[go: up one dir, main page]

RU2637198C1 - Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза (варианты) - Google Patents

Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза (варианты) Download PDF

Info

Publication number
RU2637198C1
RU2637198C1 RU2016123477A RU2016123477A RU2637198C1 RU 2637198 C1 RU2637198 C1 RU 2637198C1 RU 2016123477 A RU2016123477 A RU 2016123477A RU 2016123477 A RU2016123477 A RU 2016123477A RU 2637198 C1 RU2637198 C1 RU 2637198C1
Authority
RU
Russia
Prior art keywords
reaction mixture
titanium
mass
self
carbon
Prior art date
Application number
RU2016123477A
Other languages
English (en)
Inventor
Павел Георгиевич Овчаренко
Андрей Юрьевич Лещев
Евгений Васильевич Кузьминых
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт механики Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт механики Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт механики Уральского отделения Российской академии наук
Priority to RU2016123477A priority Critical patent/RU2637198C1/ru
Application granted granted Critical
Publication of RU2637198C1 publication Critical patent/RU2637198C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/10Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on titanium carbide

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Группа изобретений относится к получению компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза. Способ включает приготовление реакционной смеси из порошкообразных компонентов, компактирование смеси и инициирование протекания самораспространяющегося высокотемпературного синтеза (СВС). В способе по варианту 1 готовят реакционную смесь, состоящую из порошков титана и углеродистого феррохрома при отношении массы титана к массе углеродистого феррохрома от 0,2 до 0,8. В способе по варианту 2 готовят реакционную смесь, состоящую из порошков ферротитана с содержанием титана не менее 60% и углеродистого феррохрома при отношении массы ферротитана к массе углеродистого феррохрома от 0,2 до 0,8. Обеспечивается получение компактных материалов без применения специальных реакторов и приложения внешних воздействий на реакционную систему, а также обеспечивается повышение прочности скомпактированных материалов. 2 н. и 4 з.п. ф-лы, 4 пр.

Description

Изобретение относится к металлургии, а именно к способам получения неорганических материалов, в том числе содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза.
Из уровня техники известен способ получения тугоплавких неорганических материалов методом самораспространяющегося высокотемпературного синтеза, включающий приготовление реакционных смесей, их прессования и инициирование синтеза (Левашов Е.А., Рогачев А.С., Юхвид В.И., Боровинская И.П. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза. М.: «Издательство БИНОМ», 1999 г. - 176 с.). Для получения компактных материалов данные способы включают наложение внешнего воздействия на реакционные смеси в ходе синтеза (газостатическое прессование, гидравлическое прессование и др.), что влечет применение дополнительного оборудования, усложнение процесса и снижает применимость способа.
Наиболее близким по технической сущности является способ получения сплава, включающий раздельное приготовление двух или более различных по составу и прочности оксидов металлов смесей с восстановителем и неметаллом, локальное воспламенение одной из смесей с последующим воспламенением образовавшимся расплавом других смесей под давлением газообразной среды до образования сплава необходимого состава (Патент РФ №2469816, МПК В22Р 3/23, 20.12.2012). Недостатком данного способа является трудность контролирования протекающих реакций самораспространяющегося высокотемпературного синтеза каждой из последовательно воспламеняемых расплавом смесей, что приводит к сложности получения сплава заданного состава, применение специальных реакторов для осуществления процесса синтеза под давлением газообразной среды. Кроме того, компактирование реакционных смесей, содержащих сажу (элементарный углерод) и/или чешуйчатый графит вызывает ряд трудностей, связанных с неудовлетворительной прессуемостью, что приводит к разрушению брикетов и также снижает применимость данных систем для получения компактных материалов.
Все это снижает универсальность известного способа.
Предлагаемый способ является более универсальным по отношению к прототипу.
Повышение универсальности способа выражается в том, что он позволяет получать компактные материалы, содержащие карбиды хрома и титана, без применения специальных реакторов и приложения внешних воздействий на реакционную систему в ходе синтеза. Применение углеродистого феррохрома как источника углерода для формирования карбидных составляющих значительно облегчает процесс компактирования порошкообразных реагентов, повышая прочность изготовленных из них скомпактированных брикетов, по сравнению с системами, содержащими элементарный углерод.
Способ осуществляется следующим образом.
Реакционную смесь, состоящую из порошкообразных титана и углеродистого феррохрома, взятых в отношении массы титана к массе углеродистого феррохрома от 0,2 до 0,8, компактируют любым доступным способом (гидравлическое прессование, изостатическое прессование, компактирование при помощи шнека и др.), после чего инициируют протекание самораспространяющегося высокотемпературного синтеза (СВС). Инициирование реакции СВС осуществляют различными способами, в зависимости от технического оснащения - путем объемного нагрева смеси в индукционных печах, либо печах сопротивления, путем локального нагрева искровым, дуговым либо плазменным разрядом и др. Применение в качестве одного из компонентов реакционной смеси ферросплава (углеродистого феррохрома) позволяет, с одной стороны, облегчить компактирование порошкообразной смеси, поскольку углерод содержится в связанном виде в феррохроме, с другой - получать компактные материалы методом СВС без приложения внешних воздействий на систему в ходе синтеза, поскольку железо, входящее в состав феррохрома, служит связкой и препятствует развитию усадочных процессов и возникновению трещин. В зависимости от требуемого количества карбида титана в материале, способ допускает применение среднеуглеродистого (≥65% Сr, ≤4% С) и высокоуглеродистого (≥60% Сr, ≤8% С) феррохрома (Д.Я. Поволоцкий, В.Е. Рощин, М.А. Рысс, А.И. Строганов, М.А. Ярцев Электрометаллургия стали и ферросплавов. - Учебное пособие для вузов. Изд. 2-е, перераб. и доп. - М: Металлургия, 1984 г. - 568 с.). Применение низкоуглеродистого феррохрома с содержанием углерода менее 1% затрудняет начало синтеза между компонентами реакционной смеси и не позволяет формировать карбидные составляющие титана в материале. Реакционная смесь с отношением массы титана к массе углеродистого феррохрома, равное 0,2, позволяет применять для получения компактных материалов минимальное количество титана, обеспечивая при этом формирование его карбидных составляющих в ходе синтеза. Реакционная смесь с отношением массы титана к массе углеродистого феррохрома, равное 0,8, позволяет использовать избыток титана, что приводит к значительному увеличению его карбидных составляющих в материале. Варьирование отношения массы титана к массе углеродистого феррохрома от 0,2 до 0,8 позволяет получать компактные материалы методом СВС с различным содержанием в них карбидных составляющих хрома и титана. Для улучшения условий протекания синтеза в реакционной системе способ допускает применение порошкообразных реагентов с крупностью частиц не более 1 мм. Применение порошкообразных материалов с размером частиц более 1 мм значительно ухудшает протекание синтеза. Для улучшения компактирования способ предусматривает добавление к порошкообразной реакционной смеси клеевого связующего в количестве, не превышающем 40% от массы сухой смеси. Добавление клеевого связующего в количестве, превышающем 40% от массы сухой смеси приводит к значительному газовыделению в ходе синтеза и, как следствие, к появлению трещин и пор в материале.
Для расширения области применения способ предусматривает использование для получения компактных материалов реакционной смеси, содержащей ферротитан с содержанием титана не менее 60% и углеродистый феррохром. Ферротитан, по сравнению с титаном, легче подвергается измельчению, а железо, входящее в состав ферросплавов, позволяет получать компактные материалы, содержащие карбиды хрома и титана, методом СВС с наименьшей пористостью без приложения внешних воздействий на систему в ходе синтеза. Реакционные смеси, приготовленные с учетом отношения массы ферротитана к массе углеродистого феррохрома от 0,2 до 0,8, позволяют получать компактные материалы методом СВС с различным содержанием в них карбидных составляющих хрома и титана.
Готовую реакционную смесь компактируют и инициируют реакцию СВС. После протекания синтеза образуется компактный материал, содержащий карбидные составляющие хрома и титана.
Примеры конкретного исполнения.
Пример 1. Реакционную смесь, содержащую титан и среднеуглеродистый феррохром с содержанием углерода ~4%, взятых в отношении массы титана к массе феррохрома, равным 0,30, компактировали в пресс-форме на гидравлическом прессе в цилиндры диаметром 20 мм и высотой 10 мм. После получения цилиндров инициировали СВС реакцию путем объемного нагрева в индукционной печи. Полученный в ходе синтеза компактный материал (цилиндры диаметром 20 мм и высотой 10 мм) имел незначительную пористость и содержал, по данным фазового анализа, карбиды хрома (Сr23С6, Сr7С3) и титана (TiC). За счет образования карбидных составляющих материал обладал значительной твердостью - 909÷1163 HV0,05 (69÷71 HRC).
Пример 2. То же, что в примере 1, только для увеличения содержания карбидных составляющих титана, реакционную смесь готовили с учетом отношения массы титана к массе высокоуглеродистого феррохрома (с содержанием углерода ~8%), равным 0,7. Результаты фазового анализа полученного материала свидетельствовали об увеличении доли карбидных составляющих титана по сравнению с материалом, приведенным в примере 1.
Пример 3. То же, что в примере 1, только в качестве реакционной смеси использовали смесь 70% ферротитана и высокоуглеродистого феррохрома с содержанием углерода ~8%, взятых в отношении массы ферротитана к массе феррохрома, равным 0,60. Полученный после синтеза материал содержал карбидные составляющие хрома и титана. Твердость материала находилась в пределах 909÷948 HV0,05 (68÷69 HRC).
Пример 4. То же, что в примере 3, только для улучшения компактирования к реакционной смеси произвели добавку органического клеевого связующего в количестве 30% от массы сухой смеси. Компактирование производили на гидравлическом прессе в квадратной пресс-форме размером 40×40 мм и высотой 20 мм. Технический результат аналогичен представленному в примере 3.

Claims (6)

1. Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза, включающий приготовление реакционной смеси из порошкообразных компонентов, компактирование реакционной смеси и инициирование синтеза, отличающийся тем, что реакционную смесь готовят из порошков титана и углеродистого феррохрома при отношении массы титана к массе углеродистого феррохрома от 0,2 до 0,8.
2. Способ по п. 1, отличающийся тем, что используют порошкообразные компоненты реакционной смеси крупностью, не превышающей 1 мм.
3. Способ по п. 2, отличающийся тем, что к порошкообразным компонентам реакционной смеси добавляют клеевое связующее в количестве, не превышающем 40% от массы сухой реакционной смеси.
4. Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза, включающий приготовление реакционной смеси из порошкообразных компонентов, компактирование реакционной смеси и инициирование синтеза, отличающийся тем, что реакционную смесь готовят из порошков ферротитана с содержанием титана не менее 60% и углеродистого феррохрома при отношении массы ферротитана к массе углеродистого феррохрома от 0,2 до 0,8.
5. Способ по п. 4, отличающийся тем, что используют порошкообразные компоненты реакционной смеси крупностью, не превышающей 1 мм.
6. Способ по п. 5, отличающийся тем, что к порошкообразным компонентам реакционной смеси добавляют клеевое связующее в количестве, не превышающем 40% от массы сухой реакционной смеси.
RU2016123477A 2016-06-14 2016-06-14 Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза (варианты) RU2637198C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016123477A RU2637198C1 (ru) 2016-06-14 2016-06-14 Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016123477A RU2637198C1 (ru) 2016-06-14 2016-06-14 Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза (варианты)

Publications (1)

Publication Number Publication Date
RU2637198C1 true RU2637198C1 (ru) 2017-11-30

Family

ID=60581209

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016123477A RU2637198C1 (ru) 2016-06-14 2016-06-14 Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза (варианты)

Country Status (1)

Country Link
RU (1) RU2637198C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733524C1 (ru) * 2019-12-02 2020-10-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Способ получения керамико-металлических композиционных материалов
RU2809611C2 (ru) * 2022-04-27 2023-12-13 Федеральное государственное бюджетное учреждение науки Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук Способ получения металлокерамических, в том числе объёмнопористых материалов, содержащих нитрид титана, методом самораспространяющегося высокотемпературного синтеза

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU46044A1 (ru) * 1935-01-31 1936-02-29 Б.А. Борок Способ изготовлени наварного твердого сплава
RU2114718C1 (ru) * 1991-01-30 1998-07-10 Мольтех Инвент С.А. Способ изготовления формованного металлокерамического композитного материала, полученный этим способом металлокерамический композитный материал, формованная композиция (варианты) и способ получения металлического алюминия
RU2228238C1 (ru) * 2003-03-24 2004-05-10 Томский научный центр СО РАН Способ получения композита на основе боридов, карбидов металлов iv-vi и viii групп
WO2005068672A1 (en) * 2003-12-22 2005-07-28 Caterpillar Inc. Chrome composite materials
RU2469816C2 (ru) * 2010-05-04 2012-12-20 Открытое акционерное общество "Научно-исследовательский институт металлургической технологии" Способ получения сплава

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU46044A1 (ru) * 1935-01-31 1936-02-29 Б.А. Борок Способ изготовлени наварного твердого сплава
RU2114718C1 (ru) * 1991-01-30 1998-07-10 Мольтех Инвент С.А. Способ изготовления формованного металлокерамического композитного материала, полученный этим способом металлокерамический композитный материал, формованная композиция (варианты) и способ получения металлического алюминия
RU2228238C1 (ru) * 2003-03-24 2004-05-10 Томский научный центр СО РАН Способ получения композита на основе боридов, карбидов металлов iv-vi и viii групп
WO2005068672A1 (en) * 2003-12-22 2005-07-28 Caterpillar Inc. Chrome composite materials
RU2469816C2 (ru) * 2010-05-04 2012-12-20 Открытое акционерное общество "Научно-исследовательский институт металлургической технологии" Способ получения сплава

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733524C1 (ru) * 2019-12-02 2020-10-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Способ получения керамико-металлических композиционных материалов
RU2809611C2 (ru) * 2022-04-27 2023-12-13 Федеральное государственное бюджетное учреждение науки Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук Способ получения металлокерамических, в том числе объёмнопористых материалов, содержащих нитрид титана, методом самораспространяющегося высокотемпературного синтеза
RU2816713C1 (ru) * 2023-06-13 2024-04-03 Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук Способ получения тугоплавкого материала

Similar Documents

Publication Publication Date Title
Jie-Cai et al. In-situ combustion synthesis and densification of TiC–xNi cermets
MX347082B (es) Una aleación patrón para producir partes de acero endurecidas sinterizadas y proceso para la producción de partes endurecidas sinterizadas.
Zhang et al. Combustion synthesis and densification of large-scale TiC–xNi cermets
Hibino et al. Synthesis and sintering of Ni3Al intermetallic compound by combustion synthesis process
Stamatis et al. Consolidation and mechanical properties of reactive nanocomposite powders
RU2637198C1 (ru) Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза (варианты)
PL346612A1 (en) Warm compaction of steel powders
RU2658566C2 (ru) Способ получения компактных материалов, содержащих диборид титана, методом самораспространяющегося высокотемпературного синтеза
EA009434B1 (ru) Материалы на основе железа для наплавки твердым сплавом
da Costa et al. Characterization of casting iron powder from recycled swarf
Wang et al. Reactive infiltration synthesis of TiB2–TiC particulates reinforced steel matrix composites
Kang et al. Explosion synthesis of Ti5Si3-Cu intermetallic compound
RU2809611C2 (ru) Способ получения металлокерамических, в том числе объёмнопористых материалов, содержащих нитрид титана, методом самораспространяющегося высокотемпературного синтеза
Alvaredo et al. Steel binder cermets processed by combination of colloidal processing and powder metallurgy
RU2366722C2 (ru) Способ получения стали и устройство для его реализации
RU2365467C2 (ru) Способ получения борсодержащего сплава для легирования стали
Newman Novel uses of electric fields and electric currents in powder metal (P/M) processing
RU2612864C1 (ru) Способ легирования поверхности отливок из железоуглеродистых сплавов
Pugacheva et al. Formation of the structure of Fe-Ni-Ti-CB composites under self-propagating high-temperature synthesis
US20170361378A1 (en) Compacting of gas atomized metal powder to a part
Lazarova et al. Properties of 110Γ13Л steel and SCh 25 cast iron modified by refractory nanopowder
Bogatov Hard Alloy Production by SHS Compaction in Open Matrix
Bagluyk et al. Investigating the dependence of the properties of sintered boron-containing steels on conditions of synthesis and the content of employed foundry alloys
ATE272724T1 (de) Verfahren zur pulvermetallurgischen in-situ herstellung eines verschleissbeständigen verbundwerkstoffes
RU2809613C1 (ru) Способ получения композиционных алюмоматричных материалов, содержащих боридные составляющие хрома, методом самораспространяющегося высокотемпературного синтеза

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180615