201039454 六、發明說明: 【發明所屬之技術領域】 本發明係有關-種太陽能電池板結構’制是指—種雙面太陽能電池 透明板結構。 【先前技術】 隨著能源需求的增加與全球暖化問題的浮現,標榜兼具永續性與環保 的替代性能源-包含風力、水力、生質能、地熱 '海水潮沙及太陽能等,於 最近幾年來備受重視’並積極職此等能量轉換技術與制。而太陽能電 〇 池可以直接將太陽総轉換成電能個’且不f要額外賴械裝置,因此 最廣受矚目。 若以材料的類型進行分類,太陽能電池可分為單晶石夕、多晶石夕、非晶 石夕及有機太雜電池。單晶⑦太雜電池賴具有高達25%的轉換效率與 南穩定度’但是較高的價格成為普及化的障礙,而具較低成本的有機太陽 能電池·染料敏化太陽能電池稍受到重視。—般的錢練光敏化太陽能 電池10之結構係如第1騎示之三結構,其包含有上基板12、電解質 ° 層14與下基板16。上基板12又稱為工作電極,其上形成有-透明導電膜 18,透明導親18表面塗佈有-半導體光敏化層2G。絲__般都是從上基 板12進人’當光源人射量越大,其功率轉雛量越大,所以習知技術會於 上基板12上方鑛上一抗反射層22 (处^站),以提高光入射量減少上基 板12的㈣麟射率的損失,但此結構之人光面皆從單面人射,因此接受 光源面積大大受到限制,造成吸收太陽光能力不足,與空間利用上的限制。 再者’建築整合型態陽光電系統(BIpv)是目前相當提倡的綠色建築, 3 201039454 但現有陽光電部分係採用單價較高的單晶石夕太陽能電池,鑑此,如何將具 較低成本之有機染料光敏化太陽能電池結合於此系統,以有效提高綠色建 築的普及性,增進永續性與環保的替代性能源的使用率,也成為一個重要 的課題。 有鑑於此’本發明遂針對上述習知技術之缺失,提出一種雙面太陽能 電池透明板結構’以有效克服上述之該等問題。 【發明内容】 本發明之主要目的在提供一種雙面太陽能電池透明板結構,其可以接 收雙面入射光,在同樣的單位面積下,能有效地將光電轉換效率提高到兩 倍以上的效能,同時強化整個染料光敏化太陽能電池應用於節能智慧型窗 戶時的整體厚度,並增加機械強度與抗水氣、抗紫外線,達到結能省電又 發電的效果。 本發明之又一目的在提供一種雙面太陽能電池透明板結構,其能降低 建築整合型態陽光電系統(BIPv)所需的成本。 為達上述之目的,本發明提供一種雙面太陽能電池透明板結構,其包 含有-雙面導電基板;二透明導t基板,其係將雙面導電基板鱗於中間; 以及-第-、第二光電轉換單元,其係分設於透明導電基板與巾間雙面導 電基板間’第-、第二光電轉換單元各包含有—半導體光敏化層,其係塗 <又於透明導電基板朝向雙面導電基板之側面上;—設於雙面導電基板上的 觸媒電極層,以及爽持於半導體敏化層與觸媒電極層間的電解質層。 本發明尚提供另—種雙面太陽能電池透明板結構,其包含有—雙面導 電基板’ _L T透明導電基板,其係將雙面導電基板爽持於中間;一設 201039454 於上透明導電基板與雙面導電基板間的光電轉換單元;一設於雙面導電基 板朝向下透明導電基板之側面上的第二觸媒電極層;以及一位於下透明導 電基板與第二觸媒電極層間的複合膜層。而光電轉換單元包含有一塗設於 上透明導電基板朝向雙面導電基板之側面上的半導體光敏化層;一設於雙 面導電基板朝向上透明導電基板之側面上的第一觸媒電極層;以及一夾持 於半導體光敏化層與第一觸媒電極層間的電解質。201039454 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a solar cell panel structure, which refers to a double-sided solar cell transparent plate structure. [Prior Art] With the increase in energy demand and the emergence of global warming issues, it is an alternative energy source that combines sustainability and environmental protection - including wind, water, biomass, geothermal water, seawater and sand, and solar energy. In recent years, it has received much attention and has actively engaged in energy conversion technologies and systems. The solar cell can directly convert the solar ray into electric energy, and it is the most popular. If classified according to the type of material, the solar cell can be classified into a single crystal stone, a polycrystalline stone, an amorphous stone, and an organic too hetero battery. The single crystal 7 is too heterogeneous to have a conversion efficiency of up to 25% and a south stability. However, a higher price has become an obstacle to popularization, and a low-cost organic solar cell/dye-sensitized solar cell has received a little attention. The structure of the battery 10 is a structure of the first embodiment, which includes an upper substrate 12, an electrolyte layer 14, and a lower substrate 16. The upper substrate 12 is also referred to as a working electrode, on which a transparent conductive film 18 is formed, and the surface of the transparent guide 18 is coated with a semiconductor light-sensitized layer 2G. The wire __ is generally from the upper substrate 12 into the human 'when the light source is larger, the greater the power transfer amount, so the conventional technology will be on the upper substrate 12 above the anti-reflection layer 22 In order to increase the amount of light incident, the loss of the (4) lining rate of the upper substrate 12 is reduced. However, the human light surface of the structure is emitted from a single-sided person, so that the area of the receiving light source is greatly limited, resulting in insufficient ability to absorb sunlight, and space. Take advantage of the limitations. Furthermore, 'Building Integrated Sunlight System (BIpv) is a green building that is currently highly recommended, 3 201039454. However, the existing solar power system uses a higher unit price of single crystal solar cells, so how can it be lower cost? The combination of organic dye-sensitized solar cells in this system has also become an important issue in order to effectively increase the popularity of green buildings and increase the use of alternative energy sources for sustainability and environmental protection. In view of the above-described drawbacks of the present invention, a double-sided solar cell transparent plate structure has been proposed to effectively overcome the above problems. SUMMARY OF THE INVENTION The main object of the present invention is to provide a double-sided solar cell transparent plate structure capable of receiving double-sided incident light and effectively improving the photoelectric conversion efficiency to more than twice the performance under the same unit area. At the same time, it strengthens the overall thickness of the dye-sensitized solar cell when it is applied to energy-saving smart windows, and increases the mechanical strength and resistance to moisture and ultraviolet rays, thereby achieving the effect of energy saving and power generation. It is still another object of the present invention to provide a double-sided solar cell transparent panel structure which can reduce the cost of building an integrated sunlight electrical system (BIPv). In order to achieve the above object, the present invention provides a double-sided solar cell transparent plate structure comprising: a double-sided conductive substrate; and a transparent conductive t substrate, wherein the double-sided conductive substrate is scaled in the middle; and - the first, the The second photoelectric conversion unit is disposed between the transparent conductive substrate and the double-sided conductive substrate between the towels. The first and second photoelectric conversion units each include a semiconductor photosensitive layer, which is coated with a transparent conductive substrate. a side surface of the double-sided conductive substrate; a catalyst electrode layer disposed on the double-sided conductive substrate; and an electrolyte layer held between the semiconductor sensitized layer and the catalytic electrode layer. The invention further provides another double-sided solar cell transparent plate structure, which comprises a double-sided conductive substrate ' _L T transparent conductive substrate, which holds the double-sided conductive substrate in the middle; and a 201039454 upper transparent conductive substrate a photoelectric conversion unit between the double-sided conductive substrate; a second catalyst electrode layer disposed on a side of the double-sided conductive substrate facing the lower transparent conductive substrate; and a composite between the lower transparent conductive substrate and the second catalytic electrode layer Membrane layer. The photoelectric conversion unit comprises a semiconductor photosensitive layer coated on the side of the upper transparent conductive substrate facing the double-sided conductive substrate; and a first catalyst electrode layer disposed on the side of the double-sided conductive substrate facing the upper transparent conductive substrate; And an electrolyte sandwiched between the semiconductor photosensitive layer and the first catalyst electrode layer.
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術内 容、特點及其所達成之功效。 【實施方式】 首先請參閱第2圖,其係本發明之雙面太陽能電池透明板結構的第一 具體實施例示意圖。如圖所示’本發明之雙面太陽能電池透明板結構3〇包 含有.-雙面導電基板32 ·’二透明導電基板34、,其係將雙面導電基板 32夾持於中間,透明導電基板34、34,之外側設置有—抗反射層與抗紫外線 層36、36,;以及-上、下光電轉換單元%、对,,其係分設於透明導電基 板34、34’與雙面導電基板32間。 上、下光電轉換單幻8、38,各包含有:—半導體光敏化層4〇、4〇,, 其係塗設於透明導電基板34、34,朝向該雙面導電基板Μ之側面上,其中 半導體光觀層4G、4G’包含有數録畔核個纽《之料體奈米粒 子41與數個與半導體嫌子形成化學鍵結的轉分子43,其可具有不同 的吸收光波段;—__基板32上__層42、42,;以及一 =於半導體光敏化層40、40,與觸媒電極層細,間的電解質層44、44, 其間隙各為10〜100微米。 201039454 上述之透明導電基板34、34’係由一透明基板46、46,;以及一位於透 明基板46、46’上的導電薄膜層48、48,所構成,其中透明基板46、46,之厚 度為0.1〜10釐米(mm)且材質為聚對苯二甲酸乙二酯(polyethylene terePhthalate,PET )、聚萘二曱酸乙二醇酯(Polyethylene Naphthalate, PEN )、具碳酸酯(p〇iyCarb〇nate,PC )、聚丙稀(p〇lypr〇pyiene,pp)、聚亞 醢胺(polyimide,PZ)、三醋酸纖維素(tri-acetyl cellulose, TAC)或聚環稀 烴咼分子(cycl〇〇lefmpolymer,COP)或者透明玻璃或石英的材質。而導電 薄膜層48、48,之厚度為1〜1〇〇〇奈米Um),材質為氧化銦錫(Indiumtin oxide’ ITO)、氣錫氧化物(Fiuorine tin oxide, FTO)、氧化辞_三氧化二鎵 (ZnO-GaA )、氧化鋅-氧化鋁(Zn〇_A12〇3 )或氧化砷氧化録 (Sn〇2_Sb2〇3)’或是電傳導高分子聚合物,如聚伸乙基二氧赛吩(pEDT)。 而染料分子43之選擇可以是釕(ruthenium)金屬錯合物染劑或者有機 系列例如香豆素染料或引朵(indoline)染料、葉綠素染料、花青素染料 或天然植物萃取染鮮染料。電解f層44、44,之選擇可以為;^、峨化鉀、 蛾化鐘、第三丁基础咬、離子液體、乙醇、戊晴、乙晴或甲氧基丙晴⑽N) <«'1:解液’當然也可以是膠態電解液或者固態電解液。 此外’雙面導電基板32與透明導電基板34、34,上形成有電極結構%, 以進行電性連接。 睛參閱第3圖’其係本發明之雙面太陽能電池透明板結構的第二具體 實施例不意圖。如圖所示,本發明之雙面太陽能電池透明板結構的包含有 雙面導電基板62 ; -上、下透明導電基板64、64,,其係將雙面導電基板 62夾持於中間’上、下透明導電基板Μ、糾,之外側設置有—抗反射層和抗 201039454 紫麵n -設於上透明導電基板μ與雙面導電基板纪間的光電 轉換單元68;-第二_層,其係設於雙面導電基板&朝向下透 明導電基板64,之侧面上;以及-位於下透明導電基板糾與第二綱電極 層70間的複合膜層72,其與雙面導電基板02 '第二觸媒電極層%以及下 _導電紐64’顧-錢域電池。因此本魏_構成—結合染料光 敏化太電蘭核太陽電狀雙面域能電池翻板結構。 上述之光電轉換單元68包含有一半導體光敏化層74,其係塗設於上透 〇 日轉電基板64朝向雙面導縣板62之側面上;一第—觸媒電極層%,其 係設於雙面導電基板62朝向上透明導電基板64之側面上;以及一爽持於 半導體光敏化層74與第一觸媒電極層76間的電解質層%。 此外’第二具體實施例之透明導電基板的結構與材質的選用係可如第 -具體實關所述。半導體錄化層之練分子與電解質層的選擇也同樣 可如第一具體實施例所示。 本發明之雙面太陽能電池透明板結構,除可以接收雙面入射光,提高 © ^位面積下光電轉換鱗,並同時強彳t*了祕光敏化太雜電池應用於雙 面夂光太陽能透明板結構時整體的厚度,增加機械強度與阻抗水氣、抗紫 外線,達到節能省電又發電的效果。 請參閲第4圖’如圖所示本發明之雙面受光太陽能透明板結構3〇、6〇 能與窗户之框架80組合,以裝設於建築物上構成綠色建築。 综上所述’本發明提出一種嶄新的雙面太陽能電池透明板結構,其具 有雙面受光的特性’提高了太陽能電池單位面積上的使用效率,此外,更 強化整個染料光敏化太陽能電池應用於雙面受光太陽能透明板結構時整體 7 201039454 的厚度,增加機械強度與抗水氣、抗紫外線,並降低習知使用單s矽太陽 能電池之建築整合型態陽光電系統(BIPV)所需的成本。 唯以上所述者,僅為本發明之較隹實施例而已,並_來限定本發明 實施之範圍。故即凡依本發明申請範圍所述之特徵及精神所為之均等變化 或修飾’均應包括於本發明之申請專利範圍内。 【圖式簡單說明】 第1圖係習知有機染料光敏化太陽能電池之結構示意圖。 第2圖係本發明之雙駄陽能電池透魏結構的第—具體實施例示意圖。 第3圖係本發明之雙面受光太陽能透明板結構的第二具體實施例示意圖。 第4圖係本發明之雙面太陽能電池透明板結構與窗戶之框架組合後的示意 圖。 【主要元件符號說明】 10有機染料光敏化太陽能電池 12上基板 14電解質層 16下基板 18透明導電膜 20半導體光敏化層 22抗反射層 30雙面太陽能電池透明板結構 32雙面導電基板 34、34’透明導電基板 201039454 36、36’抗反射層與抗紫外線層 38上光電轉換單元 38’下光電轉換單元 40、40’半導體光敏化層 41半導體奈米粒子 42、42’觸媒電極層 43染料分子 0 44、44’電解質層 46、46’ 透明基板 48、48’導電薄膜層 50電極結構 60雙面太陽能電池透明板結構 62雙面導電基板 64上透明導電基板 Q 64’下透明導電基板 66、66’抗反射層與抗紫外線層 68光電轉換單元 70第二觸媒電極層 72複合膜層 74半導體光敏化層 76第一觸媒電極層 78電解質層 9 201039454 80框架The details, technical contents, features, and effects achieved by the present invention will become more apparent from the detailed description of the embodiments. [Embodiment] Referring first to Figure 2, there is shown a first embodiment of a transparent plate structure of a double-sided solar cell of the present invention. As shown in the figure, the double-sided solar cell transparent plate structure 3 of the present invention comprises a double-sided conductive substrate 32, a transparent conductive substrate 34, which sandwiches the double-sided conductive substrate 32 in the middle, and is transparently conductive. The substrate 34, 34 is provided with an anti-reflection layer and an anti-ultraviolet layer 36, 36 on the outer side, and - an upper and a lower photoelectric conversion unit %, a pair, which are disposed on the transparent conductive substrate 34, 34' and both sides Between the conductive substrates 32. The upper and lower photoelectric conversion single illusions 8, 38 each include: a semiconductor photosensitive layer 4 〇, 4 〇, which is coated on the transparent conductive substrate 34, 34, facing the side of the double-sided conductive substrate ,, The semiconductor photoviewing layer 4G, 4G' comprises a plurality of recording cores and a plurality of transmissive molecules 43 which form a chemical bond with the semiconductor suspect, which may have different absorption light bands; The substrate layer __ layer 42, 42; and a = in the semiconductor photosensitive layer 40, 40, and the catalyst electrode layer is thin, between the electrolyte layers 44, 44, the gap is 10 ~ 100 microns. 201039454 The above transparent conductive substrate 34, 34' is composed of a transparent substrate 46, 46; and a conductive film layer 48, 48 on the transparent substrate 46, 46', wherein the thickness of the transparent substrate 46, 46, It is 0.1 to 10 cm (mm) and is made of polyethylene tere (Phthalate, PET), polyethylene naphthalate (PEN), and carbonate (p〇iyCarb〇). Nate, PC ), polypropylene (p〇lypr〇pyiene, pp), polyimide (PZ), tri-acetyl cellulose (TAC) or polycyclic hydrocarbon molecules (cycl〇〇) Lefmpolymer, COP) or transparent glass or quartz. The conductive film layers 48, 48 have a thickness of 1 to 1 nanometer Um), and are made of indium tin oxide (ITO), fluorinated tin oxide (FTO), and oxidized words. Di-gallium oxide (ZnO-GaA), zinc oxide-alumina (Zn〇_A12〇3) or arsenic oxide oxide (Sn〇2_Sb2〇3)' or an electrically conductive polymer such as polyethylidene Oxyphene (pEDT). The dye molecule 43 may be selected from a ruthenium metal complex dye or an organic series such as a coumarin dye or an indoline dye, a chlorophyll dye, an anthocyanin dye or a natural plant extract dye. The electrolysis f layer 44, 44 may be selected as: ^, potassium telluride, moth clock, third base bite, ionic liquid, ethanol, pentyl, acetonitrile or methoxypropyl (10) N) <«' 1: The solution "may be of course a colloidal electrolyte or a solid electrolyte. Further, the double-sided conductive substrate 32 and the transparent conductive substrates 34 and 34 are formed with an electrode structure % for electrical connection. Referring to Fig. 3, a second embodiment of the double-sided solar cell transparent plate structure of the present invention is not intended. As shown in the figure, the double-sided solar cell transparent plate structure of the present invention comprises a double-sided conductive substrate 62; upper and lower transparent conductive substrates 64, 64, which sandwich the double-sided conductive substrate 62 in the middle , the lower transparent conductive substrate Μ, the correction, the outer side is provided with an anti-reflection layer and an anti-201039454 purple surface n - a photoelectric conversion unit 68 disposed between the upper transparent conductive substrate μ and the double-sided conductive substrate; - the second layer It is disposed on the side of the double-sided conductive substrate & facing the lower transparent conductive substrate 64; and - the composite film layer 72 located between the lower transparent conductive substrate and the second electrode layer 70, and the double-sided conductive substrate 02 'Second catalyst electrode layer % and lower _ conductive button 64' Gu-Qian domain battery. Therefore, this Wei _ constitutes a combination of dye light sensitized Taidian blue core solar electric double-sided domain energy battery flap structure. The photoelectric conversion unit 68 includes a semiconductor light-sensing layer 74 which is coated on the side of the upper day-turning substrate 64 facing the double-sided conductive plate 62; a first catalyst-electrode layer On the side of the double-sided conductive substrate 62 facing the upper transparent conductive substrate 64; and an electrolyte layer % between the semiconductor photosensitive layer 74 and the first catalyst electrode layer 76. Further, the selection of the structure and material of the transparent conductive substrate of the second embodiment can be as described in the first specific embodiment. The selection of the molecule and the electrolyte layer of the semiconductor recording layer can also be as shown in the first embodiment. The transparent plate structure of the double-sided solar cell of the invention can not only receive the double-sided incident light, but also improve the photoelectric conversion scale under the area of the ^ ^ bit, and at the same time force the t* the secret photosensitized too miscellaneous battery to be applied to the double-sided sunlight solar transparent The overall thickness of the plate structure increases the mechanical strength and impedance of water vapor and UV rays, achieving energy saving and power generation. Referring to Figure 4, the double-sided light-receiving solar transparent panel structure 3〇, 6〇 of the present invention can be combined with the frame 80 of the window to be installed on a building to form a green building. In summary, the present invention provides a novel double-sided solar cell transparent plate structure having double-sided light-receiving characteristics, which improves the use efficiency of the solar cell per unit area, and further enhances the application of the entire dye-sensitized solar cell. The thickness of the overall 7 201039454 when the double-sided light-receiving solar transparent plate structure increases the mechanical strength and resistance to moisture and UV rays, and reduces the cost of the conventional integrated solar photovoltaic system (BIPV) using a single solar cell. . The above is only the embodiments of the present invention, and the scope of the present invention is limited. Therefore, any changes or modifications of the features and spirits described in the scope of the present invention should be included in the scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a conventional organic dye-sensitized solar cell. Fig. 2 is a schematic view showing a first embodiment of the double-yang solar cell transmissive structure of the present invention. Figure 3 is a schematic view showing a second embodiment of the double-sided light-receiving solar transparent plate structure of the present invention. Fig. 4 is a schematic view showing the combination of the transparent plate structure of the double-sided solar cell of the present invention and the frame of the window. [Main component symbol description] 10 organic dye photosensitized solar cell 12 upper substrate 14 electrolyte layer 16 lower substrate 18 transparent conductive film 20 semiconductor photosensitive layer 22 anti-reflection layer 30 double-sided solar cell transparent plate structure 32 double-sided conductive substrate 34, 34' transparent conductive substrate 201039454 36, 36' anti-reflective layer and anti-ultraviolet layer 38 on the photoelectric conversion unit 38' lower photoelectric conversion unit 40, 40' semiconductor photosensitive layer 41 semiconductor nanoparticle 42, 42' catalyst electrode layer 43 Dye molecule 0 44, 44' electrolyte layer 46, 46' transparent substrate 48, 48' conductive film layer 50 electrode structure 60 double-sided solar cell transparent plate structure 62 double-sided conductive substrate 64 transparent conductive substrate Q 64' lower transparent conductive substrate 66, 66' anti-reflection layer and anti-ultraviolet layer 68 photoelectric conversion unit 70 second catalyst electrode layer 72 composite film layer 74 semiconductor photosensitization layer 76 first catalyst electrode layer 78 electrolyte layer 9 201039454 80 frame