[go: up one dir, main page]

JPH11273753A - Coloring matter sensitizing type photocell - Google Patents

Coloring matter sensitizing type photocell

Info

Publication number
JPH11273753A
JPH11273753A JP10077600A JP7760098A JPH11273753A JP H11273753 A JPH11273753 A JP H11273753A JP 10077600 A JP10077600 A JP 10077600A JP 7760098 A JP7760098 A JP 7760098A JP H11273753 A JPH11273753 A JP H11273753A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
dye
electrode layer
photovoltaic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10077600A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakamura
一彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP10077600A priority Critical patent/JPH11273753A/en
Publication of JPH11273753A publication Critical patent/JPH11273753A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2072Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells comprising two or more photoelectrodes sensible to different parts of the solar spectrum, e.g. tandem cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coloring matter sensitizing type photocell (a solar cell for example) capable of enhancing photoelectric conversion efficiency and increasing power supply amount per unit area. SOLUTION: A photoelectric conversion layer 10a formed by stacking an electrode layer 11a, a semiconductor layer 12a made of metal oxide in which a photo sensitizing coloring matter 13a is adsorbed, an electrolyte layer 14a, and an electrode layer 15a in order, and a photoelectric conversion layer 10b formed by stacking an electrode layer 11b, a semiconductor layer 12b made of metal oxide in which a photo sensitizing coloring matter 13b is adsorbed, an electrolyte layer 14b, and an electrode layer 15b in order are alternately stacked in at least two layers on each side of a light transmitting insulating substrate 20. The electrode layer 15b on the opposite side the most distant from the light incident side (the arrow direction) is preferable to be composed of a reflective electrode layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光電変換効率を向
上させた色素増感型光電池に関する。
The present invention relates to a dye-sensitized photocell with improved photoelectric conversion efficiency.

【0002】[0002]

【従来の技術】太陽電池のような光電池としては、シリ
コン半導体を用いたP−n接合の光電池が広く使用され
ている。
2. Description of the Related Art As a photovoltaic cell such as a solar cell, a Pn junction photocell using a silicon semiconductor is widely used.

【0003】このような光電池に用いるシリコン半導体
は、光電池の光電変換効率を上げるために、高度に純粋
で且つ規則性でなければならない。しかし、シリコン半
導体及び光電池を製造するには多大のエネルギーを必要
とし、製造コストが高くなる。また、このようなシリコ
ン半導体を用いた太陽電池は、非直射日光又は曇天の条
件下で急激に光電変換効率が低下する。
[0003] The silicon semiconductor used in such a photovoltaic cell must be highly pure and regular in order to increase the photoelectric conversion efficiency of the photovoltaic cell. However, manufacturing a silicon semiconductor and a photovoltaic cell requires a great deal of energy, and increases the manufacturing cost. Further, in a solar cell using such a silicon semiconductor, the photoelectric conversion efficiency sharply decreases under conditions of non-direct sunlight or cloudy weather.

【0004】そこで、例えば、特開平1−220380
号公報には、多孔質で結晶型の酸化チタンのような金属
酸化物からなる半導体に、ルテニウム金属錯体のような
光増感色素を吸着させた材料を用いた色素増感型の光電
池(例えば太陽電池)が提案されている。
Therefore, for example, Japanese Patent Application Laid-Open No. Hei.
The publication discloses a dye-sensitized photovoltaic cell (for example, using a material in which a photosensitizing dye such as a ruthenium metal complex is adsorbed on a porous semiconductor made of a metal oxide such as crystalline titanium oxide). Solar cells) have been proposed.

【0005】上記色素増感型の光電池は、具体的には、
図3に示すように、透明ガラス板のような絶縁基板17
に透明電極層11を形成し、この電極層11上に上記の
ような光増感色素13を吸着した半導体層12を形成し
てなる電極基板を作用電極とし、対電極として透明ガラ
ス板のような絶縁基板16に透明電極層15を形成して
なる電極基板を用い、これ等の電極間に電解質溶液を封
入して作製される。
The above dye-sensitized photovoltaic cell is, specifically,
As shown in FIG. 3, an insulating substrate 17 such as a transparent glass plate is used.
An electrode substrate formed by forming a transparent electrode layer 11 on which a semiconductor layer 12 having the photosensitizing dye 13 adsorbed thereon as described above is formed as a working electrode, and a counter electrode such as a transparent glass plate. It is manufactured by using an electrode substrate formed by forming a transparent electrode layer 15 on a simple insulating substrate 16 and sealing an electrolyte solution between these electrodes.

【0006】[0006]

【発明が解決しようとする課題】この種の従来提案の色
素増感型光電池は、各材料層を適切に選ぶことにより、
光電変換効率は7%程度に達し、耐蝕性もよく、その寿
命も比較的高く20年程度と推定されている。
The dye-sensitized photovoltaic cell of this kind proposed in the prior art can be obtained by appropriately selecting each material layer.
The photoelectric conversion efficiency reaches about 7%, the corrosion resistance is good, and the life is relatively high, which is estimated to be about 20 years.

【0007】ところが、光電変換効率は未だ充分とはい
えず、例えば、太陽電池として屋根などに設置して充分
な電力を供給するには、設置面積を充分に広くとらねば
ならず、多くの場合、設置面積が制限されており、単位
面積当たりの電力供給量の増大が必要である。
However, the photoelectric conversion efficiency is still not sufficient. For example, in order to install solar cells on a roof or the like and supply sufficient electric power, the installation area must be sufficiently large. However, the installation area is limited, and the amount of power supply per unit area needs to be increased.

【0008】本発明は、上記の問題を解決するもので、
その目的とするところは、光電変換効率を向上させると
ともに、単位面積当たりの電力供給量を増大させた色素
増感型光電池(例えば太陽電池)を提供することにあ
る。
The present invention solves the above problems,
An object of the present invention is to provide a dye-sensitized photovoltaic cell (for example, a solar cell) in which the photoelectric conversion efficiency is improved and the power supply amount per unit area is increased.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る発明では、電極層、光増感色素を
吸着した金属酸化物からなる半導体層、電解質層、電極
層の順に積層されてなる光電変換層が、光透過性の絶縁
基板を挟んで、少なくとも2層交互に積層されているこ
とを特徴とする色素増感型光電池が提供される。
In order to achieve the above object, according to the first aspect of the present invention, there are provided an electrode layer, a semiconductor layer made of a metal oxide to which a photosensitizing dye is adsorbed, an electrolyte layer, and an electrode layer. A dye-sensitized photovoltaic cell is provided, in which at least two photoelectric conversion layers that are sequentially stacked are alternately stacked with a light-transmitting insulating substrate interposed therebetween.

【0010】請求項2に係る発明では、光の入射側から
最も離れた反対側の電極層が、反射性の電極層からなる
ことを特徴とする請求項1に記載の色素増感型光電池が
提供される。
[0010] In the invention according to claim 2, the dye-sensitized photovoltaic cell according to claim 1, wherein the electrode layer farthest away from the light incident side is a reflective electrode layer. Provided.

【0011】請求項3に係る発明では、反射性の電極層
が、耐蝕性の導電金属からなることを特徴とする請求項
2に記載の色素増感型光電池が提供される。
According to a third aspect of the present invention, there is provided the dye-sensitized photovoltaic cell according to the second aspect, wherein the reflective electrode layer is made of a corrosion-resistant conductive metal.

【0012】請求項4に係る発明では、光増感色素が、
ルテニウム金属錯体からなることを特徴とする請求項
1、2、3のいずれか1項に記載の色素増感型光電池が
提供される。
In the invention according to claim 4, the photosensitizing dye is:
The dye-sensitized photovoltaic cell according to any one of claims 1 to 3, comprising a ruthenium metal complex.

【0013】請求項5に係る発明では、金属酸化物が、
酸化チタンからなることを特徴とする請求項1、2、
3、4のいずれか1項に記載の色素増感型光電池が提供
される。
In the invention according to claim 5, the metal oxide is:
3. The method according to claim 1, wherein the material is made of titanium oxide.
3. A dye-sensitized photovoltaic cell according to any one of items 3 and 4.

【0014】以下、図面を参照しながら、本発明を詳し
く説明する。図1は、本発明の色素増感型光電池の一例
を示す断面図である。図1において10a及び10bは
光電変換層であって、光電変換層10aは、電極層11
aと光増感色素13aを吸着した金属酸化物からなる半
導体層12aと電解質層14aと電極層15aの順に積
層されてなる。また、光電変換層10bは、電極層11
bと光増感色素13bを吸着した金属酸化物からなる半
導体層12bと電解質層14bと電極層15bの順に積
層されてなる。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an example of the dye-sensitized photocell of the present invention. In FIG. 1, 10a and 10b are photoelectric conversion layers, and the photoelectric conversion layer 10a is an electrode layer 11
a, a semiconductor layer 12a made of a metal oxide to which a photosensitizing dye 13a is adsorbed, an electrolyte layer 14a, and an electrode layer 15a. In addition, the photoelectric conversion layer 10b includes the electrode layer 11
and a semiconductor layer 12b made of a metal oxide adsorbing the photosensitizing dye 13b, an electrolyte layer 14b, and an electrode layer 15b.

【0015】そして、上記光電変換層10aと光電変換
層10bとが、光透過性の絶縁基板20を挟んで、2層
交互に積層されて、本発明の色素増感型光電池Aが構成
されている。なお、20a及び20bは、光透過性の絶
縁基板であって、電極層11a及び11bを支持すると
ともに、この電極層11a及び11bを保護するために
設けられている。
The photoelectric conversion layer 10a and the photoelectric conversion layer 10b are alternately stacked with the light-transmitting insulating substrate 20 interposed therebetween, thereby forming the dye-sensitized photocell A of the present invention. I have. 20a and 20b are light-transmitting insulating substrates, which are provided to support the electrode layers 11a and 11b and to protect the electrode layers 11a and 11b.

【0016】上記絶縁基板20、20a及び20bは、
光を十分に透過させるために、一般に、フロートガラス
などの透明なガラス板或いはポリエステル(PET)、
ポリカーボネートなどの透明なプラスチック板(全光線
透過率が60%以上、好ましくは85%以上)のものが
使用される。なお、光の入射側(表側)から最も離れた
反対側(裏側)の絶縁基板20bは、光を透過させる必
要はないので、不透明なガラス板、プラスチック板、セ
ラミック板、金属板を使用してもよい。
The insulating substrates 20, 20a and 20b are
In order to transmit light sufficiently, generally, a transparent glass plate such as float glass or polyester (PET),
A transparent plastic plate such as polycarbonate (having a total light transmittance of 60% or more, preferably 85% or more) is used. Note that the insulating substrate 20b on the opposite side (back side) farthest from the light incident side (front side) does not need to transmit light, so that an opaque glass plate, plastic plate, ceramic plate, or metal plate is used. Is also good.

【0017】上記光電変換層10a、10bを構成する
電極層11a、11bは、通常、絶縁基板20a、20
bの表面に形成される。また、光電変換層10a、10
bを構成する電極層15a、15bは、通常、絶縁基板
20の表面に形成される。これ等の電極層11a、15
a、11b、15bとしては、光を十分に透過させるた
めに、一般に、透明導電層とされる。
The electrode layers 11a and 11b constituting the photoelectric conversion layers 10a and 10b are usually formed of insulating substrates 20a and 20b.
b is formed on the surface. In addition, the photoelectric conversion layers 10a, 10
The electrode layers 15a and 15b constituting b are usually formed on the surface of the insulating substrate 20. These electrode layers 11a, 15
Generally, a, 11b, and 15b are transparent conductive layers in order to sufficiently transmit light.

【0018】このような透明導電層としては、主に、酸
化錫(TCO)、フッ素をドープした酸化錫(TC
O)、酸化インジュウム(ICO)、フッ素をドープし
た酸化錫(TCO)、酸化錫をドープした酸化インジュ
ウム(ITO)、アンチモンをドープした酸化錫(AT
O)、アルミニウムをドープした酸化亜鉛(AZO)な
ど、全光線透過率が60%以上、好ましくは85%以上
で、表面抵抗が10Ω/cm2 以下のものが使用され
る。なお、光の入射側(表側)から最も離れた反対側
(裏側)の電極層11bは、光を透過させる必要はない
ので、不透明な導電層や導電金属板を使用してもよい。
As such a transparent conductive layer, tin oxide (TCO) and tin oxide doped with fluorine (TCC) are mainly used.
O), indium oxide (ICO), tin oxide doped with fluorine (TCO), indium oxide doped with tin oxide (ITO), tin oxide doped with antimony (AT
O), aluminum oxide-doped zinc oxide (AZO), etc., having a total light transmittance of 60% or more, preferably 85% or more, and a surface resistance of 10 Ω / cm 2 or less are used. Since the electrode layer 11b on the opposite side (back side) farthest from the light incident side (front side) does not need to transmit light, an opaque conductive layer or a conductive metal plate may be used.

【0019】特に、光の入射側から最も離れた反対側の
電極層11bは、反射性の電極層からなるものが好まし
い。このような反射性の電極層としては、白金、金、
銀、チタン、バナジウム、クロム、ジルコニウム、ニオ
ブ、モリブデン、パラジウム、タンタル、タングステン
などの耐蝕性の金属、パラジウム(80重量%)−白金
(20重量%)、チタン(50重量%)−ジルコニウム
(50重量%)、白金(50重量%)−金(40重量
%)−パラジウム(10重量%)などの耐蝕性の合金が
使用される。この中でも、白金、金及び銀が好ましい。
特に、白金は、導電性、反射性及び耐蝕性に優れ且つこ
れと接する電解質層の電子移動仲介物質の還元速度を増
大させる電極触媒としても作用するので、好適に使用さ
れる。
In particular, the electrode layer 11b on the opposite side farthest from the light incident side is preferably made of a reflective electrode layer. Such reflective electrode layers include platinum, gold,
Corrosion resistant metals such as silver, titanium, vanadium, chromium, zirconium, niobium, molybdenum, palladium, tantalum, tungsten, palladium (80% by weight) -platinum (20% by weight), titanium (50% by weight) -zirconium (50%) %), Platinum (50% by weight) -gold (40% by weight) -palladium (10% by weight). Among them, platinum, gold and silver are preferred.
In particular, platinum is preferably used because it has excellent conductivity, reflectivity, and corrosion resistance and also acts as an electrode catalyst for increasing the reduction rate of the electron transfer mediator of the electrolyte layer in contact with the platinum.

【0020】絶縁基板20a、20b及び20上に、透
明導電層或いは不透明導電層からなる電極層11a、1
5a、11b、15bを形成するには、主に、スパッタ
リング法、真空蒸着法、化学蒸着法(CVD法)が採用
される。また、絶縁基板上に、透明導電層或いは不透明
導電層を形成し得る金属塩や有機金属化合物を含む溶液
を塗布し、乾燥し、焼成などの熱処理や活性光線などの
電磁波を照射することにより形成することもできる。
On the insulating substrates 20a, 20b and 20, electrode layers 11a and 1 made of a transparent conductive layer or an opaque conductive layer are provided.
In order to form 5a, 11b, and 15b, a sputtering method, a vacuum evaporation method, and a chemical vapor deposition method (CVD method) are mainly used. Further, a solution containing a metal salt or an organometallic compound capable of forming a transparent conductive layer or an opaque conductive layer is applied on an insulating substrate, dried, and heat-treated such as baking or irradiated with electromagnetic waves such as active rays. You can also.

【0021】なお、電極層11a、15a、11b、1
5bとしては、透明ガラス板上に酸化錫をドープした酸
化インジュウム(ITO)の膜を形成した透明導電性ガ
ラス板、透明ガラス板上にフッ素をドープした酸化錫
(TCO)の膜を形成した透明導電性ガラス板が市販さ
れており、このような透明導電性ガラス板を使用しても
よい。
The electrode layers 11a, 15a, 11b, 1
As 5b, a transparent conductive glass plate having a tin oxide-doped indium oxide (ITO) film formed on a transparent glass plate, and a transparent glass plate having a fluorine-doped tin oxide (TCO) film formed on the transparent glass plate A conductive glass plate is commercially available, and such a transparent conductive glass plate may be used.

【0022】また、金属酸化物からなる半導体層12
a、12bとしては、酸化チタン、酸化亜鉛、酸化ニオ
ブ、酸化タングステン、チタン酸バリウム、チタン酸ス
トロンチウム、硫化カドニウム等の公知の半導体が使用
される。特に、半導体特性が良く、耐食性、安定性及び
安全性の点から酸化チタンからなる半導体が好適であ
る。
The semiconductor layer 12 made of a metal oxide
As a and 12b, known semiconductors such as titanium oxide, zinc oxide, niobium oxide, tungsten oxide, barium titanate, strontium titanate, and cadmium sulfide are used. In particular, a semiconductor made of titanium oxide is preferable from the viewpoint of good semiconductor characteristics and corrosion resistance, stability and safety.

【0023】上記金属酸化物からなる半導体層12a、
12bは、通常、絶縁基板20a、20b及び20上に
形成された透明導電層或いは不透明導電層上に、半導体
前駆物を形成し、これを加熱焼成するか或いは紫外線を
照射することにより形成される。
The semiconductor layer 12a made of the above metal oxide,
12b is usually formed by forming a semiconductor precursor on a transparent conductive layer or an opaque conductive layer formed on the insulating substrates 20a, 20b and 20 and heating or baking the semiconductor precursor or irradiating it with ultraviolet rays. .

【0024】ここで、半導体前駆物とは、最終的に得ら
れる半導体の前段階の状態を意味し、上記金属酸化物か
らなる半導体を形成し得る金属アルコキシド及びその縮
合物、金属錯体、金属有機酸塩から選ばれた少なくとも
1種の化合物を含む溶液を加水分解し乾燥することによ
り形成された半導体前駆物が好適である。
The term "semiconductor precursor" as used herein means a state before a finally obtained semiconductor, and a metal alkoxide and a condensate thereof, a metal complex, and a metal organic compound capable of forming a semiconductor composed of the above metal oxide. Semiconductor precursors formed by hydrolyzing and drying a solution containing at least one compound selected from acid salts are preferred.

【0025】例えば、酸化チタンからなる半導体を得よ
うとするときは、この半導体前駆物としては、チタンエ
トキシド、チタンテトライソプロポキシドのような金属
アルコキシド、このような金属アルコキシドを加水分解
重縮合させた縮合物、或いはチタンアセチルアセトネー
トのような金属錯体、オクチル酸チタンのような金属有
機酸塩を原料とし、これ等の溶液を加水分解し乾燥する
ことにより形成されたものが使用される(ゾル−ゲル
法)。
For example, when a semiconductor comprising titanium oxide is to be obtained, a metal alkoxide such as titanium ethoxide and titanium tetraisopropoxide, and a hydrolytic polycondensation of such a metal alkoxide are used as the semiconductor precursor. A condensate or a metal complex such as titanium acetylacetonate or a metal organic acid salt such as titanium octylate is used as a raw material, and a solution formed by hydrolyzing and drying these solutions is used. (Sol-gel method).

【0026】その他の半導体前駆物として、上記金属酸
化物からなる半導体を形成し得る半導体のコロイドや微
粒子、例えば酸化チタンのような金属酸化物のコロイド
や微粒子を分散させた懸濁液を塗布し乾燥させたもの
(コロイド法)、或いは物理蒸着法、気相成長法、電着
法などで半導体前駆物の膜を形成したものが使用され
る。
As another semiconductor precursor, a suspension in which colloids or fine particles of a semiconductor capable of forming a semiconductor made of the above-described metal oxide, for example, colloids or fine particles of a metal oxide such as titanium oxide, are applied. A dried product (colloidal method) or a product obtained by forming a semiconductor precursor film by a physical vapor deposition method, a vapor deposition method, an electrodeposition method, or the like is used.

【0027】半導体前駆体として、金属アルコキシドを
使用した場合は、この金属アルコキシドをメタノールや
エタノールのようなアルコール溶媒中で加水分解し、こ
れをスピンコート法やディップコート法により、絶縁基
板等の基板に形成された透明導電層の上に塗布し乾燥さ
せることにより、半導体前駆物層を形成する。なお、塗
布したときの濡れを良くし、ひび割れを防止するため
に、ポリオキシエチレンアルキルエーテルやポリエチレ
ングリコール脂肪酸エステルのような非イオン系界面活
性剤、ポリエチレンオキサイドやポリエチレングリコー
ルにようなバインダーを10〜40重量%程度加えるの
が好ましい。
When a metal alkoxide is used as a semiconductor precursor, the metal alkoxide is hydrolyzed in an alcohol solvent such as methanol or ethanol, and this is hydrolyzed by spin coating or dip coating to a substrate such as an insulating substrate. A semiconductor precursor layer is formed by coating and drying on the transparent conductive layer formed in step (1). In addition, in order to improve the wetting when applied and to prevent cracking, a nonionic surfactant such as polyoxyethylene alkyl ether or polyethylene glycol fatty acid ester, and a binder such as polyethylene oxide or polyethylene glycol may be used. It is preferable to add about 40% by weight.

【0028】その後、酸化チタンの半導体前駆物の場合
は、これを約450℃〜600℃で約30分〜1時間程
度加熱焼成するか、或いは照射量50mJ/cm2 〜2
J/cm2 程度の紫外線を照射することにより、膜状の
多孔質で結晶型の酸化チタンからなる半導体層が形成さ
れる。このような加熱焼成の条件或いは紫外線照射の条
件により、半導体前駆物の反応、焼結、結晶化などが促
進され、絶縁基板に形成された透明導電層の上に最終的
な金属酸化物からなる半導体層が形成される。半導体層
の厚みは、一般に、5〜50μm、好ましくは10〜2
0μmとされる。
Thereafter, in the case of a semiconductor precursor of titanium oxide, the precursor is heated and baked at about 450 ° C. to 600 ° C. for about 30 minutes to 1 hour, or an irradiation dose of 50 mJ / cm 2 to 2 hours.
By irradiating ultraviolet rays of about J / cm 2 , a film-like porous semiconductor layer made of crystalline titanium oxide is formed. The reaction, sintering, crystallization, and the like of the semiconductor precursor are promoted by such heating and firing conditions or ultraviolet irradiation conditions, and the final metal oxide is formed on the transparent conductive layer formed on the insulating substrate. A semiconductor layer is formed. The thickness of the semiconductor layer is generally 5 to 50 μm, preferably 10 to 2 μm.
0 μm.

【0029】ここで、酸化チタンのような金属酸化物か
らなる半導体層のラフネスファクター(表面粗さ係数)
は、通常、10〜1000のものが使用される。ラフネ
スファクター(表面粗さ係数)は、半導体層の実際の表
面積/半導体層の表面積の比で表される。
Here, the roughness factor (surface roughness coefficient) of the semiconductor layer made of a metal oxide such as titanium oxide.
Usually, the thing of 10-1000 is used. The roughness factor (surface roughness coefficient) is represented by the ratio of the actual surface area of the semiconductor layer / the surface area of the semiconductor layer.

【0030】特に、半導体前駆物層として、金属アルコ
キシド及びその縮合物、金属錯体、金属有機酸塩から選
ばれた少なくとも1種の化合物を含む溶液を加水分解し
乾燥することにより形成された半導体前駆物を使用する
と、得られる半導体層の組成が均一になり結晶サイズが
小さくなり、電流が流れやすくなるなどの利点がある。
In particular, the semiconductor precursor layer formed by hydrolyzing and drying a solution containing at least one compound selected from metal alkoxides and condensates thereof, metal complexes, and metal organic acid salts is used as the semiconductor precursor layer. Use of such a material has advantages in that the composition of the obtained semiconductor layer becomes uniform, the crystal size becomes small, and current flows easily.

【0031】そして、上記金属酸化物からなる半導体層
12a、12bの表面域には、光電変換の際の光(例え
ば太陽光)による感度を向上させるために、光増感色素
13a、13bが電荷キャリアーとして吸着されてい
る。このような光増感色素13a、13bとしては、可
視光領域又は/及び赤外光領域に吸収を持つもので、金
属錯体と有機色素が使用される。
The photosensitizing dyes 13a and 13b are charged on the surface regions of the semiconductor layers 12a and 12b made of the metal oxide in order to improve the sensitivity to light (eg, sunlight) at the time of photoelectric conversion. Adsorbed as a carrier. As such photosensitizing dyes 13a and 13b, those having absorption in a visible light region and / or an infrared light region, and a metal complex and an organic dye are used.

【0032】金属錯体としては、ルテニウム、オスミウ
ム、鉄、亜鉛などの金属錯体、銅フタロシアニン、チタ
ニルフタロシアニンなどの金属フタロシアニン、クロロ
フィル誘導体、ヘミンなどがある。これ等の金属錯体
は、光増感効果や耐久性に優れており好適である。特
に、ルテニウム金属錯体により好結果が得られる。
Examples of the metal complex include metal complexes such as ruthenium, osmium, iron and zinc, metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine, chlorophyll derivatives, and hemin. These metal complexes are preferable because of their excellent photosensitizing effect and durability. In particular, good results are obtained with ruthenium metal complexes.

【0033】ルテニウム金属錯体の具体例としては、R
uL2 (CN)2 、RuL2 (SCN)2 、RuL
2 (H2 O)2 及びRuL3 (CN)などが挙げられ
る。但し、Lは、2,2′−ビピリジル−4,4′−ジ
カルボキシレートなどであり、例えば、ルテニウム−シ
ス−ジシアノ−ビス(2,2′−ビピリジル−4,4′
−ジカルボキシレート、ルテニウム−シス−ジチオシア
ノ−ビス(2,2′−ビピリジル−4,4′−ジカルボ
キシレート、ルテニウム−シス−ジアクア−ビス(2,
2′−ビピリジル−4,4′−ジカルボキシレート及び
ルテニウム−シアノ−トリス(2,2′−ビピリジル−
4,4′−ジカルボキシレートなどが好適に使用され
る。
Specific examples of the ruthenium metal complex include R
uL 2 (CN) 2 , RuL 2 (SCN) 2 , RuL
2 (H 2 O) 2 and RuL 3 (CN). Here, L is 2,2'-bipyridyl-4,4'-dicarboxylate and the like, for example, ruthenium-cis-dicyano-bis (2,2'-bipyridyl-4,4 '
-Dicarboxylate, ruthenium-cis-dithiocyano-bis (2,2'-bipyridyl-4,4'-dicarboxylate, ruthenium-cis-diaqua-bis (2,
2'-Bipyridyl-4,4'-dicarboxylate and ruthenium-cyano-tris (2,2'-bipyridyl-
4,4'-dicarboxylate and the like are preferably used.

【0034】また、有機色素としては、メタルフリーフ
タロシアニン、シアニン系色素(日本感光色素研究所製
のNK1194、NK3422など)、メロシアニン系
色素(日本感光色素研究所製のNK2426、NK25
01など)、キサンテン系色素(ウラニン、エオシン、
ローズベンガル、ローダミンB、ジブロムフルオレセイ
ンなど)、トリフェニルメタン系色素(マラカイトグリ
ーン、クリスタルバイオレットなど)が挙げられる。
Examples of the organic dyes include metal-free phthalocyanine, cyanine dyes (such as NK1194 and NK3422 manufactured by Nippon Kogaku Dye Laboratories), and merocyanine dyes (NK2426 and NK25 made by Nippon Kogaku Dye Laboratory).
01, etc.), xanthene dyes (uranin, eosin,
Rose bengal, rhodamine B, dibromofluorescein, etc.), and triphenylmethane-based dyes (malachite green, crystal violet, etc.).

【0035】特に、分子中のカルボキシル基、カルボキ
シアルキル基、ヒドロキシル基、ヒドロキシアルキル
基、スルホン基、カルボキシアルキル基等の官能基を有
するものは、良好な吸着が行われるので好ましい。
In particular, those having a functional group such as a carboxyl group, a carboxyalkyl group, a hydroxyl group, a hydroxyalkyl group, a sulfone group, and a carboxyalkyl group in the molecule are preferable because good adsorption is performed.

【0036】金属酸化物からなる半導体層12a、12
bの上に光増感色素13a、13bを吸着させるには、
公知の方法が採用される。例えば、上記の光増感色素を
エタノール、トルエン、ジメチルホルムアミド等の溶媒
に溶解し、この溶液を上記半導体層の上に塗布し乾燥さ
せることにより、光増感色素を吸着させる。光増感色素
は半導体の表面域に化学吸着されるか、単に吸着され
る。また、半導体層が形成された基板を光増感色素の溶
液中で溶剤の沸点で加熱還流することにより吸着させる
こともできる。
Semiconductor layers 12a and 12 made of metal oxide
To adsorb the photosensitizing dyes 13a and 13b on b,
A known method is adopted. For example, the photosensitizing dye is dissolved in a solvent such as ethanol, toluene, or dimethylformamide, and the solution is applied on the semiconductor layer and dried to adsorb the photosensitizing dye. The photosensitizing dye is chemisorbed or simply adsorbed on the surface area of the semiconductor. Alternatively, the substrate on which the semiconductor layer is formed can be adsorbed by heating and refluxing the solution at the boiling point of the solvent in the solution of the photosensitizing dye.

【0037】また、電解質層14a、14bとしては、
通常、電解質溶液が使用される。その他、ゲル状或いは
固体の電解質も使用可能である。電解質溶液は、特に限
定されないが、I- /I3 - 、Br- /Br3 - 、キノ
ン/ハイドロキノン等の酸化還元系(レドックス対)を
含む溶液や電子を運搬する遷移金属錯体溶液が挙げられ
る。具体的には、I- /I3 - の場合、ヨウ素とヨウ素
のアンモニウム塩とを、アセトニトリル、炭酸エチレ
ン、炭酸プロピレン、エタノールなどの溶媒に溶解させ
た溶液が使用される。電解質層厚さは、一般に1〜50
μmとされる。
As the electrolyte layers 14a and 14b,
Usually, an electrolyte solution is used. In addition, a gel or solid electrolyte can also be used. The electrolyte solution is not particularly limited, and examples thereof include a solution containing a redox system (redox pair) such as I / I 3 , Br / Br 3 , and quinone / hydroquinone, and a transition metal complex solution that transports electrons. . Specifically, in the case of I / I 3 , a solution in which iodine and an ammonium salt of iodine are dissolved in a solvent such as acetonitrile, ethylene carbonate, propylene carbonate, or ethanol is used. The thickness of the electrolyte layer is generally 1 to 50.
μm.

【0038】このような電解質層14a、14bを形成
するには、通常、光増感色素13bを吸着した半導体層
12aと電極層15aとの間及び光増感色素13bを吸
着した半導体層12bと電極層15bとの間に、電解質
溶液を入れ、側面をエポキシ系熱硬化性樹脂やアクリル
系紫外線硬化樹脂や水ガラスなどのシーリング剤で封止
して形成される。
In order to form such electrolyte layers 14a and 14b, usually, the semiconductor layer 12a adsorbing the photosensitizing dye 13b and the electrode layer 15a and the semiconductor layer 12b adsorbing the photosensitizing dye 13b are formed. An electrolyte solution is put between the electrode layers 15b, and the side surfaces are sealed with a sealing agent such as an epoxy thermosetting resin, an acrylic ultraviolet curing resin, or water glass.

【0039】こうして、光電変換層10a及び10b
が、光透過性の絶縁基板20を挟んで、2層交互に積層
されてなる本発明の色素増感型光電池Aが構成される。
この場合、光(太陽光など)は、矢印で示す表側から入
射される。
Thus, the photoelectric conversion layers 10a and 10b
However, the dye-sensitized photocell A of the present invention is formed by alternately laminating two layers with the light-transmitting insulating substrate 20 interposed therebetween.
In this case, light (such as sunlight) is incident from the front side indicated by the arrow.

【0040】なお、光電変換層10aと光電変換層10
bとは、互いに表裏が逆向きに配置されているが、光電
変換層10a及び10bは、表裏がどの様な向きに配置
されていてもよい。また、光(太陽光など)の入射側
(表側)から最も離れた反対側(裏側)の絶縁基板20
b或いは電極層11bが、光透過性の場合は、光(太陽
光など)の入射は裏側から行うこともできる。また、光
電変換層は、光透過性の絶縁基板を挟んで、2層交互に
積層されているものに限らず、3層以上が交互に積層さ
れていてもよい。
The photoelectric conversion layer 10a and the photoelectric conversion layer 10
b, the front and back are arranged in opposite directions, but the photoelectric conversion layers 10a and 10b may be arranged in any direction. Also, the insulating substrate 20 on the opposite side (back side) farthest from the incident side (front side) of light (sunlight or the like).
When b or the electrode layer 11b is light-transmitting, light (such as sunlight) can be incident from the back side. In addition, the photoelectric conversion layer is not limited to a structure in which two layers are alternately laminated with a light-transmitting insulating substrate interposed therebetween, and three or more layers may be alternately laminated.

【0041】図2は、本発明の色素増感型光電池の他の
例を示す断面図である。図2において10a、10b、
10c及び10dは光電変換層であって、光電変換層1
0aは、電極層11aと光増感色素13aを吸着した金
属酸化物からなる半導体層12aと電解質層14aと電
極層15aの順に積層されてなる。また、光電変換層1
0bは、電極層11bと光増感色素13bを吸着した金
属酸化物からなる半導体層12bと電解質層14bと電
極層15bの順に積層されてなる。
FIG. 2 is a sectional view showing another example of the dye-sensitized photocell of the present invention. In FIG. 2, 10a, 10b,
10c and 10d are photoelectric conversion layers, and the photoelectric conversion layer 1
No. 0a is formed by laminating an electrode layer 11a, a semiconductor layer 12a made of a metal oxide adsorbing the photosensitizing dye 13a, an electrolyte layer 14a, and an electrode layer 15a in this order. In addition, the photoelectric conversion layer 1
No. 0b is formed by laminating an electrode layer 11b, a semiconductor layer 12b made of a metal oxide adsorbing the photosensitizing dye 13b, an electrolyte layer 14b, and an electrode layer 15b in this order.

【0042】また、光電変換層10cは、電極層11c
と光増感色素13cを吸着した金属酸化物からなる半導
体層12cと電解質層14cと電極層15cの順に積層
されてなる。また、光電変換層10dは、電極層11d
と光増感色素13dを吸着した金属酸化物からなる半導
体層12dと電解質層14dと電極層15dの順に積層
されてなる。
Further, the photoelectric conversion layer 10c comprises an electrode layer 11c.
And a semiconductor layer 12c made of a metal oxide to which a photosensitizing dye 13c is adsorbed, an electrolyte layer 14c, and an electrode layer 15c. In addition, the photoelectric conversion layer 10d includes an electrode layer 11d.
And a semiconductor layer 12d made of a metal oxide to which a photosensitizing dye 13d is adsorbed, an electrolyte layer 14d, and an electrode layer 15d.

【0043】そして、上記光電変換層10aと光電変換
層10bと光電変換層10cと光電変換層10dとが、
光透過性の絶縁基板20を挟んで、4層交互に積層され
て、本発明の色素増感型光電池Bが構成されている。な
お、20a及び20bは、光透過性の絶縁基板であっ
て、電極層11a及び11bを支持するとともに、この
電極層11a及び11bを保護するために設けられてい
る。
The photoelectric conversion layer 10a, the photoelectric conversion layer 10b, the photoelectric conversion layer 10c, and the photoelectric conversion layer 10d are
The dye-sensitized photovoltaic cell B of the present invention is formed by alternately laminating four layers with the light-transmitting insulating substrate 20 interposed therebetween. 20a and 20b are light-transmitting insulating substrates, which are provided to support the electrode layers 11a and 11b and to protect the electrode layers 11a and 11b.

【0044】各光電変換層10a、10b、10c及び
10dにおいて、各電極層11a、11b、11c及び
11dの形成方法、各光増感色素13a、13b、13
c及び13dを吸着した金属酸化物からなる半導体層1
2a、12b、12c及び12dの形成方法、各電解質
層14a、14b、14c及び14dの形成方法及び各
電極層15a、15b、15c及び15dの形成方法
は、図1の説明の際に説明した方法と同様な方法で行わ
れるので、ここではその説明を省略する。
In each of the photoelectric conversion layers 10a, 10b, 10c and 10d, a method of forming each of the electrode layers 11a, 11b, 11c and 11d, and each of the photosensitizing dyes 13a, 13b and 13d
Semiconductor layer 1 made of metal oxide adsorbing c and 13d
The method of forming 2a, 12b, 12c and 12d, the method of forming each of the electrolyte layers 14a, 14b, 14c and 14d, and the method of forming each of the electrode layers 15a, 15b, 15c and 15d are the same as those described in the description of FIG. Since it is performed in the same manner as described above, the description is omitted here.

【0045】なお、光電変換層10aと光電変換層10
bと光電変換層10cと光電変換層10dとは、いずれ
も表裏が同じ向き配置されているが、これ等の光電変換
層10a、10b、10c及び10dは、表裏がどの様
な向きに配置されていてもよい。また、光(太陽光な
ど)の入射側(表側)から最も離れた反対側(裏側)の
絶縁基板20d或いは電極層11dが光透過性の場合
は、光(太陽光など)の入射は裏側から行うこともでき
る。
The photoelectric conversion layer 10a and the photoelectric conversion layer 10
b, the photoelectric conversion layer 10c, and the photoelectric conversion layer 10d are all arranged in the same direction on the front and back, but these photoelectric conversion layers 10a, 10b, 10c, and 10d are arranged in any direction on the front and back. May be. Further, when the insulating substrate 20d or the electrode layer 11d on the opposite side (back side) farthest from the incident side (front side) of the light (sunlight or the like) is light transmissive, light (sunlight or the like) is incident from the back side. You can do it too.

【0046】(作用)このように構成された本発明の色
素増感型光電池(太陽電池)A及びBにおいて、矢印方
向から光(太陽光)が照射されると、光増感色素13
a、13b、13c及び13dは可視領域の光を吸収し
て励起する。この励起によって発生する電子は半導体層
12a、12b、12c及び12dに注入され、次いで
作用電極である電極層11a、11b、11c及び11
dに移動する。
(Function) In the dye-sensitized photocells (solar cells) A and B of the present invention thus constituted, when light (sunlight) is irradiated from the direction of the arrow, the photosensitizing dye 13
a, 13b, 13c and 13d absorb and excite light in the visible region. Electrons generated by this excitation are injected into the semiconductor layers 12a, 12b, 12c and 12d, and then the electrode layers 11a, 11b, 11c and 11 serving as working electrodes.
Move to d.

【0047】そして、この電極層11a、11b、11
c及び11dに移動した電子は、電極層11a、11
b、11c及び11dから送り出されリード線(図は省
略)を通り、対電極である電極層15a、15b、15
c及び15dへ移動する。そして、この電極層15a、
15b、15c及び15dへ移動した電子は、電解質溶
液14a、14b、14c及び14dの中の酸化還元系
を還元する。
The electrode layers 11a, 11b, 11
The electrons that have moved to c and 11d are applied to the electrode layers 11a and 11d.
b, 11c, and 11d, lead wires (not shown), and electrode layers 15a, 15b, and 15 serving as counter electrodes.
Move to c and 15d. Then, this electrode layer 15a,
The electrons transferred to 15b, 15c and 15d reduce the redox system in the electrolyte solutions 14a, 14b, 14c and 14d.

【0048】一方、半導体層12a、12b、12c及
び12dに電子を移動させた光増感色素13a、13
b、13c及び13dは、酸化体の状態になっている
が、この酸化体は電解質溶液14a、14b、14c及
び14dの中の酸化還元系によって還元され、元の状態
に戻る。このようにして電子が流れ、光電池(太陽電
池)として作用する。
On the other hand, photosensitizing dyes 13a, 13a having electrons transferred to semiconductor layers 12a, 12b, 12c, and 12d.
b, 13c and 13d are in an oxidized state, which is reduced by the redox system in the electrolyte solutions 14a, 14b, 14c and 14d and returns to the original state. In this way, electrons flow and function as a photovoltaic cell (solar cell).

【0049】ここで、本発明の色素増感型光電池(太陽
電池)のように、電極層、光増感色素を吸着した金属酸
化物からなる半導体層、電解質層、電極層の順に積層さ
れてなる光電変換層が、光透過性の絶縁基板を挟んで、
少なくとも2層交互に積層されていると、表側から入射
する光(太陽光)は、それぞれの光電変換層を表面側か
ら反対側へと透過して、それにより、それぞれの光電変
換層に電子が流れ、それぞれの光電変換層が光電池(太
陽電池)として作用する。
Here, as in the dye-sensitized photovoltaic cell (solar cell) of the present invention, an electrode layer, a semiconductor layer made of a metal oxide to which a photosensitizing dye is adsorbed, an electrolyte layer, and an electrode layer are laminated in this order. Photoelectric conversion layer, sandwiching a light-transmitting insulating substrate,
When at least two layers are alternately stacked, light (sunlight) incident from the front side passes through each photoelectric conversion layer from the surface side to the opposite side, and thereby electrons are emitted to each photoelectric conversion layer. Flow, and each photoelectric conversion layer acts as a photovoltaic cell (solar cell).

【0050】それゆえ、最初の光電変換層(10a)で
吸収されなかった光(太陽光)は、次の光電変換層(1
0b)で吸収される。さらに、吸収されなかった光(太
陽光)は、その次の光電変換層(10c)で吸収され
る。さらに、吸収されなかった光(太陽光)は、その次
の光電変換層(10d)で吸収される。したがって、本
発明の色素増感型光電池(太陽電池)によれば、光(太
陽光)の利用効率が高くなり、光電変換効率が向上す
る。
Therefore, light (sunlight) not absorbed by the first photoelectric conversion layer (10a) is transmitted to the next photoelectric conversion layer (1a).
0b). Further, the light (sunlight) not absorbed is absorbed by the next photoelectric conversion layer (10c). Further, the light (sunlight) that has not been absorbed is absorbed by the next photoelectric conversion layer (10d). Therefore, according to the dye-sensitized photovoltaic cell (solar cell) of the present invention, the utilization efficiency of light (sunlight) increases, and the photoelectric conversion efficiency improves.

【0051】特に、光(太陽光)の入射側から最も離れ
た反対側の電極層が、反射性の電極層からなる場合は、
それぞれの光電変換層を透過した光(太陽光)は、この
反射性の電極層で反射されて、それぞれの光電変換層を
反対側から表面側へと逆の経路をたどり、それぞれの光
電変換層で吸収される。したがって、光(太陽光)の利
用効率がさらに高くなり、光電変換効率がさらに向上す
る。
In particular, when the opposite electrode layer farthest from the light (sunlight) incident side is formed of a reflective electrode layer,
Light (sunlight) transmitted through each photoelectric conversion layer is reflected by this reflective electrode layer, and follows each photoelectric conversion layer in a reverse path from the opposite side to the surface side. Is absorbed by. Therefore, the use efficiency of light (sunlight) is further increased, and the photoelectric conversion efficiency is further improved.

【0052】[0052]

【発明の実施の形態】以下、本発明の実施例及び比較例
を挙げ、本発明の利点を説明する。 (実施例1)この実施例では、図1に示すような光電池
Aを作製する。 <電極層11a、11b及び15a、15bの作製>透
明ガラス板20aの片面に、フッ素をドープした酸化錫
層11aを形成した市販の透明導電性ガラス板(11a
/20a)(1cm角)を用意した。また、別に、透明
ガラス板20bの片面に、スパッタリン法により、厚さ
0.3μmの白金層11bを形成した反射性の導電性ガ
ラス板(11b/20b)(1cm角)を用意した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The advantages of the present invention will be described below with reference to examples and comparative examples of the present invention. Example 1 In this example, a photovoltaic cell A as shown in FIG. 1 is manufactured. <Production of Electrode Layers 11a and 11b and 15a and 15b> A commercially available transparent conductive glass plate (11a) having a fluorine-doped tin oxide layer 11a formed on one surface of a transparent glass plate 20a.
/ 20a) (1 cm square) was prepared. Separately, a reflective conductive glass plate (11b / 20b) (1 cm square) having a 0.3 μm-thick platinum layer 11b formed on one surface of a transparent glass plate 20b by a sputtering method was prepared.

【0053】さらに、別に、透明ガラス板20の両面
に、フッ素をドープした酸化錫層15aと15bとそれ
ぞれ形成した市販の透明導電性ガラス板(15a/20
/15b)(1cm角)を用意した。なお、この透明導
電性ガラス板(15a/20/15b)は、光透過性の
絶縁基板20として併用する。 <チタン半導体層12a、12bの形成>上記透明導電
性ガラス板(11a/20a)のフッ素ドープ酸化錫層
11a面に、下記の方法で、酸化チタン半導体層12a
を形成して、酸化チタン半導体層12aを有する透明導
電性ガラス板(12a/11a/20a)を作製した。
Separately, a commercially available transparent conductive glass plate (15a / 20) in which tin oxide layers 15a and 15b doped with fluorine are formed on both surfaces of the transparent glass plate 20 separately.
/ 15b) (1 cm square) was prepared. The transparent conductive glass plate (15a / 20 / 15b) is used in combination as the light-transmitting insulating substrate 20. <Formation of Titanium Semiconductor Layers 12a and 12b> The titanium oxide semiconductor layers 12a are formed on the surface of the transparent conductive glass plate (11a / 20a) by the following method.
Was formed to produce a transparent conductive glass plate (12a / 11a / 20a) having the titanium oxide semiconductor layer 12a.

【0054】また、別に、上記反射性の導電性ガラス板
(11b/20b)の白金層ドープ酸化錫層11b面
に、同様な方法で、酸化チタン半導体層12bを形成し
て、酸化チタン半導体層12bを有する透明導電性ガラ
ス板(12b/11b/20b)を作製した。
Separately, a titanium oxide semiconductor layer 12b is formed on the surface of the platinum layer-doped tin oxide layer 11b of the reflective conductive glass plate (11b / 20b) by the same method. A transparent conductive glass plate having 12b (12b / 11b / 20b) was produced.

【0055】なお、上記酸化チタン半導体層の形成方法
は、次の通りである 酸化チタン粉末(デグサ社製のP−25)25重量%
と、界面活性剤(ポリオキシエチレンオレイルエーテル
(第一工業製薬社製のノイゲンEA170)5重量%
と、水70重量%とを、サンドミルで混合分散して、酸
化チタン分散液を調製した。この酸化チタン分散液中の
酸化チタン粒子の平均粒径は200μmであった。
The method of forming the titanium oxide semiconductor layer is as follows: 25% by weight of titanium oxide powder (P-25 manufactured by Degussa)
And 5% by weight of a surfactant (polyoxyethylene oleyl ether (Neugen EA170 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
And 70% by weight of water were mixed and dispersed by a sand mill to prepare a titanium oxide dispersion. The average particle size of the titanium oxide particles in this titanium oxide dispersion was 200 μm.

【0056】この酸化チタン分散液100重量部に対
し、ポリエチレングリコール(三洋化成社製のPEG4
000S)10%水溶液10重量部を添加して粘度を調
整し、これをバーコートにより、前記透明導電性ガラス
板(11a/20a)のフッ素をドープした酸化錫層1
1a面に塗布し乾燥した。これを電気炉に入れて、空気
中で450℃30分間加熱焼結させて、多孔質の酸化チ
タンからなる半導体層12aを形成した。この半導体層
12aの厚さは10μm、ラフネスファクター(表面粗
さ係数)は700であった。
To 100 parts by weight of this titanium oxide dispersion, polyethylene glycol (PEG4 manufactured by Sanyo Chemical Co., Ltd.) was used.
000S) 10% by weight of a 10% aqueous solution was added to adjust the viscosity, and the viscosity was adjusted with a bar coater to obtain a fluorine-doped tin oxide layer 1 of the transparent conductive glass plate (11a / 20a).
It was applied to the surface 1a and dried. This was placed in an electric furnace and heated and sintered at 450 ° C. for 30 minutes in air to form a semiconductor layer 12 a made of porous titanium oxide. The thickness of the semiconductor layer 12a was 10 μm, and the roughness factor (surface roughness coefficient) was 700.

【0057】また、別に、前記反射性の導電性ガラス板
(11b/20b)を用い、上記と同様な方法で、多孔
質の酸化チタン半導体層12bを形成した。この半導体
層12bの厚さは10μm、ラフネスファクター(表面
粗さ係数)は700であった。
Separately, a porous titanium oxide semiconductor layer 12b was formed in the same manner as described above, using the reflective conductive glass plate (11b / 20b). The thickness of the semiconductor layer 12b was 10 μm, and the roughness factor (surface roughness coefficient) was 700.

【0058】<酸化チタン半導体層への光増感色素13
a、13bの吸着>光増感色素を吸着させる前に、上記
半導体層12aを形成した透明導電性ガラス板(12a
/11a/20a)を、2molの四塩化チタン(Ti
Cl4 )の水溶液に浸し、一昼夜放置した後、空気中で
450℃の温度で、30分間加熱処理した。
<Photosensitizing Dye 13 on Titanium Oxide Semiconductor Layer>
a, 13b> Before adsorbing the photosensitizing dye, the transparent conductive glass plate (12a
/ 11a / 20a) with 2 mol of titanium tetrachloride (Ti
After being immersed in an aqueous solution of Cl 4 ) and allowed to stand overnight, it was heated in air at 450 ° C. for 30 minutes.

【0059】この半導体層12aを形成した透明導電性
ガラス板(12a/11a/20a)を、下記の方法で
合成したルテニウム金属錯体からなる光増感色素〔ルテ
ニウム−シス−ジチオシアノ−ビス(2,2′−ビピリ
ジル−4,4′−ジカルボキシレート〕の3×10-4
olエタノール溶液中に3時間浸漬した後、取り出し、
空気中で乾燥して、酸化チタン半導体層12aの表面域
に、深紅色の光増感色素13aを吸着させた。
The transparent conductive glass plate (12a / 11a / 20a) on which the semiconductor layer 12a was formed was coated with a photosensitizing dye [ruthenium-cis-dithiocyano-bis (2,2)] comprising a ruthenium metal complex synthesized by the following method. 2'-bipyridyl-4,4'-dicarboxylate] 3 × 10 -4 m
ol immersed in ethanol solution for 3 hours, taken out,
After drying in the air, the deep red photosensitizing dye 13a was adsorbed on the surface area of the titanium oxide semiconductor layer 12a.

【0060】また、別に、前記半導体層12bを形成し
た反射性の導電性ガラス板(12b/11b/20b)
を用い、上記と同様な方法で、酸化チタン半導体層12
bの表面域に、深紅色の光増感色素13bを吸着させ
た。
Separately, a reflective conductive glass plate (12b / 11b / 20b) on which the semiconductor layer 12b is formed
And a titanium oxide semiconductor layer 12
The deep red photosensitizing dye 13b was adsorbed on the surface area b.

【0061】なお、上記光増感色素の合成方法は、次の
通りである。RuL2 Cl2 ・2H2 O(但し、Lは、
2,2′−ビピリジル−4,4′−ジカルボキシレート
である)を、ジメチルホルムアミドに溶解した後、水酸
化ナトリウムを加える。これに、チオシアン酸ナトリウ
ム(NaSCN)を水に溶解した水溶液を加えて混合
し、窒素雰囲気中で6時間加熱還流して反応を行う。
The method for synthesizing the photosensitizing dye is as follows. RuL 2 Cl 2 .2H 2 O (where L is
2,2'-bipyridyl-4,4'-dicarboxylate) is dissolved in dimethylformamide and sodium hydroxide is added. To this, an aqueous solution of sodium thiocyanate (NaSCN) dissolved in water is added and mixed, and the mixture is heated and refluxed in a nitrogen atmosphere for 6 hours to perform a reaction.

【0062】得られた反応溶液を冷却した後、溶媒を蒸
発させ、残った固形物(生成物)を水に溶解して濾過す
る。この濾液を過塩素酸(HClO4 )でPh2.5に
調整し、洗浄、乾燥して、目的の光増感色素〔ルテニウ
ム−シス−ジチオシアノ−ビス(2,2′−ビピリジル
−4,4′−ジカルボキシレート〕を合成した。
After cooling the obtained reaction solution, the solvent is evaporated, and the remaining solid (product) is dissolved in water and filtered. The filtrate was adjusted to Ph 2.5 with perchloric acid (HClO 4 ), washed and dried to obtain the desired photosensitizing dye [ruthenium-cis-dithiocyano-bis (2,2′-bipyridyl-4,4 ′). -Dicarboxylate] was synthesized.

【0063】<電解質層14a、14bの形成>電解質
溶液として、テトラプロピルアンモニウムアイオダイド
〔(C3 7 )NI〕とヨウ素とを、それぞれ濃度が前
者0.46モル、後者0.06モルとなるように、アセ
トニトリル:酸化エチレン=1:4(体積比)の混合溶
媒に溶解したものを用い、次のような方法で光電池を作
製する際に、電解質層14a、14bを形成した。この
電解質層14a、14bの厚さは、いずれも10μmで
ある。
<Formation of Electrolyte Layers 14a and 14b> As an electrolyte solution, tetrapropylammonium iodide [(C 3 H 7 ) NI] and iodine were used at concentrations of 0.46 mol of the former and 0.06 mol of the latter, respectively. The electrolyte layers 14a and 14b were formed when a photovoltaic cell was manufactured by the following method using a solution dissolved in a mixed solvent of acetonitrile: ethylene oxide = 1: 4 (volume ratio). The thickness of each of the electrolyte layers 14a and 14b is 10 μm.

【0064】<光電池Aの作製>上記光増感色素吸着の
半導体層を有する透明導電性ガラス板(14a/13b
/12b/11b/20b)上に、幅1mmの枠状に、
エポキシ系熱硬化型接着剤(三井東圧化学社製のストラ
クボンド)を塗布し、この接着剤で囲まれた枠内に、上
記電解質溶液14bを滴下し、これに前記透明導電性ガ
ラス板(15a/20/15b)を重ねて貼り合わせ
た。
<Preparation of Photovoltaic Cell A> A transparent conductive glass plate (14a / 13b)
/ 12b / 11b / 20b) on a 1 mm wide frame.
An epoxy-based thermosetting adhesive (Struck Bond manufactured by Mitsui Toatsu Chemicals, Inc.) is applied, and the above-mentioned electrolyte solution 14b is dropped into a frame surrounded by the adhesive, and the transparent conductive glass plate ( 15a / 20 / 15b).

【0065】さらに、上記透明導電性ガラス板(15a
/20/15b)上に、幅1mmの枠状に、エポキシ系
熱硬化型接着剤(三井東圧化学社製のストラクトボン
ド)を塗布し、この接着剤で囲まれた枠内に、上記電解
質溶液14aを滴下し、これに前記光増感色素吸着の半
導体層を有する透明導電性ガラス板(14a/13a/
12a/11a/20a)を重ねて貼り合わせ、これを
オーブン中で100℃の温度で3時間加熱硬化させて、
光電池Aを作製した。なお、上記光電池Aの作製の際
に、各電極層にリード線を取り付けた。
Further, the transparent conductive glass plate (15a)
/ 20 / 15b), an epoxy-based thermosetting adhesive (Structbond manufactured by Mitsui Toatsu Chemicals Co., Ltd.) was applied in a frame shape with a width of 1 mm, and the electrolyte was placed in a frame surrounded by the adhesive. The solution 14a was dropped, and a transparent conductive glass plate (14a / 13a /
12a / 11a / 20a) are laminated and bonded, and this is cured by heating in an oven at a temperature of 100 ° C. for 3 hours.
Photocell A was produced. In addition, a lead wire was attached to each electrode layer when producing the photovoltaic cell A.

【0066】この光電池Aは、図1に示すように、光電
変換層10aと光電変換層10bとが、光透過性の絶縁
基板20を挟んで、2層交互に積層され、その表面及び
裏面とがそれぞれ光透過性の絶縁基板20a及び20b
により保護されてなるものである。この光電池Aの受光
面積は0.8cm2 mmである。
In this photovoltaic cell A, as shown in FIG. 1, a photoelectric conversion layer 10a and a photoelectric conversion layer 10b are alternately laminated with a light-transmitting insulating substrate 20 interposed therebetween. Are light-transmitting insulating substrates 20a and 20b, respectively.
Protected by The light receiving area of the photocell A is 0.8 cm 2 mm.

【0067】<光電池Aの性能測定>この光電池Aの各
電極層のリード線を並列に接続し、この光電池A用い
て、表側(矢印方向)から、ソーラシュミレーター(A
M1.5、96mW/cm2 )を用いて、電池性能を測
定したところ、光電変換効率は13%に達し、最大電力
は8.5mWであった。
<Measurement of Performance of Photovoltaic Cell A> Lead wires of each electrode layer of the photovoltaic cell A were connected in parallel, and a solar simulator (A) was used with the photovoltaic cell A from the front side (in the direction of the arrow).
M1.5, 96 mW / cm 2 ), and the battery performance was measured. As a result, the photoelectric conversion efficiency reached 13%, and the maximum power was 8.5 mW.

【0068】(実施例2)この実施例では、図2に示す
ような光電池Bを作製する。 <各種基板の作製>透明ガラス板20aの片面にフッ素
ドープ酸化錫層15aを形成した市販の透明導電性ガラ
ス板(15a/20a)(1cm角)を用意した。ま
た、別に、透明ガラス板20bの片面にフッ素をドープ
酸化錫層11dを形成した市販の透明導電性ガラス板
(15d/20d)のフッ素ドープ酸化錫層11d上
に、光増感色素吸着の半導体層を有する透明導電性ガラ
ス板(13d/12d/11d/20d)(1cm角)
を用意した。
Example 2 In this example, a photovoltaic cell B as shown in FIG. 2 is manufactured. <Production of Various Substrates> A commercially available transparent conductive glass plate (15a / 20a) (1 cm square) having a fluorine-doped tin oxide layer 15a formed on one surface of a transparent glass plate 20a was prepared. Separately, a photosensitizing dye-adsorbed semiconductor is placed on a fluorine-doped tin oxide layer 11d of a commercially available transparent conductive glass plate (15d / 20d) in which a fluorine-doped tin oxide layer 11d is formed on one surface of a transparent glass plate 20b. Transparent conductive glass plate with layer (13d / 12d / 11d / 20d) (1 cm square)
Was prepared.

【0069】さらに、別に、透明ガラス板20の両面に
フッ素ドープ酸化錫層11aと15bとそれぞれ形成し
た市販の透明導電性ガラス板(15a/20/15b)
のフッ素ドープ酸化錫層11a上に、光増感色素吸着の
半導体層を有する透明導電性ガラス板(13d/12a
/11a/20/15b)(1cm角)を用意した。ま
た、同様にして、光増感色素吸着の半導体層を有する透
明導電性ガラス板(13b/12b/11b/20/1
5c)(1cm角)を用意した。また、同様にして、光
増感色素吸着の半導体層を有する透明導電性ガラス板
(13b/12b/11b/20/15c)(1cm
角)を用意した。
Further, a commercially available transparent conductive glass plate (15a / 20 / 15b) in which fluorine-doped tin oxide layers 11a and 15b are respectively formed on both surfaces of a transparent glass plate 20 is separately provided.
A transparent conductive glass plate (13d / 12a) having a semiconductor layer for photosensitizing dye adsorption on a fluorine-doped tin oxide layer 11a of
/ 11a / 20 / 15b) (1 cm square). Similarly, a transparent conductive glass plate (13b / 12b / 11b / 20/1) having a semiconductor layer for photosensitizing dye adsorption.
5c) (1 cm square) was prepared. Similarly, a transparent conductive glass plate (13b / 12b / 11b / 20 / 15c) having a semiconductor layer on which a photosensitizing dye is adsorbed (1 cm)
Corner) was prepared.

【0070】なお、上記各半導体層の形成及び各半導体
層への光増感色素の吸着は、いずれも実施例1に記載し
た方法と同様な方法で行った。上記光増感色素吸着の半
導体層を有する透明導電性ガラス板は、いずれも光透過
性の絶縁基板20として併用する。
The formation of each semiconductor layer and the adsorption of the photosensitizing dye to each semiconductor layer were performed in the same manner as described in Example 1. The above-mentioned transparent conductive glass plates having the semiconductor layer adsorbing the photosensitizing dye are used together as the light-transmitting insulating substrate 20.

【0071】<電解質層14a、14b、14c、14
bの形成>電解質溶液として、テトラプロピルアンモニ
ウムアイオダイド〔(C3 7 )NI〕とヨウ素とを、
それぞれ濃度が前者0.46モル、後者0.06モルと
なるように、アセトニトリル:酸化エチレン=1:4
(体積比)の混合溶媒に溶解したものを用い、次のよう
な方法で光電池を作製する際に、電解質層14a、14
b、14c、14bを形成した。この電解質層14a、
14b、14c、14bの厚さは、いずれも10μmで
ある。
<Electrolyte layers 14a, 14b, 14c, 14
Formation of b> Tetrapropylammonium iodide [(C 3 H 7 ) NI] and iodine were used as an electrolyte solution.
Acetonitrile: ethylene oxide = 1: 4 so that the concentration becomes 0.46 mol of the former and 0.06 mol of the latter, respectively.
When a photovoltaic cell is manufactured by the following method using a solution dissolved in a mixed solvent (volume ratio), the electrolyte layers 14a, 14
b, 14c and 14b were formed. This electrolyte layer 14a,
The thickness of each of 14b, 14c and 14b is 10 μm.

【0072】<光電池Bの作製>上記光増感色素吸着の
半導体層を有する透明導電性ガラス板(13d/12d
/11d/20d)上に、幅1mmの枠状に、エポキシ
系熱硬化型接着剤(三井東圧化学社製のストラクトボン
ド)を塗布し、この接着剤で囲まれた枠内に、上記電解
質溶液14dを滴下し、これに前記光増感色素吸着の半
導体層を有する透明導電性ガラス板(13c/12c/
11c/20/15d)を重ねて貼り合わせた。
<Preparation of Photovoltaic Cell B> A transparent conductive glass plate (13d / 12d) having a semiconductor layer adsorbing the above photosensitizing dye
/ 11d / 20d), an epoxy-based thermosetting adhesive (Structbond manufactured by Mitsui Toatsu Chemicals, Inc.) was applied in a frame shape with a width of 1 mm, and the electrolyte was placed in a frame surrounded by the adhesive. A solution 14d was dropped, and a transparent conductive glass plate (13c / 12c /
11c / 20 / 15d).

【0073】さらに、上記光増感色素吸着の半導体層を
有する透明導電性ガラス板(13b/12b/11b/
20/15c)上に、幅1mmの枠状に、エポキシ系熱
硬化型接着剤(三井東圧化学社製のストラクトボンド)
を塗布し、この接着剤で囲まれた枠内に、上記電解質溶
液14cを滴下し、これに前記光増感色素吸着の半導体
層を有する透明導電性ガラス板(13b/12b/11
b/20/15c)を重ねて貼り合わせた。
Further, the transparent conductive glass plate (13b / 12b / 11b /
20 / 15c), an epoxy-based thermosetting adhesive (Struct Bond manufactured by Mitsui Toatsu Chemical Co., Ltd.) in a 1 mm wide frame
Is applied, and the electrolyte solution 14c is dropped into a frame surrounded by the adhesive, and a transparent conductive glass plate (13b / 12b / 11) having a semiconductor layer for adsorbing the photosensitizing dye is added thereto.
b / 20 / 15c).

【0074】さらに、上記光増感色素吸着の半導体層を
有する透明導電性ガラス板(13b/12b/11b/
20/15c)上に、幅1mmの枠状に、エポキシ系熱
硬化型接着剤(三井東圧化学社製のストラクボンド)を
塗布し、この接着剤で囲まれた枠内に、上記電解質溶液
14bを滴下し、これに前記光増感色素吸着の半導体層
を有する透明導電性ガラス板(13a/12a/11a
/20/15b)を重ねて貼り合わせた。
Further, a transparent conductive glass plate (13b / 12b / 11b /
20 / 15c), an epoxy-based thermosetting adhesive (Strucbond manufactured by Mitsui Toatsu Chemicals, Inc.) is applied in a 1 mm wide frame shape, and the electrolyte solution is placed in a frame surrounded by the adhesive. 14b is dropped, and a transparent conductive glass plate (13a / 12a / 11a) having a semiconductor layer for adsorbing the photosensitizing dye is dropped thereon.
/ 20 / 15b) were laminated and laminated.

【0075】さらに、上記光増感色素吸着の半導体層を
有する透明導電性ガラス板(13a/12a/11a/
20/15b)上に、幅1mmの枠状に、エポキシ系熱
硬化型接着剤(三井東圧化学社製のストラクトボンド)
を塗布し、この接着剤で囲まれた枠内に、上記電解質溶
液14aを滴下し、これに前記透明ガラス板20aの片
面にフッ素ドープ酸化錫層15aを形成した透明導電性
ガラス板(15a/20a)を重ねて貼り合わせ、これ
をオーブン中で100℃の温度で3時間加熱硬化させ
て、光電池Bを作製した。なお、上記光電池Bの作製の
際に、各電極層にリード線を取り付けた。
Further, a transparent conductive glass plate (13a / 12a / 11a /
20 / 15b) An epoxy-based thermosetting adhesive (Struct Bond manufactured by Mitsui Toatsu Chemicals Co., Ltd.) on a 1 mm wide frame
Is applied, and the electrolyte solution 14a is dropped into a frame surrounded by the adhesive, and the transparent conductive glass plate (15a / 15a / 15a / 15a) is formed by forming a fluorine-doped tin oxide layer 15a on one surface of the transparent glass plate 20a. 20a) was overlaid and bonded, and this was heated and cured in an oven at a temperature of 100 ° C. for 3 hours to produce a photovoltaic cell B. In addition, a lead wire was attached to each electrode layer when producing the photovoltaic cell B.

【0076】この光電池Bは、図2に示すように、光電
変換層10aと光電変換層10bと光電変換層10cと
光電変換層10dが、各光透過性の絶縁基板20を挟ん
で、4層交互に積層され、その表面及び裏面とがそれぞ
れ光透過性の絶縁基板20a及び20dにより保護され
てなるものである。この光電池Bの受光面積は0.8c
2 である。
As shown in FIG. 2, this photovoltaic cell B has four photoelectric conversion layers 10a, 10b, 10c, and 10d sandwiching each light-transmitting insulating substrate 20. They are alternately laminated, and the front and back surfaces thereof are protected by light-transmitting insulating substrates 20a and 20d, respectively. The light receiving area of the photocell B is 0.8c.
m 2 .

【0077】<光電池Bの性能測定>この光電池Bの各
電極層のリード線を並列に接続し、この光電池B用い
て、表側(矢印方向)から、ソーラシュミレーター(A
M1.5、96mW/cm2 )を用いて、電池性能を測
定したところ、光電変換効率は13%に達し、最大電力
は10.5mWであった。なお、この光電池Bは、裏側
から、ソーラシュミレーター(AM1.5、96mW/
cm2 )を用いて、電池性能を測定しても、上記と同様
な性能を有していた。
<Measurement of Performance of Photovoltaic Cell B> Lead wires of each electrode layer of the photovoltaic cell B were connected in parallel, and a solar simulator (A) was used with the photovoltaic cell B from the front side (in the direction of the arrow).
M1.5, 96 mW / cm 2 ), the battery performance was measured. The photoelectric conversion efficiency reached 13%, and the maximum power was 10.5 mW. The photovoltaic cell B was provided with a solar simulator (AM 1.5, 96 mW /
cm 2 ), the battery performance was the same as above when the battery performance was measured.

【0078】(実施例3)実施例1において、光増感色
素13bを吸着した半導体層12bを、フッ素ドープ酸
化錫層15bの表面に形成し、それ以外は実施例1の光
電池Aと同様に構成して光電池Cを作製した。この光電
池Cの光電変換効率は12%に達し、最大電力は9.0
mWであった。
(Example 3) In Example 1, the semiconductor layer 12b on which the photosensitizing dye 13b was adsorbed was formed on the surface of the fluorine-doped tin oxide layer 15b. Thus, a photovoltaic cell C was produced. The photoelectric conversion efficiency of this photovoltaic cell C reached 12%, and the maximum power was 9.0.
mW.

【0079】(実施例4)実施例1において、光増感色
素13aを吸着した半導体層12aを、フッ素ドープ酸
化錫層15aの表面に形成し、それ以外は実施例1の光
電池Aと同様に構成して光電池Dを作製した。この光電
池Dの光電変換効率は13%に達し、最大電力は9.8
mWであった。
(Example 4) In Example 1, the semiconductor layer 12a on which the photosensitizing dye 13a was adsorbed was formed on the surface of the fluorine-doped tin oxide layer 15a. Thus, a photocell D was manufactured. The photoelectric conversion efficiency of this photovoltaic cell D reached 13%, and the maximum power was 9.8.
mW.

【0080】(実施例5)実施例1において、光増感色
素13aを吸着した半導体層12aを、フッ素ドープ酸
化錫層15aの表面に形成し、さらに光増感色素13b
を吸着した半導体層12bを、フッ素ドープ酸化錫層1
5bの表面に形成し、それ以外は実施例1の光電池Aと
同様に構成して光電池Eを作製した。この光電池Eの光
電変換効率は11%に達し、最大電力は8.5mWであ
った。
(Example 5) In Example 1, the semiconductor layer 12a having the photosensitizing dye 13a adsorbed thereon was formed on the surface of the fluorine-doped tin oxide layer 15a.
The semiconductor layer 12b adsorbed by the fluorine-doped tin oxide layer 1
A photovoltaic cell E was formed on the surface of the photovoltaic cell 5b, and otherwise configured similarly to the photovoltaic cell A of Example 1. The photoelectric conversion efficiency of this photovoltaic cell E reached 11%, and the maximum power was 8.5 mW.

【0081】(比較例1)この比較例では、図3に示す
ような光電池Fを作製する。 <各種基板の作製>透明ガラス板16の片面にフッ素ド
ープ酸化錫層15を形成した市販の透明導電性ガラス板
(15/20)(1cm角)を用意した。また、別に、
透明ガラス板17の片面にフッ素ドープ酸化錫層11を
形成した市販の透明導電性ガラス板(11/17)のフ
ッ素ドープ酸化錫層11上に、光増感色素吸着の半導体
層を有する透明導電性ガラス板(13/12/11/1
7)(1cm角)を用意した。
Comparative Example 1 In this comparative example, a photovoltaic cell F as shown in FIG. 3 is manufactured. <Production of Various Substrates> A commercially available transparent conductive glass plate (15/20) (1 cm square) having a fluorine-doped tin oxide layer 15 formed on one surface of a transparent glass plate 16 was prepared. Also, separately
A transparent conductive material having a semiconductor layer for photosensitizing dye adsorption on a fluorine-doped tin oxide layer 11 of a commercially available transparent conductive glass plate (11/17) having a fluorine-doped tin oxide layer 11 formed on one surface of a transparent glass plate 17 Glass plate (13/12/11/1
7) (1 cm square) was prepared.

【0082】なお、上記半導体層の形成及び半導体層へ
の光増感色素の吸着は、いずれも実施例1に記載した方
法と同様な方法で行った。
The formation of the semiconductor layer and the adsorption of the photosensitizing dye to the semiconductor layer were performed in the same manner as described in Example 1.

【0083】<光電池Fの作製>上記光増感色素吸着の
半導体層を有する透明導電性ガラス板(13/12/1
1/17)上に、幅1mmの枠状に、エポキシ系熱硬化
型接着剤(三井東圧化学社製のストラクボンド)を塗布
し、この接着剤で囲まれた枠内に、実施例1で使用した
ものと同じ電解質溶液14を滴下し、これに前記透明導
電性ガラス板(15/16)を重ねて貼り合わせ、これ
をオーブン中で100℃の温度で3時間加熱硬化させ
て、光電池Fを作製した。なお、上記光電池の作製の際
に、各電極層にリード線を取り付けた。
<Preparation of Photocell F> A transparent conductive glass plate (13/12/1) having a semiconductor layer adsorbing the above-described photosensitizing dye was prepared.
1/17), an epoxy-based thermosetting adhesive (Struck Bond manufactured by Mitsui Toatsu Chemicals, Inc.) was applied in a 1 mm wide frame shape, and Example 1 was placed in a frame surrounded by the adhesive. The same electrolyte solution 14 as that used in the above was dropped, the transparent conductive glass plate (15/16) was overlaid and bonded thereto, and this was heated and cured at 100 ° C. for 3 hours in an oven. F was produced. In addition, a lead wire was attached to each electrode layer at the time of manufacturing the photovoltaic cell.

【0084】<光電池Fの性能測定>この光電池Fを用
いて、表側(矢印方向)から、ソーラシュミレーター
(AM1.5、96mW/cm2 )を用いて、電池性能
を測定したところ、光電変換効率は7%に達し、最大電
力は5.3mWであり、上記各実施例よりも光電変換効
率が劣っていた。
<Measurement of Performance of Photocell F> Using this photocell F, the battery performance was measured from the front side (in the direction of the arrow) using a solar simulator (AM 1.5, 96 mW / cm 2 ). Reached 7%, the maximum power was 5.3 mW, and the photoelectric conversion efficiency was inferior to each of the above examples.

【0085】[0085]

【発明の効果】上述の通り、本発明の色素増感型光電池
は、光電変換効率に優れ、単位面積当たりの電力供給量
が増大する。
As described above, the dye-sensitized photovoltaic cell of the present invention is excellent in photoelectric conversion efficiency and increases the power supply per unit area.

【0086】したがって、本発明の色素増感型光電池
を、住宅の屋根などの限られた面積部分に設置し、太陽
電池として使用すれば、従来のシリコン半導体を用いた
P−n接合の光電池に比べて製造コストが安く、しかも
非直射日光又は曇天の条件下でも急激に光電変換効率が
低下せず、また従来の色素増感型光電池に比べて、大き
な電力を供給することができる。
Therefore, if the dye-sensitized photovoltaic cell of the present invention is installed on a limited area such as the roof of a house and used as a solar cell, it can be used as a conventional pn junction photocell using a silicon semiconductor. The production cost is lower than that, the photoelectric conversion efficiency does not decrease rapidly even under the condition of non-direct sunlight or cloudy sky, and a larger electric power can be supplied as compared with the conventional dye-sensitized photocell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の色素増感型光電池の一例を示す断面図
である。
FIG. 1 is a cross-sectional view illustrating an example of a dye-sensitized photocell of the present invention.

【図2】本発明の色素増感型光電池の他お例を示す断面
図である。
FIG. 2 is a cross-sectional view showing another example of the dye-sensitized photocell of the present invention.

【図3】従来の色素増感型光電池の一例を示す断面図で
ある。
FIG. 3 is a cross-sectional view illustrating an example of a conventional dye-sensitized photovoltaic cell.

【符号の説明】[Explanation of symbols]

A、B 色素増感型光電池 10a、10b、10c、10d 光電変換層 11a、11b、11c、11d 電極層 12a、12b、12c、12d 半導体層 13a、13b、13c、13d 光増感色素 14a、14b、14c、14d 電解質層 15a、15b、15c、15d 電極層 20、20a、20b 光透過性の絶縁基板 A, B Dye-sensitized photocells 10a, 10b, 10c, 10d Photoelectric conversion layers 11a, 11b, 11c, 11d Electrode layers 12a, 12b, 12c, 12d Semiconductor layers 13a, 13b, 13c, 13d Photosensitizing dyes 14a, 14b , 14c, 14d Electrolyte layer 15a, 15b, 15c, 15d Electrode layer 20, 20a, 20b Light-transmitting insulating substrate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電極層、光増感色素を吸着した金属酸化
物からなる半導体層、電解質層、電極層の順に積層され
てなる光電変換層が、光透過性の絶縁基板を挟んで、少
なくとも2層交互に積層されていることを特徴とする色
素増感型光電池。
1. A photoelectric conversion layer formed by laminating an electrode layer, a semiconductor layer made of a metal oxide to which a photosensitizing dye is adsorbed, an electrolyte layer, and an electrode layer in this order at least with a light-transmitting insulating substrate interposed therebetween. A dye-sensitized photocell, wherein two layers are alternately stacked.
【請求項2】 光の入射側から最も離れた反対側の電極
層が、反射性の電極層からなることを特徴とする請求項
1に記載の色素増感型光電池。
2. The dye-sensitized photovoltaic cell according to claim 1, wherein the electrode layer farthest away from the light incident side is a reflective electrode layer.
【請求項3】 反射性の電極層が、耐蝕性の導電金属か
らなることを特徴とする請求項2に記載の色素増感型光
電池。
3. The dye-sensitized photovoltaic cell according to claim 2, wherein the reflective electrode layer is made of a corrosion-resistant conductive metal.
【請求項4】 光増感色素が、ルテニウム金属錯体から
なることを特徴とする請求項1、2、3のいずれか1項
に記載の色素増感型光電池。
4. The dye-sensitized photovoltaic cell according to claim 1, wherein the photosensitizing dye comprises a ruthenium metal complex.
【請求項5】 金属酸化物が、酸化チタンからなること
を特徴とする請求項1、2、3、4のいずれか1項に記
載の色素増感型光電池。
5. The dye-sensitized photovoltaic cell according to claim 1, wherein the metal oxide comprises titanium oxide.
JP10077600A 1998-03-25 1998-03-25 Coloring matter sensitizing type photocell Pending JPH11273753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10077600A JPH11273753A (en) 1998-03-25 1998-03-25 Coloring matter sensitizing type photocell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10077600A JPH11273753A (en) 1998-03-25 1998-03-25 Coloring matter sensitizing type photocell

Publications (1)

Publication Number Publication Date
JPH11273753A true JPH11273753A (en) 1999-10-08

Family

ID=13638444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10077600A Pending JPH11273753A (en) 1998-03-25 1998-03-25 Coloring matter sensitizing type photocell

Country Status (1)

Country Link
JP (1) JPH11273753A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260492A (en) * 1999-03-10 2000-09-22 Fuji Xerox Co Ltd Optoelectric transducer element and its manufacture
JP2000315530A (en) * 1999-04-30 2000-11-14 Ricoh Co Ltd Photoelectric conversion element and manufacture thereof
JP2001053355A (en) * 1999-08-06 2001-02-23 Sharp Corp Optielectronic transducer, manufacture thereof and solar cell
WO2001068608A1 (en) * 2000-03-13 2001-09-20 Japan As Represented By Secretary Of Agency Of Industrial Science And Technology -diketonato-metal complexes and process for the preparation thereof, photoelectric conversion devices and photoelectrochemical cells
JP2001273936A (en) * 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd Photoelectric transducer and solar battery
JP2002075479A (en) * 2000-09-05 2002-03-15 Hiroshi Komiyama Pigment sensitized solar cell
WO2002052654A1 (en) * 2000-12-26 2002-07-04 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Solar cell
JP2002222971A (en) * 2001-01-29 2002-08-09 Sharp Corp Photoelectric converter
WO2003034533A1 (en) * 2001-10-11 2003-04-24 Bridgestone Corporation Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell
JP2003333757A (en) * 2002-05-14 2003-11-21 Sony Corp Power source apparatus
JP2005191137A (en) * 2003-12-24 2005-07-14 Kyocera Corp Stacked photoelectric conversion device
WO2005069424A1 (en) * 2004-01-20 2005-07-28 Sharp Kabushiki Kaisha Dye-sensitized solar cell module
JP2006040636A (en) * 2004-07-23 2006-02-09 Geomatec Co Ltd Thin-film solid lithium ion secondary battery
WO2006015431A1 (en) * 2004-08-11 2006-02-16 Dyesol Ltd Photoelectrochemical photovoltaic panel and method to manufacture thereof
US7022910B2 (en) 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
JP2006216562A (en) * 2005-02-05 2006-08-17 Samsung Electronics Co Ltd Flexible solar battery, and manufacturing method of same
KR100624764B1 (en) 2004-06-25 2006-09-20 한국전기연구원 Photosensitive solar cell having a plurality of photosensitive layers and a method of manufacturing the same
KR100658263B1 (en) 2005-09-29 2006-12-14 삼성전자주식회사 Multilayer photoelectric conversion element and manufacturing method thereof
WO2007046499A1 (en) 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP2008053042A (en) * 2006-08-24 2008-03-06 Univ Nagoya Dye-sensitized solar cell
EP1926111A2 (en) * 2006-11-21 2008-05-28 Electronics And Telecommunications Research Institute Dye-sensitized solar cell module having vertically stacked cells and method of manufacturing the same
WO2009008495A1 (en) 2007-07-12 2009-01-15 Hitachi Zosen Corporation Photoelectric conversion element and method for manufacturing the same
JP2009302522A (en) * 2008-05-13 2009-12-24 Sumitomo Chemical Co Ltd Photoelectric conversion element
AU2005270739B2 (en) * 2004-08-11 2009-12-24 Dyesol Ltd Photoelectrochemical Photovoltaic Panel and method to manufacture thereof
WO2010041732A1 (en) 2008-10-10 2010-04-15 日新製鋼株式会社 Dye-sensitized solar cells
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
WO2010080672A3 (en) * 2009-01-06 2010-10-21 Sunlight Photonics Inc. Multi-junction pv module
WO2011004494A1 (en) * 2009-07-10 2011-01-13 日新製鋼株式会社 Electrode material for dye-sensitized solar cell, method for manufacturing the electrode material, and electrode
JP2011034783A (en) * 2009-07-31 2011-02-17 Toppan Forms Co Ltd Solar cell sheet
KR101025551B1 (en) 2004-06-15 2011-03-29 다이솔 엘티디 Photovoltaic modules that utilize the entire surface area
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
KR101070861B1 (en) 2010-07-09 2011-10-06 고려대학교 산학협력단 Dye-sensitized tandem solar cell including two electrodes connected through a via hole on a common substrate
JP2012230992A (en) * 2011-04-26 2012-11-22 Sumitomo Chemical Co Ltd Photoelectric conversion element having multijunction structure and method for manufacturing the same
US8343794B2 (en) 2008-02-21 2013-01-01 Sunlight Photonics Inc. Method and apparatus for manufacturing multi-layered electro-optic devices
TWI463679B (en) * 2009-04-30 2014-12-01 Univ Minghsin Sci & Tech Double - sided solar cell transparent board structure
NL1040237C2 (en) * 2013-06-03 2014-12-08 Arpad Kiss INSTALLATION FOR CONVERTING BUNDLED LIGHT IN ELECTRIC ENERGY THROUGH A WIDE SPECTRUM PHOTO-ELECTROCHEMICAL SOLAR CELL.
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260492A (en) * 1999-03-10 2000-09-22 Fuji Xerox Co Ltd Optoelectric transducer element and its manufacture
JP2000315530A (en) * 1999-04-30 2000-11-14 Ricoh Co Ltd Photoelectric conversion element and manufacture thereof
JP2001053355A (en) * 1999-08-06 2001-02-23 Sharp Corp Optielectronic transducer, manufacture thereof and solar cell
WO2001068608A1 (en) * 2000-03-13 2001-09-20 Japan As Represented By Secretary Of Agency Of Industrial Science And Technology -diketonato-metal complexes and process for the preparation thereof, photoelectric conversion devices and photoelectrochemical cells
US6664462B2 (en) 2000-03-13 2003-12-16 National Institute Of Advanced Industrial Science And Technology Metal complex having β-diketonate, process for production thereof, photoelectric conversion element, and photochemical cell
JP2001273936A (en) * 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd Photoelectric transducer and solar battery
JP2002075479A (en) * 2000-09-05 2002-03-15 Hiroshi Komiyama Pigment sensitized solar cell
WO2002052654A1 (en) * 2000-12-26 2002-07-04 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Solar cell
JPWO2002052654A1 (en) * 2000-12-26 2004-04-30 株式会社林原生物化学研究所 Solar cell
JP2002222971A (en) * 2001-01-29 2002-08-09 Sharp Corp Photoelectric converter
WO2003034533A1 (en) * 2001-10-11 2003-04-24 Bridgestone Corporation Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell
US7118936B2 (en) 2001-10-11 2006-10-10 Bridgestone Corporation Organic dye-sensitized metal oxide semiconductor electrode and its manufacturing method, and organic dye-sensitized solar cell
US7022910B2 (en) 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
WO2003100867A1 (en) * 2002-05-14 2003-12-04 Sony Corporation Power source device
JP2003333757A (en) * 2002-05-14 2003-11-21 Sony Corp Power source apparatus
JP2005191137A (en) * 2003-12-24 2005-07-14 Kyocera Corp Stacked photoelectric conversion device
WO2005069424A1 (en) * 2004-01-20 2005-07-28 Sharp Kabushiki Kaisha Dye-sensitized solar cell module
US8237046B2 (en) 2004-01-20 2012-08-07 Sharp Kabushiki Kaisha Dye-sensitized solar cell module
KR101025551B1 (en) 2004-06-15 2011-03-29 다이솔 엘티디 Photovoltaic modules that utilize the entire surface area
KR100624764B1 (en) 2004-06-25 2006-09-20 한국전기연구원 Photosensitive solar cell having a plurality of photosensitive layers and a method of manufacturing the same
JP2006040636A (en) * 2004-07-23 2006-02-09 Geomatec Co Ltd Thin-film solid lithium ion secondary battery
US8415553B2 (en) 2004-08-11 2013-04-09 Dyesol, Ltd. Photoelectrochemical photovoltaic panel and method to manufacture thereof
WO2006015431A1 (en) * 2004-08-11 2006-02-16 Dyesol Ltd Photoelectrochemical photovoltaic panel and method to manufacture thereof
KR101131834B1 (en) 2004-08-11 2012-03-30 다이솔 엘티디 Photoelectrochemical Photovoltaic Panel and Method to Manufacture thereof
AU2005270739B2 (en) * 2004-08-11 2009-12-24 Dyesol Ltd Photoelectrochemical Photovoltaic Panel and method to manufacture thereof
JP2006216562A (en) * 2005-02-05 2006-08-17 Samsung Electronics Co Ltd Flexible solar battery, and manufacturing method of same
KR100658263B1 (en) 2005-09-29 2006-12-14 삼성전자주식회사 Multilayer photoelectric conversion element and manufacturing method thereof
WO2007046499A1 (en) 2005-10-21 2007-04-26 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device and method for manufacturing same
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP2008053042A (en) * 2006-08-24 2008-03-06 Univ Nagoya Dye-sensitized solar cell
KR100842265B1 (en) * 2006-11-21 2008-06-30 한국전자통신연구원 Manufacturing method of vertically stacked dye-sensitized solar cell module
EP1926111A2 (en) * 2006-11-21 2008-05-28 Electronics And Telecommunications Research Institute Dye-sensitized solar cell module having vertically stacked cells and method of manufacturing the same
EP1926111A3 (en) * 2006-11-21 2010-04-14 Electronics And Telecommunications Research Institute Dye-sensitized solar cell module having vertically stacked cells and method of manufacturing the same
US9184317B2 (en) 2007-04-02 2015-11-10 Merck Patent Gmbh Electrode containing a polymer and an additive
CN101743662A (en) * 2007-07-12 2010-06-16 日立造船株式会社 Photoelectric conversion element and manufacturing method thereof
JP2009021122A (en) * 2007-07-12 2009-01-29 Hitachi Zosen Corp Photoelectric conversion element and manufacturing method thereof
WO2009008495A1 (en) 2007-07-12 2009-01-15 Hitachi Zosen Corporation Photoelectric conversion element and method for manufacturing the same
US8343794B2 (en) 2008-02-21 2013-01-01 Sunlight Photonics Inc. Method and apparatus for manufacturing multi-layered electro-optic devices
JP2009302522A (en) * 2008-05-13 2009-12-24 Sumitomo Chemical Co Ltd Photoelectric conversion element
WO2010041732A1 (en) 2008-10-10 2010-04-15 日新製鋼株式会社 Dye-sensitized solar cells
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010080672A3 (en) * 2009-01-06 2010-10-21 Sunlight Photonics Inc. Multi-junction pv module
US9087948B1 (en) 2009-01-06 2015-07-21 Sunlight Photonics Inc. Manufacturing method of multi-junction PV modules
US8835748B2 (en) 2009-01-06 2014-09-16 Sunlight Photonics Inc. Multi-junction PV module
TWI463679B (en) * 2009-04-30 2014-12-01 Univ Minghsin Sci & Tech Double - sided solar cell transparent board structure
WO2011004494A1 (en) * 2009-07-10 2011-01-13 日新製鋼株式会社 Electrode material for dye-sensitized solar cell, method for manufacturing the electrode material, and electrode
JP5430658B2 (en) * 2009-07-10 2014-03-05 日新製鋼株式会社 Electrode of dye-sensitized solar cell
JP2011034783A (en) * 2009-07-31 2011-02-17 Toppan Forms Co Ltd Solar cell sheet
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
KR101070861B1 (en) 2010-07-09 2011-10-06 고려대학교 산학협력단 Dye-sensitized tandem solar cell including two electrodes connected through a via hole on a common substrate
JP2012230992A (en) * 2011-04-26 2012-11-22 Sumitomo Chemical Co Ltd Photoelectric conversion element having multijunction structure and method for manufacturing the same
NL1040237C2 (en) * 2013-06-03 2014-12-08 Arpad Kiss INSTALLATION FOR CONVERTING BUNDLED LIGHT IN ELECTRIC ENERGY THROUGH A WIDE SPECTRUM PHOTO-ELECTROCHEMICAL SOLAR CELL.

Similar Documents

Publication Publication Date Title
JPH11273753A (en) Coloring matter sensitizing type photocell
US10366842B2 (en) Dye-sensitized solar cell and method for manufacturing thereof
JP4392741B2 (en) Photoelectric cell
US9406446B2 (en) Dye-sensitized solar cell, method of producing the same, and dye-sensitized solar cell module
JP4850338B2 (en) Semiconductor electrode manufacturing method and photochemical battery
JP3717506B2 (en) Dye-sensitized solar cell module
EP2211418A1 (en) Dye-sensitized solar cell module
JP2003123859A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JPWO2006041092A1 (en) Dye-sensitized metal oxide semiconductor electrode, method for producing the same, and dye-sensitized solar cell
JP2005516364A (en) Solar cell interconnection
JP2002008740A (en) Dye sensitized photocell and its manufacturing method
WO2009157175A1 (en) Dye-sensitized solar cell
JP2004311197A (en) Optical electrode and dye-sensitized solar cell using it
JP4596305B2 (en) Semiconductor electrode, manufacturing method thereof, and dye-sensitized solar cell using the same
JPH11219734A (en) Semiconductor for photoelectric conversion material, laminate using the semiconductor, manufacture of those and photocell
TWI453924B (en) Electrode plate and dye-sensitized photovoltaic cell having the same
EP1107332A2 (en) Photoelectric conversion device
JP4936648B2 (en) Dye-sensitized solar cell and method of attaching dye-sensitized solar cell
JP2003123858A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JP2003187883A (en) Photoelectric conversion element
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2003298082A (en) Composite semiconductor
JP2006210102A (en) Photoelectric conversion device and photovoltaic device using the same
JP2002280327A (en) Fabrication of semiconductor electrode and photochemical battery
KR20110098549A (en) The present invention relates to a photoelectrode for a dye-sensitized solar cell, a method for manufacturing the photoelectrode, and a dye-