TW200525736A - Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making - Google Patents
Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making Download PDFInfo
- Publication number
- TW200525736A TW200525736A TW093121887A TW93121887A TW200525736A TW 200525736 A TW200525736 A TW 200525736A TW 093121887 A TW093121887 A TW 093121887A TW 93121887 A TW93121887 A TW 93121887A TW 200525736 A TW200525736 A TW 200525736A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- nano
- addressable
- item
- patent application
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/10—Phase change RAM [PCRAM, PRAM] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/887—Nanoimprint lithography, i.e. nanostamp
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/94—Specified use of nanostructure for electronic or optoelectronic application in a logic circuit
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Semiconductor Memories (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Mram Or Spin Memory Techniques (AREA)
Abstract
Description
200525736 九、發明說明: 【發明戶斤屬之技術領域3 發明領域 本發明係有關包含多數自行校準之奈米整流元件的記 5憶裝置及其製造方法。 【先前技術3 發明背景 10 15 過去數年來,對更便宜且更輕的可攜式電子裝置之需 f已導致製造耐用、較輕、低成本的電路包括高密度記憶 曰曰片的而求逐增。固態的記憶元件典型具有奈秒級的讀寫 、、 :、、、而八般已此達到十億(G)位元組的儲存容量。相 反地’大量儲存裝置通常具有—旋轉的媒體,且會有儲存 數百容量,但它們卻僅有毫秒級的讀寫速度。 夕回谷里儲存系統的能力典型會受限於需要使用可 、動或%轉的構件,其相較於電路技術是為—較慢的方 法。此外,开主由 口 、 Λ度亦為另一問題,為能減少讀寫時間該等 電子轉構件會儘可能地以最高速度來使用。且,若該 亦為、置破使用於可攜式器材中,該系統的耐衝擊性典型 ,限制。功率消耗,整體重量和尺寸,及成本等亦皆 為限制財邊_目素。 構j >石夕基5己憶裝置會包含使用許多料層的複雜結 故夂料層必須被沈積及界定來製成該層的所需結構, 雜=會使該半導體裝置帶來較高的成本。此外,該等複 '、、、°構通f會造成財導體基材每單位面積之邏輯胞元 20 200525736 的數目而導致—定晶片尺寸的資料儲存密度減低。 °在過去30年來,微電子元件之容量幾呈固定指 數的〜加已使運算、傳訊、及信號處理能力等產生前所未 有的進v。而且’此複雜性的增加已使積體電路元件的 細構尺寸對應地縮小,其典型係依循摩爾定律(“M〇〇re,s LW。但是,積體電路的細構尺寸之持續縮減,在奈米範 圍内已逐漸變得更為困難,且可能接近_極限,因為有物 理和經濟上的原因。 10 15 解決構製奈米級元件之問題的習知方法典型分成兩大 類…可概稱為新圖案化技術,另一則使用具有奈米級 尺寸的新材料^圖案化技術包括利用輻射的投影系統, 及使用粒子束的直接寫m或掃描探針等。某些較新 ^高解折度投影系統需要昂責的輻射源,例如同步加速器 等另#面、玄直接寫入系統典型在個別寫入各結構時 需要-連串的製程’而有異於使用投影系統可—次曝光許 多結構。& ’直接寫人系統相較於投影系統會具有較低甚 多的產能’而會增加製造複雜及/或成本。 近來具有半導體雜和奈米級尺相㈣料已被合成 並製設於奈m件中。但是,在該等奈米級材料被製成 之後’它們通常會被任意排列,例如_端隨機地固接於一 基材,或兩端皆未μ。此隨機性以及實際操控奈米構件 的困難度會對可重複及實㈣奈米元件之製造帶來甚大的 挑戰。 假使這些問題繼續存在, 則過去數十年來對使用於電子 20 200525736 裝置中之更便宜、更高速、更高密度、及更低功率的積體 電路之持續成長將不可能達成。 【發明内容】 發明概要 5 本發明係為一種記憶裝置,包含:一基材;多數自行 校準的奈米整流元件,具有:多數的第一電極線設在該基 材上;多數的裝置結構物設在該等第一電極線上而形成前 述之多數自行校準的奈米整流元件,且各裝置結構物具有 至少一側邊尺寸小於75奈米;多數的奈米儲存結構物設在 10 該等裝置結構物上,並在至少一方向與之自行對準;及多 數的第二電極線設在該等奈米儲存結構物上,並與之電連 接及自行對準,而來形成一記憶裝置。 本發明亦為一種記憶裝置,包含:一基材;整流裝置 包含第一導線互相平行地設在該基材上,該整流裝置會自 15 動對準該等導線,且該整流裝置具有至少一側邊尺寸小於 75奈米;一裝置可將一資料位元儲存在各儲存元件中,而 覆設在第一組導線上並自行對準於該整流裝置;及一裝置 可電定址該等儲存元件,其中該各儲存元件會與該電定址 裝置自行對準,且該電定址裝置與第一組導線之各交叉點 20 處會形成一記憶結構的邏輯胞元。 本發明又為一種製造交叉桿裝置的方法,包含:奈米 印製一設在一裝置結構層上的第一奈米印製層,該裝置結 構層設在一第一可定址層上,而該第一可定址層設在一基 材上;由該第一可定址層和裝置結構層製成許多自行校準 200525736 的奈米整流元件,各整流元件具有至少—側邊尺寸小於乃 2未’奈米印製—設在一導電層或一儲存媒體層上的第二 該儲存媒體層設在該等奈米整流元件上,·及 1成夕數自仃校準的奈米儲存結構物, 5至少-側邊尺寸小於75奈米。 “構物具有 圖式簡單說明 第13圖為本發明-實施例之記憶裝置的立體圖。 =圖為第U圖的記憶裝置之一元件的戴面圖。 1〇截面圖發明—可行實施例的記憶裝置之一元件的 截面圖為本發明—可行實施例的記憶裝置之—元件的 第4圖為本於明—_ ^ 15 截面圖。^〜丁貫_的記憶裝置之—元件的 流程圖第5。圖為一用來製造本發明實施例之記憶裝置的製法 面圖第6以心M來製造本發明實施例之不同製程的截 20 面圖:叫糸用來製造本發明實施例之不同製程的截 【實施务式】 較佳實施例之詳細說明 佈線奈米級接面尺寸之自行校準的交又 I法。本發明亦提供一種可製造多種記 200525736200525736 IX. Description of the invention: [Technical field of inventors' households 3 Field of the invention The present invention relates to a memory device including a majority of self-calibrated nano rectifier elements and a method for manufacturing the same. [PRIOR ART 3 BACKGROUND OF THE INVENTION 10 15 In the past few years, the need for cheaper and lighter portable electronic devices has led to the manufacture of durable, lighter, low-cost circuits, including high-density memory chips. increase. Solid-state memory elements typically have nanosecond-level reads, writes, and reads, and the storage capacity has reached one billion (G) bytes. Conversely, a large number of storage devices usually have rotating media and can store hundreds of capacities, but they only have read and write speeds on the order of milliseconds. The capacity of the storage system in Xihui Valley is typically limited by the need to use movable, movable, or% turn components, which is a slower method than circuit technology. In addition, it is another problem to open the main port and Λ degree. In order to reduce the reading and writing time, these electronic conversion components will be used at the highest speed as possible. And, if it is also used in portable equipment, the impact resistance of the system is typical and limited. Power consumption, overall weight and size, and cost are also restrictions on wealth. Structure j > Shi Xiji 5 Ji Yi device will contain a complex structure using many layers. Therefore, the material layer must be deposited and defined to make the desired structure of the layer. Miscellaneous = will make the semiconductor device higher. the cost of. In addition, these complex structures will cause the number of logic cells per unit area of the financial substrate 20 200525736, resulting in a reduction in the data storage density of a given wafer size. ° In the past 30 years, the capacity of microelectronic components has been almost constant. The addition has resulted in unprecedented advances in computing, messaging, and signal processing capabilities. And 'This increase in complexity has reduced the fine-grained size of integrated circuit components, which typically follows Moore's Law ("More, s LW. However, the fine-grained size of integrated circuits continues to shrink, It has gradually become more difficult in the nanometer range, and may be close to the limit, because of physical and economic reasons. 10 15 The conventional methods to solve the problem of building nanometer-level components are typically divided into two categories ... Called a new patterning technology, another uses a new material with nanometer size ^ Patterning technologies include projection systems that use radiation, and direct writing or scanning probes using particle beams. Some newer ^ higher resolution Refractive projection systems require responsible radiation sources, such as synchrotrons, and other direct-facing, mysterious direct writing systems that typically require-a series of processes when individually writing to each structure-which differs from the use of a projection system—one exposure. Many structures. &Amp; 'The direct writing system will have much lower capacity compared to the projection system' and will increase the manufacturing complexity and / or cost. Recently, semiconductor materials and nanometer scale materials have been used. The combination is made in the nano-pieces. However, after the nano-grade materials are made, they are usually arranged arbitrarily, for example, the _ ends are randomly fixed to a substrate, or both ends are not μ. This Randomness and the difficulty of actually manipulating nano-components will pose a great challenge to the manufacture of repeatable and real nano-components. If these problems continue, the use of electronic 20 200525736 devices in the past few decades will be even greater. The continued growth of cheap, higher speed, higher density, and lower power integrated circuits will not be achieved. [Summary of the Invention] Summary of the Invention 5 The present invention is a memory device, including: a substrate; most self-calibrated A nano rectifier element has: a plurality of first electrode lines provided on the substrate; a plurality of device structures are provided on the first electrode lines to form the majority of the self-calibrated nano rectifier components described above, and each device structure The object has at least one side with a size of less than 75 nanometers; most of the nanometer storage structures are provided on 10 such device structures and are self-aligned with them in at least one direction; and most The second electrode line is arranged on the nano storage structures, and is electrically connected to the nano storage structure and self-aligned to form a memory device. The present invention is also a memory device including: a substrate; A wire is arranged on the substrate in parallel with each other, the rectifying device will automatically align with the wires, and the rectifying device has at least one side with a size less than 75 nm; a device can store a data bit in Among the storage elements, they are overlaid on the first set of wires and aligned with the rectifying device by themselves; and a device can electrically address the storage elements, wherein each storage element is aligned with the electrical addressing device by itself, and A logic cell of a memory structure will be formed at each crossing point 20 of the electrical addressing device and the first group of wires. The present invention is also a method for manufacturing a crossbar device, comprising: nano-printing a device structure layer The first nano printed layer on the device, the device structure layer is provided on a first addressable layer, and the first addressable layer is provided on a substrate; the first addressable layer and the device structure layer Into many self-calibrating 20 0525736 nano rectifier element, each rectifier element has at least-the side dimension is less than 2 nanometers-printed on a conductive layer or a storage medium layer, the second storage medium layer is provided on the nanometers On the rectifier element, and the nanometer storage structure self-calibrated by 10%, 5 at least-the side dimension is less than 75 nanometers. "The structure has a simple illustration. Figure 13 is a perspective view of the memory device of the embodiment of the present invention. = The figure is a wearing view of one element of the memory device of Figure U. 10 Sectional view of the invention-a feasible embodiment of the A cross-sectional view of one element of the memory device is a cross-sectional view of the component of the present invention—a feasible embodiment of the memory device—the fourth figure of the device is a _ ^ 15 cross-sectional view. Figure 5. A manufacturing method for manufacturing a memory device according to an embodiment of the present invention. Figure 6 is a cross-sectional view of a manufacturing process for manufacturing a different embodiment of the present invention using a core M. Figure 20 is a sectional view of a manufacturing process for manufacturing an embodiment of the present invention. Interpretation of different manufacturing processes [implementation method] Detailed description of the preferred embodiment The method of self-calibration of the nanometer-level junction size of the wiring is a method of self-calibration. The present invention also provides a method that can be used to manufacture a variety of memories 200525736
憶裝置的;ίτ法,!”記憶I ^ ^ 置3有自仃杈準的整流接面設 於该衣置巾,其會與儲存媒體元件如換 消減通常可見於大部份交㈣而來 亍式°己诫裝置中的串通或潛通 5 10 15 該儲存媒體元件可自行對準於整流接面。 么明亦⑧偏材料及摻_度針對各層來最佳化,而提 供-種方法可最佳化該裝置中之各層或結構的性能。許多 種整流接面’例如pn:極體抑:極體,肖特基(Sch〇ttky) -極體’金屬/絕緣體/金屬整流結構等,皆可利用本發明的 方法來製成。此外’衫種_存或切制,譬如有機或 聚合物電荷吸收層,相變層’鐵電層,可逆金屬絲層,及 分子單層等皆為可制本發明的—些記憶或切換層之例。 應請瞭解該等圖式並非實際比例。且,該等主動元件 之不同部份絲依_繪製。某蚊寸會相㈣其它尺寸 更為放大’以便對本發明提供更清楚的說明和瞭解。此外, 雖某些實施例係以二維視圖來表示,而使不同區域具有深 度和寬度’惟應可清楚瞭解該等區域僅為—裂置之某部份 的圖示,而該裝置實際上為-三維結構。因此,該等區域 當被製成於一實際裴置上時,將會具有三維尺寸,包括長 度、寬度和深度等。 本發明之一實施例的交又桿記憶結構〗〇 〇係呈立體圖 示於第la圖中。第一電極或可定址線132等係被列設在基材 120上且互相平行。裝置結構物136等係設在第一可定址線 132上。該等裝置結構物136和第一電極線132會形成自行對 準的奈米級整流元件102。第一電極線132和裝置結構物136 200525736 的線寬131係小於75奈米(nm)。此外,切換線142等係設在裝 置結構物136上,且互相平行而垂直於第一電極線132等。最 後’第二電極線152會佈設在切換線142上並與之電連接。第 二電極線152和切換線142的線寬151係小於75nm,而形成自行 5對準的奈米儲存結構物104。雖在第la圖中的第一可定址線 132 ’切換線142,及第二電極線152等係被示出呈直線而各具 有一固定寬度,但應請瞭解該等直線在變化實施例中亦可具 有不同的曲線形狀,以及可變寬度。而且,在變化實施例中, 該等直線亦能以不同於所示之9〇度以外的角度來相交。 10 在一第一電極線與一第二電極線之各交叉點處會形成 邏輯胞元101等。在各胞元中,該裝置結構物136將會與在 交叉點處的第一電極線和第二電極線形成表面等範圍而重 合且共平面。在一可行實施例中,第二電極線152會電連接 且設在切換元件(未示出)上,該切換元件具有一線寬大致和 15第二電極線152相同,及一元件長度大致相同於第一電極線 132的寬度。在第1&及比圖中所示的交叉桿記憶結構係可自 行校準地形成二極體來串接直接設在各電極線交叉點處的 切換元件。該等自行校準的二極體能大為減少或消除潛通 路或串通的問題,其係通常可見於所有大型場之可程式化 20閘陣列或可程式化邏輯陣列者。 如第lb圖的截面圖所示,各邏輯胞元皆包含一裝置結 構物電連接於第-電極線。介面138會形成於第_電極線 132和邏輯胞元101的裝置結構物136之間,其具有一面積小 於5625平方奈米。該胞元1〇1的奈米整流元件102可由多種 200525736 等),金譬如半導體接面(如pn,p-i_n,或npnp接面 ¥體接面(如肖特基二極體),金屬/絕緣Recall the device; ίτ method! "Memory I ^ ^ Set 3 has a self-aligning rectifying interface provided on the cloth towel, which will be exchanged with storage media components, which can usually be seen in most of the interfering devices. Coupling or latent communication 5 10 15 The storage medium element can be self-aligned to the rectifying interface. Mo Ming also deflects materials and doping degrees to optimize for each layer, and provides a method to optimize the The performance of each layer or structure. Many types of rectifying junctions, such as pn: polar body: polar body, Schottky-polar body, metal / insulator / metal rectification structure, etc., can use the method of the present invention. In addition, 'shirt types' can be stored or cut, such as organic or polymer charge absorbing layers, phase change layers, ferroelectric layers, reversible metal wire layers, and molecular monolayers. Examples of memory or switching layers. Please understand that these drawings are not actual proportions. Also, different parts of these active components are drawn in accordance with each other. A certain mosquito inch will be compared with other sizes to enlarge it, so as to provide more convenience for the invention. Clearly illustrated and understood. In addition, although some embodiments are shown in two dimensions Display, so that different areas have depth and width, but it should be clearly understood that these areas are only a diagram of a part of the crack, and the device is actually a three-dimensional structure. Therefore, these areas should be made When completed in an actual position, it will have three-dimensional dimensions, including length, width, depth, etc. The crossbar memory structure according to an embodiment of the present invention is a three-dimensional illustration in Figure 1a. An electrode or an addressable line 132 is arranged on the substrate 120 and is parallel to each other. A device structure 136 is provided on the first addressable line 132. The device structure 136 and the first electrode line 132 are A self-aligned nano-level rectifying element 102 is formed. The first electrode line 132 and the device structure 136 200525736 have a line width 131 of less than 75 nanometers (nm). In addition, a switching line 142 and the like are provided on the device structure 136. And parallel to each other and perpendicular to the first electrode line 132, etc. Finally, the second electrode line 152 will be laid on and electrically connected to the switching line 142. The line width 151 of the second electrode line 152 and the switching line 142 is less than 75 nm To form a self-aligned 5nm nanometer storage structure 104. Although the first addressable line 132 'switching line 142 and the second electrode line 152 in the figure 1a are shown as straight lines and each have a fixed width, it should be understood that these straight lines are changing in implementation. The examples may also have different curve shapes and variable widths. Moreover, in a variant embodiment, the lines can also intersect at an angle other than 90 ° as shown. 10 A first electrode line Logic cells 101, etc. will be formed at each intersection with a second electrode line. In each cell, the device structure 136 will form a surface with the first electrode line and the second electrode line at the intersection, etc. The ranges are coincident and coplanar. In a feasible embodiment, the second electrode line 152 is electrically connected and provided on a switching element (not shown), the switching element has a line width approximately the same as that of the second electrode line 152, And the length of an element is substantially the same as the width of the first electrode line 132. The crossbar memory structure shown in Figs. 1 and 2 can form a diode by self-alignment to connect a switching element directly provided at the intersection of each electrode line. These self-calibrating diodes can greatly reduce or eliminate the problem of latent paths or collusion. They are usually programmable gate arrays or programmable logic arrays that can be found in all large fields. As shown in the cross-sectional view in FIG. 1b, each logic cell includes a device structure electrically connected to the first electrode line. The interface 138 is formed between the first electrode line 132 and the device structure 136 of the logic cell 101, and has an area smaller than 5625 square nanometers. The nano-rectifying element 102 of the cell 101 can be made of a variety of 200525736, etc.), such as semiconductor junctions (such as pn, p-i_n, or npnp junctions, or bulk junctions (such as Schottky diodes), and metal. /insulation
==構,金屬/絕緣體/金屬結構,以及有機或聚合物整流 結構寺。此外,女、P 5 10 15 一 D 胞元亦包含一切換線電連接於一第 電極g %成於城線142與裝置結構物Mb之間的切換 介面148具有約小於5625平方奈求。奈米儲存結構 1〇4可由多種儲存材料來製成,例如有機或聚合物電荷吸收 層,相變層,鐵電層,穿隨層,麼電層,炫解層,絲線形 成(抗熔)層,磁性層(MRAR),及分子單層等。 該基材120可為任何適當材料,其上可形成整流與切換 結構物。其材料之例包括各種玻璃;陶莞例如氧化紹、氮 化测、碳化石夕、和藍寶石;半導體,例如矽、砷化鎵、碌 化銦、與鍺;及各種聚合物例如聚醯亞胺、聚醚颯、聚醚 亞酏胺、聚萘乙烯、聚對苯二甲酸乙二酯、和聚碳酸酯等, 此僅為許多可用材料的少許例子而已。因此,本發明並不 受限於石夕半導體材料所製成的該等裝置,而應包含利用一 或多種可用之半導體材料及該領域中之習知技術,例如使 用覆設在玻璃基材上的多晶矽之薄膜電晶體(TFT)技術來 製成的裝置。又,該基材120並不限制為典型的晶圓尺寸, 20 且可包括處理一聚合物片或膜或玻蟑片,例如以不同於傳 統晶圓或基材之形式及尺寸來處理的單晶片或基材。實際 使用的基材材料會取決於各種爹數’例如所用的最大處理 溫度,該記憶裝置將會承受的環境,以及各種構件例如所 用的特定整流結構、切換線、及電極等。 200525736 利用一肖特基障壁二極體結構之本發明的可行實施例 係被不於第2圖的截面圖中。在本實施例中,第一可定址線 232及衣置結構物236會在邏輯胞元的整流介面幻8處形 成肖特基障壁整流觸點。該第一可定址線232與裝置結構 5物236 έ形成自行枝準的整流元件202,其沿第一電極線232 的方向具有一線寬(類似第la圖的線寬131)約小於75nm。此 外,各邏輯胞70201會包含切換線242,及第二電極線252覆 汉在4切換線242上。切換線242與第二電極線252會各互相 平仃,而正交於第一電極線232,類似於第la圖中所示。該 10第一電極線252和切線換242會具有小於75nm的線寬251,而 形成自行對準的奈米儲存結構2〇4。又,切換線242和裝置 結構物236會形成切換介面248,其可沿第一電極線232的方 向來使該結構物236自行校準於切換線242,並使該結構物 236/σ第一電極線252的方向自行校準於第二電極線Μ]。該 15切換"面248的面積小於5625平方奈米。該邏輯胞元2〇1之 自行彳又準的奈米儲存結構204與自行校準的整流元件202之 組。,將可使裝置結構物236沿二互相垂直的方向來自行校 準。 在本例中的基材220係為一半導體基材,例如矽、鍺、 或中化鎵晶圓。為使第一電極線232與摻雜的基材電隔 離,一可擇的介電層226會設如第2圖所示。例如,基材22〇 可為輕微摻雜的矽晶圓,而介電層226為二氧化矽層。該第 兒極線232可為一金屬,例如鎂、銻、鋁、銀、銅、鎳、 孟翻或絶荨,並在該二氧化石夕表面上形成合理的障壁 12 200525736 高度,另該裝置結構物236可為一輕微摻雜的n型多晶矽或 非晶矽層,而在整流介面238上來形成該肖特基障壁二極 體。在變化實施例中,一輕度摻雜的ρ型層可被設在一金屬 例如金或鉑矽化物上,而亦形成一肖特基障壁。又在其它 5實施例中,自行校準的整流元件202可包括ρ+或η+型磊晶層 設在一本徵單晶矽層(未示出)上來形成該可定址線232。另 一輕度摻雜的磊晶層,或一具有分級摻雜程度而終結於一 輕度摻雜表面的料層,亦可被製設在該重度摻雜層(未示出) 上。在該實施例中,裝置結構物236則可包含一薄層的適當 10金屬或金屬矽化物,來形成該肖特基障壁觸點。在使用非 導電基材,例如玻璃、陶瓷或聚合物基材的實施例中,若 有需要則該介電層挪亦可省略。例如,利用—玻璃或聚醯 亞月女基材時,該可定址線232乃可利用直接沈積或製設在基 勺至屬,例如麵來製成,而該裝置結構物236則可 適田類型的摻雜劑例如11型摻雜劑,來直接設在可定 址線232上。 本發明之另—使用磊晶半導體二極體接面的可行實 例係被示於笛^ & 、 "、截面圖中。i晶薄膜會被用來造成各 等月豆看322、 20== Structure, metal / insulator / metal structure, and organic or polymer rectifier structure. In addition, the female, P 5 10 15 -D cell also includes a switching line electrically connected to a first electrode g% formed between the switching between the city line 142 and the device structure Mb. The interface 148 has a diameter of less than 5625 squared. Nano storage structure 104 can be made of various storage materials, such as organic or polymer charge absorption layers, phase change layers, ferroelectric layers, penetrating layers, electromechanical layers, delamination layers, and wire formation (anti-fuse). Layers, magnetic layers (MRAR), and molecular monolayers. The substrate 120 may be any suitable material on which rectifying and switching structures can be formed. Examples of materials include various glasses; ceramics such as oxides, nitrides, carbides, and sapphire; semiconductors such as silicon, gallium arsenide, indium, and germanium; and various polymers such as polyimide , Polyether fluorene, polyetherimide, polyethylene naphthalene, polyethylene terephthalate, and polycarbonate, to name just a few examples of many available materials. Therefore, the present invention is not limited to such devices made of Shixi semiconductor materials, but should include the use of one or more available semiconductor materials and conventional techniques in the field, such as the use of overlays on glass substrates. Devices made of polycrystalline silicon thin film transistor (TFT) technology. In addition, the substrate 120 is not limited to a typical wafer size, 20 and may include processing a polymer sheet or film or a glass substrate, such as a single sheet processed in a form and size different from a conventional wafer or substrate. Wafer or substrate. The actual substrate material used will depend on various factors, such as the maximum processing temperature used, the environment to which the memory device will be subjected, and various components such as the specific rectification structure, switching wires, and electrodes used. 200525736 A feasible embodiment of the present invention using a Schottky barrier diode structure is shown in the sectional view of FIG. 2. In this embodiment, the first addressable line 232 and the clothing structure 236 will form a Schottky barrier rectifying contact at the rectifying interface of the logic cell. The first addressable line 232 and the device structure 236 form a self-aligning rectifying element 202, which has a line width (similar to the line width 131 in FIG. 1a) along the direction of the first electrode line 232 of less than about 75 nm. In addition, each logic cell 70201 includes a switching line 242, and a second electrode line 252 covers the 4 switching line 242. The switching line 242 and the second electrode line 252 are horizontal to each other and orthogonal to the first electrode line 232, similar to that shown in FIG. The 10 first electrode lines 252 and the tangent lines 242 have a line width 251 of less than 75 nm, and form a self-aligned nanometer storage structure 204. In addition, the switching line 242 and the device structure 236 will form a switching interface 248, which can automatically calibrate the structure 236 to the switching line 242 along the direction of the first electrode line 232, and make the structure 236 / σ first electrode The direction of the line 252 is self-aligned to the second electrode line M]. The area of the 15-switching surface 248 is less than 5625 square nanometers. The combination of the self-aligned nano-storage structure 204 of the logic cell 201 and the self-calibrated rectifier element 202. , The device structure 236 can be self-aligned in two mutually perpendicular directions. The substrate 220 in this example is a semiconductor substrate, such as a silicon, germanium, or gallium wafer. To electrically isolate the first electrode line 232 from the doped substrate, an optional dielectric layer 226 is provided as shown in FIG. 2. For example, the substrate 22 may be a lightly doped silicon wafer, and the dielectric layer 226 is a silicon dioxide layer. The first polar line 232 can be a metal, such as magnesium, antimony, aluminum, silver, copper, nickel, pentad, or scuttle, and form a reasonable barrier wall 12 200525736 on the surface of the dioxide, and the device The structure 236 may be a lightly doped n-type polycrystalline silicon or amorphous silicon layer, and the Schottky barrier diode is formed on the rectifying interface 238. In a variant embodiment, a lightly doped p-type layer may be provided on a metal such as gold or platinum silicide, and also forms a Schottky barrier. In still other embodiments, the self-calibrating rectifying element 202 may include a ρ + or η + type epitaxial layer provided on an intrinsic single crystal silicon layer (not shown) to form the addressable line 232. Another lightly doped epitaxial layer, or a layer with a graded doping level and ending on a lightly doped surface, can also be fabricated on the heavily doped layer (not shown). In this embodiment, the device structure 236 may include a thin layer of appropriate 10 metal or metal silicide to form the Schottky barrier contact. In embodiments using a non-conductive substrate, such as a glass, ceramic or polymer substrate, the dielectric layer may be omitted if necessary. For example, when using a glass or polysilicon substrate, the addressable line 232 can be made by directly depositing or making on a base spoon, such as a surface, and the device structure 236 can be adapted to the field. A type of dopant, such as a type 11 dopant, is provided directly on the addressable line 232. Another example of the present invention-a feasible example using an epitaxial semiconductor diode junction is shown in a cross section & I-crystalline film will be used to cause various moon beans to see 322, 20
來萝成。* 。、 4等,並係使用傳統的半導體處理設 定的細t可疋址層332含有第一極性的摻雜劑並有一 該特二:二::皮設在基材320與裝置結構物酬 尺寸以及^ 和濃度餘決於各细素,例如接 ^會被使用的μ情況等。該I置結構物3 —極性穆雜劑,其係相反於第1極層332的 13 200525736 性。在本實施例中,該整流介面338係形成於邏輯胞元3〇1 的p型磊晶層323和n型磊晶層324之間。在本例中,奈米整 流元件302亦包含可擇的η+型磊晶層327,其可被用來對儲 存媒體線342提供更佳的電連接,而係取決於該儲存線342 5的材料。在本例中,基材320係為一傳統的矽半導體晶圓, 並有一二氧化矽的介電層326設在該矽基材320與本微單晶 矽層322之間。在邏輯胞元301中,第一可定址線係由ρ 型磊晶層323所製成,而裝置結構物336係由〇型磊晶層324 和可擇的型磊晶層327來形成。在變化實施例中,第一可 1〇定址線332可由一η型材料來製成,而裝置結構物336則可由 一Ρ型材料來製成。例如,摻雜的多晶矽或非晶矽可被覆設 在介電層326上來製成該二層。另一例則可包含摻雜的蘇或 石夕鎵合金屬覆設在介電層336上,以作為該等用來形成整流 介面328的半導體之一者。又在其它實施例中,如第丨圖實 15施例所述的各種其它基材材料亦可被使用。 在本實施例中,切換線342和裝置結構物336會形成切 換介面348 ’其會使裝置結構物3 3 6沿第二電極線3 5 2的方向 自動對準於切換線342和第二電極線352。各切換線342會互 相平行,而垂直於第-可定址線332,類似第u圖所示。在 20各地輯胞凡301中’第二可定址線352係覆設在切換線撕 上,並亦互相平行,且垂直於第一可定址線332,類似第la 圖所不。在本實施例中’有二電極352和切換線M2皆具有 小於乃聰的線寬351,且它們會形成自行校準的奈米儲存結 構3〇4。該等自行校準的奈米儲存結構304和自行校準的整 14 200525736 流元件302之組合能使裝置結構物336沿二互相垂直的方向 來自行校準。 本發明利用一金屬/絕緣體/金屬整流結構的可行實施 例係被示於第4圖的截面圖中。在本實施例中,邏輯胞元4〇1 5 包含第一可定址金屬線432設在基材420上,並有絕緣層433 設在該第一電極線432上。在本實施例中,該裝置結構物436 亦為一金屬層。在邏輯胞元401中,該第一可定址金屬線 432、絕緣層433、及裝置結構物436等之組合會形成自行校 準的奈米整流結構402,其沿第一電極線432的方向具有一 修 10小於75nm的線寬(類似於第la圖所示的線寬131)。此外,在 該胞元401中的切換線442和裝置結構物436會形成切換介 面448,其中第二可定址線452投影在第一可定址線幻2上的 部份(即切換線442和裝置結構物436)將會對準於該第二可 定址線452與第一可定址線432交叉之處理。在本實施例 15中’该等切換線會互相平行,並垂直於第一可定址線,類 似於第la圖所示。第二可定址線452係覆設在切換線撕上。 在本實施财,該等第二可定址線亦互相平行,並垂直於第 · -可定址線’類似第la_示。但是,在變化實施例中該等 線路亦可具有各種曲線形狀,以及可變的寬度。此外,在變 2〇化貫施例中,該等線路亦得以90度以外的各種角度來交叉。 在本只把例中’第—電極線452和切換線442皆會具有小於 75細的線寬451 ’而形成自行校準的奈米儲存結構404。該等 自打校準之奈米儲存結構姻與自行校準之整流元件術的 組合’將可使裝置結構物436沿二互相垂直方向來自動校準。 15 200525736 第5圖為一用來造成本發明實施例的製法之流程圖。第 6a〜6η圖示出一用來造成自行校準的奈米整流元件和自行 校準的奈米儲存結構以製造成一記憶裝置的製程,乃僅被 示出以供更清楚瞭解本發明。其各實際尺寸並未依正確比 5例,而有某些特徵細構會被誇大來更清楚顯示該等製程。 整流層製造步驟580係為一選擇製程可用來造成第一 可疋址層630和裝置結構層634,如第6a圖的截面圖所示。 所用的方法係取決於該記憶裝置600中所用之整流元件和 基材的類型。例如,若該等整流元件係為設在半導體晶圓 10上的半導體接面二極體,則該等可定址層630和裝置結構層 634乃可使用傳統的半導體處理設備,而以各種磊晶技術來 製成,譬如化學氣相沈積(CVD),包括大氣壓力式 (APCVD),低壓式(LPCVD)或電漿加強式(PECVD)等各種 方式’原子層沈積(ALD)或分子束蠢晶(MBE)等不勝枚舉。 15此外,非結晶或多晶半導體膜亦可被設在基材620上,再以 一後續的重結晶化步驟來製成一單晶或幾近單晶層。該重 結晶步驟通常會利用該基材與沈積層的熱、雷射、或電子 束加熱,來提供重結晶化該沈積膜的能量。在變化實施例 中’亦可使用-埋設的絕緣體層。摻雜的多晶或非結晶層 20亦可用來製成第一玎定址層630和裝置結構層634,而不必 形成一磊晶層,此乃取決於所用的儲存材料以及該交叉桿 裝置的用途。 針對使用-金屬層來形成-肖特基障壁觸點或金屬/ 絕緣體/金屬整流結構的實施例,則各種金屬沈積設備和技 200525736 術’例如PECVD、CVD、金屬有機物CVD(MOCVD)、濺鍍 沈積、蒸發、及電沈積等亦可使用。舉例而言,金、鉑、 或I巴乃可被濺鍍沈積在基材620上來製成第一可定址層 630。在另一例中,鈕可被電子束蒸發來形成一金屬/絕緣 5體/金屬整流結構的一部份。 奈米印製步驟582係用來造成印製層66〇及將所需結構 或特徵壓印於該印製層660中(參見第6b〜6dSj)。該印製層可 使用任何適當的技術,譬如旋塗、蒸汽沈積、喷塗、或噴 墨沈積等來塗佈。在一實施例中,該印制層66〇為一聚甲基 10丙烯酸甲酯(PMMA)旋塗在裝置結構634上。該印製層66〇 得為任何可成型的材料。其係可利用任何在第一情況下可 流動或可撓曲,而在第二情況下較呈固態且不可撓曲的材 料。通常,針對用於一熱壓印製法中的聚合物印製層,一 低溫烘烤程序會被用來驅來任何過多的溶劑,否則其嗣在 15該印製層被塗覆於裝置結構層634上之後可能會殘留。通 常,在使用“step and flash”逐步内照製法的實施例中,—移 轉層會先被塗覆於裝置結構層634上,嗣再製成一可光固化 層於該移轉層上。例如,該印製層66〇可包括一有機移轉層 如OLIN公司所銷售的HR 100,而_可光固化層包括乙二^ 2〇 一丙烯酸(3-丙烯氧丙基)二(二甲基矽氧)矽烷,t-丙烯醆丁 酉曰’及2-緩基-2-甲基小苯基-丙垸]―。當固化時具有低勘 度,高固化速度,受控的收縮率,低蒸發率,高模數而對 被沈積層具有良好的黏性,並能與該奈米印製器順利釋離 等皆為該可光固化層的所需特性。在另一實施例中,該可 17 200525736 光固化層可用Molecular Imprints公司所售之品名為s-FIL Monomat AC01的材料來製成。此外,各種其它可光聚合 化之低黏度丙烯酸基溶液而包含一有機矽化合物者,亦 可用來造成印製層660。該印製層660係使用奈米印製器 5 662(見第6c圖)來壓印製成。該奈米印製器662會在該印 製層可撓曲的情況下來被向下朝該印製層660沖壓或壓 迫。該印製器662包含有特徵或結構等,具有與該印製層 660所需造型互補的形狀。凸部664及凹部654和654,等, 如第6c圖所示,代表該奈米印製器662所需的結構。由於 10 互補對應,即意味著形成於印製層660上的圖案(參見第 6c圖)具有一形狀對應於該奈米印製器662上的圖案之互 補形狀。即該印製器上的凸部664會形成凹下的細構 658,而凹部654和654’會分別形成凸出的細構656和656, 等,其中凹部654’代表被印製在特定位置之結構或特徵 15 的變化(即如將之繪成線寬有所改變)。舉例而言,一使 用可光固化材料緒如S-FIL Monomat AC01製成的印製 層,乃能利用一背壓為0.25bar的印製器以2牛頓之力來 壓印。一可光固化材料如S-FIL Monomat AC01係可用一 光源,例如-1000w的Hg-Xe紫外線電弧燈以I線輻射(即 20 365nm)來曝照。僅供說明之用,第6c圖示出所用的奈米 印製器能使約250至500nm的波長透射,故紫外線光子 610會穿過壓著於上的奈米壓印器而光固化該奈米印製 層660。於變化實施例中,該印製器662亦可在該印製層 660被光固化之前即被卸除。 18 200525736 另一例係將—PMMA層加熱至其軟化或朗轉換溫度 以上。使用於該熱壓印製程中的特定温度和壓力將取決於 各種變數,例如要被成型的細構尺寸的形狀,及使用於該 印製層的材料等。 5 自行校準的奈綠流元件製造步驟洲㈣來由各對 應料層製成該等第-可定址線和裝置結構物。奈米整流元 件製程包括除去在奈米印製時所形成的凹下細構柳(見第 6c圖)。除去料凹下細構可·何適祕該㈣層之特定 材料的濕或乾蝕刻法來完成。例如,若欲除去在一熱壓印 10程序中形成凹下細構658之殘留的PMma,則可利用氧反應 離子蝕刻法。在變化實施例中,若使用^^乙Monomat材料 的“Step and flash”製法時,則可利用含氟的反應離子蝕刻再 續以含氧的電漿或反應離子钱刻來除去該移轉層。除去凹 下細構658會曝現出在曝露區657中的裝置結構層634(見第 15 以圖),而凸出細構656和656’仍會保留覆蓋在其它區域的部 份裝置結構層634上。至於使用其它聚合物或無機物印製層 的製法,各種濕蝕刻或其它反應離子蝕刻亦可被使用。 一可擇的硬蝕刻罩製造程序亦可用來作為該自行校準 之奈米整流元件製程584的一部份,以沈積一可擇的蝕刻 20 罩。該可擇的硬蝕刻罩(未示出)係在該等凹下細構已被除去 之後,將一薄金屬或介電層沈積在該奈米印製層上而來形 成。例如,一薄銘、絡、韵、鈦或組層乃可被沈積在該奈 米印製表面上。於一變化實施例中,該硬蝕刻罩亦可被分 開地製成,嗣再移轉至該奈米印製表面上。一後續的高位 19 200525736 去除法或遥擇性的化學姓刻亦可用來除去該印製層的凸出 部656和656’(見第6d圖),而使沈積在該等凸出部656和 656’上的硬蝕刻罩材料能與沈積在曝露區657中的金屬 一起被除去,而保留形成一罩體可供用來蝕刻先前被該 5寺凸出細構所覆盍的區域。其所用的特定選擇性化學|虫 刻將取決於所用的印製材料及硬餘刻罩材料。四氫咬喃 (THF)可用來供PMMA的選擇性蝕刻。其它可供pmma作 選擇性化學蝕刻之例係如乙醇水混合物,及丨:1比例的 異丙醇和甲基乙基酮使用在25。(:以上。最好是,在室溫 ίο下於一超音波槽内用丙酮來選擇性蝕刻PMMA,再以異 丙醇沖洗。另一蝕刻PMMA之例係使用二氣甲烷浸潰約 1〇分鐘,再於一超音波清潔槽内的二氣甲烷中搖晃震動 、、勺1刀知 笔聚清潔程序亦可被用來附加於該選擇性化 予蝕刻,俾進一步清潔該裝置結構層634的曝露表面區域 15和硬蝕刻罩的表面。該可擇的硬蝕刻罩係可由任何金屬 或介電材料來製成,而能在蝕刻該裝置結構層634和第一 可定址層630時提供適當的選擇性。通常此可擇的硬蝕刻 罩會被使用在某些實施例中,即該印製層可能會在用來 蝕刻裝置結構層634或第一可定址層63〇的蝕刻製程中會 20受損或劣化的情況下。 日 自行校準的奈米整流元件製造步驟584亦包含一蝕刻 製程,用來蝕刻該裝置結構層634和第一可定址層63〇未被 如第6d及6e圖中之凸出細構656和656,所保護的區域,以及 未被上述之可擇蝕刻罩所保護的區域。該裝置結構層634和 20 200525736 第一可定址層630之蝕刻係可利用任何濕或乾蝕刻法,或任 何適用於特定材料及使用一摻雜半導體層之實施例所用的 掺雜材料之組合方法。視要被蝕刻的材料及該裝置的用途 而定’其蝕刻範圍亦可伸入該基材620中,如第6e圖所示。 5 10 15 20 舉例而言,CMOS可用的濕蝕刻劑包括四曱基氫氧化銨Lai Luocheng. *. , 4, and the like, and are set using a conventional semiconductor process. The thin addressable layer 332 contains a dopant of the first polarity and has one of the following characteristics: two :: the skin is provided on the substrate 320 and the device structure and the size of the device and ^ And concentration depend on each element, such as the μ case that will be used. The structure I is a polar impurity, which is opposite to that of the first electrode layer 332. In this embodiment, the rectifying interface 338 is formed between the p-type epitaxial layer 323 and the n-type epitaxial layer 324 of the logic cell 301. In this example, the nano rectifier element 302 also includes an optional η + type epitaxial layer 327, which can be used to provide a better electrical connection to the storage medium line 342, which depends on the storage line 342 5 material. In this example, the substrate 320 is a conventional silicon semiconductor wafer, and a dielectric layer 326 of silicon dioxide is disposed between the silicon substrate 320 and the micro-monocrystalline silicon layer 322. In logic cell 301, the first addressable line is made of p-type epitaxial layer 323, and the device structure 336 is formed of 0-type epitaxial layer 324 and optional type epitaxial layer 327. In a variant embodiment, the first 10-addressable line 332 may be made of an n-type material, and the device structure 336 may be made of a P-type material. For example, doped polycrystalline silicon or amorphous silicon may be overlaid on the dielectric layer 326 to form the two layers. Another example may include doped selenium or silicon gallium metal on the dielectric layer 336 as one of the semiconductors used to form the rectifying interface 328. In other embodiments, various other substrate materials as described in the embodiment of FIG. 15 can also be used. In this embodiment, the switching line 342 and the device structure 336 form a switching interface 348 ′, which will automatically align the device structure 3 3 6 in the direction of the second electrode line 3 5 2 with the switching line 342 and the second electrode. Line 352. Each switching line 342 will be parallel to each other and perpendicular to the -addressable line 332, similar to that shown in figure u. The second addressable line 352 in the series 301 in 20 places is overlaid on the switch line, and is also parallel to each other and perpendicular to the first addressable line 332, similar to the figure la. In this embodiment, the two electrodes 352 and the switching line M2 each have a line width 351 smaller than that of Nicong, and they will form a self-calibrating nanometer storage structure 304. The combination of the self-calibrating nanometer storage structure 304 and the self-calibrating integrated flow element 302 enables the device structure 336 to be self-aligned in two mutually perpendicular directions. A possible embodiment of the present invention using a metal / insulator / metal rectifying structure is shown in the sectional view of FIG. In this embodiment, the logic cell 4015 includes a first addressable metal line 432 provided on the substrate 420, and an insulating layer 433 is provided on the first electrode line 432. In this embodiment, the device structure 436 is also a metal layer. In the logic cell 401, the combination of the first addressable metal line 432, the insulating layer 433, and the device structure 436, etc., will form a self-calibrating nanometer rectification structure 402. Modify a line width less than 75nm (similar to the line width 131 shown in Figure la). In addition, the switching line 442 and the device structure 436 in the cell 401 form a switching interface 448, in which the second addressable line 452 is projected on the first addressable line 2 (ie, the switching line 442 and the device) The structure 436) will be aligned with the processing of the intersection of the second addressable line 452 and the first addressable line 432. In the fifteenth embodiment, the switching lines are parallel to each other and perpendicular to the first addressable line, which is similar to that shown in FIG. The second addressable line 452 is disposed on the switching line. In this implementation, these second addressable lines are also parallel to each other and perpendicular to the first addressable line, which is similar to the first la_show. However, in a modified embodiment, the lines may have various curved shapes and variable widths. In addition, in the modified embodiment, these lines can also be crossed at various angles other than 90 degrees. In this example, both the first electrode line 452 and the switching line 442 will have a thin line width 451 of less than 75 to form a self-calibrating nanometer storage structure 404. The combination of the self-calibrating nanometer storage structure and the self-calibrating rectifying element technique will allow the device structure 436 to be automatically calibrated in two mutually perpendicular directions. 15 200525736 FIG. 5 is a flowchart of a method for forming an embodiment of the present invention. Figures 6a to 6n show a process for creating a self-calibrated nano rectifier element and a self-calibrated nano storage structure to make a memory device, which are only shown for a clearer understanding of the invention. Its actual dimensions are not correctly compared to 5 cases, and some feature details will be exaggerated to show these processes more clearly. The rectifying layer manufacturing step 580 is a selective process that can be used to create the first addressable layer 630 and the device structure layer 634, as shown in the cross-sectional view of FIG. 6a. The method used depends on the type of rectifying element and substrate used in the memory device 600. For example, if the rectifying elements are semiconductor junction diodes provided on the semiconductor wafer 10, the addressable layer 630 and the device structure layer 634 can use conventional semiconductor processing equipment, and various epitaxy Technology to make, such as chemical vapor deposition (CVD), including atmospheric pressure (APCVD), low pressure (LPCVD) or plasma enhanced (PECVD) and other methods' atomic layer deposition (ALD) or molecular beam stupid crystals (MBE) are endless. In addition, an amorphous or polycrystalline semiconductor film can also be provided on the substrate 620, and a single crystal or nearly single crystal layer can be formed by a subsequent recrystallization step. The recrystallization step typically uses heat, laser, or electron beam heating of the substrate and the deposition layer to provide the energy to recrystallize the deposited film. In a variant embodiment,-a buried insulator layer may also be used. The doped polycrystalline or amorphous layer 20 can also be used to make the first chirped addressing layer 630 and the device structure layer 634 without having to form an epitaxial layer, depending on the storage material used and the purpose of the crossbar device . For embodiments that use a -metal layer to form a -Schottky barrier contact or a metal / insulator / metal rectification structure, various metal deposition equipment and techniques 200525736 techniques such as PECVD, CVD, metal organic CVD (MOCVD), sputtering Deposition, evaporation, and electrodeposition can also be used. For example, gold, platinum, or Ibano may be sputter deposited on the substrate 620 to form the first addressable layer 630. In another example, the button can be evaporated by an electron beam to form a part of a metal / insulator 5 body / metal rectifier structure. The nano-printing step 582 is used to create a printed layer 66 and emboss a desired structure or feature in the printed layer 660 (see sections 6b to 6dSj). The printed layer can be applied using any suitable technique, such as spin coating, vapor deposition, spray coating, or ink deposition. In one embodiment, the printed layer 66 is a polymethyl 10 acrylate (PMMA) spin-coated on the device structure 634. The printed layer 66 can be any formable material. It can use any material that is flowable or flexible in the first case and more solid and inflexible in the second case. Generally, for polymer printed layers used in a hot stamping process, a low temperature baking process will be used to drive any excess solvent, otherwise it will be applied to the device structure layer at 15 ° C. May remain after 634. Generally, in the embodiment using the "step and flash" method, the transfer layer is first coated on the device structure layer 634, and then a photo-curable layer is formed on the transfer layer. For example, the printed layer 66 may include an organic transfer layer such as HR 100 sold by OLIN Corporation, and the photo-curable layer includes ethylene ^ 20-acrylic acid (3-acryloxypropyl) bis (dimethylamine) Silyl), silane, t-acrylic acid, butanyl, and 2-branzyl-2-methyl-small phenyl-propylammonium]. When curing, it has low survey degree, high curing speed, controlled shrinkage, low evaporation rate, high modulus and good adhesion to the deposited layer, and can be smoothly released from the nano-printer, etc. Is a desired characteristic of the photocurable layer. In another embodiment, the photocurable layer can be made of a material sold by Molecular Imprints under the name s-FIL Monomat AC01. In addition, various other photopolymerizable low viscosity acrylic-based solutions containing an organosilicon compound can also be used to form the printed layer 660. The printed layer 660 is made by embossing using a nanoprinter 5 662 (see Fig. 6c). The nano-printer 662 may be punched or pressed downwardly toward the printed layer 660 when the printed layer is flexible. The printer 662 includes features or structures, etc., and has a shape complementary to the shape required for the printed layer 660. The convex portions 664 and the concave portions 654 and 654, etc., as shown in FIG. 6c, represent the structure required for the nanoprinter 662. Since 10 is complementary, it means that the pattern (see FIG. 6c) formed on the printed layer 660 has a complementary shape whose shape corresponds to the pattern on the nanoprinter 662. That is, the convex portion 664 on the printer will form a concave fine structure 658, and the concave portions 654 and 654 'will form a convex fine structure 656 and 656, respectively, where the concave portion 654' represents being printed at a specific position Changes in structure or feature 15 (ie, if the line width is changed). For example, a print layer made of a photocurable material such as S-FIL Monomat AC01 can be imprinted with a force of 2 Newtons using a printer with a back pressure of 0.25 bar. A photocurable material such as S-FIL Monomat AC01 series can be exposed with a light source, such as -1000w Hg-Xe ultraviolet arc lamp with I-ray radiation (ie, 20 365nm). For illustration purposes only, Figure 6c shows that the nano-printer used can transmit a wavelength of about 250 to 500 nm, so the ultraviolet photon 610 will pass through the nano-printer pressed onto it to light-cure the nano-printer. Meter printed layer 660. In a variant embodiment, the printer 662 can also be removed before the printed layer 660 is photocured. 18 200525736 Another example is heating the PMMA layer above its softening or Lange transition temperature. The specific temperature and pressure used in the hot stamping process will depend on various variables, such as the shape of the fine-grained size to be molded, and the material used for the printed layer. 5 The self-calibrating nano-green flow element manufacturing steps are carried out by the corresponding material layers to make the first-addressable lines and device structures. The nano rectifier component process includes removing the concave fine willows formed during nano printing (see Figure 6c). Removal of the fine texture of the material can be accomplished by wet or dry etching of the specific material of the layer. For example, if it is desired to remove the remaining PMma that forms the recessed fine structure 658 in a hot stamping process, an oxygen reactive ion etching method can be used. In a modified embodiment, if the "Step and flash" manufacturing method of ^^ Monomat material is used, then the reactive layer can be etched with fluorine and the plasma can be etched with oxygen or plasma to remove the transfer layer. . The removal of the recessed fine structure 658 will expose the device structure layer 634 (see figure 15) in the exposed area 657, while the protruding fine structures 656 and 656 'will still retain part of the device structure layer covering other areas 634 on. As for the manufacturing method using other polymer or inorganic printed layers, various wet etching or other reactive ion etching can also be used. An optional hard etch mask manufacturing process can also be used as part of the self-calibrating nano rectifier component process 584 to deposit an optional etch 20 mask. The optional hard etch mask (not shown) is formed by depositing a thin metal or dielectric layer on the nanoprinted layer after the recessed fine structures have been removed. For example, a thin inscription, mesh, rhyme, titanium, or group of layers can be deposited on the nanoprinted surface. In a variant embodiment, the hard etch mask can also be made separately and transferred to the nanoprinted surface. A subsequent high-level 19 200525736 removal method or a remotely selected chemical surname can also be used to remove the protrusions 656 and 656 'of the printed layer (see Fig. 6d), so as to deposit on the protrusions 656 and The hard etch mask material on 656 'can be removed together with the metal deposited in the exposed area 657, and a mask body is reserved for etching the area previously covered by the protruding structure of the 5 temple. The specific selective chemistry | insect engraving it uses will depend on the printing material used and the hard mask material. Tetrahydrobitan (THF) can be used for selective etching of PMMA. Other examples of PMMAs that can be used for selective chemical etching are ethanol-water mixtures, and isopropyl alcohol and methyl ethyl ketone at a ratio of 1 to 25 are used. (: Above. It is best to selectively etch PMMA with acetone in an ultrasonic bath at room temperature, and then rinse with isopropanol. Another example of etching PMMA is dipping with about 2 methane. Minutes, and then shaken and shaken in two gas methane in an ultrasonic cleaning tank. The cleaning procedure of spoon and knife can also be used in addition to the selective pre-etching to further clean the device structure layer 634. The exposed surface area 15 and the surface of the hard etch mask. The optional hard etch mask can be made of any metal or dielectric material, and can provide a suitable method for etching the device structure layer 634 and the first addressable layer 630. Selectivity. Generally, this optional hard etch mask is used in some embodiments, that is, the printed layer may be used in an etching process for etching the device structure layer 634 or the first addressable layer 63. In the case of damage or deterioration, the self-calibrated nanometer rectifier element manufacturing step 584 also includes an etching process for etching the device structure layer 634 and the first addressable layer 63. Bulges 656 and 656, protected by Area, and areas not protected by the optional etch cover described above. The device structure layers 634 and 20 200525736 The first addressable layer 630 can be etched using any wet or dry etch method, or any suitable for specific materials and applications A method of combining doped materials used in an embodiment of a doped semiconductor layer. Depending on the material to be etched and the use of the device, its etching range can also be extended into the substrate 620, as shown in Figure 6e 5 10 15 20 For example, wet etchants available for CMOS include tetramethylammonium hydroxide
(TMAH)、氫氧化鉀或氫氧化鈉(K〇I^Na〇H),焦兒茶齡 乙二胺(EDP)。而可用的乾蝕刻劑例如氟化烴氣體(CFx), 二氟化氙(XeF2),及六氟化硫(SF6)等。該蝕刻製程會形成 第一可定址線632及632,等分別具有線寬631和631,。線寬 631和631’典型具有小於75nm的寬度。其實際線寬將取決於 各種參數和該記憶裝置中所用的構件,例如用來製成第— 可定址層630和裝置結構層634的材料,以及該記憶裝置的 特定用途等。此外,祕刻製程亦會沿著細祕圖所示 各線的方向來使裝置結構層634自行對準於第一可定址線 632和632,等,而製成裝置結構線635和635,等。(TMAH), potassium hydroxide or sodium hydroxide (KOI ^ NaOH), pyrocatechuic ethylenediamine (EDP). Useful dry etchants include, for example, fluorinated hydrocarbon gas (CFx), xenon difluoride (XeF2), and sulfur hexafluoride (SF6). This etching process will form the first addressable lines 632 and 632, etc. having line widths 631 and 631, respectively. The line widths 631 and 631 'typically have a width of less than 75 nm. The actual line width will depend on various parameters and the components used in the memory device, such as the materials used to make the first addressable layer 630 and the device structure layer 634, and the specific use of the memory device. In addition, the secret processing process will also align the device structure layer 634 to the first addressable lines 632 and 632, etc. along the directions of the lines shown in the detailed diagram, and make device structure lines 635 and 635, etc.
自打校準的奈米整流元件製程584亦可包含一罩體 除程序來除掉印製罩體如第6e#a6f_示的凸出細構( 和656’等’或者前述之可擇硬⑽】罩(未示出)。通常該草 去除程序可制任何適料體材料龍或乾敍刻法 針對使用印製層660(見第來作為蝕刻罩的實施例, 任何如前述在造成該可擇独料時用來除掉凸出紐 656臟,等之方法,例如、:氣甲燒、或氧電㈣ 等亦可被使用於此製程中。針對利用該可擇独刻擇㈡ 出)的實_ ’難_法絲決㈣絲賴罩體的朱 21 200525736 材料。例如,過氡化硫或氫氧化納的濕钱刻係可用來姓刻 一紹的硬姓刻罩。又,該罩體去除程序會曝露出裝置結構 表面637,如第6f圖所示。 平坦化層製造步驟586(見第6g圖)會被用來將可平坦化 5的介電層670沈積製設在該基材的曝露區域表面上,並覆蓋 戎裝置結構表面637。多種無機物或聚合物介電質皆可使 用。例如,利用電漿加強化學氣相沈積法(PECVD)所沈積 的二氧化矽可被使用。其它的材料例如氮化矽、氮氧化矽、 聚酿亞胺、苯曱酸環丁烧,以及其它的無機氮化物和氧化 10物亦可使用。此外,其它的氧化石夕膜例如四正石夕酸乙酯 (TEOS)和纟它的“旋塗,,玻璃,<以其它技術來製成的玻璃 等亦可被使用。該平坦化製程588係用來平坦化該介電層 67〇(見第6h圖)。例如,該介電層平坦化製程588可利用機械 式、阻抗蝕回、或化學機械法等來形成實質 15 672(見第_)。 - ’表面 切換層製造步驟590係用來製成切換層64〇覆設在裝置 結構層634和介電層㈣的平坦表面672上,如第^圖所:。 視該交叉桿記憶裝置會被使用的情況而定,該切換層或餘 加=媒體層_可由多種材料來製成,例如有機物或聚合物電 :吸收層,相變化層如硒化銦,鐵電層如壓電陶瓷,或沪 口物材料如偏聚二敗乙燁’絲線形成(即抗溶)層如換二的 =e3 ’摻雜的聚合物層如摻有受體或施體分子的聚碳妒 9 ’導電聚合物如聚乙稀二氧重吩聚苯乙烯續_旨,及二 子單層如硫醇和石夕炫複合物等,僅為一些可用來製成該= 22 200525736 十思或切換層之例。視所用的材料而定,各種製法例如濺鑛 /尤積、CVD、旋塗、朗穆爾-布洛吉特(langmuir-bi〇(jgett)沈 積、及各種會自行組合的製法皆可用來製成該切換層640。 第二奈米印製步驟592係用來造成第二印製層661,並 5將所需的結構或特徵印入該層661中(見第6i〜61圖)。如第6i 圖所示,該第二印製層661可用任何適當的技術來塗佈,例 如前述之奈米印製層582所用的旋塗、氣相沈積、喷塗、或 喷墨沈積等。請注意第6j〜6n圖係相對於第6a〜6i圖旋轉90 度’但是’在該等圖式中所揭述的結構並不受限於此90度 10角。通吊’此印製層會相同或類似於前述之奈米印製層製 程582中所述者,但其它的印製層材料亦可使用。例如,該 第一印製層661 (見第6i圖)可為一旋塗的低黏度且可光聚合 化的有機矽溶液。該第二印製層661得為任何可成型的材 料。 15 第二奈米印製步驟592亦包括將所需的結構或特徵印 入第二印製層661中(見第6j圖)。第二奈米印製器663會在該 印製層可撓曲的情況下來被壓向該印製層661,而在其中形 成凹下細構658和凸出細構656與656,等。該奈米印製程序 和奈米印製器皆類似於前在奈米印製層製程582中所述 20者。僅供說明之用,該等凹部654和654,,凸出細構656和 656’,凹下細構658,及壓印器凸部664等皆被以如同第& 圖的方式來示出。應請瞭解不同的尺寸和形狀亦可被使用 於第二奈米印製步驟中。例如,一利用可光固化材料例如 S-FIL Monomat AcOl來形成的印製層,可被使用一背壓為 23 200525736 0.25bai*的印製器以2牛頓之力和約15〇秒的伸展時間來壓 印。該S-FILMonomat AcOl可利用一例如 1000w的Hg_x^ 外線電弧燈的光源以I線輪射(gp 365nm)曝照約30秒(如第6j 圖所示的光子610’)而來固化。 5 自行校準的奈米儲存結構製法步驟594係被用來由對 應料層製成第二可定址線和切換線等。該製程594包括除去 當奈米印製時曝現於該切換層64〇之曝露區659中(見第敁 圖)的凹下細構658等(見第6j圖)。除掉該等凹下細構係可藉 任何適用於該壓印層之材料的濕或乾蝕刻法來完成。 φ 10 自行校準的奈米儲存結構製造步驟594亦包含第二可 疋址層製造程序,用來製成第二可定址層65〇,如第61圖所 不。在本實施例中,第二可定址層65〇亦形成一硬蝕刻罩。 第二可定址層650係在該等凹下細構已被除去之後,在該奈 米印製表面上沈積一金屬層而來形成 。例如,一薄紹、纽、 15鉑、鉻、鈦、鎢、金或鋼層皆可被沈積在該奈米印製表面 上 後續的面位去除法或選擇性化學|虫刻嗣可用來除掉 5亥印製層的凸出部份656和656,等(見第61及6m圖),而使沈 春 積在凸出部份656及656,頂上的可定址層材料能與沈積在 曝露區657中的金屬一起被除去,而僅留下所製成的第二可 2〇夂址線652等如第6m圖所示。又該等第二可定址線652亦可 形成一罩體,用來蝕刻先前被凸出細構所覆蓋的區域。其 所使用的選擇性化學蝕刻或高位去除法將取決於所用的印 製材料及硬蝕刻罩材料。在一變化實施例中,該第二可定 址層製造步驟亦可在切換層的製程59〇之後才來進行。在該 24 200525736 等實施例中,第二奈米印製程661會被製設在第二可定址層 650上。 5 10 15 20The self-calibrated nano rectifier component manufacturing process 584 can also include a cover removal process to remove the protruding fine structure (and 656 ', etc.) or the optional hard parts described above as shown in 6e # a6f_] Mask (not shown). Generally, the grass removal process can be made of any suitable body material or a dry engraving method for the use of the printed layer 660 (see the embodiment as an etching mask). The method used to remove the dirty 656 from the original materials, such as: gas nail burn, or oxygen electric radon, etc. can also be used in this process. For the use of this optional engraving) Real_'difficulty 'material of Zhu 21 200525736. For example, a wet money engraved with sulfur or sodium hydroxide can be used to engrav a hard surname with a surname. Also, the hood The volume removal process will expose the device structure surface 637, as shown in Figure 6f. The planarization layer manufacturing step 586 (see Figure 6g) will be used to deposit a planarizable dielectric layer 670 on the substrate. The surface of the exposed area of the material and covers the surface of the device structure 637. A variety of inorganic or polymer dielectrics can be used. For example, silicon dioxide deposited using plasma enhanced chemical vapor deposition (PECVD) can be used. Other materials such as silicon nitride, silicon oxynitride, polyimide, phenylbutyrate, and others Inorganic nitrides and oxides can also be used. In addition, other oxide oxide films such as ethyl tetraorthophosphate (TEOS) and its "spin coating, glass, < made by other techniques Glass, etc. can also be used. The planarization process 588 is used to planarize the dielectric layer 67 (see Figure 6h). For example, the dielectric layer planarization process 588 can be mechanically, impedance-etched, Or chemical mechanical method, etc. to form the substance 15 672 (see paragraph _).-'Surface switching layer manufacturing step 590 is used to make the switching layer 64. It is overlaid on the flat surface 672 of the device structure layer 634 and the dielectric layer ㈣. , As shown in Figure ^: Depending on the cross-bar memory device will be used, the switching layer or surplus = media layer _ can be made of a variety of materials, such as organic matter or polymer Change layers such as indium selenide, ferroelectric layers such as piezoelectric ceramics, or materials such as ceramics Polyethylene terephthalate 'silk formation (ie, anti-solubilization) layer, such as the second one = e3' doped polymer layer, such as polycarbonate doped with acceptor or donor molecules 9 'conductive polymer, such as polyethylene Oxygenated polystyrene continued, and two-layer monolayers such as thiol and Shi Xixuan composites are just some examples that can be used to make this = 22 200525736 tenths or switching layers. Depending on the materials used, Various manufacturing methods such as sputtering / youji, CVD, spin coating, langmuir-bio (jgett) deposition, and various methods that can be combined by themselves can be used to make the switching layer 640. The nano-printing step 592 is used to create the second printed layer 661, and 5 prints the desired structure or feature into this layer 661 (see Figures 6i to 61). As shown in FIG. 6i, the second printed layer 661 may be applied by any suitable technique, such as spin coating, vapor deposition, spray coating, or inkjet deposition used for the nano printed layer 582 described above. Please note that Figures 6j ~ 6n are rotated 90 degrees relative to Figures 6a ~ 6i ', but the structure disclosed in these drawings is not limited to these 90 degrees and 10 angles. The through-printing layer may be the same as or similar to that described in the nano-printing layer manufacturing process 582 described above, but other printing layer materials may be used. For example, the first printed layer 661 (see FIG. 6i) may be a spin-coated low-viscosity and photopolymerizable silicone solution. The second printed layer 661 may be any formable material. 15 The second nanoprinting step 592 also includes printing the desired structure or feature into the second print layer 661 (see Figure 6j). The second nano-printer 663 is pressed toward the printed layer 661 when the printed layer is flexible, and the concave fine structures 658 and the convex fine structures 656 and 656 are formed therein. The nanoprinting process and the nanoprinter are similar to those described previously in the nanoprinting process 582. For illustrative purposes only, the recesses 654 and 654, the protruding fine structures 656 and 656 ', the recessed fine structures 658, and the stamper protruding portions 664 are all shown in the same manner as in the & . Please understand that different sizes and shapes can also be used in the second nanoprinting step. For example, a printed layer formed using a photo-curable material such as S-FIL Monomat AcOl can be used with a printer with a back pressure of 23 200525736 0.25bai * with a force of 2 Newtons and an extension time of about 15 seconds. To imprint. The S-FILMonomat AcOl can be cured by exposing a light source of an Hg_x ^ external arc lamp, for example, 1000w with an I-line shot (gp 365nm) for about 30 seconds (as shown in the photon 610 'in FIG. 6j). 5 The self-calibrated nano storage structure manufacturing method step 594 is used to make a second addressable line and a switch line from the corresponding material layer. The process 594 includes removing the recessed fine structure 658 (see FIG. 6j) exposed in the exposed area 659 (see FIG. 敁) of the switching layer 64 when the nanometer is printed. Removal of these recessed fine structures can be accomplished by wet or dry etching of any material suitable for the imprint layer. The φ 10 self-calibrating nanometer storage structure manufacturing step 594 also includes a second addressable layer manufacturing process for making a second addressable layer 65, as shown in FIG. 61. In this embodiment, the second addressable layer 65 also forms a hard etch mask. The second addressable layer 650 is formed by depositing a metal layer on the nano-printed surface after the concave fine structures have been removed. For example, a thin layer of Shaoxing, New Zealand, 15 platinum, chromium, titanium, tungsten, gold or steel can be deposited on the nano-printed surface. Subsequent surface removal methods or selective chemistry | insect engraving can be used to remove The protruding portions 656 and 656 of the printed layer are removed, etc. (see Figures 61 and 6m), so that Shen Chunji is on the protruding portions 656 and 656, and the addressable layer material on the top can be deposited with the exposed area 657. The metals in it are removed together, leaving only the manufactured second addressable line 652 etc. as shown in FIG. 6m. The second addressable lines 652 can also form a cover for etching the area previously covered by the protruding fine structure. The selective chemical etching or high-level removal method used will depend on the printing material and hard etch mask material used. In a variant embodiment, the manufacturing process of the second addressable layer can also be performed after the process of switching the layer 590. In the embodiments such as 24 200525736, the second nano-printing process 661 is fabricated on the second addressable layer 650. 5 10 15 20
自行校準的奈米儲存結構製造步驟594亦包含蝕刻切 換層640及裝置結構線635和635,(見第6i圖所示)。該蝕刻製 程將會蝕刻未被第二可定址線652所保護的區域,如第6瓜 及6ri圖所示。該切換層64〇和裝置結構線635和635,的蝕刻 可利用任何適合於所用材料的濕或乾蝕刻法或組合方法來 完成。任何前述之蝕刻法僅為可用之多種蝕刻法的少數舉 例而已。該蝕刻製程會使儲存媒體線具有線寬651。該線寬 典型會小於75奈米。此外,該蝕刻製程亦會形成各裝置钟 構物636等,它們會沿各線的方向來自動對準於儲存媒體^ 641和第一定址線652,並將該自行對準結構保持於第一可 定址線632上。其實際線寬會取決於各種參數及該記憶裝置 所用的成分,例如用來製成第二可定址層652和切換層64〇 的材料,以及該記憶裝置的特定用途。The self-calibrating nanometer storage structure manufacturing step 594 also includes an etch switch layer 640 and device structure lines 635 and 635, (see FIG. 6i). This etching process will etch areas that are not protected by the second addressable line 652, as shown in Figures 6 and 6ri. The switching layer 64 and the device structure lines 635 and 635 'can be etched by any wet or dry etching method or a combination method suitable for the material used. Any of the foregoing etching methods are just a few examples of the variety of etching methods available. This etching process will cause the storage medium line to have a line width of 651. This line width is typically less than 75 nm. In addition, the etching process will also form various device clock structures 636, etc., which will automatically align with the storage medium ^ 641 and the first addressing line 652 along the directions of the lines, and keep the self-aligning structure at the first Addressable on line 632. The actual line width will depend on various parameters and the components used in the memory device, such as the materials used to make the second addressable layer 652 and the switching layer 64, and the specific use of the memory device.
一用求裂成本發明之一實施例的方法係被示贫 7a〜7h的截面圖中。在本實施例中,該基材720係為一矣 雜的石夕晶圓’並有-埋人的氧化物層726設在該石夕晶圓-埋設的氧化物層7 2 6會與設在該晶圓上的裝置電隔離。^ 石夕層722會被製設在埋入的氧化物層上方,然後生長㈣ 的蟲晶石夕層723 ’兩再生長η摻雜的蟲晶砍層724。該二石 石夕層723和724會形成-半導性二極體脑。在變 中’該等Ρ摻雜和η摻雜的蟲晶層亦可被相反設置。於4 中J等埋入的氧化物層726、本徵石夕層Μ2、ρ播雜的差 25 200525736 石夕層723、η摻雜的蠢晶石夕層724分別具有約l〇〇·、%·、 lOOrnn、150mn的厚度。其摻雜的濃度和厚度亦可改變來控 制各層的電特性。又,在其它實施例中,不同的多數蠢晶 層亦可被生成。例如,-n+4n++摻雜層亦可被成長於第以 5圖所示的η層頂上,來加強對切換或儲存媒體層(未示出)的 接觸特性。另-例則包含—埋人的氧化物/ρ+蟲晶層/ρ蠢晶 層/η磊晶層/η磊晶層等之薄膜疊層,用來形成整流結構。 又,分階而迴異的摻雜劑分佈之各種組合亦可被使用。在 此例中,各種磊晶技術譬如化學氣相沈積(cvd)包括 10 CVD、LP CVD及PE CVD ’或分子束蠢曰曰曰(ΜΒΕ)等皆可被 用來製成該等蠢晶層。播止或檢知層725會被製設在η推雜 的蠢晶石夕層724上,如第7b圖所示。在本例中,該播止層瓜 係為-使用傳統的化學氣相沈積設備來覆面沈積的氮化石夕 層任何月b充为k供終點檢知的材料皆可形成播止層725。 印製阻抗物760會被製設在該擋止層725上。在本實施 例中,該阻抗物760係為PMMA並係使用旋塗來製成。在變 化實施例中,任何上述的印製材料或沈積技術亦可被使 用。當該印製阻抗物76〇形成後,一奈米印製器會在該阻抗 物可撓曲的情況下壓向該阻抗物76〇。類似於第5和6圖中所 2〇述的印製方法,該印製器具有特徵細構等互補於要被形成 於阻抗物760上的形狀。在本實施例中,PMMA會被作為該 印製阻抗物,並會在旋塗之後接受後烘烤,俾由該基材表 面驅除過多的溶劑。該印製模嗣會被設成接觸該奈米印製 器中的印製阻抗物,並加熱至約185t約2〇分鐘,同時施加 26 200525736 約1250psi的壓力。在變化實施例中,該阻抗物可在約 1000〜1500psi的壓力下被加熱至180〜195°c約1〇〜25分鐘。 任何在奈米印製中所形成的凹下部份(見第6(:圖)如前所述 係可利用任何適用於該印製阻抗物760的濕或乾餘刻法來 5除掉。在本例中,一硬蝕刻罩會被使用,其係在該等凹下 細構被除去之後,沈積一薄熱蒸發的鉻層767來形成,如第 7c圖所示。在變化實施例中,各種沈積製程例如電子束蒸 發或化學氣相沈積法亦可使用。一高位去除法會被用來除 掉該印製阻抗物的殘留部份,包括沈積在印製層頂部上的 10 鉻,如第7c和7d圖所示。在高位去除製程之後留下的鉻声 767部份會形成硬蝕刻罩780如第7d圖所示。 一矽蝕刻劑會被用來蝕穿該氮化矽擋止層725,以及 η、P、本徵磊晶層724、723、722之未被該鉻硬蝕刻罩768 所覆蓋的區域,如第7e圖所示。在本例中,該姓刻製程合 15 被擋止於埋入的氧化物層726,其可供該蝕刻製程中所製成 之各整流線或結構物電隔離。該各層的姓刻可利用任何適 合所用之磊晶層材料的乾或濕蝕刻法或其組合方法而來進 行。在本例中,會使用一二步驟的乾蝕刻法。其第一姓刻 程序係在約lOmilliTorr的壓力下,使用Q丁VCFVAr/SFdhi 20 合物,分別以30/30/30/10標準立方厘米(sscm)的流量率來進 行。该弟二餘刻程序亦在約1 OmilliTorr的壓力下,使用一 Ar/He混合物以i〇/i〇sscn^〇流量率來進行。該蝕刻製程會 形成具有線寬731的第一可定址線732等。該線寬731典型係 小於75nm,而在本例中,該線寬731係約為30nm。在本例 27 200525736 中,η摻雜的磊晶矽層724會形成裝置結構層734,其在蝕刻 後會自行對準於第一可定址線732,並亦具有約3〇nm的線 寬,如第7e圖所示。在本例中,鉻硬蝕刻罩768會使用一包 含鈽銨氮化物(CeW^MCO3)6)與過氣酸(Hcl〇4)的濕蝕刻 5 劑,及大約40分鐘的餘刻時間來除去。 在本例中,該平坦化製程乃包括在矽基材72〇上製成二 氣化矽可平坦化層770至一厚度,其係大於該等磊晶矽層和 在上述飯刻製程形成於各線路間之區域中所填入的氮化石夕 擋止層等的組合厚度,如第7f圖所示。在本例中,使用四 10乙基正矽酸鹽前身質的低溫(約400°C)PECVD,會被用來製 成該二氧化矽層至約2微米的厚度。在該可平坦化層沈積完 成後,一化學機械平坦化(CMP)製程會被用來形成平坦的二 氧化矽表面771如第7g圖所示。在本例中,一反應離子蝕刻 法會被用來進一步蝕刻並除去上層的二氧化矽和氮化矽, 15而在裝置結構層734表面上形成一平坦表面772,如第几圖 所不。該反應離子蝕刻法會在約12〇〇milliTorr壓力下,使用A method using an embodiment of the present invention is shown in cross-sections 7a to 7h. In this embodiment, the substrate 720 is a doped Shi Xi wafer, and a buried oxide layer 726 is provided on the Shi Xi wafer. The buried oxide layer 7 2 6 The devices on the wafer are electrically isolated. ^ The Shixi layer 722 is fabricated on top of the buried oxide layer, and then a pupal wormwood layer 723 is grown ′ ′ two regrown η-doped worm crystal cut layers 724. The two stone stone layers 723 and 724 will form a -semiconducting diode brain. In the transformation, the P-doped and η-doped worm crystal layers can also be arranged oppositely. The oxide layer 726, intrinsic stone layer M2, p, etc. embedded in 4 in 25, etc. 25 200525736 stone layer 723, n-doped stupid stone layer 724 have about 100, % ·, LOOrnn, 150mn thickness. The doping concentration and thickness can also be changed to control the electrical characteristics of the layers. Also, in other embodiments, different majority stupid crystal layers may be formed. For example, the -n + 4n ++ doped layer can also be grown on top of the η layer shown in Fig. 5 to enhance the contact characteristics to the switching or storage medium layer (not shown). Another example is a thin-film stack of buried oxide / ρ + worm crystal layer / ρ epitaxial layer / η epitaxial layer / η epitaxial layer, etc., to form a rectifying structure. In addition, various combinations of stepped and different dopant distributions can be used. In this example, various epitaxial techniques such as chemical vapor deposition (cvd) including 10 CVD, LP CVD and PE CVD 'or molecular beam stupid (MBE) can be used to make such stupid layers. . The stop or detection layer 725 will be fabricated on the n-doped stupid evening layer 724, as shown in Fig. 7b. In this example, the broadcast layer is a nitride layer that is deposited on the surface using a conventional chemical vapor deposition device. Any layer b filled with k for endpoint detection can form the broadcast layer 725. A printed resistor 760 is formed on the blocking layer 725. In this embodiment, the resistor 760 is PMMA and is made using spin coating. In alternative embodiments, any of the printing materials or deposition techniques described above may also be used. When the printed resistor 76 is formed, a nano-printer will press the resistor 76 while the resistor is flexible. Similar to the printing method described in Figs. 5 and 6, the printer has a feature texture and the like complementary to the shape to be formed on the impedance object 760. In this embodiment, PMMA will be used as the printed resistive material, and will be baked after acceptance after spin coating, and the excessive solvent will be driven out from the surface of the substrate. The printed mold is set to contact the printed resistor in the nano-printer, and is heated to about 185t for about 20 minutes, while applying a pressure of about 1250 psi. In a variant embodiment, the resistor can be heated to 180-195 ° C for about 10-25 minutes at a pressure of about 1000-1500 psi. Any recessed portion formed in the nanoprinting (see Figure 6 (: figure)) can be removed by any wet or dry method suitable for the printed resistor 760 as described above. In this example, a hard etch mask will be used, which is formed by depositing a thin thermally evaporated chromium layer 767 after the concave texture is removed, as shown in Figure 7c. In a modified embodiment Various deposition processes such as electron beam evaporation or chemical vapor deposition can also be used. A high-level removal method will be used to remove the residue of the printed impedance, including 10 chromium deposited on top of the printed layer, As shown in Figures 7c and 7d. The chrome 767 portion left after the high-level removal process will form a hard etch mask 780 as shown in Figure 7d. A silicon etchant will be used to etch through the silicon nitride barrier. The stop layer 725 and the areas of the η, P, and intrinsic epitaxial layers 724, 723, and 722 that are not covered by the chrome hard etch mask 768 are shown in FIG. 7e. In this example, the last name engraving process is appropriate. 15 Stopped in the buried oxide layer 726, which can be used to electrically isolate the rectification lines or structures made in the etching process. The layers The last name engraving can be performed using any dry or wet etching method or combination of methods suitable for the epitaxial layer material used. In this example, a one or two step dry etching method is used. The first last name engraving procedure is Under the pressure of about 10milliTorr, the Q but VCFVAr / SFdhi 20 compound was used at a flow rate of 30/30/30/10 standard cubic centimeters (sscm). The second-second procedure was also performed at a pressure of about 1 OmilliTorr Next, an Ar / He mixture is used at a flow rate of i0 / i〇sscn ^ 〇. The etching process will form a first addressable line 732 with a line width 731, etc. The line width 731 is typically less than 75nm, and In this example, the line width 731 is about 30 nm. In this example 27 200525736, the n-doped epitaxial silicon layer 724 will form a device structure layer 734, which will align itself to the first addressable address after etching. Line 732, and also has a line width of about 30 nm, as shown in Figure 7e. In this example, the chrome hard etch mask 768 uses a sulfonium ammonium nitride (CeW ^ MCO3) 6) and peroxy acid (HclO4) wet etching 5 agent, and the remaining time of about 40 minutes to remove. In this example, the planarization process includes making two gasified silicon planarizable layers 770 to a thickness on a silicon substrate 72, which is larger than the epitaxial silicon layers and formed in the above-mentioned rice-engraving process. The combined thickness of the nitride stone blocking layer and the like filled in the area between the lines is shown in FIG. 7f. In this example, a low temperature (about 400 ° C) PECVD using a tetra 10 ethyl orthosilicate precursor will be used to form the silicon dioxide layer to a thickness of about 2 microns. After the planarizable layer is deposited, a chemical mechanical planarization (CMP) process is used to form a flat silicon dioxide surface 771 as shown in FIG. 7g. In this example, a reactive ion etching method is used to further etch and remove the upper layer of silicon dioxide and silicon nitride, 15 to form a flat surface 772 on the surface of the device structure layer 734, as shown in the first few figures. The reactive ion etching method is used at a pressure of about 1200 milliTorr.
Ar和CF4的混合物,分別以45〇及5〇sccm的流量率,來達成 每秒約60人的氧化矽蝕刻速率。在本例中,該等儲存媒體線 和第二可定址線會使用類似於前於第6圖中所述的方法來 2〇 製成。 【圖式簡單說^明】 第la圖為本發明一實施例之記憶裝置的立體圖。 第lb圖為第1 a圖的記憶裝置之一元件的截面圖。 第2圖為本發明一可行實施例的記憶裝置之一元件的 28 200525736 截面圖。 第3圖為本發明一可行實施例的記憶裝置之一元件的 截面圖。 第4圖為本發明一可行實施例的記憶裝置之一元件的 5 截面圖。 第5圖為一用來製造本發明實施例之記憶裝置的製法 流程圖。 第6a〜6η圖係用來製造本發明實施例之不同製程的截 面圖。 10 第7a〜7h圖係用來製造本發明實施例之不同製程的截 面圖。 【主要元件符號說明】 148, 248, 348, 448···切換介面 151,251,351,451〜線寬 152,252,352,452,652···第二可 定址線 226, 326, 670…介電層 322, 323, 324···半導體層 327…蟲晶層 342,641···儲存媒體線 433···絕緣層 580〜594·.·各製造步驟 600···記憶裝置 610…光子 100…交叉桿記憶結構 101,201,301,401…邏輯胞元 102, 202, 302,402…整流元件 104,204,304,404…儲存結構物 120,220,320,420,620,720〜基材 131,631,731 …線寬 132, 232, 332, 432, 632,732··· 第一可定址線 136, 236, 336, 436, 635, 636··· 裝置結構物 138, 238, 338···整流介面 142, 242, 342, 442…切換線 29 200525736 630···第一可定址層 672,771,772…平坦表面 634, 734···裝置結構層 722…本徵石夕層 637···裝置結構表面 723 "·ρ磊晶矽層 656···凸出細構 724···η磊晶矽層 657,659…曝露區 725…擋止層 658···凹下細構 726…氧化物層 660, 661···印製層 760…印製阻抗物 662, 663…奈米印製器 767…硬蝕刻罩層 664···凸部 768…硬蝕刻罩 640···切換層 770…平坦化層 650···第二可定址層 654···凹部 30The mixture of Ar and CF4 achieves a silicon oxide etch rate of about 60 people per second at flow rates of 45 and 50 sccm, respectively. In this example, the storage media line and the second addressable line are fabricated using a method similar to that described previously in FIG. 6. [Brief Description of Drawings] Figure 1a is a perspective view of a memory device according to an embodiment of the present invention. Figure lb is a cross-sectional view of one element of the memory device of Figure 1a. FIG. 2 is a cross-sectional view of a component of a memory device according to a possible embodiment of the present invention. FIG. 3 is a cross-sectional view of a component of a memory device according to a possible embodiment of the present invention. FIG. 4 is a cross-sectional view of a component of a memory device according to a possible embodiment of the present invention. Fig. 5 is a flowchart of a method for manufacturing a memory device according to an embodiment of the present invention. Figures 6a to 6η are cross-sectional views of different processes used to make the embodiments of the present invention. 10 Figures 7a to 7h are cross-sectional views of different processes used to manufacture the embodiments of the present invention. [Description of main component symbols] 148, 248, 348, 448 ... Switching interface 151, 251, 351, 451 to line width 152, 252, 352, 452, 652 ... The second addressable line 226, 326, 670 ... Dielectric layer 322, 323, 324 ... Semiconductor layer 327 ... Worm crystal layer 342, 641 ... Storage medium line 433 ... Insulation layer 580 to 594 ... Each manufacturing step 600 ... Memory device 610 ... Photon 100 ... Crossbar memory structure 101, 201, 301, 401 ... logic cells 102, 202, 302, 402 ... rectifier elements 104, 204, 304, 404 ... storage structures 120, 220, 320, 420, 620, 720 to substrates 131, 631, 731 ... line widths 132, 232, 332, 432, 632, 732 ... · first addressable lines 136, 236 , 336, 436, 635, 636 ... Device structure 138, 238, 338 ... Rectifying interface 142, 242, 342, 442 ... Switching line 29 200525736 630 ... First addressable layer 672,771,772 ... Flat surface 634 , 734 ... Device structure layer 722 ... Intrinsic stone layer 637 ... Device structure surface 723 " ρ epitaxial silicon layer 656 ... Protruding fine structure 724 ... n epitaxial silicon layer 657,659 ... Exposed area 725 ... stop layer 658 ... depressed fine structure 726 ... oxide layer 660, 661 ... Printed layer 760 ... Printed resistors 662, 663 ... Nanoprinter 767 ... Hard etch cover layer 664 ... Protrusion 768 ... Hard etch cover 640 ... Switching layer 770 ... Planarization layer 650 ... · Second addressable layer 654 ··· Recess 30
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/765,799 US7034332B2 (en) | 2004-01-27 | 2004-01-27 | Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200525736A true TW200525736A (en) | 2005-08-01 |
TWI338360B TWI338360B (en) | 2011-03-01 |
Family
ID=34654322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW093121887A TWI338360B (en) | 2004-01-27 | 2004-07-22 | Nonometer-scale memory device utilizing self-aligned rectifying elements and method of making |
Country Status (4)
Country | Link |
---|---|
US (2) | US7034332B2 (en) |
EP (1) | EP1560268A3 (en) |
JP (1) | JP2005217402A (en) |
TW (1) | TWI338360B (en) |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050158950A1 (en) * | 2002-12-19 | 2005-07-21 | Matrix Semiconductor, Inc. | Non-volatile memory cell comprising a dielectric layer and a phase change material in series |
JP2005136071A (en) * | 2003-10-29 | 2005-05-26 | Seiko Epson Corp | Cross-point type ferroelectric memory |
JP2005223268A (en) * | 2004-02-09 | 2005-08-18 | Seiko Epson Corp | Thin film transistor manufacturing method, display manufacturing method, and display |
US7098068B2 (en) * | 2004-03-10 | 2006-08-29 | Micron Technology, Inc. | Method of forming a chalcogenide material containing device |
US7038231B2 (en) * | 2004-04-30 | 2006-05-02 | International Business Machines Corporation | Non-planarized, self-aligned, non-volatile phase-change memory array and method of formation |
US7374174B2 (en) * | 2004-12-22 | 2008-05-20 | Micron Technology, Inc. | Small electrode for resistance variable devices |
US7517211B2 (en) * | 2005-12-21 | 2009-04-14 | Asml Netherlands B.V. | Imprint lithography |
US7362608B2 (en) * | 2006-03-02 | 2008-04-22 | Infineon Technologies Ag | Phase change memory fabricated using self-aligned processing |
JP2007324314A (en) * | 2006-05-31 | 2007-12-13 | Univ Of Yamanashi | Memory device, data recording method, and IC tag |
US7763932B2 (en) * | 2006-06-29 | 2010-07-27 | International Business Machines Corporation | Multi-bit high-density memory device and architecture and method of fabricating multi-bit high-density memory devices |
US7501648B2 (en) * | 2006-08-16 | 2009-03-10 | International Business Machines Corporation | Phase change materials and associated memory devices |
WO2008039372A2 (en) * | 2006-09-22 | 2008-04-03 | Carnegie Mellon University | Assembling and applying nano-electro-mechanical systems |
US8766224B2 (en) | 2006-10-03 | 2014-07-01 | Hewlett-Packard Development Company, L.P. | Electrically actuated switch |
JP4577695B2 (en) * | 2006-11-07 | 2010-11-10 | エルピーダメモリ株式会社 | Semiconductor memory device and manufacturing method of semiconductor memory device |
US7521372B2 (en) * | 2006-12-29 | 2009-04-21 | Industrial Technology Research Institute | Method of fabrication of phase-change memory |
US8710731B2 (en) * | 2007-01-24 | 2014-04-29 | Sharp Kabushiki Kaisha | Method of patterning color conversion layer and method of manufacturing organic EL display using the patterning method |
US7382647B1 (en) | 2007-02-27 | 2008-06-03 | International Business Machines Corporation | Rectifying element for a crosspoint based memory array architecture |
JP2008235403A (en) * | 2007-03-19 | 2008-10-02 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
US20080265234A1 (en) * | 2007-04-30 | 2008-10-30 | Breitwisch Matthew J | Method of Forming Phase Change Memory Cell With Reduced Switchable Volume |
KR100869235B1 (en) * | 2007-05-25 | 2008-11-18 | 삼성전자주식회사 | Manufacturing method of semiconductor diode and manufacturing method of phase change memory device using same |
US7929335B2 (en) * | 2007-06-11 | 2011-04-19 | International Business Machines Corporation | Use of a symmetric resistive memory material as a diode to drive symmetric or asymmetric resistive memory |
JP5394619B2 (en) * | 2007-07-04 | 2014-01-22 | 丸善石油化学株式会社 | Thermal imprint method |
US7795132B2 (en) * | 2007-07-31 | 2010-09-14 | Molecular Imprints, Inc. | Self-aligned cross-point memory fabrication |
TWI382454B (en) * | 2007-07-31 | 2013-01-11 | Molecular Imprints Inc | Self-aligned cross-point memory fabrication |
US8253136B2 (en) | 2007-10-30 | 2012-08-28 | Panasonic Corporation | Nonvolatile semiconductor memory device and manufacturing method thereof |
US8345462B2 (en) * | 2007-12-05 | 2013-01-01 | Macronix International Co., Ltd. | Resistive memory and method for manufacturing the same |
KR101343362B1 (en) | 2007-12-20 | 2013-12-20 | 삼성전자주식회사 | Method of manufacturing a memory unit, memory unit manufactured by the same, method of manufacturing a memory device and memory device manufactured by the same |
CN101621037B (en) * | 2008-07-03 | 2011-10-05 | 中芯国际集成电路制造(上海)有限公司 | TFT SAS memory cell structure |
US8445884B2 (en) * | 2009-01-15 | 2013-05-21 | Hewlett-Packard Development Company, L.P. | Memristor with nanostructure electrodes |
KR101089396B1 (en) | 2009-06-02 | 2011-12-07 | 고려대학교 산학협력단 | Method of manufacturing a crossover phase converting device using a three-dimensional imprint and a lift-off process and a crossover phase converting device manufactured by the method |
TW201104903A (en) * | 2009-07-27 | 2011-02-01 | Solapoint Corp | Method for manufacturing photodiode device |
WO2011016794A2 (en) * | 2009-07-28 | 2011-02-10 | Hewlett-Packard Development Company, L.P. | Memristors with asymmetric electrodes |
JP2011222952A (en) * | 2010-03-24 | 2011-11-04 | Toshiba Corp | Resistance change memory |
JP5491941B2 (en) * | 2010-04-21 | 2014-05-14 | 株式会社東芝 | Nonvolatile memory device |
US8542515B2 (en) | 2010-04-30 | 2013-09-24 | Hewlett-Packard Development Company, L.P. | Connection and addressing of multi-plane crosspoint devices |
US9012307B2 (en) * | 2010-07-13 | 2015-04-21 | Crossbar, Inc. | Two terminal resistive switching device structure and method of fabricating |
US8946046B1 (en) | 2012-05-02 | 2015-02-03 | Crossbar, Inc. | Guided path for forming a conductive filament in RRAM |
US8884261B2 (en) | 2010-08-23 | 2014-11-11 | Crossbar, Inc. | Device switching using layered device structure |
US8569172B1 (en) | 2012-08-14 | 2013-10-29 | Crossbar, Inc. | Noble metal/non-noble metal electrode for RRAM applications |
EP2631932A4 (en) | 2010-10-20 | 2014-05-14 | Tokuyama Corp | PHOTOCURABLE NANO-PRINTING COMPOSITION, METHOD OF FORMING PATTERNS USING THE COMPOSITION, AND NANO-PRINTING REPLICA MOLD COMPRISING A CURED COMPOSITION PRODUCT |
JP5426596B2 (en) * | 2011-03-24 | 2014-02-26 | 株式会社東芝 | Nonvolatile semiconductor memory device |
JPWO2012133187A1 (en) * | 2011-03-25 | 2014-07-28 | Hoya株式会社 | Manufacturing method of nanoimprint mold and substrate manufacturing method |
US8946669B1 (en) | 2012-04-05 | 2015-02-03 | Crossbar, Inc. | Resistive memory device and fabrication methods |
US9627443B2 (en) | 2011-06-30 | 2017-04-18 | Crossbar, Inc. | Three-dimensional oblique two-terminal memory with enhanced electric field |
US8994489B2 (en) | 2011-10-19 | 2015-03-31 | Micron Technology, Inc. | Fuses, and methods of forming and using fuses |
US9252188B2 (en) | 2011-11-17 | 2016-02-02 | Micron Technology, Inc. | Methods of forming memory cells |
US8723155B2 (en) | 2011-11-17 | 2014-05-13 | Micron Technology, Inc. | Memory cells and integrated devices |
US9685608B2 (en) | 2012-04-13 | 2017-06-20 | Crossbar, Inc. | Reduced diffusion in metal electrode for two-terminal memory |
US9136467B2 (en) | 2012-04-30 | 2015-09-15 | Micron Technology, Inc. | Phase change memory cells and methods of forming phase change memory cells |
CN103579237A (en) * | 2012-08-10 | 2014-02-12 | 中国科学院微电子研究所 | Memory device |
US9741765B1 (en) | 2012-08-14 | 2017-08-22 | Crossbar, Inc. | Monolithically integrated resistive memory using integrated-circuit foundry compatible processes |
US9553262B2 (en) | 2013-02-07 | 2017-01-24 | Micron Technology, Inc. | Arrays of memory cells and methods of forming an array of memory cells |
US8969843B2 (en) | 2013-02-21 | 2015-03-03 | Kabushiki Kaisha Toshiba | Memory device |
KR102043488B1 (en) | 2013-03-14 | 2019-11-11 | 사우디 베이식 인더스트리즈 코포레이션 | Ferroelectric capacitor with improved fatigue and breakdown properties |
US9281345B2 (en) * | 2013-07-09 | 2016-03-08 | Kabushiki Kaisha Toshiba | Resistance change type memory device with three-dimensional structure |
US10290801B2 (en) | 2014-02-07 | 2019-05-14 | Crossbar, Inc. | Scalable silicon based resistive memory device |
US9881971B2 (en) | 2014-04-01 | 2018-01-30 | Micron Technology, Inc. | Memory arrays |
US9343506B2 (en) | 2014-06-04 | 2016-05-17 | Micron Technology, Inc. | Memory arrays with polygonal memory cells having specific sidewall orientations |
US10256405B2 (en) | 2017-04-05 | 2019-04-09 | International Business Machines Corporation | Methods for fabricating artificial neural networks (ANN) based on doped semiconductor elements |
US11264428B2 (en) | 2017-09-29 | 2022-03-01 | Intel Corporation | Self-aligned embedded phase change memory cell having a fin shaped bottom electrode |
US11793093B2 (en) | 2017-09-29 | 2023-10-17 | Crossbar, Inc. | Resistive random access memory and fabrication techniques |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5962863A (en) | 1993-09-09 | 1999-10-05 | The United States Of America As Represented By The Secretary Of The Navy | Laterally disposed nanostructures of silicon on an insulating substrate |
US5535156A (en) | 1994-05-05 | 1996-07-09 | California Institute Of Technology | Transistorless, multistable current-mode memory cells and memory arrays and methods of reading and writing to the same |
US5772905A (en) | 1995-11-15 | 1998-06-30 | Regents Of The University Of Minnesota | Nanoimprint lithography |
NO972803D0 (en) | 1997-06-17 | 1997-06-17 | Opticom As | Electrically addressable logic device, method of electrically addressing the same and use of device and method |
US6180571B1 (en) * | 1997-07-28 | 2001-01-30 | Monsanto Company | Fluid loss control additives and subterranean treatment fluids containing the same |
US6483736B2 (en) | 1998-11-16 | 2002-11-19 | Matrix Semiconductor, Inc. | Vertically stacked field programmable nonvolatile memory and method of fabrication |
EP1003078A3 (en) | 1998-11-17 | 2001-11-07 | Corning Incorporated | Replicating a nanoscale pattern |
US6459095B1 (en) | 1999-03-29 | 2002-10-01 | Hewlett-Packard Company | Chemically synthesized and assembled electronics devices |
TW428755U (en) * | 1999-06-03 | 2001-04-01 | Shen Ming Shiang | Fingerprint identification IC card |
US6208553B1 (en) | 1999-07-01 | 2001-03-27 | The Regents Of The University Of California | High density non-volatile memory device incorporating thiol-derivatized porphyrins |
DE60044972D1 (en) | 1999-07-02 | 2010-10-28 | Harvard College | NANOSCOPIC WIRE CONTAINING ARRANGEMENT, LOGISC |
US6190929B1 (en) | 1999-07-23 | 2001-02-20 | Micron Technology, Inc. | Methods of forming semiconductor devices and methods of forming field emission displays |
US6165911A (en) | 1999-12-29 | 2000-12-26 | Calveley; Peter Braden | Method of patterning a metal layer |
US6272038B1 (en) | 2000-01-14 | 2001-08-07 | North Carolina State University | High-density non-volatile memory devices incorporating thiol-derivatized porphyrin trimers |
US6248674B1 (en) | 2000-02-02 | 2001-06-19 | Hewlett-Packard Company | Method of aligning nanowires |
US6432740B1 (en) * | 2001-06-28 | 2002-08-13 | Hewlett-Packard Company | Fabrication of molecular electronic circuit by imprinting |
US6911682B2 (en) | 2001-12-28 | 2005-06-28 | Nantero, Inc. | Electromechanical three-trace junction devices |
US6574130B2 (en) | 2001-07-25 | 2003-06-03 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US6784028B2 (en) | 2001-12-28 | 2004-08-31 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
US6579760B1 (en) | 2002-03-28 | 2003-06-17 | Macronix International Co., Ltd. | Self-aligned, programmable phase change memory |
US6670631B2 (en) * | 2002-05-20 | 2003-12-30 | Hewlett-Packard Development Company, L.P. | Low-forward-voltage molecular rectifier |
US6952043B2 (en) | 2002-06-27 | 2005-10-04 | Matrix Semiconductor, Inc. | Electrically isolated pillars in active devices |
US6762094B2 (en) * | 2002-09-27 | 2004-07-13 | Hewlett-Packard Development Company, L.P. | Nanometer-scale semiconductor devices and method of making |
-
2004
- 2004-01-27 US US10/765,799 patent/US7034332B2/en not_active Expired - Fee Related
- 2004-07-22 EP EP04017407A patent/EP1560268A3/en not_active Withdrawn
- 2004-07-22 TW TW093121887A patent/TWI338360B/en not_active IP Right Cessation
-
2005
- 2005-01-20 JP JP2005012672A patent/JP2005217402A/en active Pending
-
2006
- 2006-01-12 US US11/331,697 patent/US7335579B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20060128129A1 (en) | 2006-06-15 |
JP2005217402A (en) | 2005-08-11 |
US7335579B2 (en) | 2008-02-26 |
EP1560268A3 (en) | 2009-03-04 |
TWI338360B (en) | 2011-03-01 |
US7034332B2 (en) | 2006-04-25 |
US20050162881A1 (en) | 2005-07-28 |
EP1560268A2 (en) | 2005-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200525736A (en) | Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making | |
US6517995B1 (en) | Fabrication of finely featured devices by liquid embossing | |
AU2006255487A1 (en) | A patterning process | |
CN108461622B (en) | Method for manufacturing piezoelectric sensor and piezoelectric sensor using the same | |
TW200908091A (en) | Pitch multiplication using self-assembling materials | |
KR20060017532A (en) | Nonvolatile Memory Devices with Floating Gates Containing Semiconductor Nanocrystals | |
JP2004523881A (en) | Manufacture of semiconductor devices | |
CN108417574B (en) | Fabrication method of SOI-based ferroelectric memory | |
WO2012126186A1 (en) | Resistance variable memory and fabricating method thereof | |
JP3664467B2 (en) | Manufacturing method of single transistor ferroelectric memory cell using chemical mechanical polishing | |
US10515903B2 (en) | Selective CVD alignment-mark topography assist for non-volatile memory | |
US6946336B2 (en) | Method of making a nanoscale electronic device | |
TW515088B (en) | Semiconductor device and method of manufacturing the same | |
JP4431340B2 (en) | Method for forming a nanoscale semiconductor junction | |
TWI227516B (en) | Nano-electronic devices using discrete exposure method | |
KR100545151B1 (en) | Phase change memory device and manufacturing method thereof | |
KR20070056182A (en) | Nano pattern formation method and manufacturing method of thin film transistor and liquid crystal display device using same | |
US20070034909A1 (en) | Nanometer-scale semiconductor devices and method of making | |
CN117438376B (en) | Complementary field effect transistor based on two-dimensional material and preparation method thereof | |
CN105742491B (en) | A kind of plane Nonvolatile resistance variation memory and preparation method thereof | |
TWI274401B (en) | Method of forming memory cell, memory cell and an array of memory cells | |
CN112838164A (en) | A self-aligned patterning method for source-drain contact metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |