RU2778123C1 - Мелкозернистая самоуплотняющаяся бетонная смесь - Google Patents
Мелкозернистая самоуплотняющаяся бетонная смесь Download PDFInfo
- Publication number
- RU2778123C1 RU2778123C1 RU2022103662A RU2022103662A RU2778123C1 RU 2778123 C1 RU2778123 C1 RU 2778123C1 RU 2022103662 A RU2022103662 A RU 2022103662A RU 2022103662 A RU2022103662 A RU 2022103662A RU 2778123 C1 RU2778123 C1 RU 2778123C1
- Authority
- RU
- Russia
- Prior art keywords
- fine
- grained
- concrete
- portland cement
- self
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 46
- 239000011376 self-consolidating concrete Substances 0.000 title claims abstract description 16
- 239000000654 additive Substances 0.000 claims abstract description 24
- 239000011398 Portland cement Substances 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000000996 additive effect Effects 0.000 claims abstract description 16
- 239000004927 clay Substances 0.000 claims abstract description 12
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 12
- 239000011707 mineral Substances 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 12
- 229920005646 polycarboxylate Polymers 0.000 claims abstract description 11
- 239000004576 sand Substances 0.000 claims abstract description 9
- 238000000227 grinding Methods 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 33
- 239000006004 Quartz sand Substances 0.000 claims description 12
- 239000004567 concrete Substances 0.000 abstract description 30
- 239000004566 building material Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 239000010453 quartz Substances 0.000 description 9
- 239000000945 filler Substances 0.000 description 8
- 229910021487 silica fume Inorganic materials 0.000 description 8
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 7
- 239000008030 superplasticizer Substances 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 2
- 238000005280 amorphization Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical group O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011372 high-strength concrete Substances 0.000 description 1
- 229910052900 illite Inorganic materials 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- -1 polyoxyethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Abstract
Изобретение относится к строительным материалам, в частности к мелкозернистым самоуплотняющимся бетонным смесям, и может быть использовано для монолитного бетонирования и ремонтных работ, где по технологии требуется повышенная подвижность смеси, высокая ранняя и проектная прочность мелкозернистого бетона. Мелкозернистая самоуплотняющаяся бетонная смесь содержит, мас.%: портландцемент бездобавочный класса ЦЕМ I 42,5Б с нормальной густотой 25-26% 27,0-27,1, мелкий природный песок с модулем крупности 1,8 58,6-61,0, активную минеральную добавку – порошок, получаемый из полиминеральной глины после термической обработки при температуре 700°С в течение 2 ч и последующем помоле до удельной поверхности 7800 см2/г 3,0-4,8, порошковый гиперпластификатор на основе поликарбоксилатного эфира марки «Melflux 5581 F» 0,3, воду - остальное. Технический результат – повышение предела прочности при сжатии мелкозернистого бетона. 2 табл.
Description
Изобретение относится к строительным материалам, в частности к мелкозернистым самоуплотняющимся бетонным смесям, и может быть использовано для монолитного бетонирования и ремонтных работ, где по технологии требуется повышенная подвижность смеси, высокая ранняя и проектная прочность мелкозернистого бетона.
Известен состав песчаного бетона, включающий портландцемент, кварцевый песок с модулем крупности 2,7-3,2, шлам химической водоочистки (ШХВО) с удельной поверхностью 1200-1300 м2/кг, микрокремнезем, суперпластификатор «Melflux 2651 F» и воду, при следующем соотношении компонентов, мас.%: портландцемент - 16,7-18; кварцевый песок - 68,4-70,0; ШХВО - 1,2-2,5; микрокремнезем - 0,8-2,8; суперпластификатор - 0,08-0,09; вода - 8,9-10,1 [1].
Недостатком данной бетонной смеси является недостаточно высокая прочность песчаного бетона при сжатии в возрасте 28 сут, а также необходимость применения крупных кварцевых песков с модулем крупности 2,7-3,2, являющих дефицитными во многих регионах Российской Федерации.
Известна мелкозернистая бетонная смесь, включающая портландцемент, природный песок средней крупности, микрокремнезем и метакаолин в качестве минеральных добавок, суперпластификатор полифункционального действия на основе полиоксиэтиленовых производных полиметакриловой кислоты «Динамикс ПК» и воду, при следующем соотношении компонентов, мас.%: портландцемент - 19-19,9; песок - 67-67,5; микрокремнезем - 0,8-1,81; метакаолин - 0,5-1,08; суперпластификатор - 0,1-0,2; вода - остальное [2].
Недостатком данной бетонной смеси являются низкие прочностные показатели получаемого бетона и необходимость использования песков средней крупности (Мк=2,0-2,5).
Известна мелкозернистая бетонная смесь, включающая портландцемент, кварцевый песок, наполнитель, порошковый гиперпластификатор на основе поликарбоксилатного эфира «Melflux», водоудерживающую добавку, воду, в качестве портландцемента содержит портландцемент бездобавочный с показателем нормальной густоты цементного теста не более 26%, в качестве наполнителя микрокальцит с содержанием карбоната кальция не менее 97% с частицами фракции не более 120 мкм - не менее 98%, в том числе фракции менее 20 мкм - не более 7%, в качестве водоудерживающей добавки микрокремнезем конденсированный неуплотненный с содержанием аморфного кремнезема не менее 85% и удельной поверхностью 12-25 м2/г или метакаолин с содержанием аморфного глинозема не менее 40%, аморфного кремнезема - не менее 50%, аморфизацией структуры алюмосиликата не менее 90% и удельной поверхностью 1,2-2,5 м2/г при следующем соотношении компонентов, мас.%: портландцемент бездобавочный с показателем нормальной густоты цементного теста не более 26% 15,8-23,6; кварцевый песок 35,6-61,4; микрокальцит с содержанием карбоната кальция не менее 97% с частицами фракции не более 120 мкм - не менее 98%, в том числе фракции менее 20 мкм - не более 7% 1,8-27,4; порошковый гиперпластификатор на основе поликарбоксилатного эфира «Melflux» 0,14-0,30; микрокремнезем конденсированный неуплотненный с содержанием аморфного кремнезема не менее 85% и удельной поверхностью 12-25 м2/г или метакаолин с содержанием аморфного глинозема не менее 40%, аморфного кремнезема - не менее 50%, аморфизацией структуры алюмосиликата не менее 90% и удельной поверхностью 1,2-2,5 м2/г 0,81-4,20; вода остальное [3].
Известное техническое решение позволяет получить самоуплотняющиеся бетонные смеси со значениями осадки стандартного конуса 26-28 см (П5), повысить предел прочности при сжатии в проектном возрасте мелкозернистых бетонов до уровня высокопрочных бетонов с марочной прочностью М500-М1000 и выше (класс В40-В80 и выше), использовать в их составе портландцементы сниженных марок (с активностью 33-41 МПа), а также очень мелкие кварцевые пески с модулем крупности 1,4 (известные составы №7, 8 и 10). Однако данные составы содержат достаточно дорогостоящие компоненты - наполнитель микрокальцит КМ 100, водоудерживающие добавки (микрокремнезем конденсированный неуплотненный МК-85, метакаолин ВМК-40), что способствует повышению стоимости самоуплотняющихся смесей и изделий на их основе.
Наиболее близким техническим решением к заявленному изобретению является мелкозернистая самоуплотняющаяся смесь, включающая портландцемент, кварцевый песок с модулем крупности Мкр=1,9, кварцевый наполнитель с удельной поверхностью 100 м2/кг, поликарбоксилатный суперпластификатор «Glenium ACE 430», ускоритель твердения «X-SEED 100» и воду, при следующем соотношении компонентов, мас.%: портландцемент - 44,2-44,7; кварцевый песок - 33,1-39,1; кварцевый наполнитель - 5,6-11,1; суперпластификатор - 0,3-0,4; ускоритель твердения - 0,2; вода - 10-11,1 [4].
Данное решение позволяет получать самоуплотняющиеся бетонные смеси с использованием мелких кварцевых песков с модулем крупности 1,9. Недостатками прототипа являются повышенный расход портландцемента (44,2-44,7 мас.%), необходимость применения дорогого кварцевого наполнителя с удельной поверхностью 100 м2/кг при недостаточно высокой ранней прочности в возрасте 1-их сут (20-22,2 МПа).
Технический результат, при использовании заявленного изобретения, заключается в повышении предела прочности при сжатии мелкозернистых бетонов, получаемых на основе самоуплотняющихся смесей, в раннем (1-ые сут - не менее 25 МПа) и проектном возрасте (28 сут - не менее 65 МПа (не ниже класса В50) за счет применения оптимальных комплексов добавок на основе порошкового поликарбоксилатного гиперпластификатора марки «Melflux 5581 F» и активной минеральной добавки, получаемой на основе термоактивированной (2 ч при температуре 700°С) полиминеральной глины Никитского месторождения Республики Мордовия, измельченный до удельной поверхности 7800 см2/г.
Сущность изобретения заключается в том, что мелкозернистая самоуплотняющаяся бетонная смесь содержит портландцемент бездобавочный класса ЦЕМ I 42,5Б с нормальной густотой 25-26%, мелкий природный песок с модулем крупности 1,8, порошок, получаемый из полиминеральной глины после термической обработки при температуре 700°С в течение 2 ч и последующем помоле до удельной поверхности 7800 см2/г, порошковый гиперпластификатор на основе поликарбоксилатного эфира марки «Melflux 5581 F» и воду, при следующем соотношении компонентов, мас.%:
портландцемент класса ЦЕМ I 42,5Б | |
с нормальной густотой 25-26% | 27,0-27,1 |
мелкий природный песок с модулем крупности 1,8 | 58,6-61,0 |
порошок, получаемый из полиминеральной глины | |
после термической обработки при температуре 700°С | |
в течение 2 ч и последующем помоле до удельной | |
поверхности 7800 см2/г | 3,0-4,8 |
порошковый гиперпластификатор на основе | |
поликарбоксилатного эфира «Melflux 5581 F» | 0,3 |
вода | остальное |
Для изготовления составов мелкозернистой самоуплотняющейся бетонной смеси использовались:
- портландцемент класса ЦЕМ I 42,5Б с нормальной густотой 25-26% производства ОАО «Мордовцемент», ГОСТ 31108-2020 «Цементы общестроительные. Технические условия»;
- природный мелкий кварцевый песок Болотниковского карьера Республики Мордовия с частицами размером не более 5 мм, модулем крупности 1,8, ГОСТ 8736-2014 «Песок для строительных работ. Технические условия»;
- активная минеральная добавка на основе термоактивированной полиминеральной глины Никитского месторождения Республики Мордовия;
- порошковый гиперпластификатор на основе поликарбоксилатного эфира марки «Melflux 5581 F» производства BASF Construction Solutions (Trostberg, Германия);
- вода для бетонов и строительных растворов по ГОСТ 23732-2011.
Способ приготовления активной минеральной добавки на основе полиминерального глинистого сырья заключается в предварительном измельчении исходного сырья (полиминеральной глины Никитского месторождения Республики Мордовия с содержанием 62% реакционных минералов (каолинита и иллита) до фракции не более 2,5 мм, термической обработке при температуре 700°С в течение 2 ч и последующем помоле до удельной поверхности 7800 см2/г. Оптимизация технологического режима получения активной минеральной добавки осуществлялась на основе результатов исследований, проведенных для следующих комбинаций факторов: температура обжига - 400-800°С; длительность обжига - 2-4 ч; концентрация добавки - 2-18% от массы вяжущего.
Смешивание компонентов бетонной смеси осуществляют последовательно, причем первоначально в смесителе перемешивают портландцемент и порошковый гиперпластификатор в течение 1-2 мин, затем засыпают минеральную добавку на основе полиминерального глинистого сырья и перемешивают в течение 1-2 мин, после чего вводят кварцевый песок и перемешивают сухую смесь до однородности в течение 1-2 мин. На заключительном этапе добавляют требуемое количество воды и перемешивают до получения бетонной смеси требуемой подвижности и однородности. Общее время приготовления бетонной смеси составляет от 8 до 10 мин (данное время включает в себя дополнительные операции по засыпке компонентов).
Для определения подвижности бетонной смеси, как и для прототипа, определялся расплыв из конуса Хегерманна по ГОСТ 310.4-81 «Цементы. Методы определения прочности при изгибе и сжатии». Кроме того, была определена осадка бетонных смесей из стандартного конуса согласно ГОСТ 10181-2014 «Смеси бетонные. Методы испытаний». Согласно [5], при разработке составов самоуплотняющихся мелкозернистых и тонкозернистых бетонных смесей классов по удобоукладываемости SF1-SF3 осадка стандартного конуса должна составлять от 25,5 до 28 см.
После приготовления бетонной смеси изготавливались образцы-балочки размером 40*40*160 мм и образцы-кубы с длиной ребра 100 мм по ГОСТ 10180 «Бетоны. Методы определения прочности по контрольным образцам». Все образцы до проектного возраста в 28 сут хранились в нормальных условиях (температура 20±2°С, относительная влажность окружающего воздуха не менее 90%, создаваемая в камере нормального твердения). Испытания образцов-балочек с определением предела прочности на растяжение при изгибе и при сжатии проводились в возрасте 1 и 28 сут, образов-кубов при сжатии - в проектном возрасте. Также определялась плотность образцов в равновесно-влажностном состоянии.
Составы предлагаемых мелкозернистых самоуплотняющихся бетонных смесей и прототипа представлены в табл. 1. Результаты испытаний данных составов и бетонов на их основе приведены в табл. 2.
Подвижность бетонных смесей по предлагаемой рецептуре при расплыве из конуса Хегермана 230-280 мм, что сопоставимо или выше прототипа (220-240 мм), осадка стандартного конуса 26-28 см (марка по подвижности согласно ГОСТ 7473-2010 - П5). Согласно [5], предлагаемые составы можно отнести к самоуплотняющимся смесям с осадкой конуса не менее 26 см и диаметром расплыва не менее 55 см.
Из мелкозернистой самоуплотняющейся бетонной смеси были получены бетоны с прочностью при сжатии на 1-ые сут твердения 25,6-31,5 МПа и в проектном возрасте 66,7-72,1 МПа (на образца-кубах 100*100*100 мм), что соответствует классам В50-В55. Плотность бетонов в равновесно-влажностном состоянии в возрасте 28 сут составляет 2 282-2 298 кг/м3.
Таким образом, по сравнению с известным техническим решением предлагаемое изобретение позволяет получить мелкозернистые самоуплотняющиеся бетонные смеси с повышенными показателями предела прочности при сжатии в раннем (1 сут - не менее 25 МПа) и проектном возрасте (28 сут - не менее 65 МПа (не ниже класса В50)) без использования ускорителей твердения и дорогого кварцевого наполнителя с удельной поверхностью 100 м2/г, расширить номенклатуру мелкозернистых самоуплотняющихся бетонов с возможностью применения в их составе активной минеральной добавки (взамен более дорогих добавок - микрокремнезема и метакаолина) на основе термоактивированной глины и мелких природных кварцевых песков с модулем крупности 1,8, широко распространенных во многих регионах Российской Федерации.
Источники информации
1. RU 2569947, МПК С04В 28/04, C04B 18/04, C04B 24/24, C04B 103/46, опубл. 10.12.2015.
2. RU 2627344, МПК С04В 28/04, C04B 18/04, C04B 18/14, С04В 24/24, C04B 111/20, C04B 103/32, опубл. 07.08.2017.
3. RU 2657303, МПК С04В 28/04, C04B 14/06, C04B 14/26, С04В 24/26, C04B 103/32, C04B 103/46, C04B 111/20, опубл. 13.06.2018.
4. RU 2603991, МПК С04В 28/04, C04B 24/24, C04B 103/32, C04B 103/14, C04B 111/62, опубл. 10.12.2016.
5. Калашников В.И. Расчет составов высокопрочных самоуплотняющихся бетонов / В.И. Калашников // Строительные материалы. 2008. №10. С. 4-6.
Таблица 1 - Составы мелкозернистых самоуплотняющихся бетонных смесей
№ состава |
Портландцемент (удельная поверхность 360 м2/кг) | Портландцемент (класс ЦЕМ I 42,5Б) |
Кварцевый песок с модулем крупности 1,9 |
Кварцевый песок с модулем крупности 1,8 |
Кварцевый наполнитель, Sуд=100 м2/кг |
Активная минеральная добавка на основе термоактивированной полиминеральной глины | Поликарбоксилатный суперпластификатор «Glenium ACE 430» |
Гиперпластификатор «Melflux 5581 F» |
Ускоритель твердения «X-SEED 100» |
Вода |
1 Прототип | 44,2 | - | 33,1 | - | 11,1 | - | 0,3 | - | 0,2 | 11,1 |
2 Прототип | 44,7 | - | 39,1 | - | 5,6 | - | 0,4 | - | 0,2 | 10,0 |
3 | - | 27,0 | - | 61,0 | - | 3,0 | - | 0,3 | - | 8,7 |
4 | - | 27,1 | - | 58,6 | - | 4,8 | - | 0,3 | - | 9,2 |
Таблица 2 - Свойства мелкозернистых самоуплотняющихся бетонных смесей,
мелкозернистых бетонов на их основе
№ состава |
Подвижность смеси | Образцы-балочки размером 40*40*160 мм | Образцы-кубы 100*100*100 мм |
||||||
Расплыв из конуса Хегерманна, мм | Осадка стандартного конуса (марка смеси по подвижности), см | Прочность при изгибе, МПа, в возрасте, сут |
Прочность при сжатии, МПа, в возрасте, сут |
Плотность в проектном возрасте, кг/м3 | Прочность при сжатии в проектном возрасте, МПа (класс бетона) |
||||
1 | 28 | 1 | 28 | ||||||
1 Прототип | 220-240 | -* | -* | -* | 20,0 | -* | -* | -* | |
2 Прототип | 220-240 | -* | -* | -* | 22,2 | -* | -* | -* | |
3 | 230 | 26 (П5) | 5,60 | 8,69 | 25,6 | 66,3 | 2 298 | 66,7 (В50) | |
4 | 280 | 28 (П5) | 5,96 | 8,23 | 31,5 | 71,2 | 2 282 | 72,1 (В55) |
Примечание:
*Указанный показатель бетонной смеси и бетона для прототипа не определялся.
Claims (2)
- Мелкозернистая самоуплотняющаяся бетонная смесь, состоящая из портландцемента, кварцевого песка, активной минеральной добавки, пластифицирующей добавки, воды, отличающаяся тем, что в качестве портландцемента используют портландцемент бездобавочный класса ЦЕМ I 42,5Б с нормальной густотой 25-26%, в качестве кварцевого песка - мелкий природный песок с модулем крупности 1,8, в качестве активной минеральной добавки - порошок, получаемый из полиминеральной глины после термической обработки при температуре 700°С в течение 2 ч и последующем помоле до удельной поверхности 7800 см2/г, в качестве пластифицирующей добавки - порошковый гиперпластификатор на основе поликарбоксилатного эфира марки «Melflux 5581 F», при следующем соотношении компонентов, мас.%:
-
портландцемент класса ЦЕМ I 42,5Б с нормальной густотой 25-26% 27,0-27,1 мелкий природный песок с модулем крупности 1,8 58,6-61,0 порошок, получаемый из полиминеральной глины после термической обработки при температуре 700°С в течение 2 ч и последующем помоле до удельной поверхности 7800 см2/г 3,0-4,8 порошковый гиперпластификатор на основе поликарбоксилатного эфира «Melflux 5581 F» 0,3 вода остальное
Publications (1)
Publication Number | Publication Date |
---|---|
RU2778123C1 true RU2778123C1 (ru) | 2022-08-15 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2829956C1 (ru) * | 2023-10-06 | 2024-11-11 | Филиал ФГБУ "ЦНИИП Минстроя России" Дальневосточный научно-исследовательский, проектно-конструкторский и технологический институт по строительству (Филиал ФГБУ "ЦНИИП Минстроя России" ДальНИИС) | Бетонная смесь и способ ее приготовления |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2535782B1 (es) * | 2013-10-14 | 2016-02-16 | Abengoa Solar New Technologies, S.A. | Hormigón autocompactable de alta resistencia y su procedimiento de obtención |
RU2603991C1 (ru) * | 2015-05-13 | 2016-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" | Мелкозернистая самоуплотняющаяся бетонная смесь |
RU2627344C1 (ru) * | 2016-07-04 | 2017-08-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Бетонная смесь |
RU2016117452A (ru) * | 2016-05-04 | 2017-11-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ | Комплексная добавка к портландцементу |
RU2649996C1 (ru) * | 2017-03-22 | 2018-04-06 | Артемий Сергеевич Балыков | Мелкозернистая бетонная смесь |
RU2657303C1 (ru) * | 2017-05-31 | 2018-06-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" | Мелкозернистый бетон и способ приготовления бетонной смеси для его получения |
RU2679322C1 (ru) * | 2018-03-13 | 2019-02-07 | Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) | Самоуплотняющийся бетон |
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2535782B1 (es) * | 2013-10-14 | 2016-02-16 | Abengoa Solar New Technologies, S.A. | Hormigón autocompactable de alta resistencia y su procedimiento de obtención |
RU2603991C1 (ru) * | 2015-05-13 | 2016-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Поволжский государственный технологический университет" | Мелкозернистая самоуплотняющаяся бетонная смесь |
RU2016117452A (ru) * | 2016-05-04 | 2017-11-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ | Комплексная добавка к портландцементу |
RU2627344C1 (ru) * | 2016-07-04 | 2017-08-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Тульский государственный университет" (ТулГУ) | Бетонная смесь |
RU2649996C1 (ru) * | 2017-03-22 | 2018-04-06 | Артемий Сергеевич Балыков | Мелкозернистая бетонная смесь |
RU2657303C1 (ru) * | 2017-05-31 | 2018-06-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" | Мелкозернистый бетон и способ приготовления бетонной смеси для его получения |
RU2679322C1 (ru) * | 2018-03-13 | 2019-02-07 | Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) | Самоуплотняющийся бетон |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2829956C1 (ru) * | 2023-10-06 | 2024-11-11 | Филиал ФГБУ "ЦНИИП Минстроя России" Дальневосточный научно-исследовательский, проектно-конструкторский и технологический институт по строительству (Филиал ФГБУ "ЦНИИП Минстроя России" ДальНИИС) | Бетонная смесь и способ ее приготовления |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Murthi et al. | Enhancing the strength properties of high-performance concrete using ternary blended cement: OPC, nano-silica, bagasse ash | |
Aydin et al. | Characterization of high-volume fly-ash cement pastes for sustainable construction applications | |
US6767399B2 (en) | Admixture for producing cementitious compositions having good fluidity and high early compressive strength | |
RU2649996C1 (ru) | Мелкозернистая бетонная смесь | |
Tahwia et al. | Characteristics of sustainable high strength concrete incorporating eco-friendly materials | |
US20160289121A1 (en) | High strength concrete composition and method | |
ITMI982118A1 (it) | Additivi di lavorazione migliorati per cementi idraulici. | |
RU2233254C2 (ru) | Композиция для получения строительных материалов | |
CN103339084A (zh) | 具有低熟料含量的水硬性粘合剂 | |
Zhao et al. | The effect of the material factors on the concrete resistance against carbonation | |
Djamila et al. | Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC | |
JP2775535B2 (ja) | 流動性水硬性組成物 | |
RU2525565C1 (ru) | Бетонная смесь | |
RU2778123C1 (ru) | Мелкозернистая самоуплотняющаяся бетонная смесь | |
Gelim et al. | Mechanical and physical properties of fly ash foamed concrete | |
RU2725559C1 (ru) | Литая и самоуплотняющаяся бетонная смесь для производства монолитного бетона и сборных изделий из железобетона | |
RU2729763C1 (ru) | Тяжелый диопсидовый бетон с высокой прочностью | |
Anandan et al. | Strength Properties of Processed Fly Ash Concrete. | |
Ravinder et al. | Study on compressive strength of concrete on partial replacement of cement with ground granulated blast furnace slag (GGBS) | |
JP2000239052A (ja) | 高強度透水性コンクリートおよびその製造方法 | |
JP2853989B2 (ja) | 高耐久性セメント組成物 | |
RU2482086C1 (ru) | Бетонная смесь | |
Ojha et al. | Design of low carbon high performance concrete incorporating ultrafine materials." | |
RU2808808C1 (ru) | Сырьевая смесь для производства плит бетонных тротуарных | |
Sobolev et al. | Class F fly ash assessment for use in concrete pavements |