EP3080318A2 - Procede de fabrication de produits en alliage d'aluminium - cuivre - lithium a proprietes en fatigue ameliorees et distributeuer pour ce procede - Google Patents
Procede de fabrication de produits en alliage d'aluminium - cuivre - lithium a proprietes en fatigue ameliorees et distributeuer pour ce procedeInfo
- Publication number
- EP3080318A2 EP3080318A2 EP14828176.9A EP14828176A EP3080318A2 EP 3080318 A2 EP3080318 A2 EP 3080318A2 EP 14828176 A EP14828176 A EP 14828176A EP 3080318 A2 EP3080318 A2 EP 3080318A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fabric
- casting
- wall
- weight
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- -1 aluminium-copper-lithium Chemical compound 0.000 title abstract description 8
- 239000001989 lithium alloy Substances 0.000 title abstract description 8
- 229910000733 Li alloy Inorganic materials 0.000 title abstract description 7
- 239000004744 fabric Substances 0.000 claims abstract description 55
- 238000005266 casting Methods 0.000 claims abstract description 43
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 35
- 239000007788 liquid Substances 0.000 claims abstract description 29
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000001301 oxygen Substances 0.000 claims abstract description 19
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 18
- 239000000956 alloy Substances 0.000 claims abstract description 18
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000007789 sealing Methods 0.000 claims abstract description 12
- 238000001914 filtration Methods 0.000 claims abstract description 11
- 238000007711 solidification Methods 0.000 claims abstract description 11
- 230000008023 solidification Effects 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 238000009749 continuous casting Methods 0.000 claims abstract description 7
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 229910052744 lithium Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 238000012423 maintenance Methods 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 5
- 238000009941 weaving Methods 0.000 claims description 5
- 238000007872 degassing Methods 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 238000005242 forging Methods 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 238000003754 machining Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 2
- 238000009987 spinning Methods 0.000 claims 1
- 239000011572 manganese Substances 0.000 description 10
- 239000010949 copper Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 239000012080 ambient air Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000003351 stiffener Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910017539 Cu-Li Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229940089401 xylon Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/21—Presses specially adapted for extruding metal
- B21C23/212—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
- B22D11/003—Aluminium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/0408—Moulds for casting thin slabs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/041—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/059—Mould materials or platings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/103—Distributing the molten metal, e.g. using runners, floats, distributors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/116—Refining the metal
- B22D11/119—Refining the metal by filtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/02—Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
- B22D21/04—Casting aluminium or magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/18—Alloys based on aluminium with copper as the next major constituent with zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
Definitions
- the invention relates to wrought products aluminum alloys - copper - lithium, more particularly, such products, their manufacturing processes and use, intended in particular for aeronautical and aerospace construction.
- Aluminum alloy rolled products are developed to produce structural elements for the aerospace industry and the aerospace industry in particular.
- Aluminum - copper - lithium alloys are particularly promising for this type of product.
- the specifications imposed by the aeronautical industry for fatigue performance are high.
- Thick products of Al-Cu-Li alloy are described in particular in applications US2005 / 0006008 and US2009 / 0159159.
- this type of treatment remains difficult to perform for the quantities necessary for the manufacture of thick plates.
- a first object of the invention is a method of manufacturing an aluminum alloy product comprising the steps in which
- the hydrogen content of said liquid metal bath (1) is less than 0.4 ml / 100 g, the oxygen content measured above the liquid surface (14, 15) is less than 0.5% by volume ,
- the distributor used (7) for the casting is made of fabric comprising essentially carbon, that it comprises a lower face (76), an upper face defining the orifice through which the liquid metal is introduced (71) and a wall; of substantially rectangular section, the wall comprising two longitudinal parts parallel to the width W (720, 721) and two transverse parts parallel to the thickness T (730, 731) said portions transverse and longitudinal being formed of at least two tissues, a first substantially obturating and semi-rigid tissue (77) ensuring the maintenance of the dispenser shape during casting and a second non-sealing fabric (78) allowing the passage and filtration liquid, said first and second webs being bonded to each other without overlapping or overlapping and without gap between them, said first fabric continuously covering at least 30% of the area of said wall portions (720,721, 730 731) and being positioned so that the liquid surface is in contact with it over the entire section.
- Another object of the invention is a dispenser for the semi-continuous casting of fabric aluminum alloy plates comprising essentially carbon, comprising a lower face (76), an upper face defining the orifice through which the metal liquid is introduced (71) and a wall of substantially rectangular section, the wall comprising two longitudinal portions parallel to the width W (720, 721) and two transverse portions parallel to the thickness T (730, 731) said transverse and longitudinal portions being formed of at least two fabrics, a first substantially obturating and semi-rigid fabric (77) ensuring the maintenance of the shape of the dispenser during casting and a second non-sealing fabric (78) permitting the passage and filtration of the liquid, said first and second webs being bonded to one another without overlapping or overlapping and without interstices separating them, said first web covering continuously at least 30% of the area of said wall portions (720, 721, 730, 731) being positioned so that the liquid surface is in contact therewith throughout the section.
- Figure 1 is the diagram of the test pieces used for the tests in smooth fatigue (Fig la) and in fatigue with hole (Fig lb). Dimensions are given in mm.
- Figure 2 is a general diagram of the solidification device used in one embodiment of the invention.
- Figure 3 is a general diagram of the dispenser used in the process according to the invention.
- Figure 4 shows representations of the bottom and the lateral and longitudinal parts of the distributor wall according to one embodiment of the invention.
- Figure 5 shows the relationship between the smooth fatigue performance and the hydrogen content of the liquid metal bath during solidification (Fig. 5a) or the oxygen content measured above the liquid surface during solidification (Fig. 5b).
- Figure 6 shows the Wohler curves obtained with tests 3, 7 and 8 in the direction L-T ( Figure 6a) and T-L ( Figure 6b).
- the static mechanical characteristics in tension in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R p0.2 , and the elongation at break A% are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
- the test conditions follow the ASTM E466 standard.
- the logarithmic average of the results obtained on at least 4 test pieces is determined.
- N the number of cycles to failure
- N 0 the number of cycles to failure
- n -4.5.
- the IQF corresponding to the median is reported, ie 50% rupture per 100,000 cycles.
- a thick wrought product is a product whose thickness is at least 6 mm.
- the thickness of the products according to the invention is at least 80 mm and preferably at least 100 mm.
- the thickness of the wrought products is at least 120 mm or preferably 140 mm.
- the thickness of the thick products according to the invention is typically at most 240 mm, generally at most 220 mm and preferably at most 180 mm.
- a sheet is according to the invention a laminated product of rectangular cross section whose uniform thickness is at least 6 mm and does not exceed 1 / 10th of the width.
- a "structural element” or “structural element” of a mechanical construction is called a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure, and for which a structural calculation is usually prescribed or realized.
- These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others.
- these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars) and the empennage composed in particular of stabilizers Horizontal and vertical (horizontal or vertical stabilizers), as well as floor beams, seat rails and doors.
- fuselage such as fuselage skin (fuselage skin in English
- stiffeners or stringers such as the wing skin
- the stiffeners stringers or stiffeners
- ribs ribs
- spars spars
- empennage composed in particular of stabilizers Horizontal and vertical (horizontal or vertical stabilizers), as well as floor beams, seat rails and doors.
- a casting plant is here referred to as the set of devices making it possible to transform a metal in any form into a semi-product of raw form via the liquid phase.
- a casting plant may include a number of devices such as one or more ovens required for melting the metal (“melting furnace") and / or maintaining it (“holding furnace”) in temperature and / or preparation of the liquid metal and adjustment of the composition (“preparation furnace”), one or more tanks (or “pockets") intended to carry out a treatment for the removal of impurities dissolved and / or suspended in the liquid metal this treatment may consist of filtering the liquid metal on a filter medium in a "filtration bag” or introducing into the bath a so-called “treatment” gas that can be inert or reactive in a "degassing bag", a device for solidification of the liquid metal (or “casting loom”) by vertical semi-continuous casting by direct cooling in a casting well, which may comprise devices such as a mold (or “mold”) a liquid metal supply device (or "nozzle”)
- the present inventors have found that, surprisingly, thick wrought products of copper lithium aluminum alloy with improved fatigue performance can be obtained by preparing these sheets by the following method.
- an alloy liquid metal bath comprising, in% by weight Cu: 2.0 - 6.0; Li: 0.5 - 2.0; Mg: 0-1.0; Ag: 0 - 0.7; Zn 0 - 1.0; and at least one member selected from Zr, Mn, Cr, Se, Hf and Ti, the amount of said element, if selected, being from 0.05 to 0.20% by weight for Zr, 0.05 to 0 , 8% by weight for Mn, 0.05 to 0.3% by weight for Cr and for Se, 0.05 to 0.5% by weight for Hf and from 0.01 to 0.15% by weight for Ti , Si ⁇ 0,1; Fe ⁇ 0.1; others ⁇ 0.05 each and ⁇ 0.15 in total, remains aluminum.
- An advantageous alloy for the process according to the invention comprises, in% by weight, Cu: 3.0 - 3.9; Li: 0.7 - 1.3; Mg: 0.1 - 1.0, at least one element selected from Zr, Mn and Ti, the amount of said element, if selected, being from 0.06 to 0.15% by weight for Zr, 0.05 to 0.8% by weight for Mn and from 0.01 to 0.15% by weight for Ti; Ag: 0 - 0.7; Zn ⁇ 0.25; If ⁇ 0.08; Fe ⁇ 0.10; others ⁇ 0.05 each and ⁇ 0.15 in total, remains aluminum.
- the copper content is at least 3.2% by weight.
- the lithium content is preferably between 0.85 and 1.15% by weight and preferably between 0.90 and 1.10% by weight.
- the magnesium content is preferably between 0.20 and 0.6% by weight.
- the simultaneous addition of manganese and zirconium is generally advantageous.
- the manganese content is between 0.20 and 0.50% by weight and the zirconium content is between 0.06 and 0.14% by weight.
- the silver content is between 0.20 and 0.7% by weight. It is advantageous that the silver content is at least 0.1% by weight. In one embodiment of the invention the silver content is at least 0.20% by weight. Preferably, the silver content is at most 0.5% by weight. In one embodiment of the invention, the silver content is limited to 0.3% by weight.
- the silicon content is at most 0.05% by weight and the iron content is at most 0.06% by weight.
- the titanium content is between 0.01 and 0.08% by weight.
- the zinc content is at most 0.15% by weight.
- a preferred aluminum-copper-lithium alloy is AA2050 alloy.
- This liquid metal bath is prepared in a furnace of the casting plant. It is known, for example from US Pat. No. 5,415,220, to use lithium-containing molten salts such as KCl / LiCl mixtures in the melting furnace to passivate the alloy during its transfer to the casting plant.
- the present inventors have obtained excellent fatigue properties for thick plates without using molten salt containing lithium in the melting furnace, but maintaining in this furnace a low oxygen atmosphere and believe that the presence of salt in the furnace Melting furnace could have in some cases a detrimental effect on the fatigue properties of thick wrought products.
- molten salt containing lithium is not used throughout the casting installation. In an advantageous embodiment, no molten salt is used throughout the casting installation.
- an oxygen content of less than 0.5% by volume and preferably less than 0.3% by volume is maintained.
- the furnace or furnaces of the casting installation are induction furnaces. The present inventors have found that this type of oven is advantageous despite the stirring generated by the induction heating.
- This bath of liquid metal is then treated with a degassing bag and in a filtration bag so that its hydrogen content is less than 0.4 ml / 100g and preferably less than 0.35 ml / 100g .
- the hydrogen content of the liquid metal is measured using a commercial apparatus such as the apparatus marketed under the tradename ALSCAN TM, known to those skilled in the art, the probe being maintained under a nitrogen sweep.
- the oxygen content of the atmosphere in contact with the liquid metal bath in the melting furnace during the degassing steps, filtration is less than 0.5% by volume and preferably less than 0.3% by volume.
- the oxygen content of the atmosphere in contact with the liquid metal bath is less than 0.5% by volume and preferably less than 0% by volume for the entire casting plant.
- a plate is an aluminum block of substantially parallelepipedic shape, length L, width W and thickness T.
- the atmosphere is controlled above the liquid surface during solidification.
- An example of a device for controlling the atmosphere above the liquid surface during solidification is shown in Figure 2.
- the liquid metal coming from a trough (63) is introduced into a nozzle (4) controlled by a stopper rod (8) which can move upwards and downwards (81), in an ingot mold (31) placed on a false bottom (21).
- the aluminum alloy is solidified by direct cooling (5).
- the aluminum alloy (1) has at least one solid surface (1 1, 12, 13) and at least one liquid surface (14, 15).
- An elevator (2) makes it possible to maintain the level of the liquid surface (14, 15) substantially constant.
- a distributor (7) allows the distribution of the liquid metal.
- a cover (62) covers the liquid surface.
- the cover may include seals (61) for sealing with the casting table (32).
- the liquid metal in the trough (63) can be advantageously protected by a cover (64).
- An inert gas (9) is introduced into the chamber (65) defined between the cover and the pouring table.
- the inert gas is advantageously chosen from rare gases, nitrogen and carbon dioxide or mixtures of these gases.
- a preferred inert gas is argon.
- the oxygen content is measured in the chamber (65) above the liquid surface. The flow of inert gas can be adjusted to achieve the desired oxygen content.
- the suction of the pump (101) is such that the pressure in the enclosure (10) is lower than the pressure in the chamber (65), which can preferably be obtained by imposing a speed of the atmosphere through the open surfaces of the casting well of at least 2 m / s and preferably at least 2.5 m / s.
- the pressure in the chamber (65) is close to atmospheric pressure and the pressure in the chamber (10) is lower than atmospheric pressure, typically 0.95 times the atmospheric pressure.
- the chamber (65) is maintained, thanks to the devices described, with an oxygen content of less than 0.5% by volume and preferably less than 0.3% by volume.
- the dispenser according to the invention is made of a fabric essentially comprising carbon, it comprises a lower face (76), an upper face typically vacuum defining the orifice through which the liquid metal is introduced (71) and wall of substantially rectangular cross section typically substantially constant and of height h typically substantially constant, the wall comprising two longitudinal parts parallel to the width W of the plate (720, 721 ) and two transverse parts parallel to the thickness T of the plate (730, 731), said transverse and longitudinal portions being formed of at least two tissues, a first substantially obturating and semi-rigid tissue (77) ensuring the maintenance of the shape of the dispenser during the casting and a second non sealing device (78) for passage and filtration of the liquid, said first and second webs being bonded to one another without overlapping or overlapping and without interstices separating them, said first fabric continuously covering at least 30% of the surface of said wall portions (720, 721, 730, 731) and being positioned so that
- the dispenser is semi-rigid and does not deform substantially during casting.
- the first fabric has a height, hl, measured from the upper face on the circumference of the wall (720, 721, 730, 731) such that h1> 0.3 h and preferably h1> 0, 5 h, where h denotes the total height of the distributor wall.
- the liquid surface being in contact with said first liquid-sealing fabric passes through the dispenser only under the liquid surface in certain directions of each part of the wall.
- the height immersed in the liquid wall metal (720, 721, 730, 731) of the distributor (7) covered by the first fabric is at least 20%, preferably 40% and preferably 60% of the height. total submerged wall.
- Figure 4 shows the bottom and the longitudinal wall portions.
- the bottom (76) is typically covered by the first and / or second fabric.
- the first fabric is at least located in the central part of the bottom (76) along a length L1 and / or in the central part of the longitudinal parts (720) and (721) over the entire height h and over a length L2.
- the surface portion covered by the first fabric is between 30 and 90% and preferably between 50 and 80% for the longitudinal portions (720) and (721), and / or between 30 and 70% and preferably between 40 and 60% for the side parts (730, 731) and / or between 30 and 100% and preferably between 50 and 80% for the bottom (76). It is advantageous if the length L1 of the first tissue located in the bottom (76) is greater than the length L2 of the first tissue situated in the part of the longitudinal walls (720) and (721) in contact with the bottom.
- the present inventors believe that the geometry of the dispenser makes it possible in particular to improve the quality of the flow of the liquid metal, to reduce turbulence and to improve the temperature distribution.
- the first fabric and the second fabric are advantageously obtained by weaving a yarn essentially comprising carbon.
- the weaving of graphite yarn is particularly advantageous.
- the tissues are typically sewn to each other. It is also possible instead of first and second fabrics to use a single diffuser fabric having at least two weaving areas, more or less dense.
- the wire comprising carbon is coated with a layer facilitating sliding.
- This layer may for example comprise a fluorinated polymer such as Teflon or a polyamide such as xylon.
- the first fabric is substantially obturant. Typically it is a fabric having mesh size of less than 0.5 mm, preferably less than 0.2 mm.
- the second fabric is non-sealing and allows the passage of the molten metal. Typically, it is a fabric having mesh sizes of between 1 and 5 mm, preferably 2 to 4 mm.
- the first tissue locally covers the second tissue, while being in intimate contact so as not to leave a gap between the two tissues.
- the plate thus obtained is then transformed to obtain a wrought product.
- the plate thus obtained is then homogenized before or after having been optionally machined to obtain a shape that can be deformed while hot.
- the plate is machined as a rolling plate so as to be hot deformed by rolling.
- the plate is machined as a forging blank so as to be hot deformed by forging.
- the plate is machined in the form of billets so as to then be hot deformed by extrusion.
- the homogenization is carried out at a temperature between 470 and 540 ° C for a period of between 2 and 30 hours.
- the shape thus homogenized is deformed hot and optionally cold so as to obtain a wrought product.
- the heat-forming temperature is advantageously at least 350 ° C and preferably at least 400 ° C.
- the rate of deformation hot and optionally cold that is to say the ratio between the difference between the initial thickness, before deformation but after the possible machining, and the final thickness and on the other hand, the initial thickness is less than 85% and preferably less than 80%. In one embodiment, the deformation rate during the deformation is less than 75% and preferably less than 70%.
- the wrought product thus obtained is then dissolved and quenched.
- the dissolution temperature is advantageously between 470 and 540 ° C and preferably between 490 and 530 ° C and the duration is adapted to the thickness of the product.
- the wrought product thus solubilized is de-tensioned by plastic deformation with a deformation of at least 1%.
- the income is made in one or more steps at a temperature advantageously between 130 and 160 ° C for a period of 5 to 60 hours.
- a metallurgical state T8 such as in particular T851, T83, T84, or T85.
- the wrought products obtained by the process according to the invention have advantageous properties.
- the logarithmic fatigue mean of the wrought products whose thickness is at least 80 mm, obtained by the method according to the invention, measured at mid-thickness in the direction TL on smooth test pieces according to Figure la at a maximum amplitude stress of 242 MPa, a frequency of 50 Hz, a stress ratio R 0.1 is at least 250,000 cycles, advantageously the fatigue property is obtained for the wrought products obtained by the process according to the invention, the thickness of which is at least 100 mm or preferably at least 120 mm or even at least 140 mm.
- the products obtained by the process according to the invention have advantageous static mechanical characteristics.
- wrought products whose thickness is at least 80 mm comprising in% by weight, Cu: 3.0 - 3.9; Li: 0.7 - 1.3; Mg: 0.1 - 1.0, at least one element selected from Zr, Mn and Ti, the amount of said element, if selected, being from 0.06 to 0.15% by weight for Zr, O, From 0.5 to 0.8% by weight for Mn and from 0.01 to 0.15% by weight for Ti; Ag: 0 - 0.7; Zn ⁇ 0.25; If ⁇ 0.08; Fe ⁇ 0.10; other ⁇ 0.05 each and ⁇ 0.15 in total, remains aluminum, the yield strength measured at quarter-thickness in the direction L is at least 450 MPa and preferably at least 470 MPa and / or the breaking strength measured is at least 480 MPa and preferably at least 500 MPa and / or the elongation is at least 5% and preferably at least 6%.
- the wrought products obtained by the process according to the invention can advantageously be used to produce structural elements, preferably aircraft structural elements.
- Preferred aircraft structural elements are spars, ribs or frames.
- the invention is particularly advantageous for parts of complex shape obtained by integral machining, used in particular for the manufacture of aircraft wings and for any other use for which the properties of the products according to the invention are advantageous. .
- AA2050 alloy plates were prepared. AA2050 alloy plates were cast by direct cooling vertical semi-continuous casting. The alloy was prepared in a melting furnace. For Examples 1 to 7, a KCL / LiCl mixture was used on the surface of the liquid metal in the melting furnace. For Examples 8 to 9 no salt was used in the melting furnace. For Examples 8 to 9 the atmosphere in contact with the liquid metal with an oxygen content of less than 0.3% by volume for the entire casting installation.
- the casting installation included a hood disposed above the pouring well to limit the oxygen content.
- an aspiration (101) was also used such that the pressure in the chamber (10) was lower than the pressure in the chamber (65) and such that the speed of the atmosphere through the open surfaces of the casting well was at least 2 m / s.
- Oxygen content was measured with an oximeter during casting.
- the hydrogen content in the liquid aluminum was measured using an Alscan TM type probe under nitrogen flushing.
- Two types of liquid metal dispensers were used.
- a first "Combo Bag” type dispenser as described for example in Figures 2 to 6 of the international application WO99 / 44719 but made of fabric comprising essentially carbon, referenced below "distributor A" and a second distributor such as described in Figure 3 referenced below “distributor B" is made of graphite wire cloth.
- the plates were homogenized for 12 hours at 505 ° C., machined to a thickness of about 365 mm, hot-rolled to sheets with a final thickness of between 154 and 158 mm, dissolved at 504 ° C. , quenched and relieved by controlled traction with a permanent elongation of 3.5%.
- the sheets thus obtained have an 18 hour income at 155 ° C.
- Static mechanical properties and toughness were characterized at quarter-thickness. Static mechanical characteristics and toughness are given in Table 2.
- the fatigue properties were characterized on smooth test specimens and hole test specimens for some samples taken at mid-thickness.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Continuous Casting (AREA)
- Metal Rolling (AREA)
- Conductive Materials (AREA)
- Air Bags (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE14828176.9T DE14828176T1 (de) | 2013-12-13 | 2014-12-11 | Verfahren zur Herstellung von Produkten aus einer Aluminium-Kupfer-Lithium-Legierung mit verbesserten Ermüdungseigenschaften und Verteiler für dieses Verfahren |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1302932A FR3014905B1 (fr) | 2013-12-13 | 2013-12-13 | Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees |
PCT/FR2014/000273 WO2015086922A2 (fr) | 2013-12-13 | 2014-12-11 | Procédé de fabrication de produits en alliage d'aluminium - cuivre - lithium à propriétés en fatigue améliorées |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3080318A2 true EP3080318A2 (fr) | 2016-10-19 |
EP3080318B1 EP3080318B1 (fr) | 2018-10-24 |
EP3080318B2 EP3080318B2 (fr) | 2023-09-13 |
Family
ID=50780503
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14828176.9A Active EP3080318B2 (fr) | 2013-12-13 | 2014-12-11 | Procede de fabrication de produits en alliage d'aluminium - cuivre - lithium a proprietes en fatigue ameliorees et distributeuer pour ce procede |
EP14825363.6A Active EP3080317B1 (fr) | 2013-12-13 | 2014-12-11 | Produits en alliage d'aluminium - cuivre - lithium à propriétés en fatigue améliorées et procédé de sa productuion |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14825363.6A Active EP3080317B1 (fr) | 2013-12-13 | 2014-12-11 | Produits en alliage d'aluminium - cuivre - lithium à propriétés en fatigue améliorées et procédé de sa productuion |
Country Status (10)
Country | Link |
---|---|
US (2) | US10415129B2 (fr) |
EP (2) | EP3080318B2 (fr) |
JP (2) | JP6683611B2 (fr) |
CN (2) | CN106170573B (fr) |
BR (1) | BR112016012288B1 (fr) |
CA (2) | CA2932989C (fr) |
DE (2) | DE14828176T1 (fr) |
FR (1) | FR3014905B1 (fr) |
RU (2) | RU2674789C1 (fr) |
WO (2) | WO2015086921A2 (fr) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3014448B1 (fr) * | 2013-12-05 | 2016-04-15 | Constellium France | Produit en alliage aluminium-cuivre-lithium pour element d'intrados a proprietes ameliorees |
FR3014905B1 (fr) | 2013-12-13 | 2015-12-11 | Constellium France | Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees |
FR3048902B1 (fr) * | 2016-03-18 | 2018-03-02 | Constellium Issoire | Enceinte a dispositif d'etancheite pour installation de coulee |
MX2019001802A (es) | 2016-08-26 | 2019-07-04 | Shape Corp | Proceso de modelacion en caliente y aparato para flexion transversal de una viga de aluminio extrudida para modelar en caliente un componente estructural del vehiculo. |
MX2019004494A (es) | 2016-10-24 | 2019-12-18 | Shape Corp | Metodo de formacion y procesamiento termico de aleacion de aluminio de multiples etapas para la produccion de componentes de vehiculo. |
US11821065B2 (en) | 2016-10-27 | 2023-11-21 | Novelis Inc. | High strength 6XXX series aluminum alloys and methods of making the same |
US11692255B2 (en) | 2016-10-27 | 2023-07-04 | Novelis Inc. | High strength 7XXX series aluminum alloys and methods of making the same |
RU2019115595A (ru) | 2016-10-27 | 2020-11-27 | Новелис Инк. | Линия для литья и прокатки металла |
CN106521270B (zh) * | 2016-12-07 | 2018-08-03 | 中国航空工业集团公司北京航空材料研究院 | 一种改善铝锂合金耐腐蚀性能的热处理工艺 |
FR3065011B1 (fr) * | 2017-04-10 | 2019-04-12 | Constellium Issoire | Produits en alliage aluminium-cuivre-lithium |
FR3065012B1 (fr) * | 2017-04-10 | 2022-03-18 | Constellium Issoire | Produits en alliage aluminium-cuivre-lithium a faible densite |
FR3067044B1 (fr) | 2017-06-06 | 2019-06-28 | Constellium Issoire | Alliage d'aluminium comprenant du lithium a proprietes en fatigue ameliorees |
US20190233921A1 (en) * | 2018-02-01 | 2019-08-01 | Kaiser Aluminum Fabricated Products, Llc | Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application |
FR3080860B1 (fr) * | 2018-05-02 | 2020-04-17 | Constellium Issoire | Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees |
CN109182807B (zh) * | 2018-09-20 | 2020-06-30 | 北京新立机械有限责任公司 | 一种高强度铝锂合金及其制备方法 |
FR3087206B1 (fr) * | 2018-10-10 | 2022-02-11 | Constellium Issoire | Tôle en alliage 2XXX à haute performance pour fuselage d’avion |
JP7621248B2 (ja) | 2018-11-07 | 2025-01-24 | アーコニック テクノロジーズ エルエルシー | 2xxxアルミニウムリチウム合金 |
CN111590041B (zh) * | 2020-06-29 | 2021-10-12 | 上海大学 | 一种使用铝锂合金板材的生产装置的热处理方法 |
KR102494830B1 (ko) * | 2022-03-22 | 2023-02-06 | 국방과학연구소 | 다단 시효처리를 이용한 Al-Li 합금의 제조방법 |
CN114540679B (zh) * | 2022-04-26 | 2022-08-02 | 北京理工大学 | 一种微量元素复合强化高强度铝锂合金及制备方法 |
CN114778255B (zh) * | 2022-06-13 | 2022-08-26 | 中铝材料应用研究院有限公司 | 高通量平面应变试样的制备装置及方法 |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645831B2 (ja) * | 1986-01-07 | 1994-06-15 | 三井造船株式会社 | Al−Li系合金の溶製方法 |
US4769158A (en) | 1986-12-08 | 1988-09-06 | Aluminum Company Of America | Molten metal filtration system using continuous media filter |
US5032359A (en) * | 1987-08-10 | 1991-07-16 | Martin Marietta Corporation | Ultra high strength weldable aluminum-lithium alloys |
US5207974A (en) | 1991-07-29 | 1993-05-04 | Aluminum Company Of America | Partitioned receptacle for distributing molten metal from a spout to form an ingot |
US5383986A (en) * | 1993-03-12 | 1995-01-24 | Reynolds Metals Company | Method of improving transverse direction mechanical properties of aluminum-lithium alloy wrought product using multiple stretching steps |
US5415220A (en) * | 1993-03-22 | 1995-05-16 | Reynolds Metals Company | Direct chill casting of aluminum-lithium alloys under salt cover |
JP3171723B2 (ja) * | 1993-04-16 | 2001-06-04 | 株式会社アリシウム | 金属の竪型連続鋳造方法及びその装置 |
JPH09141393A (ja) * | 1995-11-15 | 1997-06-03 | Sumitomo Light Metal Ind Ltd | 圧延用アルミニウムインゴットの連続鋳造方法 |
FR2757422B1 (fr) | 1996-12-24 | 1999-03-05 | Stevtiss | Articles textiles et filtres diffuseurs pour la filtration de metaux en fusion, notamment aluminium |
ATE250675T1 (de) * | 1997-01-31 | 2003-10-15 | Pechiney Rolled Products Llc | Verfahren zur erhöhung der bruchzähigkeit in aluminium-lithium-legierungen |
US5871660A (en) | 1997-03-26 | 1999-02-16 | The Regents Of The University Of California | Liquid metal delivery system for continuous casting |
US6270717B1 (en) | 1998-03-04 | 2001-08-07 | Les Produits Industriels De Haute Temperature Pyrotek Inc. | Molten metal filtration and distribution device and method for manufacturing the same |
GB2352992B (en) | 1999-08-05 | 2002-01-09 | Pyrotek Engineering Materials | Distributor device |
RU2180930C1 (ru) * | 2000-08-01 | 2002-03-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Сплав на основе алюминия и способ изготовления полуфабрикатов из этого сплава |
JP2002097529A (ja) * | 2000-09-22 | 2002-04-02 | Kobe Steel Ltd | アルミニウム合金溶湯の脱ガス方法 |
DE10392959B4 (de) * | 2002-07-22 | 2014-05-28 | Showa Denko K.K. | Aluminiumgusslegierungsstrang und Verfahren zu dessen Herstellung und Vorrichtung dafür |
WO2004106570A1 (fr) | 2003-05-28 | 2004-12-09 | Pechiney Rolled Products | Nouvel alliage de al-cu-li-mg-ag-mn-zr utilise comme elements structurels exigeant une haute resistance ainsi qu'une grande tenacite a la rupture |
RU2415960C2 (ru) * | 2005-06-06 | 2011-04-10 | Алкан Реналю | Алюминиево-медно-литиевый лист с высокой вязкостью разрушения для фюзеляжа самолета |
JP4504914B2 (ja) * | 2005-12-19 | 2010-07-14 | 株式会社神戸製鋼所 | アルミニウム鋳塊の製造方法、アルミニウム鋳塊、およびアルミニウム鋳塊の製造用保護ガス |
FR2894985B1 (fr) * | 2005-12-20 | 2008-01-18 | Alcan Rhenalu Sa | Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion |
DE602007007192D1 (de) | 2006-03-20 | 2010-07-29 | Aleris Aluminum Koblenz Gmbh | Verteilervorrichtung zur verwendung beim metallgiessen |
US9019300B2 (en) | 2006-08-04 | 2015-04-28 | Apple Inc. | Framework for graphics animation and compositing operations |
CN201077859Y (zh) | 2007-07-05 | 2008-06-25 | 包头铝业股份有限公司 | 在线除气过滤机构 |
RU2497967C2 (ru) * | 2007-12-04 | 2013-11-10 | Алкоа Инк. | Улучшенные алюминиево-медно-литиевые сплавы |
FR2925523B1 (fr) | 2007-12-21 | 2010-05-21 | Alcan Rhenalu | Produit lamine ameliore en alliage aluminium-lithium pour applications aeronautiques |
US20110003085A1 (en) * | 2008-04-04 | 2011-01-06 | Carrier Corporation | Production Of Tailored Metal Oxide Materials Using A Reaction Sol-Gel Approach |
US8443223B2 (en) | 2008-07-27 | 2013-05-14 | Rambus Inc. | Method and system for balancing receive-side supply load |
FR2938553B1 (fr) * | 2008-11-14 | 2010-12-31 | Alcan Rhenalu | Produits en alliage aluminium-cuivre-lithium |
EP2276694A4 (fr) | 2009-04-03 | 2013-12-04 | Carrier Corp | Production de matières en oxyde métallique ajustées sur mesure à l'aide d'une approche sol-gel de la réaction |
FR2947282B1 (fr) * | 2009-06-25 | 2011-08-05 | Alcan Rhenalu | Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees |
FR2969177B1 (fr) * | 2010-12-20 | 2012-12-21 | Alcan Rhenalu | Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees |
EP3187603B1 (fr) * | 2011-02-17 | 2024-06-26 | Arconic Technologies LLC | Alliages d'aluminium-lithium de la série 2xxx |
FR2971793B1 (fr) | 2011-02-18 | 2017-12-22 | Alcan Rhenalu | Demi-produit en alliage d'aluminium a microporosite amelioree et procede de fabrication |
US8365808B1 (en) * | 2012-05-17 | 2013-02-05 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys |
DE112014003205T5 (de) * | 2013-07-11 | 2016-04-07 | Aleris Rolled Products Germany Gmbh | Verfahren zur Herstellung von Lithium enthaltenden Aluminiumlegierungen |
FR3014905B1 (fr) | 2013-12-13 | 2015-12-11 | Constellium France | Produits en alliage d'aluminium-cuivre-lithium a proprietes en fatigue ameliorees |
-
2013
- 2013-12-13 FR FR1302932A patent/FR3014905B1/fr active Active
-
2014
- 2014-12-11 DE DE14828176.9T patent/DE14828176T1/de active Pending
- 2014-12-11 CN CN201480068349.7A patent/CN106170573B/zh active Active
- 2014-12-11 US US15/102,965 patent/US10415129B2/en active Active
- 2014-12-11 CA CA2932989A patent/CA2932989C/fr active Active
- 2014-12-11 CN CN201480067888.9A patent/CN105814222B/zh active Active
- 2014-12-11 US US14/566,810 patent/US10689739B2/en active Active
- 2014-12-11 RU RU2016127921A patent/RU2674789C1/ru active
- 2014-12-11 DE DE14825363.6T patent/DE14825363T1/de active Pending
- 2014-12-11 EP EP14828176.9A patent/EP3080318B2/fr active Active
- 2014-12-11 EP EP14825363.6A patent/EP3080317B1/fr active Active
- 2014-12-11 JP JP2016538512A patent/JP6683611B2/ja active Active
- 2014-12-11 RU RU2016128047A patent/RU2674790C1/ru active
- 2014-12-11 CA CA2932991A patent/CA2932991C/fr active Active
- 2014-12-11 WO PCT/FR2014/000271 patent/WO2015086921A2/fr active Application Filing
- 2014-12-11 JP JP2016538701A patent/JP6604949B2/ja active Active
- 2014-12-11 WO PCT/FR2014/000273 patent/WO2015086922A2/fr active Application Filing
- 2014-12-11 BR BR112016012288-7A patent/BR112016012288B1/pt active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP3080317A2 (fr) | 2016-10-19 |
RU2674789C1 (ru) | 2018-12-13 |
EP3080318B2 (fr) | 2023-09-13 |
DE14828176T1 (de) | 2017-01-05 |
WO2015086921A2 (fr) | 2015-06-18 |
CA2932991A1 (fr) | 2015-06-18 |
CN105814222A (zh) | 2016-07-27 |
CA2932989A1 (fr) | 2015-06-18 |
CN106170573A (zh) | 2016-11-30 |
DE14825363T1 (de) | 2017-01-12 |
RU2674790C1 (ru) | 2018-12-13 |
BR112016012288A8 (pt) | 2020-05-05 |
JP2017507240A (ja) | 2017-03-16 |
WO2015086921A3 (fr) | 2015-08-20 |
US20160237532A1 (en) | 2016-08-18 |
JP6683611B2 (ja) | 2020-04-22 |
WO2015086922A3 (fr) | 2015-08-27 |
BR112016012288B1 (pt) | 2021-05-04 |
US10689739B2 (en) | 2020-06-23 |
CA2932991C (fr) | 2021-10-26 |
CN105814222B (zh) | 2019-07-23 |
CN106170573B (zh) | 2018-12-21 |
FR3014905A1 (fr) | 2015-06-19 |
FR3014905B1 (fr) | 2015-12-11 |
US10415129B2 (en) | 2019-09-17 |
US20160355916A1 (en) | 2016-12-08 |
JP6604949B2 (ja) | 2019-11-13 |
CA2932989C (fr) | 2021-10-26 |
WO2015086922A2 (fr) | 2015-06-18 |
EP3080318B1 (fr) | 2018-10-24 |
JP2017505378A (ja) | 2017-02-16 |
EP3080317B1 (fr) | 2018-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3080317B1 (fr) | Produits en alliage d'aluminium - cuivre - lithium à propriétés en fatigue améliorées et procédé de sa productuion | |
CA2826609C (fr) | Demi-produit en alliage d'aluminium a microporosite amelioree et procede de fabrication | |
Qi et al. | High strength Al–Li alloy development for laser powder bed fusion | |
EP1965936B1 (fr) | Procédé de fabrication de demi-produits comportant deux alliages à base d'aluminium | |
JP2017505378A5 (fr) | ||
CA2753089C (fr) | Procede de coulee pour alliages d'aluminium | |
WO2006010817A1 (fr) | Procede de fabrication de produits en alliage d’aluminium a haute tenacite et haute resistance a la fatigue | |
EP3717146B1 (fr) | Produit plat en alliage d'aluminium presentant des proprietes ameliorees dans l'epaisseur | |
Faraji et al. | Distribution of trace elements in a modified and grain refined aluminium–silicon hypoeutectic alloy | |
Hoseinifar et al. | Effect of twin-roll casting parameters on microstructure and mechanical properties of AA5083-H321 sheet | |
Liu et al. | Tailored porosity in additive manufacturing of 7075 aluminum alloy for crack suppression and high strength | |
Guo et al. | The effects of electromagnetic vibration on macrosegregation in AZ80 magnesium alloy billets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160708 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R210 Ref document number: 602014034798 Country of ref document: DE Ref country code: DE Ref legal event code: R210 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170504 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 21/18 20060101ALI20180312BHEP Ipc: B22D 11/04 20060101ALI20180312BHEP Ipc: B22D 43/00 20060101ALI20180312BHEP Ipc: B22D 11/00 20060101ALI20180312BHEP Ipc: B22D 11/041 20060101ALI20180312BHEP Ipc: C22C 21/12 20060101AFI20180312BHEP Ipc: C22C 21/16 20060101ALI20180312BHEP Ipc: C22C 21/14 20060101ALI20180312BHEP Ipc: C22C 1/02 20060101ALI20180312BHEP Ipc: B22D 21/00 20060101ALI20180312BHEP Ipc: C22F 1/057 20060101ALI20180312BHEP Ipc: C22F 1/04 20060101ALI20180312BHEP Ipc: B22D 11/119 20060101ALI20180312BHEP Ipc: B22D 11/059 20060101ALI20180312BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180504 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTC | Intention to grant announced (deleted) | ||
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602014034798 Country of ref document: DE |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
INTG | Intention to grant announced |
Effective date: 20180918 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1056739 Country of ref document: AT Kind code of ref document: T Effective date: 20181115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014034798 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1056739 Country of ref document: AT Kind code of ref document: T Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190124 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190125 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190224 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602014034798 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: ARCONIC INC. Effective date: 20190722 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181211 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181024 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141211 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181024 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: ARCONIC INC. Effective date: 20190722 |
|
R26 | Opposition filed (corrected) |
Opponent name: ARCONIC CORPORATION Effective date: 20190722 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APAN | Information on closure of appeal procedure modified |
Free format text: ORIGINAL CODE: EPIDOSCNOA9O |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230411 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20230913 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 602014034798 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241227 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241226 Year of fee payment: 11 |