RU2642319C2 - Генетически модифицированные, не принадлежащие к человеческому роду животные и способ их использования - Google Patents
Генетически модифицированные, не принадлежащие к человеческому роду животные и способ их использования Download PDFInfo
- Publication number
- RU2642319C2 RU2642319C2 RU2015112607A RU2015112607A RU2642319C2 RU 2642319 C2 RU2642319 C2 RU 2642319C2 RU 2015112607 A RU2015112607 A RU 2015112607A RU 2015112607 A RU2015112607 A RU 2015112607A RU 2642319 C2 RU2642319 C2 RU 2642319C2
- Authority
- RU
- Russia
- Prior art keywords
- human
- cells
- genetically modified
- polypeptide
- mice
- Prior art date
Links
- 241000282414 Homo sapiens Species 0.000 title claims abstract description 377
- 238000000034 method Methods 0.000 title claims abstract description 81
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims abstract description 92
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 88
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 75
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 75
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 66
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 55
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 42
- 229920001184 polypeptide Polymers 0.000 claims abstract description 36
- 101000863873 Homo sapiens Tyrosine-protein phosphatase non-receptor type substrate 1 Proteins 0.000 claims abstract description 33
- 241000283984 Rodentia Species 0.000 claims abstract description 28
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 claims abstract description 24
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 claims abstract description 24
- 102000049963 human SIRPA Human genes 0.000 claims abstract description 23
- 101000799461 Homo sapiens Thrombopoietin Proteins 0.000 claims abstract description 22
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 claims abstract description 21
- 101001033279 Homo sapiens Interleukin-3 Proteins 0.000 claims abstract description 20
- 102000055276 human IL3 Human genes 0.000 claims abstract description 20
- 101000694103 Homo sapiens Thyroid peroxidase Proteins 0.000 claims abstract description 18
- 102000046157 human CSF2 Human genes 0.000 claims abstract description 18
- 102000053400 human TPO Human genes 0.000 claims abstract description 18
- 210000000130 stem cell Anatomy 0.000 claims abstract description 13
- 102000000646 Interleukin-3 Human genes 0.000 claims abstract description 6
- 108010002386 Interleukin-3 Proteins 0.000 claims abstract description 6
- 210000004027 cell Anatomy 0.000 claims description 211
- 108090000623 proteins and genes Proteins 0.000 claims description 71
- 201000011510 cancer Diseases 0.000 claims description 36
- 108010038453 Interleukin-2 Receptors Proteins 0.000 claims description 15
- 102000010789 Interleukin-2 Receptors Human genes 0.000 claims description 15
- 201000001441 melanoma Diseases 0.000 claims description 12
- 101100193633 Danio rerio rag2 gene Proteins 0.000 claims description 11
- 101100193635 Mus musculus Rag2 gene Proteins 0.000 claims description 11
- 102100029591 V(D)J recombination-activating protein 2 Human genes 0.000 claims description 11
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 claims description 10
- 102100029948 Tyrosine-protein phosphatase non-receptor type substrate 1 Human genes 0.000 claims description 10
- 239000012634 fragment Substances 0.000 claims description 8
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 7
- 108020001507 fusion proteins Proteins 0.000 claims description 3
- 102000037865 fusion proteins Human genes 0.000 claims description 3
- 108010032099 V(D)J recombination activating protein 2 Proteins 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 3
- 238000005215 recombination Methods 0.000 claims 3
- 230000006798 recombination Effects 0.000 claims 3
- 230000000694 effects Effects 0.000 abstract description 9
- 210000000987 immune system Anatomy 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 230000001976 improved effect Effects 0.000 abstract description 2
- 238000010353 genetic engineering Methods 0.000 abstract 1
- 241000699670 Mus sp. Species 0.000 description 135
- 241001465754 Metazoa Species 0.000 description 83
- 241000699666 Mus <mouse, genus> Species 0.000 description 58
- 210000004369 blood Anatomy 0.000 description 57
- 239000008280 blood Substances 0.000 description 57
- 230000014509 gene expression Effects 0.000 description 57
- 238000001727 in vivo Methods 0.000 description 43
- 210000000822 natural killer cell Anatomy 0.000 description 39
- 235000001014 amino acid Nutrition 0.000 description 36
- 229940024606 amino acid Drugs 0.000 description 32
- 210000000066 myeloid cell Anatomy 0.000 description 32
- 210000001185 bone marrow Anatomy 0.000 description 31
- 238000002474 experimental method Methods 0.000 description 31
- 150000001413 amino acids Chemical class 0.000 description 30
- 210000001616 monocyte Anatomy 0.000 description 30
- 102000004127 Cytokines Human genes 0.000 description 29
- 108090000695 Cytokines Proteins 0.000 description 29
- 125000003729 nucleotide group Chemical group 0.000 description 27
- 210000002540 macrophage Anatomy 0.000 description 25
- 239000002773 nucleotide Substances 0.000 description 24
- 210000001519 tissue Anatomy 0.000 description 24
- 238000000684 flow cytometry Methods 0.000 description 23
- 210000004185 liver Anatomy 0.000 description 22
- 230000035772 mutation Effects 0.000 description 22
- 102000004169 proteins and genes Human genes 0.000 description 22
- 238000012360 testing method Methods 0.000 description 22
- 238000011161 development Methods 0.000 description 21
- 230000018109 developmental process Effects 0.000 description 21
- 108020004999 messenger RNA Proteins 0.000 description 21
- 235000018102 proteins Nutrition 0.000 description 21
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 20
- 239000000203 mixture Substances 0.000 description 20
- 230000001105 regulatory effect Effects 0.000 description 20
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 18
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 17
- 210000005260 human cell Anatomy 0.000 description 17
- 241001529936 Murinae Species 0.000 description 16
- 239000000427 antigen Substances 0.000 description 16
- 108091007433 antigens Proteins 0.000 description 16
- 102000036639 antigens Human genes 0.000 description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 16
- 230000006870 function Effects 0.000 description 16
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 15
- 210000003743 erythrocyte Anatomy 0.000 description 15
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 14
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 description 14
- 238000000540 analysis of variance Methods 0.000 description 14
- 238000012552 review Methods 0.000 description 14
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 13
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 13
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 13
- 230000011132 hemopoiesis Effects 0.000 description 13
- 108091033319 polynucleotide Proteins 0.000 description 13
- 102000040430 polynucleotide Human genes 0.000 description 13
- 239000002157 polynucleotide Substances 0.000 description 13
- 230000004069 differentiation Effects 0.000 description 12
- 201000010099 disease Diseases 0.000 description 12
- 210000000265 leukocyte Anatomy 0.000 description 12
- 238000001543 one-way ANOVA Methods 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 description 11
- 125000003275 alpha amino acid group Chemical group 0.000 description 11
- 230000003394 haemopoietic effect Effects 0.000 description 11
- 210000000952 spleen Anatomy 0.000 description 11
- 238000002054 transplantation Methods 0.000 description 11
- 101001003140 Homo sapiens Interleukin-15 receptor subunit alpha Proteins 0.000 description 10
- 102000003839 Human Proteins Human genes 0.000 description 10
- 108090000144 Human Proteins Proteins 0.000 description 10
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 230000012010 growth Effects 0.000 description 10
- 210000002865 immune cell Anatomy 0.000 description 10
- 210000004072 lung Anatomy 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 108010009992 CD163 antigen Proteins 0.000 description 9
- 101001055157 Homo sapiens Interleukin-15 Proteins 0.000 description 9
- 101001061851 Homo sapiens V(D)J recombination-activating protein 2 Proteins 0.000 description 9
- 102100032870 Natural cytotoxicity triggering receptor 1 Human genes 0.000 description 9
- ACSIXWWBWUQEHA-UHFFFAOYSA-N clodronic acid Chemical compound OP(O)(=O)C(Cl)(Cl)P(O)(O)=O ACSIXWWBWUQEHA-UHFFFAOYSA-N 0.000 description 9
- 229960002286 clodronic acid Drugs 0.000 description 9
- 239000003623 enhancer Substances 0.000 description 9
- 102000056003 human IL15 Human genes 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 210000001539 phagocyte Anatomy 0.000 description 9
- 108091026890 Coding region Proteins 0.000 description 8
- 210000001744 T-lymphocyte Anatomy 0.000 description 8
- 230000000527 lymphocytic effect Effects 0.000 description 8
- 238000007619 statistical method Methods 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 101000589301 Homo sapiens Natural cytotoxicity triggering receptor 1 Proteins 0.000 description 7
- 108700019146 Transgenes Proteins 0.000 description 7
- 230000002068 genetic effect Effects 0.000 description 7
- 230000028993 immune response Effects 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000015788 innate immune response Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 102000003812 Interleukin-15 Human genes 0.000 description 6
- 108090000172 Interleukin-15 Proteins 0.000 description 6
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 6
- -1 aliphatic amino acids Chemical class 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 230000036039 immunity Effects 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 239000002502 liposome Substances 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- 210000000287 oocyte Anatomy 0.000 description 6
- 230000000242 pagocytic effect Effects 0.000 description 6
- 238000010186 staining Methods 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 5
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 5
- 102000043129 MHC class I family Human genes 0.000 description 5
- 108091054437 MHC class I family Proteins 0.000 description 5
- 206010057249 Phagocytosis Diseases 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- 210000000601 blood cell Anatomy 0.000 description 5
- 201000010902 chronic myelomonocytic leukemia Diseases 0.000 description 5
- 230000009260 cross reactivity Effects 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 230000008595 infiltration Effects 0.000 description 5
- 238000001764 infiltration Methods 0.000 description 5
- 208000032839 leukemia Diseases 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 208000025113 myeloid leukemia Diseases 0.000 description 5
- 210000005259 peripheral blood Anatomy 0.000 description 5
- 239000011886 peripheral blood Substances 0.000 description 5
- 230000008782 phagocytosis Effects 0.000 description 5
- 230000008488 polyadenylation Effects 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 4
- 241000283707 Capra Species 0.000 description 4
- 241000701022 Cytomegalovirus Species 0.000 description 4
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 4
- 101000868279 Homo sapiens Leukocyte surface antigen CD47 Proteins 0.000 description 4
- 101001023379 Homo sapiens Lysosome-associated membrane glycoprotein 1 Proteins 0.000 description 4
- 101000576894 Homo sapiens Macrophage mannose receptor 1 Proteins 0.000 description 4
- 101000971513 Homo sapiens Natural killer cells antigen CD94 Proteins 0.000 description 4
- 102100022338 Integrin alpha-M Human genes 0.000 description 4
- 102100035133 Lysosome-associated membrane glycoprotein 1 Human genes 0.000 description 4
- 208000033833 Myelomonocytic Chronic Leukemia Diseases 0.000 description 4
- 208000014767 Myeloproliferative disease Diseases 0.000 description 4
- 102100021462 Natural killer cells antigen CD94 Human genes 0.000 description 4
- 102000004503 Perforin Human genes 0.000 description 4
- 108010056995 Perforin Proteins 0.000 description 4
- 238000010240 RT-PCR analysis Methods 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 210000002459 blastocyst Anatomy 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000003013 cytotoxicity Effects 0.000 description 4
- 231100000135 cytotoxicity Toxicity 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 210000003714 granulocyte Anatomy 0.000 description 4
- 230000013632 homeostatic process Effects 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 210000003563 lymphoid tissue Anatomy 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 4
- 230000009870 specific binding Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 229960005486 vaccine Drugs 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 102000006354 HLA-DR Antigens Human genes 0.000 description 3
- 108010058597 HLA-DR Antigens Proteins 0.000 description 3
- 101150003028 Hprt1 gene Proteins 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 108010043610 KIR Receptors Proteins 0.000 description 3
- 102100033627 Killer cell immunoglobulin-like receptor 3DL1 Human genes 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- 102100032913 Leukocyte surface antigen CD47 Human genes 0.000 description 3
- 241000186781 Listeria Species 0.000 description 3
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 3
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 3
- 206010038270 Refractory anaemia with an excess of blasts Diseases 0.000 description 3
- 208000033501 Refractory anemia with excess blasts Diseases 0.000 description 3
- 208000032411 Refractory with Excess of Blasts Anemia Diseases 0.000 description 3
- 241000269319 Squalius cephalus Species 0.000 description 3
- 102100034195 Thrombopoietin Human genes 0.000 description 3
- 101710113649 Thyroid peroxidase Proteins 0.000 description 3
- 108090000848 Ubiquitin Proteins 0.000 description 3
- 102000044159 Ubiquitin Human genes 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 208000007502 anemia Diseases 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 229940009098 aspartate Drugs 0.000 description 3
- 229940120638 avastin Drugs 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000003995 blood forming stem cell Anatomy 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 210000000267 erythroid cell Anatomy 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 208000037797 influenza A Diseases 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 208000016586 myelodysplastic syndrome with excess blasts Diseases 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 229930192851 perforin Natural products 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000005748 tumor development Effects 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- 238000002255 vaccination Methods 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- ZBMRKNMTMPPMMK-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid;azane Chemical compound [NH4+].CP(O)(=O)CCC(N)C([O-])=O ZBMRKNMTMPPMMK-UHFFFAOYSA-N 0.000 description 2
- 239000012103 Alexa Fluor 488 Substances 0.000 description 2
- 239000012109 Alexa Fluor 568 Substances 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 2
- SPFYMRJSYKOXGV-UHFFFAOYSA-N Baytril Chemical compound C1CN(CC)CCN1C(C(=C1)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1CC1 SPFYMRJSYKOXGV-UHFFFAOYSA-N 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- 102100028668 C-type lectin domain family 4 member C Human genes 0.000 description 2
- 102000004354 CD11b Antigen Human genes 0.000 description 2
- 108090000835 CX3C Chemokine Receptor 1 Proteins 0.000 description 2
- 102100039196 CX3C chemokine receptor 1 Human genes 0.000 description 2
- 101100069853 Caenorhabditis elegans hil-3 gene Proteins 0.000 description 2
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 102000029816 Collagenase Human genes 0.000 description 2
- 108060005980 Collagenase Proteins 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 102000005289 Eukaryotic Initiation Factor-4A Human genes 0.000 description 2
- 108010056472 Eukaryotic Initiation Factor-4A Proteins 0.000 description 2
- 206010064571 Gene mutation Diseases 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 2
- 101000766907 Homo sapiens C-type lectin domain family 4 member C Proteins 0.000 description 2
- 101100220044 Homo sapiens CD34 gene Proteins 0.000 description 2
- 101100231743 Homo sapiens HPRT1 gene Proteins 0.000 description 2
- 101001018097 Homo sapiens L-selectin Proteins 0.000 description 2
- 101000916644 Homo sapiens Macrophage colony-stimulating factor 1 receptor Proteins 0.000 description 2
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 2
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- 102100033467 L-selectin Human genes 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 241000186779 Listeria monocytogenes Species 0.000 description 2
- 206010024641 Listeriosis Diseases 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 102100028198 Macrophage colony-stimulating factor 1 receptor Human genes 0.000 description 2
- 108010004217 Natural Cytotoxicity Triggering Receptor 1 Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 102000015636 Oligopeptides Human genes 0.000 description 2
- 108010038807 Oligopeptides Proteins 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 102000001183 RAG-1 Human genes 0.000 description 2
- 108060006897 RAG1 Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 206010041660 Splenomegaly Diseases 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 2
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 238000010162 Tukey test Methods 0.000 description 2
- 201000007146 X-linked severe combined immunodeficiency Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 210000001132 alveolar macrophage Anatomy 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 229960003121 arginine Drugs 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229960002092 busulfan Drugs 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 229960002424 collagenase Drugs 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000000432 density-gradient centrifugation Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 210000001671 embryonic stem cell Anatomy 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 229940049906 glutamate Drugs 0.000 description 2
- 210000000777 hematopoietic system Anatomy 0.000 description 2
- 229960002885 histidine Drugs 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 102000046699 human CD14 Human genes 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 230000002055 immunohistochemical effect Effects 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 229960003646 lysine Drugs 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 2
- 229960004961 mechlorethamine Drugs 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 208000012847 myelodysplastic syndrome with excess blasts-2 Diseases 0.000 description 2
- 210000003643 myeloid progenitor cell Anatomy 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000013610 patient sample Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 235000008729 phenylalanine Nutrition 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000000113 radiomimetic effect Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000002303 tibia Anatomy 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000012250 transgenic expression Methods 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 238000007473 univariate analysis Methods 0.000 description 2
- 238000012762 unpaired Student’s t-test Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000002525 vasculotropin inhibitor Substances 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- GMKMEZVLHJARHF-UHFFFAOYSA-N (2R,6R)-form-2.6-Diaminoheptanedioic acid Natural products OC(=O)C(N)CCCC(N)C(O)=O GMKMEZVLHJARHF-UHFFFAOYSA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- LUTLAXLNPLZCOF-UHFFFAOYSA-N 1-Methylhistidine Natural products OC(=O)C(N)(C)CC1=NC=CN1 LUTLAXLNPLZCOF-UHFFFAOYSA-N 0.000 description 1
- BLCJBICVQSYOIF-UHFFFAOYSA-N 2,2-diaminobutanoic acid Chemical compound CCC(N)(N)C(O)=O BLCJBICVQSYOIF-UHFFFAOYSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-UHFFFAOYSA-N 2-Aminobutanoic acid Natural products CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 1
- BXRLWGXPSRYJDZ-VKHMYHEASA-N 3-cyano-L-alanine Chemical compound OC(=O)[C@@H](N)CC#N BXRLWGXPSRYJDZ-VKHMYHEASA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- LDCYZAJDBXYCGN-VIFPVBQESA-N 5-hydroxy-L-tryptophan Chemical compound C1=C(O)C=C2C(C[C@H](N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-VIFPVBQESA-N 0.000 description 1
- 229940000681 5-hydroxytryptophan Drugs 0.000 description 1
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 239000012114 Alexa Fluor 647 Substances 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 108020005098 Anticodon Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 108010017009 CD11b Antigen Proteins 0.000 description 1
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 1
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 1
- 101150018129 CSF2 gene Proteins 0.000 description 1
- 101100381481 Caenorhabditis elegans baz-2 gene Proteins 0.000 description 1
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 206010068051 Chimerism Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- 101150074775 Csf1 gene Proteins 0.000 description 1
- QWCKQJZIFLGMSD-GSVOUGTGSA-N D-alpha-aminobutyric acid Chemical compound CC[C@@H](N)C(O)=O QWCKQJZIFLGMSD-GSVOUGTGSA-N 0.000 description 1
- 102000010567 DNA Polymerase II Human genes 0.000 description 1
- 108010063113 DNA Polymerase II Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102100022204 DNA-dependent protein kinase catalytic subunit Human genes 0.000 description 1
- 241000725619 Dengue virus Species 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 102100037241 Endoglin Human genes 0.000 description 1
- 108010036395 Endoglin Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010015108 Epstein-Barr virus infection Diseases 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 102100035716 Glycophorin-A Human genes 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 1
- 108010075704 HLA-A Antigens Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 102100038720 Histone deacetylase 9 Human genes 0.000 description 1
- 101500024172 Homo sapiens Adrenomedullin Proteins 0.000 description 1
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 description 1
- 101000619536 Homo sapiens DNA-dependent protein kinase catalytic subunit Proteins 0.000 description 1
- 101001074244 Homo sapiens Glycophorin-A Proteins 0.000 description 1
- 101001032092 Homo sapiens Histone deacetylase 9 Proteins 0.000 description 1
- 101001033249 Homo sapiens Interleukin-1 beta Proteins 0.000 description 1
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 description 1
- 101001027081 Homo sapiens Killer cell immunoglobulin-like receptor 2DL1 Proteins 0.000 description 1
- 101000945371 Homo sapiens Killer cell immunoglobulin-like receptor 2DL2 Proteins 0.000 description 1
- 101000945351 Homo sapiens Killer cell immunoglobulin-like receptor 3DL1 Proteins 0.000 description 1
- 101000934372 Homo sapiens Macrosialin Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 101000583553 Homo sapiens Phosphoglucomutase-1 Proteins 0.000 description 1
- 101000797623 Homo sapiens Protein AMBP Proteins 0.000 description 1
- 101100477531 Homo sapiens SIRPA gene Proteins 0.000 description 1
- 101000835093 Homo sapiens Transferrin receptor protein 1 Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 101000808011 Homo sapiens Vascular endothelial growth factor A Proteins 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000001974 Hyaluronidases Human genes 0.000 description 1
- 101150047851 IL2RG gene Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102100022297 Integrin alpha-X Human genes 0.000 description 1
- 102100037872 Intercellular adhesion molecule 2 Human genes 0.000 description 1
- 101710148794 Intercellular adhesion molecule 2 Proteins 0.000 description 1
- 102100026720 Interferon beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 101150069380 JAK3 gene Proteins 0.000 description 1
- 102000002698 KIR Receptors Human genes 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 102100037363 Killer cell immunoglobulin-like receptor 2DL1 Human genes 0.000 description 1
- 102100033599 Killer cell immunoglobulin-like receptor 2DL2 Human genes 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- FSBIGDSBMBYOPN-VKHMYHEASA-N L-canavanine Chemical compound OC(=O)[C@@H](N)CCONC(N)=N FSBIGDSBMBYOPN-VKHMYHEASA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- 241000866438 Listeria monocytogenes 10403S Species 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 206010025327 Lymphopenia Diseases 0.000 description 1
- 102100025136 Macrosialin Human genes 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 229930191564 Monensin Natural products 0.000 description 1
- GAOZTHIDHYLHMS-UHFFFAOYSA-N Monensin A Natural products O1C(CC)(C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CCC1C(O1)(C)CCC21CC(O)C(C)C(C(C)C(OC)C(C)C(O)=O)O2 GAOZTHIDHYLHMS-UHFFFAOYSA-N 0.000 description 1
- 101100339600 Mus musculus Hprt1 gene Proteins 0.000 description 1
- 101001055166 Mus musculus Interleukin-15 Proteins 0.000 description 1
- CYZKJBZEIFWZSR-LURJTMIESA-N N(alpha)-methyl-L-histidine Chemical compound CN[C@H](C(O)=O)CC1=CNC=N1 CYZKJBZEIFWZSR-LURJTMIESA-N 0.000 description 1
- BRMWTNUJHUMWMS-LURJTMIESA-N N(tele)-methyl-L-histidine Chemical compound CN1C=NC(C[C@H](N)C(O)=O)=C1 BRMWTNUJHUMWMS-LURJTMIESA-N 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 1
- FSBIGDSBMBYOPN-UHFFFAOYSA-N O-guanidino-DL-homoserine Natural products OC(=O)C(N)CCON=C(N)N FSBIGDSBMBYOPN-UHFFFAOYSA-N 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 102100030999 Phosphoglucomutase-1 Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102100032859 Protein AMBP Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101100372762 Rattus norvegicus Flt1 gene Proteins 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 101150036449 SIRPA gene Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 206010042573 Superovulation Diseases 0.000 description 1
- 102000036693 Thrombopoietin Human genes 0.000 description 1
- 108010041111 Thrombopoietin Proteins 0.000 description 1
- 102000002689 Toll-like receptor Human genes 0.000 description 1
- 108020000411 Toll-like receptor Proteins 0.000 description 1
- 102100026144 Transferrin receptor protein 1 Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 229940127174 UCHT1 Drugs 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 108010093528 Wiskott Aldrich Syndrome protein Proteins 0.000 description 1
- 102100023034 Wiskott-Aldrich syndrome protein Human genes 0.000 description 1
- 208000023940 X-Linked Combined Immunodeficiency disease Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 101150027964 ada gene Proteins 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 101150087698 alpha gene Proteins 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 244000000007 bacterial human pathogen Species 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229940105596 baytril Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 230000010001 cellular homeostasis Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 229960000740 enrofloxacin Drugs 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- 230000010437 erythropoiesis Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 230000009033 hematopoietic malignancy Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 102000056982 human CD33 Human genes 0.000 description 1
- 102000044459 human CD47 Human genes 0.000 description 1
- 102000043961 human MRC1 Human genes 0.000 description 1
- 102000044916 human PTPRC Human genes 0.000 description 1
- 102000057041 human TNF Human genes 0.000 description 1
- 102000058223 human VEGFA Human genes 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000010569 immunofluorescence imaging Methods 0.000 description 1
- 230000002998 immunogenetic effect Effects 0.000 description 1
- 238000012151 immunohistochemical method Methods 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229940076264 interleukin-3 Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 210000001699 lower leg Anatomy 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 231100001023 lymphopenia Toxicity 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 210000003593 megakaryocyte Anatomy 0.000 description 1
- GMKMEZVLHJARHF-SYDPRGILSA-N meso-2,6-diaminopimelic acid Chemical compound [O-]C(=O)[C@@H]([NH3+])CCC[C@@H]([NH3+])C([O-])=O GMKMEZVLHJARHF-SYDPRGILSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000004784 molecular pathogenesis Effects 0.000 description 1
- 229960005358 monensin Drugs 0.000 description 1
- GAOZTHIDHYLHMS-KEOBGNEYSA-N monensin A Chemical compound C([C@@](O1)(C)[C@H]2CC[C@@](O2)(CC)[C@H]2[C@H](C[C@@H](O2)[C@@H]2[C@H](C[C@@H](C)[C@](O)(CO)O2)C)C)C[C@@]21C[C@H](O)[C@@H](C)[C@@H]([C@@H](C)[C@@H](OC)[C@H](C)C(O)=O)O2 GAOZTHIDHYLHMS-KEOBGNEYSA-N 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- LDCYZAJDBXYCGN-UHFFFAOYSA-N oxitriptan Natural products C1=C(O)C=C2C(CC(N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-UHFFFAOYSA-N 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001023 pro-angiogenic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229940043517 specific immunoglobulins Drugs 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007801 sublethal irradiation Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 238000011870 unpaired t-test Methods 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 244000000009 viral human pathogen Species 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0278—Knock-in vertebrates, e.g. humanised vertebrates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0271—Chimeric vertebrates, e.g. comprising exogenous cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
- C07K14/4703—Inhibitors; Suppressors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
- C07K14/4705—Regulators; Modulating activity stimulating, promoting or activating activity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/524—Thrombopoietin, i.e. C-MPL ligand
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/53—Colony-stimulating factor [CSF]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/53—Colony-stimulating factor [CSF]
- C07K14/535—Granulocyte CSF; Granulocyte-macrophage CSF
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
- C07K14/5403—IL-3
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2207/00—Modified animals
- A01K2207/12—Animals modified by administration of exogenous cells
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2207/00—Modified animals
- A01K2207/15—Humanized animals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/072—Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/15—Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0331—Animal model for proliferative diseases
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/035—Animal model for multifactorial diseases
- A01K2267/0381—Animal model for diseases of the hematopoietic system
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/035—Animal model for multifactorial diseases
- A01K2267/0387—Animal model for diseases of the immune system
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Animal Behavior & Ethology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Husbandry (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Настоящее изобретение относится к генетической инженерии, в частности к генетически модифицированному иммунодефицитному грызуну, который экспрессирует полипептид M-CSF человека, полипептид IL-3 человека, полипептид GM-CSF человека, полипептид SIRPA человека и полипептид ТРО человека. Указанный грызун модифицирован таким образом, что содержит в своем геноме нуклеиновые кислоты, кодирующие человеческий M-CSF, человеческий IL-3, человеческий GM-CSF, человеческий SIRPA и человеческий ТРО, соответственно. При этом каждая из указанных нуклеиновых кислот является функционально связанной с промотором. Настоящее изобретение также раскрывает способ приживления гематопоэтической стволовой и прогениторной клетки (HSPC). Данный способ предусматривает введение HSPC генетически модифицированному иммунодефицитному грызуну согласно изобретению. Настоящее изобретение позволяет получать генетически модифицированных грызунов, демонстрирующих улучшенное приживление солидных опухолей, для использования в качестве моделей человеческой иммунной системы. 2 н. и 17 з.п. ф-лы, 17 ил., 2 пр.
Description
Перекрестные ссылки на родственные заявки
Настоящая заявка испрашивает приоритет согласно предварительной заявке на патент США №61/698,002, поданной 7 сентября 2012, и предварительной заявке на патент США 61/775,171, поданной 8 марта 2013, содержание каждой из которых полностью включено в настоящую заявку посредством ссылки.
Уровень техники
Целью биомедицинских исследований является улучшение понимания физиологии человека и применения этих знаний для предотвращения, лечения или исцеления болезней человека. Вследствие практических и этических барьеров проведения экспериментов на людях, многие исследования осуществляются на небольших животных моделях, например на мышах. Однако мыши не являются людьми, и знания, полученные в результате проведения экспериментов на животных, не всегда применимы к людям. В этом контексте мыши, репопулированные с помощью гемато-лимфоидной системы человека (HHLS) представляют собой удобную модель на мелком животном для исследования гематопоэза человека и иммунной фракции in vivo.
HHLS мышей получают путем пересадки гематопоэтических стволовых клеток и клеток-предшественников (прогениторных клеток) человека (HSPCs) и/или эмбриональных тканей человека мышам-реципиентам, лишенным врожденной и адаптивной ветвей иммунного ответа. Первые модели HHLS мышей были разработаны в конце 1980-х (Mosier et al., 1988, Nature 335:256-259; McCune et al., 1988, Science 241:1632-1639; Kamel-Reid и Dick, 1988, Science 242:1706-1709), и с тех пор были подвергнуты целому ряду усовершенствований (Legrand et al., 2006, Journal of Immunology 176:2053-2058; Shultz et al., 2007, Nature Reviews Immunology 7:118-130). Линии мышей, используемых в настоящее время в качестве реципиентов для приживления человеческого гематопоэтического трансплантата, имеют три общие характеристики. Во-первых, у них отсутствуют В и Т-клетки вследствие Scid мутации в гене, кодирующем PRKDC белок (Mosier et al., 1988, Nature 335:256-259; McCune et al., 1988, Science 241:1632-1639), или вследствие делеции одного из двух генов Rag (Shultz et al., 2000, Journal of immunology 164:2496-2507; Traggiai et al., 2004, Science 304:104-107). Во-вторых, делеция или мутация Il2rg гена, кодирующего общую гамма цепь (γс) рецепторов цитокинов, ликвидирует IL-15 сигнальный путь и приводит к отсутствию NK-клеток (Traggiai et al., 2004, Science 304:104-107; Ito et al. 2002, Blood 100:3175-3182). В-третьих, взаимодействие между SIRPA рецептором, экспрессированным на мышиных макрофагах, и CD47 лигандом на человеческих клетках предоставляет ингибиторный сигнал для мышиных макрофагов и обеспечивает фагоцитарную толерантность к человеческому ксенотрансплантату (Takenaka et al., 2007, Nature Immunology 8:1313-1323; Takizawa & Manz, 2007, Nature Immunology 8:1287-1289). Межвидовое взаимодействие между SIRPA, экспрессированным на мышиных клетках, и человеческим CD47 достигается при использовании генетического окружения NOD, которое содержит естественный полиморфизм в Sirpa гене (Takenaka et al., 2007, Nature Immunology 8:1313-1323; Takizawa & Manz, 2007, Nature Immunology 8:1287-1289; Legrand et al., 2011, Proc Natl Acad Sci USA 108:13224-13229), или путем ВАС-трансгенной экспрессии человеческого гена SIRPA (Strowig et al., 2011, Proc Natl Acad Sci USA 108:13218-13223). Высокие уровни приживления человеческих гематопоэтических клеток после трансплантации человеческих HSPC достигаются при использовании NOD Scid γс -/- (NOG (Ito et al. 2002, Blood 100:3175-3182) или NSG (Ishikawa et al., 2005, Blood 106:1565-1573)) или hSIRPAtg RAG2-/- γс -/- (SRG (Strowig et al., 2011, Proc Natl Acad Sci USA 108:13218-13223)) мышей в качестве реципиентов.
Хотя у этих линий-реципиентов наблюдается мультилинейное развитие человеческих гематопоэтических клеток, конечная дифференцировка, гомеостаз и/или эффекторная функция большинства человеческих типов клеток является недостаточной. Было выдвинуто предположение, что это состояние является следствием уменьшения или отсутствия перекрестной реактивности между цитокинами, секретируемыми мышиными тканями, и человеческими рецепторами, экспрессированными на гематопоэтических клетках (Manz, 2007, Immunity 26:537-541; Willinger et al., 2011, Trends in Immunology 32:321-327). С целью преодоления этого ограничения были разработаны некоторые стратегии доставки человеческих цитокинов в хозяина-мышь. Эти способы включают инъекцию рекомбинантных цитокинов (Lapidot et al., 1992, Science 255:1137-1141; van Lent et al., 2009, J. Immunol 183:7645-7655), лентивирусную доставку кДНК, кодирующей цитокин (O'Connell et al., 2010, PloS One 5(8):e12009), гидродинамическую инъекцию плазмидной ДНК (Chen et al., 2009, Proc Natl Acad Sci USA 106:21783-21788), трансгенную экспрессию кДНК (Nicolini et al., et al., 2004, Leukemia 18(2):341-347; Brehm et al., 2012, Blood 119:2778-2788; Takagi et al., 2012, Blood 119:2768-2777) или «нокин» замену генов, кодирующих цитокины (Rongvaux et al., 2011, Proc Natl Acad Sci USA 108:2378-2383; Willinger et al., 2011, Proc Natl Acad Sci USA 108:2390-2395; Rathinam et al., 2011, Blood 118:3119-3128). Последний метод имеет преимущество, заключающееся в более физиологической экспрессии человеческого гена. Кроме того, если человеческий цитокин является не полностью перекрестаореагирующим на мышином рецепторе, он может вызывать нарушение в популяциях мышиных клеток и обеспечивать дополнительное конкурентное преимущество человеческим клеткам. При использовании стратегии «нокин» замещения гена, гуманизация гена, кодирующего тромбопоэтин (Тро), приводила к лучшему сохранению функциональных человеческих гематопоэтических стволовых клеток и повышенному приживлению в костном мозге (Rongvaux et al., 2011, Proc Natl Acad Sci USA 108:2378-2383); замена генов, кодирующих интерлейкин-3 и GM-CSF (Il3 и Csf2), вызывала потерю мышиных легочных альвеолярных макрофагов (AM) и развитие функциональных человеческих AM (Willinger et al., 2011, Proc Natl Acad Sci USA 108:2390-2395); а замена Csf1 гена, кодирующего M-CSF, давала в результате повышенное количество человеческих моноцитов во многих тканях (Rathinam et al., 2011, Blood 118:3119-3128).
Гемато-лимфоидные системы человека и мыши различаются во многих аспектах (Haley, 2003, Toxicology 188:49-71; Mestas & Hughes, 2004, J Immunol 172:2731-2738). Одно из основных различий между двумя видами заключается в их лейкоцитарной формуле. Кровь человека богата миелоидными клетками, которые представляют 50-75% всех белых клеток крови (лейкоцитов). В отличие от этого в крови мыши преобладают лимфоциты и только 20-30% лейкоцитов являются клетками миелоидного ростка. Это видовое различие, функциональное и эволюционное значение которого не ясно, не воспроизводится у обыкновенных HHLS мышей, таких как NOG/NSG или SRG. Действительно, развитие миелоидных человеческих клеток, в частности, является нарушенным у этих хозяев, при этом миелоидные клетки представляют только 5-10% человеческих лейкоцитов.
Одним применением мышей с функциональными человеческими иммунными системами является создание и тестирование человеческих вакцин. Как показывает время, индукция иммунных ответов in vivo относительно неэффективна (2004, Traggiai et al., Science 304:104-107; 2002, Ito et al., Blood 100:3175-3182; 2005, Ishikawa et al., Blood 106:1565-1573; 2005, Shultz et al., J Immunol 174:6477-6489; 2006, Baenziger et al., Proc Natl Acad Sci USA 103:15951-15956). Некоторые исследования сообщали об успешных патоген-специфических иммунных ответах после инфицирования. И хотя сообщалось, что примерно у 50% мышей вырабатывался вирус-специфический IgM и IgG после заражения вирусом денге (2007, Kuruvilla et al. Virology 369:143-152), другие исследования сообщали о количестве ниже 20% мышей, продуцирующих антиген-специфический IgM и IgG после HIV и EBV инфекции (2006, Baenziger et al., Proc Natl Acad Sci USA 103:15951-15956; 2008, Yajima et al., J Infect Dis 198:673-682). После иммунизации адьювантом и антигеном переключение классов антиген-специфических иммуноглобулинов, как показывает время, также является неэффективным при наличии одной лишь фракции иммунизированных животных, демонстрирующих антиген-специфические IgG ответы (2004, Traggiai et al., Science 304:104-107; 2002, Ito et al., Blood 100:3175-3182; 2005, Ishikawa et al., Blood 106:1565-1573; 2005, Shultz et al., J Immunol 174:6477-6489; 2009, Watanabe et al., Int Immunol 21:843-858; 2010, Becker et al., PLoS ONE 5). Эти исследования включали NSG и BALB/c RAG2-/- γс -/- мышей и различные комбинации адьювант/антиген.
В данной области техники имеется потребность в гуманизированных, не принадлежащих к человеческому роду животных, способных обеспечить и поддерживать приживление человеческих гематопоэтических клеток. Настоящее изобретение направлено на эту неудовлетворенную потребность в данной области техники.
Раскрытие изобретения
В общем, данное изобретение имеет отношение к генетически модифицированным животным, не относящимся к человеческому роду, экспрессирующим, по меньшей мере, что-либо из числа человеческого M-CSF, человеческого IL-3, человеческого GM-CSF, человеческого SIRPA или человеческого ТРО, а также к способам их использования. Таким образом, в одном варианте осуществления данное изобретение представляет собой генетически модифицированное, не относящееся к человеческому роду животное, содержащее геном, содержащий, по меньшей мере, одну нуклеиновую кислоту, кодирующую, по меньшей мере, что-либо из группы, содержащей человеческий M-CSF, человеческий IL-3, человеческий GM-CSF, человеческий SIRPA и человеческий ТРО, при этом, по меньшей мере, одна нуклеиновая кислота является функционально связанной с промотором, при этом у животного экспрессируется, по меньшей мере, один полипептид, выбранный из группы, состоящей из человеческого M-CSF, человеческого IL-3, человеческого GM-CSF, человеческого SIRPA и человеческого ТРО. В другом варианте осуществления данное изобретение представляет собой генетически модифицированное, не относящееся к человеческому роду животное, содержащее геном, содержащий нуклеиновую кислоту, кодирующую человеческий M-CSF, нуклеиновую кислоту, кодирующую человеческий IL-3, нуклеиновую кислоту, кодирующую человеческий GM-CSF, нуклеиновую кислоту, кодирующую человеческий SIRPA, и нуклеиновую кислоту, кодирующую человеческий ТРО, при этом каждая из нуклеиновых кислот, кодирующая человеческий M-CSF, человеческий IL-3, человеческий GM-CSF, человеческий SIRPA и человеческий ТРО, является функционально связанной с промотором, а у животного экспресссируется человеческий M-CSF полипептид, человеческий IL-3 полипептид, человеческий GM-CSF полипептид, человеческий SIRPA полипептид и человеческий ТРО полипептид. В некоторых вариантах осуществления генетически модифицированное, не относящееся к человеческому роду животное является иммунодефицитным. В некоторых вариантах осуществления генетически модифицированное, не относящееся к человеческому роду животное не экспрессирует активирующий рекомбинацию ген 2 (Rag-2-/-). В некоторых вариантах осуществления генетически модифицированное, не относящееся к человеческому роду животное не экспрессирует гамма цепь IL2 рецептора (гамма цепь-/-). В некоторых вариантах осуществления генетически модифицированное, не относящееся к человеческому роду животное не экспрессирует Rag-2 и генетически модифицированное, не относящееся к человеческому роду животное не экспрессирует гамма цепь IL2 рецептора (Rag-2-/- гамма цепь-/-). В некоторых вариантах осуществления генетически модифицированное, не относящееся к человеческому роду животное является грызуном. В некоторых вариантах осуществления генетически модифицированное, не относящееся к человеческому роду животное является мышью. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное также содержит, по меньшей мере, одну человеческую гематопоэтическую клетку. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное также включает, по меньшей мере, одну человеческую раковую клетку. В некоторых вариантах осуществления человеческая раковая клетка является лейкемической клеткой или клеткой меланомы.
В другом варианте осуществления данное изобретение представляет собой способ приживления гематопоэтических стволовых и прогениторных клеток (HSPC) у генетически модифицированного, не относящегося к человеческому роду животного, при этом у животного экспрессируется, по меньшей мере, что-либо из группы, включающей человеческий M-CSF, человеческий IL-3, человеческий GM-CSF, человеческий SIRPA и человеческий ТРО, причем данный способ включает стадию введения, по меньшей мере, одной HSPC генетически модифицированному животному, экспрессирующему, по меньшей мере, что-либо из группы, состоящей из человеческого M-CSF, человеческого IL-3, человеческого GM-CSF, человеческого SIRPA и человеческого ТРО. В некоторых вариантах осуществления HSPC является человеческой HSPC. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное является грызуном. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное является мышью. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное является иммунодефицитным. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное не экспрессирует активирующий рекомбинацию ген 2 (Rag-2-/-). В одном варианте осуществления генетически модифицированное, иммунодефицитное, не относящееся к человеческому роду животное не экспрессирует эндогенный IL2 рецептор (гамма цепь-/-). В одном варианте осуществления генетически модифицированное, иммунодефицитное, не относящееся к человеческому роду животное не экспрессирует эндогенный Rag-2 и не экспрессирует эндогенную гамма цепь (Rag-2-/- гамма цепь-/-). В одном варианте осуществления генетически модифицированное животное содержит человеческую раковую клетку. В одном варианте осуществления человеческая раковая клетка является лейкемической клеткой или клеткой меланомы.
В другом варианте осуществления изобретением является генетически модифицированная мышь Rag-2-/- гамма цепь-/-, имеющая геном, содержащий, по меньшей мере, одну нуклеиновую кислоту, кодирующую, по меньшей мере, что-либо из группы, состоящей из человеческого M-CSF, человеческого IL-3, человеческого GM-CSF, человеческого SIRPA и человеческого ТРО, при этом, по меньшей мере, одна нуклеиновая кислота является функционально связанной, по меньшей мере, с одним промотором, причем мышь экспрессирует, по меньшей мере, один полипептид, выбранный из группы, состоящей из человеческого M-CSF, человеческого IL-3, человеческого GM-CSF, человеческого SERPA и человеческого ТРО. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное содержит геном, имеющий нуклеиновую кислоту, кодирующую человеческий M-CSF, нуклеиновую кислоту, кодирующую человеческий IL-3, нуклеиновую кислоту, кодирующую человеческий GM-CSF, нуклеиновую кислоту, кодирующую человеческий SIRPA и нуклеиновую кислоту, кодирующую человеческий ТРО, при этом каждая из нуклеиновых кислот, кодирующих человеческий M-CSF, человеческий IL-3, человеческий GM-CSF, человеческий SIRPA и человеческий ТРО, является функционально связанной с промотором, и при этом животное экспрессирует человеческий M-CSF полипептид, человеческий IL-3 полипептид, человеческий GM-CSF полипептид, человеческий SIRPA полипептид и человеческий ТРО полипептид. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное является грызуном. В одном варианте осуществления генетически модифицированное не относящееся к человеческому роду животное является мышью. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное содержит человеческую гематопоэтическую клетку. В одном варианте осуществления генетически модифицированное, не относящееся к человеческому роду животное содержит человеческую раковую клетку. В некоторых вариантах осуществления человеческая раковая клетка является лейкемической клеткой или клеткой меланомы.
Краткое описание чертежей
Следующее подробное описание предпочтительных вариантов осуществления изобретения будет более понятно после прочтения в сочетании с прилагаемыми чертежами. Для иллюстрации изобретения предпочтительные в настоящее время варианты осуществления представлены в виде чертежей. Однако следует понимать, что изобретение не ограничивается точным порядком и средствами вариантов осуществления, показанных на чертежах.
Фигура 1, включающая Фигуры 1А-1Е, показывает результаты экспериментов, демонстрирующих, что MISTRG мыши поддерживают высокие уровни приживления человеческого гематопоэтического трансплантата. Предварительно обработанным рентгеновскими лучами новорожденным мышам указанных линий было привито 100,000 (FL-)CD34+ человеческих эмбриональных клеток печени с помощью внутрипеченочной инъекции. Уровни приживления человеческого трансплантата (hCD45+ клетки) измеряли в крови через 7-9 недель, а в ВМ через 10-12 недель. (Фигура 1А) Репрезентативное исследование с помощью проточной цитометрии встречаемости мышиных и человеческих CD45+ клеток в крови и ВМ указанных реципиентных мышей. Числа рядом с областями гейтов указывают проценты от числа всех CD45+ клеток. (Фигура 1В) Представлены объединенные данные уровней приживления клеток крови (% hCD45+ клеток), полученные в 19 независимых экспериментах. В каждом эксперименте один образец FL-CD34+ клеток был отделен и введен мышам соответствующих линий. Каждый символ представляет отдельную мышь, красные планки показывают средние значения (n=56-155; ns - незначимое значение; * р<0.05 тест Тьюки (полный статистический анализ показан на Фигуре 6). Серая горизонтальная линия показывает 10% hCD45+ клеток. (Фигура 1С) Уровни приживления в ВМ репрезентативной подгруппы мышей (Фигура 6С) из панели (Фигура 6В) (n=12-16; * р<0.05 тест Тьюки; смотри также Фигуры 6D-6E). (Фигура 1D) Репрезентативное исследование с помощью проточной цитометрии приживления hCD45+ клеток в крови и ВМ через 3 месяца после внутрипеченочной инъекции 200,000 FL-CD34+ клеток необлученным новорожденным мышам MISTRG. (Фигура 1Е) Уровни приживления человеческих CD45+ клеток в крови и ВМ MISTRG мышей с пересадкой, как на Фигуре 1D (n=16). В этом случае показан ВМ всех мышей (включая мышей с hCD45+<10%).
Фигура 2, включающая Фигуры 2A-2K, показывает результаты экспериментов, демонстрирующих, что MISTRG мыши обеспечивают эффективное развитие и сохранение миелоидных клеток в лимфоидной и нелимфоидной тканях. (Фигура 2А) Процентное содержание человеческих миелоидных клеток (hCD33+) среди человеческих гематопоэтических клеток (hCD45+) в крови указанных реципиентных мышей, которым в возрасте новорожденных были пересажены FL-CD34+ клетки посредством внутрипеченочной инъекции после предварительной обработки рентгеновскими лучами. Каждый символ представляет отдельную мышь, красные планки показывают средние значения (n=20-113; статистический анализ показан на Фигуре 7А). (Фигура 2В) Композиция человеческих лейкоцитов на таких же мышах (n=20-113 мышей/группу; n=8 доноров-людей; планки погрешностей показывают стандартную ошибку среднего (ош. ср.). (Фигура 2С) Иммуногистологическое окрашивание человеческих миелоидных клеток (hCD68+) в нелимфоидных тканях указанных мышей-реципиентов. Черные планки показывают 20 мкм, и показанные изображения являются характерными, по меньшей мере, для трех проанализированных мышей на группу. (Фигура 2D и Фигура 2Е) Репрезентативное исследование с помощью проточной цитометрии (Фигура 2D) и частота встречаемости (Фигура 2Е) человеческих подгрупп моноцитов, установленных по экспрессии CD14 и CD16 среди CD45+CD33+ клеток в крови мышей-реципиентов (n=8-12 мышей/группу; планки погрешностей показывают ОШ. СР.). (Фигура 2F и Фигура 2G) Выработка цитокинов человеческими моноцитами, выделенными из ВМ MITRG реципиентов и стимулированными in vitro LPS (Фигура 2F) или R848 (Фигура 2G) (планки погрешностей показывают SD трех повторов; отражающих 3 независимых эксперимента). (Фигура 2Н) In vitro фагоцитоз GFP-экспрессирующих E.coli человеческими клетками, присутствующими в крови MITRG мышей (n=7). (Фигуры 2I, 2J, 2K) Выработка цитокинов in vivo, измеренная методом ELISA в сыворотке или с помощью ОТ-ПЦР в легких мышей, обработанных LPS (Фигура I; 90 мин, n=15-18), или инфицированных Listeria monocytogenes (Фигура 2J; день 2, n=6-15) или гриппом A/PR8 H1N1 (Фигура 2K; день 3, n=3-5). (Фигуры 2А, 2J, 2K) р-значения вычисляли с помощью однофакторного дисперсионного анализа ANOVA, а затем апостериорного теста Тьюки (* р<0.05); (Фигура 2I) р-значение вычисляли с помощью непарного критерия Стьюдента с логарифмическим (log10) преобразованием значений.
Фигура 3, включающая Фигуры 3A-3I, показывает результаты экспериментов, демонстрирующих, что MISTRG мыши эффективно обеспечивают развитие и функцию человеческих NK клеток. (Фигура 3А) Количественный ОТ-ПЦР анализ экспрессии мРНК человеческих IL-15 и IL-15Rα в печени NSG, MITRG и MISTRG мышей с пересаженными клетками (n=7-8; р-значения вычисляли с помощью однофакторного дисперсионного анализа ANOVA; *, р<0.05 апостериорный тест Тьюки). Экспрессию нормировали по отношению к мыши Hprt. (Фигура 3В) Количественный ОТ-ПЦР анализ экспрессии мРНК человеческих IL-15 и IL-15Rα в популяции человеческих клеток, очищенных из костного мозга MITRG мышей с пересаженными клетками (n=4-5, планки погрешностей указывают ОШ. СР.). Экспрессия, нормированная относительно человеческого HPRT, показана относительно hCD14+hCD16- клеток. (Фигура 3С и Фигура 3D) Репрезентативное исследование с помощью проточной цитометрии (гейтирование по hCD45+mCD45- клеткам, «канал» лимфоцитов; числа рядом с оконтуренными областями показывают проценты клеток) (Фигура 3С) и абсолютное количество или частота (Фигура 3D) человеческих NK клеток (hNKp46+hCD3-) у NSG, MITR и MISTRG мышей с пересаженными клетками (n=8-16; р-значения вычисляли с помощью однофакторного дисперсионного анализа ANOVA; *, р<0.05 апостериорный тест Тьюки). (Фигура 3Е) Абсолютное количество человеческих NK печени (hNKp46+hCD3-) и Т-клеток (hCD3+, показаны как контроль) от мышей MISTRG с пересаженными клетками, или оставленных необработанными или обработанных в течение 3 последовательных дней инкапсулированным в липосомы клодронатом для истощения фагоцитов (n=8; р-значение вычисляли с помощью непарного критерия Стьюдента; ns - незначимое значение). (Фигура 3F) Меченые LCL721.221 (HLA класс I отрицательные) и LCL721.45 (класс I положительные) клетки инъецировали i.v. в соотношении 1:1, и отношения HLA класс I положительных или отрицательных, среди меченых клеток, восстановленных спустя 12 часов в селезенке, использовали для вычисления цитотоксичности специфических NK-клеток (n=8, р-значение вычисляли с помощью непарного критерия Стьюдента). (Фигура 3G) Количественный ОТ-ПЦР анализ экспрессии мРНК человеческого IFNγ в печени NSG и MISTRG мышей через 2 дня после заражения Listeria (n=8-9, р-значение вычисляли с помощью непарного критерия Стьюдента). Экспрессию нормировали по отношению к мыши Hprt. (Фигура 3Н и Фигура 3I) Репрезентативное исследование с помощью проточной цитометрии (Фигура 3Н) и частота (Фигура 3I) IFNγ-экспрессирующих и дегранулированных (CD107a+) человеческих NK-клеток печени из неинфицированных или Listeria-инфицированных NSG и MISTRG мышей (n=4-11; р-значения вычисляли с помощью однофакторного дисперсионного анализа ANOVA). Результаты двух (Фигуры 3А, 3Е-3I), трех (Фигура 3В) или четырех (Фигуры 3С, 3D) экспериментов были объединены.
Фигура 4, включающая Фигуры 4A-4F, показывает результаты экспериментов, демонстрирующих, что человеческие миелоидные клетки в MISTRG проникают в опухоль и поддерживают рост. Клетки меланомы человека Ме290 были имплантированы в бок NSG и MISTRG мышей с пересаженными клетками или без пересадки. Некоторых мышей обработали VEGF-ингибитором Avastin™. Опухоли измеряли и извлекали для проведения исследования через 11 дней. (Фигура 4А) Инфильтрация человеческих гематопоэтических клеток в опухоль, определенная по экспрессии мРНК, кодирующей человеческие гематопоэтические (PTPRC, кодирующий CD45) и миелоидные (ITGAM, кодирующий CD11b) маркеры (n=6-7; р-значение вычисляли с помощью непарного критерия Стьюдента). (Фигура 4В и Фигура 4D) Репрезентативные иммуногистохимические изображения маркеров человеческих миелоидных клеток в опухолях от NSG, MISTRG и пациентов. (Фигура 4С) Количественная оценка плотности CD163+ клеток (n=3 образцов/группу, подсчитывали 3 слайда на образец). (Фигура 4Е и Фигура 4F) Типичные изображения (Фигура 4Е) и объем (Фигура 4F) опухолей в указанных группах мышей (n=7-24 мышей/группу), р-значения вычисляли с помощью критерия Стьюдента (Фигура 4А) или с помощью однофакторного дисперсионного анализа ANOVA (Фигуры 4С, 4Е) с последующим апостериорным тестом Тьюки (* р<0.05).
Фигура 5 показывает цитокины, вовлеченные в HSC функцию и миелоидное развитие. Схематическое изображение развития гематопоэтических стволовых клеток в миелоидные клетки и неполный перечень цитокинов, которые, как известно, регулируют этот процесс. Штриховкой указаны проценты идентичности аминокислот между человеческими и мышиными цитокинами. Процент идентичности аминокислот является самой объективной мерой консервативности белка между видами, однако, он не всегда коррелирует с функциональной межвидовой перекрестной реактивностью in vivo. Черные прямоугольники показывают цитокины, генетически гуманизированные в MISTRG. HSC - гематопоэтические стволовые клетки; МРР - мультипотентные предшественники; СМР - общий миелоидный предшественник; GMP - предшественник гранулоцита/макрофага; МЕР - предшественник мегакариоцита/эритроцита.
Фигура 6, включающая Фигуры 6А-6Е, показывает результаты статистических анализов уровней приживления у реципиентных мышей. (Фигура 6А) Статистический анализ (однофакторный дисперсионный анализ ANOVA с последующим апостериорным тестом Тьюки; ns - незначимое значение) результатов представлен на Фигуре 1А (процент hCD45+ клеток в крови мыши-реципиента). (Фигура 6В) Количество мышей-реципиентов, которые достигают уровня приживления, по меньшей мере, 10% hCD45+ клеток в крови через 7-9 недель после трансплантации. (Фигура 6С) Уровни приживления клеток крови у мышей, использованных на Фигуре 1С для анализа ВМ. (Фигура 6D) Статистический анализ, подобный анализу на Фигуре 6А, данных, представленных на Фигуре 1С (процент hCD45+ клеток в ВМ мыши-реципиента). (Фигура 6Е) Абсолютное количество hCD45+ клеток в ВМ (2 бедренных кости и 2 большеберцовых кости) мышей-реципиентов, показанных на Фигуре 1С. Уменьшенное количество клеток в ВМ MISTRG является следствием меньшего размера мышей в таком возрасте (10-12 недель после трансплантации) и является результатом первых клинических признаков анемии, описанных подробно на Фигуре 10.
Фигура 7, включающая Фигуры 7А-7Н, показывает результаты экспериментов, дающих оценку повышенному развитию человеческих миелоидных клеток у мышей MISTRG. (Фигура 7А) Статистический анализ (однофакторный дисперсионный анализ ANOVA с последующим апостериорным тестом Тьюки; ns - незначимое значение) результатов представлен на Фигуре 2А (процент hCD33+ клеток в крови мыши-реципиента). (Фигура 7В и Фигура 7С) Частота (Фигура 7В) и статистический анализ (Фигура 7С) человеческих миелоидных клеток (hCD33+) в ВМ мыши-реципиента. (Фигура 7D) Репрезентативное исследование с помощью проточной цитометриии человеческой лимфоидной и миелоидной клеточных линий в крови MISTRG. (Фигура 7Е и Фигура 7F) Репрезентативное исследование с помощью проточной цитометриии человеческих моноцитов (CD33hiSSCloCD66-) и гранулоцитов (CD33+SSChiCD66+) в ВМ (Фигура 7Е) и крови (Фигура 7F) мышей MISTRG и человека-донора. (Фигура 7G и Фигура 7Н) Абсолютное количество человеческих миелоидных клеток (hCD33+) в легких (Фигура 7G) и печени (Фигура 7Н) мышей-реципиентов (n=8-12; р-значения вычисляли с помощью однофакторного дисперсионного анализа ANOVA с последующим апостериорным тестом Тьюки, * р<0.05).
Фигура 8, включающая Фигуры 8А и 8В, показывает результаты экспериментов, демонстрирующих повышенное развитие подгрупп человеческих моноцитов у мышей MISTRG. (Фигура 8А) Репрезентативный анализ методом проточной цитометрии подгрупп человеческих моноцитов, установленных по экспрессии CD14 и CD16 среди hCD45+CD33+ клеток в ВМ, селезенке, легком и печени указанной мыши-реципиента. (Фигура 8В) Частота (планки погрешностей представляют ОШ. СР.) среди hCD33+ клеток и абсолютные количества подгрупп моноцитов в легких и печени мышей-реципиентов (n=12 мышей/группу; р-значения вычисляли с помощью однофакторного ANOVA; *, р<0.05 апостериорный тест Тьюки).
Фигура 9, включающая Фигуры 9А и 9В, показывает результаты экспериментов, демонстрирующих, что подгруппы человеческих моноцитов являются сходными у MISTRG и у людей-доноров. Расширенный иммунофенотип указанных подгрупп человеческих моноцитов в крови (Фигура 9А) и ВМ (Фигура 9В) MISTRG реципиентов и человека-донора. Показано окрашивание изотипическими контрольными антителами и специфическими антителами.
Фигура 10, включающая Фигуры 10A-10I, представляет результаты экспериментов, демонстрирующих, что человеческие миелоидные клетки нарушают фагоцитарную толерантность человек-мышь. (Фигура 10А) CFSE-меченые мышиные RBCs были пересажены указанным мышам, а частота меченых клеток была измерена в указанные моменты времени. (Фигура 10 В) MISTRG с пересаженными клетками предварительно обрабатывали или не обрабатывали клодронатом с целью истощения фагоцитов, а затем мышиные RBCs, меченые CFSE, пересаживали и контролировали, как показано на Фигуре 10А (р-значение, эффект клодроната, определенный путем повторного измерения ANOVA в течение дней 1-3). Эти результаты показывают, что пересаженные мышиные RBCs быстро устраняются in vivo фагоцитами, которые присутствуют у MISTRG, но не присутствуют у NSG. (Фигура 10С) Подсчет RBC в крови мышей без пересадки (n=9-15) или через 8-10 недель после пересадки человеческих FL-CD34+ клеток (n=11-37). р-значения показывают сравнение между мышами без пересадки и мышами с пересаженными клетками каждого генотипа (непарный t-критерий Стьюдента). (Фигура 10D) Корреляция между уровнями приживления человеческих клеток (процент hCD45+ клеток в крови) и подсчет RBC (n=13-22). (Фигура 10Е) Анализ с помощью проточной цитометрии мышиных (mTer119+) и человеческих (hCD235a+) эритроидных клеток в крови у мышей MISTRG без пересадки или с пересаженными клетками, показывающий, что почти все эритроидные клетки в крови MISTRG с пересаженными клетками являются клетками мышиного происхождения, а человеческие эритроидные клетки едва обнаружимы. (Фигура 10F) Типичные изображения и вес селезенки мышей указанных линий с пересаженными клетками (n=3-22), показывающие спленомегалию у привитых MISTRG мышей. Селезенки от мышей Balb/c использовали в качестве контроля (р-значение, однофакторный анализ ANOVA; *, р<0.05 по сравнению со всеми другими группами, апостериорный тест Тьюки). (Фигура 10G) Гистологический срез селезенки NSG и MISTRG с пересаженными клетками, окрашенный Н&Е и иллюстрирующий увеличение красной пульпы селезенки у MISTRG мышей со спленомегалией. (Фигура 10Н) Анализ с помощью проточной цитометрии мышиных эритроидных предшественников (mTer119+mCD71+), которые присутствуют почти в 80% клеток в селезенке MISTRG с пересаженными клетками. (Фигура 10I) Мазки крови MISTRG без пересадки и с пересаженными клетками иллюстрируют обогащение ретикулоцитов. Взятые в совокупности, эти результаты дают веские основания предполагать, что анемия у MISTRG происходит в результате отсутствия фагоцитарной толерантности человек-мышь, и массивный экстрамедуллярный мышиный эритропоэз не в состоянии компенсировать уничтожение mRBCs. Представлены результаты, по меньшей мере, 5 мышей, исследованных в каждой группе (Фигуры 10С, 10Е-10I), и 2 независимых экспериментов (Фигуры 10А, 10В).
Фигура 11, включающая Фигуры 11А и 11В, предоставляет результаты экспериментов, показывающих, что MISTRG мыши обеспечивают человеческий IL-15/IL-15Rα. (Фигура 11А) Количественный ОТ-ПЦР анализ экспрессии мРНК человеческих IL-15 и IL-15Rα в легких NSG, MITRG и MISTRG мышей с пересаженными клетками (n=7-8; р-значения вычисляли с помощью однофакторного дисперсионного анализа ANOVA; *, р<0.05 постериорный тест Тьюки). Экспрессия была нормирована относительно мыши Hprt. (Фигура 11В) Исследование методом проточной цитометрии экспрессии IL-15Rα на популяции человеческих клеток (hCD45+mCD45-) из крови MISTRG мышей с пересаженными клетками (n=4). Гистограммы представляют окрашивание изотипическим контролем или IL-15Rα антителом, соответственно. Объединены или представлены результаты двух экспериментов.
Фигура 12, включающая Фигуры 12А и 12В, представляет результаты экспериментов, показывающих усиленный рост человеческих NK-клеток у MISTRG мышей. (Фигура 12А и Фигура 12В) Частота (Фигура 12А) и абсолютное количество (Фигура 12 В) человеческих NK-клеток (hNKp46+hCD3-) у NSG, MITRG и MISTRG мышей с пересаженными клетками (n=8-16; р-значения вычисляли с помощью однофакторного дисперсионного анализа ANOVA; *, р<0.05 апостериорный тест Тьюки). Объединены результаты четырех экспериментов.
Фигура 13, включающая Фигуры 13A-13F, представляет результаты экспериментов, показывающих, что настоящие зрелые человеческие NK-клетки присутствуют у мышей MISTRG. (Фигура 13А) Исследование методом проточной цитометрии экспрессии CD94 и CD161 на человеческих NK-клетках крови от человека-донора и у MISTRG с пересаженными клетками (n=3). Гистограммы представляют окрашивание изотипическими контрольными Abs или CD94/CD161 Abs. (Фигура 13В) Исследование методом проточной цитометрии экспрессии KIR на человеческих NK-клетках крови от человека-донора или от MISTRG мышей с пересаженными клетками (n=3). Числа указывают частоту KIR+ клеток. (Фигура 13С и Фигура 13D) Поверхностная экспрессия CD16 на человеческих NK-клетках от NSG, MTTRG и MISTRG мышей с пересаженными клетками (n=4-8; р-значения вычисляли с помощью однофакторного дисперсионного анализа ANOVA; *, р<0.05 апостериорный тест Тьюки). (Фигура 13Е и Фигура 13F) Внутриклеточная экспрессия перфорина человеческими NK печени (hNKp46+hCD3-) и Т-клетками (hCD3+) от мышей NSG и MISTRG с пересаженными клетками (n=3; р-значения вычисляли с помощью непарного t-критерия Стьюдента). MFI - средняя интенсивность флуоресценции. Представлены или объединены результаты одного (Фигура 13А и Фигура 13В), двух (Фигура 13Е и Фигура 13F) или четырех (Фигура 13С и Фигура 13D) экспериментов.
Фигура 14 представляет результаты экспериментов, демонстрирующих эффект истощения человеческих моноцитов/макрофагов на гомеостаз человеческих NK клеток у MISTRG мышей. MISTRG мышей с пересаженными клетками оставляли необработанными или обрабатывали в течение 3 последовательных дней инкапсулированным в липосомы клодронатом с целью истощения фагоцитов. Показан проточный цитометрический анализ человеческих моноцитов/макрофагов (верхняя панель, гейтирование по hCD33+ клеткам) и NK-клеток (hNKp46+hCD3-) в печени (n=8). Представлены результаты двух экспериментов. У 1 из 8 мышей истощение клодронатом моноцитов/макрофагов было неэффективным, кроме того, у этих мышей не наблюдалось уменьшение количества NK-клеток.
Фигура 15 показывает результаты экспериментов, демонстрирующих иммуногистохимическое исследование инфильтрации человеческих миелоидных клеток в меланому. Характерное иммуногистохимическое окрашивание человеческих миелоидных клеток в опухоли из NSG, MISTRG или пациентов-людей. Представлены три субъекта на группу и 3 изображения на субъекта.
Фигура 16 показывает сравнение уровней приживления, а также развития и функции иммунных клеток у реципиентных мышей с заменой одного гена у мышей NSG, MISTRG и у людей.
Фигура 17, включающая Фигуры 17A-17D, показывает результаты экспериментов, демонстрирующих, что образцы, выделенные из пациентов с AML, CMML и MDS, могут быть приживлены мышам MISTRG. (Фигура 17А) Характеристики использованных образцов (включая тип болезни и генетическое нарушение, обнаруженное в образцах пациентов), экспериментальный протокол (способ очистки клеток, количество клеток, инъецированных одной мыши, и время после трансплантации, когда мышь исследовали) и результаты приживления (включая количество мышей с обнаружимым приживлением человеческого трансплантата, процент человеческих гематопоэтических CD45+ клеток и миелоидных CD33+ клеток, и генетическое нарушение, обнаруженное в человеческих клетках, выделенных из мышей). (Фигура 17В) Репрезентативное исследование методом проточной цитометрии зернистости (SSC) миелоидных CD33+ клеток, выделенных из мыши с трансплантированными RAEB I пациента или нормальными клетками донора, показывающее недостаточную зернистость в RAEB I образцах. (Фигура 17С) Репрезентативный fish-анализ человеческих клеток, выделенных из мышей с трансплантированным RAEB II образцом, показывающий отсутствие хромосомы 5q. (Фигура 17D) Кариотип человеческих клеток, выделенных из мышей с трансплантированным образцом CMML, который показывает делецию в хромосоме 6.
Подробное описание изобретения
В общем, изобретение имеет отношение к генетически модифицированному, не относящемуся к человеческому роду животному, экспрессирующему, по меньшей мере, что-либо из числа человеческого M-CSF, человеческого IL-3, человеческого GM-CSF, человеческого SIRPA или человеческого ТРО. Это изобретение имеет отношение к способам получения и использования генетически модифицированных, не относящихся к человеческому роду животных, описанных в данном документе. В некоторых вариантах осуществления генетически модифицированное, не относящееся к человеческому роду животное является мышью. В некоторых вариантах осуществления генетически модифицированному, не относящемуся к человеческому роду животному, описанному в этом документе, пересажены человеческие гематопоэтические клетки. В различных вариантах осуществления генетически модифицированные, не принадлежащие к человеческому роду животные изобретения с пересаженными человеческими гематопоэтическими клетками используются для оценки in vivo роста и дифференцировки гематопоэтических и иммунных клеток, для оценки in vivo человеческого гематопоэза, для in vivo оценки раковых клеток, для in vivo оценки иммунного ответа, для in vivo оценки вакцин и режимов вакцинации, для использования при тестировании эффекта средств, модулирующих рост или выживаемость раковой клетки, для in vivo оценки лечения рака, для производства in vivo и сбора иммунных медиаторов, включая человеческие антитела, и для использования при проверке эффектов средств, модулирующих функцию гематопоэтической или иммунной клетки.
Определения
Если не указано иное, все технические и научные термины, использованные в описании, имеют те же самые значения, которые обычно понятны специалисту в области техники, к которой относится данное изобретение. Определение этих терминов могут быть найдены в разных стандартных ссылках, где они используются в контексте, в том числе в J. Sambrook и D.W. Russell, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press; 3rd Ed., 2001; F. M. Ausubel, Ed., Short Protocols in Molecular Biology, Current Protocols; 5th Ed., 2002; B. Alberts et al., Molecular Biology of the Cell, 4th Ed., Garland, 2002; D. L. Nelson и M.M. Cox, Lehninger Principles of Biochemistry, 4th Ed., W.H. Freeman & Company, 2004; и Herdewijn, P. (Ed.), Oligonucleotide Synthesis: Methods и Applications, Methods in Molecular Biology, Humana Press, 2004. Несмотря на то, что при осуществлении или проверке настоящего изобретения могут использоваться любые методы и материалы, сходные или эквивалентные описанным в данном документе, предпочтительные методы и материалы описываются в этом документе.
При использовании в описании каждый из следующих терминов имеет значение, связанное с ним в данном разделе.
Термины, используемые в единственном числе также включают и множественное число. В качестве примера, "элемент" означает один или более чем один элемент.
"Около (примерно)" при использовании в описании и при упоминании измеряемой величины, такой как количество, временной интервал и тому подобное, предназначается для включения изменений в размере ±20% или ±10%, более предпочтительно ±5%, даже более предпочтительно ±1% и еще более предпочтительно ±0.1% от заданного значения, собственно поскольку эти изменения допустимы при осуществлении раскрытых способов.
Термин "аномальный (ненормальный)" при использовании в отношении организмов, тканей, клеток или их компонентов, относится к таким организмам, тканям, клеткам или их компонентам, которые отличаются, по меньшей мере, одной наблюдаемой или обнаружимой характерной чертой (такой как, например, возраст, лечение, время суток и т.д.) от тех организмов, тканей, клеток или их компонентов, которые демонстрируют "нормальную" (ожидаемую) соответствующую характерную черту. Характерные черты, являющиеся нормальными или ожидаемыми для одной клетки или типа ткани, могут быть ненормальными для другой клетки или типа ткани.
Использованный в описании термин "антитело" относится к молекуле иммуноглобулина, способной специфически связываться со специфическим эпитопом на антигене. Антитела могут быть интактными иммуноглобулинами, происходящими из природных источников или из рекомбинантных источников, и могут быть иммунореактивными участками интактных иммуноглобулинов. Антитела в настоящем изобретении могут существовать в различных формах, включая, например, поликлональные антитела, моноклональные антитела, внутриклеточные антитела ("интраантитела"), Fv, Fab и F(ab)2, а также одноцепочечные антитела (scFv), тяжелоцепочечные антитела, такие как антитела верблюдовых и гуманизированные антитела (Harlow et al., 1999, Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, Antibodies: A Laboratory Manual, Cold Spring Harbor, New York; Houston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; Bird et al., 1988, Science 242:423-426).
Термин "рак" при использовании в описании определяется как болезнь, характеризующаяся неконтролируемой пролиферацией и/или ростом аномальных клеток. Раковые клетки могут распространяться локально или через кровоток и лимфатическую систему в другие части организма. В данном документе «рак» включает и солидные опухоли и гематопоэтические злокачественные заболевания. Примеры различных форм рака, подходящих для данного изобретения, включают, но не ограничиваются этим, рак молочной железы, рак предстательной железы, рак яичника, рак шейки матки, рак кожи, рак поджелудочной железы, колоректальный рак, почечный рак, рак печени, рак кости, рак мозга, лимфому, лейкемию, рак легкого, миелодиспластические синдромы, миелопролиферативные нарушения и тому подобное.
"Конститутивная" экспрессия - это состояние, при котором генный продукт вырабатывается в живой клетке при большей части или при всех физиологических условиях клетки.
"Кодирующий участок" гена состоит из остатков нуклеотидов кодирующей цепи гена и нуклеотидов некодирующей цепи гена, которые являются гомологичными или комплементарными, соответственно, с кодирующим участком молекулы мРНК, которая образуется в результате транскрипции гена.
"Кодирующий участок" молекулы мРНК также состоит из остатков нуклеотидов молекулы мРНК, которые соответствуют участку антикодона молекулы транспортной РНК во время трансляции молекулы мРНК, или который кодирует стоп-кодон. Кодирующий участок, таким образом, может включать остатки нуклеотидов, содержащих кодоны для аминокислотных остатков, которые не присутствуют в зрелом белке, кодированном молекулой мРНК (например, аминокислотные остатки в белке экспортируют сигнальную последовательность).
"Болезнь" - это состояние здоровья животного, при котором у животного не может поддерживаться гомеостаз и при котором, в том случае, когда болезнь не проходит, здоровье животного продолжает ухудшаться.
В противоположность этому "нарушение" у животного - это состояние здоровья, при котором у животного может поддерживаться гомеостаз, но при котором состояние здоровья животного является менее благополучным, чем оно могло бы быть при отсутствии нарушения. При отсутствии лечения нарушение не вызывает в обязательном порядке дальнейшее ухудшение состояния здоровья животного.
Болезнь или нарушение "подавляется", если тяжесть симптома болезни или нарушения, частота, с которой такой симптом испытывается пациентом, или и то и другое, уменьшается.
"Эффективное количество" или "терапевтически эффективное количество" соединения - это такое количество соединения, которое является достаточным для обеспечения благоприятного действия на субъекта, которому вводится данное соединение. "Эффективное количество" системы доставки (носителя) - это количество, достаточное для эффективного связывания или доставки соединения.
"Кодирование" относится к неотъемлемому свойству специфических последовательностей нуклеотидов в полинуклеотиде, таком как ген, кДНК или мРНК, служить в качестве матрицы для синтеза других полимеров и макромолекул в биологических процессах, имеющих или определенную последовательность нуклеотидов (т.е. рРНК, тРНК и мРНК) или определенную последовательность аминокислот, и возникающим в связи с этим биологическим свойствам. Таким образом, ген кодирует белок, если транскрипция и трансляция мРНК, соответствующая этому гену, приводит к продукции белка в клетке или другой биологической системе. И кодирующая цепь, нуклеотидная последовательность которой является идентичной мРНК последовательности и обычно предоставляется в списках последовательностей, и некодирующая цепь, используемая в качестве матрицы для транскрипции гена или кДНК, может упоминаться как кодирующая белок или другой продукт этого гена или кДНК.
При использовании в описании "эндогенный" относится к любому материалу, происходящему из или выработанному внутри организма, клетки, ткани или системы.
При использовании в описании термин "экзогенный" относится к любому материалу, введенному снаружи или произведенному вне организма, клетки, ткани или системы.
При использовании в описании термины "экспрессирующая конструкция" и "экспрессионная кассета" относятся к двухцепочечной рекомбинантной молекуле ДНК, содержащей желательную человеческую нуклеиновокислотную кодирующую последовательность и содержащей один или более регуляторных элементов, необходимых или желательных для экспрессии функционально связанной кодирующей последовательности.
Использованный в описании термин "фрагмент", применительно к нуклеиновой кислоте или полипептиду, относится к последовательности большей нуклеиновой кислоты или полипептида. "Фрагмент" нуклеиновой кислоты может составлять, по меньшей мере, примерно 15 нуклеотидов в длину; например, по меньшей мере, примерно от 50 нуклеотидов до 100 нуклеотидов; по меньшей мере, примерно от 100 до 500 нуклеотидов, по меньшей мере, от 500 до 1000 нуклеотидов, по меньшей мере, примерно от 1000 нуклеотидов до 1500 нуклеотидов; или примерно от 1500 нуклеотидов до 2500 нуклеотидов; или около 2500 нуклеотидов (и любое целое значение между значениями). "Фрагмент" полипептида может составлять, по меньшей мере, примерно 15 нуклеотидов в длину; например, по меньшей мере, примерно от 50 аминокислот до 100 аминокислот; по меньшей мере, примерно от 100 до 500 аминокислот, по меньшей мере, примерно от 500 до 1000 аминокислот, по меньшей мере, примерно от 1000 аминокислот до 1500 аминокислот; или примерно от 1500 аминокислот до 2500 аминокислот; или около 2500 аминокислот (и любое целое значение между значениями).
Использованные в описании термины "ген" и "рекомбинантный ген" относятся к молекулам нуклеиновой кислоты, содержащим открытую рамку считывания, кодирующую полипептид. Такие природные аллельные изменения, как правило, приводят к 1-5% изменчивости в нуклеотидной последовательности данного гена. Альтернативные аллели могут быть установлены путем секвенирования интересующего гена у целого ряда различных индивидуумов. Это может быть легко осуществлено при использовании гибридизационных зондов для идентификации одинаковых генетических локусов у целого ряда индивидуумов. Все подобные нуклеотидные вариации и являющиеся результатом этого аминокислотные полиморфизмы или изменения, являющиеся результатом природного аллельного разнообразия и не изменяющие функциональную активность, включаются в объем изобретения.
"Гомологичный" при использовании в описании относится к сходству последовательностей между двумя полимерными молекулами, например между двумя молекулами нуклеиновой кислоты, например двумя молекулами ДНК или двумя молекулами РНК, или между двумя молекулами полипептида. Когда положение в обеих из двух молекул занято одинаковой мономерной субъединицей, например, если положение в каждой из двух молекул ДНК занято аденином, тогда они являются гомологичными в этом положении. Гомология между двумя последовательностями является прямой функцией числа соответствующих или гомологичных положений, например, если половина (например, пять положений в полимере длиной десять субъединиц) положений в двух последовательностях являются гомологичными, тогда две последовательности являются на 50% гомологичными, если 90% положений, например, 9 из 10, являются соответствующими или гомологичными, тогда две последовательности имеют 90% гомологию. Например, последовательности ДНК 5'-ATTGCC-3' и 5-TATGGC-3' имеют 50% гомологию.
Термины "человеческие гематопоэтические стволовые клетки и клетки-предшественники (прогениторные клетки)" и "человеческие HSPC" при использовании в описании относятся к человеческим самоподдерживающимся мультипотентным гематопоэтическим стволовым клеткам и гематопоэтическим прогениторным клеткам.
"Индуцибельная" экспрессия - это состояние, при котором продукт гена производится в живой клетке в ответ на наличие сигнала в клетке.
При использовании в описании "учебный (инструктирующий) материал" включает публикацию, запись, диаграмму или любую другую среду выражения, которая может быть использована для сообщения о полезности соединения, композиции, вектора или системы доставки изобретения в наборе, предназначенном для облегчения различных болезней или нарушений, перечисленных в данном документе. Необязательно, или альтернативно, учебный (инструктирующий) материал может описывать один или более способов облегчения болезни или нарушения в клетке или ткани млекопитающего. Инструктирующий материал набора изобретения, например, может являться принадлежностью контейнера, содержащего определенное соединение, композицию, вектор или систему доставки изобретения, или транспортироваться вместе с контейнером, содержащим определенное соединение, композицию, вектор или систему доставки. Альтернативно, инструктирующий материал может доставляться отдельно от контейнера с той целью, что инструктирующий материал и данное соединение будут использоваться получателем совместно.
Термин "функционально связанный" при использовании в описании относится к полинуклеотиду в рамках функциональной зависимости со вторым полинуклеотидом. Описание двух полинуклеотидов как "функционально связанных" означает, что одноцепочечная или двухцепочечная молекула (фрагмент) нуклеиновой кислоты содержит два полинуклеотида, расположенные в молекуле нуклеиновой кислоты таким образом, что, по меньшей мере, один из двух полинуклеотидов способен проявлять физиологическое действие, которым он отличается, в результате наличия другого. Например, промотор, функционально связанный с кодирующим участком гена, способен стимулировать транскрипцию кодирующего участка. Предпочтительно, в том случае, когда нуклеиновая кислота, кодирующая желательный белок, дополнительно содержит промотор/регуляторную последовательность, промотор/регуляторная последовательность располагается на 5' конце последовательности, кодирующей желательный белок, так что он обусловливает экспрессию желательного белка в клетке. Вместе, нуклеиновая кислота, кодирующая желательный белок, и ее промотор/регуляторная последовательность образуют "трансген."
Использованный в описании термин "полинуклеотид" определяется как цепочка нуклеотидов. Кроме того, нуклеиновые кислоты представляют собой полимеры, состоящие из нуклеотидов. Таким образом, термины «нуклеиновые кислоты» и "полинуклеотиды" при использовании в описании являются взаимозаменяемыми. Специалист в данной области обладает общим знанием о том, что нуклеиновые кислоты являются полинуклеотидами, которые могут гидролизоваться в мономерные "нуклеотиды". Мономерные нуклеотиды могут гидролизоваться в нуклеозиды. Использованные в описании полинуклеотиды включают, но не ограничиваются этим, все последовательности нуклеиновых кислот, полученные любыми способами, доступными в данной области техники, включая, без ограничения, рекомбинантные способы, т.е. клонирование последовательностей нуклеиновых кислот из рекомбинантной библиотеки или клеточного генома, используя обычные методы клонирования и ПЦР, и тому подобное, и синтетические способы.
При использовании в описании термины "пептид", "полипептид" и "белок" используются взаимозаменяемым образом и относятся к соединению, состоящему из аминокислотных остатков, ковалентно связанных пептидными связями. Белок или пептид должен содержать, по меньшей мере, две аминокислоты, и нет ограничения максимального количества аминокислот, которое может содержаться в последовательности белка или пептида. Полипептиды включают любой пептид или белок, содержащий две или более аминокислот, соединенных друг с другом пептидными связями. Использованный в описании термин относится как к коротким цепям, которые обычно называются, например, пептидами, олигопептидами и олигомерами, так и к более длинным цепям, которые в данной области техники обычно называются белками, в их число входит множество типов белков. "Полипептиды" включают, например, биологически активные фрагменты, практически гомологичные полипептиды, олигопептиды, гомодимеры, гетеродимеры, варианты полипептидов, модифицированные полипептиды, производные, аналоги, гибридные белки, в числе прочих. Полипептиды включают природные пептиды, рекомбинантные пептиды, синтетические пептиды или их комбинацию. Термин "пептид" в большинстве случаев относится к коротким полипептидам. Термин "белок", как правило, относится к крупным полипептидам.
Термин "потомство" при использовании в описании относится к потомку или потомству и включает дифференцированную или недифференцированную дочернюю клетку, происходящую от родительской клетки. В одном случае, термин потомство относится к дочерней клетке, которая является генетически тождественной родительской клетке. В другом случае, термин потомство относится к дочерней клетке, которая является генетически и фенотипически идентичной родительской. В еще одном случае, термин потомство относится к дочерней клетке, которая дифференцируется из родительской клетки.
Термин "промотор" при использовании в описании относится к ДНК последовательности, функционально связанной с последовательностью нуклеиновой кислоты, которая должна транскрибироваться, такой как последовательность нуклеиновой кислоты, кодирующая желательную молекулу. В большинстве случаев промотор располагается «выше» последовательности нуклеиновой кислоты, которая должна транскрибироваться, и обеспечивает сайт для специфического связывания с РНК полимеразой и другими факторами транскрипции. В конкретных вариантах осуществления промотор, как правило, располагается «выше» последовательности нуклеиновой кислоты, транскрибируемой с целью производства желательной молекулы, и обеспечивает сайт для специфического связывания с РНК-полимеразой и другими факторами транскрипции. Включенный промотор может быть конститутивным промотором или может обеспечивать индуцибельную экспрессию; и может обеспечивать универсальную, ткане-специфическую или специфическую для данного типа клеток экспрессию.
Пределы: на всем протяжении этого раскрытия, различные аспекты изобретения могут быть представлены в формате пределов (диапазона). Следует понимать, что описание в формате пределов используется только для удобства и краткости и не должно рассматриваться как строгое ограничение объема изобретения. Соответственно, описание предела следует рассматривать, как включающее все возможные точно раскрытые подпределы, а также отдельные численные значения внутри этого предела. Например, описание предела, такое как от 1 до 6, следует рассматривать, как включающее точно раскрытые подпределы, такие как от 1 до 3, от 1 до 4, от 1 до 5, от 2 до 4, от 2 до 6, от 3 до 6 и т.д., а также отдельные числа внутри этого предела, например 1, 2, 2.7, 3, 4, 5, 5.3 и 6. Это применимо вне зависимости от ширины данного предела.
"Рекомбинантный полипептид" - это полипептид, который производится в результате экспрессии рекомбинантного полинуклеотида.
Использованный в описании термин "регуляторный элемент" относится к нуклеотидной последовательности, которая контролирует некоторый аспект экспрессии нуклеиновокислотных последовательностей. Иллюстративные примеры регуляторных элементов включают энхансер, участок внутренней посадки рибосомы (IRES), интрон; точку начала репликации, сигнал полиаденилирования (рА), промотор, энхансер, терминацию транскрипции последовательности и вышерасположенный регуляторный домен, который способствует репликации, транскрипции, посттранскрипционному процессингу нуклеиновокислотной последовательности. Специалисты в данной области техники могут отобрать и использовать эти и другие регуляторные элементы в экспрессирующей конструкции путем обычного экспериментирования. Экспрессирующие конструкции могут быть получены рекомбинантно или искусственно с использованием хорошо известных методов.
Использованный в описании в отношении антитела термин "специфически связывается" означает антитело, которое распознает специфический антиген, но в большинстве случаев не распознает и не связывается с другими молекулами в образце. Например, антитело, которое специфически связывается с антигеном от других видов, также может связываться с антигеном от одного или более видов. Тем не менее, такая межвидовая реакционная способность собственно не меняет классификацию антитела как специфического. В другом примере, антитело, специфически связывающееся с антигеном, также может связываться с разными аллельными формами антигена. Однако подобная перекрестная реактивность собственно не меняет классификацию антитела как специфического.
В некоторых случаях термины "специфическое связывание" или "специфически связывающий" могут использоваться в отношении взаимодействия антитела, белка или пептида со вторыми химическими молекулами, что означает, что взаимодействие зависит от присутствия конкретной структуры (например, антигенной детерминанты или эпитопа) на химических молекулах; например, антитело распознает и связывается со специфической белковой структурой, а не с белками вообще. Если антитело является специфическим для эпитопа "А", присутствие молекулы, содержащей эпитоп А (или свободной, немеченой А), в реакции, содержащей меченый "А" и антитело, будет уменьшать количество меченого А, связанного с антителом.
Использованный в описании термин "синтетическое антитело" обозначает антитело, которое получают с использованием технологии рекомбинантных ДНК, такое как, например, антитело, экспрессируемое бактериофагом, как описано здесь. Термин также может означать антитело, полученное путем синтеза молекулы ДНК, кодирующей антитело, при этом ДНК молекула экспрессирует белок антитела или аминокислотную последовательность, определяющую антитело, при этом ДНК или аминокислотную последовательность получают с использованием технологии синтеза ДНК или аминокислотной последовательности, которая доступна и хорошо известна в данной области техники.
Использованный в описании термин "вариант" означает последовательность нуклеиновой кислоты или последовательность пептида, которая отличается по последовательности от исходной последовательности нуклеиновой кислоты или последовательности пептида соответственно, но сохраняет основные биологические свойства исходной молекулы. Изменения в последовательности варианта нуклеиновой кислоты могут не менять аминокислотную последовательность пептида, кодированного исходной нуклеиновой кислотой, или могут приводить к аминокислотным заменам, вставкам, делениям, слияниям и укорочениям. Изменения в последовательности вариантов пептидов в большинстве случаев являются ограниченными или консервативными, так что последовательность исходного пептида и варианта являются близко сходными вообще, а во многих участках идентичными. Вариант и исходный пептид могут отличаться в аминокислотной последовательности одной или более заменами, вставками, делениями в любой комбинации. Вариант нуклеиновой кислоты или пептида может быть природного происхождения, таким как аллельный вариант, или может быть вариантом, который не встречается в природе. Не встречающиеся в природе варианты нуклеиновых кислот и пептидов также могут быть получены с помощью методов мутагенеза или путем прямого синтеза.
Использованный в описании термин "генетически модифицированное" означает животное, зародышевые клетки которого содержат экзогенную человеческую нуклеиновую кислоту или человеческую последовательность нуклеиновой кислоты. В качестве неограничивающих примеров, генетически модифицированное животное может быть трансгенным животным или «нокин» животным, при условии, что животное содержит человеческую последовательность нуклеиновой кислоты.
Использованный в описании термин "нокин" означает генетическую модификацию, которая заменяет генетическую информацию, кодированную в хромосомном локусе у животного, не принадлежащего к человеческому роду, другой последовательностью ДНК.
Описание
Данное изобретение имеет отношение к генетически модифицированному, не принадлежащему к человеческому роду животному, экспрессирующему человеческий М-CSF, человеческий IL-3/GM-CSF, человеческий SIRPA и человеческий ТРО (в данном описании называется MIST). Изобретение также имеет отношение к способам получения и использования генетически модифицированных не принадлежащих к человеческому роду животных, описанных здесь. В некоторых вариантах осуществления генетически модифицированное не принадлежащее к человеческому роду животное является мышью. В некоторых вариантах осуществления генетически модифицированное не принадлежащее к человеческому роду животное является иммунодефицитной мышью. В конкретном варианте осуществления иммунодефицитная мышь представляет собой RAG2-/- γс -/- мышь. В другом конкретном варианте осуществления генетически модифицированное, не принадлежащее к человеческому роду животное изобретения экспрессирует человеческий M-CSF, человеческий IL-3/GM-CSF и человеческий ТРО и не экспрессирует RAG2 или γс (в описании называется MITRG). В другом отдельном варианте осуществления генетически модифицированное, не принадлежащее к человеческому роду животное изобретения экспрессирует человеческий M-CSF, человеческий IL-3/GM-CSF, человеческий SIRPA и человеческий ТРО и не экспрессирует RAG2 или γс (в описании называется MISTRG). В некоторых вариантах осуществления генетически модифицированным не принадлежащим к человеческому роду животным, описанным здесь, пересажены человеческие гематопоэтические клетки.
В различных вариантах осуществления генетически модифицированные, не принадлежащие к человеческому роду животные изобретения с пересаженными человеческими гематопоэтическими клетками используются для оценки in vivo роста и дифференцировки гематопоэтических и иммунных клеток, для оценки in vivo человеческого гематопоэза, для in vivo оценки раковых клеток, для оценки in vivo иммунного ответа, для оценки in vivo вакцин и режимов вакцинации, для использования при тестировании эффекта средств, модулирующих рост раковой клетки или выживаемости, для in vivo оценки лечения рака, для производства in vivo и сбора иммунных медиаторов, включая человеческие антитела, и для использования при проверке действия средств, модулирующих функцию гематопоэтической или иммунной клетки.
Генетически модифицированные, не принадлежащие к человеческому роду животные
Изобретение включает генетически модифицированное, не принадлежащее к человеческому роду животное, экспрессирующее, по меньшей мере, что-либо из числа человеческого M-CSF, человеческого IL-3/GM-CSF, человеческого SIRPA, человеческого ТРО и любой их комбинации. В некоторых вариантах осуществления генетически модифицированное, не принадлежащее к человеческому роду животное, экспрессирующее нуклеиновую кислоту, также экспрессирует соответствующую нечеловеческую нуклеиновую кислоту животного. В других вариантах осуществления генетически модифицированное не принадлежащее к человеческому роду животное, экспрессирующее человеческую нуклеиновую кислоту, не экспрессирует соответствующую нечеловеческую нуклеиновую кислоту животного. В некоторых вариантах осуществления генетически модифицированное животное представляет собой животное, имеющее один или более нокаутированных генов, с целью приведения животного в состояние иммунодефицитного животного, как описано в другом месте этого документа. Для создания генетически модифицированного, не принадлежащего к человеческому роду животного, нуклеиновая кислота, кодирующая человеческий белок, может быть встроена в рекомбинантный вектор экспрессии в форме, подходящей для экспрессии человеческого белка в нечеловеческой клетке-хозяине. В различных вариантах осуществления рекомбинантный вектор экспрессии включает одну или более регуляторных последовательностей, функционально связанных с нуклеиновой кислотой, кодирующей человеческий белок, таким способом, который создает возможность для транскрипции нуклеиновой кислоты в мРНК и трансляции мРНК в человеческий белок. Термин "регуляторная последовательность" принят в данной области техники и включает промоторы, энхансеры и другие элементы, контролирующие экспрессию (например, сигналы полиаденилирования). Такие регуляторные последовательности известны специалистам в данной области техники и описаны в 1990, Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. Следует понимать, что дизайн вектора экспрессии может зависеть от таких факторов, как выбор клетки-хозяина, предназначенной для трансфицирования, и/или количества человеческого белка, которое должно экспрессироваться.
Генетически модифицированное животное может быть создано, например, путем введения нуклеиновой кислоты, кодирующей человеческий белок (как правило, связанной с соответствующими регуляторными элементами, такими как конститутивный или ткане-специфический энхансер) в ооцит, например, с помощью микроинъекции, и позволение ооциту развиться в «приемном» животном женского рода. Интронные последовательности и сигналы полиаденилирования также могут быть включены в трансген, чтобы увеличить эффективность экспрессии трансгена. Методы получения генетически модифицированных животных, в частности, таких как мыши, становятся обычными в данной области техники и описываются, например, в патентах США №4 736 866 и 4 870 009, 1986, Hogan et al., А Laboratory Manual, Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory. Генетически модифицированное животное-основатель может быть использовано для разведения дополнительных животных, несущих трансген. Генетически модифицированные животные, несущие трансген, кодирующий человеческий белок изобретения, могут быть дополнительно скрещены с другими генетически модифицированными животными, несущими другие трансгены, или могут быть скрещены с нокаут-животными, например нокаут-животным, которое не экспрессирует один или более из его генов. В различных вариантах осуществления генетически модифицированное животное изобретения является мышью, крысой или кроликом.
В некоторых вариантах осуществления генетически модифицированное животное изобретения экспрессирует одну или более человеческих нуклеиновых кислот, благодаря нечеловеческому нативному промотору животного и нативным регуляторным элементам. В других вариантах осуществления генетически модифицированное животное изобретения экспрессирует человеческую нуклеиновую кислоту за счет нативного человеческого промотора и нативных регуляторных элементов. Специалисту ясно, что генетически модифицированное животное изобретения включает генетически модифицированных животных, экспрессирующих, по меньшей мере, одну человеческую нуклеиновую кислоту за счет какого-либо промотора. Примеры промоторов, пригодных для изобретения, включают, но не ограничиваются этим, DNA pol II промотор, PGK промотор, убиквитиновый промотор, альбуминовый промотор, промотор глобина, промотор овальбумина, ранний промотор SV40, промотор вируса саркомы Рауса (RSV), ретровирусный LTR и лентивирусный LTR. Экспрессирующие системы промотора и энхансера, пригодные в изобретении, также включают индуцибельные и/или ткане-специфические экспрессирующие системы.
В некоторых вариантах осуществления изобретение включает генетически модифицированных иммунодефицитных животных, имеющих геном, содержащий нуклеиновую кислоту, кодирующую человеческий полипептид, функционально связанный с промотором, при этом животное экспрессирует кодированный человеческий полипептид. В различных вариантах осуществления изобретение включает генетически модифицированных, иммунодефицитных, не принадлежащих к человеческому роду животных, имеющих геном, который включает экспрессирующую кассету, содержащую нуклеиновую кислоту, кодирующую, по меньшей мере, один человеческий полипептид, при этом нуклеиновая кислота является функционально связанной с промотором и сигналом полиаденилирования, а также содержит интрон, и при этом данное животное экспрессирует кодированный человеческий полипептид.
В различных вариантах осуществления для введения человеческой нуклеиновокислотной последовательности иммунодефицитному животному с целью получения генетически модифицированного иммунодефицитного животного, экспрессирующего человеческий ген, используются различные методы. Такие методы хорошо известны в данной области техники и включают, но не ограничиваются этим, микроинъекцию в пронуклеус, трансформацию эмбриональными стволовыми клетками, гомологичную рекомбинацию и нокин методы. Методы получения генетически модифицированных животных, которые могут использоваться, включают, но не ограничиваются этим, методы, описанные в Sundberg и Ichiki (2006, Genetically Engineered Mice Handbook, CRC Press), Hofker и van Deursen (2002, Genetically modified Mouse Methods и Protocols, Humana Press), Joyner (2000, Gene Targeting: A Practical Approach, Oxford University Press), Turksen (2002, Embryonic stem cells: Methods и Protocols in Methods Mol Biol., Humana Press), Meyer et al. (2010, Proc. Nat. Acad. Sci. USA 107:15022-15026) и Gibson (2004, A Primer Of Genome Science 2nd ed. Sunderland, Massachusetts: Sinauer), патент США №6 586 251, Rathinam et al. (2011, Blood 118:3119-28), Willinger et al. (2011, Proc Natl Acad Sci USA, 108:2390-2395), Rongvaux et al. (2011, Proc Natl Acad Sci USA, 108:2378-83) и Valenzuela et al. (2003, Nat Biot 21:652-659).
В некоторых вариантах осуществления композиции способы изобретения включают генетически модифицированных иммунодефицитных животных с недостаточным количеством В-клеток и/или Т-клеток и/или недостаточностью их функции отдельно или в комбинации с недостатком количества и/или функции NK-клеток (например, вследствие дефицита гамма цепи рецептора IL2 (т.е., γc -/-)), имеющих геном, содержащий человеческую нуклеиновую кислоту, функционально связанную с промотором, при этом данное животное экспрессирует кодированный человеческий полипептид. Генетически модифицированное животное изобретения может быть получено такими способами, как инъекция ДНК экспрессирующей конструкции в предимплантационный эмбрион, или путем использования стволовых клеток, таких как эмбриональные стволовые (ES) клетки или индуцированные плюрипотентные стволовые (iPS) клетки.
В одном варианте осуществления человеческая нуклеиновая кислота экспрессируется нативными регуляторными элементами человеческого гена. В других вариантах осуществления человеческая нуклеиновая кислота экспрессируется нативными регуляторными элементами не принадлежащего к человеческому роду животного. В других вариантах осуществления человеческая нуклеиновая кислота экспрессируется за счет убиквитинового промотора. Неограничивающие примеры убиквитиновых промоторов, подходящих для использования в экспрессирующей конструкции композиций и способов изобретения, включают промотор 3-фосфоглицераткиназы (PGK-1), промотор бета-актина, ROSA26 промотор, промотор белка теплового шока 70 (Hsp70), промотор EF-1 альфа гена, кодирующего фактор 1 альфа элонгации (EF1), промотор эукариотического фактора инициации 4A (eIF-4A1), промотор хлорамфеникол ацетилтрансферазы (CAT) и промотор CMV (цитомегаловируса).
В других вариантах осуществления человеческая нуклеиновая кислота экспрессируется за счет ткане-специфического промотора. Неограничивающие примеры ткане-специфических промоторов, подходящих для использования в экспрессирующей конструкции композиций и способов изобретения, включают промотор гена, экспрессируемого в гематопоэтической системе, такой как M-CSF промотор, IL-3 промотор, GM-CSF промотор, SIRPA промотор, ТРО промотор, IFN-β промотор, промотор белка синдрома Вискотта-Олдрича (WASP), промотор CD45 (также называемый общий лейкоцитарный антиген), Flt-1 промотор, эндоглин (CD105) промотор и промотор ICAM-2 (молекула внутриклеточной адгезии 2). Эти и другие промоторы, подходящие для использования в композициях и методах изобретения, известны в данной области техники и приведены, например, в Abboud et al. (2003, J. Histochem & Cytochem. 51:941-949), Schorpp et al. (1996, NAR 24:1787-1788), McBurney et al. (1994, Devel. Dynamics, 200:278-293) и Majumder et al. (1996, Blood 87:3203-3211). В различных вариантах осуществления изобретения в дополнение к промотору также содержится один или более дополнительных регуляторных элементов, таких как энхансер или интронная последовательность. Примеры энхансеров, пригодных для композиций и методов изобретения включают, но не ограничиваются этим, ранний энхансер цитомегаловируса (CMV) и энхансер SV40. Примеры интронных последовательностей, пригодных для композиций и методов изобретения, включают, но не ограничиваются этим, интрон бета-глобина или характерный для определенного рода (родовой) интрон. Другие дополнительные регуляторные элементы, пригодные в некоторых вариантах осуществления изобретения, включают, но не ограничиваются этим, последовательность терминации транскрипции и последовательность полиаденилирования (рА) мРНК.
В некоторых вариантах осуществления методы введения конструкции, экспрессирующей человеческую нуклеиновую кислоту, в предимплантационный эмбрион включают линеаризацию экспрессионной конструкции до введения ее в предимплантационный эмбрион. В предпочтительных вариантах осуществления экспрессионная конструкция инжектируется в оплодотворенные ооциты. Оплодотворенные ооциты могут быть собраны у сверх-овулированных самок днем позже после спаривания и введены в экспрессионную конструкцию. Инжектированные ооциты или культивируют в течение ночи или переносят непосредственно в маточные трубы 0.5-дней р.с. псевдобеременных самок. Способы суперовуляции, сбора ооцитов, введения экспрессионной конструкции и переноса эмбриона известны в данной области техники и описаны в Manipulating the Mouse Embryo (2002, A Laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory Press). Потомство может быть оценено на наличие введенной нуклеиновой кислоты с помощью анализа ДНК (например, ПЦР, саузерн блоттинга, секвенирования ДНК и т.д.) или путем анализа белков (например, ELISA, Вестерн блоттинга и т.д.).
В других вариантах осуществления экспрессионная конструкция может быть трансфицирована в стволовые клетки (ES клетки или iPS клетки) с помощью хорошо известных способов, таких как электропорация, осаждение фосфатом кальция и липофекция. Наличие введенной нуклеиновой кислоты в клетках может быть оценено путем анализа ДНК (например, ПНР, Саузерн блоттинга, секвенирования ДНК и т.д.) или путем анализа белков (например, ELISA, Вестерн блоттинга и т.д.). Затем клетки, содержащие введенную экспрессионную конструкцию, могут быть введены с помощью микроинъекции в предимплантационные эмбрионы. Подробное описание известных в данной области техники методов, подходящих для композиций и способов изобретения, смотри в Nagy et al. (2002, Manipulating the Mouse Embryo: A Laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory Press), Nagy et al. (1990, Development 110:815-821), патенте США №7 576 259, патенте США №7 659 442, патенте США №7 294 754 и Kraus et al. (2010, Genesis 48:394-399).
Генетически модифицированные, не принадлежащие к человеческому роду животные изобретения могут быть скрещены с иммунодефицитным животным с целью получения иммунодефицитного животного, экспрессирующего, по меньшей мере, одну человеческую нуклеиновую кислоту. Различные варианты осуществления изобретения обеспечивают генетически модифицированных животных, содержащих человеческую нуклеиновую кислоту практически во всех клетках, а также генетически модифицированных животных, которые содержат человеческую нуклеиновую кислоту в некоторых, но не во всех своих клетках. В геном клеток генетически модифицированных животных может интегрироваться одна или несколько копий, смежных или отдаленных по отношению друг к другу, человеческой нуклеиновой кислоты.
В некоторых вариантах осуществления изобретением является генетически модифицированная мышь, которой пересажена, по меньшей мере, одна человеческая гематопоэтическая клетка. В других вариантах осуществления изобретением является способ приживления человеческих гематопоэтических клеток у генетически модифицированного, не принадлежащего к человеческому роду животного. Пересаженные человеческие гематопоэтические клетки, пригодные для использования в композициях и методах изобретения, включают любую человеческую гематопоэтическую клетку. Неограничивающие примеры человеческих гематопоэтических клеток, подходящих для изобретения, включают, но не ограничиваются этим, HSC, HSPC, инициирующие лейкемию клетки (LIC) и гематопоэтические клетки любой линии дифференцировки на любой стадии дифференцировки, включая терминально дифференцированные гематопоэтические клетки любой линии дифференцировки. Такие гематопоэтические клетки могут быть получены из любой ткани или местоположения донора-человека, включая, но без ограничения, костный мозг, периферическую кровь, печень, эмбриональную печень или пуповинную кровь. Такие гематопоэтические клетки могут быть выделены из любого донора-человека, включая здоровых доноров, а также доноров с заболеваниями, такими как рак, включая лейкемию.
В других вариантах осуществления изобретение является способом приживления человеческих гематопоэтических клеток у генетически модифицированного не принадлежащего к человеческому роду животного. В некоторых вариантах осуществления генетически модифицированное не принадлежащее к человеческому роду животное, которому пересажены человеческие гематопоэтические клетки, является иммунодефицитным животным. Приживление гематопоэтических клеток у генетически модифицированного животного изобретения характеризуется присутствием человеческих гематопоэтических клеток у животного с пересаженными клетками. В конкретных вариантах осуществления приживление гематопоэтических клеток у иммунодефицитного животного характеризуется присутствием дифференцированных человеческих гематопоэтических клеток у животного с пересаженными клетками по сравнению с соответствующими контрольными животными.
В некоторых вариантах осуществления животным изобретения трансплантируются человеческие раковые клетки (например, из солидных опухолей человека и т.д.) в дополнение к человеческим гематопоэтическим клеткам. В различных вариантах осуществления человеческие раковые клетки могут быть клеточной линией рака или клеткой первичного рака человека, полученной от пациента, любого из многих различных типов рака (включая, в качестве неограничивающих примеров, меланому, рак молочной железы, рак легких и т.д.). В некоторых вариантах осуществления человеческие раковые клетки и HSPC получают от одного и того же пациента и трансплантируют одному, не принадлежащему к человеческому роду животному.
Генетически модифицированные, не принадлежащие к человеческому роду животные, предоставленные в различных вариантах осуществления настоящего изобретения, могут иметь разное применение, без ограничения, например в качестве модели роста и дифференцировки гематопоэтических клеток, для оценки in vivo человеческого гематопоэза, для оценки in vivo раковых клеток, для изучения in vivo иммунного ответа, для оценки in vivo вакцин и режимов вакцинации, для использования при тестировании эффекта средств, модулирующих рост или выживаемость раковой клетки, для in vivo оценки лечения рака, для in vivo производства и сбора иммунных медиаторов, таких как антитело, и для использования при проверке действия средств, модулирующих функцию гематопоэтической или иммунной клетки.
Приживление человеческих гематопоэтических клеток у генетически модифицированных и/или иммунодефицитных, не принадлежащих к человеческому роду животных обычно требует кондиционирования гематопоэтических клеток до введения или сублетального облучения животного-реципиента высокочастотным электромагнитным излучением (как правило, используются гамма-лучи или рентгеновское излучение) или обработки радиомиметическим средством, таким как бусульфан или азотистый иприт. Полагают, что кондиционирование уменьшает количество гематопоэтических клеток хозяина, создает соответствующие факторы микроокружения для приживления человеческих гематопоэтических клеток, и/или создания ниш микроокружения для приживления человеческих гематопоэтических клеток. Стандартные способы кондиционирования известны в данной области техники, например описанные в J. Hayakawa et al, 2009, Stem Cells, 27(1):175-182. Способы приживления человеческих гематопоэтических клеток у иммунодефицитных животных предоставляются согласно вариантам осуществления настоящего изобретения, которые включают предоставление человеческих гематопоэтических клеток иммунодефицитным животным в сочетании с облучением или без облучения животных до введения гематопоэтических клеток. Способы приживления человеческих гематопоэтических клеток у иммунодефицитных животных предоставляются согласно вариантам осуществления настоящего изобретения, которые включают предоставление человеческих гематопоэтических клеток генетически модифицированным, не принадлежащим к человеческому роду животным изобретения с введением или без введения радиомиметического средства, такого как бусульфан или азотистый иприт, до введения животным гематопоэтических клеток.
В некоторых вариантах осуществления способы приживления гематопоэтических клеток у генетически модифицированного, не принадлежащего к человеческому роду животного согласно вариантам осуществления настоящего изобретения включают предоставление человеческих гематопоэтических клеток генетически модифицированному животному изобретения, как описано в другом месте данного документа. В некоторых вариантах осуществления генетически модифицированное, не принадлежащее к человеческому роду животное является иммунодефицитным животным, у которого имеется дефицит количества и/или функции нечеловеческих В-клеток, нечеловеческих Т-клеток и/или количества, и/или функции нечеловеческих NK-клеток. В других вариантах осуществления у иммунодефицитного животного имеется тяжелый комбинированный иммунодефицит (SCID). SCID - это состояние, характеризующееся отсутствием Т-клеток и утратой функции В-клеток. Примеры SCID включают: X-связанный SCID, который характеризуется мутациями гена гамма цепи в IL2RG гене, и лимфоцитарный фенотип Т(-) В(+) NK(-); и аутосомный рецессивный SCID, характеризующийся мутациями гена Jak3, и лимфоцитарный фенотип Т(-) В(+) NK(-), мутации гена ADA и лимфоцитарный фенотип Т(-) В(-) NK(-), мутации альфа-цепи IL-7R и лимфоцитарный фенотип Т(-) В(+) NK(+), CD3 дельта или эпсилон мутации и лимфоцитарный фенотип Т(-) В(+) NK(+), мутации RAG1/RAG2 и лимфоцитарный фенотип Т(-) В(-) NK(+), мутации гена Artemis и лимфоцитарный фенотип Т(-) В(-) NK(+), мутации CD45 гена и лимфоцитарный фенотип Т(-) В(+) NK(+). В некоторых вариантах осуществления генетически модифицированное, не принадлежащее к человеческому роду животное изобретения представляет собой RAG1-/-.
В некоторых вариантах осуществления методы приживления гематопоэтических клеток у генетически модифицированного животного согласно вариантам осуществления настоящего изобретения включают снабжение человеческими гематопоэтическими клетками генетически модифицированного, не принадлежащего к человеческому роду животного, имеющего мутацию, вызывающую тяжелый комбинированный иммунодефицит (Prkdcscid), обычно называемую scid-мутация. Scid-мутация хорошо известна и локализуется на мышиной хромосоме 16, как описано в работе Bosma et al. (1989, Immunogenetics 29:54-56). Мыши, гомозиготные по scid-мутации, отличаются отсутствием функциональных Т-клеток и В-клеток, лимфопенией, липоглобулинемией и нормальным гематопоэтическим микроокружением. Scid-мутация может быть обнаружена, например, путем обнаружения маркеров scid-мутации с использованием хорошо изместных методов.
В других вариантах осуществления способы приживления гематопоэтических клеток у генетически модифицированного животного согласно вариантам осуществления настоящего изобретения включают предоставление человеческих гематопоэтических клеток генетически модифицированному, иммунодефицитному, не принадлежащему к человеческому роду животному, у которого имеется дефицит гамма цепи рецептора IL2, или отдельно или в комбинации с мутацией, вызывающей тяжелый комбинированный иммунодефицит (scid-мутацией). Термин "дефицит гамма цепи рецептора IL2" относится к уменьшению наличия гамма-цепи рецептора IL2. Уменьшение наличия гамма цепи рецептора IL2 может быть результатом делеции или мутации гена. Уменьшение наличия гамма цепи рецептора IL2 можно обнаружить, например, путем обнаружения делеции или мутации гена гамма цепи рецептора IL2 и/или обнаружения пониженной экспрессии гамма цепи рецептора IL2 с использованием хорошо известных методов.
В дополнение к природным человеческим нуклеиновокислотным и аминокислотным последовательностям термин включает варианты человеческих нуклеиновокислотных или аминокислотных последовательностей. Использованный в описании термин "вариант" определяет или изолированный природный генетический мутант человека или рекомбинантно полученное изменение, каждое из которых содержит одну или более мутаций по сравнению с соответствующим диким типом. Например, такие мутации могут представлять собой одну или более аминокислотных замен, вставок и/или делеций. Термин "вариант" также включает не принадлежащие к человеческому роду ортологи. В некоторых вариантах осуществления вариант полипептида настоящего изобретения имеет, по меньшей мере, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99% идентичность с человеческим полипептидом дикого типа.
Процент идентичности между двумя последовательностями определяется с помощью методов, описанных в данном документе. Мутации могут быть введены с помощью стандартных методов молекулярной биологии, таких как сайт-направленный мутагенез и ПЦР-опосредованный мутагенез. Специалисту в данной области понятно, что одна или более мутаций аминокислот могут быть введены без изменения функциональных свойств человеческих белков.
В человеческих белках могут быть сделаны консервативные замены аминокислот с целью получения вариантов человеческих белков. Консервативными аминокислотными заменами являются принятые в данной области техники замены одной аминокислоты на другую аминокислоту, имеющую сходные характеристики. Например, каждая аминокислота может быть описана как имеющая одну или более из следующих характеристик: электроположительная, электроотрицательная, алифатическая, ароматическая, полярная, гидрофобная и гидрофильная. Консервативная замена - это замена одной аминокислоты, имеющей точно установленную структурную или функциональную характеристику, другой аминокислотой, имеющей сходную характеристику. Кислые аминокислоты включают аспартат, глутамат; основные аминокислоты включают гистидин, лизин, аргинин; алифатические аминокислоты включают изолейцин, лейцин и валин; ароматические аминокислоты включают фенилаланин, глицин, тирозин и триптофан; полярные аминокислоты включают аспартат, глутамат, гистидин, лизин, аспарагин, глутамин, аргинин, серии, треонин и тирозин; и гидрофобные аминокислоты включают аланин, цистеин, фенилаланин, глицин, изолейцин, лейцин, метионин, пролин, валин и триптофан; и консервативные замены включают замены среди аминокислот в пределах каждой группы. Аминокислоты также могут быть описаны в отношении их относительного размера, как правило, аланин, цистеин, аспартат, глицин, аспарагин, пролин, треонин, серии, валин считаются маленькими по размеру.
Человеческие варианты могут включать синтетические аналоги аминокислот, производные аминокислот и/или нестандартные аминокислоты, для иллюстрации включая, без ограничения, альфа-аминомасляную кислоту, цитруллин, канаванин, цианоаланин, диаминомасляную кислоту, диаминопимелиновую кислоту, дигидрокси-фенилаланин, дьенколовую кислоту, гомоаргинин, гидроксипролин, норлейцин, норвалин, 3-фосфосерин, гомосерин, 5-гидрокситриптофан, 1-метилгистидин, метилгистидин и орнитин.
Человеческие варианты кодируются нуклеиновыми кислотами, имеющими высокую степень идентичности с нуклеиновой кислотой, кодирующей человеческий дикий тип. Комплементарная цепь нуклеиновой кислоты, кодирующей человеческий вариант, специфически гибридизируется с нуклеиновой кислотой, кодирующей человеческий вариант дикого типа в жестких условиях.
Термин "нуклеиновая кислота" относится к молекулам РНК или ДНК, имеющим более чем один нуклеотид в любой форме, включая одноцепочечную, двухцепочечную, олигонуклеотид или полинуклеотид. Термин "нуклеотидная последовательность" имеет отношение к порядку (расположению) нуклеотидов в олигонуклеотиде или полинуклеотиде в форме одноцепочечной нуклеиновой кислоты.
Нуклеиновые кислоты, кодирующие человеческий вариант, могут быть выделены или получены рекомбинантым или синтетическим путем с использованием хорошо известных методов.
Способы выделения человеческих гематопоэтических клеток, введения человеческих гематопоэтических клеток животному-хозяину и оценки их приживления хорошо известны в данной области техники. Гематопоэтические клетки для введения животному-хозяину могут быть получены из любой ткани, содержащей гематопоэтические клетки, такой как, но без ограничения, пуповинная кровь, костный мозг, периферическая кровь, мобилизированная цитокином или химиотерапией периферическая кровь и эмбриональная печень. Гематопоэтические клетки могут быть введены новорожденным или взрослым животным с помощью разных способов введения, таких как, но без ограничения, внутривенное введение, внутрипеченочное, внутрибрюшинное, внутримышечное введение в бедро и/или голень.
Приживление человеческих гематопоэтических клеток у генетически модифицированного животного изобретения может быть оценено с помощью ряда методов, таких как, но без ограничения, проточный цитометрический анализ клеток у животных, которым вводятся человеческие гематопоэтические клетки в один или более моментов времени после введения гематопоэтических клеток.
Типичные способы выделения человеческих гематопоэтических клеток, введения человеческих гематопоэтических клеток животному-хозяину и оценки приживления человеческих гематопоэтических клеток у животного-хозяина описаны в текущем документе и в Pearson et al. (2008, Curr. Protoc. Immunol. 81:1-15), Ito et al. (2002, Blood 100:3175-3182), Traggiai et al. (2004, Science 304:104-107), Ishikawa et al. (2005, Blood 106:1565-1573), Shultz et al. (2005, J. Immunol. 174:6477-6489) и Holyoake et al. (1999, Exp Hematol. 27:1418-27).
В некоторых вариантах осуществления изобретения человеческие гематопоэтические клетки выделяют из природного исходного материала для получения популяции клеток, обогащенных определенной популяцией гематопоэтических клеток (например, HSCs, HSPCs, LICs, CD34+, CD34-, линиеспецифического маркера и т.д.). Выделенные гематопоэтические клетки могут быть или могут не быть чистой популяцией. В одном варианте осуществления гематопоэтические клетки, подходящие для композиций и способов изобретения, лишены клеток, имеющих определенный маркер, такой как CD34. В другом варианте осуществления гематопоэтические клетки, подходящие для композиций и способов изобретения, являются обогащенными в результате селекции по маркеру, такому как CD34. В некоторых вариантах осуществления гематопоэтические клетки, подходящие для использования в композициях и способах изобретения, представляют собой популяцию клеток, в которых CD34+ составляют около 1-100% клеток, тем не менее, в некоторых вариантах осуществления также может использоваться популяция клеток, в которых CD34+ клетки составляют меньше, чем 1% от всех клеток. В некоторых вариантах осуществления гематопоэтические клетки, подходящие для композиций и способов изобретения, представляют собой популяцию клеток, лишенную Т-клеток, в которых CD34+ клетки составляют около 1-3% от всех клеток, популяцию клеток, лишенных направления дифференцировки, в которой CD34+ клетки составляют около 50% от всех клеток, или отобранную как CD34+ положительную популяцию клеток, в которой CD34+ клетки составляют около 90% от всех клеток.
Количество введенных гематопоэтических клеток, необходимых для получения человеческой гематопоэтической и/или иммунной системы у генетически модифицированного, не принадлежащего к человеческому роду животного, экспрессирующего, по меньшей мере, один человеческий ген, не ограничивается. Таким образом, в качестве неограничивающего примера, количество введенных гематопоэтических клеток может находиться в пределах примерно от 1X103 до 1X107, тем не менее, в различных вариантах осуществления также может использоваться больше или меньше клеток. В качестве неограничивающего примера количество введенных HSPCs может находиться в пределах примерно от 3X103 до 1X106 CD34+ клеток, в том случае, когда реципиентом является мышь, тем не менее, в различных вариантах осуществления также может использоваться больше или меньше клеток. В отношении других видов реципиентов количество клеток, которое необходимо ввести, может быть определено только путем обычного проведения экспериментов.
В общем, приживление может считаться успешным в том случае, когда количество (или процент) человеческих гематопоэтических клеток, присутствующих у генетически модифицированного, не принадлежащего к человеческому роду животного выше, чем количество (или процент) человеческих клеток, которые были введены не принадлежащему к человеческому роду животному, в момент времени за пределами срока жизни введенных человеческих гематопоэтических клеток. Обнаружение потомства введенных гематопоэтических клеток можно осуществить, например, путем обнаружения человеческой ДНК у животных-реципиентов или путем обнаружения интактных человеческих гематопоэтических клеток, например, путем обнаружения человеческих маркеров на клеточной поверхности, таких как CD45. Последовательный перенос человеческих гематопоэтических клеток от первого реципиента второму реципиенту и приживление человеческих гематопоэтических клеток у второго реципиента является дополнительным необязательным тестированием приживления у первого реципиента. Приживление может быть установлено с помощью проточной цитометрии как содержание 0.05% или больше человеческих CD45+ клеток в крови, селезенке или костном мозге через 1-4 месяца после введения человеческих гематопоэтических клеток. Для мобилизации стволовых клеток может использоваться цитокин (например, GM-CSF), например, как описано в Watanabe (1997, Bone Marrow Transplantation 19:1175-1181).
Экспериментальные примеры
Далее изобретение подробно описывается с учетом следующих экспериментальных примеров. Эти примеры предоставляются только с иллюстративной целью и не предназначаются для ограничения, если не указано иное. Таким образом, изобретение никоим образом не должно истолковываться как ограниченное следующими примерами, а скорее должно истолковываться как включающее все возможные изменения, которые станут очевидны в результате предоставленной в описании идеи.
Предполагается, что без дополнительного описания специалист в данной области может, используя предшествующее описание и следующие далее иллюстративные примеры, изготовить и использовать соединения настоящего изобретения и осуществлять заявленные способы. Поэтому следующие рабочие примеры конкретно указывают на предпочтительные варианты осуществления настоящего изобретения и не должны рассматриваться, как ограничивающие каким бы то ни было образом оставшуюся часть раскрытия.
Пример 1
Функциональные врожденные иммунные ответы и поддержание солидных опухолей в человеческой гемато-лимфоидной системе мышей
Как здесь было описано, мыши, репопулированные человеческой гемато-лимфоидной системой (HHLS), представляют собой эффективный инструмент для предсказывающего доклинического исследования in vivo. Основным ограничением существующих в настоящее время HHLS мышей является неправильное развитие человеческих клеток, необходимых для врожденного иммунитета. Здесь описывается новая линия мышей, у которой многие гены, кодирующие цитокины, являются генетически гуманизированными. Эти гуманизированные цитокины действуют синергетически для эффективной поддержки человеческого гематопоэза, а также развития и функции человеческих моноцитов/макрофагов и NK-клеток. В опухолевом микроокружении человеческие макрофаги приобретают иммуносупрессорный фенотип и поддерживают рост рака человека. При наличии более полной и функциональной системы человеческого врожденного иммунитета эта новая модель HHLS мышей обладает исключительным потенциалом для оказания содействия исследованиям физиологии и патологии человеческого врожденного иммунитета in vivo.
Моноциты и макрофаги являются основными клеточными компонентами врожденного иммунного ответа (Auffray et al., 2009, Annual review of immunology 27, 669). С одной стороны, эти клетки способны обнаруживать инфекцию и опосредовать прямые антимикробные действия с помощью различных механизмов, таких как фагоцитоз или секреция провоспалительных факторов. С другой стороны, моноциты/макрофаги могут приобретать иммуносупрессорные свойства, важные для урегулирования воспаления и репарации тканей. Кроме того, эти противовоспалительные свойства могут быть кооптированы проникающими в опухоль макрофагами и обеспечивать преимущество выживания развивающимся опухолям за счет использования целого ряда механизмов (Allavena и Mantovani, 2012, Clinical и experimental immunology 167, 195; Qian и Pollard, 2010, Cell 141, 39).
Модели небольших животных, таких как мыши, часто используются для изучения in vivo иммунных ответов млекопитающих. Однако существует принципиальное различие в иммунной функции между видами (Mestas и Hughes, 2004, Journal of Immunology 172, 2731; Rongvaux et al., 2013, Annual review of immunology 31, 635). В частности, между популяциями моноцитов/макрофагов существуют значительные фенотипические и функциональные видоспецифичные различия, поэтому знания, полученные при проведении исследований на мышах, только отчасти применимы к людям (Auffray et al., 2009, Annual review of immunology 27, 669; Rongvaux et al., 2013, Annual review of immunology 31, 635; Chow et al., 2011, Nature reviews Immunology 11, 788). Один перспективный подход к изучению специфичности человеческой гематопоэтической и иммунной функции in vivo заключается в использовании мышей, несущих человеческую гемато-лимфоидную систему (HHLS) (Rongvaux et al., 2013, Annual review of immunology 31, 635; Shultz et al., 2012, Nature reviews Immunology 12, 786). Однако развитие и функция некоторых типов человеческих иммунных клеток, таких как моноциты/макрофаги и NK-клетки, в основном имеет дефекты в имеющихся на данный момент HHLS мышах (Rongvaux et al., 2013, Annual review of immunology 31, 635). Вероятнее всего, эти дефекты являются результатом уменьшенной перекрестной реактивности мышиных цитокинов на соответствующих человеческих рецепторах (Manz, 2007, Immunity 26, 537). Для устранения этого ограничения была разработана стратегия замены мышиных генов, кодирующих цитокины, их человеческим эквивалентом (Willinger et al., 2011, Trends in immunology 32, 321). Этот подход привел к значительным улучшениям в создании и функции отдельных типов человеческих клеток (Фигура 16) (Rathinam et al., 2011, Blood 118, 3119; Willinger et al., 2011, Proceedings of the National Academy of Sciences 108, 2390; Rongvaux et al., 2011, Proceedings of the National Academy of Sciences 108, 2378).
Гематопоэз является строго регулируемым процессом развития, в котором мультипотентные гематопоэтические стволовые клетки видоизменяются в более коммитированные клетки-предшественники, а затем в зрелые клетки крови (Kondo et al., 2003, Annual review of immunology 21, 759; Doulatov et al., 2012, Cell stem cell 10, 120). Для этого процесса необходимы специфические цитокины, способствующие следующим одна за другой стадиям развития (Фигура 5). Возможно, может быть необходимо совместное действие (синергизм) между множеством гуманизированных цитокинов, для того, чтобы полностью воспроизвести человеческий гематопоэз у мыши. По этой причине была получена новая линия мышей, названная MISTRG, в которой гены, кодирующие M-CSF (Rathinam et al., 2011, Blood 118, 3119), IL-3/GM-CSF (Willinger et al., 2011, Proceedings of the National Academy of Sciences 108, 2390) и ТРО (Rongvaux et al., 2011, Proceedings of the National Academy of Sciences 108, 2378) были заменены их человеческими эквивалентами (Willinger et al., 2011, Trends in immunology 32, 321) на основе hSIRPAtg RAG2-/- IL-2Rγ-/- (Traggiai et al., 2004, Science 304, 104; Strowig et al., 2011, Proceedings of the National Academy of Sciences 108,13218).
Новорожденных MISTRG мышей и их однопометных особей MITRG (не имеющих hSIRPA трансген) облучили сублетальной дозой и пересадили им человеческие эмбриональные CD34+ клетки, полученные из печени, в соответствии со стандартным протоколом (Traggiai et al., 2004, Science 304, 104). RAG2-/- IL2-Rγ-/- (RG) мыши, имеющие то же самое генетическое окружение (наследственность), но лишенные всех гуманизированных аллелей, и коммерчески доступные NOD-Scid IL2-Rγ-/- (NSG) мыши служили в качестве контрольных мышей. Уровни приживления (процент hCD45+ клеток; (Фигуры 1А и 1В; и Фигура 6А) были более низкими у RG и более высокими у NSG реципиентов, как сообщалось ранее (Strowig et al., 2011, Proceedings of the National Academy of Sciences 108, 13218; Brehm et al., 2010, Clinical immunology 135, 84). Процент hCD45+ клеток в крови был сходным у MISTRG и у NSG. Кроме того, приживление было значительно увеличено у MITRG по сравнению с RG, указывая на то, что комбинированная гуманизация генов преодолевает необходимость индуцировать фагоцитарную толерантность посредством SIRPα/CD47 перекрестной реактивности (Strowig et al., 2011, Proceedings of the National Academy of Sciences 108, 13218; Takenaka et al., 2007, Nature immunology 8, 1313; Legrand et al., 2011, Proceedings of the National Academy of Sciences 108, 13224), возможно за счет ослабления врожденного ответа. Мыши, содержащие, по меньшей мере, 10% человеческих CD45+ клеток в крови были отобраны для проведения дальнейших экспериментов (Фигура 6В). В костном мозге (ВМ) процент hCD45+ клеток превышал 90% и достигал 99% у большинства из MISTRG реципиентов (Фигуры 1А и 1С; и Фигуры 6С-6Е), при этом высокоэффективное приживление в ВМ было независимо от SIRPα/CD47 взаимодействия. Для проверки способности гуманизированных цитокинов поддерживать человеческий гематопоэз в условиях большей конкуренции, человеческие CD34+ клетки были пересажены необлученным MISTRG. Этот протокол давал в результате человеческие CD45+ клетки в крови и ВМ всех реципиентов (Фигуры 1D и 1Е) и примечательно, что половина мышей продемонстрировала химеризм вплоть до самых высоких уровней, измеренных у реципиентов с пересаженными клетками после предварительного облучения рентгеновскими лучами (сравни Фигура 1Е - Фигуры 1В и 1С). Описанные здесь данные показывают, что генетическое замещение некоторого количества цитокинов у MISTRG создает микроокружение, при котором человеческий гематопоэз может почти полностью заменить мышиный гематопоэз в костном мозге, и избавляет от необходимости облучения, вызывающего патологию.
Затем была оценена способность MISTRG мышей поддерживать человеческий миелопоэз. Человеческие миелоидные клетки (hCD33+) присутствовали в значительно более высоких соотношениях в крови и костном мозге MISTRG по сравнению с RG и NSG (Фигура 2А и Фигуры 7А-7С). Увеличенная доля миелоидных клеток в MISTRG дает в результате состав крови, который напоминает физиологический состав человеческой крови, богатой миелоидными клетками, и радикально отличающийся от состава мышиной крови, богатой лимфоидными клетками (Mestas и Hughes, 2004, Journal of Immunology 172, 2731; Rongvaux et al., 2013, Annual review of immunology 31, 6354) (Фигура 2B и Фигура 7D). Тогда как, в ВМ присутствовали и моноциты (CD33hiSSCloCD66-) и гранулоциты (CD33+SSChiCD66+) (Фигура 7Е), популяции человеческих миелоидных клеток в периферической крови главным образом состояли из моноцитов (Фигура 7F), что указывает на то, что конечная дифференцировка и выход из ВМ или выживание на периферии человеческих гранулоцитов по-прежнему является недостаточным в этом мышином окружении. Важно отметить, что человеческие миелоидные клетки присутствовали в большом количестве в нелимфоидных тканях, таких как легкое, печень и толстый кишечник MISTRG, что показано с помощью иммуногистохимических методов (hCD68+ клетки; (Фигура 2С) или с помощью проточной цитометрии (hCD33+; (Фигуры 7G и 7Н), и в значительной степени превышали количество человеческих миелоидных клеток, обнаруженных у NSG мышей (в ~10 раз).
У людей были фенотипически и функционально описаны три подгруппы моноцитов, исходя из экспрессии CD14 и CD16 маркеров (Auffray et al., 2009, Annual review of immunology 27, 669; Cros et al., 2010, Immunity 33, 375). Все три субпопуляции человеческих моноцитов (CD14+CD16-, CD14+CD16+ и CD14dimCD16+) присутствовали в лимфоидных и нелимфоидных тканях, таких как легкое и печень, MISTRG (Фигуры 2D и 2Е и Фигуры 8А и 8В). В противоположность этому, у NSG, в дополнение к более низкой частоте миелоидных клеток, только CD14+CD16- и в какой-то мере CD14+CD16+ моноциты можно было регулярно обнаружить, в то время как CD14dimCD16+ клетки были представлены только минимально. Расширенный иммунофенотип (CD33, CD11b, CD115, CD62L и CX3CR1) субпопуляций моноцитов, обнаруженных у MISTRG, тщательно сравнили с эквивалентными подгруппами в человеческой периферической крови (Фигура 9). Человеческие CD14+CD16- и CD14+CD16+ моноциты, выделенные из ВМ MITRG, продуцировали высокие уровни воспалительных цитокинов в ответ на TLR4 и TLR7/8 лиганды (LPS и R848, соответственно) (Фигуры 2F и sG). В исследованиях in vitro, проведенных на лейкоцитах MITRG, и CD14+CD16- и CD14+CD16+ клетки обладали высокой способностью к фагоцитозу GFP-экспрессирующих Е. coli, тогда как CD14dimCD16+ моноциты имели ограниченную фагоцитарную активность (Фигура 2Н), опять отражая физиологические свойства соответствующих субпопуляций в человеческой крови (Cros et al., 2010, Immunity 33, 375). При заражении in vivo LPS или инфицировании бактериальными и вирусными человеческими патогенами Listeria monocytogenes и гриппом А, соответственно, MISTRG мыши отвечали активной выработкой человеческих воспалительных цитокинов (TNFα, IL-6 и IFNγ, соответственно), тогда как NSG мыши показали значительно более низкие ответы, ниже примерно на один log (Фигуры 2I-2K). Эти результаты показывают, что подгруппы человеческих моноцитов, которые развиваются у MISTRG, являются функциональными in vitro и in vivo. Однако отрицательной стороной наличия функциональных человеческих фагоцитов у мыши является нарушение фагоцитарной толерантности человек-мышь, к которой мышиные RBCs являются особенно чувствительными (Фигура 10А и 10В). Это разрушение мышиных RBCs приводило к анемии (Фигуры 10С to 10I) и ограничивало продолжительность жизни мышей с пересаженными клетками до 10-12 недель (MISTRG) или 12-16 недель (MITRG).
Миелоидные клетки могут поддерживать развитие и дифференцировку других иммунных клеток посредством выработки цитокинов. Было оценено, был ли миелоидный компартмент MISTRG мышей источником человеческих цитокинов, таких как IL-15. В соответствии с этим, было обнаружено, что экспрессия мРНК человеческих IL-15 и IL-15Rα была повышена более чем в 10 раз у MISTRG по сравнению с NSG (Фигура 3А и Фигура 11А). С целью более точного установления клеточного источника человеческого IL-15/IL-15Rα у MISTRG было измерено относительное количество транскриптов человеческих IL-15 и IL-15Rα в очищенных человеческих клеточных популяциях. Экспрессия мРНК человеческого IL-15Rα была выше в человеческих миелоидных клетках (hCD33+), чем в немиелоидных клетках (hCD33-) (Фигура 3В). В частности, CD14+CD16+ моноциты показали обогащение обоих транскриптов EL-15 и IL-15Rα (Фигура 3В). Экспрессия человеческого белка IL-15Rα на поверхности человеческих миелоидных клеток от MISTRG была подтверждена с помощью проточной цитометрии (Фигура 11В).
На основе этих открытий было оценено, поддерживают ли MISTRG мыши развитие человеческих иммунных клеток, зависящих от IL-15 транс-презентирования, таких как NK-клетки (Ма et al., 2006, Annual review of immunology 24, 657; Soderquest et al., 2011, Blood 117, 4511). Эффективное развитие человеческих NK-клеток на современных мышиных HHLS моделях требует экзогенной фармакологической доставки человеческого IL-15/IL-15Rα (Huntington et al., 2009, Journal of experimental medicine 206, 25; Chen et al., 2009, Proceedings of the National Academy of Sciences 106, 21783; Pek et al., 2011, Immunobiology 216, 218) 23-25), поскольку мышиного IL-15 недостаточно для поддержания человеческих NK-клеток in vivo. Как сообщалось ранее (Huntington et al., 2009, Journal of experimental medicine 206, 25; Chen et al., 2009, Proceedings of the National Academy of Sciences 106, 21783; Pek et al., 2011, Immunobiology 216, 218), очень немного человеческих NK-клеток (hNKp46+hCD3-) наблюдалось у NSG с пересаженными клетками (Фигуры 3С и 3D и Фигуры 12А и 12В). В противоположность этому, человеческие NK-клетки можно было легко обнаружить во многих тканях MISTRG с пересаженными клетками, при этом их количество было увеличено примерно в 10 раз по сравнению с NSG (Фигура 3С и 3D и Фигура 12А и 12В). За исключением костного мозга, MITRG имели меньше человеческих NK-клеток, чем MISTRG, что вероятнее всего было следствием сообщенной ранее потребности в человеческом SIRPα для выживаемости человеческих NK клеток на периферии (Legrand et al., 2011, Proceedings of the National Academy of Sciences 108, 13224). hNKp46+hCD3- клетки у MISTRG мышей представляли собой настоящие NK-клетки, так как они экспрессировали типичные маркеры поверхности NK-клеток CD94, CD161 и рецепторы подавления цитотоксичности (KIRs), точно имитируя человеческие контроли (Фигуры 12А и 12В). В дополнение к его действию на развитие IL-15 также способствует созреванию NK-клеток. Соответственно, было обнаружено, что поверхностная экспрессия маркера созревания CD16 и количества белка перфорина протеазосодержащей вакуоли были более высокими на NK-клетках из MISTRG по сравнению с NSG (Фигура 13С-13F).
Клеточный источник IL-15 транс-презентирования in vivo у людей в настоящее время неизвестен, тем не менее, человеческие миелоидные клетки могут поддержать пролиферацию человеческих NK-клеток in vitro (Huntington et al., 2009, Journal of experimental medicine 206, 25). Для проверки предположения о том, что транс-презентирование человеческого IL-15 человеческими моноцитами/макрофагами лежит в основе улучшенного развития человеческих NK-клеток у MISTRG, мыши были обработаны инкапсулированным в липосомы клодронатом с целью истощения фагоцитов (Фигура 14). Истощение фагоцитов также вызывало значительное уменьшение человеческих NK-клеток (Фигура 3Е), давая основание предполагать, что человеческие моноциты/макрофаги в самом деле являются решающим клеточным типом, который транс-презентирует IL-15 для поддержки гомеостаза человеческих NK-клеток in vivo.
NK-клетки участвуют во врожденной защите против патогенов, уничтожая клетки, которые утратили экспрессию МНС класса I (потеря своего) (Raulet, 2006, Seminars in immunology 18, 145), и вырабатывая ключевой цитокин IFNγ (Vivier et al., 2008, Nature immunology 9, 503). В соответствии с более высокой экспрессией перфорина (Фигуры 13Е и 13F), существенно увеличенная цитотоксическая активность NK-клеток против человеческих клеток, утративших МНС класса I, наблюдалась in vivo у MISTRG по сравнению с NSG (Фигура 3F). NK-клетки являются ранним источником IFNγ после инфекции Listeria. Соответственно, было обнаружено, что экспрессия мРНК человеческого IFNγ в печени более чем в 10 раз выше MISTRG, чем у NSG через два дня после инфекции (Фигура 3G). При степени разделения до одной клетки (одноклеточном разрешении), NK-клетки из MISTRG, инфицированных Listeria, показали выработку человеческого IFNγ без ex vivo повторной стимуляции (Фигура 3Н), с частотой значительно более высокой, чем у NSG (Фигура 3I). NK-клетки у MISTRG также обладали литической активностью (дегрануляция) после инфекции Listeria, как показано путем экспозиции плазматической мембраны CD107a (Фигура 3Н). В целом, MISTRG посредством эффективной выработки человеческих миелоидных клеток поддерживают развитие, дифференцировку и функцию человеческих NK-клеток, тем самым преодолевая основное ограничение современных мышиных HHLS моделей.
Далее, была оценена роль человеческих миелоидных клеток в контексте опухолевого микроокружения. Соответственно, в качестве опухолевой модели использовали линию клеток меланомы человека Ме290 (Valmori et al., 1998, Journal of immunology 160, 1750). Клинические наблюдения показывают, что миелоидные клетки проникают в некоторые солидные опухоли, и высокие плотности инфильтрирующих макрофагов коррелируют с плохим прогнозом для пациентов в большинстве типов рака (Qian и Pollard, 2010, Cell 141, 39; Coussens et al., Science 339, 286; Egeblad et al., 2010, Developmental cell 18, 884; Nelson и Bissell, 2006, Annual review of cell и developmental biology 22, 287; Bingle et al., 2002, T Journal of pathology 196, 254). Соответственно, более высокая инфильтрация человеческих миелоидных клеток была обнаружена в опухолях у MISTRG, чем у NSG, как видно по экспрессии мРНК человеческих PTPRC и ITGAM (кодирующих соответственно CD45 и CD11b) (Фигура 4А). Напоминая человеческие опухоли у пациентов, клетки, экспрессирующие маркеры макрофагов CD163 и CD14, имелись в изобилии в опухолях у MISTRG, однако были почти необнаружимыми в некоторых опухолях у NSG (Фигуры 4В и 4С и Фигура 15). Большинство CD163+ клеток также экспрессировали низкие уровни HLA-DR и высокие уровни CD206 (Фигура 4 В и 4D), иммунофенотип, обычно связанный с "М2-подобными" макрофагами (Нао et al., 2012, Clinical & developmental immunology 2012, 948098; Tang, 2013, Cancer Lett 332, 3).
Подтип M2 макрофагов способствует прогрессированию опухоли при посредстве целого ряда эффекторных механизмов, включая сигналы пролиферации для раковых клеток, антиапоптотические сигналы, проангиогенную активность, предоставление возможности для раковой клетки выходить из первичных опухолей и образование метастазов (Qian и Pollard, 2010, Cell 141, 39; Coussens et al., Science 339, 286; Egeblad et al., 2010, Developmental cell 18, 884). Было установлено, что инфильтрация макрофагов в опухоли может способствовать росту опухоли у MISTRG. Было отмечено, что размер опухолей у MISTRG с пересаженными CD34+, которые сильно инфильтрируются человеческими CD163+ HLA-DRlow CD206+ макрофагами, был значительно больше, чем опухоли у NSG, которые не инфильтрируются человеческими макрофагами и имеют такой же небольшой размер, как наблюдаемый у NSG или MISTRG мышей без пересадки (Фигуры 4Е и 4F). Одним из механизмов, посредством которого макрофаги поддерживают рост опухоли, является выработка цитокинов или ферментов, способствующих васкуляризации и подавлению иммунитета. VEGF является важной многофункциональной молекулой, поддерживающей опухоль (Kandalaft et al., Current topics in microbiology и immunology 344, 129; Motz и Coukos, Immunity 39, 61), и для проверки того, вовлечен ли этот фактор в опухолевый рост у MISTRG, мышей обрабатывали ингибитором человеческого-VEGF авастином™. Эта обработка полностью изменяла фенотип развития опухоли (Фигура 4F), демонстрируя, что миелоидные клетки у MISTRG поддерживают рост меланомы посредством VEGF-зависимого механизма. В общем, эти результаты показывают, что MISTRG мыши повторяют роль человеческих макрофагов в развитии опухоли и восполняют острую потребность в моделях, обеспечивающих возможность исследования взаимодействия между опухолями человека и человеческими макрофагами in vivo, в частности, в начале развития опухоли.
Описанные здесь данные демонстрируют, что обеспечение многих человеческих цитокинов у MISTRG мышей обуславливало синергические действия (Фигура 16) на человеческий гематопоэз и прямую или опосредованную поддержку функции человеческих иммунных клеток. Модель MISTRG HHLS мышей предоставляет исключительную возможность для исследования человеческих врожденных иммунных ответов in vivo.
Далее описываются материалы и методы.
Линии мышей
Было сообщено о получении мышей с нокин заменой генов, кодирующих ТРО, IL-3/GM-CSF и M-CSF, или с ВАС-трансгенной экспрессией человеческого SIRPα на генетической основе RAG2-/-γc-/- Balb/c × 129 (Rathinam et al., 2011, Blood 118, 3119; Willinger et al., 2011, Proceedings of the National Academy of Sciences 108, 2390; Rongvaux et al., 2011, Proceedings of the National Academy of Sciences 108, 2378; Strowig et al., 2011, Proceedings of the National Academy of Sciences 108, 13218). Эти линии были скрещены, чтобы получить MITRG (M-CSFh/hIL-3/GM-CSFh/hTPOh/hRAG2-/-γc-/-) и MISTRG (М-CSFh/hIL-3/GM-CSFh/hhSIRPAtgTPOh/hRAG2-/-γc-/-) мышей. Такие мыши являются жизнеспособными, здоровыми и способными к размножению. Мышей содержали в свободных от специфической патогенной микрофлоры условиях с постоянным добавлением энрофлоксацина в питьевую воду (Baytril, 0.27 мг/мл). NOD Scid γc-/- (NSG) мыши были получены из лаборатории Jackson.
Получение человеческих HSPC и пересадка мышам-реципиентам
Мышам-реципиентам были пересажены человеческие гематопоэтические стволовые и прогениторные клетки, как описано (Rathinam et al., 2011, Blood 118, 3119; Willinger et al., 2011, Proceedings of the National Academy of Sciences 108, 2390; Rongvaux et al., 2011, Proceedings of the National Academy of Sciences 108, 2378; Traggiai et al., 2004, Science 304, 104; Strowig et al., 2011, Proceedings of the National Academy of Sciences 108, 13218). Образцы эмбриональной печени разрезали на небольшие фрагменты, обрабатывали коллагеназой D (Roche, 100 нг/мл) в течение 45 минут при 37°C и готовили клеточную суспензию. Человеческие CD34+ клетки очищали центрифугированием в градиенте плотности (Lymphocyte Separation Medium, MP Biomedicals), а затем проводили положительную иммуномагнитную селекцию с помощью микрогранул анти-человек CD34 (Miltenyi Biotec). Клетки замораживали в FBS, содержащем 10% DMSO, и хранили в жидком азоте.
Для исследования приживления новорожденных детенышей (в течение 2 дней жизни) облучали сублетальной дозой (рентгеновское облучение; RG, 2×180 cGy (сантигрэй) с интервалом 4 час; NSG, 1×100 cGy; MISTRG, 1×150 cGy), затем в печень вводили 100,000 FL-CD34+ клеток в 20 мкл PBS с помощью иглы 22-колибра (Hamilton Company). В определенных экспериментах (Фигуры 1D и 1Е), 200,000-300,000 клетки вводили необлученным MISTRG новорожденным эксципиентам. Кровь у мышей отбирали через 7-9 недель и определяли процент человеческих CD45+ клеток с помощью проточной цитометрии. Мыши, у которых человеческие CD45+ клетки, представляли, по меньшей мере, 5% (RG) или 10% (NSG, MITRG и MISTRG) от всех (мышиных и человеческих совместно) CD45+ популяций, были отобраны для проведения дальнейших экспериментов. Мышей забивали или использовали в экспериментах через 9-12 недель после трансплантации.
Все эксперименты были проведены с согласия комитета Йельского университета Human Investigation Committee и в соответствии с протоколами Йельского комитета по содержанию и использованию лабораторных животных.
Иммунофенотипический анализ человеческих клеточных популяций
Для получения лейкоцитов, гепаринизированную кровь дважды обработали ACK лизирующим буфером для устранения RBCs. Одноклеточную суспензию селезенки и костного мозга (выделенного из бедренной кости и большой берцовой кости) обработали лизирующим буфером ACK. Лейкоциты печени и легкого были выделены путем механической диссоциации и обработки тканей 100 Ед/мл коллагеназой IV и 0.02 мг/мл ДНКазой I (Sigma) в течение 1 часа при 37°C, а затем путем центрифугирования в градиенте плотности.
Для проведения FACS анализов использовали антитела к следующим антигенам.
Мышиные антигены: CD45 (клон 30-F11), CD71 (RI7217), Ter119.
Человеческие антигены: CD1c (BDCA1, клон L161), CD3 (UCHT1), CD11b (ICRF44), CD11c (3.9), CD14 (М5Е2), CD16 (3G8), CD19 (HIB19), CD33 (WM53), CD45 (HI30), CD62L (DREG-56), CD66 (ASL-32), CD94 (DX22), CD107a (Н4А3), CD115 (9-4D2-1Е4), CD123 (6Н6), CD141 (BDCA3, М80), CD161 (HP-3G10), CD235a (HI264), CD303 (BDCA2, 201А), NKp46 (9Е2), IL-15Rα (JM7A4), CX3CR1 (2А9-1), HLA-A,B,C (W6/32), HLA-DR (L243), IFNγ (B27) KIR2DL1/S1 (HP-MA4), KIR2DL2/L3 (DX27), KIR3DL1 (DX9), перфорин (dG9).
Смесь человеческих линий дифференцировки: CD3, CD15, CD19, CD56, NKp46
Все антитела были получены от Biolegend, BD Biosciences или Miltenyi Biotec. Результаты были получены при использовании FACSDiva на проточном питометре LSRII (BD Biosciences) и проанализированы с помощью программного обеспечения FlowJo.
Для проведения гистологических исследований ткани селезенки, легкого, печени и толстого кишечника фиксировали в течение ночи в IHC цинковом фиксаже (BD Biosciences) или 4% параформальдегиде и заливали парафином. Срезы окрашивали гематоксилином и эозином или анти-человек CD68 антителами (клон PGM1), а затем HRP-конъюгированными вторичными антителами и выявляли субстратом пероксидазы 3,3'-диамонобензидином.
Изучение фагоцитоза in vitro
Е. Coli, экспрессирующие GFP, выращивали в LB среде в течение ночи при 37°C до OD600 1.5-1.8, в этот момент времени бактерии разбавляли и выращивали в течение 1-2 часов до значения OD600 приблизительно 1.0. Затем Е. Coli три раза промывали PBS и инкубировали с лейкоцитами от мышей MITRG в течение 4 часов при 37°C в объеме 200 мкл примерно с 2×108 Е. coli на 1×107 лейкоцитов. После инкубации клетки промывали PBS и анализировали с помощью проточной цитометрии.
TLR стимулирование in vitro и инфицирование in vivo
Подгруппы человеческих моноцитов выделяли из ВМ мышей. Коротко, ВМ клетки были выделены из задней конечности и позвоночника шести мышей и объединены. Человеческие CD33+ клетки собирали с помощью магнитного выделения (набор EasySep CD33 selection, StemCell Technologies). Подгруппы CD14+CD16- и CD14+CD16+ были очищены с помощью клеточного сортера FACSAria (BD Biosciences). 100,000 клеток в 200 мкл среды культивировали в течение ночи в присутствии TLR4 лиганда LPS (Е. Coli 0111:В4, Sigma-Aldrich, 100 нг/мл) или TLR7/8 лиганда R848 (Invivogen, 10 мкг/мл).
Для стимулирования in vivo внутрибрюшинно инъецировали 35 мкг LPS (Е. Coli 0111:В4, Sigma-Aldrich) в 100 мкл PBS, а сыворотку собирали через 90 минут.
Мышей инфицировали листерией моноцитогенной (Listeria monocytogenes, штамм 10403S) в количестве 3×103 колониеобразующих единиц (КОЕ) с помощью внутривенной инъекции. Через сорок восемь часов после инфицирования собирали сыворотку и ткани для проведения анализа ELISA и количественной ПЦР, соответственно. Лимфоциты печени от инфицированных и неинфицированных мышей инкубировали при 37°C/5% СО2 в течение 4 часов в среде, содержащей монензин (GolgiStop, BD Biosciences) и античеловек CD107a антитела. Затем клетки окрашивали на поверхностные антигены, пермеабилизацию проводили с использованием набора Cytofix/Cytoperm (BD Biosciences) и окрашивали на внутриклеточный человеческий IFNγ.
Мышей заражали интраназально 2×104 БОЕ вирусом гриппа A/PR8 (H1N1), легкие собирали на 3 день после заражения для проведения qPCR анализов.
Концентрации цитокинов (человеческих TNFα, IL-6 и IL-1β) в сыворотке мышей и в культуральных супернатантах измеряли с помощью наборов ELISA MAX Standard kits (Biolegend), следуя инструкциям производителя.
RBC анализ
Подсчет RBC проводили на приборе Hemavet 950 (Drew Scientific). Мазки крови окрашивали по Райту-Гимзе. Для экспериментов по переносу RBC получали кровь от RG мышей, меченых CFSE (20 мкМ, 15 минут при 37°C), три раза промывали PBS, и 200 мкл меченых RBC вводили с помощью ретро-орбитальной внутривенной инъекции. Через 5 минут брали кровь у мышей для определения первоначальной частоты встречаемости (День 0, 100%) CFSE-положительных клеток среди Ter119+ клеток с помощью проточной цитометрии. Затем брали кровь в указанные моменты времени и подсчитывали содержание CFSE-меченых Ter119+ клеток в виде процента от значений на День 0.
Истощение фагоцитов in vivo
Обеднение фагоцитов осуществляли с помощью внутривенной ретро-орбитальной инъекции 100 мкл липосом, нагруженных клодронатом (Van Rooijen и Sanders, 1994, Journal of immunological methods 174, 83). Липосомы с клодронатом вводили три раза в день, а человеческие NK-клетки в печени мышей исследовали через 24 часа после последней инъекции. Для исследования фагоцитоза RBC липосомы с клодронатом вводили 3 дня и 1 день до переноса CFSE-меченых RBC.
Количественный ОТ-ПЦР
Общую РНК выделяли из тканей или очищенных клеток с помощью реактива TRIzol (Invitrogen) в соответствии с инструкциями производителя и использовали для синтеза кДНК с помощью Superscript First-Strand Synthesis System (Invitrogen). Количественный анализ ОТ-ПЦР проводили на системе 7500 Fast Real-Time PCR, наборы праймеров и зондов были куплены у компании ABI. Значения экспрессии вычисляли, используя метод сравнительного порогового цикла, и нормировали относительно мышиного Hprt или человеческого HPRT, как указано.
Исследование цитотоксичности NK-клеток in vivo
Цитотоксичность человеческих NK клеток in vivo определяли согласно протоколу, сообщенному ранее (Strowig et al., 2010, Blood 116, 4158). LCL721.221 (HLA класс I отрицательные) и LCL721.45 (класс I положительные) клетки смешивали в соотношении 1:1, метили CellTrace Violet (Invitrogen) и вводили внутривенно (1×107 клеток/мышь) NSG или MISTRG мышам с пересадкой. Через 12 часов мышей забивали, готовили одноклеточную суспензию из селезенок и анализировали с помощью проточной цитометрии. Были измерены соотношения положительных и отрицательных HLA класса I среди окрашенных в фиолетовый цвет клеток, а специфический лизис вычисляли как (МНС класс I положительные - МНС класс I отрицательные) × 100 / МНС класс I положительные.
Образование опухолей
Клетки меланомы человека Ме290 (Valmori et al., 1998, Journal of immunology 160, 1750) выращивали до конфлюентности (заселенности) ~90%, а затем клетки (~7 миллион клеток на мышь) подкожно вводили в правый бок мыши под анестезией. В некоторых экспериментах мышей обрабатывали через день, начиная со дня перевивки опухоли, античеловек VEGF антителами Avastin™ (Roche; 100 мкг, внутривенно). Размер опухолей измеряли через 11 дней, а объем вычисляли, используя следующую формулу: Объем = 0.5 * длина 2 * ширина.
Ткани пациентов и мышей были заморожены в Optimum Cutting Temperature (OCT, Sakura Finetek). Криосрезы (7 мкм) были последовательно обработаны Triton-100Х 0.1% в течение 15 минут, гиалуронидазой 0.03% в течение 15 минут, Background Buster (Innovex bioscience) в течение 15 минут, Fc Receptor Block (Innovex bioscience) в течение 15 минут и Background Buster в течение дополнительных 15 минут. Затем срезы окрашивали первичными антителами, разведенными в PBS с добавлением 5% BSA и 0.01% сапонина в течение 1 часа при комнатной температуре, промывали и окрашивали вторичными антителами при комнатной температуре в течение 40 минут. Ядра окрашивали 4',6-диамидино-2-фенилиндолом (1 мкг/мл) в течение 2 минут.
Первичные антитела: человеческие CD14 (1:200, UCHM1, AbD Serotec); человеческие CD163 (1:200, EDHu-1, AbD Serotec); человеческие CD206 (1:100, 15-2, AbD Serotec); человеческие HLA-DR (1:100, LN3, Biolegend). Для совместного окрашивания CD163/CD206, и те и другие антитела метили Alexa Fluor 488 или 568 Antibody Labeling Kit (Molecular Probes) до окрашивания ткани.
Вторичные антитела: козьи анти-крыса Alexa Fluor 568; козьи анти-мышь Alexa Fluor 488; козьи анти-мышь Alexa Fluor 588 или козьи анти-мышь Alexa Fluor 647 (1:700, Molecular Probes).
Визуализацию иммунофлуоресценции осуществляли с помощью инвертированного микроскопа Eclipse Ti (Nikon Instruments Inc.), действующего с помощью программного обеспечения NIS-Element Ar (Nikon Instruments Inc).
Для количественного определения интенсивности инфильтрации CD163+ клеток были отобраны опухоли от 3 разных пациентов с меланомой, 3 NSG и 3 MISTRG. 3 криосреза каждой опухоли были окрашены в отношении человеческого CD163. Из каждого окрашенного среза было получено 3 репрезентативных изображения, составляя в сумме 27 репрезентативных изображений из каждой группы (пациенты, MISTRG и NSG). Для каждого изображения были подсчитаны CD163+ клетки с использованием программного обеспечения NIS-Element Ar (Niko Instruments Inc.). Каждое изображение было проанализировано с использованием "split channels + overlay" изображение и при увеличении одновременно на каждом отдельном канале и на overlay.
Статистический анализ
Статистический анализ проводили с помощью программного обеспечения GraphPad Prism 5, используя однофакторный дисперсионный анализ ANOVA, а затем апостериорный тест Тьюки, двусторонний непарный критерий Стьюдента или повторное измерение ANOVA.
Пример 2
Миелоидные новообразования человека могут быть пересажены MISTRG
Миелоидная лейкемия является формой рака, затрагивающего клетки миелоидного ростка. Миелоидные лейкемии делятся на разные типы, включая острый миелоидный лейкоз (AML), миелопролиферативное заболевание (MPD), хронический миеломоноцитарный лейкоз (CMML) и миелодиспластический синдром (MDS). Риск развития миелоидных лейкемий увеличивается с возрастом, а частота возникновения этих заболеваний, вероятно, увеличивается со старением популяции. Несмотря на то что терапия и поддерживающее лечение являются доступными в клинике, необходимо лучшее понимание этой группы болезней и новые виды лечения.
Один из способов, используемых для исследования лейкемий пациентов, основывается на ксенотрансплантации образцов пациентов иммунодефицитным мышам. Однако доступные в настоящее время мыши-реципиенты не являются оптимальными для этой цели: только часть AML образцов может быть пересажена успешно; и о полноценном приживлении MPD, CMML или MDS (включая RCUD, RAEB I и RAEB II) до сих пор не сообщалось. Таким образом, необходимы оптимизированные линииреципиентных мышей для лучшего приживления миелоидной лейкемии человека.
В данном документе показано, что MISTRG лучше поддерживают приживление человеческих гематопоэтических клеток, приводя почти к полной замене мышиного гематопоэза человеческим гематопоэзом в костном мозге. В данном документе также показано, что образцы, полученные от пациентов с AML, CMML и MDS, могут быть пересажены MISTRG (Фигура 17).
Следовательно, описанные в данном документе, генетически модифицированные, не принадлежащие к человеческому роду животные представляют новую in vivo животную модель миелоидной лейкемии человека, которая будет полезна для (i) исследования клеточного и молекулярного патогенеза данной болезни; (ii) для установления биомаркеров с предказывающим или прогностическим значением; (iii) для установления новых мишеней для терапии и (iv) для проверки методов лечения в доклинических исследованиях, касающихся отдельного пациента.
Раскрытия всех и каждого патента, патентной заявки и публикации, цитированных здесь, полностью включаются в описание путем отсылки. Несмотря на то что это изобретение раскрывается со ссылкой на конкретные варианты осуществления, очевидно, что другие варианты осуществления и изменения данного изобретения могут быть разработаны другими специалистами в данной области без выхода за пределы истинного объема и сущности изобретения. Прилагаемые пункты формулы изобретения предназначаются для включения всех таких вариантов осуществления и эквивалентных изменений.
Claims (19)
1. Генетически модифицированный иммунодефицитный грызун, содержащий в своем геноме нуклеиновую кислоту, кодирующую человеческий M-CSF, нуклеиновую кислоту, кодирующую человеческий IL-3, нуклеиновую кислоту, кодирующую человеческий GM-CSF, нуклеиновую кислоту, кодирующую человеческий SIRPA, и нуклеиновую кислоту, кодирующую человеческий ТРО, при этом каждая из нуклеиновых кислот, кодирующих человеческий M-CSF, человеческий IL-3, человеческий GM-CSF, человеческий SIRPA и человеческий ТРО, является функционально связанной с промотором, и при этом грызун экспрессирует полипептид M-CSF человека, полипептид IL-3 человека, полипептид GM-CSF человека, полипептид SIRPA человека и полипептид ТРО человека.
2. Генетически модифицированный иммунодефицитный грызун по п. 1, отличающийся тем, что у грызуна имеется нокаут активирующего рекомбинацию гена 2 (Rag2).
3. Генетически модифицированный иммунодефицитный грызун по п. 1, отличающийся тем, что у грызуна имеется нокаут гена гамма цепи IL2 рецептора (IL2rg).
4. Генетически модифицированный иммунодефицитный грызун по п. 1, отличающийся тем, что у грызуна имеется нокаут активирующего рекомбинацию гена 2 (Rag2) и нокаут гена гамма цепи IL2 рецептора (IL2rg).
5. Генетически модифицированный иммунодефицитный грызун по любому из предшествующих пунктов, отличающийся тем, что грызун является мышью.
6. Генетически модифицированный иммунодефицитный грызун по любому из предшествующих пунктов, дополнительно содержащий человеческие гематопоэтические клетки.
7. Генетически модифицированный иммунодефицитный грызун по любому из предшествующих пунктов, дополнительно содержащий клетку рака человека.
8. Генетически модифицированный иммунодефицитный грызун по п. 7, согласно которому клетка рака человека является лейкемической клеткой или клеткой меланомы.
9. Способ приживления гематопоэтической стволовой и прогениторной клетки (HSPC), включающий стадию введения по меньшей мере одной HSPC генетически модифицированному иммунодефицитному грызуну по п. 1.
10. Способ по п. 9, отличающийся тем, что генетически модифицированный иммунодефицитный грызун имеет нокаут активирующего рекомбинацию гена 2 (Rag2).
11. Способ по п. 9, отличающийся тем, что генетически модифицированный иммунодефицитный грызун имеет нокаут гена гамма цепи IL2 рецептора (IL2rg).
12. Способ по п. 9, отличающийся тем, что генетически модифицированный иммунодефицитный грызун имеет нокаут активирующего рекомбинацию гена 2 (Rag2) и нокаут гена гамма цепи IL2 рецептора (IL2rg).
13. Способ по любому из предшествующих пунктов, согласно которому генетически модифицированный иммунодефицитный грызун является мышью.
14. Способ по любому из предшествующих пунктов, согласно которому генетически модифицированный иммунодефицитный грызун содержит раковые клетки человека.
15. Способ по п. 14, согласно которому клетка рака человека является лейкемической клеткой или клеткой меланомы.
16. Генетически модифицированный иммунодефицитный грызун по п. 1, в котором человеческий полипептид SIRPA является биологически активным фрагментом человеческого полномерного полипептида SIRPA.
17. Способ по п. 9, где человеческий полипептид SIRPA является биологически активным фрагментом человеческого полномерного полипептида SIRPA.
18. Генетически модифицированный иммунодефицитный грызун по п. 1, где человеческий полипептид SIRPA является гибридным белком.
19. Способ по п. 9, где человеческий полипептид SIRPA является гибридным белком.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261698002P | 2012-09-07 | 2012-09-07 | |
US61/698,002 | 2012-09-07 | ||
US201361775171P | 2013-03-08 | 2013-03-08 | |
US61/775,171 | 2013-03-08 | ||
PCT/US2013/058448 WO2014039782A2 (en) | 2012-09-07 | 2013-09-06 | Genetically modified non-human animals and methods of use thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017145913A Division RU2768282C2 (ru) | 2012-09-07 | 2013-09-06 | Генетически модифицированные не принадлежащие к человеческому роду животные и способ их использования |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015112607A RU2015112607A (ru) | 2016-10-27 |
RU2642319C2 true RU2642319C2 (ru) | 2018-01-24 |
Family
ID=50237767
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017145913A RU2768282C2 (ru) | 2012-09-07 | 2013-09-06 | Генетически модифицированные не принадлежащие к человеческому роду животные и способ их использования |
RU2015112607A RU2642319C2 (ru) | 2012-09-07 | 2013-09-06 | Генетически модифицированные, не принадлежащие к человеческому роду животные и способ их использования |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017145913A RU2768282C2 (ru) | 2012-09-07 | 2013-09-06 | Генетически модифицированные не принадлежащие к человеческому роду животные и способ их использования |
Country Status (19)
Country | Link |
---|---|
US (6) | US9820476B2 (ru) |
EP (2) | EP2892330B1 (ru) |
JP (5) | JP6283031B2 (ru) |
KR (7) | KR20240045263A (ru) |
CN (3) | CN108782459B (ru) |
AU (3) | AU2013312359B8 (ru) |
CA (1) | CA2881468C (ru) |
DK (1) | DK2892330T3 (ru) |
ES (1) | ES2938342T3 (ru) |
FI (1) | FI2892330T3 (ru) |
HK (1) | HK1211176A1 (ru) |
IL (4) | IL282472B2 (ru) |
IN (1) | IN2015DN02032A (ru) |
MX (2) | MX364714B (ru) |
NZ (3) | NZ704957A (ru) |
PT (1) | PT2892330T (ru) |
RU (2) | RU2768282C2 (ru) |
SG (2) | SG10201701759VA (ru) |
WO (1) | WO2014039782A2 (ru) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PT3056082T (pt) | 2009-10-06 | 2018-12-12 | Univ Yale | Ratinhos modificados geneticamente e enxerto |
MX338971B (es) * | 2011-02-15 | 2016-05-06 | Inst Res Biomedicine Irb | Ratones de m-csf humanizada. |
CN108782459B (zh) * | 2012-09-07 | 2021-11-05 | 再生元制药公司 | 经遗传修饰的非人动物及其使用方法 |
ES2884598T3 (es) * | 2012-11-05 | 2021-12-10 | Regeneron Pharma | Animales no humanos modificados genéticamente y métodos de uso de los mismos |
TR201901782T4 (tr) | 2013-09-23 | 2019-03-21 | Regeneron Pharma | İnsanlaştirilmiş bi̇r si̇nyal düzenleyi̇ci̇ protei̇n geni̇ne sahi̇p olan i̇nsan dişi hayvanlar. |
CN109090037B (zh) | 2013-10-15 | 2021-05-28 | 瑞泽恩制药公司 | 人源化的il-15动物 |
CN106659146B (zh) | 2014-05-05 | 2020-06-23 | 再生元制药公司 | 人源化c5和c3动物 |
NO2785538T3 (ru) | 2014-05-07 | 2018-08-04 | ||
JP6672171B2 (ja) | 2014-05-19 | 2020-03-25 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | ヒトepoを発現する遺伝子改変された非ヒト動物 |
DK3850946T5 (da) | 2014-12-05 | 2024-08-19 | Regeneron Pharma | Ikke-humane dyr med en humaniseret klynge af differentiering af 47-gen |
LT3230320T (lt) | 2014-12-09 | 2021-01-11 | Regeneron Pharmaceuticals, Inc. | Gyvūnai, išskyrus žmogų, turintys humanizuotą diferenciacijos klasterio 274 geną |
CN116059378A (zh) | 2014-12-10 | 2023-05-05 | 明尼苏达大学董事会 | 用于治疗疾病的遗传修饰的细胞、组织和器官 |
KR102658190B1 (ko) * | 2015-04-13 | 2024-04-17 | 리제너론 파마슈티칼스 인코포레이티드 | 인간화된 sirpa-il15 녹인 마우스 및 이의 이용 방법 |
RS61866B1 (sr) | 2015-11-20 | 2021-06-30 | Regeneron Pharma | Ne-humane životinje koje imaju humanizovani gen za aktivaciju limfocita 3 |
SG11201806176PA (en) | 2016-02-04 | 2018-08-30 | Regeneron Pharma | Non-human animals having an engineered angptl8 gene |
EP3895529A1 (en) | 2016-02-29 | 2021-10-20 | Regeneron Pharmaceuticals, Inc. | Rodents having a humanized tmprss gene |
CN106119284A (zh) * | 2016-06-27 | 2016-11-16 | 北京维通达生物技术有限公司 | 一种用于构建免疫缺陷动物模型的产品及其应用 |
CN110740641A (zh) * | 2016-11-30 | 2020-01-31 | 杰克逊实验室 | 具有改善的人先天免疫细胞发育的人源化小鼠模型 |
JP7129426B2 (ja) * | 2017-05-12 | 2022-09-01 | ザ ジャクソン ラボラトリー | Mhcクラスiおよびmhcクラスiiを欠損しているnsgマウス |
AU2019308205A1 (en) | 2018-07-16 | 2020-11-19 | Regeneron Pharmaceuticals, Inc. | Non-human animal models of DITRA disease and uses thereof |
US20210355501A1 (en) * | 2018-09-24 | 2021-11-18 | Albert Einstein College Of Medicine | Interleukin-8 for maintenance of human acute myeloid leukemia and myelodysplastic syndrome and uses thereof |
CN111118019B (zh) * | 2018-12-25 | 2021-03-16 | 百奥赛图江苏基因生物技术有限公司 | 人源化细胞因子il3基因改造非人动物的构建方法及应用 |
CN111073907A (zh) * | 2018-12-25 | 2020-04-28 | 百奥赛图江苏基因生物技术有限公司 | 人源化细胞因子csf1基因改造非人动物的构建方法及应用 |
US20220354098A1 (en) * | 2019-07-17 | 2022-11-10 | Yale University | Genetically Modified Non-Human Animals and Methods of Use Thereof |
WO2021083366A1 (en) * | 2019-11-01 | 2021-05-06 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animals with human or chimeric thpo |
US11339279B2 (en) * | 2020-04-01 | 2022-05-24 | Chevron Phillips Chemical Company Lp | Dual catalyst system for producing LLDPE and MDPE copolymers with long chain branching for film applications |
WO2022222958A1 (en) * | 2021-04-20 | 2022-10-27 | Biocytogen Pharmaceuticals (Beijing) Co., Ltd. | Genetically modified non-human animal with human or chimeric genes |
US20240102045A1 (en) | 2022-07-19 | 2024-03-28 | Regeneron Pharmaceuticals, Inc. | Vectors, genetically modified cells, and genetically modified non-human animals comprising the same |
US20240415103A1 (en) | 2023-06-16 | 2024-12-19 | Regeneron Pharmaceuticals, Inc. | Vectors, genetically modified cells, and genetically modified non-human animals comprising the same |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4870009A (en) | 1982-11-22 | 1989-09-26 | The Salk Institute For Biological Studies | Method of obtaining gene product through the generation of transgenic animals |
US4736866A (en) | 1984-06-22 | 1988-04-12 | President And Fellows Of Harvard College | Transgenic non-human mammals |
US5573930A (en) | 1985-02-05 | 1996-11-12 | Cetus Oncology Corporation | DNA encoding various forms of colony stimulating factor-1 |
HU215241B (hu) | 1986-10-24 | 1998-11-30 | Cetus Corp. | Eljárás telepstimuláló faktor-1 új formáinak előállítására, valamint az eljárásban alkalmazható expressziós kazetta, vektor és rekombináns gazdasejtek előállítására |
EP0322240B1 (en) | 1987-12-23 | 1995-03-01 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric immunocompromised mammals and their use |
JP2981486B2 (ja) | 1988-06-14 | 1999-11-22 | メディカル・バイオロジー・インスティチュート | 哺乳動物の免疫系研究方法 |
US5849288A (en) | 1990-01-15 | 1998-12-15 | Yeda Research And Development Co. Ltd. | Method for production of monoclonal antibodies in chimeric mice or rats having xenogeneic antibody-producing cells |
US5652373A (en) | 1990-01-15 | 1997-07-29 | Yeda Research And Development Co. Ltd. | Engraftment and development of xenogeneic cells in normal mammals having reconstituted hematopoetic deficient immune systems |
DK0438053T3 (da) | 1990-01-15 | 1999-11-22 | Yeda Res & Dev | Varig transplantation og udvikling af humane hæmopoietiske cellelinjer i normale pattedyr |
CA2063408A1 (en) | 1990-05-03 | 1991-11-04 | Susan Mayo | Human lymphoid tissue in an immunocompromised host |
CA2064075A1 (en) | 1990-05-25 | 1991-11-26 | Charles M. Baum | Human peripheral blood cells in an immunocompromised host |
US5633426A (en) | 1990-05-25 | 1997-05-27 | Systemix, Inc. | In vivo use of human bone marrow for investigation and production |
JPH06505186A (ja) | 1991-02-11 | 1994-06-16 | オマーヤ,アユブ ケー. | 脊髄液駆動式人工器官 |
US5222982A (en) | 1991-02-11 | 1993-06-29 | Ommaya Ayub K | Spinal fluid driven artificial organ |
EP0517199A1 (en) | 1991-06-04 | 1992-12-09 | Yeda Research And Development Company, Ltd. | Durable engraftment of human tissue and cells in normal mammals |
WO1993005796A1 (en) | 1991-09-19 | 1993-04-01 | The Scripps Research Institute | Method for producing human antibodies in a non-human animal, and animals therefor |
EP0539970B1 (en) | 1991-10-30 | 1999-05-26 | Idemitsu Kosan Company Limited | Methods for producing human lymphocytes and human monoclonal antibodies, and human monoclonal antibodies produced thereby |
US6353150B1 (en) | 1991-11-22 | 2002-03-05 | Hsc Research And Development Limited Partnership | Chimeric mammals with human hematopoietic cells |
WO1993018144A1 (en) | 1992-03-05 | 1993-09-16 | The Trustees Of Columbia University Of The City Of New York | Recombination activating gene deficient animal |
US5866757A (en) | 1992-06-02 | 1999-02-02 | Yeda Research And Development Co. Ltd. | Engraftment and development of xenogeneic cells in normal mammals having reconstituted hematopoetic deficient immune systems |
US6018096A (en) | 1993-05-03 | 2000-01-25 | Surrogen, Inc. | Animal model for engraftment, proliferation and differentiation of human hematopoietic stem cells |
US5663481A (en) | 1993-08-06 | 1997-09-02 | Mount Sinai Hospital Corporation | Animal model of the human immune system |
CA2195678A1 (en) | 1994-07-27 | 1996-02-08 | Joseph A. Borkowski | Bradykinin b2 receptor modified transgenic non-human animals |
US6455756B1 (en) | 1994-08-12 | 2002-09-24 | Novartis Ag | Long term xenogeneic myeloid and lymphoid cell production in chimeric immunocompromised mice |
US7273753B2 (en) | 1996-08-02 | 2007-09-25 | Center Of Blood Research | Purification and uses of dendritic cells and monocytes |
US6248721B1 (en) | 1997-04-09 | 2001-06-19 | Lung-Ji Chang | Method of using mouse model for evaluation of HIV vaccines |
AU752753B2 (en) | 1997-04-09 | 2002-09-26 | Lung-Ji Chang | Animal model for evaluation of vaccines |
AU7340000A (en) | 1999-08-31 | 2001-03-26 | Genencor International, Inc. | Transgenic mammal capable of facilitating production of donor-specific functional immunity |
US20030028911A1 (en) | 1999-08-31 | 2003-02-06 | Manley Huang | Transgenic mammal capable of facilitating production of donor-specific functional immunity |
WO2001042484A1 (en) | 1999-12-09 | 2001-06-14 | Human Genome Sciences, Inc. | Il-6 like polynucleotide |
US6864061B2 (en) | 2000-09-14 | 2005-03-08 | Genetrol Biotherapeutics, Inc. | Method for screening compounds for anti-inflammatory activity |
US6596541B2 (en) | 2000-10-31 | 2003-07-22 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
US6586251B2 (en) | 2000-10-31 | 2003-07-01 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
AU2002316640C1 (en) * | 2001-07-10 | 2009-01-29 | Johnson & Johnson Research Pty Limited | Methods for genetic modification of hematopoietic progenitor cells and uses of the modified cells |
AU2002363322A1 (en) | 2001-10-26 | 2003-05-19 | Large Scale Biology Corporation | Endothelial cell derived hemotopoietic growth factor |
EP1452093A4 (en) | 2001-11-15 | 2007-08-15 | Kirin Brewery | CHIMESE NON-MENTAL ANIMAL |
JPWO2004005496A1 (ja) | 2002-07-05 | 2005-11-04 | 麒麟麦酒株式会社 | 臍帯血、骨髄、末梢血等に含まれる新規な未分化幹細胞集団 |
CN101250553A (zh) | 2002-07-13 | 2008-08-27 | 上海医学遗传研究所 | 一种促人血小板生成素表达载体及其构建方法 |
US20040128703A1 (en) | 2002-09-09 | 2004-07-01 | Hiroaki Shizuya | Methods and compositions for the generation of humanized mice |
EP1418185A1 (en) | 2002-11-11 | 2004-05-12 | Aventis Pharma Deutschland GmbH | Use of EDG2 receptor in an animal model of heart failure |
JP2006517096A (ja) | 2002-12-16 | 2006-07-20 | ジェネンテック・インコーポレーテッド | ヒトcd20を発現するトランスジェニックマウス |
PT2767161T (pt) | 2004-10-19 | 2018-04-20 | Regeneron Pharma | Método para gerar um animal homozigótico para uma modificação genética |
US7759541B2 (en) | 2004-12-13 | 2010-07-20 | Iti Life Sciences | Transgenic animals for assessing drug metabolism and toxicity |
GB2434578A (en) | 2006-01-26 | 2007-08-01 | Univ Basel | Transgenic animals |
ES2618787T5 (es) | 2006-04-25 | 2022-10-21 | Univ California | Administración de factores de crecimiento para el tratamiento de trastornos del SNC |
EP1878342A1 (en) | 2006-07-13 | 2008-01-16 | Institut Pasteur | Immunodeficient mice transgenic for HLA class I and HLA class II molecules and their uses |
US20080081064A1 (en) | 2006-09-28 | 2008-04-03 | Surmodics, Inc. | Implantable Medical Device with Apertures for Delivery of Bioactive Agents |
EP2088854A1 (en) | 2006-12-05 | 2009-08-19 | Academisch Ziekenhuis Bij De Universiteit Van Amsterdam | Improved xenogenic immune system in a non-human mammal |
AU2008262487B2 (en) | 2007-05-23 | 2013-10-31 | Sangamo Therapeutics, Inc. | Methods and compositions for increased transgene expression |
GB0718029D0 (en) | 2007-09-14 | 2007-10-24 | Iti Scotland Ltd | Two step cluster deletion and humanisation |
US20110118446A1 (en) | 2007-09-28 | 2011-05-19 | The General Hospital Corporation | Methods and compositions for antibody production |
JP2011500005A (ja) * | 2007-10-11 | 2011-01-06 | ユニバーシティー ヘルス ネットワーク | ヒト造血幹細胞の生着を増加させるためのSIRPα−CD47相互作用の調節およびそのための化合物 |
US8521273B2 (en) | 2008-01-29 | 2013-08-27 | Gilbert H. KLIMAN | Drug delivery devices, kits and methods therefor |
SG10201403707QA (en) | 2009-06-29 | 2014-10-30 | Ilya B Leskov | Non-human mammal model of human hematopoietic cancer |
EP2449094A4 (en) | 2009-06-29 | 2013-07-10 | Qingfeng Chen | METHOD FOR PRODUCING HUMANIZED NON-MAMMAL MAMMALS |
RU2425880C2 (ru) * | 2009-07-30 | 2011-08-10 | Учреждение Российской академии наук Институт общей генетики им. Н.И. Вавилова РАН | Способ получения трансгенных мышей |
PT3056082T (pt) | 2009-10-06 | 2018-12-12 | Univ Yale | Ratinhos modificados geneticamente e enxerto |
EP2618656B1 (en) | 2010-09-20 | 2018-06-20 | Yale University, Inc. | HUMAN SIRPalpha TRANSGENIC ANIMALS AND THEIR METHODS OF USE |
WO2012051572A1 (en) | 2010-10-15 | 2012-04-19 | Massachusetts Institute Of Technology | A humanized non-human mammal model of malaria and uses thereof |
MX338971B (es) | 2011-02-15 | 2016-05-06 | Inst Res Biomedicine Irb | Ratones de m-csf humanizada. |
HUE033400T2 (en) | 2011-10-28 | 2017-12-28 | Regeneron Pharma | Humanized IL-6 and IL-6 receptor |
CN108782459B (zh) * | 2012-09-07 | 2021-11-05 | 再生元制药公司 | 经遗传修饰的非人动物及其使用方法 |
ES2884598T3 (es) * | 2012-11-05 | 2021-12-10 | Regeneron Pharma | Animales no humanos modificados genéticamente y métodos de uso de los mismos |
TR201901782T4 (tr) | 2013-09-23 | 2019-03-21 | Regeneron Pharma | İnsanlaştirilmiş bi̇r si̇nyal düzenleyi̇ci̇ protei̇n geni̇ne sahi̇p olan i̇nsan dişi hayvanlar. |
CN109090037B (zh) | 2013-10-15 | 2021-05-28 | 瑞泽恩制药公司 | 人源化的il-15动物 |
JP6672171B2 (ja) | 2014-05-19 | 2020-03-25 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | ヒトepoを発現する遺伝子改変された非ヒト動物 |
KR102658190B1 (ko) | 2015-04-13 | 2024-04-17 | 리제너론 파마슈티칼스 인코포레이티드 | 인간화된 sirpa-il15 녹인 마우스 및 이의 이용 방법 |
-
2013
- 2013-09-06 CN CN201810721840.5A patent/CN108782459B/zh active Active
- 2013-09-06 RU RU2017145913A patent/RU2768282C2/ru active
- 2013-09-06 KR KR1020247007446A patent/KR20240045263A/ko active Pending
- 2013-09-06 CA CA2881468A patent/CA2881468C/en active Active
- 2013-09-06 KR KR1020157008697A patent/KR102241962B1/ko active Active
- 2013-09-06 KR KR1020237036218A patent/KR102645622B1/ko active Active
- 2013-09-06 SG SG10201701759VA patent/SG10201701759VA/en unknown
- 2013-09-06 NZ NZ704957A patent/NZ704957A/en unknown
- 2013-09-06 DK DK13834735.6T patent/DK2892330T3/da active
- 2013-09-06 WO PCT/US2013/058448 patent/WO2014039782A2/en active Application Filing
- 2013-09-06 SG SG11201500504RA patent/SG11201500504RA/en unknown
- 2013-09-06 KR KR1020217010949A patent/KR102287541B1/ko active Active
- 2013-09-06 CN CN201380046265.9A patent/CN104955326B/zh active Active
- 2013-09-06 NZ NZ746089A patent/NZ746089A/en unknown
- 2013-09-06 KR KR1020217040735A patent/KR102473555B1/ko active Active
- 2013-09-06 EP EP13834735.6A patent/EP2892330B1/en active Active
- 2013-09-06 MX MX2015002983A patent/MX364714B/es active IP Right Grant
- 2013-09-06 RU RU2015112607A patent/RU2642319C2/ru active
- 2013-09-06 KR KR1020227041881A patent/KR102594390B1/ko active Active
- 2013-09-06 FI FIEP13834735.6T patent/FI2892330T3/fi active
- 2013-09-06 PT PT138347356T patent/PT2892330T/pt unknown
- 2013-09-06 CN CN202111215079.6A patent/CN113897398A/zh active Pending
- 2013-09-06 NZ NZ741951A patent/NZ741951A/en unknown
- 2013-09-06 ES ES13834735T patent/ES2938342T3/es active Active
- 2013-09-06 AU AU2013312359A patent/AU2013312359B8/en active Active
- 2013-09-06 KR KR1020217024519A patent/KR102340059B1/ko active Active
- 2013-09-06 IL IL282472A patent/IL282472B2/en unknown
- 2013-09-06 EP EP22208636.5A patent/EP4193834A1/en active Pending
- 2013-09-06 JP JP2015531224A patent/JP6283031B2/ja active Active
- 2013-09-06 IL IL307969A patent/IL307969A/en unknown
- 2013-09-06 US US14/420,318 patent/US9820476B2/en active Active
- 2013-09-06 IN IN2032DEN2015 patent/IN2015DN02032A/en unknown
-
2015
- 2015-01-22 IL IL236877A patent/IL236877A0/en active IP Right Grant
- 2015-03-06 MX MX2019005251A patent/MX2019005251A/es unknown
- 2015-12-08 HK HK15112080.9A patent/HK1211176A1/xx unknown
-
2017
- 2017-05-17 US US15/598,080 patent/US20180020647A1/en not_active Abandoned
-
2018
- 2018-01-25 JP JP2018010192A patent/JP6517958B2/ja active Active
- 2018-05-15 US US15/980,602 patent/US10433527B2/en active Active
-
2019
- 2019-03-24 IL IL265570A patent/IL265570B/en active IP Right Grant
- 2019-04-18 JP JP2019079029A patent/JP6732998B2/ja active Active
- 2019-08-13 AU AU2019216625A patent/AU2019216625B2/en active Active
- 2019-09-27 US US16/586,573 patent/US11026408B2/en active Active
-
2020
- 2020-07-08 JP JP2020117482A patent/JP7066785B2/ja active Active
-
2021
- 2021-05-10 US US17/316,266 patent/US12127537B2/en active Active
- 2021-10-04 AU AU2021240324A patent/AU2021240324B2/en active Active
-
2022
- 2022-04-27 JP JP2022072893A patent/JP7605789B2/ja active Active
-
2024
- 2024-09-23 US US18/893,356 patent/US20250072405A1/en active Pending
Non-Patent Citations (6)
Title |
---|
RATHINAM CHOZHAVENDAN et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice, BLOOD, 2011, Vol.118, No.11, pp. 3119-3128. * |
RATHINAM CHOZHAVENDAN et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice, BLOOD, 2011, Vol.118, No.11, pp. 3119-3128. WILLINGERA TIM et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung, PNAS, 2011, vol.108, no.6, pp.2390-2395. STROWIGA TILL et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice, PNAS, 2011, vol.108, no.32, pp.13218-13223. RONGVAUXA ANTHONY et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo, PNAS, 2011, vol.108, no.6, pp.2378-2383. РЫБЧИН В.Н. Основы генетической инженерии. Учебник для ВУЗов. Санкт-Петербург, Издательство СПбГТУ, 2002, 522 с., с.410-417. * |
RONGVAUXA ANTHONY et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo, PNAS, 2011, vol.108, no.6, pp.2378-2383. * |
STROWIGA TILL et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice, PNAS, 2011, vol.108, no.32, pp.13218-13223. * |
WILLINGERA TIM et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung, PNAS, 2011, vol.108, no.6, pp.2390-2395. * |
РЫБЧИН В.Н. Основы генетической инженерии. Учебник для ВУЗов. Санкт-Петербург, Издательство СПбГТУ, 2002, 522 с., с.410-417. * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12127537B2 (en) | Genetically modified non-human animals and methods of use thereof |