TWI382454B - Self-aligned cross-point memory fabrication - Google Patents
Self-aligned cross-point memory fabrication Download PDFInfo
- Publication number
- TWI382454B TWI382454B TW97129012A TW97129012A TWI382454B TW I382454 B TWI382454 B TW I382454B TW 97129012 A TW97129012 A TW 97129012A TW 97129012 A TW97129012 A TW 97129012A TW I382454 B TWI382454 B TW I382454B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- channels
- etching
- multilayer structure
- dielectric
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
本申請案主張申請於2007年7月31日之美國臨時申請案第60/952,996號案及申請於2007年12月28日之美國臨時申請案第61/017,242號案之優先權之利益。兩個申請案之全部內容都在此以參照方式全部被併入本文。This application claims the benefit of priority to the U.S. Provisional Application Serial No. 60/952,996, filed on July 31, 2007, and to the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the present invention. The entire contents of both of the applications are hereby incorporated by reference in their entirety.
本發明領域大體上是關於半導體製造技術。尤其,本發明是針對製造一交叉點記憶體陣列。The field of the invention relates generally to semiconductor fabrication techniques. In particular, the present invention is directed to fabricating a cross point memory array.
奈米製造技術涉及例如具有奈米級或者更小量級之特徵的非常小的結構製造技術。在奈米製造技術中已具有一相當大的影響的一個領域是積體電路的製程。因為半導體製程工業不斷爭取更高的生產量,同時增加在一基體上形成的單位面積的電路,所以奈米製造技術變得越來越重要。奈米製造技術提供較大的製程控制,同時允許所形成之結構的最小特徵尺寸愈來愈縮減。奈米技術已經被使用的其他發展領域包括生物技術、光學技術、機械系統及類似的領域。Nanofabrication techniques involve, for example, very small structural fabrication techniques with features on the nanometer scale or less. One area that has had a considerable impact in nanofabrication technology is the process of integrated circuits. Nano manufacturing technology is becoming more and more important as the semiconductor process industry continues to strive for higher throughput while increasing the number of circuits per unit area formed on a substrate. Nanofabrication technology provides greater process control while allowing the minimum feature size of the resulting structure to shrink. Other areas of development in which nanotechnology has been used include biotechnology, optical technology, mechanical systems, and the like.
一示範性奈米製造技術一般是指壓模微影術。示範性壓模微影術製程在許多公開案中被詳細地描述,例如美國專利申請公開案2004/0065976及2004/0065252及美國專利 第6,936,194號案,這些都以參照方式被併入本文。An exemplary nanofabrication technique generally refers to compression molding lithography. Exemplary compression lithography processes are described in detail in a number of publications, such as U.S. Patent Application Publication Nos. 2004/0065976 and 2004/0065252, and U.S. Patents. In case No. 6,936,194, these are incorporated herein by reference.
在上述美國專利申請公開案及美國專利的每一個中所揭露的該壓模微影術技術包括一可聚合層中之一凸紋圖案的形成及將相對應於該凸紋圖案的一圖案轉移至下面的基體。該基體可以位在一平台上以獲得一期望的位置以促進其圖案化。藉由存在於一模具與該基體間之一可成形液體,該模具與該基體分離。該液體被固化以形成具有一圖案被記錄於其中的一已圖案化層,其和與該液體相接觸之該模具的表面之形狀一致。然後該模具與該已圖案化層分開,藉此該模具與該基體被分離。然後,該基體及該已圖案化層經歷將相對應於該已圖案化層之一凸紋圖像轉移至該基體之製程。The stamper lithography technique disclosed in each of the above-mentioned U.S. Patent Application Publications and U.S. Patent includes the formation of a relief pattern in an polymerizable layer and a pattern transfer corresponding to the relief pattern. To the base below. The substrate can be positioned on a platform to achieve a desired location to facilitate its patterning. The mold is separated from the substrate by forming a liquid that is present between a mold and the substrate. The liquid is cured to form a patterned layer having a pattern recorded therein that conforms to the shape of the surface of the mold in contact with the liquid. The mold is then separated from the patterned layer whereby the mold is separated from the substrate. The substrate and the patterned layer then undergo a process of transferring a relief image corresponding to one of the patterned layers to the substrate.
依據本發明之一實施例,係特地提出一種用於製造一記憶體陣列之一交叉點記憶體元件之製程,其包含以下步驟:對一包括一基體及一第一抗蝕材料層的複合多層結構應用一第一微影術步驟,藉此多個第一通道的一圖案在該第一抗蝕材料層中被形成;應用一第一系列蝕刻及沉積步驟以在該等第一通道內的該基體之一區域上形成多個第一導體;應用一系列沉積步驟以使用一電介質材料填充該等多個第一通道且在該電介質材料上形成一第二抗蝕材料層從而形成一已修改的複合多層結構;對該已修改的複合多層結構應用一第二微影術步驟,藉此被配置在該等多個第一通道之上且與其等正交的多個第二通道的一圖案在該第 二抗蝕材料中被形成;應用一第二系列蝕刻及沉積步驟以形成該等多個第二通道及使該等多個第一導體之暴露在該等第二通道中之部分電連接的多個連接體;及應用一第三系列蝕刻及沉積步驟以在該等多個第二通道內形成連接該等連接體的多個第二導體。According to an embodiment of the present invention, a process for fabricating a cross-point memory element of a memory array is specifically provided, comprising the steps of: a composite multilayer comprising a substrate and a first resist material layer The structure applies a first lithography step whereby a pattern of the plurality of first channels is formed in the first layer of resist material; applying a first series of etching and deposition steps to be within the first channels Forming a plurality of first conductors on a region of the substrate; applying a series of deposition steps to fill the plurality of first vias with a dielectric material and forming a second resist material layer on the dielectric material to form a modified a composite multilayer structure; applying a second lithography step to the modified composite multilayer structure, whereby a pattern of a plurality of second channels disposed on the plurality of first channels and orthogonal thereto In the first Formed in a second resist material; applying a second series of etching and deposition steps to form the plurality of second vias and electrically interconnecting portions of the plurality of first conductors exposed in the second vias And a third series of etching and deposition steps to form a plurality of second conductors connecting the connectors in the plurality of second channels.
第1圖是一實施例中的被堆疊的材料層的一截面圖;第2-3圖是在圖案化及蝕刻第1圖的該等層之後的截面圖;第4-7圖是第2圖的該結構在沉積一電介質層之後的截面圖;第8-11圖是根據一實施例的一多層結構的俯視圖及截面圖;第12-16圖是根據一實施例的一多層結構的俯視圖及截面圖;第17-21圖說明根據一實施例的一多層結構的一俯視圖;第22A圖根據另一實施例說明一多層結構;第22B圖是第22A圖的該實施例的該多層結構的一俯視圖;第23圖是沿著截面線M1 -M1 ’截取如第22B圖中所示多層結構的一截面圖;第24-25圖根據一實施例說明關於製造下導體條的一進一步實施例;第26-27圖說明關於形成下導體的又一實施例;第28-29圖根據一實施例說明該結構的進一步製程的視圖; 第30-32圖顯示根據一實施例的一多層結構的一俯視圖及截面圖;第33-35圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第36-40圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第41-45圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第46-50圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第51-55圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第56-60圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;及第61-62圖是可透過這裏的實施例來製造的一交叉點記憶體結構的視圖。1 is a cross-sectional view of a stacked material layer in an embodiment; FIGS. 2-3 are cross-sectional views after patterning and etching the layers of FIG. 1; FIGS. 4-7 are second A cross-sectional view of the structure of the structure after depositing a dielectric layer; FIGS. 8-11 are top and cross-sectional views of a multilayer structure according to an embodiment; and FIGS. 12-16 are a multilayer structure according to an embodiment. Top view and cross-sectional view; FIGS. 17-21 illustrate a top view of a multilayer structure according to an embodiment; FIG. 22A illustrates a multilayer structure according to another embodiment; and FIG. 22B is a view of the embodiment of FIG. 22A a top view of the multilayer structure; Fig. 23 is a cross-sectional view of the multilayer structure as shown in Fig. 22B taken along section line M 1 - M 1 '; and Figs. 24-25 illustrate A further embodiment of a conductor strip; Figures 26-27 illustrate yet another embodiment for forming a lower conductor; Figures 28-29 illustrate a further process of the structure in accordance with an embodiment; Figures 30-32 show a A top view and a cross-sectional view of a multilayer structure of an embodiment; FIGS. 33-35 Various views of a multilayer structure after further processing in accordance with an embodiment; Figures 36-40 illustrate various views of a multilayer structure after further processing in accordance with an embodiment; FIGS. 41-45 illustrate an embodiment according to an embodiment Various views of a multilayer structure after further processing; Figures 46-50 show various views of a multilayer structure after further processing in accordance with an embodiment; Figures 51-55 show after further processing according to an embodiment Various views of a multi-layer structure; Figures 56-60 show various views of a multilayer structure after further processing in accordance with an embodiment; and Figures 61-62 are cross-sections that can be fabricated by the embodiments herein A view of the point memory structure.
交叉點記憶體結構可以透過三個微影術步驟被製造,其包括用以形成連接兩個導體之柱體(連接體)的一中間微影術步驟。這些微影術步驟中的兩步驟(連接體及第二導體)需要次分辨率重疊。關於交叉點記憶體裝置還有一個期望,即利用自我組合分子開關元件。本發明揭露製造交叉點裝置,其中該三種材料(該第一及第二導體及該連接材料) 使用標準矽處理技術來沉積及校準。The cross-point memory structure can be fabricated through three lithography steps including an intermediate lithography step to form a cylinder (connector) connecting the two conductors. The two steps (connector and second conductor) in these lithography steps require sub-resolution overlap. There is also a desire for a cross-point memory device that utilizes self-assembling molecular switching elements. The invention discloses a manufacturing intersection device, wherein the three materials (the first and second conductors and the connecting material) Standard 矽 processing techniques are used for deposition and calibration.
在本發明中,一整合方案被描述,其中僅兩個微影術步驟就足以產生該等交叉點結構。為此目的,該精確的(次分辨率)重疊條件可能不存在,且該交叉點在該兩個導體層的相交處自然地形成。In the present invention, an integration scheme is described in which only two lithography steps are sufficient to produce the intersection structure. For this purpose, this precise (sub-resolution) overlap condition may not exist and the intersection is naturally formed at the intersection of the two conductor layers.
參考第61及62圖,本發明的重點是使用2階段微影術及一自我校準製程製造交叉點結構,其中在該兩個導體層168及124之間形成一記憶體元件的該連接體材料148被形成於一般處於互相正交的該兩個導體的相交處。對於這裏的一實施例,該等下導體124及該等連接體148可由可使用一乾蝕刻(反應性離子蝕刻(RIE))製程被蝕刻且從而可以以一消去方式被移除的材料來製造。在一實施例中,它們由矽來製造。在一示範性結構中,該等下導體124是鋁、鈦或者其他金屬導體且該等連接體148是多晶矽。該等連接體148還可以是充當可逆開關的其他材料,諸如一相變材料,例如,微電子工程,第84卷,第1期,2007年1月,第21-24頁中,Yang等人所著之“Patterning of Ge2 Sb2 Te5 phase change material using UV nano-imprint lithography”中所描述的GST材料,其在此以參照方式被併入本文。該底部導體124也可以由高摻雜矽代替一金屬來形成。該頂部導體168可以形成自各種可蝕刻的金屬,包括但不局限於鋁及銅。Referring to Figures 61 and 62, the focus of the present invention is to fabricate a cross-point structure using a two-stage lithography process and a self-aligning process, wherein the connector material is formed between the two conductor layers 168 and 124 as a memory component. 148 is formed at the intersection of the two conductors that are generally orthogonal to one another. For one embodiment herein, the lower conductors 124 and the connectors 148 can be fabricated from materials that can be etched using a dry etch (reactive ion etch (RIE)) process and thereby can be removed in an erased manner. In an embodiment, they are manufactured from tantalum. In an exemplary configuration, the lower conductors 124 are aluminum, titanium or other metallic conductors and the connectors 148 are polysilicon. The connectors 148 may also be other materials that act as reversible switches, such as a phase change material, for example, Microelectronics Engineering, Vol. 84, No. 1, January 2007, pages 21-24, Yang et al. The GST material described in "Patterning of Ge 2 Sb 2 Te 5 phase change material using UV nano-imprint lithography" is herein incorporated by reference. The bottom conductor 124 can also be formed by a highly doped germanium instead of a metal. The top conductor 168 can be formed from a variety of etchable metals including, but not limited to, aluminum and copper.
第1圖是一多層結構10的一截面圖,其適合於製造一交叉點記憶體結構。多層結構10包含一基體12、一第一導電層14及一連接體或開關材料堆疊層16。基體12可以由以下 材料形成,包括但不局限於矽、砷化鎵、石英、熔凝矽、藍寶石、有機聚合物、矽氧烷聚合物、硼矽玻璃、氟碳聚合物或者上述材料之組合。第一導電層14可以由鎢形成。開關材料層16可以由以下材料之組合形成,包括但不局限於多晶矽、硫屬化合物、GST或者被組配為二極體的材料結構(如PN接面)。Figure 1 is a cross-sectional view of a multilayer structure 10 suitable for fabricating a cross-point memory structure. The multilayer structure 10 includes a substrate 12, a first conductive layer 14, and a connector or switch material stack layer 16. The substrate 12 can be made up of Material formation includes, but is not limited to, tantalum, gallium arsenide, quartz, fused yttrium, sapphire, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, or combinations of the foregoing. The first conductive layer 14 may be formed of tungsten. Switching material layer 16 may be formed from a combination of materials including, but not limited to, polycrystalline germanium, chalcogenide, GST, or a material structure (eg, a PN junction) that is combined into a diode.
第2及3圖說明多層結構10的俯視圖及截面圖。多層結構10具有藉由蝕刻第一導電層14及連接體或開關層16之通道而形成的一圖案,從而定義多層結構110。第3圖是沿著截面線A1 -A1 ’截取的結構110的一截面圖。在這個視圖中,該圖案被顯示為藉由沿著方向D1 蝕刻第一導電層14及開關材料堆疊層16而形成的一系列平行通道19,從而定義格柵18。該圖案可以藉由在多層結構110中使用一微影術步驟,接著是停止於基體12的一蝕刻步驟而形成。對於該微影術步驟而言,任何習知的技術,例如,光刻(包括G線、I線、248 nm、193 nm、157 nm及13.2-13.4 nm之各種波長)、接觸微影術、電子束微影術、X射線微影術、離子束微影術、原子束微影術及壓模微影術,可以被使用。壓模微影術在美國專利6,932,934、美國專利申請公開案2004/0124566、美國專利申請公開案2004/0188381及美國專利申請公開案2004/0211754中被描述,所有這些都在此以參照方式被併入本文。2 and 3 illustrate a plan view and a cross-sectional view of the multilayer structure 10. The multilayer structure 10 has a pattern formed by etching the first conductive layer 14 and the via or the switching layer 16 to define the multilayer structure 110. Figure 3 is a cross-sectional view of the structure 110 taken along section line A 1 -A 1 '. In this view, the pattern is displayed as a series of parallel channels along the direction D 1 by etching the first conductive material layer 14 and a switch 16 formed by stacking layers 19, 18 to define the grid. The pattern can be formed by using a lithography step in the multilayer structure 110 followed by an etch step that stops at the substrate 12. For the lithography step, any conventional technique, such as photolithography (including G-line, I-line, 248 nm, 193 nm, 157 nm, and 13.2-13.4 nm wavelengths), contact lithography, Electron beam lithography, X-ray lithography, ion beam lithography, atomic beam lithography, and compression lithography can be used. Compression lithography is described in U.S. Patent No. 6,932,934, U.S. Patent Application Publication No. 2004/0124566, U.S. Patent Application Publication No. 2004/0188381, and U.S. Patent Application Publication No. 2004/0211754, all of which are incorporated herein by reference. Into this article.
在第2及3圖中用以蝕刻導電層14的該蝕刻步驟可以使用一製程,其在J.Electrochem.Soc.136,2050(1989)中 Oehrlein等人所著之“Surface Modifications of Electronic Materials induced by Plasma Etching”;電化學學會會議記錄第六次會議,電漿處理,ECS會議記錄第87-6卷,173(1987)中Saia等人所著之“Plasma Etching Methods for the Formation of Planarized Tungsten Plugs used in Multilevel VLSI Metallizations”;J.Electrochem.Soc.135,2016(1988)中Balooch等人所著之“The Kinetics of Tungsten and Tungsten Silicide Films by Chlorine Atoms”;及Springer第121-125頁(1991)中van Roosmalen所著之“Dry Etching for VLSI”中被描述,所有這些都在此以參照方式被併入本文。The etching step for etching the conductive layer 14 in Figures 2 and 3 can use a process as described in J. Electrochem. Soc. 136, 2050 (1989). Oehrlein et al., "Surface Modifications of Electronic Materials induced by Plasma Etching"; Sixth Meeting of the Electrochemical Society Conference Record, Plasma Processing, ECS Proceedings, vol. 87-6, 173 (1987), Saia et al. "Plasma Etching Methods for the Formation of Planarized Tungsten Plugs used in Multilevel VLSI Metallizations"; J. Electrochem. Soc. 135, 2016 (1988) by Balooch et al. "The Kinetics of Tungsten and Tungsten Silicide Films by Chlorine Atoms"; and Springer, "Dry Etching for VLSI" by Van Roosmalen, pp. 121-125 (1991), all of which are incorporated herein by reference.
在第2及3圖中被用以蝕刻連接體層16的該蝕刻步驟可以使用一製程,其在van Arendonk等人所著之名稱為“Method of Manufacturing a Semiconductor Device”的歐洲專利337,562及Springer第113頁(1991)中van Roosmalen所著之“Dry Etching for VLSI”中被描述,所有這些都在此以參照方式被併入本文。The etching step used to etch the connector layer 16 in FIGS. 2 and 3 can be performed using a process described in European Patent No. 337,562 and Springer No. 113 by Van Arendonk et al. entitled "Method of Manufacturing a Semiconductor Device". This is described in "Dry Etching for VLSI" by Van Roosmalen, page (1991), all of which is incorporated herein by reference.
第4-7圖說明多層結構110在沉積一電介質材料20之後定義一多層結構210的俯視圖及截面圖。第4圖是顯示被電介質材料20填充的該等通道19及該等各種截面線的一俯視圖。第5圖是沿著與格柵18正交的截面線A2 -A2 ’截取的截面圖。在這個視圖中,該等通道19被電介質材料20填充至格柵18的表面24。第6圖是沿著截面線B2 -B2 ’截取的截面圖,其中只有基體12及電介質20是可見的。第7圖是沿著截面線C2 -C2 ’截取的截面圖。在這個視圖中,該下或第一導體14、 基體12及連接體材料16是可見的。電介質材料20可以透過以下方法被沉積在多層結構210上,包括但不局限於化學蒸汽沉積(CVD)、物理蒸汽沉積(PVD)、濺鍍沉積、旋轉塗佈及散佈一液體。電介質材料20可以包含氧化矽或者任何低介電值(low-k)電介質材料。電介質材料20可以經歷一化學機械研磨(CMP)製程以產生具有一冠形表面22的多層結構210。冠形表面22由每個格柵18的一暴露表面24及電介質材料20的上表面27定義。電介質材料20的多個部分可以使用蝕刻製程被移除以形成冠形表面22,該蝕刻製程在IBM J.Res.Develop.23,33(1979)中Coburn等人所著之“Some Chemical Aspects of the Fluorocarbon Plasma Etching of Silicon and its Compounds”;Solid State Technol.22(4),117,(1979)中Coburn等人所著之“Some chemical Aspects of the Fluorocarbon Plasma Etching of Silicon and it’s Compounds”;及Springer第107頁(1991)中van Roosmalen所著之“Dry Etching for VLSI”中被描述,所有這些都在此以參照方式被併入本文。4-7 illustrate top and cross-sectional views of the multilayer structure 110 defining a multilayer structure 210 after deposition of a dielectric material 20. Figure 4 is a top plan view showing the channels 19 filled with dielectric material 20 and the various cross-sectional lines. Fig. 5 is a cross-sectional view taken along a section line A 2 - A 2 ' orthogonal to the grid 18. In this view, the channels 19 are filled to the surface 24 of the grid 18 by a dielectric material 20. 2 FIG. 6 is a cross-sectional view taken along section line B 2 -B ', wherein only the base body 12 and the dielectric 20 is visible. Fig. 7 is a cross-sectional view taken along section line C 2 - C 2 '. In this view, the lower or first conductor 14, base 12 and connector material 16 are visible. Dielectric material 20 can be deposited on multilayer structure 210 by, for example, but not limited to, chemical vapor deposition (CVD), physical vapor deposition (PVD), sputter deposition, spin coating, and dispersion of a liquid. Dielectric material 20 may comprise yttria or any low-k dielectric material. Dielectric material 20 may undergo a chemical mechanical polishing (CMP) process to produce a multilayer structure 210 having a crowned surface 22. Crowned surface 22 is defined by an exposed surface 24 of each grid 18 and an upper surface 27 of dielectric material 20. Portions of dielectric material 20 may be removed using an etching process to form crown surface 22, which is described by Coburn et al., "Some Chemical Aspects of" by IBM J. Res. Develop. 23, 33 (1979). "The Fluorocarbon Plasma Etching of Silicon and its Compounds"; Solid State Technol. 22 (4), 117, (1979) "Some chemical Aspects of the Fluorocarbon Plasma Etching of Silicon and it's Compounds" by Coburn et al.; "Dry Etching for VLSI" by van Roosmalen, page 107 (1991), which is incorporated herein by reference.
第8-11圖是多層結構210在一第二或上導電層26已經被沉積在冠形表面22上之後從而定義多層結構310的俯視圖及截面圖。第8圖是僅顯示導電層26及說明各種截面線的俯視圖。第9圖是沿著截面線A3 -A3 ’截取的顯示第5圖的該等材料層以及該導電材料層26的截面圖。第10圖是沿著截面線B3 -B3 ’截取的穿過該電介質層的截面圖。在這個視圖中,只有導電層26、電介質層20及基體12是可見的。第11 圖是沿著截面線C3 -C3 ’截取的穿過具有各種材料層的通道18的截面圖。在這個視圖中,第二或上導體26、該連接體或開關層16、該下導體14及該基體是可見的。第二導電層26可以由各種導電材料形成(例如鎢)。視其組成而定,第二導電層26可以透過以下製程被沉積在多層結構210上,包括但不局限於化學蒸氣沉積(CVD)、物理蒸氣沉積(PVD)、濺鍍沉積、旋轉塗佈及散佈一液體。8-11 are top and cross-sectional views of the multilayer structure 210 defining a multilayer structure 310 after a second or upper conductive layer 26 has been deposited on the crown surface 22. Fig. 8 is a plan view showing only the conductive layer 26 and various cross-sectional lines. Figure 9 is a cross-sectional view showing the material layers of Figure 5 and the conductive material layer 26 taken along section line A 3 -A 3 '. FIG 10 is a cross-sectional view through 3 -B 3 of the dielectric layer along section line B 'taken. In this view, only conductive layer 26, dielectric layer 20, and substrate 12 are visible. Figure 11 is a cross section along line C 3 -C 3 'having a cross-sectional view taken through the various layers of material of the channel 18. In this view, the second or upper conductor 26, the connector or switch layer 16, the lower conductor 14 and the substrate are visible. The second conductive layer 26 may be formed of various conductive materials (eg, tungsten). Depending on its composition, the second conductive layer 26 can be deposited on the multilayer structure 210 by processes including, but not limited to, chemical vapor deposition (CVD), physical vapor deposition (PVD), sputter deposition, spin coating, and Spread a liquid.
第12-16圖是多層結構310在移除上導體26之部分以具有與通道18正交的多數條28的一圖案之後從而定義多層結構410的俯視圖及截面圖。該被移除的材料定義開放的通道29。第12圖是顯示各種截面線、上導體26的條28及下導體14與電介質20的該等暴露部分的一俯視圖。第13圖是沿著截面線A4 -A4 ’截取的穿過該等導電條28之一的截面圖。在這個視圖中,基體12、電介質條20及被連接體16及下導體14填充的該等通道18是可見的。第14圖是沿著截面線D4 -D4 ’截取的穿過通道18與電介質條20的暴露部分的截面圖。由於上導體條28的背景,這個視圖顯示與第13圖一樣的該等層。第15圖是沿著截面線B4 -B4 ’截取的穿過該電介質條20的截面圖。在這個視圖中,基體12、導電材料26的條28及電介質材料20之多個部分被顯示。第16圖是沿著截面線C4 -C4 ’截取的穿過下導電通道18的截面圖。在這個視圖中,垂直相交以形成一記憶體元件的上導體26、連接體16、下導體14的該材料堆疊是可見的。在第二導電層26與開關或連接體材料堆疊層16中形成的該圖案定義該等條或格柵 28。格柵28沿著與第2圖中被顯示的第一方向D1 正交的一第二方向D2 延伸。在多層結構410中形成的該圖案可以使用微影術步驟,接著是停止於第一導電層16的蝕刻步驟來形成。該微影術步驟及該等蝕刻步驟可以從上述關於第1-11圖所提及的製程中選擇。多層結構410之沿著截面線A4 -A4 ’截取的截面圖顯示第一及第二導電層14及26的正交重疊藉由開關或連接體材料堆疊層16被連接以形成一記憶體元件。12-16 are top and cross-sectional views of the multilayer structure 310 defining the multilayer structure 410 after removing a pattern of portions of the upper conductor 26 having a plurality of strips 28 orthogonal to the channels 18. The removed material defines an open channel 29. Figure 12 is a top plan view showing the various cross-sectional lines, strips 28 and lower conductors 14 of the upper conductors 26, and the exposed portions of the dielectric 20. Figure 13 is a cross-sectional view through one of the conductive strips 28 taken along section line A 4 -A 4 '. In this view, the substrate 12, the dielectric strip 20, and the channels 18 filled by the connector 16 and the lower conductor 14 are visible. Figure 14 is a cross-sectional view through the channel 18 and the exposed portion of the dielectric strip 20 taken along section line D 4 - D 4 '. Due to the background of the upper conductor strip 28, this view shows the same layers as in Fig. 13. Figure 15 is a sectional view taken along section line B 'taken 4 -B 4 through the dielectric strip 20. In this view, the substrate 12, the strips 28 of electrically conductive material 26, and portions of the dielectric material 20 are shown. FIG 16 is a C 4 -C 4 'cross-sectional view taken through the lower conductive paths 18 along section line. In this view, the stack of materials that intersect perpendicularly to form the upper conductor 26, the connector 16, and the lower conductor 14 of a memory component are visible. The pattern formed in the second conductive layer 26 and the switch or connector material stack layer 16 defines the strips or grids 28. The grid 28 extends along a second direction D 2 that is orthogonal to the first direction D 1 shown in FIG. 2 . The pattern formed in the multilayer structure 410 can be formed using a lithography step followed by an etching step that stops at the first conductive layer 16. The lithography step and the etching steps can be selected from the processes mentioned above with respect to Figures 1-11. A cross-sectional view of the multilayer structure 410 taken along section line A 4 -A 4 ' shows that the orthogonal overlap of the first and second conductive layers 14 and 26 is connected by a switch or connector material stack layer 16 to form a memory element.
第17-21圖說明多層結構410在沉積電介質材料20以填充該等開放通道29之後從而定義多層結構510的俯視圖及截面圖。第18圖是沿著截面線A5 -A5 ’截取的截面圖。因為在這個視圖中該開放通道29不是可見的,所以使用電介質材料20填充通道29未顯示與第13圖中之視圖不同。第19圖是沿著線D5 -D5 ’截取的穿過填充通道29的該電介質20的截面圖。在這個視圖中,只有電介質20、下導體14及基體20是可見的。第20圖是沿著截面線B5 -B5 ’截取的穿過該電介質層的截面圖。該電介質層20阻擋了除了上導體26及基體12之截面以外的一切。第21圖是沿著截面線C5 -C5 ’截取的穿過通道18及下導體14的截面圖。在這個視圖中,第一及第二導電層14及26的正交重疊藉由開關材料堆疊層16被連接以形成一記憶體元件是可見的,其中該等開放通道29被電介質材料20填充至上導體26的頂部。多層結構510顯示一頂部表面30,其具有被電介質材料20隔開的第二導電層26的線。第21圖顯示暴露於該表面的該等上導體。在許多應用中,在進一步處理之前可能有需要用一電介質層覆蓋該表 面。17-21 illustrate top and cross-sectional views of the multilayer structure 410 defining the multilayer structure 510 after depositing the dielectric material 20 to fill the open channels 29. Figure 18 is a cross-sectional view taken along section line A 5 -A 5 '. Because the open channel 29 is not visible in this view, filling the channel 29 with the dielectric material 20 is not shown to be different than the view in FIG. Figure 19 is taken along line D 5 -D 5 ', taken through a cross-sectional view of the filling channel 29 of the dielectric 20. In this view, only the dielectric 20, the lower conductor 14, and the substrate 20 are visible. Figure 20 is a cross-sectional view through the dielectric layer taken along section line B 5 -B 5 '. The dielectric layer 20 blocks everything except the upper conductor 26 and the cross section of the substrate 12. Figure 21 is a cross-sectional view through the passage 18 and the lower conductor 14 taken along section line C 5 - C 5 '. In this view, the orthogonal overlap of the first and second conductive layers 14 and 26 is visible by the switch material stack layer 16 being joined to form a memory device, wherein the open channels 29 are filled with the dielectric material 20 The top of the conductor 26. The multilayer structure 510 shows a top surface 30 having lines of a second conductive layer 26 separated by a dielectric material 20. Figure 21 shows the upper conductors exposed to the surface. In many applications, it may be desirable to cover the surface with a dielectric layer prior to further processing.
用以透過兩個微影術步驟在一自我校準製程中製造一交叉點記憶體結構的另一實施例關於第22A-60圖被描述。第22A圖說明包括一基體112(例如Si)、一第一電介質層114(例如SiO2 或低介電值材料),一蝕刻停止層116(例如SiN、SiC或Si(O)N)及一第二電介質層118(例如SiO2 )之一多層結構。Another embodiment for fabricating a cross-point memory structure in a self-calibration process through two lithography steps is described with respect to Figures 22A-60. 22A illustrates a substrate 112 (eg, Si), a first dielectric layer 114 (eg, SiO 2 or a low dielectric material), an etch stop layer 116 (eg, SiN, SiC, or Si(O)N) and a A multilayer structure of the second dielectric layer 118 (e.g., SiO 2 ).
第22B圖是該多層結構100的一俯視圖。第23圖是沿著如第22B圖中所示截面線M1 -M1 ’截取的具有已被蝕刻之通道122的一截面圖。基體112可以由與上述關於基體12及第1圖實質上相同的材料形成。透過適當的遮罩及多重蝕刻步驟,通道可以被蝕刻穿過基體112頂上的該等層。Figure 22B is a top plan view of the multilayer structure 100. Fig. 23 is a cross-sectional view of the channel 122 having been etched taken along the section line M 1 - M 1 ' as shown in Fig. 22B. The base 112 may be formed of a material substantially the same as the above-described base 12 and FIG. The channels can be etched through the layers on top of the substrate 112 through appropriate masking and multiple etching steps.
使用第一微影術步驟而使一圖案形成之後的多層結構100被顯示。圖案被蝕刻穿過第一電介質層114、蝕刻停止層116及第二電介質層118且沿著在第22B圖中顯示的一第一方向V1 定義格柵120及溝122。該圖案可以使用第一微影術步驟定義該等溝122,接著是被選擇以停止於基體112的蝕刻步驟,而形成於多層結構100中。該微影術步驟及該等蝕刻步驟可以從上述就關於第1-11圖描述之實施例所揭露的任一製程中選擇。The multilayer structure 100 after a pattern formation is displayed using the first lithography step. A pattern is etched through the first dielectric layer 114, etch stop layer 116 and the second dielectric layer 118 and the grill 120 and V 1 defines a groove 122 along a first direction of the display section 22B in FIG. The pattern can be formed in the multilayer structure 100 using a first lithography step to define the trenches 122, followed by an etching step selected to stop at the substrate 112. The lithography step and the etching steps can be selected from any of the processes disclosed above with respect to the embodiments described in Figures 1-11.
第24及25圖說明用於製造下導體條124的一進一步實施例。第25圖是沿著如第24圖中所示的截面線M2 -M2 ’截取的一截面圖。在第25圖的該實施例中,在該通道122區域中,該矽基體112首先被摻雜至N+(124)。接著,將該通道 122區域摻雜至一P型材料(126)。以這種方式,一個二極體PN接面被形成,如果希望當一連接體導電時使該交叉點記憶體只允許在一個方向上可導電的話。Figures 24 and 25 illustrate a further embodiment for making the lower conductor strip 124. Fig. 25 is a cross-sectional view taken along the section line M 2 - M 2 ' as shown in Fig. 24. In this embodiment of Fig. 25, in the region of the channel 122, the germanium matrix 112 is first doped to N+ (124). Next, the channel 122 region is doped to a P-type material (126). In this manner, a diode PN junction is formed if it is desired to have the junction memory only allow conduction in one direction when the connector is conductive.
第26及27圖說明用於形成下導體124的又一實施例。第26圖與第24圖類似,具有沿著線M3 -M3 ’截取的一截面圖。在這個實施例中,諸如鋁或者鎢之一材料可以被沉積在溝122內,且接著經歷一蝕刻製程以形成具有不超過蝕刻遮罩層116之高度的一高度的第一導電層124。第27圖顯示,在溝122的區域中該蝕刻停止被移除。Figures 26 and 27 illustrate yet another embodiment for forming the lower conductor 124. 26 and FIG. 24 is similar to FIG, having along line M 3 -M 3 a cross sectional view 'taken. In this embodiment, a material such as aluminum or tungsten may be deposited in the trenches 122 and then subjected to an etching process to form a first conductive layer 124 having a height that does not exceed the height of the etch mask layer 116. Figure 27 shows that the etch stop is removed in the region of the trench 122.
第28及29圖說明第23圖的該結構的進一步製程的視圖,其中多層被沉積以形成一多層結構1100。第29圖是俯視圖且第28圖是沿著線N1 -N1 ’的截面圖。首先,一電介質材料被用於填充該溝122。較特定的,一電介質材料128被沉積在溝122內以與均顯示於第23圖中的第一電介質層114及第二電介質層118一起形成一連續的電介質層。電介質層128可以包括與上面關於第23圖被描述的第一及第二電介質層114及118實質上相同的材料。在下文,這個電介質層可以被稱作層114及118或者僅被稱為一單一層128。然後一抗蝕層130被沉積在電介質層128上。層130可以包含諸如一無定形碳或一聚合抗蝕材料之一有機材料。然後一硬質遮罩層132被沉積在抗蝕層130上。硬質遮罩層132可包含以下材料,包括但不局限於旋塗式玻璃、SiN及SiC。另一抗蝕層134接著被沉積在硬質遮罩層132上。Figures 28 and 29 illustrate views of a further process of the structure of Figure 23 in which multiple layers are deposited to form a multilayer structure 1100. Figure 29 is a plan view and FIG. 28 is 1 -N 1 'is a cross-sectional view taken along line N. First, a dielectric material is used to fill the trenches 122. More specifically, a dielectric material 128 is deposited within the trenches 122 to form a continuous dielectric layer with the first dielectric layer 114 and the second dielectric layer 118, both of which are shown in FIG. Dielectric layer 128 may comprise substantially the same material as first and second dielectric layers 114 and 118 described above with respect to FIG. Hereinafter, this dielectric layer may be referred to as layers 114 and 118 or simply as a single layer 128. A resist layer 130 is then deposited over the dielectric layer 128. Layer 130 may comprise an organic material such as an amorphous carbon or a polymeric resist material. A hard mask layer 132 is then deposited over the resist layer 130. The hard mask layer 132 can comprise materials including, but not limited to, spin-on glass, SiN, and SiC. Another resist layer 134 is then deposited on the hard mask layer 132.
第27圖顯示第22B-26圖中討論的下導體一旦被形成時 的該結構100。如第29圖所顯示的,該電介質材料128被沉積在該等溝122內且在該電介質堆疊之上。在此階段,使用諸如化學機械研磨(CMP)之一製程,這個電介質128被平坦化。諸如一無定形碳或一聚合抗蝕材料之一有機材料被沉積在包含電介質128及蝕刻停止116的該電介質堆疊上。下一步,一硬質遮罩膜132被沉積在層130上。硬質遮罩132可以是一旋塗式玻璃(SOG)、SiN、SiC等。該硬質遮罩也可以包含雙頂硬質遮罩,其包括在一較厚的硬質遮罩132(例如SOG)頂部上的一較薄的硬質遮罩134(例如SiN)。該SiN層134可以被製作的足夠的薄以使諸如壓模、光刻等之一微影術製程中之圖案轉移容易,且該下SOG被製作的足夠的厚以允許圖案轉移至少穿過該深的無定形碳層130。諸如193nm之一高解析度微影術或者193nm浸沒或壓模微影術或者EUV可以被用以在該硬質遮罩(或雙頂硬質遮罩)頂部產生一圖案。Figure 27 shows that once the lower conductor discussed in Figure 22B-26 is formed The structure 100. As shown in FIG. 29, the dielectric material 128 is deposited within the trenches 122 and over the dielectric stack. At this stage, this dielectric 128 is planarized using one of the processes such as chemical mechanical polishing (CMP). An organic material such as an amorphous carbon or a polymeric resist material is deposited on the dielectric stack including dielectric 128 and etch stop 116. Next, a hard mask film 132 is deposited on layer 130. The hard mask 132 can be a spin-on glass (SOG), SiN, SiC, or the like. The hard mask may also include a double top hard mask that includes a thinner hard mask 134 (e.g., SiN) on top of a thicker hard mask 132 (e.g., SOG). The SiN layer 134 can be made thin enough to facilitate pattern transfer in a lithography process such as compression molding, photolithography, etc., and the lower SOG is made thick enough to allow pattern transfer at least through the A deep amorphous carbon layer 130. A high resolution lithography such as 193 nm or 193 nm immersion or compression lithography or EUV can be used to create a pattern on top of the hard mask (or double top hard mask).
有機層130、硬質遮罩層132及抗蝕層134可以透過以下方法被沉積以形成該多層結構1100,包括但不局限於化學蒸氣沉積(CVD)、物理蒸氣沉積(PVD)、濺鍍沉積、旋轉塗佈及散佈一液體。The organic layer 130, the hard mask layer 132, and the resist layer 134 may be deposited to form the multilayer structure 1100 by, for example, but not limited to, chemical vapor deposition (CVD), physical vapor deposition (PVD), sputter deposition, Spin coating and spreading a liquid.
第30-32圖顯示多層結構1100在與通道122正交的一通道圖案於抗蝕層134中被形成之後從而定義多層結構1200的一俯視圖及截面圖。第31圖是沿著線N2 -N2 ’截取的視圖,且第32圖是沿著線O2 -O2 ’截取的截面圖。在抗蝕層134中形成的該圖案定義以線136及溝138定義的格柵。該等格 柵沿著與第22圖中顯示的該方向V1正交的一方向V2 延伸。在一第一蝕刻步驟之後,溝138可只向下延伸至硬質遮罩層132。在一實施例中,圖案132可以使用一壓模模具來形成,其中抗蝕層134是一可成形層。因此,該第一步驟將需要移除該圖案通道132中的抗蝕層,且進一步蝕刻直至硬質遮罩132。第32圖是顯示結構1200的所有該等層都可見的截面圖。第32圖的該視圖顯示被移除直至硬質遮罩132的抗蝕層134。FIGS. 30-32 show a top view and a cross-sectional view of the multilayer structure 1200 after the multilayer structure 1100 is formed in a resist pattern 134 orthogonal to the channel 122. Figure 31 is a view taken along line N 2 -N 2 ', and Figure 32 is a cross-sectional view taken along line O 2 -O 2 '. The pattern formed in resist layer 134 defines a grid defined by lines 136 and trenches 138. The grids extend in a direction V 2 orthogonal to the direction V1 shown in Fig. 22. After a first etching step, the trenches 138 may extend only down to the hard mask layer 132. In an embodiment, the pattern 132 can be formed using a stamper mold wherein the resist layer 134 is a formable layer. Therefore, this first step would require removal of the resist layer in the pattern channel 132 and further etching up to the hard mask 132. Figure 32 is a cross-sectional view showing all of the layers of structure 1200 visible. This view of Fig. 32 shows the resist layer 134 removed until the hard mask 132.
第33-35圖顯示多層結構1200在通道138之圖案於遮罩層132中被形成之後抗蝕層134被移除之情況下從而定義多層結構1300的各種截面圖。第34圖是沿著線N3 -N3 ’截取的截面圖,第35圖是沿著線O3 -O3 ’截取的截面圖。在抗蝕層132中形成的該圖案以線140及溝142定義格柵。線140沿著與在第22圖中所示的通道122的該方向V1正交的方向V2 延伸。在一第二蝕刻步驟之後,溝142可以只向下延伸至有機層130。第34圖顯示結構1300的所有該等層都可見的視圖。第35圖顯示被移除直至有機層130的抗蝕層134。Figures 33-35 show various cross-sectional views of the multilayer structure 1300 in which the multilayer structure 1200 is removed after the pattern of the channels 138 is formed in the mask layer 132. Figure 34 along line 3 -N 3 'sectional view taken, along line of FIG. 35 O 3 -O 3' N-sectional view taken. The pattern formed in the resist layer 132 defines a grid with lines 140 and grooves 142. Line 140 extends in a direction V 2 that is orthogonal to the direction V1 of channel 122 shown in FIG. After a second etching step, the trenches 142 may extend only down to the organic layer 130. Figure 34 shows a view of all of the layers of structure 1300 being visible. Figure 35 shows the resist layer 134 removed to the organic layer 130.
第36-40圖顯示多層結構1300在溝142的該圖案一旦已經在多層結構1300中被蝕刻,抗蝕層132就被移除之情況下的各種視圖。第36圖是在沒有被蝕刻停止層116阻擋的區域中蝕刻溝142的該圖案穿過電介質層114及128之後抗蝕層130被移除之情況下從而定義多層結構1400的結構1300的俯視圖。第37圖是沿著截面線N4 -N4 ’穿過有機層130的截面圖。因為這個視圖是穿過該整個層狀結構,所以所有該等層以及穿過該層116的開口都是可見的。第38圖是沿著截面 線P4 -P4 ’顯示被移除直至該下導體124的該電介質128的截面圖。然而,在向下直至該下導體124的該介層144後面的所有該等層都是可見的。在這個視圖中,介層邊緣與該介層144本身有差異。第39圖是沿著線O4 -O4 ’的截面圖,其顯示向下直至該下導體124之一側視圖的橫向溝146。溝146提供該通道給一上導體(未顯示)。在這個視圖中,電介質層114及遮罩116被顯示在背景中。第40圖是沿著截面線Q4 -Q4 ’穿過層116的部分的截面圖。第40圖提供溝146的另一視圖,其中下導體124是不可見的,因為被電介質128擋住了。36-40 show various views of the multilayer structure 1300 in the case where the pattern of the trenches 142 has been etched in the multilayer structure 1300 and the resist layer 132 is removed. 36 is a top plan view of the structure 1300 defining the multilayer structure 1400 with the resist 130 removed after the pattern of the etch trenches 142 is removed through the dielectric layers 114 and 128 in regions that are not blocked by the etch stop layer 116. Figure 37 is a cross-sectional view through the organic layer 130 along the section line N 4 -N 4 '. Because this view is through the entire layered structure, all of the layers and the openings through the layer 116 are visible. Figure 38 is a cross-sectional view showing the dielectric 128 removed to the lower conductor 124 along section line P 4 -P 4 '. However, all of the layers down to the back of the via 144 of the lower conductor 124 are visible. In this view, the interlayer edge is different from the via 144 itself. Figure 39 is a cross-sectional view along line O 4 -O 4 ' showing the lateral grooves 146 down to a side view of the lower conductor 124. Ditch 146 provides the channel to an upper conductor (not shown). In this view, dielectric layer 114 and mask 116 are shown in the background. Fig. 40 is a cross-sectional view of a portion passing through the layer 116 along the section line Q 4 - Q 4 '. Figure 40 provides another view of the trench 146 in which the lower conductor 124 is invisible because it is blocked by the dielectric 128.
該多層結構1400具有通道146及介層144,適於接收具有適於形成一讀/寫記憶體元件之特徵的一開關或連接體材料。該連接體材料之所以被這麼命名是因為其提供一上導體(未顯示)及下導體124之間的可開關連接。第41圖是多層結構1400在沉積一連接體層148之後從而形成多層結構1500的基礎的一俯視圖。在這個視圖中,顯示連接體材料148填充在層116的暴露部分(見第36圖)之上且穿過向下直至該下導體124的介層144之通道146。第42圖是沿著截面線N5 -N5 ’與下導體124正交的截面圖。因為這個視圖穿過該整個層狀結構,所以所有剩餘的層以及穿過該層116的開口都是可見的。第43圖是沿著截面線P5 -P5 ’截取的穿過通道146及該剛剛沉積的連接體材料148的截面圖。該連接體材料148被顯示為延伸至該結構的該表面且向下至下導體124。第44圖是沿著線O5 -O5 ’截取的軸向地穿過一下導體124的截面圖。在這個視圖中,顯示該連接體材料148延伸至該結 構1500的該表面且在向下直至該下導體124的該介層144中。在具有連接體材料148的該等通道146的每一側的有機層130及電介質層128的截面也是可見的。第45圖是沿著截面線Q5 -Q5 ’截取的穿過隔開該等下導體124線的該等層的截面圖。在這個視圖中,向下直至該下導體124的該介層144被層116及128的截面擋住了而看不到。連接體材料148之在通道146中且延伸至結構1500的表面的該部分也是可見的。連接體層148可以透過以下製程被沉積在多層結構1400上,包括但不局限於化學蒸氣沉積(CVD)、物理蒸氣沉積(PVD)、濺鍍沉積、旋轉塗佈及散佈一液體。The multilayer structure 1400 has a channel 146 and a via 144 adapted to receive a switch or connector material having features suitable for forming a read/write memory component. The connector material is so named because it provides a switchable connection between an upper conductor (not shown) and the lower conductor 124. Figure 41 is a top plan view of the foundation of the multilayer structure 1400 after depositing a connector layer 148 to form the multilayer structure 1500. In this view, the connector material 148 is shown filled over the exposed portion of layer 116 (see Figure 36) and through the channel 146 down to the via 144 of the lower conductor 124. Figure 42 is a cross-sectional view orthogonal to the lower conductor 124 along the section line N 5 -N 5 '. Because this view passes through the entire layered structure, all remaining layers and openings through the layer 116 are visible. FIG 43 is a 5 'through the passage cross-sectional view taken along section line P 5 -P 146, and the linker material 148 just deposited. The connector material 148 is shown extending to the surface of the structure and down to the lower conductor 124. Figure 44 is a cross-sectional view through the lower conductor 124 taken along line O 5 -O 5 '. In this view, the connector material 148 is shown extending to the surface of the structure 1500 and down into the via 144 of the lower conductor 124. Cross sections of the organic layer 130 and the dielectric layer 128 on each side of the channels 146 having the connector material 148 are also visible. FIG 45 is a sectional view of the layers of such lower conductor 124 along a line 5 -Q 5 'spaced taken through section line Q. In this view, the via 144 down to the lower conductor 124 is blocked by the cross-section of layers 116 and 128 and is not visible. This portion of the connector material 148 that is in the channel 146 and that extends to the surface of the structure 1500 is also visible. The connector layer 148 can be deposited on the multilayer structure 1400 by processes including, but not limited to, chemical vapor deposition (CVD), physical vapor deposition (PVD), sputter deposition, spin coating, and dispersion of a liquid.
第46圖是多層結構1500在經歷一蝕刻化學作用移除連接體層148的多個部分之後從而定義多層結構1600的一俯視圖。在這個視圖中,除了向下直至該下導體124的該介層144以外的所有地方中的該連接體材料148已經被蝕刻掉。第47圖是沿著截面線N6 -N6 ’與下導體124正交的截面圖。因為這個視圖是穿過該整個層狀結構,所以所有剩餘的層以及穿過該層116的開口都是可見的,且顯示與第42圖相同的層。第48圖是沿著截面線P6 -P6 ’顯示該電介質連接體材料148填充向下直至該下導體124的該介層144的一截面圖。在這個視圖中,在向下直至該下導體124的該介層144後面的所有該等層是可見的,且該等介層邊緣與該已填充的介層144本身有差異。第49圖是沿著線O6 -O6 ’截取的視圖。在這個視圖中,該連接體材料148填充該介層至蝕刻停止層116的表面。隔開通道146的該等電介質層128及層130在這個視 圖中也是可見的。第50圖是沿著截面線Q6 -Q6 ’截取的穿過隔開該等下導體124線的該等層的截面圖。在這個視圖中,層116及128的截面擋住了填充向下直至該下導體124的該介層144的連接體材料148的視圖。連接體材料148的多個部分可以被移除以形成如第48圖中所顯示的一冠形表面150。第48圖中的該冠形表面150藉由蝕刻停止層116的一暴露表面152及連接體材料148的上表面154定義。Figure 46 is a top plan view of the multilayer structure 1500 after defining portions of the interconnect layer 148 after undergoing an etch chemistry to define the multilayer structure 1600. In this view, the connector material 148 has been etched away except in all places except the via 144 of the lower conductor 124. Figure 47 is a cross-sectional view orthogonal to the lower conductor 124 along the section line N 6 -N 6 '. Since this view is through the entire layered structure, all remaining layers and openings through the layer 116 are visible and the same layers as in Figure 42 are shown. FIG 48 is a cross section along line P 6 -P 6 'show the connection of the dielectric material 148 is filled up to the next cross-sectional view of the conductor layer 124 via the lower 144. In this view, all of the layers down to the dielectric layer 144 of the lower conductor 124 are visible, and the interlayer edges are different from the filled via 144 itself. Figure 49 is' a view taken along line O 6 -O 6. In this view, the connector material 148 fills the via to the surface of the etch stop layer 116. The dielectric layers 128 and layers 130 separating the channels 146 are also visible in this view. FIG 50 is a sectional view of the layers of such lower conductor 124 along line 6 -Q 6 'spaced taken through section line Q. In this view, the cross-section of layers 116 and 128 blocks the view of the connector material 148 that fills down the via 144 of the lower conductor 124. Portions of the connector material 148 can be removed to form a crowned surface 150 as shown in FIG. The crowned surface 150 in FIG. 48 is defined by an exposed surface 152 of the etch stop layer 116 and an upper surface 154 of the connector material 148.
第51圖是多層結構1600在一上導體168被沉積在與下導體124正交的通道146上之後定義多層結構1700的一俯視圖。在這個視圖中,該上導體168填充通道146實質上至有機層130的表面。第52圖是沿著截面線N7 -N7 ’穿過隔開通道146的該等層的截面圖。第53圖是沿著截面線P7 -P7 ’截取的穿過該上導體168的截面圖。在這個視圖中,上導體168擋住了而看不到隔開通道146的該等層。第54圖是沿著線O7 -O7 ’截取的穿過一下導體124的截面圖。在這個視圖中,從該連接體材料148到有機層130之頂部的該上導體是可見的。第55圖是沿著截面線Q7 -Q7 ’截取的穿過隔開該等下導體124的較低的該等層的截面的截面圖。在這個視圖中,該上導體168之在通道146中延伸至層130的頂部的部分是可見的。下導體124及該連接體材料148被擋住了而看不到。該上或第二導電層168可以包含銅且可以透過以下方法被沉積在多層結構1700上,包括但不局限於電鍍。Figure 51 is a top plan view of the multilayer structure 1600 defining a multilayer structure 1700 after an upper conductor 168 is deposited over the channel 146 orthogonal to the lower conductor 124. In this view, the upper conductor 168 fills the channel 146 substantially to the surface of the organic layer 130. Figure 52 is a cross-sectional view of the layers passing through the spaced channels 146 along section line N 7 -N 7 '. Figure 53 is a cross-sectional view through the upper conductor 168 taken along section line P 7 -P 7 '. In this view, the upper conductor 168 is blocked from seeing the layers separating the channels 146. Figure 54 is a cross-sectional view through the lower conductor 124 taken along line O 7 -O 7 '. In this view, the upper conductor from the connector material 148 to the top of the organic layer 130 is visible. FIG 55 is a cross sectional view of the layers of such lower conductor 124 along a 7 -Q 7 'spaced taken through section line Q. In this view, the portion of the upper conductor 168 that extends into the top of layer 130 in channel 146 is visible. The lower conductor 124 and the connector material 148 are blocked from view. The upper or second conductive layer 168 can comprise copper and can be deposited on the multilayer structure 1700 by, for example, but not limited to, electroplating.
第56圖是多層結構1700在透過一CMP製程被研磨以移除有機層130及導體層168之多個部分之後從而定義多層結 構1800的一俯視圖。第57圖是沿著截面線N8 -N8 ’穿過隔開通道146的該層截面的截面圖。第58圖是沿著截面線P8 -P8 ’截取的穿過該上導體168的截面圖。在這個視圖中,上導體168擋住了而看不到隔開通道146的該等層。第59圖是沿著截面線Q8 -Q8 ’截取的穿過一下導體124的截面圖。在這個視圖中,從該連接體材料148到有機層148的頂部的該上導體是可見的。第60圖是沿著截面線Q8 -Q8 ’截取的穿過分開該等下導體124的較低的該等層的截面的截面圖。在這個視圖中,該上導體之在通道146中延伸至層128的頂部的部分是可見的。下導體124及該連接體材料148被擋住了而看不到。第二導電層168的多個部分及有機層130可以被移除,藉此一冠形表面158可以被定義,如第59及60圖所顯示的。冠形表面158可以藉由電介質層128的一暴露表面160及第二導電層148的上表面162定義。Figure 56 is a top plan view of the multilayer structure 1700 after the plurality of structures 1700 have been ground through a CMP process to remove portions of the organic layer 130 and the conductor layer 168. Figure 57 is a cross-sectional view of the cross section of the layer passing through the spaced channel 146 along section line N 8 -N 8 '. Figure 58 is a cross-sectional view through the upper conductor 168 taken along section line P 8 -P 8 '. In this view, the upper conductor 168 is blocked from seeing the layers separating the channels 146. Figure 59 is a cross-sectional view through the lower conductor 124 taken along section line Q 8 -Q 8 '. In this view, the upper conductor from the connector material 148 to the top of the organic layer 148 is visible. Figure 60 is a cross section along line Q 8 -Q 8 'cross-sectional view taken through the lower section of the layers in these separated conductor 124. In this view, the portion of the upper conductor that extends into the top of layer 128 in channel 146 is visible. The lower conductor 124 and the connector material 148 are blocked from view. Portions of the second conductive layer 168 and the organic layer 130 can be removed, whereby a crowned surface 158 can be defined, as shown in Figures 59 and 60. The crowned surface 158 can be defined by an exposed surface 160 of the dielectric layer 128 and an upper surface 162 of the second conductive layer 148.
該被揭露的方法實質上在該頂部及底部導體(分別為168及124)之間當正交重疊時在它們相交的地方產生連接體148。因此,如果該兩個導體層有需要互相隔離的區域,例如,該等導體層被連接至該記憶體電路的其他部分的區域,這些區域可能需要以不同的方式被處理。例如,在一方向軸(例如X軸)上,該等下導體可能不延伸超過該交叉點區域,且在另一正交軸(例如Y軸)上,該等上導體可能不延伸。以這種方式,該兩個導體層可被隔離以用於進一步製程。The disclosed method essentially creates a connector 148 where they intersect when they overlap orthogonally between the top and bottom conductors (168 and 124, respectively). Thus, if the two conductor layers have regions that need to be isolated from each other, for example, the conductor layers are connected to regions of other portions of the memory circuit, these regions may need to be processed in different ways. For example, on a direction axis (eg, the X axis), the lower conductors may not extend beyond the intersection area, and on another orthogonal axis (eg, the Y axis), the upper conductors may not extend. In this way, the two conductor layers can be isolated for further processing.
上面被描述的本發明的該等實施例是範例。許多變化及修改可以對上面列舉的該揭露來進行,而仍在本發明之範 圍內。因此,該發明之範圍不應被限制於該上述描述,而應該參考附加申請專利範圍及其等效物之全部範圍來決定。The embodiments of the invention described above are examples. Many variations and modifications can be made to the disclosures listed above, while still being within the scope of the present invention. Inside. Therefore, the scope of the invention should not be construed as being limited by the scope of the appended claims.
10‧‧‧多層結構10‧‧‧Multilayer structure
12‧‧‧基體12‧‧‧ base
14‧‧‧第一導電層、下導體14‧‧‧First conductive layer, lower conductor
16‧‧‧連接體或開關材料堆疊層16‧‧‧Connector or switch material stack
18‧‧‧格柵、通道18‧‧‧Grill, passage
19‧‧‧平行通道19‧‧‧ parallel channel
20‧‧‧電介質材料、電介質條20‧‧‧Dielectric material, dielectric strip
22‧‧‧冠形表面22‧‧‧ crown surface
24‧‧‧暴露表面24‧‧‧ exposed surface
26‧‧‧第二或上導電層、上導體、導電材料層26‧‧‧Second or upper conductive layer, upper conductor, conductive material layer
27‧‧‧上表面27‧‧‧ upper surface
28‧‧‧條、導電條、格柵28‧‧‧Articles, conductive strips, grilles
30‧‧‧頂部表面30‧‧‧ top surface
100‧‧‧多層結構100‧‧‧Multilayer structure
110‧‧‧多層結構110‧‧‧Multilayer structure
112‧‧‧基體112‧‧‧ base
114‧‧‧第一電介質層114‧‧‧First dielectric layer
116‧‧‧蝕刻停止層、蝕刻遮罩層116‧‧‧etch stop layer, etch mask layer
118‧‧‧第二電介質層118‧‧‧Second dielectric layer
120‧‧‧格柵120‧‧‧ grille
122‧‧‧溝、通道122‧‧‧ditch, passage
124‧‧‧下導體、導體層124‧‧‧lower conductor and conductor layer
128‧‧‧電介質材料128‧‧‧Dielectric materials
130‧‧‧抗蝕層、無定形碳層、有機層130‧‧‧resist layer, amorphous carbon layer, organic layer
132‧‧‧硬質遮罩層、硬質遮罩膜132‧‧‧Hard mask, hard mask
134‧‧‧抗蝕層、較薄硬質遮罩、SiN層134‧‧‧resist layer, thin hard mask, SiN layer
136‧‧‧線136‧‧‧ line
138‧‧‧溝、通道138‧‧‧ditch, passage
140‧‧‧線140‧‧‧ line
142‧‧‧溝142‧‧‧ditch
144‧‧‧介層144‧‧ ‧ layer
146‧‧‧橫向溝、通道146‧‧‧ lateral grooves, passages
148‧‧‧連接體材料148‧‧‧Connector materials
150‧‧‧冠形表面150‧‧‧ crown surface
152‧‧‧暴露表面152‧‧‧ exposed surface
154‧‧‧上表面154‧‧‧ upper surface
158‧‧‧冠形表面158‧‧‧ crown surface
160‧‧‧暴露表面160‧‧‧ exposed surface
162‧‧‧上表面162‧‧‧ upper surface
168‧‧‧上導體、導體層168‧‧‧Upper conductor and conductor layer
210‧‧‧多層結構210‧‧‧Multilayer structure
310‧‧‧多層結構310‧‧‧Multilayer structure
410‧‧‧多層結構410‧‧‧Multilayer structure
510‧‧‧多層結構510‧‧‧Multilayer structure
1100‧‧‧多層結構1100‧‧‧Multilayer structure
1200‧‧‧多層結構1200‧‧‧Multilayer structure
1300‧‧‧多層結構1300‧‧‧Multilayer structure
1400‧‧‧多層結構1400‧‧‧Multilayer structure
1500‧‧‧多層結構1500‧‧‧Multilayer structure
1600‧‧‧多層結構1600‧‧‧Multilayer structure
1700‧‧‧多層結構1700‧‧‧Multilayer structure
第1圖是一實施例中的被堆疊的材料層的一截面圖;第2-3圖是在圖案化及蝕刻第1圖的該等層之後的截面圖;第4-7圖是第2圖的該結構在沉積一電介質層之後的截面圖;第8-11圖是根據一實施例的一多層結構的俯視圖及截面圖;第12-16圖是根據一實施例的一多層結構的俯視圖及截面圖;第17-21圖說明根據一實施例的一多層結構的一俯視圖;第22A圖根據另一實施例說明一多層結構;第22B圖是第22A圖的該實施例的該多層結構的一俯視圖;第23圖是沿著截面線M1 -M1 ’截取如第22B圖中所示多層結構的一截面圖。1 is a cross-sectional view of a stacked material layer in an embodiment; FIGS. 2-3 are cross-sectional views after patterning and etching the layers of FIG. 1; FIGS. 4-7 are second A cross-sectional view of the structure of the structure after depositing a dielectric layer; FIGS. 8-11 are top and cross-sectional views of a multilayer structure according to an embodiment; and FIGS. 12-16 are a multilayer structure according to an embodiment. Top view and cross-sectional view; FIGS. 17-21 illustrate a top view of a multilayer structure according to an embodiment; FIG. 22A illustrates a multilayer structure according to another embodiment; and FIG. 22B is a view of the embodiment of FIG. 22A A top view of the multilayer structure; Fig. 23 is a cross-sectional view of the multilayer structure as shown in Fig. 22B taken along section line M 1 -M 1 '.
第24-25圖根據一實施例說明關於製造下導體條的一進一步實施例;第26-27圖說明關於形成下導體的又一實施例;第28-29圖根據一實施例說明該結構的進一步製程的視圖;第30-32圖顯示根據一實施例的一多層結構的一俯視圖及截面圖; 第33-35圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第36-40圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第41-45圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第46-50圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第51-55圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;第56-60圖顯示根據一實施例在進一步製程後的一多層結構的各種視圖;及第61-62圖是可透過這裏的實施例來製造的一交叉點記憶體結構的視圖。Figures 24-25 illustrate a further embodiment of the manufacture of the lower conductor strip in accordance with an embodiment; Figures 26-27 illustrate yet another embodiment for forming the lower conductor; and Figures 28-29 illustrate the structure in accordance with an embodiment. a further process view; FIGS. 30-32 show a top view and a cross-sectional view of a multilayer structure in accordance with an embodiment; Figures 33-35 show various views of a multilayer structure after further processing in accordance with an embodiment; Figures 36-40 show various views of a multilayer structure after further processing in accordance with an embodiment; The drawings show various views of a multilayer structure after further processing in accordance with an embodiment; Figures 46-50 show various views of a multilayer structure after further processing in accordance with an embodiment; Figures 51-55 show Embodiments Various views of a multilayer structure after further processing; Figures 56-60 show various views of a multilayer structure after further processing according to an embodiment; and Figures 61-62 are perforations permissible herein A view of a cross-point memory structure manufactured by way of example.
10‧‧‧多層結構10‧‧‧Multilayer structure
12‧‧‧基體12‧‧‧ base
14‧‧‧第一導電層14‧‧‧First conductive layer
16‧‧‧連接體或開關材料堆疊層16‧‧‧Connector or switch material stack
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US95299607P | 2007-07-31 | 2007-07-31 | |
US1724207P | 2007-12-28 | 2007-12-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200913017A TW200913017A (en) | 2009-03-16 |
TWI382454B true TWI382454B (en) | 2013-01-11 |
Family
ID=44725074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97129012A TWI382454B (en) | 2007-07-31 | 2008-07-31 | Self-aligned cross-point memory fabrication |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI382454B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060128129A1 (en) * | 2004-01-27 | 2006-06-15 | James Stasiak | Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making |
-
2008
- 2008-07-31 TW TW97129012A patent/TWI382454B/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060128129A1 (en) * | 2004-01-27 | 2006-06-15 | James Stasiak | Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making |
Also Published As
Publication number | Publication date |
---|---|
TW200913017A (en) | 2009-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7795132B2 (en) | Self-aligned cross-point memory fabrication | |
KR102167352B1 (en) | Self-aligned via and plug patterning for back end of line(beol) interconnects | |
TWI338932B (en) | Method for producing a self-aligned nanocolumnar airbridge and structure produced thereby | |
CN101512726B (en) | Efficient pitch multiplication process | |
US8298931B2 (en) | Dual damascene with amorphous carbon for 3D deep via/trench application | |
US7572572B2 (en) | Methods for forming arrays of small, closely spaced features | |
JP5532217B2 (en) | Mask pattern forming method and semiconductor processing method | |
US8114573B2 (en) | Topography based patterning | |
KR100566146B1 (en) | Self-aligned Conductive Lines for Cross-Point Magnetic Memory Integrated Circuits | |
US9245796B1 (en) | Methods of fabricating interconnection structures | |
US20100243161A1 (en) | Pitch multiplied mask patterns for isolated features | |
JP5505904B2 (en) | Two-dimensional self-assembled sub-lithography nanoscale structure and method for manufacturing the same (two-dimensional patterning using self-organized material) | |
CN109314112B (en) | The method for forming the hierarchic structure for the wiring of three-dimensional storage part bilateral | |
TW201530692A (en) | Self-aligned interconnects formed using subtractive techniques | |
CN107863295B (en) | Method for forming an ANA region in an integrated circuit | |
CN108074799B (en) | Method of forming semiconductor device using semi-bidirectional patterning | |
WO2018136712A1 (en) | Interconnect structure and method of forming the same | |
US9543502B2 (en) | Small pitch and high density contact array | |
TWI309437B (en) | Integrated circuit fabrication | |
CN1992326A (en) | Semiconductor memory element, phase-change memory element and manufacturing method thereof | |
TWI382454B (en) | Self-aligned cross-point memory fabrication | |
US9929214B2 (en) | Nano-imprinted self-aligned multi-level processing method | |
KR20090009788A (en) | Topography Oriented Patterning | |
US20230079093A1 (en) | Three-Dimensional Stack NOR Flash Memory | |
JP2008053709A (en) | Method of fabricating three-dimensional rram having 2r memory with 4f2 cell size |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |