CN103413894A - Transparent solar cell with polarization absorption function - Google Patents
Transparent solar cell with polarization absorption function Download PDFInfo
- Publication number
- CN103413894A CN103413894A CN201310340036XA CN201310340036A CN103413894A CN 103413894 A CN103413894 A CN 103413894A CN 201310340036X A CN201310340036X A CN 201310340036XA CN 201310340036 A CN201310340036 A CN 201310340036A CN 103413894 A CN103413894 A CN 103413894A
- Authority
- CN
- China
- Prior art keywords
- solar cell
- layer
- transparent
- photoelectric conversion
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 47
- 230000010287 polarization Effects 0.000 title claims description 31
- 238000006243 chemical reaction Methods 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 27
- 239000004332 silver Substances 0.000 claims description 13
- 229910052709 silver Inorganic materials 0.000 claims description 13
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 12
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims 2
- 239000004411 aluminium Substances 0.000 claims 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims 1
- 210000004027 cell Anatomy 0.000 abstract description 59
- 238000005538 encapsulation Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 5
- 210000005056 cell body Anatomy 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 92
- 239000010408 film Substances 0.000 description 29
- 238000002834 transmittance Methods 0.000 description 26
- 239000010409 thin film Substances 0.000 description 13
- 238000001704 evaporation Methods 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 8
- 238000002207 thermal evaporation Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 239000005038 ethylene vinyl acetate Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 4
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- YTDHEFNWWHSXSU-UHFFFAOYSA-N 2,3,5,6-tetrachloroaniline Chemical compound NC1=C(Cl)C(Cl)=CC(Cl)=C1Cl YTDHEFNWWHSXSU-UHFFFAOYSA-N 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- LBGCRGLFTKVXDZ-UHFFFAOYSA-M ac1mc2aw Chemical compound [Al+3].[Cl-].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 LBGCRGLFTKVXDZ-UHFFFAOYSA-M 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- -1 so far Chemical compound 0.000 description 2
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 230000004224 protection Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种偏振吸收的透明太阳能电池,包括衬底、太阳能电池主体和封装层,所述的太阳能电池主体由透明阳极薄膜层、光电转换层和透明阴极薄膜层构成,所述的光电转化层中嵌有金属光栅。本发明提供了一种偏振吸收的透明太阳能电池,由于光电转化层内部嵌入的金属光栅的等离子体增强作用,光电转化层单位面积吸收的光子数相较传统的透明太阳能电池,提高了45.3%;同时因为光栅结构的引入,导致了电极对载流子收集面积的扩大,提高了器件的内量子效率,实现了更高的光电转化效率。
The invention discloses a polarized absorption transparent solar cell, which includes a substrate, a solar cell body and an encapsulation layer. The solar cell body is composed of a transparent anode film layer, a photoelectric conversion layer and a transparent cathode film layer. The photoelectric A metal grating is embedded in the conversion layer. The invention provides a polarized absorption transparent solar cell. Due to the plasma enhancement effect of the metal grating embedded in the photoelectric conversion layer, the number of photons absorbed per unit area of the photoelectric conversion layer is increased by 45.3% compared with the traditional transparent solar cell; At the same time, due to the introduction of the grating structure, the electrode-to-carrier collection area is enlarged, the internal quantum efficiency of the device is improved, and a higher photoelectric conversion efficiency is realized.
Description
技术领域technical field
本发明属于太阳能电池领域,具体涉及一种偏振吸收的透明太阳能电池。The invention belongs to the field of solar cells, in particular to a polarized absorption transparent solar cell.
背景技术Background technique
近50年,人类社会的能源消耗速度迅速上升。由于现今的能源主要来自于火力发电,这直接导致了地球上煤、石油、天然气等不可再生能源的储量快速下降。一方面由于上述能源的储量有限,不能长久的供给人类社会;另一方面,由于化石燃料的燃烧,导致的生态环境破坏,会对地球生态产生不可估量的负面影响。为了解决能源问题,开发新型可再生清洁能源是一项重要而且紧急的工作。太阳能是一种重要的可再生能源,也是人类所能利用的唯一取之不尽的清洁能源。In the past 50 years, the energy consumption rate of human society has increased rapidly. Since today's energy mainly comes from thermal power generation, this has directly led to a rapid decline in the reserves of non-renewable energy such as coal, oil, and natural gas on the earth. On the one hand, due to the limited reserves of the above-mentioned energy sources, they cannot be supplied to human society for a long time; on the other hand, the destruction of the ecological environment due to the burning of fossil fuels will have an immeasurable negative impact on the earth's ecology. In order to solve the energy problem, the development of new renewable clean energy is an important and urgent work. Solar energy is an important renewable energy source and the only inexhaustible clean energy source available to human beings.
目前,太阳能的开发与利用主要分为热能利用和光能利用,太阳能热能利用是指通过利用阳光加热水产生蒸汽等方式以利用其内能;光能利用是指利用太阳能电池将太阳能转化为电能来进行利用。因电能更易储存和输送,将太阳能直接转化为电能更利于太阳能的综合利用,因此,太阳能电池在近几十年中成为了各国研发的热点。At present, the development and utilization of solar energy are mainly divided into thermal energy utilization and light energy utilization. Solar thermal energy utilization refers to the use of sunlight to heat water to generate steam to use its internal energy; light energy utilization refers to the use of solar cells to convert solar energy into electrical energy. Make use of. Because electric energy is easier to store and transport, converting solar energy directly into electric energy is more conducive to the comprehensive utilization of solar energy. Therefore, solar cells have become a research and development hotspot in various countries in recent decades.
太阳能电池又被称为“太阳能芯片”或“光电池”,是一种通过光电效应或光化学效应直接将光能转化为电能的装置。但由于普通的太阳能电池需要吸收可见光,因此多为黑色,这大大地限制了其使用范围。目前新研发的透明太阳能电池就可以改善普通太阳能电池的这一缺点,扩大了其使用范围。A solar cell, also known as a "solar chip" or a "photovoltaic cell", is a device that directly converts light energy into electrical energy through the photoelectric effect or photochemical effect. But because ordinary solar cells need to absorb visible light, they are mostly black, which greatly limits their scope of use. At present, the newly developed transparent solar cell can improve this shortcoming of ordinary solar cells and expand its application range.
透明太阳能电池的吸收窗口主要集中在紫外波段、红外波段和少量的可见波段,对可见光具有很好的透过率,因此可以应用于很多场合,例如大厦的玻璃幕墙,车窗玻璃、平板电脑、手机屏幕等。The absorption windows of transparent solar cells are mainly concentrated in the ultraviolet band, infrared band and a small amount of visible band. phone screen etc.
将透明太阳能电池用作玻璃幕墙,既不会阻隔人们的视线,又可以将吸收的不可见光用于发电,节省了能源。目前研发的透明太阳能电池可以达到2%的光电转换效率和70%的透明度,因此,如何进一步提高光电转换效率是目前研究的重点。Using transparent solar cells as glass curtain walls will not block people's sight, but also can use the absorbed invisible light for power generation, saving energy. The currently developed transparent solar cells can achieve a photoelectric conversion efficiency of 2% and a transparency of 70%. Therefore, how to further improve the photoelectric conversion efficiency is the focus of current research.
普通的偏振元件在收到入射光,实现偏振功能的同时,大部分的入射光会通过反射或其它形式损失掉,会造成较大的能源的浪费。例如,在当今使用最多的液晶显示(LCD)技术中,由于LCD中背光需要经过起偏振才能进行工作,但是在偏振原件中大约有75%左右的光能会通过反射以及其他形式最终不能输出,导致了巨大的光源浪费。When the ordinary polarizing element receives the incident light and realizes the polarization function, most of the incident light will be lost through reflection or other forms, which will cause a large waste of energy. For example, in the liquid crystal display (LCD) technology that is most used today, since the backlight in the LCD needs to be polarized to work, but about 75% of the light energy in the polarized original will be reflected and other forms can not be output eventually, This leads to a huge waste of light sources.
因此,能否找到一个在实现偏振功能的同时,实现对其它入射光的吸收利用,减少能源浪费的方法,将具有重要的实际意义。Therefore, it will be of great practical significance to find a method to realize the absorption and utilization of other incident light and reduce energy waste while realizing the polarization function.
发明内容Contents of the invention
本发明提供了一种偏振吸收的透明太阳能电池,利用其内部的金属光栅结构,产生等离子体增强作用,在不影响其可见光透过率的同时,提高了透明太阳能电池的光电转换效率。The invention provides a polarized absorption transparent solar cell, which utilizes its internal metal grating structure to generate plasma enhancement, and improves the photoelectric conversion efficiency of the transparent solar cell without affecting its visible light transmittance.
一种偏振吸收的透明太阳能电池,是由衬底、太阳能电池主体和封装层三部分构成。所述的太阳能电池主体由透明阳极薄膜层、光电转换层和透明阴极薄膜层构成,所述的光电转化层中嵌有金属光栅。A polarized absorption transparent solar cell is composed of a substrate, a solar cell main body and an encapsulation layer. The solar cell main body is composed of a transparent anode thin film layer, a photoelectric conversion layer and a transparent cathode thin film layer, and a metal grating is embedded in the photoelectric conversion layer.
首先对入射光的偏振方向进行定义(如图2):First define the polarization direction of the incident light (as shown in Figure 2):
偏振方向平行于光栅周期方向,定为TE方向;The polarization direction is parallel to the period direction of the grating, which is defined as the TE direction;
垂直于光栅周期方向,定为TM方向。The direction perpendicular to the period of the grating is defined as the TM direction.
自然光可以分解为偏振方向相互垂直的两束偏振光,本发明的偏振吸收的透明太阳能电池,在光电转化层内部嵌入金属光栅,光栅结构周围电磁场与入射自然光中的某一偏振分量发生共振。由于我们采用的是平面光栅,某一偏振分量即为TE偏振分量,当电磁场与TE偏振分量共振,产生大幅的等离子体增强,这种等离子体近场增强会耦合到光电转化层材料中,增加了对TE偏振分量的吸收强度,而对于TM偏振分量的光强度影响很小,因此对TM偏振分量能够保持较高的透过率,从而实现了偏振吸收(透过)。Natural light can be decomposed into two beams of polarized light whose polarization directions are perpendicular to each other. The polarized absorption transparent solar cell of the present invention embeds a metal grating inside the photoelectric conversion layer, and the electromagnetic field around the grating structure resonates with a certain polarization component of the incident natural light. Since we use a planar grating, a certain polarization component is the TE polarization component. When the electromagnetic field resonates with the TE polarization component, a large plasmon enhancement will be generated. This plasmon near-field enhancement will be coupled into the photoelectric conversion layer material, increasing The absorption intensity of the TE polarization component is improved, but the light intensity of the TM polarization component has little influence, so a high transmittance can be maintained for the TM polarization component, thereby realizing polarization absorption (transmission).
不同的金属对应不同的等离子体激发波长,因而通过选择不同的金属可以实现对某一波段光的偏振吸收。作为优选,所述的金属光栅采用的金属材料为银(Ag)、金(Au)或铝(Al),进一步优选,所述的金属材料为银。相比于其他两种金属,金属银通过制备适当的金属结构和尺寸,可以在可见光光谱内激发较强的等离子体增强,该波段的光吸收强度提高较大;而且金属银价格相对较低,适应于商业应用。Different metals correspond to different plasmonic excitation wavelengths, so by choosing different metals, the polarization absorption of a certain wavelength band of light can be realized. Preferably, the metal material used in the metal grating is silver (Ag), gold (Au) or aluminum (Al), more preferably, the metal material is silver. Compared with the other two metals, metallic silver can excite stronger plasmon enhancement in the visible light spectrum by preparing appropriate metal structure and size, and the light absorption intensity in this band is greatly improved; and the price of metallic silver is relatively low, Adapted to commercial applications.
作为优选,所述金属光栅的光栅周期为50nm~400nm。光栅周期根据采用不同的光电转化材料,以及不同的金属而不同,周期需要进行优化以达到最佳的吸收强度。进一步优选,所述的金属采用银(Ag)时,其光栅周期为175nm,此时,光电转化层的光吸收强度达到最佳。Preferably, the grating period of the metal grating is 50nm-400nm. The period of the grating varies with different photoelectric conversion materials and metals, and the period needs to be optimized to achieve the best absorption intensity. Further preferably, when silver (Ag) is used as the metal, the grating period is 175 nm, and at this time, the light absorption intensity of the photoelectric conversion layer reaches the best.
光栅占空比为光栅宽度和光栅周期的比值,其数值对偏振吸收性能有很大的影响,占空比过大影响透光率,过小激发的等离子体增强范围小,影响光学吸收。通过选择合适的占空比以激发合适的波长增强,同时不影响透过率。作为优选,所述金属光栅的光栅占空比为0.1~0.8,根据不同的光电转化材料,以及不同的金属,占空比需要进行优化以达到最佳的吸收强度。进一步优选,所述的金属采用银(Ag)时,其占空比为0.14。选择该占空比可以激发可见光的波长增强,同时不影响透过率。The grating duty cycle is the ratio of the grating width to the grating period, and its value has a great influence on the polarization absorption performance. If the duty cycle is too large, it will affect the light transmittance. If the duty cycle is too small, the excited plasmon enhancement range will be small, which will affect the optical absorption. By selecting the appropriate duty cycle to excite the appropriate wavelength enhancement without affecting the transmittance. Preferably, the grating duty ratio of the metal grating is 0.1-0.8. According to different photoelectric conversion materials and different metals, the duty ratio needs to be optimized to achieve the best absorption intensity. Further preferably, when silver (Ag) is used as the metal, its duty ratio is 0.14. Selecting this duty cycle can stimulate the wavelength enhancement of visible light without affecting the transmittance.
作为优选,所述金属光栅的光栅高度为10nm~150nm。过厚的光栅会影响器件的透光率,而太薄的光栅激发等离子体增强的强度和范围有限。根据不同的光电转化材料,以及不同的金属,光栅高度需要进行优化以达到最佳的吸收强度。进一步优选,所述的金属采用银(Ag)时,其光栅高度为65nm,此时,光电转化层的光吸收强度达到最佳。Preferably, the metal grating has a grating height of 10 nm to 150 nm. A grating that is too thick will affect the light transmittance of the device, while a grating that is too thin stimulates plasmonic enhancement with limited intensity and range. According to different photoelectric conversion materials, as well as different metals, the grating height needs to be optimized to achieve the best absorption intensity. Further preferably, when silver (Ag) is used as the metal, the grating height is 65nm, at this time, the light absorption intensity of the photoelectric conversion layer reaches the best.
太阳能电池的光电转换层包括给体材料和受体材料,所述的光电转换层,即功能层可以为给体材料和受体材料共混的单层体异质结功能层,或者给体和受体分别成膜的双层异质结功能层。The photoelectric conversion layer of a solar cell includes a donor material and an acceptor material. The photoelectric conversion layer, that is, the functional layer can be a single-layer bulk heterojunction functional layer blended with a donor material and an acceptor material, or a donor and an acceptor material. The receptors are respectively formed into a double-layer heterojunction functional layer.
透明太阳能电池中,要求给体和受体材料在可见光区域的吸收系数较小,主要吸收的波长范围为紫外波段(大约为200nm~400nm)以及红外波段(大于750nm),这样才能保证对可见光的高透过率,同时起到吸收紫外线、隔热的目的。作为优选,所述的给体材料为酞菁氯化铝(Chloroaluminum phthalocyanine,ClAlPc),其吸收波段主要在红外波段;作为优选,所述的受体材料一般为富勒烯C60、C70、富勒烯的衍生物或者6,6-苯基-C71-丁酸甲酯(PCBM-C70),进一步优选,所述的受体材料为富勒烯C60,至今为止,富勒烯仍然是公认的最好的电子受体材料,一方面是由于其与电子给体间的光导电荷转换时间短,仅为50fs左右;另一方面,富勒烯可以实现较高的电子迁移率。In transparent solar cells, the absorption coefficient of the donor and acceptor materials in the visible light region is required to be small, and the main absorption wavelength ranges are the ultraviolet band (about 200nm ~ 400nm) and the infrared band (greater than 750nm), so as to ensure the protection of visible light. High transmittance, while absorbing ultraviolet rays and heat insulation. Preferably, the donor material is Chloroaluminum phthalocyanine (ClAlPc), whose absorption band is mainly in the infrared band; preferably, the acceptor material is generally fullerene C 60 , C 70 , Derivatives of fullerene or 6,6-phenyl-C71-butyric acid methyl ester (PCBM-C 70 ), more preferably, the acceptor material is fullerene C 60 , so far, fullerene is still It is recognized as the best electron acceptor material. On the one hand, it is due to the short photoconductive charge conversion time between it and the electron donor, which is only about 50 fs; on the other hand, fullerene can achieve high electron mobility.
所述透明阳极薄膜层的材料要求在太阳光全光谱或者大部分光谱范围上有高透射率,可以是单层结构,也可以是由阳极和阳极缓冲层组成的复合结构。缓冲层的引入更好地修饰了电极和光电转化层之间的界面,同时使得两者能级更加匹配。The material of the transparent anode film layer requires high transmittance in the full spectrum or most of the spectrum of sunlight, and can be a single-layer structure or a composite structure composed of an anode and an anode buffer layer. The introduction of the buffer layer better modified the interface between the electrode and the photoelectric conversion layer, and at the same time made the energy levels of the two more matched.
作为优选,所述单层阳极薄膜层的材料为高导电率的透明导电薄膜铟锡氧化物(ITO)。ITO电极具有很好的透过性,可以让入射光透过电极照射到光电转换层上,是透明太阳能电池电极的最佳选择;同时,ITO的制备工艺成熟,且在衬底上有很强的附着力。Preferably, the material of the single-layer anode film layer is indium tin oxide (ITO), a transparent conductive film with high conductivity. The ITO electrode has good permeability, which allows the incident light to pass through the electrode and irradiate the photoelectric conversion layer. It is the best choice for the transparent solar cell electrode; at the same time, the preparation process of ITO is mature and has a strong substrate. of adhesion.
作为优选,所述阳极缓冲层为聚合物阳极缓冲层。进一步优选,所述的聚合物阳极缓冲层可采用低导电率的PEDOT:PSS或者2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(bathocuproine,BCP)。其中,PEDOT为3,4-乙撑二氧噻吩单体(DOT)的聚合物,PSS为聚苯乙烯磺酸盐。这两种阳极缓冲层已被广泛使用,具有很好的空穴注入性能。Preferably, the anode buffer layer is a polymer anode buffer layer. Further preferably, the polymer anode buffer layer can use low-conductivity PEDOT:PSS or 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline (bathocuproine, BCP) . Among them, PEDOT is a polymer of 3,4-ethylenedioxythiophene monomer (DOT), and PSS is polystyrene sulfonate. These two anode buffer layers have been widely used and have good hole injection properties.
所述透明阴极薄膜层的材料也要求在太阳光全光谱或者大部分光谱范围上有高透射率,可以是单层结构,也可以是阴极和阴极缓冲层的复合结构。The material of the transparent cathode thin film layer is also required to have high transmittance in the full spectrum of sunlight or most of the spectral range, and can be a single-layer structure, or a composite structure of the cathode and the cathode buffer layer.
作为优选,所述单层阴极薄膜层的材料为高导电率的透明导电薄膜铟锡氧化物(ITO)。Preferably, the material of the single-layer cathode film layer is indium tin oxide (ITO), a transparent conductive film with high conductivity.
作为优选,所述阴极缓冲层材料一般为金属化合物,进一步优选为氧化钼(MoO3),氧化钼被证明对改善电极和光电转化层之间的能级匹配有良好的性能。Preferably, the cathode buffer layer material is generally a metal compound, more preferably molybdenum oxide (MoO 3 ), and molybdenum oxide has been proven to have good performance in improving the energy level matching between the electrode and the photoelectric conversion layer.
透明太阳能电池用衬底要求透过率光谱较宽,尤其需要对紫外和红外光具有很高的透过率,作为优选,所述的衬底为石英玻璃。The transparent solar cell substrate requires a wide transmittance spectrum, especially high transmittance to ultraviolet and infrared light. Preferably, the substrate is quartz glass.
所述封装层要求高透过率以及具有较高的致密性,作为优选,所述的封装层为传统的透明乙烯-醋酸乙烯共聚物(EVA)-玻璃,可以通过真空加热层压法,对所述的偏振吸收的透明太阳电池进行封装。The encapsulation layer requires high transmittance and high density. As a preference, the encapsulation layer is traditional transparent ethylene-vinyl acetate copolymer (EVA)-glass, which can be laminated by vacuum heating. The polarized absorption transparent solar cell is packaged.
所述的偏振吸收的透明太阳能电池主体在衬底上,由下到上可以依次为透明阳极薄膜层、光电转换层和透明阴极薄膜层,也可以依次为透明阴极薄膜层、光电转换层和透明阳极薄膜层。The polarized absorption transparent solar cell main body is on the substrate, and from bottom to top, it can be a transparent anode thin film layer, a photoelectric conversion layer and a transparent cathode thin film layer, or it can be a transparent cathode thin film layer, a photoelectric conversion layer and a transparent cathode thin film layer in sequence. Anode film layer.
本发明的偏振吸收的透明太阳能电池相比于传统的透明太阳能电池,除了继承其可见光透过率高、防紫外线、隔热等优点,还具有以下独有的优势:Compared with traditional transparent solar cells, the polarization-absorbing transparent solar cells of the present invention have the following unique advantages in addition to inheriting the advantages of high visible light transmittance, UV protection, and heat insulation:
本发明制备的偏振吸收的透明太阳能电池,由于光电转化层内部嵌入的金属光栅的等离子体增强作用,光电转化层单位面积吸收的光子数要相较传统的透明太阳能电池,提高了45.3%;光栅结构还增加了光电转化层与电极的接触面积,带来更大的内量子效率,而电池的光电转化效率与吸收光子数和内量子效率的乘积成正比,因而具有更高的光电转化效率。The polarized absorption transparent solar cell prepared by the present invention, due to the plasmonic enhancement effect of the metal grating embedded in the photoelectric conversion layer, the number of photons absorbed per unit area of the photoelectric conversion layer is increased by 45.3% compared with the traditional transparent solar cell; the grating The structure also increases the contact area between the photoelectric conversion layer and the electrode, resulting in greater internal quantum efficiency, and the photoelectric conversion efficiency of the cell is proportional to the product of the number of absorbed photons and the internal quantum efficiency, so it has a higher photoelectric conversion efficiency.
将本发明制备的偏振吸收的透明太阳能电池代替普通的偏振元件,对于需要输出的偏振分量,该偏振吸收的透明太阳能电池可以保证较高的透过率;同时,该太阳能电池将本该经反射或其它原因最终无法输出的偏振分量及光源中不可见光谱部分吸收,将其转换为电能,提高了能源的利用率。The polarized-absorbing transparent solar cell prepared by the present invention is used to replace the ordinary polarizing element, and the polarized-absorbed transparent solar cell can ensure a higher transmittance for the output polarization component; at the same time, the solar cell will be reflected Or other reasons, the polarization component that cannot be output finally and the invisible spectrum in the light source are absorbed, and converted into electrical energy, which improves the utilization rate of energy.
附图说明Description of drawings
图1为本发明的偏振吸收的太阳能电池的结构示意图;Fig. 1 is the structural representation of the polarized absorption solar cell of the present invention;
图2为本发明的偏振吸收的太阳能电池主体的剖面结构图;Fig. 2 is the sectional structure diagram of the solar cell main body of polarized absorption of the present invention;
图3为本发明的偏振吸收的太阳能电池透过率光谱图;Fig. 3 is the solar cell transmittance spectrogram of polarized absorption of the present invention;
图4为本发明的偏振吸收的太阳能电池二色比(dichroic ratio)光谱图。Fig. 4 is a dichroic ratio spectrum diagram of the polarized absorption solar cell of the present invention.
具体实施方式Detailed ways
实施例Example
如图1所示,本发明的偏振吸收的太阳能电池由EVA-玻璃封装层(101)、透明太阳能主体(102)、和透明石英玻璃衬底(103)构成。具体制备步骤如下:As shown in Fig. 1, the polarized absorption solar cell of the present invention is composed of an EVA-glass encapsulation layer (101), a transparent solar energy body (102), and a transparent quartz glass substrate (103). Concrete preparation steps are as follows:
1、首先制备透明阴极薄膜层(104),用无纺布擦净透明石英玻璃衬底(103),保证无尘,然后通过溅射的方法在衬底表面镀上一层ITO导电薄膜,厚度为100nm~180nm。1. First prepare the transparent cathode film layer (104), wipe the transparent quartz glass substrate (103) with a non-woven cloth to ensure that it is dust-free, and then coat a layer of ITO conductive film on the surface of the substrate by sputtering, with a thickness of 100nm ~ 180nm.
再通过热蒸发的方式在ITO导电薄膜的表面蒸镀一层氧化钼薄膜,作为阴极缓冲层,蒸发速度控制在0.1~0.5nm/s,厚度控制在15nm~25nm。Then, a layer of molybdenum oxide film is deposited on the surface of the ITO conductive film by thermal evaporation as a cathode buffer layer. The evaporation rate is controlled at 0.1-0.5nm/s, and the thickness is controlled at 15nm-25nm.
2、在步骤1制备的阴极薄膜层(104)的表面继续制备光电转换层(105),通过热蒸发的方法在阴极薄膜层表面形成一层给体层,为酞菁氯化铝薄膜层,蒸发速度控制在0.2nm/s以下,厚度控制在15nm~20nm;再通过热蒸发的方法在给体层上形成一层C60薄膜作为受体层,蒸发速度控制在0.2nm/s以下,厚度控制在25nm~40nm;在受体层的表面,先通过传统的纳米压印技术形成光栅掩膜,该掩膜的材料为聚二甲基硅氧烷(PDMS),再通过电子束蒸发的方式蒸镀金属银,最后将成型的金属银光栅(105)转移到光电转换层之上。该金属银光栅的宽度(w),高度(h),周期(p)分别为25nm,65nm,175nm。2. Continue to prepare the photoelectric conversion layer (105) on the surface of the cathode film layer (104) prepared in step 1, and form a donor layer on the surface of the cathode film layer by thermal evaporation, which is an aluminum phthalocyanine chloride film layer, The evaporation rate is controlled below 0.2nm/s, and the thickness is controlled between 15nm and 20nm; then a layer of C 60 thin film is formed on the donor layer by thermal evaporation as the acceptor layer, and the evaporation rate is controlled below 0.2nm/s, and the thickness is controlled below 0.2nm/s. Controlled at 25nm to 40nm; on the surface of the acceptor layer, a grating mask is first formed by traditional nanoimprint technology, the material of the mask is polydimethylsiloxane (PDMS), and then evaporated by electron beam Evaporating metallic silver, and finally transferring the formed metallic silver grating (105) onto the photoelectric conversion layer. The width (w), height (h) and period (p) of the metallic silver grating are 25nm, 65nm and 175nm respectively.
3、在步骤2制备的光电转换层表面继续制备透明阳极薄膜层(106),首先通过热蒸发的方法形成一层BCP薄膜,厚度控制在5nm~10nm,蒸发速度控制在0.1~0.5nm/s;然后通过溅射的方法在BCP薄膜上镀上一层ITO导电薄膜,厚度控制在100nm~150nm,镀膜速度必须非常缓慢,控制在0.005nm~0.03nm/s。3. Continue to prepare a transparent anode film layer (106) on the surface of the photoelectric conversion layer prepared in step 2. First, form a layer of BCP film by thermal evaporation, with a thickness of 5nm-10nm and an evaporation rate of 0.1-0.5nm/s ; Then, a layer of ITO conductive film is plated on the BCP film by sputtering, the thickness is controlled at 100nm-150nm, and the coating speed must be very slow, controlled at 0.005nm-0.03nm/s.
4、最后,使用乙烯-醋酸乙烯共聚物(EVA)-玻璃作为封装层,通过真空加热层压将该封装层粘合在透明太阳能电池主体上,制备得到了所述的偏振吸收的透明太阳能电池。4. Finally, using ethylene-vinyl acetate copolymer (EVA)-glass as the encapsulation layer, the encapsulation layer is bonded to the main body of the transparent solar cell by vacuum heating lamination, and the polarized absorption transparent solar cell is prepared .
本发明的偏振吸收的太阳能电池主体(102)的一个周期的剖面结构如图2所示,由透明阳极薄膜层(104)、光电转换层(105)、透明阴极薄膜层(106)构成。透明阳极薄膜层(104)包括高透过率、高电导率的ITO层(107)和超薄氧化钼层(108);光电转换层(105)为给体和受体分别成膜的双层异质结功能层,给体层(109)为酞菁氯化铝,受体层(110)为富勒烯C60;透明阴极薄膜层(106)包括超薄BCP层(111)和高光透过率和高电导率的ITO层(112)。金属光栅层(113)嵌入在受体层(110)内部,材料为金属银(Ag)。A periodic cross-sectional structure of the polarization-absorbing solar cell body (102) of the present invention is shown in Figure 2, consisting of a transparent anode thin film layer (104), a photoelectric conversion layer (105), and a transparent cathode thin film layer (106). The transparent anode thin film layer (104) includes an ITO layer (107) with high transmittance and high conductivity and an ultra-thin molybdenum oxide layer (108); the photoelectric conversion layer (105) is a double-layer film formed of a donor and an acceptor respectively The heterojunction functional layer, the donor layer (109) is aluminum phthalocyanine chloride, the acceptor layer (110) is fullerene C 60 ; the transparent cathode film layer (106) includes an ultra-thin BCP layer (111) and a high light transmittance over-rate and high-conductivity ITO layer (112). The metal grating layer (113) is embedded in the acceptor layer (110), and the material is metallic silver (Ag).
对比例comparative example
本对比例中制备了不含金属光栅的透明太阳能电池,具体制备步骤如下:In this comparative example, a transparent solar cell without a metal grating was prepared, and the specific preparation steps are as follows:
1、首先制备透明阴极薄膜层,用无纺布擦净透明石英玻璃衬底,保证无尘,然后通过溅射的方法在衬底表面镀上一层ITO导电薄膜,厚度为100nm~180nm,再通过热蒸发的方式在ITO导电薄膜的表面蒸镀一层氧化钼薄膜,作为阴极缓冲层,蒸发速度控制在0.1~0.5nm/s,厚度控制在15nm~25nm。1. First prepare the transparent cathode film layer, wipe the transparent quartz glass substrate with non-woven cloth to ensure dust-free, and then coat a layer of ITO conductive film on the surface of the substrate by sputtering, with a thickness of 100nm to 180nm, and then A molybdenum oxide film is deposited on the surface of the ITO conductive film by thermal evaporation as a cathode buffer layer, the evaporation rate is controlled at 0.1-0.5nm/s, and the thickness is controlled at 15nm-25nm.
2、在步骤1制备的阴极薄膜层的表面继续制备光电转换层,通过热蒸发的方法在阴极薄膜层表面形成一层给体层,为酞菁氯化铝薄膜层,蒸发速度控制在0.2nm/s以下,厚度控制在15nm~20nm;再通过热蒸发的方法在给体层上形成一层C60薄膜作为受体层,蒸发速度控制在0.2nm/s以下,厚度控制在25nm~40nm。2. Continue to prepare a photoelectric conversion layer on the surface of the cathode film layer prepared in step 1, and form a donor layer on the surface of the cathode film layer by thermal evaporation, which is an aluminum phthalocyanine chloride film layer, and the evaporation rate is controlled at 0.2nm /s or less, the thickness is controlled at 15nm to 20nm; and then a layer of C 60 thin film is formed on the donor layer as the acceptor layer by thermal evaporation, the evaporation rate is controlled below 0.2nm/s, and the thickness is controlled at 25nm to 40nm.
3、在步骤2制备的光电转换层表面继续制备透明阳极薄膜层,首先通过热蒸发的方法形成一层BCP薄膜,厚度控制在5nm~10nm,蒸发速度控制在0.1~0.5nm/s;然后通过溅射的方法在BCP薄膜上镀上一层ITO导电薄膜,厚度控制在100nm~150nm,镀膜速度必须非常缓慢,控制在0.005nm~0.03nm/s。3. Continue to prepare a transparent anode thin film layer on the surface of the photoelectric conversion layer prepared in step 2. First, a layer of BCP film is formed by thermal evaporation, the thickness is controlled at 5nm-10nm, and the evaporation rate is controlled at 0.1-0.5nm/s; The method of sputtering coats a layer of ITO conductive film on the BCP film, the thickness is controlled at 100nm-150nm, and the coating speed must be very slow, controlled at 0.005nm-0.03nm/s.
4、最后,使用乙烯-醋酸乙烯共聚物(EVA)-玻璃作为封装层,通过真空加热层压将该封装层粘合在透明太阳能电池主体上,制备得到了不含金属光栅的透明太阳能电池。4. Finally, using ethylene-vinyl acetate copolymer (EVA)-glass as the encapsulation layer, the encapsulation layer was bonded to the main body of the transparent solar cell by vacuum heating lamination, and a transparent solar cell without metal grating was prepared.
性能与应用Performance and Application
在标准的太阳能光谱(即AM1.5光谱)下,参考透明太阳能电池和偏振吸收太阳能电池单位面积吸收光子对比,如表1.可见TE波和TM波,两种偏正的入射光吸收都有所增强。吸收整体平均提高45.3%。由于光栅结构的引入,导致了电极对载流子收集面积的扩大,会在一定程度上提高器件的内量子效率,而电池的转化效率正比于吸收光子数和内量子效率的乘积,所以器件的光电转化效率会有更大幅度的提高。Under the standard solar spectrum (i.e. AM1.5 spectrum), refer to the comparison of photon absorption per unit area between transparent solar cells and polarized absorption solar cells, as shown in Table 1. Visible TE waves and TM waves, both of which have polarized incident light absorption Enhanced. The overall average increase in absorption is 45.3%. Due to the introduction of the grating structure, the expansion of the electrode-to-carrier collection area will increase the internal quantum efficiency of the device to a certain extent, and the conversion efficiency of the battery is proportional to the product of the number of absorbed photons and the internal quantum efficiency, so the device’s The photoelectric conversion efficiency will be more greatly improved.
表1Table 1
图3为实施例与对比例的透明太阳能电池透过率曲线,其中,31为对比例的不含金属光栅的透明太阳能电池的透过率曲线,对比例中未引入金属光栅,因此透明太阳能电池没有偏振吸收特征,在可见光范围内的透过率在60%~70%之间;33为实施例的偏振吸收的透明太阳能电池,其TM偏振的入射光的透过率曲线,透过率下降不大,偏振吸收的现象不明显,由于金属光栅的存在会发生少量的反射,但整体透过率仍在50%~60%。32为实施例的偏振吸收的透明太阳能电池,其TE偏振的入射光的透过率曲线,该曲线中透过率有大幅的下降,在630nm处达到了最小值,这是因为在这个波长附近会激发起强烈的等离子体增强效应,导致该波长附近的光能被强烈吸收。Fig. 3 is the transmittance curve of the transparent solar cell of the embodiment and the comparative example, wherein, 31 is the transmittance curve of the transparent solar cell without the metal grating of the comparative example, no metal grating is introduced in the comparative example, so the transparent solar cell There is no polarized absorption feature, and the transmittance in the visible light range is between 60% and 70%; 33 is the transparent solar cell with polarized absorption in the embodiment, the transmittance curve of the incident light with TM polarization, and the transmittance decreases Not much, the phenomenon of polarization absorption is not obvious, and a small amount of reflection will occur due to the existence of the metal grating, but the overall transmittance is still 50% to 60%. 32 is the polarized absorption transparent solar cell of the embodiment, the transmittance curve of its TE polarized incident light, the transmittance in this curve has a large drop, reaching the minimum at 630nm, this is because near this wavelength A strong plasmonic enhancement effect will be excited, resulting in strong absorption of light energy near this wavelength.
近一步分析该偏振吸收的太阳能电池对两种偏振光透过差异,引入二色比(dichroic ratio)的概念,即TM和TE偏振光透过率比值,如图4所示,可见波长在630nm附近时,二色比达到了最大值为6.7。A further analysis of the polarized absorption solar cell transmits the difference between the two polarized light, and introduces the concept of dichroic ratio, that is, the ratio of TM and TE polarized light transmittance, as shown in Figure 4, the visible wavelength is 630nm Nearby, the dichroic ratio reaches a maximum of 6.7.
如图3与图4所示,本发明的偏振吸收的透明太阳能电池具有偏振吸收的特性,可以替代普通的偏振元件,在实现偏振功能的同时,将接收到的光能转换为电能,实现了能源的再次利用。As shown in Figure 3 and Figure 4, the polarization-absorbing transparent solar cell of the present invention has the characteristics of polarization absorption, can replace ordinary polarizing elements, and convert the received light energy into electrical energy while realizing the polarization function, realizing Energy reuse.
针对本发明的偏振吸收透明太阳能电池的上述特点,提出了以下两个应用领域:For the above-mentioned characteristics of the polarized absorption transparent solar cell of the present invention, the following two application fields are proposed:
1)将本发明的偏振吸收的透明太阳能电池替代汽车车窗及车灯上的滤光片,例如,车灯的滤光片只通过TE光,所以出射灯光为TE光,而前挡风车窗滤光片只通过与TE光相互垂直的TM光,这样迎面的车灯灯光对就不会透过前挡风玻璃。减少相对来车的灯光对驾驶人的刺激,可以起到防眩光的作用,提高驾驶安全性,同时将吸收来车的灯光产生的光能转换为电能,用于为汽车的蓄电池充电。1) The polarized absorption transparent solar cell of the present invention is used to replace the filters on car windows and lights. For example, the filters of car lights only pass TE light, so the outgoing light is TE light, while the front windshield The window filter only passes the TM light perpendicular to the TE light, so that the oncoming car light pair will not pass through the front windshield. Reducing the stimulation of the driver by the light of the incoming car can play a role in anti-glare and improve driving safety. At the same time, it can convert the light energy generated by absorbing the light of the incoming car into electrical energy for charging the battery of the car.
2)将本发明的偏振吸收的透明太阳能电池替代液晶显示(LCD)中的偏振元件,由于LCD中背光需要经过起偏振才能进行工作,但是在偏振原件中大约有75%左右的光能会通过反射以及其他形式最终不能输出。将偏振吸收透明太阳能电池替代原来的偏振原件,由于其偏振吸收的特征,可以吸收部分与输出光线偏振垂直的分量部分(原本反射光),以及光源中不可见光谱部分包括紫外和红外分量。电池通过吸收这些光能,转化为电能,以减少能源的浪费。同时,对于需要的输出的偏振分量,本发明的太阳能电池依然能够保持较高的透过率。2) Replace the polarizing element in the liquid crystal display (LCD) with the polarization-absorbing transparent solar cell of the present invention. Since the backlight in the LCD needs to be polarized to work, about 75% of the light energy in the polarizing element will pass through Reflection and other forms are ultimately not output. The polarization-absorbing transparent solar cell replaces the original polarizing element. Due to its polarization-absorbing characteristics, it can absorb part of the component perpendicular to the polarization of the output light (originally reflected light), and the invisible spectrum of the light source includes ultraviolet and infrared components. The battery absorbs the light energy and converts it into electrical energy to reduce energy waste. At the same time, for the required output polarization component, the solar cell of the present invention can still maintain a relatively high transmittance.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310340036XA CN103413894A (en) | 2013-08-06 | 2013-08-06 | Transparent solar cell with polarization absorption function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310340036XA CN103413894A (en) | 2013-08-06 | 2013-08-06 | Transparent solar cell with polarization absorption function |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103413894A true CN103413894A (en) | 2013-11-27 |
Family
ID=49606892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310340036XA Pending CN103413894A (en) | 2013-08-06 | 2013-08-06 | Transparent solar cell with polarization absorption function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103413894A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108230908A (en) * | 2018-01-03 | 2018-06-29 | 京东方科技集团股份有限公司 | A kind of display panel and display device |
CN111223880A (en) * | 2020-03-17 | 2020-06-02 | 福建中科光芯光电科技有限公司 | Infrared detector with integrated photovoltaic cell structure and preparation method thereof |
CN112526663A (en) * | 2020-11-04 | 2021-03-19 | 浙江大学 | Atomic layer deposition-based absorption film and manufacturing method thereof |
CN112928216A (en) * | 2021-02-03 | 2021-06-08 | 西湖大学 | Preparation method of high-transparency solar cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012114187A (en) * | 2010-11-24 | 2012-06-14 | Konica Minolta Holdings Inc | Organic photoelectric conversion element, and organic solar cell using it |
CN102569653A (en) * | 2011-12-26 | 2012-07-11 | 浙江大学 | Organic solar cell with conical structure |
CN203055993U (en) * | 2012-11-26 | 2013-07-10 | 五邑大学 | A semi-transparent organic solar cell |
KR20130083709A (en) * | 2012-01-13 | 2013-07-23 | 주식회사 세아 이앤티 | Grid electrode structure of dye-sensitized solar cell |
-
2013
- 2013-08-06 CN CN201310340036XA patent/CN103413894A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012114187A (en) * | 2010-11-24 | 2012-06-14 | Konica Minolta Holdings Inc | Organic photoelectric conversion element, and organic solar cell using it |
CN102569653A (en) * | 2011-12-26 | 2012-07-11 | 浙江大学 | Organic solar cell with conical structure |
KR20130083709A (en) * | 2012-01-13 | 2013-07-23 | 주식회사 세아 이앤티 | Grid electrode structure of dye-sensitized solar cell |
CN203055993U (en) * | 2012-11-26 | 2013-07-10 | 五邑大学 | A semi-transparent organic solar cell |
Non-Patent Citations (2)
Title |
---|
HONGHUI SHEN等: ""Combined plasmonic gratings in organic solar cells"", 《OPTICS EXPRESS》 * |
KHAI Q. LE等: "Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells", 《OPTICS EXPRESS》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108230908A (en) * | 2018-01-03 | 2018-06-29 | 京东方科技集团股份有限公司 | A kind of display panel and display device |
CN111223880A (en) * | 2020-03-17 | 2020-06-02 | 福建中科光芯光电科技有限公司 | Infrared detector with integrated photovoltaic cell structure and preparation method thereof |
CN112526663A (en) * | 2020-11-04 | 2021-03-19 | 浙江大学 | Atomic layer deposition-based absorption film and manufacturing method thereof |
CN112928216A (en) * | 2021-02-03 | 2021-06-08 | 西湖大学 | Preparation method of high-transparency solar cell |
CN112928216B (en) * | 2021-02-03 | 2023-08-22 | 西湖大学 | Preparation method of high-transparency solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
van Sark et al. | Upconversion in solar cells | |
Ma et al. | Carbon dots and AIE molecules for highly efficient tandem luminescent solar concentrators | |
Huang et al. | Enhancing solar cell efficiency: the search for luminescent materials as spectral converters | |
CN102315290B (en) | Full-spectrum absorption enhanced hydrogenated amorphous silicon thin-film solar cell | |
CN102184995A (en) | Long-range plasmonic waveguide array booster unit for solar cells | |
CN103413894A (en) | Transparent solar cell with polarization absorption function | |
Lee et al. | Colored dual-functional photovoltaic cells | |
CN103606628A (en) | Novel thin-film solar cell by means of metamaterials | |
CN103872153B (en) | A kind of tandem solar cell using metal micro-nanostructure as target | |
CN203562435U (en) | Two-side film photovoltaic solar power generation panel | |
CN106129249A (en) | A kind of perovskite quantum dot double absorption layer solaode and preparation method thereof | |
CN201149872Y (en) | Solar cell modules that use near-infrared light to improve conversion efficiency | |
CN101399292A (en) | High temperature heat radiation integrated device used for photovoltaic electricity generation | |
CN201153125Y (en) | Dye sensitive solar cell | |
CN107390305A (en) | Dual-band all-optical absorber structure | |
CN104241427B (en) | High heat dissipation solar cell module | |
CN106784335B (en) | A kind of heterogeneous integrated solar cell of surface plasmon-polarition type of conduction | |
CN201829508U (en) | Solar battery | |
CN203377239U (en) | Welding strip for crystalline silica solar battery | |
CN101246930A (en) | Ultra-white reflecting layer of thin film solar cell | |
CN112652720B (en) | Perovskite solar cell based on two-dimensional photonic crystal structure | |
CN105247690A (en) | Concentrator | |
Wang et al. | Improved performance by plasmon resonance in GaAs solar cells: a numerical expectation | |
CN106876513A (en) | A kind of grade is from the horizontal heterogeneous integrated solar cell of polariton | |
RU2531768C1 (en) | Double-sided solar photoconverter (versions) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131127 |