擴增292和檢測及分析294。• Storage tank 5 8 : Restriction of enzymes, ligases and junctions (for junction-priming PCR (see Figure 70, from t. Stachan et al, Human Molecular Genetics 2, Garland Science, NY and London, 1 9 9 9) Excerpt) • Slot 60: amplification mixture (deoxynucleotide triphosphate (dNTPs), primer, buffer) and • sump 62: DNA polymerase the cover 46 and the CMOS + MST layer 48 via the lower seal 64 is in fluid communication with a corresponding opening in the top layer 66. The openings represent the upper conduit 96 and the lower conduit 92 depending on whether the fluid φ flows from the MST passage 9 to the cover passage 94 or vice versa. The LOC device operates The operation of the LOC device 301 is described step by step with reference to the analysis of the pathogen DNA in the blood sample. Of course, other biological or non-biological liquid species also use appropriate reagents, detection protocols, LOC variants, and sets or combinations of detection systems. Analysis. Referring again to Figure 4, the analysis of the biological sample involves five major steps, including: sample input and preparation 288, nucleic acid extraction 290, nuclear-35-201209405 acid culture 291, nucleic acid amplification 292, and detection and analysis 294.
該樣本輸入和製備步驟28 8涉及混合該血液與抗凝血 劑1 16且接著以該病原體透析部70將病原體與白血球和紅 血球分開。如最佳顯示於圖7和1 2中,該血液樣本經由該 樣本入口 68進入該裝置。毛細作用吸引該血液樣本沿著該 蓋通道94至該貯槽54。當該樣本血流開啓其表面張力閥 118時,抗凝血劑自該貯槽54釋出(見圖15和22)。該抗 凝血劑可防止形成會阻塞流動的血凝塊。 如最佳顯示於圖22中,該抗凝血劑116藉由毛細作用 自該貯槽54抽出且經由該下管道92進入該MST通道90。該 下管道92具有毛細起始構造特徵(CIF) 102以形成彎液面 的幾何形狀,使其不固定在該下管道92的邊緣。當該抗凝 血劑116自該貯槽54抽出時,在該上密封部82中之通氣孔 122允許空氣取代該抗凝血劑116。The sample input and preparation step 28 8 involves mixing the blood with the anticoagulant 1 16 and then separating the pathogen from the white blood cells and the red blood cells by the pathogen dialysis unit 70. As best shown in Figures 7 and 12, the blood sample enters the device via the sample inlet 68. Capillary action draws the blood sample along the lid channel 94 to the sump 54. When the sample blood flow opens its surface tension valve 118, the anticoagulant is released from the sump 54 (see Figures 15 and 22). The anticoagulant prevents the formation of blood clots that can block flow. As best shown in Figure 22, the anticoagulant 116 is withdrawn from the sump 54 by capillary action and enters the MST channel 90 via the lower conduit 92. The lower conduit 92 has a capillary initiation configuration feature (CIF) 102 to form the meniscus geometry such that it is not fixed to the edge of the lower conduit 92. When the anticoagulant 116 is withdrawn from the sump 54, the vent 122 in the upper seal 82 allows air to replace the anticoagulant 116.
顯示於圖22之該MST通道90爲表面張力閥118的一部 分。該抗凝血劑116塡充該表面張力閥118且固定至該上管 道96之彎液面120於彎液面固定器98。在使用前,該彎液 面120維持固定於該上管道96,使得該抗凝血劑不會流入 該蓋通道94。當該血液流經該蓋通道94至該上管道96時, 移除該彎液面120且將該抗凝血劑吸入該流體。 圖15至21顯示插圖AE ’其爲顯示於圖13之插圖AA之 —部分。如顯示於圖15、16和17,該表面張力閥ι18具有 三個獨立的MST通道90延伸於個別的下管道92及上管道96 之間。在表面張力閥中之這些MST通道90可變化以改變進 -36-The MST channel 90 shown in Figure 22 is part of the surface tension valve 118. The anticoagulant 116 fills the surface tension valve 118 and is secured to the meniscus 120 of the upper tube 96 to the meniscus holder 98. Prior to use, the meniscus 120 remains fixed to the upper conduit 96 such that the anticoagulant does not flow into the lid passage 94. As the blood flows through the cover channel 94 to the upper conduit 96, the meniscus 120 is removed and the anticoagulant is drawn into the fluid. 15 to 21 show an illustration AE ' which is a portion of the illustration AA shown in Fig. 13. As shown in Figures 15, 16 and 17, the surface tension valve ι 18 has three separate MST passages 90 extending between the individual lower conduits 92 and the upper conduits 96. These MST channels 90 in the surface tension valve can be varied to change into -36-
S 201209405 入該樣本混合物之試劑得流速。如由擴散所混合在一起之 該樣本混合物以及該些試劑,離開該貯槽之流速決定在該 樣本流中之試劑的濃度。因此,每各該貯槽的該表面張力 閥配置以符合該所需之試劑濃度。 該血液通過進入病原體透析部70(見圖4和15),其 中標靶細胞使用根據預定閥値制定大小之孔1 64的陣列自S 201209405 The flow rate of the reagent entering the sample mixture. The flow rate of the sample mixture in the sample stream is determined by the flow rate of the sample mixture as it is mixed by diffusion and the reagents. Thus, the surface tension valve of each of the sump is configured to meet the desired reagent concentration. The blood passes through the pathogen dialysis section 70 (see Figures 4 and 15), wherein the target cells use an array of holes 1 64 sized according to a predetermined valve.
該樣本濃縮。小於該閥値的細胞通過該些孔,而大細胞不 能通過該些孔。在該標靶細胞持續作爲分析的一部分同時 ,不欲之細胞重新被導入廢料單元76。該不欲之細胞爲經 由該等孔1 64陣列阻擋之大細胞,或通過該等孔之小細胞 在描述於此之病原體透析部70中,自該全血樣本之病 原體濃縮以供微生物DNA分析。該些孔之陣列藉由流體連 通該蓋通道94中之輸入流至標靶通道74的許多3微米直徑 的孔164而形成。該3微米直徑的孔164和用於該標靶通道 φ 74之該透析吸入孔168係由一系列的透析MST通道204連接 (最佳顯示於圖1 5和2 1 )。病原體小到足以經由該透析 MST通道2 04通過該3微米直徑孔164且塡充該標靶通道74 。大於3微米的細胞諸如紅血球和白血球留在在該蓋46之 該廢料通道72中,該廢料通道通向廢料貯槽76 (見圖7) 其他孔形狀、大小和長寬比可用以分離特定病原體或 其他標靶細胞諸如用於人類DNA分析的白血球。稍後提供 透析部和透析變體更詳細的詳情。 -37- 201209405The sample is concentrated. Cells smaller than the valve pass through the pores, and large cells cannot pass through the pores. At the same time as the target cells continue to be part of the analysis, the unwanted cells are reintroduced into the waste unit 76. The unwanted cells are large cells blocked by the array of holes 1 64, or small cells through the wells are in the pathogen dialysis section 70 described herein, and the pathogens from the whole blood sample are concentrated for microbial DNA analysis. . The array of holes is formed by fluidly communicating the input in the cover channel 94 to a plurality of 3 micron diameter holes 164 of the target channel 74. The 3 micron diameter aperture 164 and the dialysis suction aperture 168 for the target channel φ 74 are connected by a series of dialysis MST channels 204 (best shown in Figures 15 and 21). The pathogen is small enough to pass through the 3 micron diameter well 164 via the dialysis MST channel 206 and to fill the target channel 74. Cells larger than 3 microns, such as red blood cells and white blood cells, remain in the waste channel 72 of the lid 46, which leads to the waste reservoir 76 (see Figure 7). Other pore shapes, sizes and aspect ratios can be used to isolate specific pathogens or Other target cells such as white blood cells for human DNA analysis. More detailed details of the dialysis department and dialysis variants are provided later. -37- 201209405
再參照圖6和7,該流體被吸入通過該標靶通道74至該 溶胞試劑貯槽56中之該表面張力閥128。該表面張力閥128 具有七個MST通道90延伸於該溶胞試劑貯槽56和該標靶通 道74之間。當該彎液面由該樣本流脫除時,自所有七個該 MST通道90之該流速將大於自該抗凝血劑貯槽54之流速, 其中該表面張力閥118具有三個MST通道90 (假設該流體 的物理特性爲大致相等的)。因此在該樣本混合物中之溶 胞試劑的比例係大於該抗凝血劑之比例。 該溶胞試劑和標靶細胞在該化學溶胞部130內之標靶 通道74中藉由擴散混合。沸騰引發閥126停止該流動直到 擴散和溶胞發生了足夠的時間,自該標靶細胞釋放該遺傳 物質(見圖6和7 )»該沸騰引發閥之結構和操作參考圖3 1 和3 2詳細描述於下。其他主動閥種類(與被動閥相反之諸 如該表面張力閥1 1 8 )亦已由申請人開發,其可用於此以 替代該沸騰引發閥。這些替代閥設計亦描述於下。Referring again to Figures 6 and 7, the fluid is drawn through the target passage 74 to the surface tension valve 128 in the lysis reagent reservoir 56. The surface tension valve 128 has seven MST channels 90 extending between the lysis reagent reservoir 56 and the target channel 74. When the meniscus is removed from the sample stream, the flow rate from all seven of the MST channels 90 will be greater than the flow rate from the anticoagulant reservoir 54, wherein the surface tension valve 118 has three MST channels 90 ( It is assumed that the physical properties of the fluid are approximately equal). Thus the proportion of cytolysis agent in the sample mixture is greater than the ratio of the anticoagulant. The lysis reagent and target cells are mixed by diffusion in the target channel 74 in the chemical lysis unit 130. The boiling initiation valve 126 stops the flow until diffusion and lysis occur for a sufficient time to release the genetic material from the target cells (see Figures 6 and 7). » The structure and operation of the boiling initiation valve are shown in Figures 31 and 3 Detailed description is given below. Other active valve types (as opposed to passive valves such as the surface tension valve 1 18) have also been developed by the Applicant, which can be used in place of the boiling initiation valve. These alternative valve designs are also described below.
當該沸騰引發閥1 2 6開啓時,該經溶胞之細胞流入混 合部131以預擴增限制酶切(restriction digestion)以及聯 結子接合(linker ligation)。 參考圖13,當該流體移除在混合部131起始之表面張 力閥132上的彎液面時,限制酵素、聯結子和接合酶自該 貯槽5 8釋放。該混合物爲了擴散混合流經該混合部1 3 1的 長度。在該混合部131的末端爲通到該培養部114之該培養 器入口通道133的下管道134(見圖13)。該培養器入口通 道133將該混合物饋入經加熱之微通道210的蜿蜒構造,其 -38-When the boiling initiation valve 1 26 is opened, the lysed cells flow into the mixing portion 131 for pre-amplification restriction digestion and linker ligation. Referring to Figure 13, when the fluid is removed from the meniscus on the surface tension valve 132 initiated by the mixing portion 131, the restriction enzyme, linker and ligase are released from the sump 58. The mixture flows through the length of the mixing portion 133 for diffusion mixing. At the end of the mixing portion 131 is a lower duct 134 (see Fig. 13) leading to the incubator inlet passage 133 of the cultivating portion 114. The incubator inlet passage 133 feeds the mixture into the crucible configuration of the heated microchannel 210, which is -38-
S 201209405 提供在限制酶切以及聯結子接合期間保留該樣本之培養腔 室(見圖1 3和1 4 )。S 201209405 provides a culture chamber that retains the sample during restriction enzyme digestion and junction ligation (see Figures 13 and 14).
圖23、24、25、26、27、28和29顯示在圖6之插圖ABFigures 23, 24, 25, 26, 27, 28 and 29 are shown in Figure AB of Figure 6.
內的LOC裝置301之該等層。各個圖顯示形成該 CMOS + MST層48和該蓋46結構之該等層的連續附加。插圖 AB顯示該培養部114的結束和該擴增部112的開始。如最佳 顯示於圖14和23,該流體塡入該培養部II4之該等微通道 2 10直到抵達該沸騰引發閥106,其中該流體在擴散發生同 時停止。如上所討論,該沸騰引發閥106上游之該微通道 210成爲含有該樣本、限制酵素、接合酶和聯結子的培養 腔室。該加熱器154之後啓動且維持穩定溫度以針對一段 特定時間用於發生限制酶切和聯結子接合。 熟此技藝者將理解此培養步驟291 (見圖4)爲選擇的 且只需要於一些核酸擴增分析類型。再者,在一些例子中 ,可能需要在該培養期間的末端具有一個加熱步驟以將溫 度增高到超過培養溫度。在進入該擴增部112前該溫度增 高使該限制酵素和接合酶不活化。當使用恆溫核酸擴增時 ’限制酵素和接合酶的不活化具有特定關聯。 培養之後,該沸騰引發閥106啓動(開啓)且該流體 再流回該擴增部112。參考圖31和32,該混合物塡充該經 加熱微通道158之蜿蜒結構直到到達該沸騰引發閥1〇8 ,該 等微通道形成一或更多擴增腔室。如最佳顯示於圖30之剖 面示意圖’擴增混合物(dNTP、引子、緩衝液)自貯槽60 釋放且聚合酶接著自貯槽62釋放進連接該培養部和該擴增 -39- 201209405 部(各爲114和112)之該中介MST通道212。The layers of the LOC device 301 within. The various figures show the continuous addition of the layers forming the CMOS + MST layer 48 and the structure of the cover 46. The illustration AB shows the end of the culture portion 114 and the start of the amplification portion 112. As best shown in Figures 14 and 23, the fluid breaks into the microchannels 2 10 of the culture portion II4 until the boiling initiation valve 106 is reached, wherein the fluid ceases while diffusion occurs. As discussed above, the microchannel 210 upstream of the boiling initiation valve 106 becomes a culture chamber containing the sample, restriction enzymes, ligase, and linker. The heater 154 is then activated and maintains a stable temperature for occurrence of restriction enzyme digestion and junction bonding for a specific period of time. Those skilled in the art will appreciate that this incubation step 291 (see Figure 4) is selected and only requires some type of nucleic acid amplification analysis. Again, in some instances, it may be desirable to have a heating step at the end of the incubation period to increase the temperature above the culture temperature. This increase in temperature before entering the amplification section 112 renders the restriction enzyme and ligase inactive. There is a specific association between restriction enzyme and ligase inactivation when using thermostated nucleic acid amplification. After the incubation, the boiling initiation valve 106 is activated (turned on) and the fluid is returned to the amplification portion 112. Referring to Figures 31 and 32, the mixture fills the crucible structure of the heated microchannels 158 until the boiling initiation valve 1〇8 is reached, which form one or more amplification chambers. As shown in the cross-sectional schematic view of Fig. 30, the amplification mixture (dNTP, primer, buffer) is released from the storage tank 60 and the polymerase is then released from the storage tank 62 into the culture section and the amplification -39-201209405 (each The intermediate MST channel 212 is 114 and 112).
圖35至51顯示在圖6之插圖AC中的LOC裝置301之層。 各圖顯示連續疊加形成CMOS+ MST裝置48和蓋46結構之層 。插圖AC係擴增部1 12的末端和雜交及檢測部52的起始。 經培養的樣本、擴增混合物和聚合酶流經微通道1 5 8而至 沸騰引發閥1 08。在擴散混合經足夠時間後,啓動在微通 道158中之加熱器154以供熱循環或恆溫擴增。擴增混合物 經歷預定數目的熱循環或預設之擴增時間以擴增充分的標 靶DNA。在核酸擴增程序之後,沸騰引發閥1〇8開啓且流 體再進入雜交及檢測部52。沸騰引發閥之操作更詳細描述 於下》Figures 35 through 51 show the layers of the LOC device 301 in the inset AC of Figure 6. The figures show successive layers of layers forming the CMOS+ MST device 48 and cover 46 structures. The end of the AC-based amplification unit 1 12 and the start of the hybridization and detection unit 52 are shown. The cultured sample, amplification mixture, and polymerase flow through the microchannel 1 58 to the boiling initiation valve 108. After diffusion mixing for a sufficient time, the heater 154 in the microchannel 158 is activated for thermal cycling or isothermal amplification. The amplification mixture undergoes a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target DNA. After the nucleic acid amplification procedure, the boiling initiation valve 1〇8 is opened and the fluid re-enters the hybridization and detection unit 52. The operation of the boiling initiation valve is described in more detail below.
如顯示於圖52,雜交及檢測部52具有雜交腔室之陣列 110。圖52、53、54及56詳細顯示雜交腔室陣列11〇和個別 雜交腔室180。雜交腔室180的入口爲擴散屏障175,其在 雜交期間防止標靶核酸、探針股和雜交探針於雜交腔室 18 0之間擴散,以防止錯誤的雜交檢測結果。擴散屏障175 之流動路徑長度足夠長以在探針和核酸雜交以及檢測訊號 的時間內,防止標靶序列和探針從一個腔室擴散出且污染 另一腔室,因此避免錯誤的結果。 另一防止錯誤讀取的機制是在一些該雜交腔室中具有 相同的探針。該CMOS電路86自相對於包含相同的探針之 雜交腔室180之光二極體184導出單筆結果。導出該單筆結 果中異常的結果可被忽略或給以不同比重。 供給雜交所需的熱能係由CMOS控制加熱器182所提供 -40-As shown in Figure 52, hybridization and detection portion 52 has an array 110 of hybridization chambers. Figures 52, 53, 54 and 56 show the hybridization chamber array 11 and individual hybridization chambers 180 in detail. The entrance to hybridization chamber 180 is a diffusion barrier 175 that prevents diffusion of the target nucleic acid, probe strands, and hybridization probes between hybridization chambers 18 during hybridization to prevent erroneous hybridization assay results. The flow path length of the diffusion barrier 175 is long enough to prevent the target sequence and probe from diffusing out of one chamber and contaminating another chamber during probe and nucleic acid hybridization and detection signals, thus avoiding erroneous results. Another mechanism to prevent erroneous reading is to have the same probe in some of the hybridization chambers. The CMOS circuit 86 derives a single result from the photodiode 184 of the hybridization chamber 180 containing the same probe. The results of exporting anomalies in this single result can be ignored or given different weights. The thermal energy required to supply hybridization is provided by the CMOS controlled heater 182. -40-
S 201209405S 201209405
(更詳細描述於下)。在該加熱器啓動後,雜交發生於互 補標靶探針序列之間。在該CMOS電路86中之該LED驅動 器29傳送訊息使位於該試驗模組10之LED26發光。彼等探 針僅於當雜交發生時發螢光從而避免通常需要用以移除未 繫結的股之清洗和乾燥步驟。雜交強制該F R E T探針1 8 6之 該莖-及-環結構打開,其允許該螢光團發射回應該LED激 發光的螢光能量,詳述於下。螢光由位於各雜交腔室180 下之該CMOS電路86中之光二極體184所檢測(見下面之雜 交腔室敘述)。用於所有雜交腔室之該光二極體18 4以及 相關的電子裝置共同形成該光感測器44(見圖65)。在其 他實施例,該光感測器可爲電荷耦合裝置陣列(CCD陣列 )。自該光二極體184檢測之訊號被放大且轉換成可以由 該試驗模組讀取器1 2分析的數位輸出。該檢測方法進一步 的細節描述於下。 φ LOC裝置之其他詳細說明 模組化設計 LOC裝置301具有許多功能部,包括試劑貯槽54、56 、58、60及62、透析部70、溶胞部130、培養部114及擴增 部112、閥類型、增濕器及濕度感測器。於LOC裝置之其 他具體實施例,可省略此等功能部,可附加另外的功能部 或用於上述裝置之替代用途的功能部。 例如,可使用培養部1 1 4作爲重複序列擴增分析系統 之第一擴增部,且使用化學溶胞試劑貯槽56來加入引 -41 - 201209405 子、dNTP及緩衝液的第一擴增混合,並且使用試劑貯槽58 來添加反轉錄酶及/或聚合酶。若樣本需進行化學溶胞, 亦可添加化學溶胞試劑(連同擴增混合)至貯槽5 6,或替 代性地,可藉由加熱樣本一段預定的時間以在培養部中發 生熱溶胞。在一些具體實施例中,若需要化學溶胞並使化 學溶胞試劑與此混合分離,可在用於引子、dNTP及緩衝液 的混合之貯槽58之毗連上游合併另外的貯槽。(described in more detail below). Hybridization occurs between the complementary target probe sequences after activation of the heater. The LED driver 29 in the CMOS circuit 86 transmits a message to cause the LED 26 located in the test module 10 to illuminate. These probes only fluoresce when hybridization occurs to avoid the cleaning and drying steps typically required to remove unbound strands. Hybridization forces the stem-and-loop structure of the F R E T probe 186 to open, which allows the fluorophore to emit back the fluorescent energy that should be LED-excited, as detailed below. Fluorescence is detected by photodiode 184 in the CMOS circuit 86 located below each hybridization chamber 180 (see the hybrid chamber description below). The photodiode 18 4 and associated electronics for all of the hybridization chambers together form the photosensor 44 (see Figure 65). In other embodiments, the photosensor can be a charge coupled device array (CCD array). The signal detected from the photodiode 184 is amplified and converted to a digital output that can be analyzed by the test module reader 12. Further details of this detection method are described below. Other Detailed Description of the φ LOC Device The modular design LOC device 301 has a number of functional components including reagent reservoirs 54, 56, 58, 60 and 62, a dialysis section 70, a lysis section 130, a culture section 114, and an amplification section 112, Valve type, humidifier and humidity sensor. In other embodiments of the LOC device, such functional portions may be omitted, and additional functional portions or functional portions for alternative uses of the above-described devices may be added. For example, the culture portion 1 14 can be used as the first amplification portion of the repeated sequence amplification analysis system, and the chemical lysis reagent storage tank 56 can be used to add the first amplification mixture of the introduction -41 - 201209405, dNTP, and buffer. And reagent reservoir 58 is used to add reverse transcriptase and/or polymerase. If the sample is to be chemically lysed, a chemical lysis reagent (along with amplification mix) may be added to the sump 5, or alternatively, the sample may be heated for a predetermined period of time to generate thermal lysis in the culture. In some embodiments, if chemical lysis is desired and the chemical lysis reagent is mixed therewith, additional sump can be combined upstream of the sump 58 for mixing the primer, dNTP, and buffer.
於一些情況中,欲省略諸如培養步驟291之步驟。於 此情況中,可特別地製造LOC裝置以免去試劑貯槽58及培 養部1M或是貯槽可不止載有試劑,或若存在主動閥,其 不被啓動來分配試劑至樣本流中,及培養部單純成爲將樣 本自溶胞部130傳送至擴增部112之通道。加熱器係獨立地 操作,因此當反應仰賴熱時,諸如熱溶胞,令加熱器不於 此步驟期間啓動,確保熱溶胞不會發生在不需熱溶胞之 LOC裝置中。透析部70可位於微流體裝置內之流體系統的 開端’如圖4中所示者,或可位於微流體裝置內之任何其 他位置。於一些情況中,例如,於擴增階段292之後,雜 交及檢測步驟2 94之前,進行透析以移除細胞碎片係有利 者。替代性地,可於LOC裝置上任何位置合併二或多個透 析部。同樣地,可合倂另外的擴增部112以致能在雜交腔 室陣列1 1 0中利用特定核酸探針進行檢測之前之多標靶的 同時或連續擴增。爲分析例如其中不需要進行透析之全血 液的樣本,簡單地於LOC設計之樣本輸入及製備部288省 略透析部7〇。於一些情況中,即便分析不需要進行透析, -42-In some cases, steps such as incubation step 291 are omitted. In this case, the LOC device can be specially manufactured to prevent the reagent storage tank 58 and the culture portion 1M or the storage tank from carrying more than the reagent, or if there is an active valve, it is not activated to dispense the reagent into the sample flow, and the culture portion It is simply a channel for transferring the sample from the lysis unit 130 to the amplification unit 112. The heaters operate independently, so when the reaction relies on heat, such as hot lysis, the heater is not activated during this step, ensuring that hot lysis does not occur in LOC devices that do not require hot lysis. The dialysis section 70 can be located at the beginning of the fluid system within the microfluidic device as shown in Figure 4, or can be located at any other location within the microfluidic device. In some cases, for example, after the amplification phase 292, prior to the hybridization and detection step 2 94, dialysis is performed to remove cell debris. Alternatively, two or more permeable sections can be combined at any location on the LOC device. Similarly, additional amplifications 112 can be combined to enable simultaneous or sequential amplification of multiple targets prior to detection using a particular nucleic acid probe in hybridization chamber array 110. To analyze, for example, a sample of whole blood in which dialysis is not required, the dialysis section 7 is simply omitted from the sample input and preparation section 288 of the LOC design. In some cases, even if the analysis does not require dialysis, -42-
S 201209405 不必要於LOC裝置省略透析部70。若透析部的存在不會造 成幾何性阻礙,仍可使用於樣本輸入及製備部具有透析部 7〇之LOC而不會損失所需之功能。 此外,檢測部294可包括蛋白質體室陣列,其係與雜 交腔室陣列相同但載有設計成與存在於非擴增之樣本中之 樣本標靶蛋白質共軛或雜交之探針,而不是設計用來與標 靶核酸序列雜交之核酸探針》S 201209405 It is not necessary to omit the dialysis section 70 from the LOC device. If the presence of the dialysis section does not create a geometrical obstruction, the sample input and preparation section can still have the LOC of the dialysis section without losing the desired function. In addition, the detection portion 294 can include a protein body array array that is identical to the hybridization chamber array but carries a probe that is designed to conjugate or hybridize to a sample target protein present in the non-amplified sample, rather than a design Nucleic acid probe for hybridization to a target nucleic acid sequence
將了解的是,爲用於此診斷系統而製造之LOC裝置係 不同之根據特別LOC應用而選擇的功能部之組合。絕大部 分之功能部常見於許多LOC裝置,而針對新應用之額外的 LOC裝置之設計,有關於自現存LOC裝置中所使用之大幅 功能部選項中組構適當功能部之組合。 .本說明中僅顯示少數LOC裝置,並顯示一些其他者以 闡述爲此系統所製造之LOC裝置的設計彈性。熟此技藝者 將可輕易地明白本文所示之LOC裝置並非窮舉,且許多另 外的LOC設計係關於組構適當功能部之組合。 樣本類型 LOC變體可接受及分析各種呈液體形式之樣本類型之 核酸或蛋白質內容,液體形式包括,但不限於,血液及血 液產物、唾液、腦脊髓液、尿液、精液、羊膜液、臍帶血 、母乳、汗液、肋膜積液、淚液、心囊液、腹腔液、環境 水樣本及飮料樣本。亦可使用LOC裝置分析得自巨觀核酸 擴增之擴增子;於此情況中,所有試劑貯槽將爲空的或是It will be appreciated that the LOC devices manufactured for use with this diagnostic system are different combinations of functional components selected for particular LOC applications. The vast majority of functional units are common in many LOC devices, and the design of additional LOC devices for new applications has a combination of appropriate functional components in the bulk functional options used in existing LOC devices. Only a few LOC devices are shown in this description, and some others are shown to illustrate the design flexibility of the LOC devices manufactured for this system. Those skilled in the art will readily appreciate that the LOC devices shown herein are not exhaustive, and that many other LOC designs are related to the combination of appropriate functional components. Sample Type LOC Variants can accept and analyze a variety of nucleic acid or protein contents in liquid form, including, but not limited to, blood and blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, umbilical cord Blood, breast milk, sweat, pleural effusion, tears, pericardial fluid, peritoneal fluid, environmental water samples, and dips. Amplicon derived from meganucleic acid amplification can also be analyzed using a LOC device; in this case, all reagent reservoirs will be empty or
-43- 201209405 係組態成不釋出其內容物,並僅使用透析、溶胞、培養及 擴增部來將樣本從樣本入口 68傳送至供核酸檢測之雜交腔 室180,如上所述。 針對一些樣本類型,需要預處理步驟,例如於輸入至 LOC裝置中之前,可能需要使精液液化及可能需以酵素預 處理黏液以減低黏性。-43- 201209405 is configured to release its contents and use only the dialysis, lysis, culture and amplification sections to transfer the sample from the sample inlet 68 to the hybridization chamber 180 for nucleic acid detection, as described above. For some sample types, a pre-treatment step is required, for example, prior to input into the LOC device, it may be necessary to liquefy the semen and possibly pre-treat the mucus with enzyme to reduce stickiness.
樣本輸入 參照圖1及1 2,添加樣本至試驗模組1 〇之大容器2 4。 大容器24爲截錐,其係藉毛細作用而饋入LOC裝置301之 入口 68。於此,其流至64μηι寬χ60μιη深之蓋通道94中並亦 藉由毛細作用而被吸引至抗凝劑貯槽5 4。 試劑貯槽Sample Input Referring to Figures 1 and 12, a sample is added to the large container 24 of the test module 1 . The large container 24 is a truncated cone that is fed into the inlet 68 of the LOC unit 301 by capillary action. Here, it flows into the 64 μηι wide 60 μπη deep cover channel 94 and is also attracted to the anticoagulant storage tank 5 by capillary action. Reagent storage tank
使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小量試劑使得試劑貯槽含有生化處理之所有必須試劑 ,且各試劑貯槽爲小體積。此體積確實小於1,000,000,000 立方微米,於絕大多數的情況中係小於300,000,000立方微 米,普通小於70,000,000立方微米,及於圖式中顯示的 LOC裝置301的情況中係小於20,000,000立方微米。 透析部 參照圖15至21、33及34,病原體透析部70係經設計以 濃縮來自樣本之病原體標靶細胞。如前述者,頂部層6 6中 -44-Using a microfluidic device, such as LOC device 301, the small amount of reagent required by the analytical system allows the reagent reservoir to contain all of the necessary reagents for biochemical treatment, and each reagent reservoir is in a small volume. This volume is indeed less than 1,000,000,000 cubic microns, in most cases less than 300,000,000 cubic micrometers, typically less than 70,000,000 cubic micrometers, and in the case of the LOC device 301 shown in the figures is less than 20,000,000 cubic micrometers. Dialysis Section Referring to Figures 15 through 21, 33 and 34, the pathogen dialysis section 70 is designed to concentrate the pathogen target cells from the sample. As mentioned above, the top layer 6 6 -44-
S 201209405S 201209405
i 呈直徑爲3微米之孔口 164之複數個孔口,過濾來自大量樣 本之標靶細胞。當樣本流經直徑爲3微米之孔口 1 6 4 ’微生 物病原體通過孔而進入一系列透析MST通道204並經由 16μηι透析汲取孔168回流至標靶通道74中(見圖33及34) 。剩餘的樣本(紅血球等)滯留於蓋通道94中。於病原體 透析部70之下游,蓋通道94成爲通往廢料儲器76之廢料通 道72。針對產生相當廢物量之生物樣本類型,試驗模組1 0 之外殼13內之泡沫體(foam)插圖或其他多孔元件49係組 態成與廢料儲器76呈流體連通(見圖1 )。 病原體透析部70係皆以流體樣本之毛細作用運作。位 於病原體透析部70上游端之直徑爲3微米之孔口 164具有毛 細作用起始特徵(CIF ) 166 (見圖33 ),以致流體被向下 拉至下方的透析MST通道204之中。用於標靶通道74之第 —吸入孔198亦具有CIF 202 (見圖15 )以防止流體輕易地 固定彎液面於透析吸入孔168之上。 於圖79中槪要顯示之小組份透析部682可具有類似於 病原體透析部7〇之結構。藉由尺寸化(且成形,若必要) 適於允許小標靶細胞或分子通向標靶通道並繼續進一步分 析之孔口,小組份透析部分離樣本與任何小標靶細胞或分 子。大尺寸的細胞或分子被移除至廢料儲槽766。因此, LOC裝置30 (見圖1及1 18 )並不受限於分離尺寸小於3 μηι 之病原體,而可用於分離任何所欲尺寸之細胞或分子。 溶胞部 -45- 201209405i is a plurality of orifices of orifice 164 having a diameter of 3 microns, filtering target cells from a large number of samples. As the sample flows through a 3 micron diameter orifice, the 1 4 4 'microbial pathogen passes through the well into a series of dialysis MST channels 204 and is returned to the target channel 74 via the 16μηι dialysis extraction well 168 (see Figures 33 and 34). The remaining sample (red blood cells, etc.) is retained in the cover channel 94. Downstream of the pathogen dialysis section 70, the cover channel 94 becomes a waste channel 72 to the waste reservoir 76. Foam illustrations or other porous elements 49 in the outer casing 13 of the test module 10 are configured to be in fluid communication with the waste reservoir 76 (see Figure 1) for a biological sample type that produces a substantial amount of waste. The pathogen dialysis unit 70 operates with the capillary action of the fluid sample. The 3 micron diameter orifice 164 at the upstream end of the pathogen dialysis section 70 has a capillary action initiation feature (CIF) 166 (see Figure 33) such that fluid is drawn down into the underlying dialysis MST channel 204. The first suction aperture 198 for the target passage 74 also has a CIF 202 (see Figure 15) to prevent fluid from easily securing the meniscus above the dialysis suction aperture 168. The panel dialysis section 682, which is schematically shown in Fig. 79, may have a structure similar to that of the pathogen dialysis section. By sizing (and shaping, if necessary) suitable for orifices that allow small target cells or molecules to pass to the target channel and continue to be further analyzed, the panel dialysis section separates the sample from any small target cells or molecules. Large size cells or molecules are removed to waste reservoir 766. Thus, LOC device 30 (see Figures 1 and 18) is not limited to isolation of pathogens having a size less than 3 μηι, but can be used to isolate cells or molecules of any desired size. Lysis Department -45- 201209405
再次參照圖7、1 1及1 3,藉化學溶胞處理,樣本中之 遺傳物質自細胞釋出。如上述者,來自溶胞貯槽5 6之溶胞 試劑與用於溶胞貯槽56之表面張力閥128下游之標靶通道 74中的樣本流混合。然而,一些診斷分析較佳適合熱溶胞 處理,或甚至是標靶細胞之化學及熱溶胞的組合。LOC裝 置301容納此及培養部114之加熱的微通道210。樣本流塡 充培養部1 14並停止於沸騰引發閥106。培養微通道210將 樣本加熱至細胞膜破裂之溫度。 於一些熱溶胞應用中,化學溶胞部130中不需要酵素 反應,且熱溶胞全然取代化學溶胞部130中之酵素反應。 沸騰引發閥Referring again to Figures 7, 11 and 13, the chemical species in the sample are released from the cells by chemical lysis. As described above, the lysing reagent from the lysate reservoir 56 is mixed with the sample stream in the target channel 74 downstream of the surface tension valve 128 for the lysis tank 56. However, some diagnostic assays are preferably suitable for hot lysis treatment, or even a combination of chemical and thermal lysis of target cells. The LOC device 301 houses the heated microchannels 210 of the culture portion 114. The sample stream is filled with the culture portion 1 14 and stopped at the boiling initiation valve 106. The culture microchannel 210 heats the sample to a temperature at which the cell membrane ruptures. In some hot lysis applications, the enzyme reaction is not required in the chemical lysis unit 130, and the hot lysis completely replaces the enzyme reaction in the chemical lysis unit 130. Boiling trigger valve
如以上討論者,LOC裝置301具有三個沸騰引發閥126 、106及108。於圖6中顯示這些閥的位置。圖31爲擴增部 112之加熱的微通道158端部之獨立的沸騰引發閥108之放 大的平面圖。 藉由毛細作用,樣本流119沿加熱的微通道158被吸引 直至到達沸騰引發閥108爲止。樣本流之前沿的彎液面120 固定於閥入口 146之彎液面固定器98。彎液面固定器98幾 何使彎液面停止前進而阻止毛細作用流。如圖3 1及3 2中所 示者,彎液面固定器98係藉由自MST通道90至蓋通道94之 上管道開口而設置之孔口。彎液面120之表面張力使閥保 持閉合。環形加熱器152位於閥入口 146的周圍。環形加熱 器152經由沸騰引發閥加熱器接點153而受CMOS控制。 -46-As discussed above, LOC device 301 has three boiling initiation valves 126, 106, and 108. The position of these valves is shown in Figure 6. Figure 31 is a plan view showing the enlargement of the independent boiling initiation valve 108 at the end of the heated microchannel 158 of the amplifying portion 112. By capillary action, sample stream 119 is attracted along heated microchannels 158 until it reaches boiling initiation valve 108. The meniscus 120 at the leading edge of the sample stream is secured to the meniscus holder 98 of the valve inlet 146. The meniscus holder 98 causes the meniscus to stop moving forward to prevent capillary flow. As shown in Figures 31 and 3, the meniscus holder 98 is provided by an orifice from the upper opening of the pipe from the MST passage 90 to the cover passage 94. The surface tension of the meniscus 120 keeps the valve closed. A ring heater 152 is located around the valve inlet 146. The annular heater 152 is CMOS controlled via a boiling induced valve heater contact 153. -46-
S 201209405 爲打開閥,CMOS電路86發送電脈衝至閥加熱器接點 1 5 3。環形加熱器1 5 2電阻式地進行加熱直到液體樣本1 1 9 沸騰爲止。沸騰使彎液面120自閥入口 146脫除並開始濕潤 蓋通道94。一旦開始濕潤蓋通道94,毛細作用恢復。流體 樣本119塡充蓋通道94且流經閥下管道150而至閥出口 148 ,其中毛細作用驅動之液體流沿擴增部出口通道16〇前進 至雜交及檢測部5 2之中。液體感測器1 7 4置於用於診斷的S 201209405 To open the valve, CMOS circuit 86 sends an electrical pulse to valve heater contact 1 5 3 . The ring heater 125 is heated in a resistive manner until the liquid sample 1 19 is boiled. Boiling removes meniscus 120 from valve inlet 146 and begins to wet cover passage 94. Once the wet cover channel 94 is started, the capillary action is restored. The fluid sample 119 is filled with the passage 94 and flows through the lower valve line 150 to the valve outlet 148, wherein the capillary driven liquid flow advances along the expansion outlet passage 16 to the hybridization and detection portion 52. The liquid sensor 1 7 4 is placed for diagnosis
閥之前及之後。 將能了解的是’一旦沸騰引發閥被打開,則不可能再 關上。然而,因LOC裝置301及試驗模組10爲單一用途裝 置,不需要再關閉閥。 培養部及核酸擴增部 圖 6、7、13、14、23、24、25、35 至 45、50 及 51 顯示 培養部114及擴增部112。培養部114具有單一的、加熱的 φ 培養微通道210,其係經蝕刻而成爲自下管道開口 134至沸 騰引發閥106之MST通道層100中的蜿蜒圖案(見圖13及14 )。控制培養部114的溫度致能更有效的酵素性反應。同 樣地,擴增部112具有從沸騰引發閥1〇6通向沸騰引發閥 108之呈蜿蜒結構之加熱的擴增微通道158 (見圖6及14) 。於混合、培養及核酸擴增發生時,此等閥中止流動以將 標靶細胞保留於加熱的培養或擴增微通道2 1 0或1 5 8中。微 通道之蜿艇圖案亦促進(在某種程度上)標祀細胞與試劑 混合。Before and after the valve. It will be understood that once the valve is opened, it is impossible to close it again. However, since the LOC device 301 and the test module 10 are single-purpose devices, it is not necessary to close the valve. Culture section and nucleic acid amplification section Figs. 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50, and 51 show the culture unit 114 and the amplification unit 112. The culture portion 114 has a single, heated φ culture microchannel 210 that is etched to form a ruthenium pattern in the MST channel layer 100 from the lower conduit opening 134 to the boiling initiation valve 106 (see Figures 13 and 14). Controlling the temperature of the culture portion 114 enables a more efficient enzyme reaction. Similarly, the amplifying portion 112 has an amplifying microchannel 158 (see Figs. 6 and 14) which is heated from the boiling inducing valve 1?6 to the boil-inducing valve 108. Upon mixing, culture, and nucleic acid amplification, the valves stop flow to retain the target cells in the heated culture or amplification microchannels 210 or 158. The submarine pattern of the microchannel also promotes (to some extent) the mixing of the target cells with the reagents.
-47- 201209405-47- 201209405
於培養部1 1 4及擴增部1 1 2中,樣本細胞及試劑經由使 用脈衝寬度調變(PWM)之CMOS電路86所控制的加熱器 154而被加熱。加熱的培養微通道210及擴增微通道158之 蜿蜒結構之每一個曲折具有三個獨立地可操作加熱器154 (延伸於彼之個別加熱器接點1 5 6之間(見圖1 4 )) ’其 提供輸入熱通量密度之二維控制。如最佳顯示於圖5 1中者 ,加熱器154係支撐於頂部層66上並埋入下密封64中。加 熱器材料爲TiAl,但許多其他的傳導性金屬也適用。伸長 的加熱器154平行於形成蜿蜒狀的寬曲折之各通道部的縱 向長度。於擴增部Π 2中,經由個別加熱器控制,可操作 各寬曲折以作爲獨立的PCR腔室。In the culture unit 1 14 and the amplification unit 1 1 2, the sample cells and reagents are heated via a heater 154 controlled by a pulse width modulation (PWM) CMOS circuit 86. Each of the meandering structures of the heated culture microchannel 210 and the amplification microchannel 158 has three independently operable heaters 154 (extending between the individual heater contacts 1 5 6 (see Figure 1 4). )) 'It provides two-dimensional control of the input heat flux density. As best shown in Figure 51, heater 154 is supported on top layer 66 and buried in lower seal 64. The heater material is TiAl, but many other conductive metals are also suitable. The elongated heater 154 is parallel to the longitudinal length of each of the channel portions forming the meandering meandering. In the amplification section Π 2, each of the wide zigzags can be operated as an independent PCR chamber via individual heater control.
使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小體積的擴增子允許於擴增部112中擴增使用小體積 的擴增混合物。此體積大槪小於400奈升,於絕大多數情 況中小於170奈升,普通小於70奈升,及於LOC裝置301的 情況中,此體積係介於2奈升與3 0奈升之間。 加熱速率增加及較佳擴散混合 各通道部的小截面積增加擴增流體混合物的加熱速率 。所有流體與加熱器154保持相當短的距離。減少通道截 面積(即擴增微通道158截面)至小於1 00,000平方微米, 而較“大規模”設備具有顯著較高之加熱速率。微影製造技 術使得擴增微通道158具有橫跨小於1 6,000平方微米之實 質上提供較高的加熱速率之流動路徑之截面。以微影製造 -48-The use of a microfluidic device, such as LOC device 301, requires a small volume of amplicons required for the analysis system to allow amplification of the small volume of amplification mixture in amplification portion 112. This volume is less than 400 nanoliters, in most cases less than 170 nanoliters, typically less than 70 nanoliters, and in the case of LOC device 301, this volume is between 2 nanoliters and 30 nanoliters. . Increased heating rate and better diffusion mixing The small cross-sectional area of each channel portion increases the heating rate of the amplification fluid mixture. All fluids are kept at a relatively short distance from the heater 154. The channel cross-sectional area (i.e., the cross section of the augmented microchannel 158) is reduced to less than 100,000 square microns, while the "high scale" equipment has a significantly higher heating rate. The lithography manufacturing technique allows the amplifying microchannel 158 to have a cross-section that provides a higher heating rate across substantially less than 16,000 square microns. Made with lithography -48-
S 201209405 技術輕易地獲致1微米級尺寸特徵。若僅需要非常小量的 擴增子(如L Ο C裝置3 0 1中的情況),可使截面縮小至小 於2,500平方微米。針對以LOC裝置上之1,〇〇〇至2,000個探 針進行且於1分鐘內之“樣本入,答案出”所需之診斷分析 ,橫跨流體之適當的截面積爲4 00平方微米及1平方微米之 間。S 201209405 technology easily achieves 1 micron size features. If only a very small amount of amplicons are required (as in the case of L Ο C device 301), the cross section can be reduced to less than 2,500 square microns. For a diagnostic analysis of 1 to 2,000 probes on a LOC device and "sample entry, answer out" within 1 minute, the appropriate cross-sectional area across the fluid is 400 square microns and Between 1 square micron.
擴增微通道1 5 8中之加熱器元件以每秒大於8 0絕對溫 度(K )之速率加熱核酸序列,於大多數的情況中爲每秒 大於100 K之速率。普通地,加熱器元件以每秒大於1〇〇〇 K之速率加熱核酸序列,以及於許多情況中,加熱器元件 以每秒大於1 0,000 K之速率加熱核酸序列。通常,基於分 析系統的需求,加熱器元件以每秒大於1〇〇,〇〇〇 K、每秒 大於1,000,000 K、每秒大於1 0,000,000 K、每秒大於 20.000. 000 K、每秒大於40,000,000 K、每秒大於 80.000. 000 K及每秒大於160,000,000 K之速率加熱緣酸序 小截面積通道亦有益於任何試劑與樣本流體之擴散性 混合。於擴散性混合完成之前,靠近兩液體間之界面處, 一種液體擴散至另一液體之擴散現象最顯著。現象發生密 度隨遠離界面距離而減少。使用具相當小截面積之橫跨流 體方向之微通道,而保持兩流體靠界面流動以快速擴散混 合。縮小通道截面至小於100, 〇〇〇平方微米,獲致較“大規 模”設備具有顯著較高之擴散速率。微影製造技術使得微 通道具有橫跨小於16000平方微米之實質上提供較高的混 -49- 201209405 合速率之流動路徑的截面。若僅需要非常小量的擴增子( 如LOC裝置301中的情況),可使截面縮小至小於2,500平 方微米。針對以LOC裝置上之1,000至2,000個探針進行且 於1分鐘內之“樣本入,答案出”所需之診斷分析,橫跨流 體之適當的截面積爲400平方微米及1平方微米之間。 短的熱循環時間The heater element in the amplification microchannel 158 heats the nucleic acid sequence at a rate of greater than 80 absolute temperature (K) per second, in most cases at a rate greater than 100 K per second. Typically, the heater element heats the nucleic acid sequence at a rate greater than 1 〇〇〇 K per second, and in many cases, the heater element heats the nucleic acid sequence at a rate greater than 1 000 000 K per second. Typically, based on the requirements of the analytical system, the heater elements are greater than 1 每秒 per second, 〇〇〇 K, greater than 1,000,000 K per second, greater than 1 0,000,000 K per second, greater than 20.000 000 K per second, greater than A temperature of 40,000,000 K, greater than 80.000. 000 K per second, and a rate of greater than 160,000,000 K per second heating the edge acid channel small cross-sectional area channel is also beneficial for diffusive mixing of any reagent with the sample fluid. The diffusion of one liquid to another is most pronounced near the interface between the two liquids before the diffusion mixing is completed. The density of the phenomenon decreases with distance from the interface. A microchannel with a relatively small cross-sectional area across the flow direction is used while keeping the two fluids flowing through the interface for rapid diffusion mixing. Reducing the channel cross-section to less than 100, 〇〇〇 square microns results in a significantly higher diffusion rate than "large-scale" devices. The lithography manufacturing technique allows the microchannels to have a cross-section that spans less than 16,000 square microns and substantially provides a higher flow path of -49-201209405. If only a very small amount of amplicons are required (as is the case in LOC unit 301), the cross section can be reduced to less than 2,500 square microns. For the diagnostic analysis required for "sample entry, answer out" in 1 minute on a LOC device, the appropriate cross-sectional area across the fluid is 400 square microns and 1 square micron. between. Short thermal cycle time
使樣本混合物保持接近加熱器且使用極小流體量,致 使核酸擴增法期間之快速熱循環。針對至高150鹼基對( bp )長之標靶序列,於30秒內完成各個熱循環(即,變性 、黏著及引子延伸)。在絕大多數之診斷分析中,個別熱 循環時間小於1 1秒,且大部分小於4秒。針對至高1 5 0鹼基 對(bp )長之標靶序列,用於一些最常見診斷分析之LOC 裝置30的熱循環時間爲0.45秒至1.5秒之間。此速度之熱循 環使得試驗模組能在遠少於1 〇分鐘之內完成核酸擴增程序 ;經常爲220秒之內。針對大多數分析,擴增部於80秒之 內由進入樣本入口的樣本流體產生充足的擴增子。針對大 部分的分析,於3 0秒內產生充足的擴增子。 於完成預定數目擴增循環時,經由沸騰引發閥1 〇8將 擴增子饋入雜交及檢測部52。 雜交腔室 圖52、53、54、56及57顯示雜交腔室陣列110中的雜 交腔室180。雜交及檢測部52具有雜交腔室180之24 X 45陣Keeping the sample mixture close to the heater and using a very small amount of fluid results in rapid thermal cycling during the nucleic acid amplification process. Each thermal cycle (i.e., denaturation, adhesion, and primer extension) was completed in 30 seconds for a target sequence of up to 150 base pairs (bp) long. In most diagnostic analyses, individual thermal cycle times are less than 11 seconds and most are less than 4 seconds. For a target sequence of up to 150 base pairs (bp) long, the thermal cycle time of the LOC device 30 for some of the most common diagnostic assays is between 0.45 seconds and 1.5 seconds. This rate of thermal cycling allows the test module to complete the nucleic acid amplification procedure in less than one minute; often within 220 seconds. For most analyses, the amplification section produces sufficient amplicons from the sample fluid entering the sample inlet within 80 seconds. For most of the analysis, sufficient amplicons were generated in 30 seconds. Upon completion of the predetermined number of amplification cycles, the amplicon is fed to the hybridization and detection portion 52 via the boiling initiation valve 1 〇8. Hybridization Chambers Figures 52, 53, 54, 56 and 57 show the hybrid chamber 180 in the hybridization chamber array 110. Hybridization and detection section 52 has 24 X 45 arrays of hybridization chambers 180
S -50- 201209405S -50- 201209405
列1 ίο,其各具有雜交-反應性FRET探針186、加熱器元件 182及整合的光二極體184。倂入光二極體184以檢測得自 標靶核酸序列或蛋白質與FRET探針186雜交之螢光。藉由 CMOS電路86獨立地控制各光二極體184。對發射的光而言 ,FRET探針186及光二極體184之間的任何物質必須爲透 明。因此,探針186及光二極體184之間的壁部97亦必須對 發射的光呈光學透明。於LOC裝置301中,壁部97爲二氧 化矽之薄層(約0.5微米)。 於各雜交腔室180之下直接地倂入光二極體184允許使 用極小體積之探針-標靶雜交體,卻仍產生可檢測的螢光 信號(見圖54 )。因爲小量而能使用小體積的雜交腔室。 於雜交之前,可檢測的探針-標靶雜交體量所需之探針量 大槪小於270微微克(1^(:(^^111)(對應至900,0〇0立方微 米),於大多數的情況中小於60微微克(對應至200,000 立方微米),普通小於12微微克(對應至40,000立方微米 ).,並且於附圖中所示之LOC裝置301的情況中爲小於2.7 微微克(對應至腔室體積爲9,000立方微米)。當然,縮 小雜交腔室的尺寸容許較高的室密度及因此更多的LOC裝 置上的探針。於LOC裝置301中,於1,5〇0微米乘1,5 00微米 的面積內,雜交部具有超過1,000個腔室(即,每個腔室 小於2,250平方微米)。較小的體積亦減少反應時間,使 得雜交及檢測更快速。各個腔室需求之小量探針的另一優 點爲,於LOC裝置製造期間,僅需要配置極小量的探針溶 液至各個腔室中。根據本發明之LOC裝置之具體實施例可 201209405 使用有1奈毫升或更少之探針溶液配置。 於核酸擴增之後,沸騰引發閥1 〇 8被啓動且擴增子沿 流動路徑176流動並流進各雜交腔室180 (見圖52及56)。 端點液體感測器1 7 8指示雜交腔室1 8 0塡充有擴增子及可啓 動加熱器182之時點。Column 1 ίο each has a hybrid-reactive FRET probe 186, a heater element 182, and an integrated photodiode 184. Photodiode 184 is incorporated to detect fluorescence from a target nucleic acid sequence or protein that hybridizes to FRET probe 186. Each of the photodiodes 184 is independently controlled by the CMOS circuit 86. For the emitted light, any material between the FRET probe 186 and the photodiode 184 must be transparent. Therefore, the wall portion 97 between the probe 186 and the photodiode 184 must also be optically transparent to the emitted light. In LOC device 301, wall portion 97 is a thin layer of ruthenium dioxide (about 0.5 microns). Direct intrusion of photodiode 184 beneath each hybridization chamber 180 allows the use of a very small volume of probe-target hybrid, yet still produces a detectable fluorescent signal (see Figure 54). A small volume of hybridization chamber can be used because of the small amount. Prior to hybridization, the amount of probe required to detect the amount of probe-target hybrid is greater than 270 pg (1^(:(^^111) (corresponding to 900,0〇0 cubic microns), In most cases less than 60 picograms (corresponding to 200,000 cubic micrometers), typically less than 12 picograms (corresponding to 40,000 cubic micrometers), and less than 2.7 picograms in the case of the LOC device 301 shown in the figures. (corresponding to a chamber volume of 9,000 cubic microns). Of course, reducing the size of the hybridization chamber allows for higher chamber densities and therefore more probes on the LOC device. In the LOC device 301, at 1,5〇0 In the micron by 1,500 micron area, the hybrid has more than 1,000 chambers (ie, less than 2,250 square microns per chamber). The smaller volume also reduces reaction time, making hybridization and detection faster. Another advantage of the small number of probes required for each chamber is that during the manufacture of the LOC device, only a very small amount of probe solution needs to be configured into each chamber. A specific embodiment of the LOC device according to the present invention can be used with 201209405 1 nanoliter or less probe solution configuration After nucleic acid amplification, the boiling initiation valve 1 〇 8 is activated and the amplicon flows along the flow path 176 and flows into each of the hybridization chambers 180 (see Figures 52 and 56). The endpoint liquid sensor 178 indicates hybridization. The chamber is filled with amplicon and the time at which the heater 182 can be activated.
於充分雜交時間後,啓動LED 26 (見圖2 )。各雜交 腔室180中之開口設有光學窗136以將FRET探針186暴露於 激發輻射(見圖52、54及56) 。LED 26發光持續充分長的 時間以誘發自探針之高強度的螢光信號。於激發期間,光 二極體1 84短路(Shorted )。經預編程延遲3 00 (見圖2 ) 之後,於無激發光下,致能光二極體184及檢測螢光發射 。將光二極體184之有效區185上之入射光(見圖54)轉換 成可使用CMOS電路8 6測量之光電流。After sufficient hybridization time, LED 26 is activated (see Figure 2). The opening in each hybridization chamber 180 is provided with an optical window 136 to expose the FRET probe 186 to excitation radiation (see Figures 52, 54 and 56). The LED 26 emits light for a sufficient period of time to induce a high intensity fluorescent signal from the probe. During the excitation, the photodiode 1 84 is shorted (Shorted). After a preprogrammed delay of 300 (see Figure 2), the photodiode 184 is enabled and the fluorescent emission is detected under no excitation light. The incident light on the active region 185 of the photodiode 184 (see Figure 54) is converted to a photocurrent that can be measured using a CMOS circuit 86.
各雜交腔室1 80載有用於檢測單一標靶核酸序列之探 針。若希望,則各雜交腔室1 80可載有檢測超過1,〇〇〇種不 同標靶的探針。替代性地,許多或全部雜交腔室可載有重 複地檢測相同標靶核酸之相同探針。於雜交腔室陣列1 1 〇 中以此方式複製探針使得所得結果之可信度增加,以及若 希望,可藉由相鄰雜交腔室之光二極體來合倂所有結果以 得到單一結果。熟此技藝者將了解,依據分析明細,於雜 交腔室陣列110上可具有1至超過1,000種不同的探針。 蛋白質體分析室 —些LOC變體’諸如LOC變體L 729,係組態成於蛋白 -52- 201209405Each hybridization chamber 180 carries a probe for detecting a single target nucleic acid sequence. If desired, each hybridization chamber 180 can carry a probe that detects more than one of the different targets. Alternatively, many or all of the hybridization chambers may carry the same probe that repeatedly detects the same target nucleic acid. Copying the probes in this manner in the hybridization chamber array 1 1 使得 increases the confidence of the results obtained, and if desired, all results can be combined by photodiodes of adjacent hybridization chambers to obtain a single result. Those skilled in the art will appreciate that there may be from 1 to over 1,000 different probes on the hybrid chamber array 110, depending on the analytical details. Proteomic analysis chamber - some LOC variants such as LOC variant L 729, configured to be protein -52 - 201209405
質體分析室陣列中對粗細胞溶胞物實施均質蛋白質體分析 (見例如圖125及126之124.1至124.3 ),以供檢測寄主細 胞及/或病原體蛋白質。蛋白質體分析室陣列124.1 - 1 24.3 係以完全相同於雜交室陣列1 10 (見圖52、53、54及56 ) 之方式來製作並組態。各蛋白質體分析室於入口處具有擴 散屏障1 75以防止樣本及試劑於室之間擴散,因此避免錯 誤的結果(見圖1〇〇及1〇1,其係圖97之插圖DC及DD)。 當爲蛋白質雜交或接合所需時,藉由各室中之經CMOS控 制之加熱器1 82提供熱能。在一些實施例中,端點液體感 測器1 78係用於指示蛋白質體分析室已被樣本塡充之時點 ,致使加熱器1 8 2可被啓動。在經過充分時間後,藉由光 感測器44來檢測因蛋白質辨識而產生的螢光或電化學發光 信號。 增濕器及濕度感測器 圖6的插圖AG指示增濕器196的位置。增濕器免於LOC 裝置3 0 1操作期間之試劑及探針的蒸發。如最佳顯示於圖 55之放大圖中者,水貯槽188係流體地連接至三個蒸發器 190。水貯槽188塡充有分子生物等級用水且於製造期間爲 密封的。如最佳顯示於圖55及68中者,藉由毛細作用,水 被抽拉至三個下管道194且沿著個別水供應通道192而到達 蒸發器190之三個上管道193組。彎液面固定於各個上管道 193以保持水。蒸發器具有環形加熱器191,其環繞上管道 193。藉由導熱柱376,環形加熱器191係連接至CMOS電路 -53- 201209405 86而至頂金屬層195(見圖3.7)。於啓動時,環形加熱器 1 9 1加熱水而致使水蒸發並濕潤周圍的裝置。A homogeneous proteosome analysis of the crude cell lysate is performed in the plastid analysis chamber array (see, for example, Figures 124.1 to 124.3 of Figures 125 and 126) for detection of host cells and/or pathogen proteins. The proteomic analysis chamber arrays 124.1 - 1 24.3 were made and configured in exactly the same manner as the hybrid chamber array 1 10 (see Figures 52, 53, 54 and 56). Each protein body analysis chamber has a diffusion barrier 175 at the inlet to prevent diffusion of the sample and reagents between the chambers, thus avoiding erroneous results (see Figures 1A and 1〇1, which are diagrams DC and DD of Figure 97). . When required for protein hybridization or conjugation, thermal energy is provided by CMOS controlled heaters 182 in each chamber. In some embodiments, the endpoint liquid sensor 1 78 is used to indicate when the proteomic analysis chamber has been primed by the sample, such that the heater 128 can be activated. After a sufficient period of time, the fluorescent or electrochemiluminescent signal generated by protein recognition is detected by the photo sensor 44. Humidifier and Humidity Detector The inset AG of Figure 6 indicates the position of the humidifier 196. The humidifier is free of evaporation of reagents and probes during operation of the LOC device. As best shown in the enlarged view of Fig. 55, the water sump 188 is fluidly connected to the three evaporators 190. The water storage tank 188 is filled with molecular bio-grade water and is sealed during manufacture. As best shown in Figures 55 and 68, by capillary action, water is drawn to the three lower conduits 194 and along the individual water supply passages 192 to the three upper conduits 193 of the evaporator 190. The meniscus is fixed to each of the upper ducts 193 to retain water. The evaporator has a ring heater 191 that surrounds the upper pipe 193. With the thermally conductive column 376, the ring heater 191 is connected to the CMOS circuit -53 - 201209405 86 to the top metal layer 195 (see Figure 3.7). At startup, the ring heater 197 heats the water causing the water to evaporate and wet the surrounding equipment.
於圖6中亦顯示濕度感測器2 3 2的位置。然而,最佳如 顯示於圖63中之插圖AH的放大圖者,濕度感測器具有電 容式梳狀結構。經微影地蝕刻之第一電極296及與經微影 地蝕刻之第二電極2 9 8彼此相對,使得彼等之齒交插。相 對的電極形成電容器,其具有可藉由CMOS電路86來監測 之電容。隨濕度增加,電極間之空氣隙的介電常數增加, 致使電容亦增加。濕度感測器2 3 2鄰接雜交腔室陣列1 1 〇 ( 最主要之濕度測量位置)’以減緩含有暴露的探針之溶液 蒸發。 反饋感測器The position of the humidity sensor 232 is also shown in FIG. However, preferably, as shown in the enlarged view of the illustration AH shown in Fig. 63, the humidity sensor has a capacitive comb structure. The lithographically etched first electrode 296 and the lithographically etched second electrode 298 are opposed to each other such that their teeth are interleaved. The opposing electrodes form a capacitor having a capacitance that can be monitored by CMOS circuitry 86. As the humidity increases, the dielectric constant of the air gap between the electrodes increases, causing the capacitance to increase. The humidity sensor 2 3 2 abuts the hybridization chamber array 1 1 〇 (mostly the humidity measurement position) to slow the evaporation of the solution containing the exposed probe. Feedback sensor
溫度及液體感測器係倂入L Ο C裝置3 0 1整體以於裝置 操作期間提供反饋及診斷。參照圖3 5,將九個溫度感測器 170分配至擴增部1 12整體。同樣地,培養部丨14亦具有九 個溫度感測器1 7 0。這些感測器各使用2 X 2陣列之雙極接面 電晶體(BJT)以監測流體溫度及提供反饋至CMOS電路86 。C Μ Ο S電路8 6利用此以準確地控制核酸擴增處理期間的 熱循環以及熱溶胞及培養期間之任何加熱。 於雜交腔室180中,CMOS電路86使用雜交加熱器182 作爲溫度感測器(見圖5 6 )。雜交加熱器1 8 2之電阻係溫 度相依’且CMOS電路86利用此以得到各雜交腔室18〇之溫 度讀取。 -54-The temperature and liquid sensor system is integrated into the L Ο C unit 3 0 1 to provide feedback and diagnostics during device operation. Referring to Fig. 35, nine temperature sensors 170 are distributed to the entire amplification unit 1 12 . Similarly, the culture unit 14 also has nine temperature sensors 170. These sensors each use a 2 x 2 array of bipolar junction transistors (BJT) to monitor fluid temperature and provide feedback to CMOS circuitry 86. The C Μ Ο S circuit 8 6 utilizes this to accurately control thermal cycling during the nucleic acid amplification process as well as any lysis during hot lysis and culture. In the hybridization chamber 180, the CMOS circuit 86 uses the hybridization heater 182 as a temperature sensor (see Figure 566). The resistance of the hybrid heater 182 is temperature dependent' and the CMOS circuit 86 utilizes this to obtain a temperature reading of each hybridization chamber 18 。. -54-
S 201209405 LOC裝置301亦具有一些MST通道液體感測器174及蓋 通道液體感測器208。圖35顯示於經加熱的微通道158中之 每間隔曲折之一端的MST通道液體感測器174之線。最佳 如顯示於圖37中者,MST通道液體感測器174爲藉由CMOS 結構86中之頂金屬層195之暴露的區域所形成之一對電極 。液體封閉電極間的電路以指不其存在於感測器的位置。S 201209405 LOC device 301 also has some MST channel liquid sensors 174 and a cover channel liquid sensor 208. Figure 35 shows the line of the MST channel liquid sensor 174 at one of the ends of each of the heated microchannels 158. Preferably, as shown in FIG. 37, the MST channel liquid sensor 174 is a pair of electrodes formed by the exposed regions of the top metal layer 195 in the CMOS structure 86. The liquid blocks the circuitry between the electrodes to indicate that they are not present at the sensor.
圖25顯示蓋通道液體感測器208之放大透視圖。相對 的TiAl電極對218及220係沉積於頂部層66上。電極218及 220之間爲間隙222,以於缺少液體的情況中保持電路爲開 路。液體存在時使電路閉合及CMOS電路86利用此反饋以 監測流動。 重力自主(GRAVITATIONAL INDEPENDENCE) 試驗模組10爲方向自主。其不需被緊固至平穩表面而 操作。因毛細作用驅動之流體流以及缺少至輔助設備之外 Φ 部管路,使得模組確實爲可攜式並可簡易地插入至類似的 可攜式手持讀取器,諸如行動電話。重力自主操作代表試 驗模組亦加速度性地獨立於所有實用範圍。其耐衝擊及耐 振動並能於移動的載具上或是於攜帶的行動電話上操作。 透析變體 白血球標靶 上述在LOC裝置301中的透析設計以病原體爲標靶。 圖64爲設計用於人類DNA分析之從血液樣本濃縮白血球的 -55- 201209405Figure 25 shows an enlarged perspective view of the lid channel liquid sensor 208. Opposite TiAl electrode pairs 218 and 220 are deposited on top layer 66. A gap 222 is provided between the electrodes 218 and 220 to keep the circuit open in the absence of liquid. The circuit is closed when the liquid is present and the CMOS circuit 86 utilizes this feedback to monitor the flow. The GRAVITATIONAL INDEPENDENCE test module 10 is self-directed. It does not need to be fastened to a smooth surface to operate. The fluid flow driven by capillary action and the lack of Φ tubing to the auxiliary device make the module truly portable and easily plugged into a similar portable handheld reader, such as a mobile phone. The gravity autonomous operation represents that the test module is also acceleration independent of all practical ranges. It is shock and vibration resistant and can be operated on mobile vehicles or on mobile phones. Dialysis variants White blood cell targets The dialysis design described above in LOC device 301 targets pathogens. Figure 64 shows the enrichment of white blood cells from blood samples designed for human DNA analysis -55-201209405
透析部3 28之截面示意圖。除了以7.5微米直徑孔165形式 的孔口限制白血球以免自蓋通道94通過透析MST通道204 ,將理解其結構實質上和上述該病原體標靶透析部70之結 構相同。在被分析之樣本爲血液樣本且來自紅血球之血紅 素的存在干擾接續的反應步驟之情況下,添加紅血球溶胞 緩衝液和抗凝血劑於貯槽5 4中(見圖2 2 )將保證多數該經 溶胞之紅血球(因此爲血紅素)將在此透析步驟期間自該 樣本移除。一般使用之紅血球溶胞緩衝液爲〇.1 5M NH4CL 、10mM KHC03、O.lmM EDTA,pH 7.2-7.4,但熟習此技 藝人士將認清可使用有效溶胞紅血球之任何緩衝液。 該白血球透析部328、蓋通道94之下游變成標靶通道 74,使得該等白血球延續成爲分析的一部分。再者,在這 種情況下,透析吸入孔1 68通到廢料通道72,使得在該樣 本中之所有較小細胞和組份被移除。應注意的是,此透析 變體只減少標靶通道74中之不欲試樣之濃度。A schematic cross-sectional view of the dialysis section 3 28 . In addition to restricting leukocytes in the form of orifices in the form of 7.5 micrometer diameter wells 165 from the dialysis MST channel 204 from the capping channel 94, it will be understood that the structure is substantially the same as that of the pathogen target dialysis section 70 described above. In the case where the sample being analyzed is a blood sample and the presence of hemoglobin from the red blood cells interferes with the subsequent reaction steps, the addition of red blood cell lysis buffer and anticoagulant to the reservoir 54 (see Figure 2 2) will ensure the majority The lysed red blood cells (and therefore hemoglobin) will be removed from the sample during this dialysis step. The commonly used erythrocyte lysis buffer is 5.1 5M NH4CL, 10 mM KHC03, O.lmM EDTA, pH 7.2-7.4, but those skilled in the art will recognize any buffer that can use effective lysed red blood cells. The leukocyte dialysis section 328, downstream of the cap channel 94, becomes the target channel 74, causing the leukocytes to continue to be part of the analysis. Again, in this case, the dialysis suction port 168 leads to the waste channel 72 such that all of the smaller cells and components in the sample are removed. It should be noted that this dialysis variant only reduces the concentration of unwanted samples in the target channel 74.
圖80示意地顯示大成分透析部686,其亦將任何大標 靶成分和樣本分開。此透析部中的孔口製造以大小和形狀 修改成可阻擋在標靶通道中引起關注之大標靶成分以進一 步分析。如上述之白血球透析部,大部分(但非全部)之 較小尺寸的細胞、有機體或分子流入廢料貯槽768。因此 ,LOC裝置之其他具體實例不限制於分開尺寸大於7.5微米 之白血球’但可用以分開任何所需尺寸之細胞、有機體或 分子。Figure 80 shows schematically a large component dialysis section 686 which also separates any large target components from the sample. The orifice fabrication in this dialysis section is modified in size and shape to block large target components of interest in the target channel for further analysis. Most of the (but not all) smaller sized cells, organisms or molecules flow into the waste sump 768, as in the leukocyte dialysis section described above. Thus, other specific examples of LOC devices are not limited to separating leukocytes that are larger than 7.5 microns in size but can be used to separate cells, organisms or molecules of any desired size.
S -56- 201209405 具有流體通道以避免捕集的氣泡之透析部 下述爲參照圖73、74、75及76所示之LOC變體VIII 5 18之LOC裝置之具體實施例。此LOC裝置具有以流體樣本 塡充且無氣泡被捕集於通道中之透析部。LOC變體VIII 518亦具有另外的材料層,參照爲界面層594。界面層594S-56-201209405 Dialysis section with fluid passage to avoid trapped bubbles The following is a specific embodiment of the LOC device of LOC variant VIII 5 18 shown with reference to Figures 73, 74, 75 and 76. This LOC device has a dialysis section that is trapped in a fluid sample and trapped in a channel without bubbles. LOC Variant VIII 518 also has an additional layer of material, referenced to interface layer 594. Interface layer 594
係設置於蓋通道層80與CMOS + MST裝置48之MST通道層 100之間。界面層594致使試劑貯槽與MST層87之間更複雜 的流體互連而不會增加矽基板84的尺寸。 參照圖74,設計旁路通道600以於自界面廢料通道604 至界面標靶通道602之流體樣本中引入時間延遲。此時間 延遲使得流體樣本流經透析M S T通道2 04而至固定彎液面 之透析汲取168。利用於上管道處之旁路通道600至界面標 靶通道602之毛細作用起始特徵(CIF) 202,自透析MST 通道204之所有透析吸入孔168之上游之點,樣本流體塡充 界面標靶通道602。 不需旁路通道600,界面標靶通道6 02仍開始自上游端 進行塡充,但最終,行進的彎液面到達並通過尙未被塡充 之MST通道之上管道,通向於該點捕獲的空氣。捕集的空 氣降低通過白血球透析部3 2 8之樣本流率。 具有主動閥與液體感測器之透析部 圖91槪略說明一種具有設計用以避免捕集的氣泡之替 代透析部722。替代透析部具有如圖74所示之相同結構, 但不具有旁路通道600。液體樣本自蓋通道94進入界面廢 -57- 201209405 料通道604。異體樣本流進透析MST通道204通過3微米之 下管道開口 164。大於3微米之細胞留在界面廢料通道6 04 並且最終導向廢料貯槽76。透析上管道口 168爲表面張力 閥,其固定彎液面以停止液體樣本流。代替旁路通道600 (見圖74 ),主動閥諸如沸騰引發閥724係位於在上游末 端之透析MST通道204之透析上管道口 168。在下游末端之 透析MST通道204中係液體感測器174。當所有透析MST通 道204已經塡充,液體感測器174觸發沸騰引發閥724。樣 本流進界面標靶通道6 02之上游末端,且最終以下游方向 依序打開在各透析上管道口 168之表面張力閥。 沒有沸騰引發閥724,界面標靶通道602 (假設小組份 通道包含標靶細胞,諸如病原體)開始自上游末端塡充, 但接下來之彎液面易於忽略尙未塡滿之透析上管道口 168 ,導致空氣在那點捕獲。任何主動閥變體可以沸騰引發閥 724替代,並且在進一步之具體實施例中,所有透析上管 道口 168可具有主動閥以確保樣本自所有透析MST通道204 流進界面標靶通道602。It is disposed between the cover channel layer 80 and the MST channel layer 100 of the CMOS + MST device 48. Interfacial layer 594 causes a more complex fluid interconnection between the reagent sump and MST layer 87 without increasing the size of ruthenium substrate 84. Referring to Figure 74, the bypass passage 600 is designed to introduce a time delay from the fluid sample from the interface waste channel 604 to the interface target channel 602. This time delay causes the fluid sample to flow through the dialysis M S T channel 240 to the dialysis draw 168 of the fixed meniscus. Capillary action initiation feature (CIF) 202 from the bypass channel 600 at the upper conduit to the interface target channel 602, upstream of all dialysis suction holes 168 from the dialysis MST channel 204, sample fluid entanglement interface target Channel 602. Without the bypass channel 600, the interface target channel 206 still begins to charge from the upstream end, but eventually, the traveling meniscus reaches and passes through the tube above the MST channel that is not charged, leading to this point Captured air. The trapped air reduces the sample flow rate through the leukocyte dialysis unit 3 28 . Dialysis section with active valve and liquid sensor Figure 91 illustrates an alternative dialysis section 722 having air bubbles designed to avoid trapping. The replacement dialysis section has the same structure as shown in Fig. 74, but does not have the bypass passage 600. The liquid sample enters the interface waste-57-201209405 material channel 604 from the cover channel 94. The foreign body sample flows into the dialysis MST channel 204 through a 3 micron lower tube opening 164. Cells larger than 3 microns remain in the interface waste channel 604 and ultimately lead to the waste sump 76. The dialysis upper pipe port 168 is a surface tension valve that holds the meniscus to stop the flow of the liquid sample. Instead of the bypass passage 600 (see Fig. 74), an active valve such as a boiling initiation valve 724 is located at the dialysis upper conduit port 168 at the upstream end of the dialysis MST passage 204. A liquid sensor 174 is incorporated in the dialysis MST channel 204 at the downstream end. The liquid sensor 174 triggers the boiling initiation valve 724 when all of the dialysis MST channels 204 have been charged. The sample flows into the upstream end of the interface target channel 022, and finally opens the surface tension valve at each dialysis upper pipe port 168 in the downstream direction. Without the boiling initiation valve 724, the interface target channel 602 (assuming that the panel channel contains target cells, such as pathogens) begins to fill from the upstream end, but the next meniscus is easily overlooked. , causing the air to catch at that point. Any active valve variant may be replaced by a boiling initiation valve 724, and in further embodiments, all of the dialysis upper orifices 168 may have an active valve to ensure that the sample flows from all of the dialysis MST channels 204 into the interface target channel 602.
核酸擴增變體 直接PCR 傳統上,於製備反應混合物之前,PCR需要大量純化 標靶D N A。然而,適當地改變化學及樣本濃度,可利用最 少量的DN A純化實施核酸擴增,或進行直接擴增。當以 PCR進行核酸擴增時,此方法便稱做直接PCr。於l〇c裝 201209405 置中於經控制的常溫下實施核酸擴增時,此方法爲直接恆 溫擴增。當用於LOC裝置時,尤其是關於所需流體設計的 簡化時,直接核酸擴增技術具相當多的優勢。直接PCR或 是直接恆溫擴增之擴增化學調整包括增加緩衝液強度、使 用高活性及高進行性之聚合酶及與潛在聚合酶抑制劑螯合 之添加物。稀釋樣本中存在之抑制劑亦爲重要的。Nucleic Acid Amplification Variants Direct PCR Traditionally, PCR required a large amount of purification target D N A prior to preparation of the reaction mixture. However, by appropriately changing the chemical and sample concentrations, nucleic acid amplification can be performed using a minimum amount of DN A purification, or direct amplification can be performed. When nucleic acid amplification is performed by PCR, this method is called direct PCr. When the nucleic acid amplification was carried out at a controlled normal temperature in a l〇c pack 201209405, the method was direct constant temperature amplification. Direct nucleic acid amplification techniques have considerable advantages when used in LOC devices, especially with regard to the simplification of the desired fluid design. Amplification chemical adjustments for direct PCR or direct isothermal amplification include increasing buffer strength, using highly active and highly progressive polymerases, and additions to potential polymerase inhibitors. It is also important to dilute the inhibitor present in the sample.
爲利用直接核酸擴增技術,LOC裝置設計倂入兩個額 外的特徵。第一特徵爲試劑貯槽(例如,圖8中的貯槽58 ),其經適當地尺寸化以供應充分量之擴增反應混合或稀 釋劑,使得可能干擾擴增化學之樣本成分的最終濃度足夠 低以成功地進行核酸擴增。非細胞樣本成分的所欲稀釋度 爲5倍至20倍。當適度確認標靶核酸序列的濃度被維持於 足夠高以用於擴增及檢測時,使用不同的LOC結構,例如 圖4中的病原體透析部70。於此具體實施例中(進一步於 圖6中說明),於樣本萃取部290之上游使用有效地濃縮足 φ 夠小而得以進入擴增部292之病原體的濃度並將較大細胞 排出至廢料貯槽76之透析部。於另外的具體實施例中,使 用透析部以選擇性地去除血漿中之蛋白質及鹽而保留關注 的細胞。 支持直接核酸擴增之第二LOC結構性特徵爲設計通道 的深寬比以調整樣本及擴增混合成分之間的混合比。例如 ,爲確保經由單一混合步驟之相關於樣本之抑制劑的稀釋 爲較佳的5倍-20倍範圍中,設計樣本及試劑通道之長度與 截面,以使混合起始位置之上游的樣本通道構成之流組抗 -59- 201209405 較試劑混合物流動之通道的流組抗高出4倍-1 9倍。經由控 制設計幾合而容易地控制微通道中之流組抗。針對恆定截 面積’微通道之流組抗隨通道長度而線性地增加。對於混 合設計而言爲重要的是,微通道中之流組抗較多取決於最 小截面積尺寸。例如,當深寬比極爲不均一時,方形截面 之微通道的流組抗與最小垂直尺寸之立方成反比。To exploit direct nucleic acid amplification techniques, LOC devices are designed to incorporate two additional features. The first feature is a reagent reservoir (eg, sump 58 in Figure 8) that is appropriately sized to supply a sufficient amount of amplification reaction mix or diluent such that the final concentration of sample components that may interfere with the amplification chemistry is sufficiently low To successfully perform nucleic acid amplification. The desired dilution of the non-cellular sample component is 5 to 20 times. When the concentration of the target nucleic acid sequence is moderately confirmed to be sufficiently high for amplification and detection, a different LOC structure, such as the pathogen dialysis section 70 of Figure 4, is used. In this particular embodiment (further illustrated in Figure 6), the concentration of the pathogen that is sufficiently small enough to enter the amplification portion 292 and the larger cells are discharged to the waste storage tank is used upstream of the sample extraction portion 290. 76 dialysis department. In another embodiment, a dialysis section is used to selectively remove proteins and salts in plasma while retaining cells of interest. A second LOC structural feature that supports direct nucleic acid amplification is to design the aspect ratio of the channel to adjust the mixing ratio between the sample and the amplified mixture. For example, to ensure that the dilution of the inhibitor associated with the sample via a single mixing step is in the range of preferably 5 to 20 times, the length and cross section of the sample and reagent channels are designed such that the sample channel upstream of the mixing start position The composition of the flow group anti-59-201209405 is 4 times to 19 times higher than the flow group of the flow channel of the reagent mixture. The flow group resistance in the microchannel is easily controlled by controlling the design. The flow group resistance for a constant cross-sectional area 'microchannel' increases linearly with channel length. It is important for the hybrid design that the flow group resistance in the microchannel depends more on the minimum cross-sectional area size. For example, when the aspect ratio is extremely non-uniform, the flow resistance of the microchannels of square cross-section is inversely proportional to the cube of the smallest vertical dimension.
反轉錄酶PCR ( RT-PCR) 當分析或萃取之樣本核酸種類爲RNA時,諸如來自 RNA病毒或信使RNA,於PCR擴增之前必須先將RNA反轉 錄爲互補DNA ( cDNA ) »可於與PCR相同之腔室中實施反Reverse Transcriptase PCR (RT-PCR) When the sample nucleic acid species analyzed or extracted is RNA, such as from RNA virus or messenger RNA, RNA must be reverse transcribed into complementary DNA (cDNA) before PCR amplification. Implementing the opposite in the same chamber of PCR
轉錄反應(一步驟RT-PCR ),或是其可爲分別的起始反 應(二步驟RT-PCR)。於此所述之LOC變體中,可藉由添 加反轉錄酶及聚合酶至試劑貯槽62以及程式化加熱器1 54 以先循環反轉錄步驟並接續進行核酸擴增步驟,而簡單地 實施一步驟RT-PCR。藉由利用試劑貯槽58來儲存及分配 緩衝液、引子、dNTP及反轉錄酶,以及利用培養部1 14以 用於反轉錄步驟,接著於擴增部112中以普通方式進行擴 增,亦可簡單地完成二步驟RT-PCR。 恆溫核酸擴增 針對一些應用,較佳之核酸擴增方法爲恆溫核酸擴增 ,因此不需於各種溫度循環重複地循環反應成分,而是將 擴增部維持於常溫下,普通爲約37°C至41 °C。已描述一些Transcription reaction (one-step RT-PCR), or it may be a separate initial reaction (two-step RT-PCR). In the LOC variant described herein, the reverse transcription step and the subsequent step of performing the nucleic acid amplification step can be performed by adding a reverse transcriptase and a polymerase to the reagent storage tank 62 and the stylized heater 1 54 to simply perform a nucleic acid amplification step. Step RT-PCR. The buffer, the primer, the dNTP, and the reverse transcriptase are stored and distributed by the reagent storage tank 58, and the culture unit 14 is used for the reverse transcription step, and then amplified in the amplification unit 112 in a normal manner. The two-step RT-PCR is simply done. Constant temperature nucleic acid amplification For some applications, the preferred nucleic acid amplification method is constant temperature nucleic acid amplification, so that it is not necessary to repeatedly circulate the reaction components at various temperature cycles, but the amplification portion is maintained at normal temperature, usually about 37 ° C. To 41 °C. Has described some
S -60- 201209405 恆溫核酸擴增方法,包括股取代擴增(SDA)、轉錄介導 擴增(Τ Μ A )、依賴核酸序列擴增(ΝΑ S B A )、重組酵素 聚合酶擴增(RPA )、解旋恆溫DNA擴增(HDA )、滾動 循環擴增(RCA )、分枝型擴增(RAM )及環形恆溫擴增 (LAMP ),以及此等之任何或其他恆溫擴增方法可用於 本文之LOC裝置之特定具體實施例中。S-60- 201209405 Constant temperature nucleic acid amplification methods, including strand-substituted amplification (SDA), transcription-mediated amplification (Τ Μ A ), nucleic acid sequence-dependent amplification (ΝΑ SBA ), recombinant enzyme polymerase amplification (RPA) , untwisted constant temperature DNA amplification (HDA), rolling cycle amplification (RCA), branched amplification (RAM), and circular thermostat amplification (LAMP), and any or other isothermal amplification methods of this can be used in this paper. In a specific embodiment of the LOC device.
爲實施恆溫核酸擴增,鄰接擴增部之試劑貯槽60及62 將載有用於特定恆溫方法之適當的試劑而不是載有PCR擴 增混合及聚合酶。例如,針對SDA,試劑貯槽60含有擴增 緩衝液、引子及dNTP,以及試劑貯槽62含有適當的核酸內 切酶及外切-DNA聚合酶。針對RPA,試劑貯槽60含有擴增 緩衝液、引子、dNTP及重組酶蛋白,及試劑貯槽62含有股 取代DNA聚合酶,諸如。同樣地,針對HDA,試劑貯 槽6 0含有擴增緩衝液' 引子及dNTP,以及試劑貯槽62含有 適當的DNA聚合酶及解旋酶(而非使用熱)以解開雙股 DNA。熟此技藝者將了解以任何適用於核酸擴增法之方式 ,可將必要試劑分配於兩個試劑貯槽。 針對自RN A病毒,諸如HI V或C型肝炎病毒之病毒核酸 的擴增’ NASBA或TMA係適當的因其不需先將RNA轉錄成 cDNA。於此實例中,試劑貯槽60塡充有擴增緩衝液、引 子及dNTP,以及試劑貯槽62塡充有RNA聚合酶、反轉錄酶 及任意的RNase H。 針對一些恆溫核酸擴增類型,於維持恆溫核酸擴增之 溫度以利反應續行之前,必須採用初始變性循環以分開雙 -61 - 201209405 股DN A模板。因可藉擴增微通道158中之加熱器154嚴密地 控制擴增部112中之混合的溫度,於本文中描述之LOC裝 置之所有具體實施例中均可輕易完成此變性循環(見圖14 )°To perform a constant temperature nucleic acid amplification, reagent reservoirs 60 and 62 adjacent to the amplification section will carry appropriate reagents for a particular constant temperature method rather than carrying PCR amplification and polymerase. For example, for SDA, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, and reagent reservoir 62 contains appropriate endonucleases and exo-DNA polymerases. For RPA, reagent reservoir 60 contains amplification buffer, primers, dNTPs, and recombinase proteins, and reagent reservoir 62 contains strand-substituted DNA polymerase, such as. Similarly, for HDA, reagent reservoir 60 contains amplification buffer 'primer and dNTP, and reagent reservoir 62 contains the appropriate DNA polymerase and helicase (instead of using heat) to unravel the double stranded DNA. Those skilled in the art will appreciate that the necessary reagents can be dispensed into two reagent reservoirs in any manner suitable for nucleic acid amplification. For the amplification of viral nucleic acids from RN A viruses, such as HI V or hepatitis C virus, NASBA or TMA is appropriate because it does not require the transcription of RNA into cDNA first. In this example, the reagent reservoir 60 is filled with amplification buffer, primers, and dNTPs, and the reagent reservoir 62 is filled with RNA polymerase, reverse transcriptase, and any RNase H. For some thermostatic nucleic acid amplification types, an initial denaturation cycle must be employed to separate the double-61 - 201209405 strand DN A template before maintaining the temperature of the thermostated nucleic acid amplification for the reaction to continue. Since the temperature of the mixing in the amplification section 112 can be tightly controlled by the heater 154 in the amplification microchannel 158, this denaturation cycle can be easily accomplished in all of the specific embodiments of the LOC device described herein (see Figure 14). )°
恆溫核酸擴增對於樣本中潛在的抑制劑之耐受性較高 ,因而通常適用於自所欲樣本之直接核酸擴增。因此,恆 溫核酸擴增尤其有用於分別顯示於圖81、82及83中之LOC 變體 XLIII 673、LOC 變體 XLIV 6 74 及 LOC 變體 XLVII 677 。直接恆溫擴增亦可與如圖81及83中所示之一或多個預擴 增透析步驟70、686或682及/或如圖82中所示之預-雜交透 析步驟682組合,以分別於核酸擴增之前有助於樣本中之 標靶細胞的部份濃縮或是於樣本進入雜交腔室陣列1 1 0前 移除不想要的細胞碎片。熟此技藝者將了解可使用預·擴 增透析及預-雜交透析之任何組合。Thermostatic nucleic acid amplification is more tolerant to potential inhibitors in the sample and is therefore generally suitable for direct nucleic acid amplification from a desired sample. Thus, constant temperature nucleic acid amplification is particularly useful for LOC variant XLIII 673, LOC variant XLIV 6 74 and LOC variant XLVII 677, respectively, shown in Figures 81, 82 and 83. Direct thermostatic amplification can also be combined with one or more preamplification dialysis steps 70, 686 or 682 as shown in Figures 81 and 83 and/or pre-hybridization dialysis step 682 as shown in Figure 82, respectively. Concentration of the target cells in the sample prior to nucleic acid amplification or removal of unwanted cell debris before the sample enters the hybridization chamber array 110. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybrid dialysis can be used.
亦可以平行的擴增部,諸如,圖72、77及78中所槪述 者,實施恆溫核酸擴增。多工及一些恆溫核酸擴增方法, 諸如LAMP,係與初始反轉錄步驟相容以擴增RNA。 其他設計變體 流速感測器 除了溫度及液體感測器外,LOC裝置亦可合倂經 CMOS控制的流速感測器740,如圖1 17中及LOC變體X 728 中所槪略說明者(見圖92至108 )。此等感測器用於決定 兩步驟中的流速。於第一步驟中,蜿蜒加熱器元件814的Constant temperature nucleic acid amplification can also be performed in parallel amplification sections, such as those described in Figures 72, 77 and 78. Multiplex and some constant temperature nucleic acid amplification methods, such as LAMP, are compatible with the initial reverse transcription step to amplify RNA. Other Design Variant Flow Sensors In addition to temperature and liquid sensors, the LOC device can also be combined with a CMOS-controlled flow rate sensor 740, as illustrated in Figure 17 and in the LOC variant X 728. (See Figures 92 to 108). These sensors are used to determine the flow rate in the two steps. In the first step, the heater element 814
S -62- 201209405S -62- 201209405
溫度係由施加低電流並測量電壓以決定蜿蜒加熱器元件 814的電阻而決定,且因此使用加熱器元件之電阻與溫度 之間的已知關係而決定元件8 1 4的溫度。於此階段,於元 件814中所逸散之熱最小及通道中的液體溫度等於計算的 元件814的溫度。於第二步驟中,施加較高電流至蜿蜒加 熱器元件8 1 4,使得元件8 1 4的溫度增加且一些熱因流動的 液體而流失。於施加較高電壓的同時,藉由再次測量元件 814之上的電壓,決定元件814的新電阻及再次藉由CMOS 電路86計算增加的溫度。使用蜿蜒加熱器元件81 4的新溫 度及已知的於第一步驟中所計算之樣本液體溫度,決定了 液體的流動速度。由已知的通道截面幾何及流動速度來計 算通道中之液體的流速。 螢光檢測系統之另外的細節 圖58及59顯示雜交-反應性FRET探針23 6。此等經常被 φ 稱爲分子信標及係爲由單股核酸產生之莖-及-環探針,並 於與互補核酸雜交時發螢光。圖58顯示於與標靶核酸序列 23 8雜交之前之單一FRET探針236。探針具有環240、莖 242、於5'端之蛮光團246及於3'端之淬熄劑(quencher) 2斗8。環2,4 0包含與標靶核酸序列2W互補之序列。探針序 列兩側的互補序列黏著在一起以形成莖242。 於缺少互補標靶序列時,如圖5 8中所示者,探針維持 閉合。莖242保持螢光團-淬熄劑對彼此相當接近,使得大 量的共振能量可於彼此間傳輸,而當以激發光244照射時 -63- 201209405 實質地消除螢光團發螢光團的能力。 圖5 9顯示呈開放或經雜交組態的F R E T探針2 3 6。於與 互補標靶核酸序列238雜交時,莖-及-環結構被破壞,螢光 團及淬熄劑於空間上分離,因此恢復螢光團246發螢光的 能力。光學檢測地螢光發射2 5 0以作爲探針已雜交的指標The temperature is determined by applying a low current and measuring the voltage to determine the resistance of the heater element 814, and thus the temperature of the element 814 is determined using the known relationship between the resistance of the heater element and the temperature. At this stage, the heat dissipated in element 814 is minimal and the temperature of the liquid in the channel is equal to the temperature of the calculated element 814. In the second step, a higher current is applied to the helium heater element 8 1 4 such that the temperature of element 814 increases and some of the heat is lost by the flowing liquid. While applying a higher voltage, the new resistance of element 814 is determined and the increased temperature is again calculated by CMOS circuit 86 by again measuring the voltage across element 814. The flow rate of the liquid is determined using the new temperature of the crucible heater element 81 4 and the known sample liquid temperature calculated in the first step. The flow rate of the liquid in the channel is calculated from the known channel cross-section geometry and flow velocity. Additional Details of the Fluorescence Detection System Figures 58 and 59 show hybridization-reactive FRET probes 23 6 . These are often referred to as molecular beacons by φ and stem-and-loop probes produced by single-stranded nucleic acids, and fluoresce when hybridized to complementary nucleic acids. Figure 58 shows a single FRET probe 236 prior to hybridization to the target nucleic acid sequence 23 8 . The probe has a ring 240, a stem 242, a bluing 246 at the 5' end, and a quench 2 at the 3' end. Loop 2, 40 contains a sequence that is complementary to the target nucleic acid sequence 2W. The complementary sequences flanking the probe sequences are bonded together to form stems 242. In the absence of a complementary target sequence, as shown in Figure 58, the probe remains closed. The stem 242 maintains the fluorophore-quenching agent relatively close to each other, so that a large amount of resonance energy can be transmitted between each other, and when irradiated with the excitation light 244, -63-201209405 substantially eliminates the ability of the fluorescent fluorophore . Figure 59 shows the F R E T probe 2 3 6 in an open or hybridized configuration. Upon hybridization to the complementary target nucleic acid sequence 238, the stem-and-loop structure is disrupted, and the fluorophore and quencher are spatially separated, thereby restoring the ability of the fluorophore 246 to fluoresce. Optical detection of the fluorescence emission of 250 to serve as an indicator that the probe has hybridized
探針以極高專一性與互補標靶雜交,因探針之莖螺旋 係設計成較具單一不互補核苷酸之探針-標靶螺旋穩定。 因雙股DNA相對堅固,立體上探針-標靶螺旋與莖螺旋不 可能共存。 引子·聯結的探針 引子-聯結的莖-及-環探針及引子-聯結的線性探針, 亦稱作蠍子型探針,爲分子信標之替代物且可用於LOC裝 置之即時及定量核酸擴增。及時擴增可直接實施於LOC裝 置之雜交腔室中。使用引子-聯結的探針之優點爲探針元 件實體地聯結至引子,因此於核酸擴增期間僅需單次雜交 事件而不需要分別的引子雜交及探針雜交。此確保即時有 效地反應且當使用分別的引子及探針時產生更強的信號、 更短的反應時間,具有更佳的識別度。於製造期間,探針 (與聚合酶及擴增混合)將沉積於雜交腔室180中且不需 LOC裝置上之獨立的擴增部。替代性地,擴增部未被使用 或用於其他反應。The probe hybridizes to the complementary target with very high specificity, since the stem helix of the probe is designed to be stable to the probe-target helix with a single non-complementary nucleotide. Due to the relatively strong double-stranded DNA, it is impossible for the probe-target helix and the stem helix to coexist. Primer-Linked Probe Primers-Linked Stem-and-Ring Probes and Primers-Linked Linear Probes, also known as scorpion-type probes, are alternatives to molecular beacons and can be used for immediate and quantitative LOC devices. Nucleic acid amplification. Timely amplification can be performed directly in the hybridization chamber of the LOC device. The advantage of using a primer-ligated probe is that the probe element is physically linked to the primer, thus requiring only a single hybridization event during nucleic acid amplification without the need for separate primer hybridization and probe hybridization. This ensures an immediate and effective response and produces a stronger signal, shorter reaction times, and better recognition when using separate primers and probes. During manufacture, the probe (mixed with the polymerase and amplification) will be deposited in the hybridization chamber 180 without the need for a separate amplification portion on the LOC device. Alternatively, the amplification portion is not used or used for other reactions.
S -64- 201209405 引子-聯結的線性探針S -64- 201209405 Introduction-Linked Linear Probe
圖84及85分別顯示首輪核酸擴增期間之引子-聯結的 線性探針692及於後續核酸擴增期間之雜交的組態。參照 圖84,引子-聯結的線性探針692具有雙股莖區段242。其 中一股結合引子聯結的探針序列696,其係與標靶核酸696 上的區域同源且以螢光團2M標記其5’端,以及經由擴增阻 斷物694聯結其3'端至寡核苷酸引子700。以淬熄劑部分248 標記莖242之另外一股的3’端。於完成首輪核酸擴增之後, 利用目前爲互補的序列698,探針可環繞且雜交至延伸的 股。於首輪核酸擴增期間,寡核苷酸引子700黏著至標靶 DNA 23 8 (圖84 )並接著延伸而形成含有探針序列及擴增 產物兩者之DNA股。擴增阻斷物694防止聚合酶之讀取通 過及拷貝探針區域696。於接續的變性時,雜交之延伸的 寡核苷酸引子700/模板及引子-聯結的線性探針之雙股莖 242分離,因此釋出淬熄劑248。一旦用於黏著及延伸步驟 的溫度降低,引子聯結的線性探針之引子-聯結的探針序 列696捲曲並與延伸的股上之擴增的互補序列698雜交,以 及檢測出的螢光指出標靶DNA存在。未延伸的引子-聯結 的線性探針保留其雙股莖且螢光保持淬熄。此檢測方法特 別適於快速檢測系統,因其依賴單一分子製程。 引子-聯結的莖-及-環探針 圖86A至86F顯示引子-聯結的莖-及-環探針7〇4之操作 。參照圖86A,引子-聯結的莖-及-環探針7〇4具有互補雙 -65- 201209405Figures 84 and 85 show the configuration of the primer-ligated linear probe 692 during the first round of nucleic acid amplification and the hybridization during subsequent nucleic acid amplification, respectively. Referring to Figure 84, the primer-coupled linear probe 692 has a double stem section 242. One of the probe sequences 696, which binds to the primer, is homologous to the region on the target nucleic acid 696 and is labeled with the 5' end of the fluorophore 2M, and the 3' end thereof is coupled via the amplification blocker 694 to Oligonucleotide primer 700. The other 3' end of the stem 242 is labeled with a quencher portion 248. After completion of the first round of nucleic acid amplification, using the currently complementary sequence 698, the probe can surround and hybridize to the extended strand. During the first round of nucleic acid amplification, the oligonucleotide primer 700 is attached to the target DNA 23 8 (Fig. 84) and then extended to form a DNA strand containing both the probe sequence and the amplification product. Amplification blocker 694 prevents the reading of polymerase through and copying probe region 696. Upon subsequent denaturation, the hybridized extended oligonucleotide primer 700/template and the primer-linked linear probe of the double stem 242 are separated, thereby releasing the quencher 248. Once the temperature for the adhesion and extension steps is lowered, the primer-linked probe sequence 696 of the primer-joined linear probe is crimped and hybridized to the amplified complementary sequence 698 on the extended strand, and the detected fluorescent light indicates the target DNA exists. The unextended primer-linked linear probe retains its double stem and the fluorescence remains quenched. This test method is particularly suitable for rapid detection systems because it relies on a single molecular process. Primer-Linked Stem-and-Ring Probes Figures 86A through 86F show the operation of the primer-coupled stem-and-loop probes 7〇4. Referring to Fig. 86A, the primer-linked stem-and-loop probe 7〇4 has a complementary double -65-201209405
股DNA之莖242及合倂探針序列的環240。以螢光團24 6標 記其中一個莖股708之5’端。以3'·端淬熄劑248標記另一股 710,且另一股710帶有擴增阻斷物694及寡核苷酸引子700 兩者。於初始變性相(見圖86B ),標靶核酸23 8之股及引 子-聯結的莖242分開莖-及-環探針704。當溫度冷卻以用於 黏著相時(見圖86C),引子-聯結的莖-及-環探針704上之 寡核苷酸引子700與標靶核酸序列23 8雜交。於延伸期間( 見圖86D),合成標靶核酸序列238之互補706以形成含有 探針序列704及擴增的產物兩者之DN A股。擴增阻斷物694 防止聚合酶之讀取通過及拷貝探針區域7 04。變性之後, 當接著黏著探針時,引子-聯結的莖-及-環探針之環區段 24〇之探針序列(見圖86F )黏著至延伸的股上之互補序列 706。此組態使得螢光團246與淬熄劑248相距甚遠,造成 螢光發射的顯著增強。The stem 242 of the stranded DNA and the loop 240 of the combined probe sequence. The 5' end of one of the stem strands 708 is marked with a fluorophore 24 6 . The other strand 710 is labeled with a 3' end quencher 248 and the other strand 710 carries both an amplification blocker 694 and an oligonucleotide primer 700. In the initial denaturing phase (see Figure 86B), the strands of the target nucleic acid 23 8 and the primer-linked stem 242 are separated from the stem-and-loop probe 704. When the temperature is cooled for the adhesive phase (see Figure 86C), the oligonucleotide primer 700 on the primer-linked stem-and-loop probe 704 hybridizes to the target nucleic acid sequence 23 8 . During extension (see Figure 86D), the complement 706 of the target nucleic acid sequence 238 is synthesized to form a DN A strand containing both the probe sequence 704 and the amplified product. Amplification blocker 694 prevents the polymerase from reading through and copying probe region 74. After denaturation, when the probe is attached, the probe sequence of the primer-linked stem-and-loop probe loop region (see Figure 86F) is adhered to the complementary sequence 706 on the extended strand. This configuration leaves the fluorophore 246 at a great distance from the quencher 248, resulting in a significant increase in fluorescence emission.
控制探針 雜交腔室陣列1 1 0包括具有用於分析品質控制之正及 負控制探針之一些雜交腔室180。圖113及114槪要說明無 螢光團之負控制探針796,以及圖1 1 5及11 6描述無淬熄劑 之正控制探針798。正及負控制探針具有如前述FRET探針 之莖-及-環結構。然而,不論探針雜交成爲開放組態或保 持封閉’將永遠自正控制探針798發射螢光信號2 50且負控 制探針796從不發射螢光信號250。 參照圖Π3及1 14,負控制探針796不具螢光團(及可Control Probes The hybridization chamber array 110 includes a plurality of hybridization chambers 180 having positive and negative control probes for analytical quality control. Figures 113 and 114 illustrate a negative control probe 796 without a fluorophore, and Figures 1 1 5 and 11 6 depict a positive control probe 798 without a quencher. The positive and negative control probes have a stem-and-loop structure as described above for the FRET probe. However, whether the probe hybridizes to an open configuration or remains closed, the fluorescent signal 250 will always be emitted from the positive control probe 798 and the negative control probe 796 will never emit the fluorescent signal 250. Referring to Figures 3 and 1 14, the negative control probe 796 does not have a fluorophore (and
S -66- 201209405 具有或不具有淬熄劑248)。因此,不論標靶核酸序列238 與探針雜交(見圖114)或是探針保持其莖-及-環組態(見 圖113) ’可忽略對激發光244之回應。替代性地,可設計S-66- 201209405 with or without quenching agent 248). Thus, regardless of whether the target nucleic acid sequence 238 hybridizes to the probe (see Figure 114) or the probe maintains its stem-and-loop configuration (see Figure 113), the response to the excitation light 244 can be ignored. Alternatively, it can be designed
負控制探針7 9 6使得其永遠保持淬熄。例如,藉由合成環 2 4 0而得到將不會與所硏究的樣本中之任何核酸序列雜交 之探針序列,探針分子之莖242將與其自身重新雜交,及 螢光團及淬熄劑將保持緊密相鄰且將不會發射可見的螢光 。此負控制信號對應於來自雜交腔室180的低階發射,於 雜交腔室1 80中探針未經雜交但是淬熄劑未淬熄來自指示 劑的所有發射。 相反地,建構無淬熄劑之正控制探針798,如圖1 1 5及 116中所示者。回應激發光244,不論正控制探針798是否 與標靶核酸序列23 8雜交,無物質使來自螢光圑246之螢光 發射25 0淬熄。 圖52顯示雜交腔室陣列110中的正及負控制探針(分 φ 別爲3 7 8及3 8 0 )之可行分佈。控制探針3 7 8及3 8 0係置於雜 交腔室180中並定位成橫越雜交腔室陣列11〇之線。然而, 陣列內之控制探針的配置係任意的(如同雜交腔室陣列 1 10之組態)。 蛋白質檢測變體 L Ο C裝置之一些具體實施例使用均質蛋白質檢測分析 以檢測粗細胞溶胞產物中之特定蛋白質。許多均質蛋白質 檢測分析已發展用於LOC裝置之這些具體實施例。通常這 -67- 201209405 些分析利用抗體或適體來擷取標靶蛋白質。The negative control probe 7 9 6 keeps it quenched forever. For example, by synthesizing loop 240, a probe sequence will be obtained that will not hybridize to any of the nucleic acid sequences in the sample of interest, the stem 242 of the probe molecule will rehybridize with itself, and the fluorophore and quench The agent will remain in close proximity and will not emit visible fluorescence. This negative control signal corresponds to a low order emission from the hybridization chamber 180 where the probe is not hybridized but the quencher does not quench all of the emission from the indicator. Conversely, a positive control probe 798 without quenching is constructed, as shown in Figures 115 and 116. The back-stress luminescence 244, whether or not the control probe 798 is hybridized to the target nucleic acid sequence 23, is free of material to quench the fluorescent emission 25 from the fluorescent 246. Figure 52 shows a possible distribution of positive and negative control probes in the hybrid chamber array 110 (divided into 3 7 8 and 3 80 ). Control probes 3 7 8 and 380 are placed in the hybrid chamber 180 and positioned to traverse the line of the hybrid chamber array 11 . However, the configuration of the control probes within the array is arbitrary (as is the configuration of the hybrid chamber array 1 10). Protein Detection Variants Some specific examples of L Ο C devices use homogeneous protein detection assays to detect specific proteins in crude cell lysates. Many homogeneous protein detection assays have been developed for these specific embodiments of LOC devices. Usually this -67- 201209405 These analyses use antibodies or aptamers to capture target proteins.
在一種分析類型中,結合至特定蛋白質142的適體141 以兩種不同的螢光團或發光團143和144標示,其可作爲螢 光共振能量轉移(FRET )或電化學發光共振能量轉移( ERET)反應中的予體和受體(見圖122A和122B)。予體 143和受體144皆連接至相同適體141,且當結合至標靶蛋 白質1 42時,構形的改變造成間隔的改變。例如,在缺乏 標靶之適體141形成予體和受體位於近端之構形(見圖 1 22 A ):當結合至標靶時,新的構形造成予體和受體間較 大的間隔(見圖1 22B )。當受體爲淬熄劑且予體爲發光團 ’結合至標靶的效應爲增加光發射250或8 62 (見圖122B )In one type of analysis, aptamer 141 bound to a particular protein 142 is labeled with two different fluorophores or luminescent groups 143 and 144, which can be used as fluorescence resonance energy transfer (FRET) or electrochemiluminescence resonance energy transfer ( ERET) Hosts and receptors in the reaction (see Figures 122A and 122B). Both the precursor 143 and the receptor 144 are linked to the same aptamer 141, and when bound to the target protein 142, the change in conformation causes a change in the spacing. For example, in the absence of a target aptamer 141, the conformation of the donor and acceptor is located at the proximal end (see Figure 1 22 A): when bound to the target, the new configuration results in a larger between the donor and the receptor. The interval (see Figure 1 22B). When the acceptor is a quencher and the precursor is a luminophore, the effect of binding to the target is to increase the light emission by 250 or 8 62 (see Figure 122B).
第二種分析類型使用必須獨立連接至不同且無重疊之 抗原表位或標靶蛋白質142區域的兩個抗體145或兩個適體 141(見圖123A,123B, 124A和124B)。這些抗體145或適 體141以不同螢光團或發光團143和144標示,其可作爲螢 光共振能量轉移(FRET )或電化學發光共振能量轉移( ERET )反應中的予體和受體。螢光團或發光團! 43和144 形成一部分之經由長彈性聯結子1 49接合至抗體或適體的 短互補寡核苷酸147對(見圖123A和124A)。一旦抗體 145或適體141連結至標靶蛋白質142,互補寡核苷酸147互 相碰上並彼此雜交(見圖123B和124B )。如此使予體和受 體143和144彼此靠近,導致有效之可用作標靶蛋白質檢測 之訊號的FRET 250或ERET 862。The second type of analysis uses two antibodies 145 or two aptamers 141 (see Figures 123A, 123B, 124A and 124B) that must be ligated independently to different and non-overlapping epitopes or target protein 142 regions. These antibodies 145 or aptamers 141 are labeled with different fluorophores or luminescent groups 143 and 144, which serve as precursors and receptors in fluorescence resonance energy transfer (FRET) or electrochemiluminescence resonance energy transfer (ERET) reactions. Fluorescent or luminous group! 43 and 144 form a portion of a short complementary oligonucleotide pair 147 that is joined to the antibody or aptamer via a long elastic linker 1 49 (see Figures 123A and 124A). Once antibody 145 or aptamer 141 is linked to target protein 142, complementary oligonucleotides 147 collide with each other and hybridize to each other (see Figures 123B and 124B). Thus, the donor and acceptors 143 and 144 are brought close to each other, resulting in an effective FRET 250 or ERET 862 that can be used as a signal for target protein detection.
S -68- 201209405S -68- 201209405
爲了確定沒有,或非常少的背景訊號起因於接合至兩 個抗體145或適體141的寡核苷酸147在沒有接合至蛋白質 142的情況下彼此雜交,需要小心地選擇互補寡核苷酸147 的序列和長度’使得雙股的解離常數(kd )相當高(~5μΜ )。因此’當以這些寡核苷酸標示之游離抗體或適體以毫 微莫耳濃度混合時,恰巧低於其kd之莫耳濃度,雙股形成 的機率和產生之FRET 250或ERET 862訊號係可忽略。然 而,當抗體145兩者或適體141兩者皆接合至標靶蛋白質 142,寡核苷酸147的區域濃度將遠高於其1^,造成幾乎完 全雜交並且產生可檢測之FRET 250或ERE T 862訊號。 當設計一個均質蛋白質檢測分析時,螢光團或發光團 的選擇爲重要的考量。粗細胞溶胞產物通常爲混濁的,且 可能包含自動發螢光的物質。在這種情況下,需要使用具 有長效螢光或電化學發光的分子以及最適化以發出最大 FRET 25 0或ERET 8 62之予體-受體對143和144。一個此予 φ 體-受體對爲銪螯合物和Cy5,當與其他的予體-受體對相 比時,此種予體-受體對先前已顯示在此種系統能顯著增 進訊號-背景比,其藉由在干擾背景螢光、電化學發光或 散射光衰減後使訊號被讀取。銪螯合物和AlexaFUor 647 或铽螯合物和Fluorescein FRET或ERET對亦可良好作用。 這個方法的靈敏度和特異性與酵素連結免疫吸附法( ELISA)相似,但不須對樣本進行操控。 在LOC裝置的一些具體實施例,抗體145之一者或適 體141之一者係接合至蛋白質體分析腔室124 (例如見圖 -69- 201209405 125和126 ),且蛋白質溶胞產物係在溶胞期間於化學溶胞 部130內與另一抗體145或適體141結合以促進在進入蛋白 質體分析腔室124之前接合至第一抗體丨45或適體Ml。當 在蛋白質體分析腔室中僅需要一個接合或雜交事件,此可 增加接續之速度和產生的可檢測訊號。 螢光團設計In order to determine that there is no, or very little, background signal due to the hybridization of oligonucleotides 147 ligated to two antibodies 145 or aptamer 141 to each other without ligating to protein 142, careful selection of complementary oligonucleotides 147 is required. The sequence and length ' makes the dissociation constant (kd) of the double strands quite high (~5μΜ). Therefore, 'when the free antibodies or aptamers labeled with these oligonucleotides are mixed at a nanomolar concentration, it happens to be lower than the molar concentration of kd, the probability of double-strand formation and the FRET 250 or ERET 862 signal system produced. Ignorable. However, when both antibody 145 or aptamer 141 are conjugated to target protein 142, the regional concentration of oligonucleotide 147 will be much higher than its level, resulting in almost complete hybridization and producing a detectable FRET 250 or ERE T 862 signal. The choice of fluorophores or luminophores is an important consideration when designing a homogeneous protein assay. Crude cell lysates are typically turbid and may contain substances that autofluorescent. In this case, it is necessary to use molecules with long-acting fluorescence or electrochemiluminescence as well as donor-acceptor pairs 143 and 144 optimized to emit maximum FRET 25 0 or ETER 8 62. One such φ-body-receptor pair is a ruthenium chelate and Cy5, which, when compared to other host-receptor pairs, has previously been shown to significantly enhance the signal in such systems. - Background ratio, which causes the signal to be read by attenuating background fluorescence, electrochemiluminescence or scattered light attenuation. The ruthenium chelate and the AlexaFUor 647 or ruthenium chelate and the Fluorescein FRET or ERET pair also work well. The sensitivity and specificity of this method is similar to that of enzyme-linked immunosorbent assay (ELISA), but does not require manipulation of the sample. In some embodiments of the LOC device, one of the antibodies 145 or one of the aptamers 141 is ligated to the proteomic analysis chamber 124 (see, for example, Figure-69-201209405 125 and 126), and the protein lysate is During lysis, it is combined with another antibody 145 or aptamer 141 within chemical lysis portion 130 to facilitate binding to first antibody 丨45 or aptamer M1 prior to entry into proteomic analysis chamber 124. This requires an increase in the speed of the connection and the resulting detectable signal when only one junction or hybridization event is required in the proteomic analysis chamber. Fluorescent group design
需要具長螢光壽命之螢光團以允許激發光具足夠時間 來衰變至較致能光感測器44時之螢光發射的強度爲低之強 度,藉此提高充分的信號對雜訊比。而且,較長的螢光壽 命代表較大之整合的螢光子計數。 螢光團246 (見圖59)之螢光壽命大於100奈秒、經常 大於200奈秒、更常見爲大於3 00奈秒,以及於大多數的情 況中爲大於400奈秒。A fluorophore having a long fluorescent lifetime is required to allow the excitation light to have sufficient time to decay to a lower intensity of the fluorescent emission when the photosensor 44 is enabled, thereby increasing the sufficient signal-to-noise ratio . Moreover, longer fluorescence lifetimes represent larger integrated fluorescence counts. The fluorescence lifetime of fluorophore 246 (see Figure 59) is greater than 100 nanoseconds, often greater than 200 nanoseconds, more typically greater than 300 nanoseconds, and in most cases greater than 400 nanoseconds.
以過渡金屬或鑭系金屬爲底的金屬-配位子複合體具 長壽命(自數百奈秒至毫秒)、適當的量子產率,以及高 熱、化學及光化學穩定性,此等特性均爲相關於螢光檢測 系統需求之有利特性。 以過渡金屬離子釕(Ru(II))爲底之經特別地徹底硏 究之金屬-配位子複合體爲參(2,2’-聯吡啶)釕(II )( [Ru(bpy)3]2+),彼之壽命爲約此複合體可購自 Biosearch Technologies,其商品名爲Pulsar 650。 -70-Metal-coordination complexes based on transition metals or lanthanide metals have long lifetimes (from hundreds of nanoseconds to milliseconds), appropriate quantum yields, and high thermal, chemical, and photochemical stability. It is a beneficial feature related to the needs of fluorescent detection systems. A metal-coordination complex based on the transition metal ion ruthenium (Ru(II)), which is particularly thoroughly studied, is ginseng (2,2'-bipyridyl) ruthenium (II) ([Ru(bpy)3) ] 2+), the lifetime of which is about this complex is available from Biosearch Technologies under the trade name Pulsar 650. -70-
S 201209405 表1 :Pulsar 650(釕螯合物)之光物理性質 參數 符號 値 單位一 吸收波長 ^abs 460 nm 發射波長 λβπι 650 nm 一 吸光係數 Ε 14800 M*1 cm'1 _ 螢光壽命 Tf 1.0 μδ 一 量子產率 Η 1(去氧的) Ν/Α 一 鑭系金屬-配位子複合體,铽螯合物,已成功地顯示 作爲FRET探針系統中的螢光指示劑,且具有1 600μ5之長壽S 201209405 Table 1: Photophysical properties of Pulsar 650 (钌 chelate) Parameter symbol 値 Unit-absorption wavelength ^abs 460 nm Emission wavelength λβπι 650 nm Absorption coefficient Ε 14800 M*1 cm'1 _ Fluorescence lifetime Tf 1.0 Δδ a quantum yield Η 1 (deoxygenated) Ν/Α a lanthanide metal-coordination complex, a ruthenium chelate, has been successfully shown as a fluorescent indicator in the FRET probe system with 1 Long life of 600μ5
命。 表2 :铽螯合物之光物理怕 濱 一 參數 符號 値 單位一 吸收波長 ^abs 330-350 nm 發射波長 λέπι 548 nm 吸光係數 Ε 13800 (與、bs及配位子相依,可高至30000 @ λε=340 nm) M*1 cm'1 璧光壽命 Tf 1600 (雜交的探針) μδ 量子產率 Η 1 (與配位子相依) Ν/Α LOC裝置301所使用的螢光檢測系統不利用濾鏡來移 除不想要的背景螢光。若淬熄劑248無天然發射以增加信 號-對-雜訊比,則因此具有優勢。無天然發射,則淬熄劑 248不貢獻至背景螢光。高淬熄效率亦爲重要者,此使得 雜交發生前沒有螢光。購自加州Novato市之Biosearch Technologies,Inc.的黑洞淬熄劑(BHQ)不具有天然發射 及具有高淬熄效率,以及係用於系統之合適的淬熄劑。 BHQ-1之最大吸收値發生於534 nm及淬熄範圍爲480-580 nm,使得其爲用於Tb-螯合物螢光團之合適的淬熄劑。 -71 - 201209405 BHQ-2之最大吸收値發生於579 nm及淬熄範圍爲560-670 nm使得其爲用於Pulsar 6 5 0之合適的淬熄劑。Life. Table 2: Photochemical stagnation of ruthenium chelate a parameter symbol 値 unit-absorption wavelength ^abs 330-350 nm emission wavelength λέπι 548 nm absorption coefficient Ε 13800 (depending on, bs and ligand, up to 30000 @ Λε=340 nm) M*1 cm'1 璧 light lifetime Tf 1600 (hybridization probe) μδ quantum yield Η 1 (coordination dependent) Ν/Α The fluorescence detection system used in the LOC device 301 is not utilized. Filter to remove unwanted background fluorescence. It is therefore advantageous if the quencher 248 has no natural emission to increase the signal-to-noise ratio. Without natural emission, the quencher 248 does not contribute to background fluorescence. High quenching efficiency is also important, which results in no fluorescence before hybridization occurs. Black Hole Quencher (BHQ), available from Biosearch Technologies, Inc. of Novato, Calif., does not have natural emissions and has high quenching efficiency, as well as suitable quenchers for use in systems. The maximum absorption enthalpy of BHQ-1 occurs at 534 nm and the quenching range is 480-580 nm, making it a suitable quencher for Tb-chelate fluorophores. -71 - 201209405 The maximum absorption enthalpy of BHQ-2 occurs at 579 nm and the quenching range is 560-670 nm making it a suitable quencher for Pulsar 6 50.
購自愛.荷華州 Coralville市之 Integrated DNA Technologies 的愛荷華黑淬熄劑(Iowa Black FQ及RQ)爲適合的具有 少許或無背景發射之替代性淬熄劑。Iowa Black FQ之淬熄 範圍爲420-620 nm’於531 nm具有最大吸收値,並因此爲 用於Tb-螯合物螢光團之合適的淬熄劑。i〇wa Black RQ於 656 nm具有最大吸收値及淬熄範圍爲500-700 nm,使得其 爲用於Pulsar 6 50之理想淬熄劑。 於本文所述之具體實施例中,淬熄劑2 4 8爲初始時即 附著於探針之功能部分,但於其他具體實施例中,淬熄劑 可爲游離於溶液中之分離的分子。 激發源Iowa Black FQ and RQ from Integrated DNA Technologies of Coralville, Iowa, are suitable alternative quenchers with little or no background emission. Iowa Black FQ has a quenching range of 420-620 nm' with a maximum absorption enthalpy at 531 nm and is therefore a suitable quencher for Tb-chelate fluorophores. The i〇wa Black RQ has a maximum absorption enthalpy at 656 nm and a quenching range of 500-700 nm, making it an ideal quencher for Pulsar 6 50. In the specific embodiments described herein, the quencher 248 is a functional portion that is initially attached to the probe, but in other embodiments, the quencher can be a separate molecule that is free of solution. Excitation source
在本文描述之螢光檢測爲基礎的具體實施例中,因爲 低功率消耗、低成本和小尺寸,LED係選做替代雷射二極 體、高功率電燈或雷射的激發源。參照圖87,LED26係直 接安置於LOC裝置301之外部表面上之來自各腔室之雜交 腔室陣列1 1 0上。在雜交腔室陣列1 1 〇之對側爲光感測器44 ,其由用於檢測螢光訊號之光二極體1 8 4的陣列所組成( 見圖53、54和65 )。 圖88、89和90槪述用於將探針暴露於激發光之其他具 體實施例。在顯示於圖88之LOC裝置30中,由激發LED26 所產生之激發光244係由透鏡254導向雜交腔室陣列110之 -72-In the specific embodiment based on the fluorescence detection described herein, the LED is selected as an excitation source instead of a laser diode, a high power lamp or a laser because of low power consumption, low cost, and small size. Referring to Fig. 87, LEDs 26 are directly disposed on the outer surface of the LOC device 301 from the hybrid chamber array 110 of each chamber. Opposite to the hybridization chamber array 1 1 为 is a photo sensor 44 consisting of an array of photodiodes 1 8 4 for detecting fluorescent signals (see Figures 53, 54 and 65). Figures 88, 89 and 90 summarize other specific embodiments for exposing the probe to excitation light. In the LOC device 30 shown in FIG. 88, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254 to the hybridization chamber array 110-72-
S 201209405 上。脈衝激發激發LED26且由光感測器44檢測螢光發射。 在圖89所顯示之LOC裝置30中,由激發LED26所產生 之激發光2 44係由透鏡254、第一光稜鏡712和第二光稜鏡 714導向雜交腔室陣列110之上。脈衝激發激發LED26且由 光感測器44檢測螢光發射。S 201209405. The pulse excitation excites the LED 26 and the photodetector 44 detects the fluorescent emission. In the LOC device 30 shown in Fig. 89, the excitation light 2 44 generated by the excitation LED 26 is directed by the lens 254, the first aperture 712 and the second aperture 714 over the hybridization chamber array 110. The pulse excitation excites the LED 26 and is detected by the photo sensor 44.
同樣地,顯示於圖90之LOC裝置30,由激發LED26所 產生之激發光244係由透鏡254、第一鏡716和第二鏡718導 向雜交腔室陣列110之上。再次脈衝激發激發LED26且由 光感測器44檢測螢光發射。 LED26的激發波長係倚賴螢光染料的選擇。Philips LXK2-PR14-R00爲針對Pulsar 65 0染料之合適的激發源。 SET UVT0P 3 3 5 T039BL LED係針對鉞螯合物標記之合適的 激發源。 表3:Philips LXK2-PR14-R00 LED規格Similarly, the LOC device 30 shown in FIG. 90, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254, the first mirror 716, and the second mirror 718 over the hybridization chamber array 110. The LED 26 is excited by the pulse excitation again and the fluorescent emission is detected by the photo sensor 44. The excitation wavelength of LED 26 relies on the choice of fluorescent dye. Philips LXK2-PR14-R00 is a suitable excitation source for Pulsar 65 0 dye. SET UVT0P 3 3 5 T039BL LED is a suitable excitation source for the ruthenium chelate label. Table 3: Philips LXK2-PR14-R00 LED Specifications
參數 符號 値 單位 波長 λβχ 460 nm 發射頻率 Vem 6.52(10)14 Hz 輸出功率 Pi 0.515(分鐘)@ ΙΑ W 輻射圖案 Lambertian數據圖 N/A 表 4:SET UVT0P334T039BL LED 規格Parameter Symbol 値 Unit Wavelength λβχ 460 nm Transmit frequency Vem 6.52(10)14 Hz Output power Pi 0.515 (minutes) @ ΙΑ W Radiation pattern Lambertian data sheet N/A Table 4: SET UVT0P334T039BL LED Specifications
參數 符號 値 單位 波長 Xe 340 nm 發射頻率 Ve 8.82(10)14 Hz 功率 Pi 0.000240(分鐘)@ 20mA W 脈衝正向電流 I 200 mA 輻射圖案 Lambertian N/A -73- 201209405 紫外光激發光 矽在uv光譜中吸收少量光。因此,使用uv激發光是 有利的。可使用UV LED激發源,但LED26之寬光譜降低此 方法之效果。爲了說明此,使用經過濾的UV LED。隨意 地,UV雷射可爲激發源,除非相當高的雷射花費對於特 定的試驗模組市場不實用。Parameter symbol 値 unit wavelength Xe 340 nm Transmitting frequency Ve 8.82(10)14 Hz Power Pi 0.000240 (minutes) @ 20mA W Pulse forward current I 200 mA Radiation pattern Lambertian N/A -73- 201209405 Ultraviolet excitation pupil in uv A small amount of light is absorbed in the spectrum. Therefore, it is advantageous to use uv excitation light. A UV LED excitation source can be used, but the broad spectrum of LED 26 reduces the effectiveness of this method. To illustrate this, a filtered UV LED is used. Optionally, a UV laser can be an excitation source unless a relatively high laser cost is not practical for a particular test module market.
LED驅動器 LED驅動器29針對所需的持續時間在固定電流下驅動 LED26。低功率USB2.0認證裝置可在至多1單位負載(1〇〇 毫安培)以最小操作電壓4.4伏特得到。標準電力調節電 路係用於此目的。 光二極體LED Driver The LED driver 29 drives the LED 26 at a fixed current for the desired duration. The low-power USB 2.0 certified device is available with a minimum operating voltage of 4.4 volts for up to 1 unit load (1 mA). Standard power conditioning circuits are used for this purpose. Light diode
圖54顯示光二極體184,其合倂於LOC裝置301之 CMOS電路86。光二極體184係在沒有額外遮罩或步驟下製 成CMOS電路86之一部分。這是CMOS光二極體優於CCD之 一項顯著的優點,CCD爲另一種感測技術,其可使用非標 準式加工步驟整合到同一晶片上或者製於相鄰晶片上。晶 片上檢測係花費低廉且降低分析系統的尺寸。較短光學路 徑長度降低來自週遭環境的雜訊以有效收集該螢光訊號, 以及抑制對於透鏡及濾鏡之傳統光學總成之需求。 光二極體184之量子效率爲光子衝撞其有效區185之分 率’光子係有效轉換成光電子。對於標準矽處理,對於可 -74-Figure 54 shows photodiode 184 that is integrated into CMOS circuit 86 of LOC device 301. Light diode 184 forms part of CMOS circuit 86 without additional masking or steps. This is a significant advantage of CMOS photodiodes over CCDs, another sensing technique that can be integrated onto the same wafer or fabricated on adjacent wafers using non-standard processing steps. On-chip inspection is inexpensive and reduces the size of the analytical system. The shorter optical path length reduces noise from the surrounding environment to efficiently collect the fluorescent signal and to suppress the need for conventional optical assemblies for lenses and filters. The quantum efficiency of photodiode 184 is the fraction of photons colliding with its effective region 185. The photonic system is efficiently converted into photoelectrons. For standard 矽 processing, for -74-
S 201209405 見光該量子效率根據處理參數(諸如覆蓋層之數量及吸收 性質)係在0.3至0.5的範圍中。S 201209405 Seeing the quantum efficiency is based on processing parameters such as the number of cap layers and absorption properties in the range of 0.3 to 0.5.
光二極體1 84之檢測閥値決定可被檢測之螢光訊號的 最小強度。檢測閥値亦決定光二極體1 8 4的尺寸大小以及 在雜交及檢測部52中之雜交腔室180數目(見圖52)。腔 室的尺寸大小和數量爲技術參數,其由LOC裝置的尺寸( LOC裝置301的實例中,其尺寸爲1 760微米χ 5 824微米)所 限制,且合倂其他功能性模組(諸如病原體透析部7 0及擴 增部1 1 2 )之後可用之不動物件的尺寸所限制。 對於標準矽處理,光二極體184最少檢測5個光子。然 而’爲了確認可信賴的檢測,最小値可設爲十個光子。因 此以量子效率範圍在0.3至0.5 (如上所討論),來自等探 針之螢光發射爲最少17個光子,而針對可靠檢測30個光子 包含的的合適誤差界線。 φ 校準腔室 光二極體184的電學特性之不均勻性、自動螢光和尙 未完全衰減之剩餘激發光子通量將背景雜訊引入並偏移至 輸出訊號。使用一或多種校準訊號將背景自各輸出訊號移 除。校準訊號藉由將在陣列中之一或多種校準光二極體 184暴露於各自的校準源而產生。低校準源用來判斷標靶 尙未與探針反應之負結果。高校準源代表自探針-標靶複 合物造成的正結果。在本文所描述的具體實施例,低校準 光源由在雜交腔室陣列11〇中之校準腔室382所提供,其: -75- 201209405 不含任何探針; 包含不具有螢光指示劑的探針;或 包含具有指示劑的探針和配置使得總是預期發生淬熄 的淬熄劑。The detection valve of the photodiode 1 84 determines the minimum intensity of the fluorescent signal that can be detected. The detection valve 値 also determines the size of the photodiode 184 and the number of hybridization chambers 180 in the hybridization and detection section 52 (see Figure 52). The size and number of chambers are technical parameters that are limited by the size of the LOC device (1 760 microns χ 5 824 microns in the example of LOC device 301) and incorporate other functional modules (such as pathogens) The dialysis portion 70 and the amplification portion 1 1 2) are limited by the size of the non-animal pieces that can be used thereafter. For standard 矽 processing, photodiode 184 detects at least 5 photons. However, in order to confirm reliable detection, the minimum chirp can be set to ten photons. Thus, with quantum efficiencies ranging from 0.3 to 0.5 (as discussed above), the fluorescence emission from the iso probe is a minimum of 17 photons, and the appropriate error bounds for reliable detection of 30 photons are included. φ Calibration Chamber The non-uniformity of the electrical characteristics of the photodiode 184, autofluorescence, and residual excitation photon flux that are not fully attenuated introduces background noise and shifts to the output signal. Use one or more calibration signals to remove the background from each output signal. The calibration signal is generated by exposing one or more of the calibration photodiodes 184 in the array to respective calibration sources. A low calibration source is used to determine the negative result of the target 尙 not reacting with the probe. A high calibration source represents a positive result from the probe-target complex. In the specific embodiment described herein, the low calibration source is provided by a calibration chamber 382 in the hybridization chamber array 11A, which: -75-201209405 does not contain any probes; includes probes that do not have a fluorescent indicator A needle; or a probe comprising an indicator and a configuration such that quenching agents are always expected to undergo quenching.
來自此種校準腔室3 82之輸出訊號非常接近來自在 LOC裝置中之所有雜交腔室的輸出訊號中的雜訊和偏差。 自其他雜交腔室所產生的輸出訊號減去校準訊號大體上移 除了背景和留下由螢光發射產生的訊號(若有產生任何訊 號的話)。自腔室陣列之區域中的環境光線產生的訊號亦 被去除。The output signal from such a calibration chamber 382 is very close to the noise and bias in the output signal from all of the hybridization chambers in the LOC device. The output signal from the other hybridization chamber minus the calibration signal substantially removes the background and leaves the signal generated by the fluorescent emission (if any signal is generated). Signals generated by ambient light in the area of the array of chambers are also removed.
可理解的是參考圖113至116之上述負控制組探針可用 於校準腔室。然而,如圖104和105所示,其爲顯示於圖85 之LOC變體X728的插圖DG和DH之放大圖,另一選項爲將 校準腔室3 8 2與擴增子流體隔離。當雜交由流體隔離阻止 時,背景雜訊和偏差可由將流體隔離之腔室淨空或藉由包 含缺少指示劑的探針或確切具有指示劑與淬熄劑兩者的任 何“標準”探針來判斷》 校準腔室382可提供高校準源以於對應的光二極體產 生高訊號。高訊號對應在已雜交腔室中的所有探針。以指 示劑且無淬熄劑或僅以指示劑點樣探針將一致地提供近似 雜交腔室訊號之訊號,主要數量之探針已於雜交腔室內雜 交。將可理解校準腔室3 82可用以代替控制探針或加至控 制探針上。 遍布雜交腔室陣列的校準腔室382的數量和安排是隨It will be appreciated that the negative control group probes described above with reference to Figures 113 through 116 can be used in the calibration chamber. However, as shown in Figures 104 and 105, which is an enlarged view of the inset DG and DH of the LOC variant X728 shown in Figure 85, another option is to isolate the calibration chamber 382 from the amplicon fluid. When hybridization is prevented by fluid isolation, background noise and bias can be cleared by chambers that isolate the fluid or by any probe that contains a missing indicator or any "standard" probe that has both an indicator and a quencher. Judgment The calibration chamber 382 can provide a high calibration source to generate a high signal for the corresponding photodiode. The high signal corresponds to all probes in the hybridized chamber. The indicator, with no quencher or only the indicator spotting probe, will consistently provide a signal that approximates the hybridization chamber signal, and the majority of the probes have been hybridized within the hybridization chamber. It will be appreciated that the calibration chamber 382 can be used in place of or in addition to the control probe. The number and arrangement of calibration chambers 382 throughout the array of hybrid chambers is
S -76- 201209405 意的。然而,若光二極體184由相對最近的校準腔室382校 準,則校準較準確。參考圖56,雜交腔室陣列110對於每 八個雜交腔室18 0具有一個校準腔室382。也就是說,校準 腔室3 82係安置於每個三乘三之正方形雜交腔室180的中間 。在這個配置中,雜交腔室係由緊接鄰近的雜交腔室 3 8 2所校準。S -76- 201209405 Meaning. However, if the photodiode 184 is calibrated by the relatively closest calibration chamber 382, the calibration is more accurate. Referring to Figure 56, hybridization chamber array 110 has a calibration chamber 382 for every eight hybridization chambers 18 0 . That is, the calibration chamber 382 is disposed in the middle of each of the three by three square hybridization chambers 180. In this configuration, the hybridization chamber is calibrated by the adjacent hybridization chamber 382.
由於從周圍雜交腔室180之自螢光訊號的激發光,圖 112顯示用以自對應校準腔室382之光二極體184減除訊號 的差分成像器電路78 8。差分成像器電路7 8 8自像素790和“ 虛擬”像素792取樣訊號。在一個具體實施例中’“虛擬”像 素792係被遮住以防光照射,所以其輸出訊號提供暗參考 像素。或者,“虛擬”像素792可和陣列的其餘部分暴‘露於 激發光。在一個具體實施例中,“虛擬”像素792是可以接 受光的,自腔室陣列之區域中的環境光線產生的訊號亦可 被減除。來自像素790的訊號是微弱的(例如,接近暗訊 號),且沒有參考暗訊號位準會很難分辨背景値與非常微 弱的訊號。 在使用期間,啓動“讀取_列” 794和“讀取_列_(1” 795 且開啓M4 797和MD4 8 0 1電晶體。關閉開關807和809使得 來自像素790及“虛擬”像素792的輸出各自儲存在像素電容 器8 03及虛擬像素電容器805上。在像素訊號被儲存後,停 用開關807和809。然後關閉“讀取_行”開關81 1和虛擬“讀 取_行”開關8 13,且在輸出的該轉換的電容器放大器81 5放 大差分訊號817。 -77- 201209405 光二極體之抑制及致能Due to the excitation light from the fluorescent signal from the surrounding hybridization chamber 180, FIG. 112 shows a differential imager circuit 78 8 for subtracting the signal from the photodiode 184 of the corresponding calibration chamber 382. The differential imager circuit 7 8 8 samples the signal from the pixel 790 and the "virtual" pixel 792. In one embodiment, the "virtual" pixel 792 is shielded from light illumination, so its output signal provides dark reference pixels. Alternatively, the "virtual" pixel 792 can be "exposed to the excitation light" with the rest of the array. In one embodiment, the "virtual" pixel 792 is light-receiving, and signals from ambient light in the area of the array of cells can also be subtracted. The signal from pixel 790 is weak (e.g., close to a dark signal), and it is difficult to distinguish between background and very weak signals without reference to the dark signal level. During use, "Read_Column" 794 and "Read_Column_(1" 795 are enabled and M4 797 and MD4 8 0 1 transistors are turned on. Off switches 807 and 809 are turned off from pixel 790 and "virtual" pixel 792 The outputs are each stored on pixel capacitor 803 and virtual pixel capacitor 805. After the pixel signal is stored, switches 807 and 809 are disabled. Then the "read_row" switch 81 1 and the virtual "read_row" switch are turned off. 8 13, and the output of the converted capacitor amplifier 81 5 amplifies the differential signal 817. -77- 201209405 Light diode suppression and activation
於LED 26激發期間必須抑制光二極體184及於螢光期 間必須致能光二極體184。圖66爲單一光二極體184之電路 圖及圖67爲光二極體控制信號之時序圖。電路具有光二極 體 184及六個 MOS電晶體,Mshun, 394、Mtx 3 96、Mreset 3 98、Msf 400、Mread 402 及 Mbias 404。於激發循環開始時 ,藉由Mshunt閘極3 84加高壓及重設閘極3 8 8爲高壓而開啓 tl、電晶體Mshunt 3 94及Mreset 398。於此期間,激發光子 於光二極體184中產生載子。當產生的載子量可充分使光 二極體184飽和時,此等載子必須被移除。於此循環期間 ,因電晶體的洩漏或因基板中之激發-產生的載子擴散, Mshunt 3 94直接地移除光二極體184中所產生的載子,而 Mreset 3 9 8重設累積於節點‘NS’ 406之任何載子。於激發之 後,於t4開始俘獲循環。於此循環中,來自螢光團之發射 的回應被俘獲並整合入節點‘NS’ 406上的電路。此藉由tx 閘極386加高壓而達成,此開啓電晶體Mtx 396及轉移光二 極體184上任何累積的載體至節點‘NS’ 406。俘獲循環期 間可如營光發射般長。來自雜交腔室陣列110中之所有光 二極體184的輸出同時被俘獲。 於結束俘獲循環t5與開始讀取循環t6之間具有延遲。 此延遲肇因於,在俘獲循環之後,分別讀取雜交腔室陣列 110中之各光二極體184的需求(見圖52)。待讀取的第一 光二極體184於讀取循環之前將具有最短的延遲,而最後The photodiode 184 must be suppressed during the excitation of the LED 26 and the photodiode 184 must be enabled during the fluorescent period. Fig. 66 is a circuit diagram of a single photodiode 184 and Fig. 67 is a timing diagram of an optical diode control signal. The circuit has a photodiode 184 and six MOS transistors, Mshun, 394, Mtx 3 96, Mreset 3 98, Msf 400, Mread 402, and Mbias 404. At the beginning of the excitation cycle, tl, transistor Mshunt 3 94 and Mreset 398 are turned on by Mshunt gate 3 84 plus high voltage and reset gate 38 8 for high voltage. During this period, the photons are excited to generate carriers in the photodiode 184. These carriers must be removed when the amount of carrier produced is sufficient to saturate the photodiode 184. During this cycle, Mshunt 3 94 directly removes the carriers generated in photodiode 184 due to leakage of the transistor or diffusion of the carrier due to excitation in the substrate, while Mreset 3 9 8 is reset. Any carrier of node 'NS' 406. After the excitation, the capture cycle begins at t4. In this loop, the response from the emission of the fluorophore is captured and integrated into the circuitry on node 'NS' 406. This is achieved by applying a high voltage to the tx gate 386, which turns on the transistor Mtx 396 and any accumulated carrier on the transfer photodiode 184 to the node 'NS' 406. The capture cycle can be as long as the campfire launch. The output from all of the photodiodes 184 in the hybrid chamber array 110 is simultaneously captured. There is a delay between the end of the capture cycle t5 and the start of the read cycle t6. This delay is due to the need to read the respective photodiodes 184 in the hybridization chamber array 110 after the capture cycle (see Figure 52). The first photodiode 184 to be read will have the shortest delay before the read cycle, and finally
S -78- 201209405 光二極體184於讀取循環之前將具有最長的延遲。於讀取 循環期間,藉由對讀取閘極393加高壓而開啓電晶體 Mread 402。使用源極-隨耦器電晶體Msf 400來緩衝及讀出 ‘NS’節點406之電壓。 以下討論另外之任意的致能或抑制光二極體之方法: 1. 抑制方法S -78- 201209405 Light diode 184 will have the longest delay before the read cycle. During the read cycle, the transistor Mread 402 is turned on by applying a high voltage to the read gate 393. The source-slaffer transistor Msf 400 is used to buffer and read the voltage of the 'NS' node 406. Any other method of enabling or suppressing a photodiode is discussed below: 1. Inhibition method
圖109、110及111顯示用KMshunt電晶體394之三種可 行的組態77 8、7 8 0、78 2。於激發期間被致能之最大値 M = 5 V時,Mshunt電晶體394具有非常高的關閉比。如圖 109中所示者,Mshunt閘極3 84係組態成位於光二極體184之 緣上。任意地,如圖1 1 〇中所示者,Mshunt閘極3 84係可組 態成環繞光二極體184。第三個選擇爲將Mshunt閘極3 84組 構於光二極體184之內,如圖111中所示者。依此第三選擇 ,光二極體有效區1 8 5較少。 這三種組態77 8、7 80及7 82降低自光二極體184中所有 位置至Mshunt閘極3 84之平均路徑長度。於圖109中,Mshun, 閘極3 84係於光二極體184之一側上。此爲用以製造之最簡 單且對於光二極體有效區1 8 5衝擊最小的組態。然而,滯 留於光二極體184遠端之任何載子需要較長時間以擴散通 過 MShunt閘極 384。 於圖110中,Mshunt閘極384環繞光二極體184。此進一 步降低光二極體184中之載子至Mshunt閘極384之平均路徑 長度。然而,繞光二極體184周圍而延伸Mshunt閘極3 84造 -79- 201209405 成光二極體有效區1 85大幅縮減。於圖1 1 1中之組態782將 MShunt閘極384定位於有效區185中。此提供了至MShunt閘極 3 84的最短平均路徑長度及因此得到最短過渡時間。然而 ,對於有效區185之衝擊最大。其亦造成較寬的洩漏路徑 2. 致能方法Figures 109, 110 and 111 show three possible configurations 77 8 , 7 8 0, 78 2 using KMshunt transistor 394. Mshunt transistor 394 has a very high turn-off ratio when the maximum 値 M = 5 V is enabled during excitation. As shown in FIG. 109, the Mshunt Gate 3 84 is configured to be located on the edge of the photodiode 184. Optionally, as shown in Figure 1-1, the Mshunt Gate 3 84 can be configured to surround the photodiode 184. The third option is to structure the Mshunt gate 3 84 within the photodiode 184, as shown in FIG. According to the third option, the effective area of the photodiode is less than 1 8 5 . These three configurations 77 8 , 7 80 and 7 82 reduce the average path length from all positions in the photodiode 184 to the Mshunt gate 3 84. In Fig. 109, Mshun, gate 3 84 is attached to one side of the photodiode 184. This is the simplest configuration to make and the smallest impact on the active area of the photodiode. However, any carrier remaining at the far end of the photodiode 184 takes a long time to diffuse through the MShunt gate 384. In FIG. 110, the Mshunt gate 384 surrounds the photodiode 184. This further reduces the average path length of the carriers in the photodiode 184 to the Mshunt gate 384. However, the Mshunt gate 3 84 is extended around the photodiode 184. -79- 201209405 The light-emitting diode active area 1 85 is greatly reduced. The configuration 782 in FIG. 1 1 1 positions the MShunt gate 384 in the active area 185. This provides the shortest average path length to the MShunt gate 3 84 and thus the shortest transition time. However, the impact on the active area 185 is greatest. It also creates a wide leakage path.
a. 觸發器光二極體以固定的延遲來驅動並聯電晶體 b. 觸發器光二極體以可程控的延遲來驅動並聯電晶 體。 由LED驅動脈衝以固定的延遲來驅動並聯電晶體 d. 如2c般但以可程控的延遲來驅動並聯電晶體。a. The flip-flop photodiode drives the shunt transistor with a fixed delay b. The flip-flop photodiode drives the shunt transistor with a programmable delay. The parallel transistor is driven by the LED drive pulse with a fixed delay d. The parallel transistor is driven as a 2c but with a programmable delay.
圖69爲透過雜交腔室180顯示埋入於CMOS電路86中之 光二極體184及觸發器光二極體187之槪略剖視圖。以觸發 器光二極體187取代光二極體184之角落中的小面積。因相 較於螢光發射時激發光的強度爲高,具小面積之觸發器光 二極體187係充分的。觸發器光二極體187係對激發光244 爲敏感。觸發器光二極體187顯示激發光2 44已熄滅並於短 暫延遲Δί 300之後啓動光二極體184(見圖2)。此延遲使 得螢光光二極體1 84得以於沒有激發光244時檢測來自 FRET探針186之螢光發射。此致能檢測及增進信號對雜訊 比。69 is a schematic cross-sectional view showing the photodiode 184 and the flip-flop photodiode 187 buried in the CMOS circuit 86 through the hybridization chamber 180. The small area in the corner of the photodiode 184 is replaced by the trigger photodiode 187. Since the intensity of the excitation light is high as compared with the fluorescence emission, the trigger light diode 187 having a small area is sufficient. The flip-flop photodiode 187 is sensitive to the excitation light 244. The flip-flop photodiode 187 shows that the excitation light 2 44 has extinguished and activates the photodiode 184 (see Fig. 2) after a short delay of Δί 300 . This delay causes the fluorescent photodiode 1 84 to detect the fluorescent emission from the FRET probe 186 when there is no excitation light 244. This enables detection and enhancement of signal to noise ratio.
S -80- 201209405S -80- 201209405
於各雜交腔室180下,光二極體184及觸發器光二極體 1S7兩者均位於CMOS電路86中。光二極體陣列與適當電子 組件合倂以形成光感測器44 (見圖65 )。光二極體184爲 CMOS結構製造期間所製成的pn接面而不需另外的遮罩或 步驟。於MST製造期間,光二極體184之上的介電層(未 顯示)係利用標準MST光蝕刻技術而任意地薄化以使更多 螢光照射光二極體184的有效區185。光二極體184具有視 場,使得來自雜交腔室180內之探針-標靶雜交體的螢光信 號入射至感測器表面上。轉換螢光成爲接著可使用CMOS 電路86而被測量的光電流。 替代性地,一或多個雜交腔室180可僅專用於觸發器 光二極體187。可使用這些選擇於此等與上述之2a及2b的 組合中。 螢光的延遲檢測 下述推導說明針對上述之LED/螢光團組合之使用長生 命週期螢光團的螢光延遲檢測。在由圖6 0顯示之時間ί,和 ~之間的固定強度Ie之理想脈衝激發之後,螢光強度推導 爲時間的函數。 令[S1 ] ( ί )於時間t等於激發態的強度,然後在激發 期間及之後’每單位體積每單位時間的激發態數量由下面 微分方程式描述: 迴(0+歷1=仏…⑴ dt rF hve 其中C爲螢光團的莫耳濃度’ ε爲莫耳消光係數,Ve爲激發 :.) -81 - * t 201209405 頻率,且h = 6.62606896( 1 0)·34 Js爲普朗克常數。 此微分方程式具有一般式: ^ + p(x)y = q(x) αχ 其解爲: fe^( )dxq(x)dx + k Λχ)=——…(2) 現在使用此來解式 [幻](0Under each of the hybridization chambers 180, both the photodiode 184 and the flip-flop photodiode 1S7 are located in the CMOS circuit 86. The photodiode array is combined with appropriate electronic components to form a photosensor 44 (see Figure 65). The photodiode 184 is a pn junction made during the fabrication of the CMOS structure without the need for additional masking or steps. During MST fabrication, the dielectric layer (not shown) over the photodiode 184 is arbitrarily thinned using standard MST photolithography techniques to cause more of the phosphor to illuminate the active region 185 of the photodiode 184. The photodiode 184 has a field of view such that a fluorescent signal from the probe-target hybrid within the hybridization chamber 180 is incident on the surface of the sensor. The converted fluorescence becomes a photocurrent that can then be measured using the CMOS circuit 86. Alternatively, one or more of the hybridization chambers 180 may be dedicated only to the trigger photodiode 187. These choices can be used in combinations with 2a and 2b above. Fluorescence Delay Detection The following derivation shows the fluorescence delay detection using the long life cycle fluorophore for the LED/fluorescent combination described above. The fluorescence intensity is derived as a function of time after an ideal pulse excitation of the fixed intensity Ie between times ί, and ~ shown in Figure 60. Let [S1] ( ί ) be equal to the intensity of the excited state at time t, then the number of excited states per unit volume per unit time during and after the excitation is described by the following differential equation: Back (0 + calendar 1 = 仏... (1) dt rF hve where C is the molar concentration of the fluorophore' ε is the molar extinction coefficient, Ve is the excitation: .) -81 - * t 201209405 frequency, and h = 6.62606896(1 0)·34 Js is the Planck constant . This differential equation has the general formula: ^ + p(x)y = q(x) αχ The solution is: fe^( )dxq(x)dx + k Λχ)=——...(2) Now use this to solve [幻](0
Leer t hve 然後於時間 + ke -// 7 …(3) [S1]⑴)=0 由式(3 )得出Leer t hve then at time + ke -// 7 ...(3) [S1](1))=0 is derived from equation (3)
k .εοτ. hve …(4) 將(4 )代入(3 ): [零)k .εοτ. hve ...(4) Substituting (4) into (3): [zero)
IescTf IescTf __(<.,|)/Γ/ hve hveIescTf IescTf __(<.,|)/Γ/ hve hve
於時間h,: [Sl](t2) = ^^--l^Le~^~ll),Tf ...(5)At time h,: [Sl](t2) = ^^--l^Le~^~ll),Tf ...(5)
Ave hve 於r 2 〇,激發態以指數衰減且以式(6 )描述: [51](〇 = [51](ί2)£-(,-ω/Γ^ …⑹ 將(5 )代入(6 ): [s\m= hVe …⑺ 螢光強度由下列等式得到 dxAve hve at r 2 〇, the excited state decays exponentially and is described by equation (6): [51](〇= [51](ί2)£-(,-ω/Γ^ ...(6) Substituting (5) into (6) ): [s\m= hVe ...(7) The fluorescence intensity is obtained by the following equation dx
-82- S 201209405 其中V/爲螢光頻率,η爲量子產率,且1爲光學路徑長度。 於是由(7 )可知: = -^[1 - eHh-''),Tf ...(9) at hve 將(9 )代入(8 ):-82- S 201209405 where V/ is the fluorescence frequency, η is the quantum yield, and 1 is the optical path length. Then we can see from (7): = -^[1 - eHh-''), Tf ...(9) at hve Substituting (9) into (8):
If{t) = Ι^Ιη^-ΙΙ-β^-1'^ ...(10)If{t) = Ι^Ιη^-ΙΙ-β^-1'^ ...(10)
因爲Γ/ 匕 因此,我們可以寫出下列的近似式,該式描述在足夠 長的激發脈衝(>> Tf)後之螢光強度衰減: ⑺=/e£c/77」^_(卜’:)/r/for ί 之,2 ...(11) 當叫則 、 在上一節,我們針對>> Tf作的情況做總結,Because Γ/ 匕 Therefore, we can write the following approximation, which describes the attenuation of the fluorescence intensity after a sufficiently long excitation pulse (>> Tf): (7)=/e£c/77”^_( Bu ':) / r / for ί, 2 ... (11) When called, in the previous section, we summarize the situation for >> Tf,
If(t) = Ie€C^—e~°~,l)/T/ 而當則 。 從上述的等式,我們可以導出下列式子: nf(t) = nefc/^e'(,_,I,/r/ ...(12) 其中 «/(0 = -r— 爲每單位面積每單位時間之螢光光子數且 i =丄 β 爲每單位面積每單位時間之激發光子數。 因此, 〇〇 其中~爲每單位面積之螢光光子數且^爲光二極體開啓的 -83- 201209405 時間點。將(1 2 )代入(13 ): 00 nf =jne£clne~(",2)lT/dt ...(14) h 目前,每單位面積每單位時間到達光二極體之螢光光 子數,& (0,係由下式獲得: ^(0 = ^/(0^0 ...(15) 其中九爲光學系統之光收集效率。 將(1 2 )代入(1 5 )我們發現If(t) = Ie€C^—e~°~, l)/T/ and then. From the above equation, we can derive the following expression: nf(t) = nefc/^e'(,_,I,/r/ ...(12) where «/(0 = -r— is per unit The number of fluorescent photons per unit time and i = 丄β is the number of excitation photons per unit area per unit time. Therefore, where ~ is the number of fluorescent photons per unit area and ^ is the photodiode turned on - 83- 201209405 Time point. Substituting (1 2 ) into (13 ): 00 nf =jne£clne~(",2)lT/dt (14) h At present, the light diode is reached per unit area per unit time. The number of fluorescent photons of the body, & (0, is obtained by: ^(0 = ^/(0^0 ...(15) where nine is the light collection efficiency of the optical system. Substituting (1 2 ) (1 5 ) We found
ηΛ〇 = Φ〇^1Ψ~°',2),Τ, ...(16) 同樣地,每單位螢光面積土到達光二極體之螢光光子 數將如下述: 〇〇 ns =[ns{t)dt ^ 且代入(1 6 )並積分:Λ〇Λ〇= Φ〇^1Ψ~°',2),Τ, (16) Similarly, the number of fluorescent photons per unit of fluorescent area reaching the photodiode will be as follows: 〇〇ns =[ns {t)dt ^ and substituting (1 6 ) and integrating:
Hs = φ^εοίητ fe~(,l',l)Ur 因此,Hs = φ^εοίητ fe~(,l',l)Ur Therefore,
rts ^φ^ή^Ιητ...(17) ί3的理想値係於當因螢光光子產生於光二極體184內之 電子率等於由激發光子產生於光二極體184內之電子率時 ,因爲激發光子通量衰減比螢光光子通量衰減快更多。 由於螢光之每單位螢光面積的感測器輸出電子率爲: έ>(〇 = ^;(〇 其中"爲在螢光波長之感測器的量子效率。 代入(1 7 )我們得到: ef (ί) = φ/ φΰ ne eel ηβ ~(,~h}'r/ ...(18) -84- s 201209405 同樣地,由於激發光子之每單位螢光面積的感測器輸 出電子率爲: 产-..(19)Rts ^φ^ή^Ιητ (17) The ideal 値 of ί3 is when the electron rate generated by the photon in the photodiode 184 is equal to the electron rate generated by the photon in the photodiode 184. Because the excitation photon flux decays more quickly than the fluorescence photon flux decays. Since the fluorescence output per unit of fluorescence area of the sensor is: έ> (〇 = ^; (〇 where " is the quantum efficiency of the sensor at the fluorescent wavelength. Substitute (1 7) we get : ef (ί) = φ/ φΰ ne eel ηβ ~(,~h}'r/ (18) -84- s 201209405 Similarly, the sensor output electrons per unit of fluorescence area of the excited photons Rate: Production -..(19)
其中么爲在激發波長之感測器的量子效率,且^爲相對於 激發LED之『切斷』(off )特性的時間常數。在時間t2之 後,LED之衰減光子通量增加螢光訊號的強度且延長其衰 減時間,但我們假設對If ( t )有可忽略的影響,因此我們 採取保守的方法。 目前,如先前所提及,ί3的理想値爲當: 因此,由(1 8 )和(1 9 )我們得到: (f>f<^0nea:^e~U3~t2),Tf = 並且重整之後我們得到: \η(εοΙη^-) --1~~f~ -(20)Where is the quantum efficiency of the sensor at the excitation wavelength and is the time constant relative to the "off" characteristic of the excited LED. After time t2, the attenuated photon flux of the LED increases the intensity of the fluorescent signal and prolongs its decay time, but we assume a negligible effect on If ( t ), so we take a conservative approach. At present, as mentioned earlier, the ideal ί of ί3 is: Therefore, from (1 8 ) and (1 9 ) we get: (f>f<^0nea:^e~U3~t2), Tf = and After the whole we get: \η(εοΙη^-) --1~~f~ -(20)
Tf Te 由上面兩段,我們得到下列兩個工作等式: ns =<^0neFTfe^,Tf …(21) Δ/ = -Α Λ ) ...(22) τί Te 其中F = 且Δί = ί3 -ί2,我們亦了解’實際上,-[ » Γ,。 用於螢光檢測的理想時間及使用Philips LXK2-PR 14-R00 LED和Pulsar 6 5 0染料檢測的螢光光子數決定如下。 -85- 201209405 理想檢測時間係使用式(22 )決定: 再呼叫(recall )擴增子的濃度,且假設所有擴增子 雜交,然後發螢光的螢光團濃度爲:c = 2.89(l〇K6mol/L。 腔室的高度爲光學路徑長度1 = 8(10)-6 m。 已將螢光區域視爲等同於光二極體區域,然而實際的 螢光區域大體上大於光二極體區域;因此可大槪假設 卢0 = 0.5爲光學系統之光採集效率。光二極體的特性,t = 1〇 爲在螢光波長之光二極體量子效率對在激發波長之光二極 體的量子效率之比的極保守値。 以典型的L E D衰減生命週期之厂=〇 _ 5奈秒和使用Tf Te From the above two paragraphs, we get the following two working equations: ns =<^0neFTfe^,Tf ...(21) Δ/ = -Α Λ ) ...(22) τί Te where F = and Δί = 33 - ί2, we also know 'actually, -[ » Γ,. The ideal time for fluorescence detection and the number of fluorescent photons detected using Philips LXK2-PR 14-R00 LED and Pulsar 6 5 0 dye are determined as follows. -85- 201209405 The ideal detection time is determined using equation (22): recall the concentration of the amplicon, and assuming that all amplicons are hybridized, then the fluorescence concentration of the fluorescing is: c = 2.89 (l 〇K6mol/L. The height of the chamber is the optical path length 1 = 8(10)-6 m. The fluorescent area has been regarded as equivalent to the photodiode area, but the actual fluorescent area is substantially larger than the photodiode area. Therefore, it can be assumed that Lu 0 = 0.5 is the light collection efficiency of the optical system. The characteristics of the photodiode, t = 1 〇 is the quantum efficiency of the photodiode at the fluorescence wavelength to the quantum efficiency of the photodiode at the excitation wavelength. The ratio is extremely conservative. With a typical LED attenuation life cycle factory = 〇 _ 5 nanoseconds and use
Pulsar650規格,可決定Δί: F = [1.48(10)6][2.89(10)-6][8(10)-6](1) =3.42(10)·5 ln([3.42(10)-5](10)(0.5)) Δί = —i-i- 1(10)-6 _ 0.5(10)-9 =4.34( 10)'9s 檢測到的光子數目係使用等式(2l)決定。首先,每 單位時間發射的激發光子數目乂係由檢測照明幾何而定。Pulsar650 specification, can be determined Δί: F = [1.48(10)6][2.89(10)-6][8(10)-6](1) =3.42(10)·5 ln([3.42(10)- 5](10)(0.5)) Δί = —ii− 1(10)-6 _ 0.5(10)-9 =4.34( 10)'9s The number of detected photons is determined using equation (2l). First, the number of excitation photons emitted per unit time is determined by the detection illumination geometry.
Philips LXK2-PR14-R00 LED 具有 Lambertian 輻射模式 ,因此: ή, = «,〇 cos(^) ---(23) 其中$爲與該LED的向前軸線方向之角度爲Θ之每單位立體 角每單位時間發射的光子數目’且心爲4在該向前軸線方 向之値。 由該LED每單位時間所發射的光子之總數爲: -86- ...(24) 201209405 ή,=|^Ω = J)i;0cos(寧Ω Ω 現在, △Ω = 2;τ[1 — cos(0 + A0)] — 2;τ[1 — cos(0)] ΑΩ = 2;r[cos(0) - cos(0 + Δ0)] 4^sin(^) cos .(Αθλ 1 2 J l 2 J + 4;rcos(0)sin ,(ΑΘ kThe Philips LXK2-PR14-R00 LED has a Lambertian radiation pattern, so: ή, = «, 〇cos(^) ---(23) where $ is the angle of the unit with the angle of the forward axis of the LED The number of photons emitted per unit time 'and the heart is 4 in the direction of the forward axis. The total number of photons emitted by the LED per unit time is: -86- ... (24) 201209405 ή, =|^Ω = J)i; 0cos (Ning Ω Ω Now, △ Ω = 2; τ [1 — cos(0 + A0)] — 2;τ[1 — cos(0)] ΑΩ = 2;r[cos(0) - cos(0 + Δ0)] 4^sin(^) cos .(Αθλ 1 2 J l 2 J + 4; rcos(0)sin , (ΑΘ k
dQ - 2^sin(0)d0 代入(24): π Ί = 12ml0 cos(0)sin(0)ci9 o =^0 重新排列,我們得到: n)〇=- -(26) π LED的輸出功率爲0.515瓦且ve = 6.52(10)14赫茲,因此 hve .•彳27) __0515_ ~ [6.63(10)-34][6.52(10)14] = 1.19(10)18 光子渺 將此値帶入(26)我們得到: ... 1.19(10)18 «/〇 =- π =3.79(10)17光子形'輝面度 參照圖61,光學中心25 2和LED26之透鏡254係如示意 201209405 圖所示。光二極體爲16微米X16微米,且對於在陣列中間 的光二極體,自LED26所發射至光二極體184的光錐的立 體角(Ω)係大約: Ω =感測器面積/r2 [16(10)~6] [16(10)'6] ~[2_825(10)_3f~ =3.21(10)_5 球面度 將理解該光二極體陣列44之中央光二極體184爲用於 這些計算之用途。位於該陣列邊緣的光感測器在雜交事件 時僅接收2%之少量光子用於Lambertian激發源強度分佈 〇 每單位時間發射的激發光子數: ne = η,Ω ..J28) =[3.79(1 0)ι7][3.21(1〇Γ5] = 1.22(10)13 光子渺 現在參考等式(29): = ^0^^Γ/β"Δ,/Γ/ ns = (0.5)^.22(10)^3^.42(10)-^11(10)-6^-4340^9^00^ = 208每感測器之光子 因此,使用 Philips LXK2-PR 1 4-R00 LED 和 Pulsar 650 螢光團,我們可以輕易地檢測任何造成被激發之光子數目 的雜交事件。 該SET LED照明幾何顯示於圖62中。在ID = 20毫安培, LED具有最小光學功率輸出Pl = 240微瓦,波長中心於 λ6 = 340奈米(铽螯合物之吸收波長)。驅動LED於Id = 200 毫安培線性增加該輸出功率至Pi = 2.4毫瓦。藉由將LED的 -88- 201209405 光學中心2 52置於離雜交腔室陣列1 10距離17· 5毫米處,我 們大約集中輸出通量於具有最大直徑爲2毫米的圓點大小 在雜交陣列平面之2毫米直徑點中的光子通量由等式 (27 )得到。dQ - 2^sin(0)d0 Substituting (24): π Ί = 12ml0 cos(0)sin(0)ci9 o =^0 Rearrange, we get: n)〇=- -(26) π LED output The power is 0.515 watts and ve = 6.52 (10) 14 Hz, so hve .•彳27) __0515_ ~ [6.63(10)-34][6.52(10)14] = 1.19(10)18 photon 渺In (26) we get: ... 1.19(10)18 «/〇=- π =3.79(10)17 photon shape' glow surface with reference to Fig. 61, optical center 25 2 and lens 26 of LED 26 are shown as 201209405 The figure shows. The photodiode is 16 microns x 16 microns, and for the photodiode in the middle of the array, the solid angle (Ω) of the cone of light emitted from the LED 26 to the photodiode 184 is approximately: Ω = sensor area / r2 [16 (10)~6] [16(10)'6] ~[2_825(10)_3f~ =3.21(10)_5 Sphericality It will be understood that the central photodiode 184 of the photodiode array 44 is used for these calculations. use. The photosensor at the edge of the array receives only 2% of the photons for the Lambertian excitation source intensity distribution at the hybridization event. The number of excitation photons emitted per unit time: ne = η, Ω ..J28) = [3.79 ( 1 0) ι7][3.21(1〇Γ5] = 1.22(10)13 Photon 渺 Now refer to equation (29): = ^0^^Γ/β"Δ,/Γ/ ns = (0.5)^.22 (10)^3^.42(10)-^11(10)-6^-4340^9^00^ = 208 photons per sensor. Therefore, use Philips LXK2-PR 1 4-R00 LED and Pulsar 650 With the fluorophore, we can easily detect any hybridization events that cause the number of photons that are excited. The SET LED illumination geometry is shown in Figure 62. At ID = 20 mA, the LED has a minimum optical power output of Pl = 240 microwatts. The wavelength center is at λ6 = 340 nm (the absorption wavelength of the ruthenium chelate). The LED is driven linearly at Id = 200 mA to increase the output power to Pi = 2.4 mW. By placing the LED -88-201209405 Optical Center 2 52 placed at a distance of 17.5 mm from the hybrid chamber array 1 10, we concentrated the output flux to a diameter of 2 mm with a maximum diameter of 2 mm in the plane of the hybrid array plane The photon flux obtained by the equation (27).
_ 2.4(10)'3_ 2.4(10)'3
~[6.63(10)-34][8.82(10)14] = 4.10(10)15 光子渺~[6.63(10)-34][8.82(10)14] = 4.10(10)15 Photon 渺
使用等式(28),我們得到: ne = n,Q =4.10(10)15^7, 对 1(10)-3]2 = 3.34(10)"光子渺 現在,再呼叫等式(22)及使用先前列舉的Tb螯合物 特性,Using equation (28), we get: ne = n, Q = 4.10(10)15^7, for 1(10)-3]2 = 3.34(10)" photon 渺 now, call the equation again (22 And using the previously listed Tb chelate properties,
Af ln[(6.94(10)-5 )(10)(0.5)] 1(10)-3 ~ 0.5(10)-9 =3.98(10)·9 秒 現在自等式(2 1 ): ns = (0.5)[3.34(10)1I][6.94(10)-5][l(10)-3]e-3 98(I〇rS/1(,〇r3 = 11,600每感測器之光子 由雜交事件使用SET LED和铽螯合物系統所發射之光 子理論數値係可簡單的檢測得到且遠超過3 0個光子數之極 小値,此極小値爲用於上述所指示之光感測器之可信賴的 檢測所需。Af ln[(6.94(10)-5 )(10)(0.5)] 1(10)-3 ~ 0.5(10)-9 =3.98(10)·9 seconds Now from the equation (2 1 ): ns = (0.5)[3.34(10)1I][6.94(10)-5][l(10)-3]e-3 98(I〇rS/1(,〇r3 = 11,600 photons per sensor by hybridization The event uses the SET LED and the photon theory number emitted by the ruthenium chelate system to easily detect and far exceed the minimum of 30 photons, which is used for the photosensors indicated above. Reliable detection is required.
-89 - 201209405 探針與光二極體間之最大間隔 雜交之晶片上檢測避免以共焦顯微鏡(見本發明的背 景)檢測之需要。背離傳統檢測技術爲節省與系統有關的 時間和成本之重要的因素。傳統檢測需要必須使用透鏡和 彎曲鏡面之成像光學。藉由採用非成像光學,診斷系統避 免複雜及笨重的光學元件串之需求。將光二極體放置於非 常靠近探針具有極高收集效率的優點。當在探針和光二極 體間的材料厚度爲1微米的等級時,發射光之收集角係高 達173°。此角度藉由考慮自最靠近光二極體之雜交腔室表 面中心的探針發射的光來計算,光二極體具有平行於腔室 表面的平面活性表面區。光可以於其內由光二極體吸收之 發射角錐係定義爲在其頂點和在其平面之周圍上的感測器 角落具有發射探針。對於16微米χ16微米的感測器,此錐 體的頂角爲170° ;在光二極體經擴充使得其面積符合29微 米X 1 9 · 7 5微米之雜交腔室面積的限制例中,頂角爲1 7 3 °。 在腔室表面和光二極體活性表面之間的分隔爲1微米或更 小是容易達成的。 應用非成像光學方法需要光二極體184非常靠近雜交 腔室以收集螢光輻射之足夠光子。在光二極體和探針之間 的最大間隔係參照如下圖54所決定。 利用铽螯合物螢光團和SET UVT0P335T039BL LED, 我們計算自個別雜交腔室180到達16微米X 16微米之光二極 體184的1 1 600個光子。在實施此計算時,我們假設雜交腔-89 - 201209405 Maximum separation between probe and photodiode The on-wafer detection avoids the need for confocal microscopy (see background of the invention). Deviation from traditional detection techniques is an important factor in saving time and cost associated with the system. Traditional inspection requires the use of imaging optics for lenses and curved mirrors. By using non-imaging optics, the diagnostic system avoids the need for complex and cumbersome strings of optical components. Placing the photodiode in a very close proximity to the probe has the advantage of extremely high collection efficiency. When the material thickness between the probe and the photodiode is 1 micron, the collection angle of the emitted light is as high as 173°. This angle is calculated by considering the light emitted from the probe closest to the center of the surface of the hybridization chamber of the photodiode, which has a planar active surface region parallel to the surface of the chamber. The cone of light in which the light can be absorbed by the photodiode is defined as having a firing probe at its apex and at the sensor corners around its plane. For a 16 micron χ 16 micron sensor, the apex angle of the cone is 170°; in the case where the photodiode is expanded such that its area conforms to the hybridization chamber area of 29 μm X 1 9 · 7 5 μm, The angle is 1 7 3 °. A separation of 1 micron or less between the surface of the chamber and the active surface of the photodiode is easily achieved. The application of a non-imaging optical method requires that the photodiode 184 be in close proximity to the hybridization chamber to collect sufficient photons of the fluorescent radiation. The maximum spacing between the photodiode and the probe is determined as shown in Figure 54 below. Using the ruthenium chelate fluorophore and the SET UVT0P335T039BL LED, we calculated 1,1 600 photons from individual hybridization chambers 180 to 16 micron x 16 micron photodiodes 184. When implementing this calculation, we assume hybridization chambers
201209405 室180之光收集區域具有與光二極體有效區185相同的 積,且雜交光子之總數的一半到達光二極體184。即 系統之光收集效率爲么=〇.5。 更精確我們可以寫出各=[(雜交腔室之光收集區 底面積)/ (光二極體區域)][Ω/4π],其中由在雜交 之基底於代表點之光二極體所對向的Ω =立體角。對於 的正方錐幾何: Q = 4arcsin ( a2/ ( 4d〇2 + a2 )),其中 d〇 =在腔室與 極體之間的距離,且α爲光二極體尺寸。 各雜交腔室釋放2 3 200個光子,經選擇的光二極 有檢測極小値爲1 7個光子,因此,所需的最小光學效 九=17/23200=7.33x10 雜交腔室180之光收集區域的底面積爲29微米X 微米。 解出dG,將得到在雜交腔室及光二極體1 84之間 大限制距離爲cU = 249微米。在此限制中,如上所定義 集錐角僅爲0.8°。應注意的是此分析忽略了折射之可 的影響。 LOC變體 以上詳細描述及說明之LOC裝置301僅爲許多可 LOC裝置設計中之一者。現將以槪略流程圖(自樣本 至檢測)說明及/或顯示使用上述的各種功能部之不 底面 光學 域的 腔室 正確 光二 體具 率爲 9.75 的最 之收 忽略 行之 輸入 同組 -91 - 201209405The light collection area of the room 90 of 201209405 has the same product as the active area 185 of the photodiode, and half of the total number of hybrid photons reaches the photodiode 184. That is, the light collection efficiency of the system is 〇=〇.5. More precisely, we can write each = [(the bottom area of the light collection area of the hybrid chamber) / (photodiode area)] [Ω / 4π], which is the opposite of the light diode at the representative point of the hybrid Ω = solid angle. For the square pyramid geometry: Q = 4arcsin ( a2 / ( 4d 〇 2 + a2 )), where d 〇 = the distance between the chamber and the pole body, and α is the size of the light diode. Each hybridization chamber releases 2 3 200 photons, and the selected photodiode has a detection minimum of 値1 to 7 photons. Therefore, the minimum optical efficiency required is 9=17/23200=7.33x10 Light collection area of hybridization chamber 180 The bottom area is 29 microns x microns. Solving dG will result in a large limiting distance between the hybridization chamber and the photodiode 1 84 of cU = 249 microns. In this limitation, the set cone angle as defined above is only 0.8°. It should be noted that this analysis ignores the effects of refraction. LOC Variants The LOC device 301, described and illustrated in detail above, is only one of many LOC device designs. The flow chart (from sample to test) will now be used to illustrate and/or display the input of the most appropriate negligible line of the chamber with the non-bottom optical domain of the various functional sections described above. 91 - 201209405
合之LOC裝置變體而闡述一些可行的組合。將流程 適當的分成樣本輸入及製備階段288、萃取階段290、培養 階段291、擴增階段292、預-雜交階段293以及檢測階段 294。爲清楚及簡明表示之故,僅簡單說明或槪要顯示所 有的LOC變體而未顯示細節配置。亦爲清楚表示之故,未 顯示較小的功能單元,諸如液體感測器及溫度感測器,但 應理解的是此等功能單元已被倂入以下L Ο C裝置設計之各 者的適當位置。Some possible combinations are illustrated in conjunction with LOC device variants. The flow is appropriately divided into a sample input and preparation stage 288, an extraction stage 290, a culture stage 291, an amplification stage 292, a pre-hybridization stage 293, and a detection stage 294. For the sake of clarity and conciseness, only a brief description or summary of all LOC variants is shown and no detail configuration is shown. Also for the sake of clarity, smaller functional units, such as liquid sensors and temperature sensors, are not shown, but it should be understood that such functional units have been incorporated into the following L Ο C device designs for each of the appropriate position.
LOC變體XLOC variant X
圖92至108顯示LOC變體X 728。參照顯示於圖92中之 操作槪要圖,LOC裝置萃取290、培養291、擴增292及檢 測2 94人類與病原體核酸兩者,以及人類和病原體蛋白質 。藉由組合白血球及病原體透析部(分別爲32 8及70 )以 製造白血球、病原體及紅血球輸出流來達到,輸出流經溶 胞及分開導向蛋白質體分析腔室陣列1 24.1 - 1 24.3以供蛋 白質檢測。在白血球及病原體的情況中,部分之輸出流亦 被導入培養部114.1 - 114.2及擴增部112.1 - 112.2以供核 酸擴增,並且接著至雜交腔室110.1和110.2以供核酸檢測 。各輸出係爲了較高靈敏度及平行分析而分開處理。 一開始,最佳可見於圖98中,生物樣本(諸如全血) 係被加入樣本入口 68。樣本流通過蓋通道94至抗凝血劑貯 槽表面張力閥118。當來自貯槽54之抗凝血劑流至白血球 輸出透析部3 2 8之上游端時,來自貯槽5 4之抗凝血劑(或 -92-Figures 92 through 108 show LOC variant X 728. Referring to the operational schematic shown in Figure 92, the LOC device extracts 290, cultures 291, expands 292, and detects both human and pathogen nucleic acids, as well as human and pathogen proteins. By combining white blood cells and pathogen dialysis units (32 8 and 70, respectively) to produce white blood cells, pathogens, and red blood cell output streams, the output flows through the lysis and separately directed to the protein body analysis chamber array 1 24.1 - 1 24.3 for protein Detection. In the case of leukocytes and pathogens, part of the output stream is also introduced into cultures 114.1 - 114.2 and amplifications 112.1 - 112.2 for nucleic acid amplification, and then to hybridization chambers 110.1 and 110.2 for nucleic acid detection. Each output is processed separately for higher sensitivity and parallel analysis. Initially, best seen in Figure 98, a biological sample, such as whole blood, is added to the sample inlet 68. The sample stream passes through the lid channel 94 to the anticoagulant sump surface tension valve 118. When the anticoagulant from the reservoir 54 flows to the upstream end of the leukocyte output dialysis section 3 2 8 , the anticoagulant from the reservoir 54 (or -92-)
S 201209405 其他試劑)與樣本混合。S 201209405 Other reagents) mixed with the sample.
抗凝血劑表面張力閥118在界面層594中具有兩個通道 596和598 (見圖93和98)。貯槽側界面通道596以下管道 92連接貯槽出口’同時樣本側界面通道598以蓋通道94連 接上管道96。閥係以來自貯槽54流通過貯槽側界面通道 596進入MST通道90之抗凝血劑塡充,以固定在上管道96 之彎液面。當樣本流回通過蓋通道94且朝向白血球透析部 32 8之上游端時,沿著蓋通道94流動之樣本被強制進入樣 本側界面通道5 9 8,使得樣本和抗凝血劑彎液面作用以釋 放抗凝血劑至樣本。 樣本進入白血球輸出透析部328之上游端通過大組份 界面通道73 0。大組份界面通道開啓陣列上之7.5微米之過 濾孔165,各爲連接至上管道孔168之橫向透析MST通道 2 04之濾器,孔依次在小組份界面通道73 2內開啓(見圖 102)。透析部之第一橫向透析MST通道爲旁路通道6 00, φ 其允許所有其他橫向透析MST通道2〇4塡充而不會捕集氣 泡(見圖107)。除了旁路通道之所有固定彎液面之橫向 透析MST通道204具有上管道168,且僅在一旦小組份界面 通道73 2中與流體有反應才解除彎液面。在小組份界面通 道732中之流體開始於旁路通道600之上管道168的上游, 旁路通道600包含毛細起始特徵202 ’其爲配置以引起彎液 面不穩定之幾何形狀的孔,使得彎液面保持解開且毛細驅 動流係未被阻斷。樣本流自毛細起始特徵往下游前進以陸 續地解開於上管道168之彎液面(見圖1〇7)。 -93- 201209405The anticoagulant surface tension valve 118 has two channels 596 and 598 in the interface layer 594 (see Figures 93 and 98). Below the sump side interface channel 596, the conduit 92 connects the sump outlet' while the sample side interface channel 598 is connected to the conduit 96 by the cover channel 94. The valve system is filled with anticoagulant from the sump 54 through the sump side interface channel 596 into the MST channel 90 to be secured to the meniscus of the upper tube 96. As the sample flows back through the lid channel 94 and toward the upstream end of the leukocyte dialysis portion 32 8 , the sample flowing along the lid channel 94 is forced into the sample side interface channel 598 to cause the sample and anticoagulant meniscus to act. To release anticoagulant to the sample. The sample enters the upstream end of the white blood cell output dialysis section 328 through the large component interface channel 73 0 . The large component interface channel opens the 7.5 micron filter apertures 165 on the array, each being a filter that is coupled to the lateral dialysis MST channel 204 of the upper conduit aperture 168, which in turn opens within the panel interface channel 73 2 (see Figure 102). The first lateral dialysis MST channel of the dialysis section is the bypass channel 6 00, which allows all other lateral dialysis MST channels to be filled without trapping the bubbles (see Figure 107). The lateral dialysis MST channel 204, except for all of the fixed meniscus of the bypass passage, has an upper conduit 168 and only releases the meniscus once it has reacted with the fluid in the panel interface channel 73 2 . The fluid in the panel interface channel 732 begins upstream of the conduit 168 above the bypass passage 600, and the bypass passage 600 includes a capillary initiation feature 202' which is a hole configured to cause a geometrical instability of the meniscus, such that The meniscus remains unraveled and the capillary drive flow is not blocked. The sample stream travels downstream from the capillary initiation feature to gradually unravel the meniscus of the upper conduit 168 (see Figure 1.7). -93- 201209405
白血球輸出透析部3 28之下游端係顯示於圖102。大組 份界面通道730饋入大組份蓋通道736且小組份界面通道 732饋入小組份蓋通道73 4。大組份蓋通道73 6引導白血球 (以及任何其他大成份)通過透析表面張力閥1 28. 1,其 中來自貯槽5 6.1之透析試劑係被加至白血球透析部1 3 0.1 ( 見圖96)。白血球溶胞部130.1出口具有過濾下管道738 ( 見圖98),在完成溶胞前,過濾下管道阻擋大成份阻塞 MST通道或沸騰引發閥206。在足夠時間溶胞後,沸騰引 發閥206開啓溶胞部130.1出口,且樣本流被分成兩流,一 流通過限制酵素、接合酶和聯結子貯槽5 8 . 1表面張力閥 13 2.1,同時另一流係沿著經溶胞之白血球旁路通道742被 直接吸引至雜交及檢測部內之蛋白質體分析腔室陣列 124.1 (見圖 98)。The downstream end of the white blood cell output dialysis section 3 28 is shown in FIG. The large component interface channel 730 is fed into the large component cover channel 736 and the component interface channel 732 is fed into the group cover channel 73 4 . The large component cover channel 73 6 directs the white blood cells (and any other large components) through the dialysis surface tension valve 1 28. 1, wherein the dialysis reagent from the reservoir 5 6.1 is added to the leukocyte dialysis unit 1 3 0.1 (see Figure 96). The white blood cell lysis section 130.1 outlet has a filtered down conduit 738 (see Figure 98) that blocks the large component from blocking the MST channel or boiling initiation valve 206 prior to completion of lysis. After lysis for a sufficient period of time, the boiling initiation valve 206 opens the effluent portion 130.1 outlet, and the sample stream is split into two streams, first pass through the restriction enzyme, ligase and junction storage tank 58.1 surface tension valve 13 2.1 while the other stream The protein body analysis chamber array 124.1 (see Figure 98) is directly attracted to the lysed leukocyte bypass channel 742 to the hybridization and detection portion.
在經溶胞之白血球旁路通道742流的情況下,樣本塡 充蛋白質體分析腔室陣列124.1(見圖100),其含有用以 與標靶人類蛋白質雜交之探針。探針-標靶雜交體係以光 感測器44檢測(見圖92 )。 在流體通過限制酵素、接合酶和聯結子貯槽5 8 · 1的情 況下,樣本進入白血球培養部114.1,同時不斷與來自貯 槽58. 1之限制酵素、接合酶和聯結子引子混合(見圖98 ) 。在限制酶切及聯結子接合後,培養部出口閥207 (亦可 爲沸騰引發閥)放出流體以流通過PCR混合貯槽60」表面 張力閥138.1,然後聚合酶貯槽62.1表面張力閥140.1 (見 圖97和99),當試劑留至白血球DNA擴增部112.1時,各自In the case of a flow through the lysed leukocyte bypass channel 742, the sample is loaded with a proteomic analysis chamber array 124.1 (see Figure 100) containing probes for hybridization to the target human protein. The probe-target hybridization system is detected by photosensor 44 (see Figure 92). In the case where the fluid passes through the restriction enzyme, ligase, and junction storage tank, the sample enters the white blood cell culture section 114.1 while continuously mixing with the restriction enzyme, ligase, and linker primer from the storage tank 58.1 (see Figure 98). ). After limiting restriction and linker engagement, the culture outlet valve 207 (which may also be a boiling initiation valve) bleeds fluid through the PCR mixing reservoir 60" surface tension valve 138.1, then the polymerase reservoir 62.1 surface tension valve 140.1 (see Figure 97 and 99), when the reagent is left to the white blood cell DNA amplification unit 112.1, each
S -94- 201209405 的貯槽試劑與樣本混合。 在沸騰引發閥1 08打開以將擴增子送至雜交腔室陣列 1 1 〇· 1,熱循環係在擴增部1 1 2 · 1中執行,雜交腔室陣列含 有人類DNA標靶用之探針(見圖100)。探針-標靶雜交體 係以光感測器44檢測(見圖92 )。The S-94-201209405 sump reagent is mixed with the sample. The boiling initiation valve 108 is opened to send the amplicon to the hybridization chamber array 1 1 1, 1. The thermal cycle is performed in the amplification unit 1 1 2 · 1 , and the hybridization chamber array contains the human DNA target Probe (see Figure 100). The probe-target hybrid is detected by photosensor 44 (see Figure 92).
返回至白血球輸出透析部之下游端(見圖102),小 組份蓋通道73 4將白血球和病原體導至病原體輸出透析部 7 0之上游側(見圖96、98和108 )。 病原體輸出透析部70以與白血球輸出透析部3 28之相 同方法操作,除了過濾下管道具有3微米孔164而非7.5微 米孔。白血球留在大組份界面通道73 0中,同時病原體被 過濾進入小組份界面通道73 2。 在病原體輸出透析部70之下游端,如圖103所說明, 紅血球和病原體流各自離開進入大組份蓋通道736和小組 份蓋通道734。 注意透析部流之命名係根據相對表示大小如「大組份 」和「小組份」,此僅有關於所考慮之透析部。當白血球 輸出透析部328之小組份輸出饋入病原體輸出透析部70之 大組份界面通道730因此而一致的同時,在兩個透析部流 間之成分大小沒有關係。 當紅血球流被導向通過溶胞試劑貯槽表面張力閥 128.3以塡充紅血球溶胞腔室130.3,在大組份蓋通道736中 之紅血球流係與溶胞試劑混合(見圖96和97 )»在如上述 有關於白血球溶胞腔室130.1出口之完全溶胞之前,紅血 201209405 球溶胞腔室130.3出口包含過濾下管道738以避免大成份阻 塞M ST通道或沸騰引發閥206。完成溶胞時,沸騰引發閥 206釋放流體進入蛋白質體分析腔室陣列124.3 (見圖1〇〇 ),其含有與標靶人類蛋白質偶聯或雜交之探針。探針-標靶複合體係以光感測器44檢測(見圖92 )。Returning to the downstream end of the leukocyte output dialysis section (see Figure 102), the fraction cover channel 73 4 directs white blood cells and pathogens to the upstream side of the pathogen output dialysis section 70 (see Figures 96, 98 and 108). The pathogen output dialysis section 70 operates in the same manner as the leukocyte output dialysis section 3 28 except that the filtered tubing has a 3 micron aperture 164 instead of a 7.5 micrometer aperture. The white blood cells remain in the large component interface channel 73 0 while the pathogen is filtered into the panel interface channel 73 2 . At the downstream end of the pathogen output dialysis section 70, as illustrated in Figure 103, the red blood cells and pathogen streams each exit into the large component cover channel 736 and the component cover channel 734. Note that the naming of the dialysis section flow is based on the relative representation size such as "large component" and "team component", which is only relevant for the dialysis section considered. When the fraction output of the leukocyte output dialysis section 328 is fed into the large component interface channel 730 of the pathogen output dialysis section 70, the composition of the dialysis section 70 is uniform, and the size of the components between the two dialysis sections is irrelevant. When the red blood cell flow is directed through the lysis reagent reservoir surface tension valve 128.3 to fill the red blood cell lysis chamber 130.3, the red blood cell flow system in the large component cover channel 736 is mixed with the lysis reagent (see Figures 96 and 97). The red blood 201209405 ball lysis chamber 130.3 outlet contains a filtered down conduit 738 to avoid large components blocking the M ST channel or boiling initiation valve 206, as described above with respect to complete lysis of the leukocyte lysis chamber 130.1 outlet. Upon completion of lysis, the boiling initiation valve 206 releases fluid into the proteomic analysis chamber array 124.3 (see Figure 1A), which contains probes that are coupled or hybridized to the target human protein. The probe-target composite system is detected by photosensor 44 (see Figure 92).
當小組份蓋通道734病原體流被導向通過溶胞試劑貯 槽5 6.2表面張力閥1 2 8 · 2以塡充溶胞腔室1 3 0.2時,小組份 蓋通道734病原體流係與溶胞試劑混合(見圖96和97 )。 在溶胞完成後,沸騰引發閥206打開溶胞腔室130.2出口, 且樣本流係被分成兩流,一流流通過限制酵素、接合酶和 聯結子貯槽58.2表面張力閥132.2,而同時另一流沿著經溶 胞之病原體旁路通道744直接被吸取至雜交及檢測部294內 之蛋白質體分析腔室陣列124.2(見圖96、97、99及100)When the group cover channel 734 pathogen flow is directed through the lysis reagent reservoir 5 6.2 surface tension valve 1 2 8 · 2 to fill the lysis chamber 1 3 0.2, the group cover channel 734 pathogen flow system is mixed with the lysis reagent (See Figures 96 and 97). Upon completion of the lysis, the boiling initiation valve 206 opens the effluent chamber 130.2 outlet and the sample flow is split into two streams, with the flow passing through the restriction enzyme, ligase and junction reservoir 58.2 surface tension valve 132.2 while the other flow along The lysed pathogen bypass channel 744 is directly aspirated into the proteomic analysis chamber array 124.2 in the hybridization and detection portion 294 (see Figures 96, 97, 99 and 100).
在經溶胞病原體旁路通道744流的情況下,樣本塡充 蛋白質體分析腔室陣列124.2 (圖1〇〇),其含有與標靶病 原體蛋白質偶聯或雜交之探針。探針-標靶複合體係以光 感測器44檢測(見圖92 )。 在流通過限制酵素、接合酶和聯結子貯槽58.2的情況 下,樣本進入病原體培養部1 1 4 · 2,同時持續地與來自限 制酵素、接合酶和聯結子引子貯槽58.2混合(見圖99 )。 在限制酶切及聯結子接合後,培養器出口閥2〇7 (亦爲沸 騰引發閥)釋出流體以連續通過PCR混合貯槽60.2表面張 力閥U8.2,然後接著聚合酶貯槽62.2表面張力閥140.2 (In the case of flow through the lysing pathogen bypass channel 744, the sample is filled with a proteomic analysis chamber array 124.2 (Fig. 1A) containing probes coupled or hybridized to the target pathogen protein. The probe-target composite system is detected by photosensor 44 (see Figure 92). With flow through the restriction enzyme, ligase, and junction reservoir 58.2, the sample enters the pathogen culture section 1 1 4 · 2 while continuously mixing with the restriction enzyme, ligase, and linker primer reservoir 58.2 (see Figure 99). . After restriction enzyme digestion and junctional engagement, the culture vessel outlet valve 2〇7 (also a boiling initiation valve) releases fluid to continuously pass the PCR mixing tank 60.2 surface tension valve U8.2, followed by the polymerase storage tank 62.2 surface tension valve 140.2 (
S -96- 201209405 見圖97和99 ),當各自的貯槽試劑流進入病原體DNA擴增 部112.2時,其與樣本混合(見圖99)。S-96-201209405 See Figures 97 and 99), when the respective sump reagent stream enters the pathogen DNA amplification section 112.2, it is mixed with the sample (see Figure 99).
在沸騰引發閥108開啓以將擴增子輸送至含有針對病 原體DNA標靶之探針的雜交腔室陣列UO. 2之前,熱循環係 於擴增部112.2中施行(見圖1〇〇)。一旦所需之雜交腔室 已經塡滿,在一段時間延遲後啓動雜交加熱器1 82,時間 延遲係與病原體培養部114.2中之流速感測器740有關(見 圖106 )。探針-雜交體係以光感測器44檢測(見圖92 )。 在雜交腔室陣列180及蛋白質體分析腔室陣列124內,插入 校準腔室(見圖104和105 )以降低光感測器44輸出雜訊。 結論 描述於本文之裝置、系統及方法促進分子診斷試驗成 爲低花費、快速且成爲重點照護試驗。描述於上文之系統 及其組件已完全說明,且於此領域之技藝工作者將可容易 φ 地識別不偏離主要發明槪念之精神與範疇的許多變化和修 改。 【圖式簡單說明】 現將藉由僅參照附圖之實例描述本發明之較佳具體實 施例,其中: 圖1顯示經配置而用於螢光檢測之試驗模組和試驗模 組讀取器。 圖2爲經配置而用於螢光檢測之試驗模組中之電子組 -97- 201209405 件的圖式槪要。 圖3爲試驗模組讀取器中之電子組件的圖式槪要。 圖4爲LOC裝置之結構的圖式槪要。 圖5爲LOC裝置之透視圖。 圖6爲具有來自彼此疊加之所有層之特徵和結構之 LOC裝置的平面圖。 圖7爲具有獨立顯示之蓋結構之LOC裝置的平面圖。The thermal cycle is performed in the amplification section 112.2 before the boiling initiation valve 108 is opened to deliver the amplicon to the hybridization chamber array UO. 2 containing the probe for the pathogen DNA target (see Figure 1). Once the desired hybridization chamber has been full, the hybridization heater 1 82 is activated after a delay in time associated with the flow rate sensor 740 in the pathogen culture section 114.2 (see Figure 106). The probe-hybridization system is detected by photosensor 44 (see Figure 92). Within the hybridization chamber array 180 and the proteomic analysis chamber array 124, a calibration chamber (see Figures 104 and 105) is inserted to reduce the output noise of the photo sensor 44. Conclusion The devices, systems, and methods described herein promote molecular diagnostic testing as a low cost, rapid, and focused care test. The system and its components described above are fully described, and those skilled in the art will be able to readily recognize many variations and modifications in the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which: FIG. 1 shows a test module and a test module reader configured for fluorescence detection. . Figure 2 is a schematic view of the electronic group -97-201209405 in the test module configured for fluorescence detection. Figure 3 is a schematic diagram of the electronic components in the test module reader. Figure 4 is a schematic view of the structure of the LOC device. Figure 5 is a perspective view of the LOC device. Figure 6 is a plan view of an LOC device having features and structures from all of the layers superimposed on each other. Figure 7 is a plan view of an LOC device having a lid structure that is independently shown.
圖8爲具有以虛線顯示之內通道和貯槽之蓋的頂部透 視圖。 圖9爲具有以虛線顯示之內通道和貯槽之蓋的爆炸頂 部透視圖。 圖1 0爲顯示頂部通道配置之蓋的底部透視圖。 圖11爲獨立顯示CMOS+ MST裝置結構之LOC裝置的平 面圖。 圖12爲在樣本入口之LOC裝置的剖面示意圖。Figure 8 is a top perspective view of the cover with the inner channel and the sump shown in phantom. Figure 9 is an exploded top perspective view of the cover with the inner passage and the sump shown in phantom. Figure 10 is a bottom perspective view of the cover showing the top channel configuration. Figure 11 is a plan view of the LOC device showing the structure of the CMOS+ MST device independently. Figure 12 is a schematic cross-sectional view of the LOC device at the sample inlet.
圖13爲圖6所示之插圖AA的放大視圖。 圖14爲圖6所示之插圖AB的放大視圖。 圖15爲圖13所示之插圖AE的放大視圖。 圖16爲圖解在插圖AE內部之LOC裝置的層狀構造之部 分透視圖。 圖17爲圖解在插圖AE內部之LOC裝置的層狀構造之部 分透視圖。 圖18爲圖解在插圖AE內部之LOC裝置的層狀構造之部 分透視圖。Figure 13 is an enlarged view of the inset AA shown in Figure 6. Figure 14 is an enlarged view of the inset AB shown in Figure 6. Figure 15 is an enlarged view of the inset AE shown in Figure 13. Figure 16 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AE. Figure 17 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AE. Figure 18 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AE.
S -98- 201209405 圖19爲圖解在插圖AE內部之LOC裝置的層狀構造之部 分透視圖。 圖20爲圖解在插圖AE內部之LOC裝置的層狀構造之部 分透視圖。 圖21爲圖解在插圖AE內部之LOC裝置的層狀構造之部 分透視圖。 圖22爲顯示在圖21之該溶胞試劑貯槽之剖面示意圖。S - 98 - 201209405 Figure 19 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AE. Figure 20 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AE. Figure 21 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AE. Figure 22 is a schematic cross-sectional view showing the lysis reagent reservoir of Figure 21;
圖23爲圖解在插圖AB內部之LOC裝置的層狀構造之部 分透視圖。 圖24爲圖解在插圖AB內部之LOC裝置的層狀構造之部 分透視圖。 圖25爲圖解在插圖AI內部之LOC裝置的層狀構造之部 分透視圖。 圖26爲圖解在插圖AB內部之LOC裝置的層狀構造之部 分透視圖。 圖27爲圖解在插圖AB內部之LOC裝置的層狀構造之部 分透視圖。 圖28爲圖解在插圖AB內部之L0C裝置的層狀構造之部 分透視圖。 圖29爲圖解在插圖AB內部之L0C裝置的層狀構造之部 分透視圖。 圖3 0爲擴增混合貯槽及聚合酶貯槽之剖面示意圖。 圖31顯示獨立之沸騰引發閥的特徵。 圖32爲顯示於圖31行經線3 2- 3 2之沸騰引發閥之剖面 -99- 201209405 示意圖。 ®33爲顯示於圖15之插圖AF的放大圖。 圖34舄顧示於圖33行經線34-34之沸騰引發閥之剖面 不意圖。 圖35爲顧示於圖6之插圖AC的放大圖。 圖13 6焉顯示擴增部之插圖AC內部之進一步放大圖。 圖37馬顯示擴增部之插圖AC內部之進一步放大圖。 圖38馬顯示擴增部之插圖AC內部之進一步放大圖。 圖39爲顯示於圖38之插圖AK內部之進一步放大圖。 圖40舄顯示擴增腔室之插圖AC內部之進一步放大圖。 圖41爲顯示擴增部之插圖AC內部之進一步放大圖。 圖42爲顯示擴增腔室之插圖AC內部之進一步放大圖。 圖43爲顯示於圖42之插圖AL內部之進一步放大圖。 圖44爲顯示擴增部之插圖AC內部之進一步放大圖。 圖45爲顯示於圖44之插圖AM內部之進一步放大圖。 圖46爲顯示擴增腔室之插圖AC內部之進一步放大圖。 圖47爲顯示於圖46之插圖AN內部之進一步放大圖。 圖48爲顯示擴增腔室之插圖AC內部之進一步放大圖。 圖49爲顯示擴增腔室之插圖AC內部之進一步放大圖。 圖50爲顯示擴增部之插圖AC內部之進一步放大圖。 圖5 1爲擴增部之剖面示意圖。 圖52爲雜交部之放大平面圖。 圖53爲兩個獨立之雜交腔室之進一步放大平面圖。 圖54爲單個雜交腔室之剖面示意圖。 -100- 201209405 圖55爲顯示於圖6之插圖AG中闡述之增濕器之放大圖 圖56爲顯示於圖52之插圖AD之放大圖。 圖5 7爲在插圖AD中之LOC裝置的爆炸透視圖。 圖5 8爲在封閉組態中FRET探針的圖。 圖5 9爲呈開放且雜交組態中FRET探針的圖。 圖6 0爲激發光密度隨著時間改變的曲線圖。Figure 23 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 24 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 25 is a partial perspective view illustrating the layered configuration of the LOC device inside the illustration AI. Figure 26 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 27 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 28 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 29 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 30 is a schematic cross-sectional view of an amplification mixing tank and a polymerase reservoir. Figure 31 shows the characteristics of a separate boiling initiation valve. Figure 32 is a schematic cross-sectional view of the boiling initiation valve of the line 3 2- 3 2 of Figure 31, -99-201209405. ® 33 is an enlarged view of the illustration AF shown in Fig. 15. Figure 34 is a cross-sectional view of the boiling initiation valve shown in Figure 34 of the line 34-34. Figure 35 is an enlarged view of the illustration AC shown in Figure 6. Fig. 13 6焉 shows a further enlarged view of the inside of the illustration AC of the amplification section. Fig. 37 shows a further enlarged view of the inside of the illustration AC of the amplification section. Fig. 38 shows a further enlarged view of the inside of the illustration AC of the amplification section. Figure 39 is a further enlarged view of the inside of the illustration AK shown in Figure 38. Figure 40A shows a further enlarged view of the inside of the illustration AC of the amplification chamber. Fig. 41 is a further enlarged view showing the inside of the illustration AC of the amplification section. Figure 42 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Figure 43 is a further enlarged view of the inside of the illustration AL shown in Figure 42. Fig. 44 is a further enlarged view showing the inside of the illustration AC of the amplification section. Figure 45 is a further enlarged view of the inside of the illustration AM shown in Figure 44. Figure 46 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Figure 47 is a further enlarged view of the inside of the illustration AN shown in Figure 46. Figure 48 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Figure 49 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Fig. 50 is a further enlarged view showing the inside of the illustration AC of the amplification section. Figure 51 is a schematic cross-sectional view of the amplification section. Figure 52 is an enlarged plan view of the hybridization section. Figure 53 is a further enlarged plan view of two separate hybridization chambers. Figure 54 is a schematic cross-sectional view of a single hybridization chamber. -100- 201209405 Figure 55 is an enlarged view of the humidifier shown in the illustration AG of Figure 6. Figure 56 is an enlarged view of the inset AD shown in Figure 52. Figure 57 is an exploded perspective view of the LOC device in the inset AD. Figure 58 is a diagram of the FRET probe in a closed configuration. Figure 59 is a diagram of the FRET probe in an open and hybrid configuration. Figure 60 is a graph of excitation light density as a function of time.
圖61爲雜交腔室陣列之激發照明幾何(excitati〇n illumination geometry)的圖。 圖62爲感測器電子技術LED照明幾何的圖示。 圖63爲顯示於圖6之插圖AH之濕度感測器的放大平面 圖64爲白血球標靶透析部之剖面示意圖。 圖65爲顯示光感測器之部分光二極體陣列之槪要圖。 圖66爲單一光二極體之電路圖。 圖67爲光二極體控制訊號之時序圖。 圖68爲顯示於圖55之插圖AP之蒸發器的放大圖。 圖69爲以檢測光二極體和觸發光二極體通過雜交腔室 之剖面示意圖。 圖70爲連接子-引發PCR之圖。 圖7 1爲表示具有刺血針之試驗模組的槪要圖。 圖72爲LOC變體VII之結構的圖形表示。 圖73爲具有來自彼此重疊之所有層的特徵與結構之 LOC變體VIII之平面圖。 -101 - 201209405 圖74爲顯示於圖73之插圖CA之放大圖。Figure 61 is a graph of the excitation illumination geometry of the hybrid chamber array. Figure 62 is a graphical representation of the sensor electronics electronics LED illumination geometry. Figure 63 is an enlarged plan view of the humidity sensor shown in Figure AH of Figure 6. Figure 64 is a schematic cross-sectional view of the white blood cell target dialysis section. Figure 65 is a schematic view showing a portion of the photodiode array of the photo sensor. Figure 66 is a circuit diagram of a single photodiode. Figure 67 is a timing diagram of the photodiode control signal. Figure 68 is an enlarged view of the evaporator of the illustration AP shown in Figure 55. Figure 69 is a schematic cross-sectional view showing the detection of the photodiode and the trigger photodiode through the hybridization chamber. Figure 70 is a diagram of the linker-priming PCR. Figure 7 is a schematic view showing a test module having a lancet. Figure 72 is a graphical representation of the structure of LOC Variant VII. Figure 73 is a plan view of a LOC variant VIII having features and structures from all layers overlapping each other. -101 - 201209405 Figure 74 is an enlarged view of the inset CA shown in Figure 73.
圖75爲說明顯示於圖73中之插圖CA內之LOC變體VIII 的層狀結構之部分透視圖。 圖76爲顯示於圖74中之插圖CA之放大圖。 圖77爲LOC變體VIII結構之圖形表示。 圖78爲LOC變體XIV之結構的示圖。 圖79爲LOC變體XLI之結構的示圖。 圖80爲LOC變體XLII之結構的示圖。 圖81爲LOC變體XLIII之結構的示圖。 圖82爲LOC變體XLIV之結構的示圖。 圖83爲LOC變體XLVII之結構的示圖。 圖8 4爲在初次擴增期間之引子聯結之線性螢光探針之 圖。 圖8 5爲在接續擴增循環期間之引子聯結之線性螢光探 針之圖。 圖86A至86F圖示說明引子-連結之螢光莖-及-環探針 的熱循環。 圖87爲關於雜交腔室陣列及光二極體之激發LED的槪 要說明。 圖88爲引導光進入LOC裝置之雜交腔室陣列的激發 LED和光學透鏡之槪要說明。 圖89爲用於引導光進入LOC裝置之雜交腔室陣列的激 發LED、光學透鏡和光學稜鏡之槪要說明。 圖90爲用於引導光進入LOC裝置之雜交腔室陣列的激 -102- 201209405 發LED、光學透鏡和鏡子排列之槪要說明。 圖91爲替代的透析部之示圖。 圖92爲LOC變體X結構之圖形表示。 圖93爲LOC變體X之透視圖。 圖94爲顯示分開的CMOS + MST裝置結構之LOC變體X 的平面圖。 圖95爲具有以虛線顯示之試劑貯槽的蓋底面之透視圖 〇 圖96爲僅顯示分開之蓋特徵的平面圖。 圖97爲顯示彼此重疊之所有特徵並顯示插圖D A至DK 的位置之平面圖。 圖98爲顯示於圖97之插圖DA的放大圖。 圖99爲顯示於圖97之插圖DB的放大圖。 圖100爲顯示於圖97之插圖DC的放大圖。 圖101爲顯示於圖97之插圖DD的放大圖。Figure 75 is a partial perspective view showing the layered structure of the LOC variant VIII shown in the inset CA in Figure 73. Figure 76 is an enlarged view of the inset CA shown in Figure 74. Figure 77 is a graphical representation of the structure of the LOC variant VIII. Figure 78 is a diagram showing the structure of the LOC variant XIV. Figure 79 is a diagram showing the structure of the LOC variant XLI. Figure 80 is a diagram showing the structure of the LOC variant XLII. Figure 81 is a diagram showing the structure of the LOC variant XLIII. Figure 82 is a diagram showing the structure of the LOC variant XLIV. Figure 83 is a diagram showing the structure of the LOC variant XLVII. Figure 8 is a diagram of the linear fluorescent probe linked by the primer during the initial amplification. Figure 85 is a diagram of a linear fluorescent probe coupled to a primer during a subsequent amplification cycle. Figures 86A through 86F illustrate the thermal cycling of the primer-linked fluorescent stem-and-loop probe. Figure 87 is a schematic illustration of an excitation LED for a hybrid chamber array and a photodiode. Figure 88 is a schematic illustration of the excitation LED and optical lens that direct light into the hybridization chamber array of the LOC device. Figure 89 is a schematic illustration of an excitation LED, optical lens, and optical cartridge for directing light into the hybrid chamber array of the LOC device. Figure 90 is a schematic illustration of the LED, optical lens and mirror arrangement of the hybridization chamber array for directing light into the LOC device. Figure 91 is a diagram of an alternative dialysis section. Figure 92 is a graphical representation of the LOC variant X structure. Figure 93 is a perspective view of the LOC variant X. Figure 94 is a plan view showing the LOC variant X of a separate CMOS + MST device structure. Figure 95 is a perspective view of the bottom surface of the lid having the reagent reservoir shown in phantom. Figure 96 is a plan view showing only the features of the separate lid. Figure 97 is a plan view showing all the features overlapping each other and showing the positions of the insets D A to DK. Figure 98 is an enlarged view of the inset DA shown in Figure 97. Figure 99 is an enlarged view of the illustration DB shown in Figure 97. Figure 100 is an enlarged view of the inset DC shown in Figure 97. Figure 101 is an enlarged view of the inset DD shown in Figure 97.
圖102爲顯示於圖97之插圖DE的放大圖。 圖103爲顯示於圖97之插圖DF的放大圖》 圖104爲顯示於圖97之插圖DG的放大圖。 圖105爲顯示於圖97之插圖DH的放大圖。 圖106爲顯示於圖97之插圖DJ的放大圖。 圖107爲顯示於圖97之插圖DK的放大圖。 圖108爲顯示於圖97之插圖DL的放大圖。 圖109顯示用於光二極體之並聯電晶體之一個具體實 施例。 -103- 201209405 圖no顯示用於光二極體之並聯電晶體之一個具體實 施例。 圖111顯示用於光二極體之並聯電晶體之一個具體實 施例。 圖112爲示差成像器之電路圖。 圖1 13槪略說明呈莖-及-環結構中之負控制螢光探針。 圖η 4槪略說明呈開放構造中之圖1 13的負控制螢光探 針。 圖115槪略說明呈莖-及-環結構中之正控制螢光探針。 圖1 1 6槪略說明呈開放構造中之圖1 1 5的正控制螢光探 針。 圖1 17槪略說明經CMOS控制之流速感測器。 圖1 1 8顯示經配置和ECL檢測一起使用之試驗模組和試 驗模組讀取器。 圖1 1 9爲經配置和ECL檢測一起使用之試驗模組中之電 子組件的圖示槪要。 圖1 20顯示試驗模組與替代的試驗模組讀取器。 圖1 2 1顯示試驗模組和試驗模組讀取器以及容納各種 資料庫之主機系統。 圖122A和122B爲說明將適體連結到蛋白質以製造可檢 測訊號的圖。 圖123A和123B爲說明將兩個適體連結到蛋白質以製造 可檢測訊號的圖。 圖1 24A和1 24B爲說明將兩個抗體連結到蛋白質以製造 -104- 201209405 可檢測訊號的圖。 圖125爲顯示彼此重疊之所有特徵與顯示插圖G A至GL 之位置的LOC變體L的平面圖。 圖126爲顯示於圖125之插圖GD的放大圖。 【主要元件符號說明】Figure 102 is an enlarged view of the inset DE shown in Figure 97. Figure 103 is an enlarged view of the illustration DF shown in Figure 97. Figure 104 is an enlarged view of the illustration DG shown in Figure 97. Figure 105 is an enlarged view of the inset DH shown in Figure 97. Figure 106 is an enlarged view of the inset DJ shown in Figure 97. Figure 107 is an enlarged view of the illustration DK shown in Figure 97. Figure 108 is an enlarged view of the inset DL shown in Figure 97. Figure 109 shows a specific embodiment of a parallel transistor for an optical diode. -103- 201209405 Figure no shows a specific embodiment of a parallel transistor for a photodiode. Figure 111 shows a specific embodiment of a parallel transistor for an optical diode. Figure 112 is a circuit diagram of the differential imager. Figure 1 13 illustrates a negative control fluorescent probe in a stem-and-loop configuration. Figure η 4 illustrates the negative control fluorometer of Figure 13 in an open configuration. Figure 115 schematically illustrates the positive control fluorescent probe in the stem-and-loop configuration. Figure 1 1 6 shows a positive control fluorescent probe of Figure 115 in an open configuration. Figure 1 17 illustrates a CMOS controlled flow rate sensor. Figure 1 18 shows the test module and test module reader used with configuration and ECL testing. Figure 1 1 9 is a pictorial summary of the electronic components in the test module that are configured for use with ECL testing. Figure 1 20 shows the test module and the alternative test module reader. Figure 1 2 1 shows the test module and test module reader and the host system that houses the various data banks. Figures 122A and 122B are diagrams illustrating the attachment of an aptamer to a protein to make a detectable signal. Figures 123A and 123B are diagrams illustrating the attachment of two aptamers to a protein to make a detectable signal. Figures 1 24A and 1 24B are diagrams illustrating the incorporation of two antibodies to a protein to produce a -104-201209405 detectable signal. Figure 125 is a plan view showing the LOC variant L showing all the features overlapping each other and the positions of the insets G A to GL. Figure 126 is an enlarged view of the inset GD shown in Figure 125. [Main component symbol description]
1 〇 :試驗模組 1 1 :試驗模組 1 2 :試驗模組讀取器 1 3 :外殼 14 :微型-USB接頭 1 5 :感應器 1 6 :微型-U S B埠 17 :觸控螢幕 18 :顯示螢幕 19 :按鈕 20 :開始按鈕 2 1 :蜂巢式無線電 22 :無菌密封帶 2 3 :無線網路連接 24 :大容器 25 :衛星導航系統 26 :發光二極體 2 7 :資料儲存器 -105- 201209405 2 8 :電話 29 : LED驅動器 30 : LOC裝置 3 1 :電源調節器 32 :電容器 3 3 :計時器 3 4 :控制器1 〇: Test module 1 1 : Test module 1 2 : Test module reader 1 3 : Case 14 : Micro-USB connector 1 5 : Sensor 1 6 : Micro-USB 埠 17 : Touch screen 18 : Display screen 19: Button 20: Start button 2 1 : Honeycomb radio 22: Aseptic sealing tape 2 3: Wireless network connection 24: Large container 25: Satellite navigation system 26: Light-emitting diode 2 7 : Data storage - 105 - 201209405 2 8 : Phone 29 : LED driver 30 : LOC device 3 1 : Power conditioner 32 : Capacitor 3 3 : Timer 3 4 : Controller
35 :暫存器 36 :微型USB裝置1 . 1或2.0 3 7 :驅動器 3 8 :隨機存取記憶體 39 : ECL激發驅動器 40 =程式和資料快取 41 : ECL激發暫存器 42 :處理器35 : Register 36 : Micro USB device 1.1 or 2.0 3 7 : Driver 3 8 : Random access memory 39 : ECL excitation driver 40 = Program and data cache 41 : ECL excitation register 42 : Processor
43 :程式儲存器 44 :光感測器 45 :指示器 46 :蓋 47 :模組 48 : CMOS + MST裝置 49 :多孔元件 52 :雜交及檢測部 54 :抗凝血劑貯槽43 : Program Memory 44 : Light Sensor 45 : Indicator 46 : Cover 47 : Module 48 : CMOS + MST Device 49 : Porous Element 52 : Hybridization and Detection 54 : Anticoagulant Storage Tank
S -106 - 201209405 56、56.1、56.2、56.3:貯槽 5 7 :印刷電路板 5 8、5 8 · 1、5 8.2 :貯槽 60、 60.1-60.12、60.X:貯槽 62, 62.1、 62.2、 62.3、 62_4、 62.X:貯槽 64 :下密封部 66 :頂部層S -106 - 201209405 56,56.1,56.2,56.3: Storage tank 5 7 : Printed circuit board 5 8 , 5 8 · 1 , 5 8.2 : Storage tank 60, 60.1-60.12, 60.X: Storage tank 62, 62.1, 62.2, 62.3 , 62_4, 62.X: sump 64: lower seal 66: top layer
6 8 :樣本入口 70 :透析部 72 :廢料通道 74 :標靶通道 76 :廢料貯槽 78 :貯槽層 80 :蓋通道層 8 2 :上密封層 84 :矽基板 8 6: C Μ Ο S 電路 87 : MST層 8 8 :鈍化層 90 : MST通道 92 :下管道 94 :蓋通道 96 :上管道 9 7 :壁部 -107- 201209405 98 :彎液面固定器 1 00 : MST通道層 101 :膝上型電腦/筆記型電腦 102 :毛細作用起始特徵 103 :專用讀取器 1 0 5 :桌上型電腦 106 :沸騰引發閥6 8 : sample inlet 70 : dialysis section 72 : waste channel 74 : target channel 76 : waste storage tank 78 : sump layer 80 : cover channel layer 8 2 : upper sealing layer 84 : 矽 substrate 8 6 : C Μ Ο S circuit 87 : MST layer 8 8 : Passivation layer 90 : MST channel 92 : Lower pipe 94 : Cover channel 96 : Upper pipe 9 7 : Wall - 107 - 201209405 98 : Meniscus holder 1 00 : MST channel layer 101 : Lap Computer/notebook 102: Capillary action starting feature 103: Dedicated reader 1 0 5: Desktop computer 106: Boiling trigger valve
107 :電子書讀取器 108 :沸騰引發閥 109 :平板電腦 110、110.1-110.12、110.X:雜交室陣列 1 1〗:流行病學資料 112、 112.1-112.12、 112.X:擴增部 1 1 3 :遺傳資料 114, 、1 1 4.1 - 1 1 4.2 :培養部107: e-book reader 108: boiling initiation valve 109: tablet 110, 110.1-110.12, 110.X: hybridization chamber array 1 1: epidemiological data 112, 112.1-112.12, 112.X: amplification department 1 1 3 : Genetic data 114, , 1 1 4.1 - 1 1 4.2 : Culture department
1 1 5 :電子化健康記錄 1 1 6 :抗凝血劑 1 1 8 :表面張力閥 1 1 9 :液體樣本 1 2 0 :彎液面 1 2 1 :電子化醫療記錄 1 2 2 :通氣孔 1 2 3 :個人健康記錄 1 2 4.1 - 1 24.3 :蛋白質體分析腔室陣列1 1 5 : Electronic health record 1 1 6 : Anticoagulant 1 1 8 : Surface tension valve 1 1 9 : Liquid sample 1 2 0 : Meniscus 1 2 1 : Electronic medical record 1 2 2 : Vent 1 2 3 : Personal Health Record 1 2 4.1 - 1 24.3: Protein Body Analysis Chamber Array
S -108- 201209405 125 :網路 126 :沸騰引發閥 128、128.2、128.3:表面張力閥 130、130.1-130.3:溶胞部 1 3 1 :混合部S -108- 201209405 125 : Network 126 : Boiling Initiating Valve 128, 128.2, 128.3: Surface Tension Valve 130, 130.1-130.3: Lysis Department 1 3 1 : Mixing Department
132、 132.1、 132.3:表面張力閥 1 3 3 :培養器入口通道 1 3 4 :下管道 136 :光學窗 138.1、138.2 :表面張力閥 1 40.1 :表面張力閥 141 :適體 142 :標靶蛋白質 143 :予體 144 :受體 145 :抗體 1 4 6 :閥入口 147 :互補寡核苷酸 1 4 8 :閥出口 1 4 9 :聯結子 150 :閥下管道 152 :環形加熱器 1 5 3 :閥加熱器接點 1 5 4 :加熱器 -109- 201209405 1 5 6 :加熱器接點 158 :微通道 1 60 :出口通道 1 6 4 :孑L 口 1 6 5 :孔132, 132.1, 132.3: Surface tension valve 1 3 3 : Incubator inlet channel 1 3 4 : Lower pipe 136 : Optical window 138.1, 138.2 : Surface tension valve 1 40.1 : Surface tension valve 141 : Aptamer 142 : Target protein 143 : Precursor 144 : Receptor 145 : Antibody 1 4 6 : Valve inlet 147 : Complementary oligonucleotide 1 4 8 : Valve outlet 1 4 9 : Junction 150 : Valve under the tube 152 : Ring heater 1 5 3 : Valve Heater contact 1 5 4 : Heater-109- 201209405 1 5 6 : Heater contact 158 : Micro channel 1 60 : Outlet channel 1 6 4 : 孑L port 1 6 5 : Hole
166 :毛細作用起始特徵 168 :上管道開口 170 :溫度感測器 174 :液體感測器 175 :擴散屏障 1 7 6 :流動路徑166: Capillary action initiation feature 168: Upper pipe opening 170: Temperature sensor 174: Liquid sensor 175: Diffusion barrier 1 7 6 : Flow path
1 7 8 :液體感測器 1 80 :雜交腔室 1 8 2 :加熱器 1 84 :光二極體 1 85 :有效區 1 8 6 :探針 1 87 :光二極體 1 8 8 :水貯槽 190 :蒸發器 1 9 1 :環形加熱器 192 :水供應通道 193 :上管道 194 :下管道1 7 8 : Liquid sensor 1 80 : hybridization chamber 1 8 2 : heater 1 84 : photodiode 1 85 : effective area 1 8 6 : probe 1 87 : photodiode 1 8 8 : water storage tank 190 : evaporator 1 9 1 : ring heater 192 : water supply channel 193 : upper pipe 194 : lower pipe
S -110- 201209405 1 9 5 :頂金屬層 196 :增濕器 1 9 8 :吸入孔 202 :毛細作用起始特徵 204 : MST通道 206 :沸騰引發閥 207 :培養部出口閥S -110- 201209405 1 9 5 : Top metal layer 196 : Humidifier 1 9 8 : Suction hole 202 : Capillary action initiation feature 204 : MST channel 206 : Boiling initiation valve 207 : Culture outlet valve
208 :液體感測器 2 1 0 :微通道 2 1 2 : MST通道 2 1 8 :電極 220 :電極 222 :間隙 23 2 :濕度感測器 2 3 4 :加熱器 23 6 : FRET探針 2 3 8 :標靶核酸序列 2 40 :環 242 :莖 244 :激發光 246 :螢光團 248 :淬熄劑 250 :螢光信號 2 5 2 :光學中心208: liquid sensor 2 1 0 : microchannel 2 1 2 : MST channel 2 1 8 : electrode 220 : electrode 222 : gap 23 2 : humidity sensor 2 3 4 : heater 23 6 : FRET probe 2 3 8: Target nucleic acid sequence 2 40: Ring 242: Stem 244: Excitation light 246: Fluorescent group 248: Quencher 250: Fluorescent signal 2 5 2: Optical center
-111 - 201209405 2 5 4 :透鏡 28 8 :樣本輸入及製備 290 :萃取階段 291 :培養階段 292 ’·擴增階段 293 :預-雜交階段-111 - 201209405 2 5 4 : Lens 28 8 : Sample input and preparation 290 : Extraction stage 291 : Culture stage 292 ′·Amplification stage 293 : Pre-hybridization stage
294 :檢測階段 296 :第一電極 298 :第二電極 3 00 :可程式化延遲 301 : LOC裝置 328:白血球透析部 3 7 6 :導熱柱294: Detection phase 296: First electrode 298: Second electrode 3 00: Programmable delay 301: LOC device 328: White blood cell dialysis section 3 7 6 : Thermally conductive column
3 7 8 :正控制探針 3 8 0 :負控制探針 3 8 2 :校準腔室 3 8 4 :鬧極 3 8 6 :闊極 3 8 8 :閘極 3 90 :可伸縮刺血針 3 92 :刺血針釋出按鈕 3 9 3 :聞極 3 9 4 : Μ Ο S電晶體 396: MOS電晶體3 7 8 : Positive control probe 3 8 0 : Negative control probe 3 8 2 : Calibration chamber 3 8 4 : Noisy 3 8 6 : Wide pole 3 8 8 : Gate 3 90 : Retractable lancet 3 92: lancet release button 3 9 3 : smell pole 3 9 4 : Μ Ο S transistor 396: MOS transistor
S -112- 201209405 398 : MOS電晶體 400: MOS電晶體 402: MOS電晶體 404: MOS電晶體 406 :節點 408 :膜密封件 4 1 0 :膜防護件S -112- 201209405 398 : MOS transistor 400: MOS transistor 402: MOS transistor 404: MOS transistor 406 : node 408 : film seal 4 1 0 : film guard
5 1 8 : LOC 變體 VIII 5 94 :界面層 596 :界面通道 598 :界面通道 600 :旁路通道 602 :界面標靶通道 604 :界面廢料通道 647: AlexaFluor 673 : LOC 變體 674 : LOC 變體 677 : LOC 變體 6 8 2 :透析部 6 8 6 :透析步驟 692 :引子-聯結的線性探針 694 :擴增阻斷物 696 :探針區域 698 :互補序列 -113 201209405 700 :寡核苷酸引子 704 :莖-及-環探針 706 :互補序列 708 :莖股 710 :股5 1 8 : LOC variant VIII 5 94 : interface layer 596 : interface channel 598 : interface channel 600 : bypass channel 602 : interface target channel 604 : interface waste channel 647 : AlexaFluor 673 : LOC variant 674 : LOC variant 677 : LOC variant 6 8 2 : dialysis section 6 8 6 : dialysis step 692 : primer-linked linear probe 694 : amplification blocker 696 : probe region 698 : complementary sequence - 113 201209405 700 : oligonucleoside Acid primer 704: stem-and-loop probe 706: complementary sequence 708: stem 710: strand
7 1 2 :第一光稜鏡 714 :第二光稜鏡 7 1 6 :第一鏡 7 1 8 :第二鏡 7 2 2 :透析部 724 :沸騰引發閥7 1 2 : first aperture 714 : second aperture 7 1 6 : first mirror 7 1 8 : second mirror 7 2 2 : dialysis section 724 : boiling initiation valve
728 : LOC 變體 X728 : LOC variant X
729 : LOC變體 L729 : LOC variant L
73 0 :大組份界面通道 73 2 :小組份界面通道 73 4 :小組份蓋通道 73 6 :大組份蓋通道 7 3 8 :過濾下管道 742 :白血球旁路通道 740 :流速感測器 766 :廢料貯槽 7 6 8 :盲終端 7 7 8 :組態 7 8 0 :組態73 0 : Large component interface channel 73 2 : Panel interface channel 73 4 : Panel cover channel 73 6 : Large component cover channel 7 3 8 : Filtered down conduit 742 : White blood cell bypass channel 740 : Flow sensor 766 : Waste storage tank 7 6 8 : Blind terminal 7 7 8 : Configuration 7 8 0 : Configuration
S -114- 201209405 7 8 2 :組態 788 :差分成像器電路 790 :像素 792 :虛擬像素 7 94 :讀取—列 795 :讀取_列S -114- 201209405 7 8 2 : Configuration 788 : Differential Imager Circuit 790 : Pixel 792 : Virtual Pixel 7 94 : Read - Column 795 : Read _ Column
796 :負控制探針 7 9 7 :(電晶體) 7 9 8 :正控制探針 801 :(電晶體) 8 03 :像素電容器 8 05 :虛擬像素電容器 8 〇 7 :開關 8 〇 9 :開關 8 1 1 :開關 8 1 3 :開關 8 1 4 :加熱元件 815 :電容器放大器 8 1 7 :示差訊號 860 : ECL激發電極 870 : ECL激發電極796: Negative control probe 7 9 7 : (Transistor) 7 9 8 : Positive control probe 801 : (Transistor) 8 03 : Pixel capacitor 8 05 : Virtual pixel capacitor 8 〇 7 : Switch 8 〇 9 : Switch 8 1 1 : switch 8 1 3 : switch 8 1 4 : heating element 815 : capacitor amplifier 8 1 7 : differential signal 860 : ECL excitation electrode 870 : ECL excitation electrode
-115--115-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35601810P | 2010-06-17 | 2010-06-17 | |
US43768611P | 2011-01-30 | 2011-01-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201209405A true TW201209405A (en) | 2012-03-01 |
Family
ID=46552736
Family Applications (22)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100119249A TW201211534A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with PCR section and diffusion mixer |
TW100119227A TW201211538A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification |
TW100119250A TW201211244A (en) | 2010-06-17 | 2011-06-01 | Test module with diffusive mixing in small cross sectional area microchannel |
TW100119231A TW201211539A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification |
TW100119253A TW201219776A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with conductivity sensor |
TW100119224A TW201209402A (en) | 2010-06-17 | 2011-06-01 | Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes |
TW100119251A TW201209159A (en) | 2010-06-17 | 2011-06-01 | Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section |
TW100119245A TW201209405A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles |
TW100119241A TW201211533A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for simultaneous detection of multiple conditions in a patient |
TW100119254A TW201209407A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with reagent mixing proportions determined by number of active outlet valves |
TW100119235A TW201209403A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section |
TW100119246A TW201209406A (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample |
TW100119248A TW201211243A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis section having stomata tapering counter to flow direction |
TW100119226A TW201211240A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering |
TW100119223A TW201219770A (en) | 2010-06-17 | 2011-06-01 | Test module incorporating spectrometer |
TW100119228A TW201209158A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification |
TW100119234A TW201211540A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification |
TW100119237A TW201209404A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section |
TW100119243A TW201211242A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for genetic and mitochondrial analysis of a biological sample |
TW100119252A TW201219115A (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with flexible membrane for internal microenvironment pressure-relief |
TW100119232A TW201211241A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification |
TW100119238A TW201211532A (en) | 2010-06-17 | 2011-06-01 | LOC device with parallel incubation and parallel DNA and RNA amplification functionality |
Family Applications Before (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100119249A TW201211534A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with PCR section and diffusion mixer |
TW100119227A TW201211538A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification |
TW100119250A TW201211244A (en) | 2010-06-17 | 2011-06-01 | Test module with diffusive mixing in small cross sectional area microchannel |
TW100119231A TW201211539A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification |
TW100119253A TW201219776A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with conductivity sensor |
TW100119224A TW201209402A (en) | 2010-06-17 | 2011-06-01 | Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes |
TW100119251A TW201209159A (en) | 2010-06-17 | 2011-06-01 | Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section |
Family Applications After (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100119241A TW201211533A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for simultaneous detection of multiple conditions in a patient |
TW100119254A TW201209407A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with reagent mixing proportions determined by number of active outlet valves |
TW100119235A TW201209403A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section |
TW100119246A TW201209406A (en) | 2010-06-17 | 2011-06-01 | Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample |
TW100119248A TW201211243A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device with dialysis section having stomata tapering counter to flow direction |
TW100119226A TW201211240A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering |
TW100119223A TW201219770A (en) | 2010-06-17 | 2011-06-01 | Test module incorporating spectrometer |
TW100119228A TW201209158A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification |
TW100119234A TW201211540A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification |
TW100119237A TW201209404A (en) | 2010-06-17 | 2011-06-01 | LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section |
TW100119243A TW201211242A (en) | 2010-06-17 | 2011-06-01 | Microfluidic device for genetic and mitochondrial analysis of a biological sample |
TW100119252A TW201219115A (en) | 2010-06-17 | 2011-06-01 | Microfluidic test module with flexible membrane for internal microenvironment pressure-relief |
TW100119232A TW201211241A (en) | 2010-06-17 | 2011-06-01 | LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification |
TW100119238A TW201211532A (en) | 2010-06-17 | 2011-06-01 | LOC device with parallel incubation and parallel DNA and RNA amplification functionality |
Country Status (1)
Country | Link |
---|---|
TW (22) | TW201211534A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019013825A1 (en) * | 2017-07-14 | 2019-01-17 | Hewlett-Packard Development Company, L.P. | Microfluidic valve |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150247190A1 (en) * | 2012-10-05 | 2015-09-03 | California Institute Of Technology | Methods and systems for microfluidics imaging and analysis |
TWI512286B (en) * | 2013-01-08 | 2015-12-11 | Univ Nat Yunlin Sci & Tech | Microfluidic bio-sensing system |
US11318479B2 (en) | 2013-12-18 | 2022-05-03 | Berkeley Lights, Inc. | Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device |
CN106715673A (en) * | 2014-07-11 | 2017-05-24 | 先进诊疗公司 | Point of care polymerase chain reaction device for disease detection |
JP2016148574A (en) * | 2015-02-12 | 2016-08-18 | セイコーエプソン株式会社 | Electronic component conveying device and electronic component inspection device |
AU2016250580B2 (en) * | 2015-04-22 | 2021-02-25 | Berkeley Lights, Inc. | Culturing station for microfluidic device |
EP3275992A1 (en) * | 2016-07-29 | 2018-01-31 | Bayer Aktiengesellschaft | Adapter for cell-culture vessel |
JP2019050798A (en) * | 2017-07-05 | 2019-04-04 | 株式会社Screenホールディングス | Sample container |
TWI671397B (en) * | 2017-07-14 | 2019-09-11 | 國立中興大學 | Granular body extraction device |
US12072311B2 (en) | 2017-11-17 | 2024-08-27 | Siemens Healthcare Diagnostics Inc. | Sensor assembly and method of using same |
EP3737502A4 (en) * | 2018-01-11 | 2021-03-10 | Nanocav, LLC | Microfluidic cellular device and methods of use thereof |
CN111656162B (en) | 2018-02-01 | 2023-09-01 | 东丽株式会社 | Device for evaluating particles in liquid and method for operating same |
EP3560593B1 (en) * | 2018-04-25 | 2024-06-05 | OPTOLANE Technologies Inc. | Cartridge for digital real-time pcr |
TWI853851B (en) | 2018-11-15 | 2024-09-01 | 中國商深圳華大智造科技有限公司 | Microfluidic apparatus and method of making |
US11366109B2 (en) * | 2018-12-06 | 2022-06-21 | Winmems Technologies Co., Ltd. | Encoded microflakes |
TWI711822B (en) * | 2019-10-18 | 2020-12-01 | 國立成功大學 | Miniature and intelligent urine sensing system |
TWI739318B (en) * | 2020-02-24 | 2021-09-11 | 國立陽明交通大學 | An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure |
WO2021216627A1 (en) * | 2020-04-21 | 2021-10-28 | Roche Sequencing Solutions, Inc. | High-throughput nucleic acid sequencing with single-molecule sensor arrays |
TWI795735B (en) * | 2021-02-26 | 2023-03-11 | 行政院農業委員會水產試驗所 | Automatic portable detection system for pathogenic bacteria |
CN115494833B (en) * | 2021-06-18 | 2024-10-22 | 广州视源电子科技股份有限公司 | Robot control method and device |
TWI793671B (en) * | 2021-07-09 | 2023-02-21 | 中國醫藥大學 | Tumor microenvironment on chip and production method thereof |
TWI814499B (en) * | 2021-07-22 | 2023-09-01 | 中央研究院 | Device for continuously producing and analyzing rna, and methods of producing rna by using the device |
TWI800964B (en) * | 2021-10-29 | 2023-05-01 | 宏碁股份有限公司 | Power supply device and electronic system |
TWI805205B (en) * | 2022-01-26 | 2023-06-11 | 國立中正大學 | High stability waveguide analog resonance biosensing system with self-compensation |
TWI818596B (en) * | 2022-06-22 | 2023-10-11 | 嘉碩生醫電子股份有限公司 | Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same |
TWI840226B (en) * | 2023-05-17 | 2024-04-21 | 博錸生技股份有限公司 | Automatic sample preparation system |
-
2011
- 2011-06-01 TW TW100119249A patent/TW201211534A/en unknown
- 2011-06-01 TW TW100119227A patent/TW201211538A/en unknown
- 2011-06-01 TW TW100119250A patent/TW201211244A/en unknown
- 2011-06-01 TW TW100119231A patent/TW201211539A/en unknown
- 2011-06-01 TW TW100119253A patent/TW201219776A/en unknown
- 2011-06-01 TW TW100119224A patent/TW201209402A/en unknown
- 2011-06-01 TW TW100119251A patent/TW201209159A/en unknown
- 2011-06-01 TW TW100119245A patent/TW201209405A/en unknown
- 2011-06-01 TW TW100119241A patent/TW201211533A/en unknown
- 2011-06-01 TW TW100119254A patent/TW201209407A/en unknown
- 2011-06-01 TW TW100119235A patent/TW201209403A/en unknown
- 2011-06-01 TW TW100119246A patent/TW201209406A/en unknown
- 2011-06-01 TW TW100119248A patent/TW201211243A/en unknown
- 2011-06-01 TW TW100119226A patent/TW201211240A/en unknown
- 2011-06-01 TW TW100119223A patent/TW201219770A/en unknown
- 2011-06-01 TW TW100119228A patent/TW201209158A/en unknown
- 2011-06-01 TW TW100119234A patent/TW201211540A/en unknown
- 2011-06-01 TW TW100119237A patent/TW201209404A/en unknown
- 2011-06-01 TW TW100119243A patent/TW201211242A/en unknown
- 2011-06-01 TW TW100119252A patent/TW201219115A/en unknown
- 2011-06-01 TW TW100119232A patent/TW201211241A/en unknown
- 2011-06-01 TW TW100119238A patent/TW201211532A/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019013825A1 (en) * | 2017-07-14 | 2019-01-17 | Hewlett-Packard Development Company, L.P. | Microfluidic valve |
TWI672456B (en) * | 2017-07-14 | 2019-09-21 | 美商惠普研發公司 | Microfluidic valve, microfluidic system comprising the microfluidic valve, and method for closing the microfluidic valve |
US11441701B2 (en) | 2017-07-14 | 2022-09-13 | Hewlett-Packard Development Company, L.P. | Microfluidic valve |
Also Published As
Publication number | Publication date |
---|---|
TW201209407A (en) | 2012-03-01 |
TW201211533A (en) | 2012-03-16 |
TW201219770A (en) | 2012-05-16 |
TW201219115A (en) | 2012-05-16 |
TW201211241A (en) | 2012-03-16 |
TW201211242A (en) | 2012-03-16 |
TW201211540A (en) | 2012-03-16 |
TW201209404A (en) | 2012-03-01 |
TW201211534A (en) | 2012-03-16 |
TW201211240A (en) | 2012-03-16 |
TW201211532A (en) | 2012-03-16 |
TW201219776A (en) | 2012-05-16 |
TW201211539A (en) | 2012-03-16 |
TW201211244A (en) | 2012-03-16 |
TW201209158A (en) | 2012-03-01 |
TW201211243A (en) | 2012-03-16 |
TW201209402A (en) | 2012-03-01 |
TW201209403A (en) | 2012-03-01 |
TW201211538A (en) | 2012-03-16 |
TW201209159A (en) | 2012-03-01 |
TW201209406A (en) | 2012-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201209405A (en) | Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles | |
TW201213798A (en) | Microfluidic thermal bend actuated surface tension valve | |
US20110160090A1 (en) | Nanocrystal-Based Lateral Flow Microarrays and Low-Voltage Signal Detection Systems |