RU2674790C1 - Способ изготовления изделий из алюминиево-медно-литиевого сплава с улучшенными усталостными свойствами - Google Patents
Способ изготовления изделий из алюминиево-медно-литиевого сплава с улучшенными усталостными свойствами Download PDFInfo
- Publication number
- RU2674790C1 RU2674790C1 RU2016128047A RU2016128047A RU2674790C1 RU 2674790 C1 RU2674790 C1 RU 2674790C1 RU 2016128047 A RU2016128047 A RU 2016128047A RU 2016128047 A RU2016128047 A RU 2016128047A RU 2674790 C1 RU2674790 C1 RU 2674790C1
- Authority
- RU
- Russia
- Prior art keywords
- fabric
- wall
- distributor
- casting
- semi
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000001989 lithium alloy Substances 0.000 title claims abstract description 13
- -1 aluminium-copper-lithium Chemical compound 0.000 title claims abstract description 7
- 229910000733 Li alloy Inorganic materials 0.000 title claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 title abstract description 12
- 239000004744 fabric Substances 0.000 claims abstract description 65
- 238000005266 casting Methods 0.000 claims abstract description 39
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 31
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 19
- 239000000956 alloy Substances 0.000 claims abstract description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 19
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 238000009749 continuous casting Methods 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 239000000155 melt Substances 0.000 claims abstract description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- 230000035882 stress Effects 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052744 lithium Inorganic materials 0.000 claims description 9
- 239000006104 solid solution Substances 0.000 claims description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 238000007711 solidification Methods 0.000 claims description 6
- 230000008023 solidification Effects 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 4
- 238000007872 degassing Methods 0.000 claims description 4
- 238000005242 forging Methods 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 238000003754 machining Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 239000011265 semifinished product Substances 0.000 claims 5
- 239000000126 substance Substances 0.000 abstract description 2
- 239000004411 aluminium Substances 0.000 abstract 1
- 238000005272 metallurgy Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 17
- 239000011572 manganese Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 8
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 6
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 239000003351 stiffener Substances 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910017539 Cu-Li Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229940089401 xylon Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/21—Presses specially adapted for extruding metal
- B21C23/212—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
- B22D11/003—Aluminium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/0408—Moulds for casting thin slabs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/041—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/103—Distributing the molten metal, e.g. using runners, floats, distributors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/116—Refining the metal
- B22D11/119—Refining the metal by filtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/04—Casting aluminium or magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/18—Alloys based on aluminium with copper as the next major constituent with zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Continuous Casting (AREA)
- Metal Rolling (AREA)
- Conductive Materials (AREA)
- Air Bags (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Laminated Bodies (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Изобретение относится к деформированным изделиям из алюминиево-медно-литиевых сплавов и может быть использовано для изготовления конструктивных элементов для авиационной и космической промышленности. Способ полунепрерывной разливки алюминиево-медно-литиевого сплава включает получение ванны жидкого металла из сплава, содержащего, мас.%: Cu 2,0-6,0; Li 0,5-2,0; Mg 0-1,0; Ag 0-0,7; Zn 0-1,0; и по меньшей мере один элемент, выбранный из группы Zr, Mn, Cr, Sc, Hf и Ti, примеси ≤ 0,15 в сумме и ≤ 0,05 каждой, остальное – алюминий, полунепрерывную вертикальную разливку с получением сляба, при этом содержание водорода в ванне жидкого металла поддерживают ниже 0,4 мл/100 г, а содержание кислорода, измеренное над поверхностью расплава, ниже 0,5 об.%, разливку осуществляют с использованием распределителя, выполненного из углеродной ткани, имеющего нижнюю поверхность, верхнюю поверхность, ограничивающую отверстие, через которое вводят жидкий металл, и стенку прямоугольного сечения, причем стенка содержит две продольные части, параллельные ширине сляба, и две поперечные части, параллельные толщине сляба, причем поперечные и продольные части образованы двумя тканями, первой полужесткой и запирающей тканью, обеспечивающей поддержание формы распределителя во время разливки, и второй незапирающей тканью, обеспечивающей прохождение и фильтрование жидкого металла, первая и вторая ткани связаны друг с другом без нахлестки или внахлестку и без разделяющего их зазора, причем первая ткань покрывает непрерывно по меньшей мере 30% поверхности частей стенки и расположена таким образом, чтобы поверхность жидкого металла находилась в контакте с ней по всему сечению. Способ направлен на повышение механических свойств изделий большой толщины. 2 н. и 18 з.п. ф-лы, 6 ил., 3 табл., 1 пр.
Description
Область изобретения
Изобретение относится к деформированным изделиям из алюминиевомеднолитиевых сплавов, в частности, к таким изделиям, способам их изготовления и применения, предназначенным для авиационно-космической промышленности.
Уровень техники
Прокатные изделия из алюминиевого сплава разрабатываются для производства конструктивных элементов, предназначенных, в частности, для авиационной и космической промышленности.
Алюминиевомеднолитиевые сплавы являются особенно перспективными для изготовления этого типа продукции. Авиационная промышленность предъявляет высокие требования к сопротивлению усталостным напряжениям. Такие требования особенно трудно выполнять в случае толстых изделий. Действительно, учитывая возможные значения толщины литых слябов, обжатие по толщине горячей деформацией достаточно низкое, а потому в связанных с разливкой зонах, на которых инициируются усталостные трещины, не отмечается снижение их размера в ходе горячей деформации.
Поскольку литий является чрезвычайно сильно окисляющимся, разливка алюминиевомеднолитиевых сплавов приводит в общем к образованию большего числа зон инициирования усталостной трещины, чем для сплавов типа 2XXX без лития или 7XXX. Таким образом, найденные обычно решения для получения толстолистового проката из сплавов типа 2XXX без лития или 7XXX не позволяют добиваться достаточных усталостных свойств у алюминиевомеднолитиевых сплавов.
Толстые изделия из сплава Al-Cu-Li, в частности, описаны в заявках US2005/0006008 и US2009/0159159.
В заявке WO2012/110717 предлагается для повышения свойств, особенно усталостных, алюминиевых сплавов, содержащих, в частности, по меньшей мере 0,1% Mg и/или 0,1% Li, осуществлять во время разливки ультразвуковую обработку. Однако такой тип обработки остается трудноосуществимым для тех количеств, которые необходимы при изготовлении толстых плит.
Существует потребность в толстых изделиях из алюминиевомеднолитиевого сплава, имеющих более высокие свойства по сравнению со свойствами известных изделий, в частности, усталостные свойства, обладающих при этом выгодными свойствами вязкости и свойствами статического механического сопротивления. В то же время, существует потребность в простом экономичном способе получения таких изделий.
Сущность изобретения
Первым объектом изобретения является способ изготовления изделия из алюминиевого сплава, включающий этапы, на которых:
(a) получают ванну жидкого металла из сплава, содержащего, в мас.%, Cu: 2,0-6,0; Li: 0,5-2,0; Mg: 0-1,0; Ag: 0-0,7; Zn: 0-1,0; и по меньшей мере один элемент, выбираемый из Zr, Mn, Cr, Sc, Hf и Ti, причем количество упомянутого элемента, если он выбран, составляет от 0,05 до 0,20 мас.% для Zr, 0,05 до 0,8 мас.% для Mn, 0,05 до 0,3 мас.% для Cr и для Sc, 0,05 до 0,5 мас.% для Hf и от 0,01 до 0,15 мас.% для Ti, Si≤0,1; Fe≤0,1; прочие≤0,05 каждый и≤0,15 всего,
(b) разливают упомянутый сплав посредством вертикальной полунепрерывной разливки для получения сляба толщиной T и шириной W таким образом, что при затвердевании
- содержание водорода в упомянутой ванне жидкого металла (1) ниже 0,4 мл/100г,
- содержание кислорода, измеряемое над жидкой поверхностью (14, 15), ниже 0,5 объемных %,
- используемый для разливки распределитель (7) выполнен из ткани, содержащей по существу углерод, он имеет нижнюю поверхность (76), верхнюю поверхность, определяющую отверстие (71), через которое подается жидкий металл, и стенку практически прямоугольного сечения, причем стенка имеет две продольные части (720, 721), параллельные ширине W, и две поперечные части (730, 731), параллельные толщине T, причем упомянутые поперечные и продольные части образованы по меньшей мере двумя тканями, первой полужесткой и практически запирающей тканью (77), обеспечивающей поддержание формы распределителя во время разливки, и второй незапирающей тканью (78), обеспечивающей возможность прохождения и фильтрования жидкости, причем упомянутые первая и вторая ткани связаны друг с другом без нахлестки или внахлестку и без разделяющего их зазора, причем упомянутая первая ткань непрерывно покрывает по меньшей мере 30% поверхности упомянутых частей (720, 721, 730, 731) стенки и расположена так, чтобы жидкая поверхность находилась в контакте с ней по всему сечению.
Другим объектом изобретения является распределитель, предназначенный для полунепрерывной разливки слябов из алюминиевого сплава, выполненный из ткани, содержащей по существу углерод, имеющий нижнюю поверхность (76), верхнюю поверхность, определяющую отверстие (71), через которое подается жидкий металл, и стенку практически прямоугольного сечения, причем стенка содержит две продольные части (720, 721), параллельные ширине W, и две поперечные (730, 731), параллельные толщине Т, причем упомянутые поперечные и продольные части образованы по меньшей мере двумя тканями, первой полужесткой и практически запирающей тканью (77), обеспечивающей поддержание формы распределителя во время разливки, и второй незапирающей тканью (78), обеспечивающей возможность прохождения и фильтрования жидкости, причем упомянутые первая и вторая ткани связаны друг с другом без нахлестки или внахлестку и без разделяющего их зазора, причем упомянутая первая ткань непрерывно покрывает по меньшей мере 30% поверхности упомянутых частей (720, 721, 730, 731) стенки и расположена так, чтобы жидкая поверхность находилась в контакте с ней по всему сечению.
Описание рисунков
Фиг.1 - схематичное изображение образцов, используемых для испытаний на усталость гладких образцов (Фиг. 1a) и образцов с отверстием (Фиг. 1b). Размеры приведены в мм.
Фиг.2 - общая схема устройства кристаллизации, используемого в варианте осуществления изобретения.
Фиг.3 - общая схема распределителя, используемого в способе по изобретению.
Фиг.4 представляет изображения дна и поперечных и продольных частей стенки распределителя по варианту осуществления изобретения.
Фиг.5 показывает взаимосвязь между параметром усталости на гладком образце и содержанием водорода в ванне жидкого металла при затвердевании (Фиг.5a) или содержанием кислорода, измеренным над жидкой поверхностью при затвердевании (Фиг.5b).
Фиг.6 показывает кривые Велера, полученные при испытаниях 3, 7 и 8 в направлении L-T (Фиг.6a) и T-L (Фиг. 6b).
Описание изобретения
Если не указано иное, все указания, касающиеся химического состава сплавов, выражаются в массовых процентах от общей массы сплава. Выражение 1,4Сu означает, что выраженное в мас.% содержание меди умножается на 1,4. Обозначение сплавов приводится в соответствии с известными специалисту положениями «Алюминиевой ассоциации» (The Aluminium Association). Если не указано иное, применимы определения металлургических состояний согласно европейскому стандарту EN 515.
Характеристики механических свойств при статическом растяжении или, другими словами, прочность на разрыв Rm, условный предел текучести при 0,2% удлинения Rp0,2 и относительное удлинение при разрыве А% определены посредством испытания на растяжение по стандарту NF EN ISO 6892-1, причем отбор образцов и направление испытания определены согласно стандарту EN 485-1.
Усталостные свойства на гладких образцах измеряются в окружающем воздухе при напряжении максимальной амплитуды 242 МПа, частоте 50 Гц, коэффициенте асимметрии цикла напряжений R=0,1, на таких образцах, как изображенные на фиг.1а, отбираемых на полуширине и полутолщине плит в направлении T-L. Условия испытания соответствуют стандарту ASTM E466. Определяют среднее логарифмическое результатов, полученных на по меньшей мере 4 образцах.
Усталостные свойства на образцах с отверстием измеряются в окружающем воздухе при переменных уровнях напряжения, при частоте 50 Гц, коэффициенте асимметрии цикла напряжений R=0,1, на таких образцах, как изображенные на фиг.1b, Kt=2,3, отбираемых в центре и на полутолщине плит в направлении L-T и T-L. Использовали уравнение Уокера для определения максимального представительного значения напряжения при 50% неразрушения при 100 000 циклов. Для выполнения этого рассчитывается качественный коэффициент усталости (IQF) для каждой точки кривой Велера по формуле
где σmax - максимальное напряжение, прикладываемое к данному образцу, N - число циклов до разрушения, N0 равно 100 000, а n=-4,5. Приведен IQF, соответствующий медиане, т.е. 50% разрушения при 100 000 циклах.
В рамках изобретения деформированное изделие представляет собой изделие, толщина которого составляет по меньшей мере 6 мм. Предпочтительно, толщина изделий по изобретению составляет по меньшей мере 80 мм, а предпочтительнее по меньшей мере 100 мм. В варианте осуществления изобретения толщина деформированных изделий составляет по меньшей мере 120 мм или предпочтительно 140 мм. Толщина толстых изделий по изобретению, как правило, составляет не более 240 мм, обычно не более 220 мм и предпочтительно не более 180 мм.
Если не указано иное, применяются определения стандарта EN 12258. В частности, плита по изобретению является прокатным изделием прямоугольного поперечного сечения, равномерная толщина которого составляет по меньшей мере 6 мм и не превышает 1/10 ширины.
В данном случае «элементом конструкции» или «конструктивным элементом» механической конструкции называют механическую деталь, для которой механические статические и/или динамические свойства чрезвычайно важны для характеристик конструкции и для которой обычно требуется или выполняется расчет конструкции. Как правило, речь идет об элементах, повреждение которых способно подвергнуть угрозе безопасность упомянутой конструкции, ее эксплуатационников, пользователей или других. Для летательного аппарата эти конструктивные элементы включают, в частности, те элементы, которые образуют фюзеляж (такие как обшивка фюзеляжа (fuselage skin по-английски), элементы жесткости или стрингеры фюзеляжа (stringers), шпангоуты (bulkheads), каркас фюзеляжа (circumferential frames), крылья (такие как обшивка крыла (wing skin), элементы жесткости (stringers или stiffeners), нервюры (ribs) и лонжероны (spars) и хвостовое оперение, состоящее, в частности, из горизонтальных и вертикальных стабилизаторов (horizontal or vertical stabilisers), а также половые настилы (floor beams), направляющие кресел (seat tracks) и двери.
Здесь «всей разливочной установкой» называют комплекс устройств, позволяющих преобразовывать металл, находящийся в каком-то виде, в полуфабрикат черновой формы через жидкую фазу. Разливочная установка может содержать многочисленные устройства, такие как одна или более печей, необходимых для плавки металла (плавильная печь) и/или его выдержки (томильная печь) при определенной температуре и/или операций подготовки жидкого металла и доводки по составу («печь для получения сплавов»), одну или более емкостей (или «ковшей»), предназначенных для осуществления обработки с целью очистки от примесей, растворенных или находящихся во взвешенном состоянии в жидком металле, причем эта обработка может заключаться в фильтровании жидкого металла на фильтровальной среде в «фильтровальном ковше» или во введении в расплав так называемого «обрабатывающего» газа, который может быть инертным или реакционноспособным, в «ковше для дегазации», устройство кристаллизации жидкого металла (или «разливочная машина») посредством полунепрерывной вертикальной разливки с прямым охлаждением в литейном колодце, которое может включать такие устройства, как литейная форма (или «кристаллизатор»), устройство подачи жидкого металла (или «разливочный стакан») и систему охлаждения, причем эти различные печи, емкости и устройства кристаллизации связаны между собой устройствами переноса или каналами, называемыми «желобами», в которых может переноситься жидкий металл.
Авторы настоящего изобретения установили, что совершенно удивительным образом можно получить толстые деформированные изделия из алюминиевомеднолитиевого сплава, имеющие повышенные характеристики усталости, изготовляя эти плиты с помощью следующего способа.
На первом этапе получают ванну жидкого металла из сплава, содержащего, в мас.%, Cu: 2,0-6,0; Li: 0,5-2,0; Mg: 0-1,0; Ag: 0-0,7; Zn: 0-1,0; и по меньшей мере один элемент, выбираемый из Zr, Mn, Cr, Sc, Hf и Ti, причем количество упомянутого элемента, если он выбран, составляет от 0,05 до 0,20 мас.% для Zr, от 0,05 до 0,8 мас.% для Mn, от 0,05 до 0,3 мас.% для Cr и для Sc, от 0,05 до 0,5 мас.% для Hf и от 0,01 до 0,15 мас.% для Ti, Si≤0,1; Fe≤0,1; прочие≤0,05 каждый и≤0,15 всего, остальное алюминий.
Преимущественный сплав для способа по изобретению содержит, в мас.%, Cu: 3,0-3,9; Li: 0,7-1,3; Mg: 0,1-1,0, по меньшей мере один элемент, выбираемый из Zr, Mn и Ti, причем количество упомянутого элемента, если он выбран, составляет от 0,06 до 0,15 мас.% для Zr, от 0,05 до 0,8 мас.% для Mn и от 0,01 до 0,15 мас.% для Ti; Ag: 0-0,7; Zn≤0,25; Si≤0,08; Fe≤0,10; прочие≤0,05 каждый и≤0,15 всего, остальное алюминий.
Преимущественно, содержание меди составляет по меньшей мере 3,2 мас.%. Содержание лития составляет предпочтительно от 0,85 до 1,15 мас.% и предпочтительнее от 0,90 до 1,10 мас.%. Содержание магния составляет предпочтительно от 0,20 до 0,6 мас.%. Обычно преимущественной считается одновременная добавка марганца и циркония. Предпочтительно, содержание марганца составляет от 0,20 до 0,50 мас.% и содержание циркония составляет от 0,06 до 0,14 мас.%. Преимущественно, содержание серебра составляет от 0,20 до 0,7 мас.%. Целесообразно, чтобы содержание серебра составляло по меньшей мере 0,1 мас.%. В варианте осуществления изобретения содержание серебра составляет по меньшей мере 0,20 мас.%. Предпочтительно, содержание серебра составляет не более 0,5 мас.%. В варианте осуществления изобретения содержание серебра ограничено 0,3 мас.%. Предпочтительно, содержание кремния составляет не более 0,05 мас.%, а содержание железа составляет не более 0,06 мас.%. Преимущественно, содержание титана составляет от 0,01 до 0,08 мас.%. В варианте осуществления изобретения содержание цинка составляет не более 0,15 мас.%.
Предпочтительным алюминиевомеднолитиевым сплавом является сплав AA2050.
Такую ванну жидкого металла получают в печи разливочной установки. Например, из US 5415220 известно использование литийсодержащих расплавленных солей, таких как смеси KCl/LiCl, в плавильной печи для пассивации сплава во время его переноса к разливочной установке. Однако авторы настоящего изобретения получили великолепные усталостные свойства для толстых плит без использования литийсодержащей расплавленной соли в плавильной печи, поддерживая в этой печи атмосферу с низким содержанием кислорода, и полагают, что присутствие соли в плавильной печи может в некоторых случаях оказывать вредное влияние на усталостные свойства толстых деформированных изделий. Преимущественно, литийсодержащую расплавленную соль не используют во всей разливочной установке. В преимущественном варианте осуществления не используют расплавленную соль во всей разливочной установке. Предпочтительно, поддерживают в печи или печах разливочной установки содержание кислорода ниже 0,5 объемных % и предпочтительно ниже 0,3 объемных %. Однако можно допустить содержание кислорода менее 0,05 объемных % и даже менее 0,1 объемных % в печи или печах разливочной установки, что благоприятно, в частности, с точки зрения экономических аспектов способа. Преимущественно, печь или печи разливочной установки являются индукционными печами. Авторы настоящего изобретения установили, что такой тип печей является наиболее подходящим, несмотря на перемешивание расплавленного металла от индукционного нагрева.
Эта ванна жидкого металла затем обрабатывается в ковше для дегазации и в фильтровальном ковше так, чтобы содержание водорода в ней было ниже 0,4 мл/100г и предпочтительно ниже 0,35 мл/100г. Содержание водорода в жидком металле измеряется с помощью имеющейся в продаже аппаратуры, такой как прибор, продаваемый под маркой ALSCANTM, известный специалисту, при этом зонд обдувается азотом. Преимущественно, содержание кислорода в атмосфере, находящейся в контакте с ванной жидкого металла в плавильной печи в ходе этапов дегазации, фильтрования, ниже 0,5 объемных % и предпочтительно ниже 0,3 объемных %. Предпочтительно, содержание кислорода в атмосфере, находящейся в контакте с ванной жидкого металла, ниже 0,5 объемных % и предпочтительно ниже 0,3 объемных % для всей разливочной установки. Однако можно допустить содержание кислорода по меньшей мере 0,05 объемных % и даже по меньшей мере 0,1 объемных % для всей разливочной установки, что благоприятно, в частности, с точки зрения экономических аспектов способа.
Ванна жидкого металла после этого затвердевает (кристаллизуется) в виде сляба. Сляб представляет собой алюминиевый блок практически в форме параллелепипеда длиной L, шириной W и толщиной T. Осуществляют контроль атмосферы над жидкой поверхностью во время затвердевания. На фиг.2 представлен пример устройства, позволяющего контролировать атмосферу над жидкой поверхностью во время затвердевания.
В этом примере подходящего устройства жидкий металл, поступающий по желобу (63), подается в разливочный стакан (4), контролируемый посредством стопора (8), который может перемещаться в направлении вверх и вниз (81), в кристаллизаторе (31), помещенном на ложном дне (21). Алюминиевый сплав затвердевает при прямом охлаждении (5). Алюминиевый сплав (1) имеет по меньшей мере одну твердую поверхность (11, 12, 13) и по меньшей мере одну жидкую поверхность (14, 15). Подъемник (2) позволяет поддерживать практически постоянным уровень жидкой поверхности (14, 15). Распределитель (7) обеспечивает возможность распределения жидкого металла. Крышка (62) покрывает жидкую поверхность. Крышка может содержать уплотнения (61) для обеспечения герметичности с разливочным столом (32). Жидкий металл в желобе (63) может быть преимущественно защищен крышкой (64). В камеру (65), определенную между крышкой и разливочным столом, подается инертный газ (9). Инертный газ преимущественно выбирается из благородных газов, азота и углекислого газа или смесей этих газов. Предпочтительным инертным газом является аргон. Содержание кислорода измеряется в камере (65) над жидкой поверхностью. Расход инертного газа может регулироваться для достижения требуемого содержания кислорода. Однако целесообразно поддерживать достаточный подсос в литейном колодце (10), благодаря насосу (101). Действительно, авторы настоящего изобретения установили, что вообще не существует достаточной герметичности между кристаллизатором (31) и затвердевшим металлом (5), что приводит к диффузии атмосферы из литейного колодца (10) по направлению к камере (65). Преимущественно, подсос насоса (101) таков, что давление в полости (10) ниже давления в камере (65), а это может быть достигнуто предпочтительно путем задания скорости прохождения атмосферы через открытые поверхности литейного колодца по меньшей мере 2 м/с, а предпочтительно по меньшей мере 2,5 м/с. Обычно давление в камере (65) близко к атмосферному давлению, а давление в полости (10) ниже атмосферного давления, обычно 0,95 от атмосферного давления. В рамках способа по изобретению в камере (65) поддерживают, благодаря описанным устройствам, содержание кислорода ниже 0,5 объемных % и предпочтительно ниже 0,3 объемных %.
Пример распределителя (7) из способа по изобретению представлен на фиг.3 и 4. Распределитель по изобретению выполнен из ткани, содержащей по существу углерод, он имеет нижнюю поверхность (76), обычно открытую верхнюю поверхность, определяющую отверстие, через которое подается жидкий металл (71), и стенку практически прямоугольного сечения, обычно практически постоянного, высотой h, обычно практически постоянной, причем стенка содержит две продольные части, параллельные ширине W (720, 721) сляба, и две поперечные части, параллельные толщине Т (730, 731) сляба, причем упомянутые поперечные и продольные части образованы по меньшей мере двумя тканями, первой практически запирающей и полужесткой тканью (77), обеспечивающей поддержание формы распределителя во время разливки, и второй незапирающей тканью (78), обеспечивающей возможность прохождения и фильтрования жидкости, причем первая и вторая ткани связаны друг с другом без нахлестки или внахлестку и без разделяющего их зазора, причем упомянутая первая ткань непрерывно покрывает по меньшей мере 30% поверхности упомянутых частей стенки (720, 721, 730, 731) и расположена таким образом, чтобы жидкая поверхность была в контакте с ней по всему сечению распределителя. При этом первая и вторая ткани сшиты между собой без нахлестки или внахлестку и без разделяющего их зазора, т.е. в контакте, жидкий металл не может проходить через первую ткань и отклоняться второй тканью, как в случае, например, комбинированного мешка, описанного в заявке WO 99/44719 фиг.2-5. Благодаря поддержке, обеспечиваемой первой тканью, распределитель является полужестким и сильно не деформируется при разливке. В преимущественном варианте осуществления первая ткань имеет такую высоту h1, измеряемую от верхней поверхности по окружности стенки (720, 721, 730, 731), что h1≥0,3 h и предпочтительно h1≥0,5 h, где h обозначает суммарную высоту стенки распределителя.
Так как жидкая поверхность находится в контакте с упомянутой первой запирающей тканью, жидкий металл проходит через распределитель лишь под жидкой поверхностью в определенных направлениях каждой части стенки. Предпочтительно, погруженная в жидкий металл высота стенки (720, 721, 730, 731) распределителя (7), покрытая первой тканью, равна по меньшей мере 20%, предпочтительно 40% и предпочтительнее 60% суммарной высоты погруженной стенки.
На фиг.4 изображены дно и продольные части стенки. Дно (76) обычно покрыто первой и/или второй тканью. Преимущественно, первая ткань размещается по меньшей мере в центральной части дна (76) по длине L1 и/или в центральной части продольных частей (720) и (721) по всей высоте h и по длине L2.
Преимущественно, участок поверхности, покрытый первой тканью, составляет от 30 до 90% и предпочтительно от 50 до 80% для продольных частей (720) и (721), и/или от 30 до 70% и предпочтительно от 40 до 60% для поперечных частей (730, 731) и/или от 30 до 100% и предпочтительно от 50 до 80% для дна (76).
Целесообразно, чтобы длина L1 первой ткани, расположенной в дне (76), была выше длины L2 первой ткани, расположенной в продольных частях стенок (720) и (721) в контакте с дном.
Авторы настоящего изобретения полагают, что геометрия распределителя позволяет, в частности, повысить качество потока жидкого металла, снизить турбулентности и улучшить распределение температуры.
Первая ткань и вторая ткань преимущественно получены тканьем нити, содержащей по существу углерод. Чрезвычайно целесообразно тканье графитовой нити. Обычно ткани сшиваются друг с другом. Возможно также взамен первой и второй тканей использовать единственную ткань-диффузор, имеющую по меньшей мере две тканых, более или менее плотных зоны.
Целесообразно для облегчения тканья, чтобы содержащая углерод нить была покрыта слоем, облегчающим скольжение. Этот слой может, например, содержать фторсодержащий полимер, такой как Тефлон, или полиамид, такой как ксилон.
Первая ткань является практически запирающей. Обычно речь идет о ткани, имеющей ячейки размером менее 0,5 мм, предпочтительно менее 0,2 мм. Вторая ткань является незапирающей и обеспечивает возможность прохождения расплавленного металла. Обычно речь идет о ткани, имеющей ячейки размером от 1 до 5 мм, предпочтительно от 2 до 4 мм. В варианте осуществления изобретения первая ткань покрывает местами вторую ткань, находясь при этом в тесном контакте, так чтобы не оставлять зазор между двумя тканями.
Преимущественно, полученный таким образом сляб затем обрабатывают давлением для получения деформированного изделия.
Полученный таким образом сляб затем гомогенизируют до или после необязательной механической обработки для получения формы, которая может быть подвергнута горячей деформации. В варианте осуществления сляб механически обрабатывается в виде сляба под прокатку, так что затем он подвергается горячей деформации посредством прокатки. В другом варианте осуществления сляб механически обрабатывается в виде поковки, чтобы затем подвергаться горячей деформации ковкой. Также в другом варианте осуществления сляб механически обрабатывается в виде биллетов, чтобы затем подвергаться горячей деформации прессованием. Предпочтительно, гомогенизация осуществляется при температуре от 470 до 540°C в течение промежутка времени от 2 до 30 час.
Эту гомогенизированную таким образом заготовку подвергают горячей и, необязательно, холодной прокатке для получения деформированного изделия. Температура горячей деформации преимущественно составляет по меньшей мере 350°C, а предпочтительно по меньшей мере 400°C. Степень горячей и, необязательно, холодной деформации, т.е. отношение разницы между исходной толщиной до деформации, но после возможной механической обработки, и конечной толщиной и начальной толщины составляет менее 85% и предпочтительно менее 80%. В варианте осуществления степень деформации в ходе деформирования составляет менее 75%, а предпочтительно менее 70%.
Полученное таким образом деформированное изделие затем подвергают обработке на твердый раствор и закалке. Температура обработки на твердый раствор преимущественно составляет от 470 до 540°C, предпочтительно от 490 до 530°C, а продолжительность регулируется в зависимости от толщины изделия.
Необязательно, в упомянутом деформированном, обработанном таким образом на твердый раствор изделии снимают внутренние напряжения пластической деформацией со степенью деформации не менее 1%. В случае прокатных изделий целесообразно снимать внутренние напряжения посредством регулируемого растяжения упомянутого деформированного, обработанного таким образом на твердый раствор изделия с постоянным удлинением не менее 1% и предпочтительно от 2 до 5%.
Наконец, изделие, обработанное таким образом на твердый раствор и, необязательно, после снятия внутренних напряжений, подвергают старению. Старение осуществляют в одну или более стадий при температуре, преимущественно составляющей между 130 и 160°C, в течение промежутка времени от 5 до 60 часов. Предпочтительно, после завершения старения получают металлургическое состояние T8, такое как, в частности, T851, T83, T84 или T85.
Деформированные изделия, полученные способом по изобретению, имеют выгодные свойства.
Среднее логарифмическое усталости полученных способом по изобретению деформированных изделий, толщина которых составляет по меньшей мере 80 мм, измеряемое на полутолщине в направлении TL на гладких образцах по фиг.1a при напряжении максимальной амплитудой 242 МПа, частоте 50 Гц, коэффициенте асимметрии цикла напряжений R=0,1, составляет по меньшей мере 250 000 циклов, преимущественно свойство усталости получают для полученных способом по изобретению деформированных изделий, толщина которых составляет по меньшей мере 100 мм или предпочтительно по меньшей мере 120 мм или даже по меньшей мере 140 мм.
Деформированные изделия по изобретению толщиной по меньшей мере 80 мм обладают также выгодными усталостными свойствами для образцов с отверстием, так усталостный показатель качества IQF, полученный на образцах с отверстием Kt=2,3 по фиг.1b при частоте 50 Гц в окружающей среде cо значением R=0,1, составляет по меньшей мере 180 МПа и предпочтительно по меньшей мере 190 МПа в направлении T-L.
Кроме того, полученные способом по изобретению изделия имеют выгодные статические механические характеристики. Так для деформированных изделий, толщина которых составляет по меньшей мере 80 мм, содержащих, в мас.%, Cu: 3,0-3,9; Li: 0,7-1,3; Mg: 0,1-1,0, по меньшей мере один элемент, выбираемый из Zr, Mn и Ti, причем количество упомянутого элемента, если он выбран, составляет от 0,06 до 0,15 мас.% для Zr, от 0,05 до 0,8 мас.% для Mn и от 0,01 до 0,15 мас.% для Ti; Ag: 0-0,7; Zn≤0,25; Si≤0,08; Fe ≤ 0,10; прочие ≤ 0,05 каждый и ≤ 0,15 всего, остальное алюминий, предел упругости, измеренный на четверти толщины в направлении L, составляет по меньшей мере 450 МПа и предпочтительно по меньшей мере 470 MПa, и/или измеренный предел прочности на разрыв составляет по меньшей мере 480 MПa и предпочтительно по меньшей мере 500 MПa, и/или относительное удлинение составляет по меньшей мере 5% и предпочтительно по меньшей мере 6%.
Деформированные изделия по изобретению могут быть выгодно использованы для изготовления конструктивных элементов, предпочтительно конструктивных элементов летательного аппарата. Предпочтительными конструктивными элементами летательного аппарата являются лонжероны, нервюры или шпангоуты фюзеляжа. Изобретение чрезвычайно полезно для деталей сложной формы, получаемых комплексной механической обработкой, используемых, в частности, для изготовления крыльев самолета, а также для любого другого применения, для которого выгодны свойства изделия по изобретению.
Пример
В этом примере получали толстые плиты из сплава AA2050. Слябы из сплава AA2050 отливали посредством полунепрерывной вертикальной разливки с прямым охлаждением.
Сплав получали в плавильной печи. Для примеров 1-7 использовали смесь KCl/LiCl на поверхности жидкого металла в плавильной печи. Для примеров 8-9 соль в плавильной печи не использовали. Для примеров 8-9 атмосфера в контакте с жидким металлом с содержанием кислорода ниже 0,3 объемных % для всей разливочной установки. Разливочная установка содержала кожух, расположенный над литейным колодцем, позволяющий ограничить содержание кислорода. Для испытаний 8 и 9, кроме того, использовали подсос (101), так что давление в полости (10) было ниже давления в камере (65) и так что скорость прохождения атмосферы через открытые поверхности литейного колодца составляла по меньшей мере 2 м/с. Содержание кислорода измерялось с помощью оксиметра в ходе разливки. В то же время, содержание водорода в жидком алюминии измерялось с помощью зонда типа AlscanTM с обдувкой азотом. Использовали два типа распределителей жидкого металла. Первый распределитель типа «комбинированный мешок» («Combo Bag»), такой как описанный, например, на фиг.2-6 международной заявки WO99/44719, но выполненный из ткани, содержащей по существу углерод, обозначаемый ниже «распределитель A», а второй распределитель, такой как описанный на фиг.3, обозначаемый ниже «распределитель Б», выполнен из ткани с графитовой нитью.
Условия разливки различных проведенных испытаний приведены в таблице 1.
Таблица 1 Условия разливки при различных испытаниях |
|||
Испытание | H2 [мл/100г] |
O2, измеренный над литейным колодцем (объемный%) | Распределитель |
1 | 0,41 | 0,3 | A |
2 | 0,43 | 0,1 | A |
3 | 0,37 | 0,1 | A |
4 | 0,33 | 0,1 | A |
5 | 0,35 | 0,4 | A |
6 | 0,38 | 0,3 | A |
7 | 0,47 | 0,7 | Б |
8 | 0,34 | 0,1 | Б |
9 | 0,29 | 0,1 | Б |
Слябы гомогенизировали в течение 12 часов при 505°C, механически обрабатывали до толщины примерно 365 мм, подвергали горячей прокатке до получения плит конечной толщиной от 154 до 158 мм, обрабатывали на твердый раствор при 504°C, закаливали и снимали в них внутренние напряжения посредством регулируемого растяжения с постоянным удлинением 3,5%. Полученные таким образом плиты подвергали старению в течение 18 часов при 155°C.
Статические механические свойства и вязкость разрушения характеризовали на четверти толщины. Статические механические характеристики и вязкость разрушения приведены в таблице 2.
Таблица 2 Механические характеристики |
||||
Испытание | Толщина [мм] |
Rm (L) MПa |
Rp0,2 (L) MПa |
A % (L) |
1 | 158 | 528 | 495 | 6,5 |
2 | 155 | 538 | 507 | 7,0 |
3 | 155 | 525 | 493 | 8,3 |
4 | 158 | 528 | 497 | 7,0 |
5 | 158 | 529 | 495 | 6,0 |
6 | 158 | 527 | 496 | 6,8 |
7 | 154 | 514 | 486 | 8,3 |
8 | 158 | 533 | 502 | 6,3 |
9 | 158 | 542 | 512 | 5,8 |
Усталостные свойства характеризовались на гладких образцах и образцах с отверстием для некоторых проб, отобранных на полутолщине.
Для усталостных характеристик гладких образцов испытывались четыре образца, схема которых приведена на фиг.1а, на полутолщине и полуширине в направлении TL, причем условия испытания были σ=242 MПa, R=0,1. Некоторые испытания были остановлены после 200 000 циклов, а другие были остановлены после 300 000 циклов.
Для усталостных характеристик с отверстием использовали образец, воспроизведенный на фиг.1b, значение Kt которого составляет 2,3. Образцы испытывались на частоте 50 Гц в окружающем воздухе со значением R=0,1. Соответствующие кривые Велера представлены на фиг.6a и 6б. Рассчитывали усталостный показатель качества IQF.
Таблица 3 Результаты испытаний на усталость |
|||||||
Испытание | Результаты усталости на гладком образце (число циклов) | Результаты усталости с отверстием IQF (MПa), 50% разрыв при 100 000 циклов |
|||||
Образец 1 | Образец 2 | Образец 3 | Образец 4 | Среднее логарифмическое | L-T | T-L | |
1 | 101423 | 101761 | 116820 | 118212 | 109263 | ||
2 | 102570 | 140030 | 152120 | 178860 | 140600 | ||
3 | 112453 | 163422 | 152620 | 167113 | 147138 | 175 | 152 |
4 | 101900 | 110300 | 139400 | 144100 | 122580 | ||
5 | 93400 | 105000 | 112600 | 129900 | 109439 | ||
6 | 114000 | 116500 | 188100 | 195000 | 148564 | ||
7 | 192300 | >200000 | 189600 | >200000 | >195400 | 183 | 168 |
8 | >300000 | >300000 | >300000 | >300000 | >300000 | 186 | 196 |
9 | >300000 | >300000 | >300000 | >300000 | >300000 |
Сочетание содержания водорода ниже 0,4 мл/100г, измеренного над жидкой поверхностью содержания кислорода ниже 0,3 объемных % и распределителя Б позволяет достигнуть высокого уровня усталостных характеристик. Эти результаты представлены на фиг.5.
Claims (28)
1. Способ полунепрерывной разливки алюминиево-медно-литиевого сплава для деталей летательных аппаратов, включающий этапы, на которых:
(a) получают ванну жидкого металла из сплава, содержащего, мас.%: Cu 2,0-6,0; Li 0,5-2,0; Mg 0-1,0; Ag 0-0,7; Zn 0-1,0; и по меньшей мере один элемент, выбранный из группы Zr, Mn, Cr, Sc, Hf и Ti, причем количество упомянутых элементов составляет от 0,05 до 0,20 Zr, от 0,05 до 0,8 Mn, от 0,05 до 0,3 Cr, от 0,05 до 0,3 Sc, от 0,05 до 0,5 Hf и от 0,01 до 0,15 Ti, Si ≤ 0,1, Fe ≤ 0,1; примеси ≤ 0,15 в сумме и ≤ 0,05 каждой, остальное – алюминий,
(b) осуществляют полунепрерывную вертикальную разливку упомянутого сплава с получением сляба толщиной Т и шириной W, при этом содержание водорода в упомянутой ванне жидкого металла (1) поддерживают ниже 0,4 мл/100 г, а содержание кислорода, измеренное над поверхностью расплава, ниже 0,5 об.%,
причем разливку осуществляют с использованием распределителя, выполненного из углеродной ткани, имеющего нижнюю поверхность (76), верхнюю поверхность, ограничивающую отверстие (71), через которое вводят жидкий металл, и стенку прямоугольного сечения, причем стенка содержит две продольные части (720, 721), параллельные ширине сляба W, и две поперечные части (730, 731), параллельные толщине сляба Т, причем упомянутые поперечные и продольные части образованы двумя тканями, первой полужесткой и запирающей тканью (77), обеспечивающей поддержание формы распределителя во время разливки, и второй незапирающей тканью (78), обеспечивающей возможность прохождения и фильтрования жидкого металла, причем упомянутые первая и вторая ткани связаны друг с другом без нахлестки или внахлестку и без разделяющего их зазора, причем упомянутая первая ткань покрывает непрерывно по меньшей мере 30% поверхности упомянутых частей стенки (720, 721, 730, 731) и расположена таким образом, чтобы поверхность жидкого металла находилась в контакте с ней по всему сечению.
2. Способ по п. 1, в котором содержание кислорода в атмосфере, находящейся в контакте с ванной жидкого металла в плавильной печи, во время дегазации и фильтрования, поддерживают ниже 0,5 об.%, предпочтительно в котором содержание кислорода в атмосфере, находящейся в контакте с ванной жидкого металла, поддерживают ниже 0,5 об.% во всей разливочной установке.
3. Способ по п. 1 или 2, в котором поверхность жидкого металла при затвердевании (14, 15) закрывают крышкой (62), причем упомянутая крышка содержит уплотнения (61) для обеспечения герметичности с разливочным столом (32), а в образованную между крышкой и разливочным столом камеру (65) подают инертный газ (9) и посредством насоса (101) поддерживают подсос в литейном колодце (10) таким образом, чтобы давление в полости (10) было ниже давления в камере (65).
4. Способ по п. 1 или 2, в котором этап (b) проводят без использования расплавленной литийсодержащей соли.
5. Способ по п. 1 или 2, в котором высота h1 первой ткани, измеряемая от верха стенки по ее поверхности (720, 721, 730, 731), равна h1 ≥ 0,3 h, предпочтительно h1 ≥ 0,5 h, где h – высота стенки распределителя.
6. Способ по п. 1 или 2, в котором при осуществлении разливки сплава высота погруженной в жидкий металл стенки (720, 721, 730, 731) распределителя (7), покрытой первой тканью, составляет по меньшей мере 20%, предпочтительно 40%, а предпочтительнее 60%, от суммарной высоты погруженной в расплав стенки.
7. Способ по п. 1 или 2, в котором участок поверхности стенки, покрытый первой тканью, составляет от 30 до 90%, предпочтительно от 50 до 80%, для продольных частей стенки (720, 721), и/или от 30 до 70%, предпочтительно от 40 до 60%, для поперечных частей стенки (730, 731), и/или от 30 до 100%, предпочтительно от 50 до 80%, для нижней поверхности распределителя (76).
8. Способ по п. 1 или 2, в котором после этапов (a) и (b) дополнительно осуществляют следующие этапы:
(c) гомогенизируют упомянутый сляб до или после необязательной механической обработки для получения формы, которая может подвергаться горячей деформации,
(d) подвергают горячей деформации и, необязательно, холодной деформации упомянутую гомогенизированную форму с получением деформированного полуфабриката,
(e) подвергают упомянутый деформированный полуфабрикат обработке на твердый раствор и закалке,
(f) необязательно, снимают внутренние напряжения в обработанном на твердый раствор и закаленном деформированном полуфабрикате посредством пластической деформации со степенью деформации по меньшей мере 1%,
(g) подвергают старению упомянутый полуфабрикат, обработанный на твердый раствор и, необязательно, подвергнутый снятию внутренних напряжений.
9. Способ по п. 8, в котором упомянутую горячую и/или холодную деформацию осуществляют прессованием, прокаткой и/или ковкой.
10. Способ по п. 8, в котором упомянутый деформированный полуфабрикат имеет толщину по меньшей мере 80 мм.
11. Способ по п. 8, в котором степень деформации на этапе (d) ниже 85%, предпочтительно ниже 80%.
12. Способ по п. 8, в котором сплав содержит, мас.%: Cu 3,0-3,9; Li 0,7-1,3; Mg 0,1-1,0; по меньшей мере один элемент, выбранный из группы Zr, Mn и Ti, причем количество упомянутых элементов составляет от 0,06 до 0,15 Zr, от 0,05 до 0,8 Mn и от 0,01 до 0,15 Ti; Ag: 0-0,7; Zn ≤ 0,25; Si ≤ 0,08; Fe ≤ 0,10; примеси ≤ 0,15 в сумме и ≤ 0,05 каждой, остальное – алюминий.
13. Распределитель, предназначенный для полунепрерывной разливки алюминиево-медно-литиевого сплава для деталей летательных аппаратов, выполненный из углеродной ткани, имеющий нижнюю поверхность (76), верхнюю поверхность, ограничивающую отверстие (71), через которое вводят жидкий металл, и стенку прямоугольного сечения, причем стенка содержит две продольные части (720, 721), параллельные ширине сляба W, и две поперечные части (730, 731), параллельные толщине сляба Т, причем упомянутые поперечные и продольные части образованы двумя тканями, первой полужесткой и запирающей тканью (77), обеспечивающей поддержание формы распределителя во время разливки, и второй незапирающей тканью (78), обеспечивающей возможность прохождения и фильтрования жидкого металла, причем упомянутые первая и вторая ткани связаны друг с другом без нахлестки или внахлестку и без разделяющего их зазора, причем упомянутая первая ткань покрывает непрерывно по меньшей мере 30% поверхности упомянутых частей стенки (720, 721, 730, 731) и расположена таким образом, чтобы поверхность жидкого металла находилась в контакте с ней по всему сечению.
14. Распределитель п. 13, отличающийся тем, что высота h1 первой ткани, измеряемая от верха стенки по ее поверхности (720, 721, 730, 731), равна h1 ≥ 0,3 h, предпочтительно h1 ≥ 0,5 h, где h – высота стенки распределителя.
15. Распределитель по п.13 или 14, отличающийся тем, что сечение его стенки изменяется линейно в зависимости от высоты h таким образом, чтобы поверхность нижней стороны (76) распределителя была выше или ниже поверхности верхней стороны (71) распределителя не больше чем на 10%.
16. Распределитель по п. 13 или 14, отличающийся тем, что участок поверхности стенки, покрытый первой тканью, составляет от 30 до 90%, предпочтительно от 50 до 80%, для продольных частей стенки (720, 721), и/или от 30 до 70%, предпочтительно от 40 до 60%, для поперечных частей стенки (730, 731), и/или от 30 до 100%, предпочтительно от 50 до 80%, для нижней поверхности распределителя (76).
17. Распределитель по п. 13 или 14, отличающийся тем, что длина L1 первой ткани, расположенной на нижней поверхности распределителя (76), больше длины L2 первой ткани, расположенной на части продольных стенок (720) и (721), находящихся в контакте с нижней поверхностью.
18. Распределитель по п. 13 или 14, отличающийся тем, что первая ткань и вторая ткань сотканы из графитовой нити.
19. Распределитель по п. 18, отличающийся тем, что нить покрыта слоем, облегчающим скольжение.
20. Распределитель по п.
18, отличающийся тем, что первая ткань является запирающей, имеющей ячейки размером менее 0,5 мм, предпочтительно менее 0,2 мм, а вторая ткань является незапирающей, обеспечивающей возможность прохождения расплавленного металла, и имеет размер ячеек от 1 до 5 мм, предпочтительно от 2 до 4 мм.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1302932A FR3014905B1 (fr) | 2013-12-13 | 2013-12-13 | Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees |
FR13/02932 | 2013-12-13 | ||
PCT/FR2014/000273 WO2015086922A2 (fr) | 2013-12-13 | 2014-12-11 | Procédé de fabrication de produits en alliage d'aluminium - cuivre - lithium à propriétés en fatigue améliorées |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2674790C1 true RU2674790C1 (ru) | 2018-12-13 |
Family
ID=50780503
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016128047A RU2674790C1 (ru) | 2013-12-13 | 2014-12-11 | Способ изготовления изделий из алюминиево-медно-литиевого сплава с улучшенными усталостными свойствами |
RU2016127921A RU2674789C1 (ru) | 2013-12-13 | 2014-12-11 | Изделия из алюминиево-медно-литиевого сплава с улучшенными усталостными свойствами |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016127921A RU2674789C1 (ru) | 2013-12-13 | 2014-12-11 | Изделия из алюминиево-медно-литиевого сплава с улучшенными усталостными свойствами |
Country Status (10)
Country | Link |
---|---|
US (2) | US10415129B2 (ru) |
EP (2) | EP3080318B2 (ru) |
JP (2) | JP6604949B2 (ru) |
CN (2) | CN105814222B (ru) |
BR (1) | BR112016012288B1 (ru) |
CA (2) | CA2932991C (ru) |
DE (2) | DE14828176T1 (ru) |
FR (1) | FR3014905B1 (ru) |
RU (2) | RU2674790C1 (ru) |
WO (2) | WO2015086922A2 (ru) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3014448B1 (fr) * | 2013-12-05 | 2016-04-15 | Constellium France | Produit en alliage aluminium-cuivre-lithium pour element d'intrados a proprietes ameliorees |
FR3014905B1 (fr) | 2013-12-13 | 2015-12-11 | Constellium France | Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees |
FR3048902B1 (fr) * | 2016-03-18 | 2018-03-02 | Constellium Issoire | Enceinte a dispositif d'etancheite pour installation de coulee |
CA3032261A1 (en) | 2016-08-26 | 2018-03-01 | Shape Corp. | Warm forming process and apparatus for transverse bending of an extruded aluminum beam to warm form a vehicle structural component |
CA3040622A1 (en) | 2016-10-24 | 2018-05-03 | Shape Corp. | Multi-stage aluminum alloy forming and thermal processing method for the production of vehicle components |
MX2019004839A (es) | 2016-10-27 | 2019-06-20 | Novelis Inc | Aleaciones de aluminio de la serie 6xxx de alta resistencia y metodos para su fabricacion. |
CA3041580A1 (en) * | 2016-10-27 | 2018-05-03 | Novelis Inc. | High strength 7xxx series aluminum alloys and methods of making the same |
EP3532217B1 (en) | 2016-10-27 | 2021-05-05 | Novelis, Inc. | Aluminium alloy casting and rolling method and associated intermediate product |
CN106521270B (zh) * | 2016-12-07 | 2018-08-03 | 中国航空工业集团公司北京航空材料研究院 | 一种改善铝锂合金耐腐蚀性能的热处理工艺 |
FR3065011B1 (fr) * | 2017-04-10 | 2019-04-12 | Constellium Issoire | Produits en alliage aluminium-cuivre-lithium |
FR3065012B1 (fr) * | 2017-04-10 | 2022-03-18 | Constellium Issoire | Produits en alliage aluminium-cuivre-lithium a faible densite |
FR3067044B1 (fr) * | 2017-06-06 | 2019-06-28 | Constellium Issoire | Alliage d'aluminium comprenant du lithium a proprietes en fatigue ameliorees |
US20190233921A1 (en) * | 2018-02-01 | 2019-08-01 | Kaiser Aluminum Fabricated Products, Llc | Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application |
FR3080860B1 (fr) * | 2018-05-02 | 2020-04-17 | Constellium Issoire | Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees |
CN109182807B (zh) * | 2018-09-20 | 2020-06-30 | 北京新立机械有限责任公司 | 一种高强度铝锂合金及其制备方法 |
FR3087206B1 (fr) * | 2018-10-10 | 2022-02-11 | Constellium Issoire | Tôle en alliage 2XXX à haute performance pour fuselage d’avion |
EP3877562A4 (en) | 2018-11-07 | 2022-08-10 | Arconic Technologies LLC | 2XXX SERIES ALUMINUM-LITHIUM ALLOYS |
CN111590041B (zh) * | 2020-06-29 | 2021-10-12 | 上海大学 | 一种使用铝锂合金板材的生产装置的热处理方法 |
KR102494830B1 (ko) * | 2022-03-22 | 2023-02-06 | 국방과학연구소 | 다단 시효처리를 이용한 Al-Li 합금의 제조방법 |
CN114540679B (zh) * | 2022-04-26 | 2022-08-02 | 北京理工大学 | 一种微量元素复合强化高强度铝锂合金及制备方法 |
CN114778255B (zh) * | 2022-06-13 | 2022-08-26 | 中铝材料应用研究院有限公司 | 高通量平面应变试样的制备装置及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5383986A (en) * | 1993-03-12 | 1995-01-24 | Reynolds Metals Company | Method of improving transverse direction mechanical properties of aluminum-lithium alloy wrought product using multiple stretching steps |
US5415220A (en) * | 1993-03-22 | 1995-05-16 | Reynolds Metals Company | Direct chill casting of aluminum-lithium alloys under salt cover |
US6270717B1 (en) * | 1998-03-04 | 2001-08-07 | Les Produits Industriels De Haute Temperature Pyrotek Inc. | Molten metal filtration and distribution device and method for manufacturing the same |
EP1504834A1 (en) * | 1999-08-05 | 2005-02-09 | Pyrotek Engineering Materials Limited | Distributor device for use in metal casting |
RU2418088C2 (ru) * | 2005-12-20 | 2011-05-10 | Алкан Реналю | Лист из высоковязкого алюминиево-медно-литиевого сплава для фюзеляжа летательного аппарата |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645831B2 (ja) * | 1986-01-07 | 1994-06-15 | 三井造船株式会社 | Al−Li系合金の溶製方法 |
US4769158A (en) | 1986-12-08 | 1988-09-06 | Aluminum Company Of America | Molten metal filtration system using continuous media filter |
US5032359A (en) * | 1987-08-10 | 1991-07-16 | Martin Marietta Corporation | Ultra high strength weldable aluminum-lithium alloys |
US5207974A (en) | 1991-07-29 | 1993-05-04 | Aluminum Company Of America | Partitioned receptacle for distributing molten metal from a spout to form an ingot |
JP3171723B2 (ja) * | 1993-04-16 | 2001-06-04 | 株式会社アリシウム | 金属の竪型連続鋳造方法及びその装置 |
JPH09141393A (ja) * | 1995-11-15 | 1997-06-03 | Sumitomo Light Metal Ind Ltd | 圧延用アルミニウムインゴットの連続鋳造方法 |
FR2757422B1 (fr) | 1996-12-24 | 1999-03-05 | Stevtiss | Articles textiles et filtres diffuseurs pour la filtration de metaux en fusion, notamment aluminium |
EP1359232B9 (en) * | 1997-01-31 | 2014-09-10 | Constellium Rolled Products Ravenswood, LLC | Method of improving fracture toughness in aluminium-lithium alloys |
US5871660A (en) | 1997-03-26 | 1999-02-16 | The Regents Of The University Of California | Liquid metal delivery system for continuous casting |
RU2180930C1 (ru) * | 2000-08-01 | 2002-03-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава |
JP2002097529A (ja) * | 2000-09-22 | 2002-04-02 | Kobe Steel Ltd | アルミニウム合金溶湯の脱ガス方法 |
AU2003250533A1 (en) * | 2002-07-22 | 2004-02-09 | Showa Denko K.K. | Continuous cast aluminum alloy rod and production method and apparatus thereof |
DE04753337T1 (de) | 2003-05-28 | 2007-11-08 | Alcan Rolled Products Ravenswood LLC, Ravenswood | Neue al-cu-li-mg-ag-mn-zr-legierung für bauanwendungen, die hohe festigkeit und hohe bruchzähigkeit erfordern |
EP2017361A1 (fr) * | 2005-06-06 | 2009-01-21 | Alcan Rhenalu | Tôle en aluminium-cuivre-lithium à haute ténacité pour fuselage d'avion |
JP4504914B2 (ja) * | 2005-12-19 | 2010-07-14 | 株式会社神戸製鋼所 | アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス |
CA2646057C (en) | 2006-03-20 | 2014-08-12 | Aleris Aluminum Koblenz Gmbh | Distributor device for use in metal casting |
US9019300B2 (en) | 2006-08-04 | 2015-04-28 | Apple Inc. | Framework for graphics animation and compositing operations |
CN201077859Y (zh) | 2007-07-05 | 2008-06-25 | 包头铝业股份有限公司 | 在线除气过滤机构 |
WO2009073794A1 (en) * | 2007-12-04 | 2009-06-11 | Alcoa Inc. | Improved aluminum-copper-lithium alloys |
FR2925523B1 (fr) | 2007-12-21 | 2010-05-21 | Alcan Rhenalu | Produit lamine ameliore en alliage aluminium-lithium pour applications aeronautiques |
US20110003085A1 (en) * | 2008-04-04 | 2011-01-06 | Carrier Corporation | Production Of Tailored Metal Oxide Materials Using A Reaction Sol-Gel Approach |
US8443223B2 (en) | 2008-07-27 | 2013-05-14 | Rambus Inc. | Method and system for balancing receive-side supply load |
FR2938553B1 (fr) * | 2008-11-14 | 2010-12-31 | Alcan Rhenalu | Produits en alliage aluminium-cuivre-lithium |
CN102105393A (zh) | 2009-04-03 | 2011-06-22 | 开利公司 | 使用反应溶胶-凝胶法制备特制金属氧化物材料 |
FR2947282B1 (fr) * | 2009-06-25 | 2011-08-05 | Alcan Rhenalu | Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees |
FR2969177B1 (fr) * | 2010-12-20 | 2012-12-21 | Alcan Rhenalu | Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees |
WO2012112942A2 (en) * | 2011-02-17 | 2012-08-23 | Alcoa Inc. | 2xxx series aluminum lithium alloys |
FR2971793B1 (fr) | 2011-02-18 | 2017-12-22 | Alcan Rhenalu | Demi-produit en alliage d'aluminium a microporosite amelioree et procede de fabrication |
US8365808B1 (en) * | 2012-05-17 | 2013-02-05 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys |
WO2015003934A1 (en) * | 2013-07-11 | 2015-01-15 | Aleris Rolled Products Germany Gmbh | Method of producing aluminium alloys containing lithium |
FR3014905B1 (fr) | 2013-12-13 | 2015-12-11 | Constellium France | Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees |
-
2013
- 2013-12-13 FR FR1302932A patent/FR3014905B1/fr active Active
-
2014
- 2014-12-11 CN CN201480067888.9A patent/CN105814222B/zh active Active
- 2014-12-11 EP EP14828176.9A patent/EP3080318B2/fr active Active
- 2014-12-11 WO PCT/FR2014/000273 patent/WO2015086922A2/fr active Application Filing
- 2014-12-11 RU RU2016128047A patent/RU2674790C1/ru active
- 2014-12-11 RU RU2016127921A patent/RU2674789C1/ru active
- 2014-12-11 DE DE14828176.9T patent/DE14828176T1/de active Pending
- 2014-12-11 US US15/102,965 patent/US10415129B2/en active Active
- 2014-12-11 BR BR112016012288-7A patent/BR112016012288B1/pt active IP Right Grant
- 2014-12-11 JP JP2016538701A patent/JP6604949B2/ja active Active
- 2014-12-11 CA CA2932991A patent/CA2932991C/fr active Active
- 2014-12-11 EP EP14825363.6A patent/EP3080317B1/fr active Active
- 2014-12-11 DE DE14825363.6T patent/DE14825363T1/de active Pending
- 2014-12-11 US US14/566,810 patent/US10689739B2/en active Active
- 2014-12-11 WO PCT/FR2014/000271 patent/WO2015086921A2/fr active Application Filing
- 2014-12-11 CN CN201480068349.7A patent/CN106170573B/zh active Active
- 2014-12-11 CA CA2932989A patent/CA2932989C/fr active Active
- 2014-12-11 JP JP2016538512A patent/JP6683611B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5383986A (en) * | 1993-03-12 | 1995-01-24 | Reynolds Metals Company | Method of improving transverse direction mechanical properties of aluminum-lithium alloy wrought product using multiple stretching steps |
US5415220A (en) * | 1993-03-22 | 1995-05-16 | Reynolds Metals Company | Direct chill casting of aluminum-lithium alloys under salt cover |
US6270717B1 (en) * | 1998-03-04 | 2001-08-07 | Les Produits Industriels De Haute Temperature Pyrotek Inc. | Molten metal filtration and distribution device and method for manufacturing the same |
EP1504834A1 (en) * | 1999-08-05 | 2005-02-09 | Pyrotek Engineering Materials Limited | Distributor device for use in metal casting |
RU2418088C2 (ru) * | 2005-12-20 | 2011-05-10 | Алкан Реналю | Лист из высоковязкого алюминиево-медно-литиевого сплава для фюзеляжа летательного аппарата |
Also Published As
Publication number | Publication date |
---|---|
JP2017507240A (ja) | 2017-03-16 |
CN105814222A (zh) | 2016-07-27 |
RU2674789C1 (ru) | 2018-12-13 |
EP3080317A2 (fr) | 2016-10-19 |
CA2932991A1 (fr) | 2015-06-18 |
CN106170573B (zh) | 2018-12-21 |
BR112016012288B1 (pt) | 2021-05-04 |
CN105814222B (zh) | 2019-07-23 |
EP3080318B1 (fr) | 2018-10-24 |
FR3014905B1 (fr) | 2015-12-11 |
US10689739B2 (en) | 2020-06-23 |
DE14828176T1 (de) | 2017-01-05 |
EP3080318B2 (fr) | 2023-09-13 |
FR3014905A1 (fr) | 2015-06-19 |
JP2017505378A (ja) | 2017-02-16 |
JP6604949B2 (ja) | 2019-11-13 |
CA2932989A1 (fr) | 2015-06-18 |
JP6683611B2 (ja) | 2020-04-22 |
CA2932991C (fr) | 2021-10-26 |
WO2015086921A3 (fr) | 2015-08-20 |
CN106170573A (zh) | 2016-11-30 |
EP3080317B1 (fr) | 2018-09-19 |
CA2932989C (fr) | 2021-10-26 |
EP3080318A2 (fr) | 2016-10-19 |
WO2015086922A2 (fr) | 2015-06-18 |
US20160237532A1 (en) | 2016-08-18 |
US10415129B2 (en) | 2019-09-17 |
DE14825363T1 (de) | 2017-01-12 |
WO2015086921A2 (fr) | 2015-06-18 |
WO2015086922A3 (fr) | 2015-08-27 |
US20160355916A1 (en) | 2016-12-08 |
BR112016012288A8 (pt) | 2020-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2674790C1 (ru) | Способ изготовления изделий из алюминиево-медно-литиевого сплава с улучшенными усталостными свойствами | |
US9670567B2 (en) | Manufacturing method of making aluminum alloy semi-finished product with improved microporosity | |
JP2017505378A5 (ru) | ||
Ceschini et al. | Microstructural and mechanical properties characterization of heat treated and overaged cast A354 alloy with various SDAS at room and elevated temperature | |
JP2017507240A5 (ru) | ||
Brochu et al. | High cycle fatigue strength of permanent mold and rheocast aluminum 357 alloy | |
Schreiber et al. | Combined effect of hot extrusion and heat treatment on the mechanical behavior of 7055 AA processed via spray metal forming | |
Zheng et al. | Low cycle fatigue behavior of T4-treated Al–Zn–Mg–Cu alloys prepared by squeeze casting and gravity die casting | |
CA2928685A1 (en) | High strength 7xxx series aluminum alloy products and methods of making such products | |
BR112019025517A2 (pt) | Liga de alumínio compreendendo lítio com propriedades de fadiga melhoradas | |
US6077363A (en) | Al-Cu-Mg sheet metals with low levels of residual stress | |
Zhang et al. | Microstructure and mechanical properties of AlSi10Mg permanent mould and high pressure vacuum die castings | |
Goto et al. | Effect of solidification conditions on the deformation behavior of pure copper castings | |
Pastirčák et al. | The influence of different wall thicknesses of the casting in the direct squeeze casting | |
Davies et al. | Assessment of a controlled solidification aluminium investment casting technique for use in helicopter gearboxes | |
Rao et al. | Hipping Evaluation in Cast Aluminum Alloys: Quality Index-Based Approach | |
Chiesa et al. | Distribution of the Quality Index in AlSiMg Castings Produced by Different Processes: Reality vs Prediction | |
Ismagilov et al. | Effect of the Porosity Ran ge and its Nature on Mechanical Properties of Magnesium Alloys Mg-Al-Zn | |
Zúñiga et al. | Surface quality evaluation of hot deformed aluminum | |
Junior et al. | Effect of β-Fe precipitates on the mechanical behavior of Al-Si alloys | |
Kaibyshev | Effect of deformation structure on fatigue behavior of an Al-Mg-Sc alloy |