[go: up one dir, main page]

RU2635624C2 - Полиэфиры, поглощающие ультрафиолетовое излучение - Google Patents

Полиэфиры, поглощающие ультрафиолетовое излучение Download PDF

Info

Publication number
RU2635624C2
RU2635624C2 RU2013129556A RU2013129556A RU2635624C2 RU 2635624 C2 RU2635624 C2 RU 2635624C2 RU 2013129556 A RU2013129556 A RU 2013129556A RU 2013129556 A RU2013129556 A RU 2013129556A RU 2635624 C2 RU2635624 C2 RU 2635624C2
Authority
RU
Russia
Prior art keywords
chromophore
polymer compound
polyester
linear
absorbing
Prior art date
Application number
RU2013129556A
Other languages
English (en)
Other versions
RU2013129556A (ru
Inventor
Кристофер Г. ЛИВИНС
Джозеф Ф. ЗАВАТСКИ
Аруна Натан
Сьюзан ДЕЙЛИ
Original Assignee
Джонсон Энд Джонсон Конзьюмер Компаниз, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Джонсон Энд Джонсон Конзьюмер Компаниз, Инк. filed Critical Джонсон Энд Джонсон Конзьюмер Компаниз, Инк.
Publication of RU2013129556A publication Critical patent/RU2013129556A/ru
Application granted granted Critical
Publication of RU2635624C2 publication Critical patent/RU2635624C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/26Optical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/57Compounds covalently linked to a(n inert) carrier molecule, e.g. conjugates, pro-fragrances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F234/00Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring
    • C08F234/02Copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain and having one or more carbon-to-carbon double bonds in a heterocyclic ring in a ring containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • C08F291/18Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to irradiated or oxidised macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3324Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof cyclic
    • C08G65/3326Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Polyethers (AREA)
  • Cosmetics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к новым поглощающим ультрафиолет полимерным соединениям, предназначенным для снижения разрушающего воздействия ультрафиолетового (УФ) излучения на кожу. Полимерное соединение содержит линейный поглощающий УФ излучение полиэфир, который включает химически связанный УФ-хромофор. Причем указанный полиэфир имеет главную цепь, которая не имеет ответвлений, и УФ-хромофор представляет собой боковую группу, прикрепленную к главной полиэфирной цепи. Описывается также композиция, содержащая косметически приемлемую несущую среду и указанное поглощающее УФ излучение полимерное соединение. Изобретение обеспечивает новые УФ-поглощающие полимерные соединения с повышенной эффективностью защиты эпидермиса кожи от УФ излучения. 2 н. и 15 з.п. ф-лы, 1 табл., 12 пр.

Description

Настоящая заявка испрашивает преимущества предварительной заявки США № 61/665439 от 28 июня 2012 года, полное содержание которой включено в настоящую заявку в виде справочной информации для любых целей.
ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ
Изобретение относится к полимерам, содержащим УФ-хромофор. В частности, изобретение относится к полимерным соединениям, содержащим линейный полиэфир, поглощающий ультрафиолетовое излучение, который включает в себя химически связанный УФ-хромофор.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Рак кожи - распространенное серьезное заболевание, на долю которого приходится 50% диагностированных случаев рака в Соединенных Штатах Америки. Ультрафиолетовое излучение (УФ) способно вызывать разрушения на молекулярном и клеточном уровне и считается основным фактором окружающей среды, вызывающим рак кожи. Длительное воздействие ультрафиолетового излучения, например, солнечных лучей, может привести к образованию световых дерматозов и эритем, а также увеличивает риск развития рака кожи, такого как меланома, и ускоряет процессы старения кожи, такие как потеря эластичности и образование морщин.
Разрушающее воздействие ультрафиолета можно ослабить местным применением солнцезащитных фильтров, которые содержат соединения, поглощающие, отражающие или рассеивающие лучи ультрафиолета, как правило, в диапазоне (длина волны приблизительно от 320 до 400 нм) или UVB (длина волны приблизительно от 290 до 320 нм). В продаже есть различные солнцезащитные средства с различной способностью защищать тело от ультрафиолетовых лучей.
Предложено использовать солнцезащитные молекулы с большим молекулярным весом для снижения проникновения солнцезащитных молекул в эпидермис. Однако изобретатели признают, что было бы желательно получить совершенно новые полимерные солнцезащитные соединения (полимеры, поглощающие ультрафиолет) для обеспечения различных преимуществ, таких как повышенная защита от УФ.
ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Изобретение включает полимерные композиции, содержащие линейный полиэфир, поглощающий ультрафиолетовое излучение, который включает в себя химически связанный УФ-хромофор, и соединения, которые обеспечивают защиту от ультрафиолетового излучения и которые содержат такие поглощающие ультрафиолет полимерные соединения.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Предполагается, что специалист, основываясь на данном описании, сможет использовать настоящее изобретение в его максимальном объеме. Приведенные ниже характерные варианты осуществления изобретения следует рассматривать лишь в качестве примеров, которые ни в коей мере не ограничивают раскрываемую сущность настоящей заявки на изобретение. Все технические и научные термины, используемые в настоящем документе, если только не дано иное их определение, имеют общепринятое значение, понятное любому специалисту, работающему в области, к которой имеет отношение настоящее изобретение. За исключением точных указаний среднечисленного молекулярного веса (Mn), все остальные ссылки на молекулярный вес подразумевают средневесовой молекулярный вес (Mw). Кроме того, все публикации, заявки на получение патента, патенты и другие упоминаемые в настоящем документе источники включены в документ посредством ссылки.
Полимер, поглощающий уф излучение
Варианты осуществления настоящего изобретения относятся к полимерным соединениям, содержащим полиэфир, поглощающий ультрафиолетовое излучение (например, «поглощающий УФ полиэфир»). Под поглощающим УФ полиэфиром понимается полиэфир, который поглощает излучение в некоторой части ультрафиолетового спектра (длина волны от 290 до 400 нм). Поглощающий УФ полиэфир имеет средневесовой молекулярный вес (Mw), который может использоваться для снижения или предотвращения впитывания хромофора через кожу. В соответствии с одним вариантом осуществления, для поглощающего УФ полиэфира подходит молекулярный вес Mw больше, чем 500. В одном варианте осуществления, Mw находится в диапазоне приблизительно от 500 до 50000. В другом варианте осуществления, Mw находится в диапазоне приблизительно от 1000 до 20000, например, от 1000 до 10000.
В настоящей заявке описано полимерное соединение, содержащее поглощающий ультрафиолет полиэфир. Как понятно специалисту, термин «полиэфир» означает, что полимер, поглощающий ультрафиолет, содержит множество эфирных функциональных групп, связанных между собой ковалентной связью. Термин «главная цепь» полиэфира, поглощающего ультрафиолет, обозначает самую длинную непрерывную последовательность эфирных функциональных групп, связанных между собой ковалентной связью. Другие меньшие группы ковалентно связанных атомов считаются боковыми группами, которые ответвляются от главной цепи.
Согласно определенным вариантам осуществления, полиэфир содержит повторяющиеся глицериновые звенья и, соответственно, может быть охарактеризован как полиглицерин. Под “повторяющимися глицериновыми звеньями” (также называемыми в данной заявке "остаточными глицериновыми звеньями") понимают звенья глицерола без нуклеофильных групп, таких как гидроксильные группы. Остаточные глицериновые звенья включают эфирные функциональные группы и, как правило, могут быть представлены как C3H5O для линейных и дендритных остатков (Рокики и соавторы Green Chemistry., 2005, 7, 52). Подходящие остаточные глицериновые звенья включают дегидратированные формы (т.е. убран один моль воды) следующих глицериновых звеньев: линейные-1,4 (L1,4) глицериновые звенья; линейные-1,3 (L1,3) глицериновые повторяющиеся звенья; дендритные (D) глицериновые звенья; концевые-1,2 (T1,2) звенья; и концевые-1,3 (T1,3) звенья. Примеры остаточных глицериновых звеньев и концевых звеньев показаны ниже (справа от стрелок). Соответствующие глицериновые звенья до отщепления воды (слева от стрелок, содержит гидроксильные группы) также представлены:
линейные-1,4 (L1,4) глицериновые повторяющиеся звенья
Figure 00000001
линейные-1,3 (L1,3) глицериновые повторяющиеся звенья
Figure 00000002
концевые-1,2 (T1,2) звенья
Figure 00000003
и концевые-1,3 (T1,3) звенья
Figure 00000004
Полимерное соединение содержит линейный полиэфир, поглощающий ультрафиолетовое излучение, который содержит химически связанный хромофор, поглощающий ультрафиолетовое излучение («УФ-хромофор»). Под термином «линейный» подразумевается, что поглощающий УФ полиэфир имеет главную цепь, то есть не имеет ответвлений.
Согласно определенным вариантам осуществления, полимерное соединение на 50% или более состоит из линейного полиэфира, поглощающего ультрафиолетовое излучение, который содержит химически связанный УФ-хромофор. Согласно другим определенным вариантам осуществления, полимерное соединение на 75% или более состоит из линейного полиэфира, поглощающего ультрафиолетовое излучение, который содержит химически связанный УФ-хромофор. Согласно другим определенным вариантам осуществления, полимерное соединение на 90% или более состоит из линейного полиэфира, поглощающего ультрафиолетовое излучение, например, на приблизительно 95% или более. Согласно другим определенным вариантам осуществления, в дополнение к линейному полиэфиру, поглощающему ультрафиолетовое излучение, полимерное соединение содержит разветвленный полиэфир, поглощающий ультрафиолетовое излучение, который не является гиперразветвленным. В другом варианте осуществления, полимерное соединение практически не содержит гиперразветвленные полиэфиры, поглощающие ультрафиолетовое излучение (например, содержит менее 1% веса гиперразветвленного полиэфира, поглощающего ультрафиолетовое излучение, например, менее 0,1% веса или, например, совершенно не содержащие гиперразветвленные полиэфиры, поглощающие ультрафиолетовое излучение.
В соответствии с определенными вариантами осуществления, линейный полиэфир, поглощающий ультрафиолетовое излучение, включает любой или оба из повторяющихся звеньев (см. формулы IА и IIВ):
Figure 00000005
ФОРМУЛА IA. ПОВТОРЯЮЩЕЕСЯ ЗВЕНО ЛИНЕЙНОГО ПОЛИЭФИРА В СОСТАВЕ ПОГЛОЩАЮЩЕГО УФ ПОЛИМЕРА
Figure 00000006
ФОРМУЛА IIB. ПОВТОРЯЮЩЕЕСЯ ЗВЕНО ЛИНЕЙНОГО ПОЛИЭФИРА В СОСТАВЕ ПОГЛОЩАЮЩЕГО УФ ПОЛИМЕРА
В ФОРМУЛАХ IA и IIB, Y представляет УФ-хромофор, как описано ниже.
Наглядный пример линейного полиэфира, поглощающего ультрафиолетовое излучение, содержащего химически связанный УФ-хромофор, показан в ФОРМУЛЕ IIIC.
Figure 00000007
ФОРМУЛА IIIC. ЛИНЕЙНЫЙ ПОЛИЭФИР ПОГЛОЩАЮЩЕГО УФ ПОЛИМЕРА
В приведенной ФОРМУЛЕ IIIC, X - это либо концевая функциональна группа, либо часть главной цепи полимера; R - боковая группа, присоединенная к главной цепи полимера, а Х - концевая группа.
X и R могут быть одинаковыми или могут отличаться. X и R могут быть независимо выбраны из группы, включающей, например, водород, линейный акрил, алкенил или алкениловые углеводородные цепи, линейные силоксаны и т.п. В одном варианте осуществления, группа X представляет октадекан. Y представляет УФ-хромофор; группы, обозначенные как Y, описаны ниже. Соотношение повторяющихся звеньев эфира, несущих замещающее Y, составляет действительное число, выраженное Уравнением 1,
Figure 00000008
Уравнение 1
где m и n - действительные числа в диапазоне от 0 до 1, а сумма n и m равна 1. В одном варианте осуществления, число m=1, а n=0 (полимер является гомополимером и включает повторяющееся звено из ФОРМУЛЫ IA). В другом варианте осуществления, число m <равно 1 (полимер является кополимером), включает боковые группы R и Y. Для кополимеров, содержащих и боковые группы R, и боковые группы Y распределение боковых групп R и Y вдоль цепи полимера можно изменять для получения оптимальных свойств полимера. В одном варианте осуществления, полимер является статистическим кополимером, в котором группы R и Y статистически распределены вдоль цепи полимера. В другом варианте осуществления, полимер является блок-кополимером, состоящим из чередующихся сегментов главной цепи полимера, функционализированных большим соотношением либо R-групп, либо Y-групп. В другом варианте осуществления, распределение боковых групп R и Y вдоль главной цепи полимера соответствует диапазону где-то между граничными условиями блок-кополимеров и статистических кополимеров. В ФОРМУЛЕ IIIC, целые числа o и p определяют количество групп CH2 в повторяющихся звеньях, несущих группы Y и R.
Включение различных боковых R-групп может достигаться использованием других ко-мономеров во время реакции полимеризации. Размер, химическая композиция, массовая доля этих ко-мономеров, а также их расположение в главной цепи может меняться для изменения физических и химических свойств конечного полимера. Примеры ко-мономеров, которые могут быть включены в состав полимера, включают, но не ограничиваются, этиленоксидом, пропиленоксидом и глицидиловыми эфирами, такими как n-бутилглицидиловый эфир или диэтилгексилглицидиновый эфир.
Специалисту в области полимеров понятно, что полиэфиры типа, описанного в ФОРМУЛАХ IA-C, могут быть получены различными методами синтеза; среди них и полимеризация с раскрытием кольца циклических мономеров и необязательных ко-мономеров эфира. Размер кольца в циклических мономерах эфира определяется величиной o или p, а также результирующей структурой главной цепи полимера полиэфира. Для мономеров и ко-мономеров, которые являются эпоксидами (трехчленные кольца, содержащие 2 атома углерода и один атом кислорода), величина o или p в результирующем поглощающем УФ полиэфире равна 1. Повторяющееся звено, получаемое при использовании эпоксидного ко-мономера, показано в структуре A ФОРМУЛЫ IV. Для (ко-)мономеров, которые являются окситанами (четырех-членные кольца, содержащие три атома углерода и один атом кислорода), величина o или p в результирующем поглощающем УФ полиэфире равна 2. Повторяющееся звено, получаемое при использовании окситанового ко-мономера, показано в структуре A ФОРМУЛЫ IV. Для изменения свойств полимера подбирается длина алкиловой цепи внутри каждого типа мономера. В одном варианте осуществления, и o, и p равны 1. Примером такого случая является случай, когда повторяющиеся звенья, несущие группы Y и R, оба получены из мономеров эпоксидов (o=p=1), или когда оба получены из окситановых мономеров (o=p=2). В другом варианте осуществления, o и p не равны. Примером такого случая является случай, когда повторяющиеся звенья, несущие УФ-хромофор Y, основаны на эпоксидном мономере (o=1), а повторяющиеся звенья, несущие группу R, основаны на окситановом мономере (p=2).
Figure 00000009
ФОРМУЛА IV. НЕОБЯЗАТЕЛЬНЫЕ ПОВТОРЯЮЩИЕСЯ ЗВЕНЬЯ
Подходящие УФ-хромофоры, которые могут посредством химических связей быть включены в поглощающие УФ полиэфиры настоящего изобретения, включают поглощающие УФ триазолы (часть которых содержит пятичленный гетероцикл с двумя атомами углерода и тремя атомами азота), такие как бензотриазолы. В другом варианте осуществления, структура, представленная группой Y содержит или имеет боковой поглощающий УФ триазин (шестичленный гетероцикл, содержащий три атома азота и три атома углерода). Подходящими УФ-хромофорами являются те, которые обладают способностью поглощать излучение в диапазоне UVA; другими подходящими УФ-хромофорами являются те, которые обладают способностью поглощать излучение в диапазоне UVB. В одном варианте осуществления, УФ-хромофор способен поглощать излучение как в диапазоне длин волн UVA, так и в диапазоне длин волн UVB. В одном варианте осуществления, в котором поглощающий УФ полиэфир формуется в виде пленки, возможно генерировать молярный коэффициент поглощения, равный по меньшей мере для одной длины волны в данном диапазоне длин волн по меньшей мере приблизительно 1000 моль -1 см-1, предпочтительно по меньшей мере около 2000 моль-1 см-1, и еще предпочтительнее около 4000 моль-1 см-1. В одном варианте осуществления, молярный коэффициент поглощения для по меньшей мере 40% длин волн в данной части спектра составляет по меньшей мере около 1000 моль-1 см-1. Примеры УФ-хромофоров, поглощающих в диапазоне длин волн UVA, включают триазолы, такие как бензотриазолы, в частности гидроксифенилбензотриазолы; камфоры, такие как бензилиден камфоры и его производные (такие как терефталидин-дикамфорсульфоновая кислота; дибензоилметаны и их производные.
В одном варианте осуществления, УФ-хромофор является бензотриазолом, который обеспечивает как фотостабильность, так и сильное поглощение ультрафиолетового излучения в диапазоне UVA; его структурная формула показана в ФОРМУЛЕ V.
Figure 00000010
ФОРМУЛА V. БЕНЗОТРИАЗОЛ - ПОГЛОЩАЮЩИЙ УФ ХРОМОФОР
где каждая группа R14 независимо выбирается из группы, состоящей из водорода, C1-C20 алкил, алкокси, ацил, алкилокси, алкиламино и галоген; R15 независимо выбирается из группы, состоящей из водорода, C1-C20 алкил, алкокси, ацил, алкилокси и алкиламино, R21 выбирается из C1-C20 алкил, алкокси, ацил, алкилокси и алкиламино. Каждая из групп R15 или R21 может включать функциональные группы, которые позволяют присоединяться к полимеру. Соединения, напоминающие структуру из ФОРМУЛЫ V, описаны в Патенте США № 5869030, и включают, но не ограничиваются метилен бис-бензотриазолил тетраметилбутилфенолом (соединение, которое продается под торговой маркой TINSORB M производства Корпорации BASF, Виандот, штат Мичиган). В одном варианте осуществления, поглощающий УФ триазол получен из продукта переэтерификации 3-(3-(2H-бензо[d][1,2,3]триазол-2-ил)-5-(трет-бутил)-4-гидроксифенил) пропановой кислоты с полиэтилен гликолем 300, который продается под торговой маркой TINUVIN 213, также производимой Корпорацией BASF. В другом варианте осуществления, поглощающий УФ триазол является гидрокоричной кислотой, 3-(2H-бензотриазол-2-ил)-5-(1, 1-диметилэтил)-4-гидрокси-, C7-9-разветвленные и линейные алкилэфиры, которые продаются под торговой маркой TINUVIN 99, также производимой Корпорацией BASF. В другом варианте осуществления, поглощающая УФ группа содержит молекулы триазина. Примером триазина является 6-октил-2-(4-(4,6-ди([1,1'-бифенил]-4-ил)-1,3,5-триазин-2-ил)-3-гидроксифенокси) эфир пропановой кислоты (соединение, которое продается под торговой маркой TINUVIN 479 производства Корпорации BASF, Виандот, штат Мичиган).
В другом варианте осуществления, УФ-хромофор является молекулой, поглощающей в диапазоне длин волн UVB. Под молекулой, поглощающей в диапазоне длин волн UVB, следует понимать, что УФ-хромофор способен поглощать УФ в части UVB (от 290 до 320 нм) ультрафиолетового спектра. В одном варианте осуществления, критерий определения UVB-поглощающего хромофора такой же, как и критерий, описанный выше для UVA-поглощающего хромофора, с разницей в диапазоне волн (от 290 до 320 нм). Примеры подходящих UVB-поглощающих хромофоров включают 4-аминобензойную кислоту и ее алкановый эфир; ортоаминобензойную кислоту и ее алкановый эфир; салициловую кислоту и ее алкановый эфир; гидроксикоричную кислоту и ее алкановый эфир; дигидрокси-, дикарбокси- и гидроксикарбоксибензофеноны, а также их алкановые эфиры и галоидангидридные производные; дигидрокси-, дикарбокси- и гидроксикарбоксихалконы, а также их алкановые эфиры и галоидангидридные производные; дигидрокси-, дикарбокси- и гидроксикарбоксикумарины, а также их алкановые эфиры и галоидангидридные производные; бензалмоланат (бензилиден малонат); производные бензимидазола (такие как фенил-бензимазол сульфоновая кислота, PBSA), производные бензоксазола и другие подходяще функционализированные виды, способные к ко-полимеризации внутри цепи полимера. В другом варианте осуществления, поглощающий УФ полиэфир содержит более одного УФ-хромофора или более одного класса УФ-хромофоров.
Поглощающие УФ полиэфиры настоящего изобретения могут быть синтезированы, согласно определенным вариантам осуществления, в ходе полимеризации с раскрытием кольца подходящего цикличного мономера эфира для образования полиэфира, с последующим ковалентным связыванием УФ-хромофора к боковым функциональным группам ("постполимеризационное присоединение"). Согласно другим определенным вариантам осуществления, поглощающие УФ полиэфиры могут быть синтезированы в ходе полимеризации цикличного мономера эфира, если эфир сам по себе включает ковалентно связанный УФ-хромофор (т.е. «прямая полимеризация»).
Более того, как должно быть понятно специалисту, в результате синтеза поглощающего УФ полиэфира образуется продукт реакции, который является полимерным соединением, то есть смесью различных молекулярных весов поглощающих УФ полиэфиров. В определенных других вариантах осуществления, продукт реакции может к тому же включать (кроме полимерного соединения) небольшое количество неполимеризованного материала, который может быть удален из смеси использованием общеизвестных методов.
В соответствии с определенными вариантами осуществления, полимерное соединение имеет низкую полидисперсность. Например, коэффициент полидисперсности может составлять около 1,5 или менее, а точнее около 1,2 или менее. Коэффициент полидисперсности определяется как Mw/MN (т.е. отношение средневесового молекулярного веса, Mw к среднечисленному молекулярному весу, MN). Согласно другим определенным вариантам осуществления, полимерное соединение содержит по весу 50% или более специфических молекул полимера.
Полидисперсность полимерного соединения может удерживаться на низком уровне применением, например, специфических методов синтеза, таких как полимеризация с раскрытием кольца циклического мономера эфира и снятие защитных групп (описано ниже). Кроме того, полимерное соединение может быть подвергнуто обработке с применением общеизвестных в данной области знаний методов, таких как экстрагирование растворителями и/или сверхкритическая экстракция углекислотой для очищения либо полиэфира перед постполимеризационным присоединением, либо для очищения конечного полимерного соединения (например, после присоединения УФ-хромофора).
Синтез полимера методом постполимеризационного присоединения УФ-хромофора может включать этап полимеризации с раскрытием кольца циклического мономера эфира для образования полиэфира, имеющего защитные группы; этап снятия защитных групп для удаления по меньшей мере нескольких защитных групп полиэфира; и этап присоединения УФ-хромофора к незащищенному поглощающему УФ полиэфиру для образования поглощающего УФ полиэфира, содержащего химически связанный УФ-хромофор.
Пример постполимеризационного присоединения схематически показан в ФОРМУЛЕ VI. Катализатор I используется для возбуждения реакции полимеризации циклического мономера эфира M, образующей полимер P0, в котором боковые функциональные гидроксигруппы защищены защитной группой (P). Полимер P0 подвергается воздействию условий, которые удаляют защитную группу P, позволяя получить незащищенный полимер Pd. И в завершение, УФ-хромофор Y присоединяется к боковым гидроксильным группам полимера Pd, позволяя получить требуемый конечный полимер, Pf.
Figure 00000011
ФОРМУЛА VI. СИНТЕЗ ПОГЛОЩАЮЩЕГО УФ ХРОМОФОРА МЕТОДОМ ПОСТПОЛИМЕРИЗАЦИОННОЙ ФУНКЦИОНАЛИЗАЦИИ
Полимеризация с раскрытием кольца циклического эфира, такого как мономер M в ФОРМУЛЕ VI, может достигаться различными методами, включая анионной и катионной полимеризации с раскрытием кольца. В одном варианте осуществления, полимеризация выполняется методом анионной полимеризации с раскрытием кольца. Мономер M в ФОРМУЛЕ VI представляет собой вид глицида, в котором основная гидрогруппа скрыта защитной группой Р. В результате полимеризации незащищенного глицида образуются высоко разветвленные полимеры (US7988953B2, Токар, Р и соавторы Macromolecules 1994, 27, 320-322: Сандер, A. и соавторы Macromolecules 1999: 4240-4246. Рокики, Дж. и соавторы Green Chemistry 2005, 7, 529). И наоборот, анионная полимеризация производных глицида, в которых основная гидроксильная группа была защищена, может образовывать линейные полиэфиры, как показано в структурной схемой P0 в ФОРМУЛЕ VI (Татон, Д. и соавторы. Macromolecular Chemistry and Physics 1994, 195, 139-148: Эрберих, М. и соавторы. Macromolecules 2007, 40, 3070-3079: Хаоует, A. и соавторы. European Polymer Journal 1983, 19, 1089-1098: Обермейер, Б. и соавторы Bioconjugate Chemistry 2011, 22, 436-444: Ли, Б. Ф. и соавторы. Journal of polymer science. Part A, Polymer chemistry 2011, 49, 4498-4504). Защищенные циклические мономеры эфира не ограничиваются производными эпоксидов и включают функционализированные циклические эфиры, содержащие от 3 до 6 сопряженных атомов; В другом варианте осуществления, мономер M является производной окситана, содержащей защищенную основную гидроксильную группу.
Под термином «защищенный» имеется ввиду, что функциональная группа в составе многофункциональной молекулы была выборочно дериватизирована с молекулой, которая предотвращает ковалентное изменение функциональной группы. Молекулы, используемые в качестве защитных групп, обычно присоединяются к необходимым функциональным группам, обладающим свойством вырабатывать отличный выход продукта реакций, и могут быть выборочно удалены, как того требует хороший показатель выхода продукта реакций, высвобождая изначальную функциональную группу. Гидроксильные защитные группы включают, но не ограничиваются эфирами, такими как метил, метоксилметил (MOM), метилтиометил (MTM), t-бутил тиометил, (фенил диметил силил) метоксиметил (SMOM), бензилоксиметил (BOM), p-метоксибензилоксиметил (PMBM), (4-метоксифенокси)метил (p-AOM), t-бутоксиметил, 4-пентенилоксиметил(POM), силоксиметил, 2-метоксиэтоксиметил(MEM), 2,2,2-трихлорэтоксиметил, бис(2-хлорэтокси)метил, 2-(триметил силил)этоксиметил(SEMOR), тетрагидропиранил (THP), аллил, 3-бромотетрагидропиранил, тетрагидротиопиранил, 1-метоксициклогексил, бензилокси-2-фторэтил, 2,2,2-трихлорэтил, 2-триметилсилилэтил, 2-(фенилселенил)этил, t-бутил, аллил, p-хлорофенил, p-метоксифенил, 2,4-динитрофенил, бензил, p-метоксибензил, 3,4-диметоксибензил, o-нитробензил, p-нитробензил, p-галобензил, 2,6-дихлорбензил, триметилсилил(TMS), трэтилсилил(TES), триизопропилсилил (TIPS), t-бутилдиметилсилил(TBDMS), t-бутилдифенилсилил(TBDPS), трибензилсилил, эфирами, такими как эфир муравьиной кислоты, бензилформиат, ацетат, хлорацетат, дихлорацетат, трихлорацетат, трифторацетат, метоксиацетат, трифенилметоксиацетат, феноксиацетат, p-хлорфеноксиацетат, 3-фенилпропионат, 4-оксопентонат(левулинат), 4,4-(этилендитио)пентонат (левулиноилдитиоацетат), пивалят, адамантоат, кротонат, 4-метоксикронат, бензоат, p-фенилбензоат, 2,4,6-триметилбензоат(мезитоат), а также карбонатами, такими как алкил метил карбонат, 9-фторэнилметилкарбонат (Fmoc), алкил этил карбонат, алкил 2,2,2-трихлорэтил карбонат(Troc), 2-(триметилсилил)этил карбонат(TMSEC), 2-(фенилсульфонил)этил карбонат(Psec), 2-(трифенилфосфонио)этил карбонат (Peoc), алкил изобутил карбонат. В одном варианте осуществления, защитная группа является эфиром этоксиэтила; В другом варианте осуществления, защитная группа является эфиром аллила.
Удаление защитных групп из защищенного линейного полиэфира P0 для образования незащищенного полимера Pd достигается применением методов, дополняющих выбор защитной группы P; такие методы общеизвестны специалистам в данной области знания. В одном варианте осуществления, основная гидроксильная группа циклического мономера эфира защищена как 1-этоксиэтил эфир; разрыв химической связи этой защитной группы для образования незащищенного полимера достигается применением условий водной кислой среды, такой как водный раствор уксусной кислоты, водный раствор соляной кислоты или кислая ионообменная смола. В другом варианте осуществления, основная гидроксильная группа циклического мономера эфира защищена как эфир аллила; разрыв химической связи этой защитной группы для образования незащищенного полимера достигается изомеризацией эфира аллила до эфира винила путем обработки его алкоголятом калия, а затем - водным раствором кислоты, изомеризацией с использованием катализаторов переходных металлов с последующим кислотным гидролизом, или прямым удалением с применением катализаторов палладия(0) и нуклеофильного поглотителя.
Анионная полимеризация с раскрытием кольца мономера M, показанная в ФОРМУЛЕ VI, инициируется алкоксидной солью I. Примеры алкоголятов, которые могут использоваться для инициации полимеризации с раскрытием кольца циклических мономеров эфира, включают, но не ограничиваются солями калия линейных гидрокарбонатных спиртов групп C3-C30, полиэтиленгликольметилэфиром и кремнийорганическими полимерами с карбинольными концевыми группами. В одном варианте осуществления, катализатором анионной полимеризации с раскрытием кольца является калиевая соль октадеканола. В другом варианте осуществления настоящего изобретения используются многофункциональные катализаторы, включающие, но не ограничивающиеся полиоксиалкиленами, такими как полиэтиленгликоль, полипропиленгликоль или поли(тетраметилен эфир)гликоль; полиэфирами, такими как поли(этиленадипат), поли(этиленсукцинат); кополимерами, которые обладают функциональностью и оксиалкилена, и эфира в главной цепи, такими как поли[ди(этиленгликоль)адипат]; и спиртами с низким молекулярным весом, таким как 1,4-бутандиол, 1,6-гександиол или неопентилгликоль.
В зависимости от функциональных групп, ответвляющихся от полимера, хромофоры могут быть присоединены ковалентной связью к главной цепи полимера применением различных методов, общеизвестных специалистам в данной области знаний. Следующие методы приведены в описательных целях и не представляют собой исчерпывающий список возможных способов присоединения УФ-хромофора к главной цепи полимера. В случае с использованием полимеров со свободными гидроксильными группами (как показано структурой Pd ФОРМУЛЫ VI) УФ-хромофор, содержащий карбоксилатную группу, может быть присоединен к полимеру применением различных методов, общеизвестных специалистам в данной области знаний. Реактивы реакции конденсации могут использоваться для образования ковалентных связей между УФ-хромофорами с карбоновыми кислотами и гидроксильными группами полимеров, создавая эфирные связи; В одном варианте осуществления, реактивом реакции конденсации является N-(3-диметиламинопропил)-N′-этилкарбодиимид гидрохлорид. Карбоновая кислота УФ-хромофора также может быть присоединена к гидроксильным группам полимера эфирными связями, образуемыми применением катализа переходных металлов; В одном варианте осуществления, катализатором является этилгексаноат олова (II). УФ-хромофор может также быть присоединен к полимеру путем преобразования карбоновой кислоты УФ-хромофора в соответствующий хлорангидрид; хлорангидрид вступает в реакцию с гидроксильными группами функционального полимера, образуя эфирные связи; В одном варианте осуществления, такое превращение в хлорангидрид проводится с использованием трионилхлорида. Карбоновая кислота УФ-хромофора может также быть преобразовано в изоцианат путем перегруппировки Курциуса промежуточного азида кислоты; изоционат хромофора вступает в реакцию с гидроксильными группами функционального полимера, образуя уретановые связи. В другом варианте осуществления, карбоновая кислота УФ-хромофора может преобразовываться в эфир и присоединяться к гидроксильной группе главной цепи путем переэтерификации. Это достигается превращением карбоновой кислоты в эфир в присутствии низкокипящего спирта, такого как метанол; переэтерификация происходит реагированием эфира хромофора с полимером, содержащим боковые гидроксильные группы в присутствии кислого катализатора, например, пара-толуолсульфокислоты.
В случае с использованием полимеров со свободными гидроксильными группами (как показано структурой Pd ФОРМУЛЫ VI) УФ-хромофор, содержащий гидроксильную группу, может быть ковалентно присоединен к полимеру применением различных методов, общеизвестных специалистам в данной области знаний. В одном варианте осуществления, гидроксильная группа УФ-хромофора может активироваться для нуклеофильного замещения с применением реактива, такого как метансульфонилхлорид или р-толуолсульфонилхлорид; гидроксильные группы главной цепи тогда становятся способными вытеснить результирующий мезилат или тозилат при основных условиях для образования эфирных связей между полимером и УФ-хромофором. В другом варианте осуществления, гидроксильная группа УФ-хромофора может быть преобразована в хлорформиат использованием реактива, такого как фосген, дифосген или трифосген; результирующий хлорформиат УФ-хромофора может реагировать с гидроксильными группами главной цепи полимера, образовывая карбоновую связь между полимером и УФ-хромофором.
В случае с использованием полимеров со свободными гидроксильными группами (как показано структурой Pd ФОРМУЛЫ VI) УФ-хромофор, содержащий аминовую группу, может быть ковалентно присоединен к полимеру применением различных методов, общеизвестных специалистам в данной области знаний. В одном варианте осуществления, гидроксильные группы полимера могут быть преобразованы в соответствующий хлорформиат использованием реактива, такого как фосген, дифосген или трифосген; аминовый функционализированный УФ-хромофор может затем реагировать с хлорформиатами полимера, образовывая карбоновую связь между УФ-хромофором и полимером.
В другом варианте осуществления, некоторые из гидроксильных групп линейной главной цепи полимера сохраняются после присоединения кислотных, хлорангидридных и изоцианатных функциональных УФ-хромофоров. Эти непрореагировавшие гидроксильные группы могут быть использованы для присоединения других однофункциональных боковых групп для улучшения физических и химических свойств полимера. Примеры реакционно-способных функциональных групп включают, но не ограничиваются хлорангидридами и изоцианатами. Специфические примеры гидроксильных реакционно-способных функциональных боковых групп включают пальмитаилхлорид и стеарилизоцианат. Другие примеры групп, которые могут ответвляться от полимера и представлять собой места для ковалентного присоединения УФ-хромофоров, включают, но не ограничиваются сопряженными алкенами, аминами и карбоновыми кислотами.
В другом варианте осуществления, главная цепь полиэфира является полиглицерином с боковыми гидроксильными или гидрофобными группами, такими как полиглицерил эфир, например, декаглицерил-моностеарат, доступный в продаже под торговой маркой POLYALDO 10-1-S производства компании Lonza в городе Аллендейл, штат Нью-Джерси или тетрадекаглицерил, доступный в продаже под торговой маркой POLYALDO 14-1-S производства компании Lonza в городе Аллендейл, штат Нью-Джерси. Боковые гидроксильные группы могут подвергаться реакции с УФ-хромофором, содержащим дополнительную функциональную группу, как описано выше, для получения поглощающего УФ полиэфира. В данном варианте осуществления, полимерное соединение будет, к примеру, продуктом реакции полиглицерин эфира и УФ-хромофора, имеющего функциональную группу, подходящую для ковалентного присоединения к упомянутому полиглицерин эфиру. Подходящие функциональные группы УФ-хромофора наряду с другими функциональными группами, описанными ранее, включают карбоксилаты и изоцианаты. Результирующее полимерное соединение может включать линейный поглощающий УФ полиэфир, имеющий повторяющееся звено, показанное в ФОРМУЛЕ IIB. Результирующее полимерное соединение может к тому же включать некоторые нелинейные (например, циклические) компоненты, в зависимости от процентного содержания линейного материала в полиглицерине.
Как описано выше, синтез функционализированных полимеров, таких как полимеры в ФОРМУЛЕ IIIC, также может достигаться путем полимеризации УФ-хромофоров, ковалентно измененных циклическими эфирными группами (прямая полимеризация). Это показано в ФОРМУЛЕ VII, где Y представляет УФ-хромофор, а o является характеристикой размера кольца циклического мономера эфира.
Как будет понятно специалисту в данной области знания, продукт реакции для образования поглощающего УФ полиэфира может включать не только полимерное соединение, но и некоторые непрореагировавшие/неполимеризованные соединения.
Figure 00000012
ФОРМУЛА VII. ПРЯМАЯ ПОЛИМЕРИЗАЦИЯ УФ-ХРОМОФОРА, КОВАЛЕНТНО ПРИСОЕДИНЕННОГО К ЦИКЛИЧЕСКОМУ ЭФИРУ
Поглощающие УФ полимеры, описанные в настоящей заявке, будут полезны в технологиях, в которых требуется поглощение ультрафиолета. Например, полимер может использоваться в косметологии в комбинации с подходящей косметически приемлемой несущей средой или для снижения степени разрушения ультрафиолетом материалов, путем их комбинации с поглощающим УФ полимером (т.е. смешиванием в расплаве материала и поглощающего УФ полимера или покрытием материала слоем поглощающего УФ полимера). Включение полимеров настоящего изобретения в такие соединения может обеспечивать повышенный солнцезащитный фактор (SPF) (преимущественно поглощение в диапазоне длин волн UVB), повышенного фактора защиты от негативного воздействия лучей в диапазоне UVA (PFA) (преимущественно поглощение в диапазоне длин волн UVA) или повышение обоих этих факторов. Косметически приемлемая несущая среда для местного применения подходит для местного нанесения на кожу человека и может включать, например, один или несколько носителей, таких как вода, этанол, изопропанол, смягчающие средства, увлажняющие средства и/или один или несколько ПАВ/эмульгаторов, отдушек, консервантов, водонепроницаемых полимеров и подобных ингредиентов, часто используемых в составах косметических средств. Так, поглощающий УФ полимер может быть заключен в форму спрея, лосьона, геля, стика или другие формы с использованием технологий, общеизвестных в данной области знаний. Таким образом, в соответствии с определенными вариантами осуществления, можно защитить кожу человека от ультрафиолетового излучения, местно применяя соединение, содержащее поглощающий УФ полимер.
Следующие примеры отражают принципы и практическое исполнение настоящего изобретения, однако не описывают их в полном объеме. Различные дополнительные варианты осуществления в рамках объема и сущности настоящего изобретения станут очевидными для специалистов в данной области знаний после ознакомления с преимуществами этого раскрытия сущности изобретения.
ПРИМЕРЫ
Пример 1. Синтез защищенной формы глицида
Figure 00000013
ФОРМУЛА VIII. СИНТЕЗ ЗАЩИЩЕННОГО МОНОМЕРА ЭПОКСИДА
Синтез защищенного мономера эпоксида1 был проведен, как показано в ФОРМУЛЕ VIII с использованием вариации процедуры, описанной в литературе (Фиттон, A. и соавторы. Synthesis 1987, 1987, 1140-1142). Глицидол (53 мл, 0,80 моль) и этилфинилэфир (230 мл, 2,40 моль; дистилированные непосредственно перед реакцией) были добавлены в круглодонную колбу с двумя горлышками объемом 500 мл с магнитной мешалкой. Колба была оборудована пробкой и переходником для термометра; термометр был вставлен в переходник и установлен таким образом, что шарик термометра был погружен в жидкость. Колба была погружена в ванночку рассоловодного льда/льда; смесь перемешивали магнитной мешалкой. Когда температура внутри колбы достигла 0°C, небольшими порциями интенсивно размешивая добавили гидрат п-толуолсульфоновой кислоты (pTSA·H2O, 1,43 г, 7,5 ммоль). При добавлении каждой порции pTSA, температура раствора резко повышалась; частота добавления была достаточно редкой, чтобы предотвратить повышение температуры раствора выше 20°C. Последняя порция pTSA была добавлена приблизительно через 5 часов после добавления первой порции и не вызвала экзотермического эффекта; тонкослойная хроматография реакционной смеси не выявила остаточного глицида после добавления последней порции pTSA. Реакционная смесь была перемещена в сепараторную воронку; в воронку медленно влили насыщенный водный раствор NaHCO3 (230 мл). Смесь встряхнули, слои отделились, органический слой был изъят, высушен с помощью натрия сульфата и профильтрован через бумагу. Раствор концентрировали ротационным выпариванием, затем дистиллировали вакуумом (60°C дистиллят при 1066,6 Па (8 торр)), что позволило получить защищенный мономер эпоксида 1 (79,38 г) в виде чистого масла. Был проведен ЯМР-анализ с помощью спектрометра Varian Unity Inova 400 МГц (1H) при температуре 30°C; химические сдвиги фиксировались в частях на миллион (ppm) на шкале δ и соотносились с остаточными протонированными пиками растворителя или тетраметилсилана Спектры, полученные в ДМСО -d6 были соотнесены с (CHD2)(CD3)SO по δH 2,50. 1H ЯМР (400 МГц, CDCl3) δ м.д. 4,76 (кв, J=5,2 Гц, 1H), 3,81 (дд, J=11,5, 3,3 Гц, 1H), 3,60-3,74 (м, 3H), 3,38-3,60 (м, 4H), 3,10-3,20 (м, 2H), 2,81 (ддд, J=5,1, 4,0, 1,3 Гц, 2H), 2,63 (ддд, J=14,6, 5,1, 2,7 Гц, 2H), 1,33 (дд, J=6,2, 5,4 Гц, 6H), 1,21 (тд, J=7,1, 1,3 Гц, 6H).
Пример 2A. Синтез линейного полиглицерина
Figure 00000014
ФОРМУЛА IX. СИНТЕЗ ЛИНЕЙНОГО ПОЛИЭФИРНОГО ПОЛИМЕРА
Полимеризация защищенного мономера эпоксида 1 была достигнута, как показано в ФОРМУЛЕ IX. В круглодонную колбу с двумя горлышками объемом 250 мл с магнитной мешалкой после горячей сушки добавили 1-октадеканол (27,76 г, 102,6 ммоль). Колба была оборудована переходником для подачи азота и резиновой пробкой. Метилат калия (25% веса в метаноле (MeOH), 6,06 мл, 20,52 ммоль) добавили в колбу с помощью шприца через пробку. Круглодонную колбу погрузили в масляную ванночку, предварительно нагретую до 90°C. Пробку проткнули иглой калибра 18, материал в колбе перемешивали при постоянной подаче азота в течение 1 часа, на протяжении которого спирт таял, а метанол испарялся из колбы. Пробку заменили выравнивающей давление капельной воронкой, содержащей мономер 1 (151 г, 1,04 моль). Воронку герметизировали резиновой пробкой. Мономер 1 добавляли по капле в перемешиваемую смесь; реакционную смесь перемешивали при температуре 90°C в течение 15 часов. После охлаждения был получен сырой полиэфир 2 в виде бледно-коричневого слегка вязкого масла, которое использовалось в последующих реакциях без дальнейшего очищения. 1H ЯМР (400 МГц, ХЛОРОФОРМ-d) δ м.д. 4,48-4,80 (м, 10H), 3,25-3,97 (м, 70H), 1,41-1,64 (м, 2H), 1,23-1,40 (м, 60H), 1,09-1,23 (м, 30H), 0,88 (т, J=7,0 Гц, 3H).
Для определения молекулярного веса была проведена гель-проникающая хроматография при температуре 35°C при помощи аппарата a Waters Alliance 2695 Separations Module (Waters, Миллфорд, штат Массачусетс) при скорости потока THF (стабилизированного с 0,025% BHT) 0,5 мл/мин. Аппарат 2695 был оборудован двумя последовательными колоннами ГПХ (Waters Corp HR 0,5 и HR3) размером 7,8×300 мм с размером частиц 5 мкм) и рефрактометрическим детектором модели Waters 410. Молекулярные веса образцов были определены сравнением с полистиреновыми эталонами. Эталоны были подготовлены взвешиванием 1-2 мг каждого полистиренового (PS) полимера в 2 мл виале с растворителем THF (2 эталона на виалу); перед проведением анализа образцы профильтровали (0,22 мкм). Полистиреновые эталоны охватывали диапазон от 70,000 до 600 Дальтонов и были произведены тремя поставщиками (Polymer Standards Service-USA, Phenomenex и Shodex). Результирующая калибровочная кривая показала r2=0,9999. Экспериментальные образцы были растворены в THF в концентрации 3–5 мг/мл и отфильтрованы (0,22 мкм) перед анализом. ГПХ (THF) для полимера 2: Mw 1724.
Сырой полиэфир 2 был перемещен вместе с тетрагидрофураном (THF, ~500 мл) в круглодонную колбу с магнитной мешалкой объемом 1 л. Концентрированный водный раствор HCl (37%, 20 мл) с помощью стеклянной пипетки добавили в перемешиваемую реакционную смесь. Спустя 16 часов реакционную смесь концентрировали ротационным выпариванием до состояния масла, которое разбавили метанолом до объема ~500 мл. Твердый NaHCO3 добавляли порциями в интенсивно перемешиваемый раствор, что вызывало значительное пузырение. Когда добавление NaHCO3 перестало вызывать пузырение (общее количество добавленного NaHCO3 составило 107 г), смесь профильтровали через бумагу для удаления твердого NaHCO3. Фильтрат концентрировали ротационным выпариванием, что позволило получить линейный полиглицерин 3 в виде коричневой пены. 1H ЯМР (400 МГц, DMSO-d6) δ м.д. 4,43 (ушир.с., 11H), 3,20-3,70 (м, 52H), 1,38-1,55 (м, 2H), 1,23 (с, 30H), 0,85 (т, J=7,0 Гц, 3H).
Пример 2B. Синтез линейного полиглицерина
Другая порция защищенного сырого полимера 2 (260 г) и метанола (класс ACS, 1,25 л) были помещены в круглодонную колбу с двумя горлышками. Сухая, H+ кислая ионообменная смола (форма Dowex DR-2030, Aldrich, 446483; 100,3 г) была добавлена в колбу. Центральное горлышко колбы было оборудовано переходником для механического перемешивания и лопастной мешалкой; боковое горлышко колбы было оборудовано переходником для дистилляции с водным охлаждением. Реакционную колбу погрузили в масляную ванночку. При интенсивном механическом перемешивании реакционную смесь довели до кипения (температура масляной ванночки 85°C). Метанол (и метил эфир, образовавшийся в результате снятия защитных групп) дистиллировали из колбы. После того как собрали 750 мл метанола, дополнительное количество метанола (750 мл) добавили в реакционную смесь. Следующим 750 мл метанола позволили дистиллироваться из колбы. В горячую реакционную смесь добавили обесцвечивающий уголь. Смесь быстро перемешали и отфильтровали через бумагу. Фильтрат концентрировали ротационным выпариванием. Остаточный растворитель удалили в условиях вакуума, что позволило получить конечный линейный полиглицерин в виде желтоватой пены (107 г).
Пример 3A. Синтез хромофора бензотриазол карбоксилата
Figure 00000015
ФОРМУЛА X. БЕНЗОТРИАЗОЛ КАРБОКСИЛАТ
Полиэтилен гликоль эфир 3-[3-(2H-1,2,3-бензотриазол-2-ил)-5-терт-бутил-4-гидроксифенил]пропаноата (хромофор, который продается под торговой маркой TINUVIN 213 производства Корпорации BASF, Виандот, штат Мичиган) (81,0 г) добавили в круглодонную колбу с магнитной мешалкой объемом 2 л. EtOH (600 мл) через воронку влили в колбу, смесь размешали до однородного состояния. Натрия гидроксид (NaOH, 30,8 г) растворили в H2O (400 мл); щелочной раствор переместили в капельную воронку, расположенную над 2 л колбой. Раствор NaOH медленно добавляли в перемешиваемую смесь; бледно-желтый мутный раствор мгновенно стал прозрачным и темно-оранжевым. После окончания добавления смесь перемешивали на протяжении ночи при комнатной температуре. Раствор концентрировали ротационным выпариванием для удаления большей части EtOH. Результирующее оранжевое масло разбавили до 1400 мл H2O. Смесь перемешивали механически и окислили до ~ pH 1 добавлением 1 M водн. HCl (~700 мл). Образовавшийся белый осадок профильтровали и отжали, чтобы удалить воду, а затем перекристаллизовали из EtOH. Первые побеги кристаллов были длинными, тонкими и бесцветными иглами. Отстоянную жидкость извлекли и концентрировали ротационным выпариванием; вторые побеги материала были изолированы как белые аморфные вещества. Оба побега были совмещены и высушены горячей вакуумной сушкой на протяжении ночи, что позволило получить УФ-хромофор, имеющий карбоксилатную группу, а именно бензотриазал карбоксилат 4, 3-(3-(2H-бензо[d][1,2,3]триазол-2-ил)-5-(терт-бутил)-4-гидроксифенил) пропановую кислоту (37,2 г) в виде белого твердого вещества; Структура показана в ФОРМУЛЕ X. 1H ЯМР (400 МГц, DMSO-d6) δ м.д. 11,25 (ушир.с, 1H), 8,00-8,20 (м, 2H), 7,95 (д, J=2,1 Гц, 1H), 7,50-7,67 (м, 2H), 7,28 (д, J=2,1 Гц, 1H), 2,87 (т, J=7,5 Гц, 2H), 2,56 (т, J=7,5 Гц, 2H), 1,45 (с, 9H).
Пример 3B. Синтез хромофора бензотриазол карбоксилата
Figure 00000016
Бензенпропановая кислота, 3-(2H-бензотриазол-2-ил)-5-(1, 1-диметилэтил)-4-гидрокси-, C7-9-разветвленные и линейные алкил эфиры, доступные в продаже под торговой маркой TINUVIN 99 производства Корпорации BASF (120 г, 265,7 ммоль) добавили в круглодонную колбу с одним горлышком и магнитной мешалкой объемом 3 л. Изопропанол (900 мл, класс ACS) добавили в колбу, результирующую смесь перемешивали до полного растворения. Гидроксид натрия (36 г, 900 ммоль) растворили в 600 мл дистиллированной воды, раствор влили в реакционную смесь. Результирующую непрозрачную смесь, которая через 40 минут превратилась в прозрачный оранжевый раствор, перемешивали при комнатной температуре в течение 24 часов, а затем медленно влили в интенсивно перемешиваемую смесь изопропанола (1800 мл, класс ACS) и 1N HCl (1200 мл), охлажденную до температуры 10-15°C. Белый осадок профильтровали, промыли 1,2 л смеси (1:1) изопропанола и 1N HCl, эмульгировали в 2 л 0,25N HCl, перемешивали в течение 1 часа, профильтровали и сушили при температуре 90°C вакуумной горячей сушкой на протяжении ночи. Был получен результирующий УФ-хромофор, имеющий карбоксилатную группу, а именно бензотриазол карбоксилат 4 (37.2 г) в виде бледно желтого кристаллического вещества, 85 г, 94°5%.
Пример 4. Этерификация главной цепи полиэфира бензотриазол карбоксилатом
Figure 00000017
ФОРМУЛА XI. ЭТЕРИФИКАЦИЯ ПОЛИГЛИЦЕРИНА БЕНЗОТРИАЗОЛ КАРБОКСИЛАТОМ
ФОРМУЛА XI иллюстрирует этерификацию полиглицерина 3 бензотриазол карбоксилатом 4 с использованием катализатора олова. Линейный полиглицерол 3 из Примера 2A (5,52 г, 60,1 миллиграмм-эквивалент гидроксила) растворили в метаноле и перелили в круглодонную колбу с двумя горлышками объемом 500 мл. Метанол удалили ротационным выпариванием; в колбу добавили бензотриазол карбоксилат 4 (20,38 г, 60,1 ммоль)) и поместили магнитную мешалку. Колба была оборудована переходником для подачи азота и переходником вакуумной дистилляции с приемной колбой объемом 100 мл. Колбу поместили в вакуум (<133,3 Па (1 Торр)) на 1 час, затем заново наполнили газообразным азотом. Переходник подачи извлекли из колбы объемом 500 мл; этил гексаноат олова (II) (49 мкл, 0,15 ммоль) добавили в колбу шприцем при подаче азота. Аппарат собрали заново и погрузили в масляную ванночку, предварительно нагретую до 200°C. Когда основная масса твердой фазы растаяли, масло охладили до 190°C. Реакционную смесь перемешивали при постоянной подаче азота в течение 16 часов. Поддерживая температуру и продолжая перемешивание, колбу затем поместили в условия вакуума (<133,3 Па (1 Торр)) еще на 24 часа. Затем аппарат заново наполнили газообразным азотом и охладили до комнатной температуры. Материал заморозили и разломили и растерли в порошок пестиком в ступке. Порошок растворили в минимальном количестве THF. Метанол (900 мл) влили в коническую колбу и поместили в нее магнитную мешалку; колбу поместили в ледяную ванночку. При интенсивном перемешивании раствор THF добавили в метанол; результирующий осадок изолировали вакуумной фильтрацией. Остаточный растворитель удалили вакуумированием на протяжении ночи, что позволило получить линейный полиглицерин 5 (18,7 г) в виде серовато-белого кристаллического вещества. 1H ЯМР (400 МГц, CDCl3) δ м.д. 11,71 (ушир.с, 9H), 8,03 (ушир.с, 9H), 7,80 (ушир.с, 18H), 7,28-7,48 (м, 18H), 7,12 (ушир.с, 9H), 5,19 (ушир.с, 1H), 3,98-4,46 (ушир.м, 20H), 3,21-3,61 (ушир.м, 32H), 2,91 (ушир.с, 18H), 2,67 (ушир.с, 18H), 1,38-1,51 (м, 85H), 1,13-1,35 (м, 28H), 087 (т, J=6,6 Гц, 3H). ГПХ (THF): Mw 3299; Mn 2913.
Пример 5. Превращение бензотриазол карбоксилата в хлорангидрид (3-(3-(2H-бензо[d][1,2,3]триазол-2-ил)-5-(терт-бутил)-4-гидроксифенил)пропаноил хлорид)
Figure 00000018
ФОРМУЛА XII. ПРЕВРАЩЕНИЕ БЕНЗОТРИАЗОЛ КАРБОКСИЛАТА В ХЛОРАНГИДРИД
Превращение бензотриазол карбоновой кислоты 4 в соответствующий бензотриазол хлорангидрид 6 показано в ФОРМУЛЕ XII. бензотриазол карбоксилат 4 (50 г 147 ммоль, синтезированный методом, описанным в Примере 3) добавили в колбу с тремя горлышками с магнитной мешалкой объемом 1000 мл; колба была оборудована обратным конденсатором, вводом подачи азота и резиновой пробкой. Безводный толуол (~500 мл) с помощью канюли через пробку добавили в колбу. Тионил хлорид (16,1 мл, 221 ммоль) добавили в колбу с помощью шприца; диметилформамид (2,7 мл) после этого добавили в колбу с помощью шприца. Колбу погрузили в масляную ванночку при температуре 80°C; эмульсию перемешали; твердые частицы стали рассеиваться, в конечном счете получен прозрачный раствор. Спустя ~4 часа реакционной смеси дали остыть, перелили в круглодонную колбу и концентрировали ротационным выпариванием. Результирующее масло растерли в порошок с гексанами, что позволило получить твердое вещество бежевого цвета. Эмульсию материала перекристаллизировали добавлением дополнительных гексанов и разогревом до обратного стока, фильтрацией через бумагу и медленным охлаждением до комнатной температуры при постоянном перемешивании. Результирующие бежевые кристаллы профильтровали и высушили в условиях вакуума при температуре 50°C. Фильтрат концентрировали, перекристаллизацию выполнили во второй раз, позволяя образоваться вторым побегам кристаллов; масса всех побегов кристаллов бензотриазол хлорангидрида 6 составила 44,7 г. 1H ЯМР (400 МГц, CDCl3) δ 11,88 (с, 1H), 8,16 (d, J=2,2 Гц, 1H), 7,91-7,98 (м, 2H), 7,47-7,54 (м, 2H), 7,21 (д, J=2,2 Гц, 1H), 3,29 (т, J=7,5 Гц, 2H), 3,07 (т, J=7,5 Гц, 2H), 1,50-1,53 (с, 9H).
Пример 6. Превращение бензотриазол хлорангидрида в изоцианат (2-(2H-бензо[d][1,2,3]триазол-2-ил)-6-(терт-бутил)-4-(2-изоционатоэтил)фенол)
Figure 00000019
ФОРМУЛА XIII. ПРЕВРАЩЕНИЕ ХЛОРАНГИДРИДА В ИЗОЦИАНАТ
Синтез бензотриазол изоцианата 7, необходимый для присоединения к боковым функциональным группам, показан в ФОРМУЛЕ XIII. Азид натрия (NaN3, 2,5 г, 38 ммоль: ВНИМАНИЕ! NaN3 является сильным ядом) аккуратно поместили в круглодонную колбу с одним горлышком объемом 500 мл с магнитной мешалкой. В колбу добавили дистиллированную воду (20 мл); NaN3 расстворился при перемешивании, образовав прозрачный раствор. Колбу погрузили в ледяную ванночку. Хлорангидрид 6 (7,0 г 20 ммоль) и безводный ацетон (45 мл) поместили в выравнивающую давление капельную воронку в перчаточном боксе с положительным давлением N2 атмосферы. Хлорангидрид растворился в ацетоне с легким бурлением, образовав прозрачный желтый раствор. Капельная воронка с бензотриазол хлорангидридом 6 была вставлена в колбу, содержащую водный раствор NaN3; верхняя часть капельной воронки была оборудована переходником N2, подключенным к вакуумному газовому коллектору. Раствор бензотриазол хлорангидрида 6 добавили по капле в раствор NaN3. После добавление нескольких капель начал появляться белый осадок, подвешенный в водном растворе. Добавление бензотриазол хлорангидрида 6 завершилось в течение 30 минут; смешивание продолжили в течение 20 минут в ледяной ванночке. В полученную белую кашицу добавили воду (30 мл); твердые частицы собрали фильтрованием через пористую стеклянную воронку в условиях вакуума. Белый осадок поместили в сепараторную воронку, затем в нее добавили CHCl3 (185 мл). Колбу встряхнули, что привело к отделению слоев. Нижний органический слой извлекли из небольшого водянистого слоя и высушили с помощью Na2SO4. Раствор профильтровали; фильтрат поместили в круглодонную колбу с одним горлышком и магнитной мешалкой объемом 500 мл; колба была оборудована обратным конденсатором с переходником подачи и помещена в масляную ванночку. Раствор медленно нагревали до обратного стока более 30 минут. Окончательная температура масла составила 65°C. После того как температура масла превысила 55°C, в растворе наблюдалось пузырение. Реакция привела к обратному стоку в течение 90 мин. Затем ротационным выпариванием удалили CHCl3; полученное масло кристаллизировалось на протяжении ночи выстаиванием, что позволило образовать бензотриазол изоцианат 7 (5.8 г) в виде сероватого кристаллического вещества. 1H ЯМР (400 МГц, CDCl3) δ 11,91 (с, 1H), 8,18 (д, J=1,9 Гц, 1H), 7,92-7,98 (м, 2H), 7,47-7,53 (м, 2H), 7,23 (д, J=2,1 Гц, 1H), 3,59 (т, J=69 Гц, 2H), 2,96 (т, J=6,9 Гц, 2H), 1,52 (с, 9H).
Пример 7. Присоединение изоцианата к полиглицерину
Figure 00000020
ФОРМУЛА XIV. РЕАКЦИЯ ПОЛИГЛИЦЕРИНА С ИЗОЦИАНАТОМ
Реакция линейного полиглицерина 3 с бензотриазол изоцианатом 7 показана в ФОРМУЛЕ XIV. Раствор полиглицерола 3 в метаноле концентрировали ротационным выпариванием; остаточный растворитель удаляли в вакуумной печи на протяжении ночи при температуре 75°C. Полимер (2,22 г, 24,1 миллиграмм-эквивалент гидроксила) добавили в круглодонную колбу с двумя горлышками и магнитной мешалкой объемом 100 мл. Изоцианат 7 (7,65 г, 22,7 ммоль), катализатор висмут (25 мг; комплекс висмут - карбоксилат, который доступен в продаже под торговой маркой BICAT 8210 производства компании Shepherd Chemical, Норвуд, штат Огайо) и THF (17,4 мл, высушенный с помощью молекулярного сита 3 ангстрем) добавили в колбу. Колбу поместили в разогретую до 65°C масляную ванночку и оборудовали переходником для впуска газа. Реакционную смесь перемешивали в течение 5 часов в присутствии газообразного азота, затем дали остыть до комнатной температуры. Для подтверждения исчезновения сильного пика изоцианата при 2250 см-1 использовали инфракрасную спектроскопию с преобразованием Фурье. Реакционную смесь влили в 160 мл метанола, в результате чего образовался коричневый осадок. Метанол сцедили, а продукт реакции промыли в колбе метанолом (2×75 мл). Остаточный растворитель удаляли в вакуумной печи на протяжении ночи при 60°C; материал растерли в порошок.
Пример 8. Синтез эпоксидного хромофора для метода прямой полимеризации
Figure 00000021
ФОРМУЛА XV. СИНТЕЗ МОНОМЕРА ЭПОКСИДНОГО ХРОМОФОРА
Синтез эпоксидного мономера 9, несущего бензотриазол хромофор, показан в ФОРМУЛЕ XV. Раствор литий алюминий гидрида (LAH) в THF (1 M, 250 мл) поместили с помощью канюли в присутствии газообразного азота в круглодонную колбу с двумя горлышками и магнитной мешалкой объемом 500 мл после горячей сушки, и оборудовали ее резиновой пробкой и выравнивающей давление капельной воронкой. Реакционную колбу погрузили в ледяную ванночку; начали перемешивание. Бензенпропановая кислота, 3-(2H-бензотриазол-2-ил)-5-(1,1-диметилэтил)-4-гидрокси, C7-C9 разветвленный и линейный алкил эфир, содержащий в весовом соотношении 5% 1-метокси-2-пропил ацетата (50,06 г; поглощающий УФ продукт бензотриазола, который доступен в продаже под торговой маркой TINUVIN 99-2 производства Корпорации BASF, Виандот, штат Мичиган) поместили в капельную воронку и растворили в безводном THF (30 мл). Раствор THF, содержащий бензотриазол добавляли по капле в раствор, содержащий LAH; что привело к тихому шипению. После того как добавление было завершено, дополнительное количество раствора LAH (100 мл) добавили в реакционную колбу с помощью канюли. Реакционной смеси дали нагреться до комнатной температуры при ее перемешивании. Спустя 2 часа реакционную смесь перелили в коническую колбу объемом 1 л, которую поместили в ледяную ванночку. Раствор перемешивали механически, медленно добавляя воду (~60 мл), чтобы погасить любые остаточные LAH (ОСОБОЕ ВНИМАНИЕ: гашение LAH водой является экзотермической реакцией, высвобождающей большое количество легко воспламеняющегося газа H2). По завершении гашения LAH (при добавлении воды газ не выделялся), серую эмульсию разбавили до 1 л использованием 1 M водного раствора HCl. Этот раствор переместили в сепараторную воронку объемом 2 л и экстрагировали этил ацетатом (1×400 мл, затем 2×50 мл). Комбинированные слои этил ацетата смыли соленой водой (1×400 мл), высушили с помощью Na2SO4, затем отфильтровали через бумагу. Растворитель удаляли сначала ротационным выпариванием, а затем вакуумной сушкой на протяжении ночи, что позволило получить бензотриазоловый спирт 8 (42,16 г) в виде бежевого кристаллического вещества с сильным неприятным запахом. 1H ЯМР (400 МГц, CDCl3) δ м.д. 11,75 (с, 1H), 8,15 (д, J=2,1 Гц, 1H), 7,88-7,99 (м, 2H), 7,43-7,52 (м, 2H), 7,22 (д, J=2,1 Гц, 1H), 3,75 (м, 2H), 3,62 (ушир.с, 1H), 2,77 (т, J=7,7 Гц, 2H), 1,91-2,06 (м, 2H), 1,52 (с, 9H).
Натрия гидрид (6,0 г, 250 ммоль) добавили в круглодонную колбу с тремя горлышками и магнитной мешалкой после горячей сушки. Колбу оборудовали выравнивающей давление капельной воронкой, переходником подачи азота и резиновой пробкой. Безводный THF (300 мл) добавили в колбу с помощью канюли при подаче азота; затем колбу поместили в ледяную ванночку и начали перемешивание. Бензотриазоловый спирт 8 (20,0 г, 61,5 ммоль) добавили в воронку, а также поместили в нее магнитную мешалку; THF с помощью канюли добавили в капельную воронку, мешалку активировали, чтобы способствовать растворению спирта в THF. Конечный объем спирта/раствора THF составил 65 мл. Раствор добавляли по капле в холодную перемешиваемую эмульсию натрия гидрата. Холодная реакционная смесь перемешивалась 1 час, затем был добавлен эпихлоргидрин (20 мл, 256 ммоль) с помощью шприца через пробку. Капельную воронку заменили обратным конденсатором с переходником для подачи азота, круглодонную колбу погрузили в масляную ванночку с температурой 70°C. Смесь перемешивали 19 часов, затем смесь переместили в сепараторную воронку с 1M водным раствором HCl (750 мл) и этил ацетатом (500 мл). После взбалтывания водянистый слой был удален. Органический слой смыли водой (2×250 мл) и соленым раствором (1×250 мл), а затем высушили с помощью Na2SO4. Раствор концентрировали ротационным выпариванием. Сырой продукт очистили силикагелевой хроматографией (6:1 гексан/этил ацетат). Фракции, содержащие требуемый продукт, объединили и концентрировали ротационным выпариванием; остаточный растворитель удаляли вакуумом на протяжении ночи, что привело к образованию эпоксидного мономера 9, несущего бензотриазол хромофор (7,35 г) в виде бежевого кристаллического вещества. 1H ЯМР (400 МГц, CDCl3) δ м.д. 11,77 (с, 1H), 8,14 (д, J=1,9 Гц, 1H), 7,85-8,00 (м, 2H), 7,41-7,53 (м, 2H), 7,21 (д, J=1,9 Гц, 1H), 3,74 (дд, J=11,5, 3,1 Гц, 1H), 3,57 (ддт, J=19,8, 9,3, 6,4 Гц, 2H), 3,43 (dd, J=11,5, 5,8 Гц, 1H), 3,19 (ддт, J=5,8, 4,0, 2,9 Гц, 1H), 2,82 (ушир.т, J=4,7 Гц, 1H), 2,76 (ушир.т, J=7,7 Гц, 2 H), 2,64 (дд, J=5,1, 2,6 Гц, 1H), 1,93–2,04 (м, 2H), 1,52 (с, 9H).
Пример 9. Этерификация чередующегося полиглицерина бензотриазоловой кислотой
Полиглицерол, частично этерифицированный стеариновой кислотой (2,5 г, 19,8 миллиграмм-эквивалент гидрокси; тетрадекаглицерин моностеарат, который доступен в продаже под торговой маркой POLYALDO 14-1-S производства компании Lonza, Аллендейл, штат Нью-Джерси) и бензотриазол карбоксилат 4 (8,8 г, 23,8 ммоль) поместили в круглодонную колбу с двумя горлышками и магнитной мешалкой объемом 100 мл. Колбу оборудовали переходником для подачи азота и переходником для дистилляции с приемной колбой объемом 100 мл. Аппарат поместили в вакуум, затем повторно заполнили азотом. Дистилляционную головку удалили и в реакционную колбу с помощью шприца в присутствии азота добавили этил гексонат олова (II) (50 мкл). Аппарат собрали заново, очистили в вакууме и заново наполняли азотом трижды. Реакционную колбу погрузили в масляную ванночку, разогретую до 180°C, с постоянной подачей азота в колбу с двумя горлышками через адаптер для дистилляции и с выходом из вакуумного адаптера в помещение. Реакционную смесь перемешивали 3 часа, а затем охладили до комнатной температуры при подаче азота, в результате чего образовался продукт, поглощающий УФ полиглицерин, в виде желтого кристаллического вещества. 1H ЯМР (400 МГц, CDCl3) δ м.д. 11,81 (ушир.с, 2H), 8,15 (ушир.с, 2H), 7,75-8,02 (ушир.с, 4H), 7,34-7,58 (ушир.с, 4H), 7,21 (ушир.с, 2H), 4,93-5,32 (ушир., 1H), 3,17-4,50 (ушир.м, 38H), 2,86-3,11 (ушир.м, 4H), 2,54-2,84 (ушир.м, 4H), 2,31 (ушир.с, 2H), 1,61 (ушир.с, 2H), 1,50 (ушир.с, 18H), 1,26 (ушир.с, 28H), 0,89 (т, J=6,3 Гц, 3H). ГПХ (THF): Mw 1700; Mn 950.
Пример 10. Синтез метил эфира бензотриазольной кислоты
Figure 00000022
ФОРМУЛА XVI. СИНТЕЗ МЕТИЛ ЭФИРА11
Синтез бензотриазол метил эфира 11 необходим для переэтерификации полимера гидроксильными функциональными группами, как показано в ФОРМУЛЕ XVI. Бета-[3-(2-H-бензотриазол-2-ил)-4-гидрокси-5-терт-бутилфенил]-пропионовая кислота-поли(этиленгликоль) 300-эфир (50.1 г; поглощающий УФ продукт, который доступен в продаже под торговой маркой TINUVIN 1130 производства Корпорации BASF, Виандот, штат Мичиган) добавили в круглодонную колбу с двумя горлышками и магнитной мешалкой объемом 1 л. В колбу добавили метанол (500 мл). Колбу погрузили в масляную ванночку; раствор перемешали. p-TSA·H2O (0,63 г) добавили в раствор. Колба с двумя горлышками была оборудована обратным конденсатором и резиновой пробкой; перемешиваемая реакционная смесь была доведена до обратного стока нагреванием масляной ванночки; обратный сток сохранялся на протяжении 17 часов. Затем колбу достали из масляной ванночки и дали остыть до комнатной температуры; в это время продукт осел в виде белого твердого вещества. Осадок изолировали вакуумной фильтрацией, а затем перекристаллизацией из метанола; твердые частички были изолированы в условиях вакуума при температуре 80°C, что позволило образовать бензотриазол метил эфир 11 (18.27 г) в виде белого твердого вещества. 1H ЯМР (400 МГц, CDCl3) δ м.д. 11,81 (с, 1H), 8,16 (д, J=2,1 Гц, 1H), 7,90-7,98 (м, 2H), 7,45-7,53 (м, 2H), 7,22 (д, J=2,2 Гц, 1H), 3,71 (с, 3H), 3,01 (т, J=7,8 Гц, 2H), 2,71 (т, J=7,8 Гц, 2H), 1,51 (с, 9H).
Пример 11. Переэтерификация бензотриазол метил эфира с полимером полиглицерина
Figure 00000023
ФОРМУЛА XVII. ПЕРЕЭТЕРИФИКАЦИЯ ПОЛИГЛИЦЕРИНОМ
Переэтерификация бензотриазол метил эфира 11 с полиглицерином 3 показана в ФОРМУЛЕ XVII. Раствор полиглицерина 3 в MeOH концентрировали ротационным выпариванием; остаточный растворитель удаляли в условиях вакуума на протяжении ночи при температуре 75°C. Полиглицерин 3 (1,36 г, 14,9 миллиграмм-эквивалент гидроксила) добавили) добавили в круглодонную колбу с двумя горлышками и магнитной мешалкой объемом 100 мл бензотриазол метил эфир 11 (4,24 г, 12 ммоль) и pTSA·H2O (7,1 мг) добавили в колбу. Колбу оборудовали адаптером подачи азота и дистилляционным адаптером с приемной колбой в 100 мл. Реакционную колбу поместили в масляную ванночку, которую нагрели до 175°C, в течение 20 минут все реагенты растаяли. Реакционную смесь интенсивно перемешивали при подаче азота на протяжении ночи. На следующее утро колбу поместили в вакуум; остаточные УФ-хромофоры сублимировались и собрались в адаптере для дистилляции. Подогрев в вакууме продолжался всю ночь. Реакционную смесь затем охладили до комнатной температуры; продукт, поглощающий УФ полиглицерин, получили в виде желтого, стеклоподобного твердого вещества. 1H ЯМР (400 МГц, CDCl3) δ м.д. 11,71 (ушир.с, 8H), 8,05 (ушир.с, 8H), 7,81 (ушир.с, 16H), 7,36 (ушир.с, 16H), 7,14 (ушир.с, 8H), 5,06-5,32 (ушир.с, 1H), 3,86-4,57 (м, 16H), 3,15-3,82 (м, 30H), 2,92 (ушир.с, 16H), 2,68 (ушир.с, 16H), 1,45 (ушир.с, 76H), 1,24 (ушир.с, 28H), 0,88 (т, J=6,6 Гц, 3H).
Из Примеров 1-11 видно, что аналитическая характеристика результирующих поглощающих ультрафиолет соответствовала ожидаемым структурам. Анализ полимеров, описанных в Примерах, методом высокоэффективной жидкостной хроматографии подтвердили, что в результате описанных методов полимеризации можно получить малые концентрации остаточного поглощающего УФ мономера.
Пример 12. Краткое описание результатов SPF
Измерения солнцезащитного фактора (SPF) поглощающих УФ полимеров проводились следующим лабораторным методом анализа защиты от солнца. Образцы полимера были отмеряны и помещены в 8 мл стеклянные виалы. Смешанные C12-C15 алкил бензонаты (a косметический масляный растворитель, который доступен в продаже под торговой маркой FINSOLV TN производства Innospec, Ньюарк, штат Нью-Джерси) добавили в виалу для получения нужной массовой доли раствора полимера. Магнитную мешалку поместили в виалу, которую затем герметизировали Тефлоновой колпачковой гайкой. Раствор полимера/масла перемешивали в алюминиевом реакционном блоке при температуре 100°C до однородного состояния. После охлаждения 32 мг раствора полимера нанесли на поли(метил метакрилат) (PMMA) пластину (подложка для проведения испытания, которая доступна в продаже под торговой маркой HELIOPLATE HD6 производства компании Helioscience, Марсель, Франция). Раствор был равномерно распределяли по пластине одним пальцем до тех пор, пока вес образца на пластине не снизился до 26 мг. Базовое пропускание было измерена с помощью пластины HD6, полученной от производителя. Поглощение измерялось с использованием калибрированного анализатора пропускания УФ Labsphere UV-1000S UV (Лабсфер, Норд Саттон, штат Нью-Гемпшир, США). Измерения поглощения использовались для расчета показателя SPF. SPF расчитывали с применением общеизвестных в данной области знаний методов. Уравнение, использованной для расчета SPF, представлено в Уравнении 1.
SPFв лабораторных условиях=[∫ E(λ) I(λ)dλ]/[∫ E(λ) I(λ) 10-A 0 (λ) (dλ)] (1)
где:
E(λ) = спектр, вызывающий покраснение кожи
I(λ) = спектральная плотность потока излучения, полученная от источника УФ
A0(λ) = средняя монохроматическая абсорбция слоя испытываемого продукта до облучения ультрафиолетом.
dλ = шаг длины волны (1 нм)
интегрирование в каждом случае проводится по диапазону длин волн от 290 нм до 400 нм.
Результаты лабораторного исследования SPF полимера изложены в Примерах 4, 7 и 9 [% весового содержания в FINSOLV TN, среднее значение SPF], а также показаны в Таблице 1.
Таблица 1
Figure 00000024
Видно, что поглощающие ультрафиолет полиэфиры растворялись в маслах, часто используемых в косметологии для местного применения. Более того, было показано, что растворы полимеров в этих маслах, использованные в лабораторных методах исследования SPF, имели удовлетворительные значения. SPF.

Claims (27)

1. Полимерное соединение, содержащее линейный поглощающий ультрафиолетовое излучение полиэфир, который включает в себя химически связанный УФ-хромофор,
где линейный поглощающий ультрафиолетовое излучение полиэфир имеет главную цепь, которая не имеет ответвлений, и УФ-хромофор представляет собой боковую группу, прикрепленную к главной полиэфирной цепи, и
УФ-хромофор выбран из группы, включающей триазин, бензотриазол, триазолы, камфоры, дибензолметаны, 4-аминобензойную кислоту и ее алкановые эфиры, ортоаминобензойную кислоту и ее алкановые эфиры, салициловую кислоту и ее алкановые эфиры, гидроксикоричную кислоту и ее алкановые эфиры, дигидрокси-, дикарбокси- и гидроксикарбоксибензофеноны, а также их алкановые эфиры и галоидангидридные производные, дигидрокси-, дикарбокси- и гидроксикарбоксихалконы, а также их алкановые эфиры и галоидангидридные производные, дигидрокси-, дикарбокси- и гидроксикарбоксикумарины, а также их алкановые эфиры и галоидангидридные производные, бензалмалонат, производные бензимидазола, производные бензоксазола, 3-(3-(2Н-бензо[d][1,2,3]триазол-2-ил)-5-(трет-бутил)-4-гидроксифенил), 6-октил-2-(4-(4,6-ди([1,1'-бифенил]-4-ил)-1,3,5-триазин-2-ил)-3-гидроксифенокси)пропаноат и триоктил 2,2',2''-(((1,3,5-триазин-2,4,6-триил) трис(3-гидроксибенз-4,1-диил))трис(окси))трипропаноат.
2. Полимерное соединение по п. 1, в котором линейный поглощающий ультрафиолетовое излучение полиэфир включает в себя повторяющееся звено, выбранное из группы, включающей в себя
Figure 00000025
и
Figure 00000026
где Y - химически связанный УФ-хромофор.
3. Полимерное соединение по п. 1, в котором линейный поглощающий ультрафиолетовое излучение полиэфир включает в себя повторяющееся звено
Figure 00000027
где Y - химически связанный УФ-хромофор
4. Полимерное соединение по п. 1, в котором линейный поглощающий ультрафиолетовое излучение полиэфир включает в себя повторяющееся звено
Figure 00000028
где Y - химически связанный УФ-хромофор.
5. Полимерное соединение по п. 1, которое содержит около 50% или более упомянутого линейного поглощающего ультрафиолетовое излучение полиэфира, включающего в себя химически связанный УФ-хромофор.
6. Полимерное соединение по п. 1, которое содержит около 90% или более упомянутого линейного поглощающего ультрафиолетовое излучение полиэфира, включающего в себя химически связанный УФ-хромофор.
7. Полимерное соединение по п. 1, которое содержит около 95% или более упомянутого линейного поглощающего ультрафиолетовое излучение полиэфира, включающего в себя химически связанный УФ-хромофор.
8. Полимерное соединение по п. 1, в котором линейный поглощающий ультрафиолетовое излучение полиэфир имеет главную цепь, включающую в себя повторяющиеся звенья глицерила.
9. Полимерное соединение по п. 1, линейный поглощающий ультрафиолетовое излучение полиэфир характеризуется, как обладающий структурой
Figure 00000029
где R - боковая группа, Y - химически связанный УФ-хромофор, X - концевая группа, a m и n - действительные числа в диапазоне от 0 до 1.
10. Полимерное соединение по п. 9, в котором m=1 и n=0.
11. Полимерное соединение по п. 9, в котором X и R независимо выбраны из группы, включающей водород, линейный алкил, алкенил или алкиниловую углеводородную цепь и линейные силоксаны.
12. Полимерное соединение по п. 1, в котором линейный поглощающий ультрафиолетовое излучение полиэфир является продуктом реакции полимеризации с раскрытием кольца мономера, выбранного из группы, включающей этиленоксиды, пропиленоксиды и глицидиловые эфиры.
13. Полимерное соединение по п. 12, в котором глицидил эфир выбран из группы, включающей n-бутилглицидиловый эфир и 2-этилгексилглицидиловый эфир
14. Полимерное соединение по п. 1, обладающее коэффициентом полидисперсности около 1,5 или ниже.
15. Полимерное соединение по п. 1, обладающее коэффициентом полидисперсности около 1,2 или ниже.
16. Полимерное соединение по п. 1, в котором упомянутое полимерное соединение является продуктом реакции эфира полиглицерина и УФ-хромофора, который имеет функциональную группу, способную присоединяться к данному эфиру полиглицерина ковалентной связью.
17. Композиция, содержащая косметически приемлемую несущую среду и полимерное соединение, включающее поглощающий ультрафиолетовое излучение линейный полиэфир, содержащий химически-связанный УФ-хромофор.
RU2013129556A 2012-06-28 2013-06-27 Полиэфиры, поглощающие ультрафиолетовое излучение RU2635624C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261665439P 2012-06-28 2012-06-28
US61/665,439 2012-06-28
US13/799,222 2013-03-13
US13/799,222 US9255180B2 (en) 2012-06-28 2013-03-13 Ultraviolet radiation absorbing polyethers

Publications (2)

Publication Number Publication Date
RU2013129556A RU2013129556A (ru) 2015-01-10
RU2635624C2 true RU2635624C2 (ru) 2017-11-14

Family

ID=48698938

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013129556A RU2635624C2 (ru) 2012-06-28 2013-06-27 Полиэфиры, поглощающие ультрафиолетовое излучение

Country Status (12)

Country Link
US (2) US9255180B2 (ru)
EP (1) EP2679616B1 (ru)
KR (2) KR20140001796A (ru)
CN (2) CN111454445A (ru)
AU (1) AU2013206511B2 (ru)
BR (1) BR102013016646B8 (ru)
CA (1) CA2819831C (ru)
ES (1) ES2673961T3 (ru)
NZ (1) NZ612371A (ru)
RU (1) RU2635624C2 (ru)
TW (1) TWI624289B (ru)
ZA (1) ZA201304820B (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9469725B2 (en) 2012-06-28 2016-10-18 Johnson & Johnson Consumer Inc. Ultraviolet radiation absorbing polymers
US20140004057A1 (en) 2012-06-28 2014-01-02 Johnson & Johnson Consumer Companies, Inc. Sunscreen compositions containing an ultraviolet radiation-absorbing polyester
US9255180B2 (en) * 2012-06-28 2016-02-09 Johnson & Johnson Consumer Inc. Ultraviolet radiation absorbing polyethers
EP2866783B1 (en) 2012-06-28 2018-01-10 Johnson & Johnson Consumer Inc. Sunscreen compositions containing an ultraviolet radiation-absorbing polymer
US20150164771A1 (en) * 2013-12-18 2015-06-18 Johnson & Johnson Consumer Companies, Inc. Sunscreen compositions containing an ultraviolet radiation-absorbing polymer
US10874603B2 (en) * 2014-05-12 2020-12-29 Johnson & Johnson Consumer Inc. Sunscreen compositions containing a UV-absorbing polyglycerol and a non-UV-absorbing polyglycerol
US20170079893A1 (en) 2015-09-18 2017-03-23 Johnson & Johnson Consumer Inc. Phase-stable sunscreen compositions comprising an ultraviolet radiation-absorbing compound and superhydrophilic amphiphilic copolymers
WO2017093835A1 (en) 2015-12-02 2017-06-08 Novartis Ag Water-soluble uv-absorbing compounds and uses thereof
EP3419966B1 (en) 2016-02-22 2020-03-25 Alcon Inc. Uv-absorbing vinylic monomers and uses thereof
BR112018075891B8 (pt) * 2016-06-16 2022-08-09 Currahee Holding Company Inc Composição de filtro solar compreendendo uma combinação de um poliéter linear e outros compostos de triagem ultravioleta
US10596087B2 (en) 2016-10-05 2020-03-24 Johnson & Johnson Consumer Inc. Ultraviolet radiation absorbing polymer composition
AU2017340812B2 (en) * 2016-10-05 2022-02-10 Basf Se Ultraviolet radiation absorbing polymer composition
AU2019248578A1 (en) 2018-04-04 2020-10-01 Basf Se Use of an ultraviolet radiation absorbing composition as a light stabilizer for a shaped artificial polymer article
TW201942312A (zh) * 2018-04-04 2019-11-01 德商巴地斯顏料化工廠 紫外線輻射吸收聚合物組合物(uvrap)作為用於非生物及非角蛋白材料之塗料之uv吸收劑的用途
KR102212527B1 (ko) * 2020-08-12 2021-02-04 (주)삼양정밀화학 테레프탈릴리덴 디캠퍼 설폰산염을 포함하는 필름 제조용 수용성 자외선 흡수제
CN115109251B (zh) * 2022-08-09 2024-07-02 西北工业大学 一种叠氮聚醚支化度调控方法
KR102485779B1 (ko) * 2022-08-25 2023-01-09 한국화학연구원 카르복시 관능성 폴리에테르 및 이를 포함하는 접착용 조성물
WO2024253837A1 (en) 2023-06-06 2024-12-12 Kenvue Brands Llc Low penetration sunscreen compositions

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322522A (en) * 1980-07-08 1982-03-30 Akzona Incorporated Polyester/polyether segmented copolymers stabilized against degradation by UV light via copolymerization with analogs of 2,2,6,6-tetramethylpiperidine derivatives
JPS6099186A (ja) * 1983-11-04 1985-06-03 Pola Chem Ind Inc 高分子量紫外線吸収及びこれを含有する化粧料
US5039782A (en) * 1990-12-11 1991-08-13 Lever Brothers Company, Division Of Conopco, Inc. Polymeric whitening agent
EP0523955A2 (en) * 1991-07-17 1993-01-20 Unilever Plc Water dispersible or water soluble copolymer containing UV-absorbing monomer
WO1996003369A1 (en) * 1994-07-26 1996-02-08 The Procter & Gamble Company Fatty amine derivatives of butylated hydroxy toluene for the protection of surfaces from physical and chemical degradation
WO2005092282A1 (en) * 2004-03-25 2005-10-06 Dsm Ip Assets B.V. Uv absorbing chromophores covalently bonded to hyperbranched polymers
RU2009124703A (ru) * 2008-06-30 2011-01-10 Джонсон Энд Джонсон Конзьюмер Компаниз, Инк. (Us) Композиции, содержащие поглощающий ультрафиолетовое излучение полимер
WO2011070050A1 (en) * 2009-12-09 2011-06-16 Dsm Ip Assets B.V. Uv absorbing dentritic polyether prepared by polymerization of oxetanes
JP6099186B2 (ja) * 2012-07-10 2017-03-22 国立研究開発法人国際農林水産業研究センター キャッサバ粕の処理方法

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE363043B (ru) * 1967-06-15 1974-01-07 Bofors Ab
US4107290A (en) 1972-06-29 1978-08-15 L'oreal Anti-solar polymers, method of making the same and cosmetic compositions containing the same
DE3028503A1 (de) * 1980-07-26 1982-02-25 Basf Ag Polyalkoxycarbinolzimtsaeureester, verfahren zu ihrer herstellung und diese enthaltende lichtschutzmittel
US4528311A (en) 1983-07-11 1985-07-09 Iolab Corporation Ultraviolet absorbing polymers comprising 2-hydroxy-5-acrylyloxyphenyl-2H-benzotriazoles
US4781914A (en) * 1985-12-04 1988-11-01 Charles Of The Ritz Group Ltd. Sunscreen and moisturizer
FR2596400B1 (fr) 1986-03-28 1988-08-26 Oreal Nouveaux polymeres capables d'absorber le rayonnement ultraviolet, leur preparation et leur application notamment en cosmetologie
US5138089A (en) 1986-06-27 1992-08-11 The Procter & Gamble Company Chromophores, sunscreen compositions and methods for preventing sunburn
US4897259A (en) 1986-12-04 1990-01-30 Bristol-Myers Company High oil phase pharmaceutical vehicles and sunscreen compositions having waterproof sun protection factors
EP0380667A4 (en) 1987-10-07 1991-04-24 Terumo Kabushiki Kaisha Ultraviolet-absorbing polymer material and photoetching process
US5166234A (en) 1988-05-19 1992-11-24 E. I. Du Pont De Nemours And Company Bisurea light stabilizer for organic polymers
JP2883107B2 (ja) 1989-07-10 1999-04-19 塩野義製薬株式会社 紫外線吸収皮膚保護剤組成物
US5057594A (en) 1989-08-17 1991-10-15 Eastman Kodak Company Ultraviolet light-absorbing compounds and sunscreen formulations and polymeric materials containing such compounds or residues thereof
JPH04288010A (ja) 1991-03-15 1992-10-13 Max Fuakutaa Kk 化粧料
WO1992019592A1 (en) 1991-05-09 1992-11-12 Shiseido Co., Ltd Cinnamic acid/glycerol adduct, ultraviolet absorber, and dermatologic preparation
US5243021A (en) 1991-07-17 1993-09-07 Lever Brothers Company, Division Of Conopco, Inc. Water-dispersible copolymer containing UVA and UVB light-absorbing monomers
FR2680683B1 (fr) 1991-08-29 1993-11-12 Oreal Composition cosmetique filtrante contenant un polymere filtre a structure hydrocarbonee et une silicone filtre.
FR2680684B1 (fr) 1991-08-29 1993-11-12 Oreal Composition cosmetique filtrante comprenant un nanopigment d'oxyde metallique et un polymere filtre.
WO1993022413A1 (en) 1992-04-23 1993-11-11 Unilever Plc Compositions comprising water-dispersible copolymer containing uva and uvb light-absorbing monomers
US5250652A (en) 1992-07-30 1993-10-05 Lever Brothers Company, Division Of Conopco, Inc. High loading water-dispersible UVA and/or UVB light-absorbing copolymer
US6123928A (en) 1992-12-21 2000-09-26 Biophysica, Inc. Sunblocking polymers and their novel formulations
US5487885A (en) 1992-12-21 1996-01-30 Biophysica, Inc. Sunblocking polymers and their formulation
US5459222A (en) 1993-06-04 1995-10-17 Ciba-Geigy Corporation UV-absorbing polyurethanes and polyesters
US5399371A (en) 1993-06-17 1995-03-21 Henkel Corporation Low calorie substitute for an edible oil
GB9403451D0 (en) 1994-02-23 1994-04-13 Ciba Geigy Ag Sunscreen compositions
US5505935A (en) 1994-05-09 1996-04-09 Elizabeth Arden Company, Division Of Conopco, Inc. Sunscreen compositions
ES2170116T3 (es) 1994-10-14 2002-08-01 Hoffmann La Roche Composiciones de filtrado de luz cosmeticas fotoestables.
ZA964872B (en) 1995-06-08 1997-12-08 Johnson & Johnson Consumer Sunscreen compositions.
KR100236388B1 (ko) 1995-11-28 1999-12-15 성재갑 신규한 고분자 자외선 차단제 및 그 제조방법
DE19634401A1 (de) 1996-08-26 1998-03-05 Basf Ag Kosmetisches Mittel mit polymergebundenen Benzophenonchromophoren
DE19634399A1 (de) 1996-08-26 1998-03-05 Basf Ag Kosmetisches Mittel mit polymergebundenen Benzophenonchromophoren
CA2241645A1 (en) 1997-07-14 1999-01-14 F. Hoffmann-La Roche Ag Light-screening agents
DE19734445A1 (de) 1997-08-08 1999-02-11 Basf Ag Lipophile polymere UV-Absorber
CA2333286A1 (en) 1998-06-22 1999-12-29 Ciba Specialty Chemicals Holding Inc. Poly-trisaryl-1,3,5-triazine carbamate ultraviolet light absorbers
DE19834819A1 (de) 1998-08-01 2000-02-03 Beiersdorf Ag Emulgatorfreie feindisperse Systeme vom Typ Öl-in-Wasser und Wasser-in-Öl
DE19834820A1 (de) 1998-08-01 2000-02-03 Beiersdorf Ag Emulgatorfreie feindisperse Systeme vom Typ Öl-in-Wasser und Wasser-in-Öl
DE19842786A1 (de) 1998-09-18 2000-03-23 Beiersdorf Ag Emulgatorfreie feindisperse Systeme vom Typ Öl-in-Wasser und Wasser-in-Öl
DE19842787A1 (de) 1998-09-18 2000-03-23 Beiersdorf Ag Emulgatorfreie feindisperse Systeme vom Typ Öl-in-Wasser und Wasser-in-Öl
DE19842730A1 (de) 1998-09-18 2000-03-23 Beiersdorf Ag Emulgatorfreie feindisperse Systeme vom Typ Öl-in-Wasser und Wasser-in-Öl
ES2306532T3 (es) 1998-12-10 2008-11-01 Color Access, Inc. Composiciones con efecto fotoprotector potenciado y procedimiento de utilizacion de las mismas.
FR2793139B1 (fr) 1999-05-06 2001-06-29 Oreal Composition renfermant au moins un compose bicyclique aromatique et au moins un filtre solaire lipophile, et ses utilisations
NO20002309L (no) 1999-05-12 2000-11-13 Hoffmann La Roche Fotostabile kosmetiske lysavskjermende sammensetninger
FR2795309B1 (fr) 1999-06-28 2004-10-01 Nippon Fine Chemical Co Substances huileuses comprenant un ester de dimerdiol et produits cosmetiques comprenant cet ester
US6413393B1 (en) 1999-07-07 2002-07-02 Minimed, Inc. Sensor including UV-absorbing polymer and method of manufacture
EP1068866A3 (de) 1999-07-12 2004-03-17 Ciba SC Holding AG Verwendung von Mischungen aus Mikropigmenten zur Bräunungsverhinderung und Aufhellung der Haut und Haare
CA2375556A1 (en) 1999-07-13 2001-01-18 Pharmasol Gmbh Uv radiation reflecting or absorbing agents, protecting against harmful uv radiation and reinforcing the natural skin barrier
US6881415B1 (en) 1999-07-20 2005-04-19 Beiersdorf Ag Emulsifier-free finely dispersed water-in-oil type systems
AU5247399A (en) 1999-07-29 2001-02-19 Biophysica, Inc. Sunblocking polymers and their novel formulations
JP2001288064A (ja) 2000-04-10 2001-10-16 Kao Corp 化粧料
AU2001246902B2 (en) 2000-04-13 2005-02-17 Sanyo Chemical Industries, Ltd. Crosslinked polymer, process for producing the same, absorbent structure, and absorbent article
FR2811554B1 (fr) 2000-07-12 2002-09-13 Oreal Composition comprenant au moins un filtre uv et un sel de flavylium non substitue en position 3 pour la coloration de la peau et utilisations
WO2002024668A1 (en) 2000-09-20 2002-03-28 Ciba Specialty Chemicals Holding Inc. Process for the preparation of benzotriazoles
DE10046927A1 (de) 2000-09-21 2002-04-25 Basf Ag Farbmittelhaltige wässrige Polymerdispersion
DE10053375C1 (de) 2000-10-27 2002-01-24 Lohmann Therapie Syst Lts Transdermale therapeutische Systeme mit lichtempfindlichen Wirkstoffen
US6867250B1 (en) 2000-10-30 2005-03-15 Cytec Technology Corp. Non-yellowing ortho-dialkyl aryl substituted triazine ultraviolet light absorbers
CA2427854A1 (en) 2000-11-06 2002-05-10 Lonza Inc. Processes for preparing linear polyglycerols and polyglycerol esters
FR2816834B1 (fr) 2000-11-20 2005-06-24 Oreal Composition de traitement des fibres keratiniques comprenant un polymere polyurethane associatif cationique et un agent protecteur ou conditionneur
FR2824266B1 (fr) 2001-05-04 2005-11-18 Oreal Composition cosmetique de soin ou de maquillage des matieres keratiniques comprenant un ester a groupement aromatique et un agent photoprotecteur et utilisations
US7097828B2 (en) 2001-06-29 2006-08-29 Schering-Plough Healthcare Products, Inc. Sunscreen formulations containing waterborne polyurethane polymers
WO2003011239A2 (en) 2001-07-31 2003-02-13 Merck Patent Gmbh Sunscreen composition
JP2003063932A (ja) 2001-08-24 2003-03-05 Catalysts & Chem Ind Co Ltd 化粧料用改質無機微粒子およびそれを配合した化粧料
KR100437224B1 (ko) 2001-08-29 2004-06-23 주식회사 태평양 자외선 산란용 무기/고분자 복합입자 및 그의 제조방법
FR2832060B1 (fr) 2001-11-09 2004-07-09 Oreal Composition contenant un ester n-acyle d'acide amine et un filtre uv structuree par un polyamide
DE10163256A1 (de) * 2001-12-21 2003-07-10 Henkel Kgaa Oberflächenmodifiziertes Zinkoxid zur Herstellung nanopartikulärer Dispersionen
US7854925B2 (en) 2002-04-04 2010-12-21 Akzo Nobel N.V. Use of solubilized, anionic polyurethanes in skin care compositions
US20050008598A1 (en) 2003-07-11 2005-01-13 Shaoxiang Lu Cosmetic compositions comprising a structuring agent, silicone powder and swelling agent
US7608252B2 (en) 2002-07-19 2009-10-27 The Gillette Company Shave gel composition containing polyglyceryl ester surfactant
US6899866B2 (en) 2002-09-06 2005-05-31 Cph Innovations Corporation Photostabilization of a sunscreen composition with a combination of an α-cyano-β, β-diphenylacrylate compound and a dialkyl naphithalate
US6800274B2 (en) 2002-09-17 2004-10-05 The C.P. Hall Company Photostabilizers, UV absorbers, and methods of photostabilizing a sunscreen composition
US20040096406A1 (en) 2002-09-30 2004-05-20 L'oreal Composition containing ascorbic acid compound and screening agent, method of use
US7153494B2 (en) 2002-10-21 2006-12-26 L'oreal Dibenzoylmethane sunscreen compositions photostabilized with amphiphilic block copolymers
US7008618B1 (en) 2002-11-08 2006-03-07 Nalco Company Water soluble monomers and polymers for protecting substrates from ultraviolet light
JP3980468B2 (ja) * 2002-11-22 2007-09-26 花王株式会社 水中油型乳化化粧料
US7087692B2 (en) 2002-11-27 2006-08-08 Galaxy Surfactants Ltd Salt and heat sensitive, substantive UV-absorbing polymers
US20040126339A1 (en) 2002-12-31 2004-07-01 Roszell James A. Sunscreen composition and methods for manufacturing and using a sunscreen composition
EP1596819A1 (en) 2003-02-26 2005-11-23 Fuji Photo Film B.V. Cosmetic uv-screen compositions and aminobutadiene-based uv-absorbing complexes therefor
US6902722B2 (en) 2003-04-14 2005-06-07 L'oreal Aqueous antisun/sunscreen compositions comprising amphiphilic 2-acrylamidomethylpropanesulfonic acid polymers and water-soluble silicones
US6905674B2 (en) 2003-04-14 2005-06-14 L'oreal Aqueous photoprotective compositions comprising acrylamido-2-methylpropanesulfonic acid polymers and 4,4-diarylbutadiene UV-A sunscreens
US20040223925A1 (en) 2003-04-14 2004-11-11 L'oreal Water-in-oil photoprotective emulsions comprising polyolefinic surfactants and 4,4-diarylbutadiene UV-A sunscreens
CN1832724A (zh) 2003-08-07 2006-09-13 宝洁公司 个人护理组合物
US20050036961A1 (en) 2003-08-13 2005-02-17 Societe L'oreals S.A. Aesthetically and SPF improved UV-sunscreens comprising glass microspheres
US8609784B2 (en) 2003-09-04 2013-12-17 Nalco Company Water-soluble polyaminoamides as sunscreen agents
US6887400B1 (en) 2003-10-30 2005-05-03 Nalco Company Water-soluble polyaminoamides comprising 1,3-diimines as sunscreen agents
US7534420B2 (en) 2004-02-25 2009-05-19 Hallstar Innovations Corp. Compounds derived from polyanhydride resins with film-forming, UV-absorbing, and photostablizing properties, compositions containing same, and methods of using the same
WO2005089708A1 (en) 2004-03-24 2005-09-29 Showa Denko K.K. Oil-in-water emulsified composition, and external preparation for skin and cosmetics using the composition
FR2867970B1 (fr) 2004-03-25 2006-05-05 Oreal Composition comprenant un compose monomerique a effet optique et procede employant ladite composition
DE102004018510A1 (de) 2004-04-14 2005-11-03 Goldschmidt Gmbh Verbesserte Lösungsvermittler/Lösungsmittel für organische UV-Filter
EP1807452B1 (en) 2004-11-02 2013-05-08 DSM IP Assets B.V. Additive for uv-sunscreen preparations
JP2006265389A (ja) 2005-03-24 2006-10-05 Nippon Zeon Co Ltd 紫外線吸収剤、その製造方法、樹脂組成物及び成形体
WO2007001484A2 (en) 2005-06-20 2007-01-04 Playtex Products, Inc. Non-irritating compositions
JP4611831B2 (ja) * 2005-07-26 2011-01-12 株式会社資生堂 油中水型皮膚外用剤
JP2007126530A (ja) 2005-11-02 2007-05-24 Taisei Fine Chemical Co Ltd 紫外線吸収能を有する非水液状組成物
US20070134174A1 (en) 2005-11-03 2007-06-14 Christopher Irwin Personal care composition
WO2007066309A2 (en) 2005-12-08 2007-06-14 L'oreal Cosmetic composition comprising an ester of dimerdilinoleic acid and of polyol(s) and a semi-crystalline polymer
WO2007081209A1 (en) 2006-01-12 2007-07-19 Fujifilm Manufacturing Europe B.V. Uv-absorbing polymers consisting of gelatin and aminobutadiene
US20070264216A1 (en) 2006-05-11 2007-11-15 Mcentire Edward Enns Water resistant sunscreen formulas with sulfopolyesters and phosphate ester surfactants
US20080050320A1 (en) 2006-08-23 2008-02-28 Ariel Haskel Skin care compositions containing a hydrophobic material and related methods
JP5137503B2 (ja) 2006-09-15 2013-02-06 株式会社日本触媒 化粧料用紫外線カット剤およびそれを用いた化粧料
WO2008056678A1 (fr) 2006-11-10 2008-05-15 Nippon Shokubai Co., Ltd. Composition de polymère absorbant le rayonnement ultraviolet dispersé dans l'eau
BRPI0809925A2 (pt) 2007-04-05 2014-09-23 Basf Se Composição de protetor solar, e, métodos para aumentar o fator de proteção solar de uma composição de protetor solar, e de proteção contra uv melhorada de cabelo e/ou pele de mamífero dos efeitos danificadores de radiação uv.
US8986665B2 (en) 2007-06-29 2015-03-24 Johnson & Johnson Consumer Companies, Inc. Cationic polyglyceryl compositions and compounds
US20120093753A1 (en) 2007-06-29 2012-04-19 Fevola Michael J Cationic polyglyceryl compositions and compounds
FR2918563B1 (fr) 2007-07-12 2009-12-04 Oreal Composition photoprotectrice fluide aqueuse a base d'un polymere polyamide a terminaison amide tertiaire.
WO2009016046A2 (en) 2007-07-27 2009-02-05 Basf Se Sunless tanning compositions comprising substituted polyamine compounds
EP2194958B1 (en) 2007-08-31 2012-02-29 Playtex Products, Inc. Sunless tanning composition with photostabilized sunscreen
ATE517605T1 (de) 2007-09-19 2011-08-15 Symrise Ag O/w-emulgator, o/w-emulsionen und verfahren zu deren herstellung
WO2009040917A1 (ja) 2007-09-27 2009-04-02 Lead Chemical Co. , Ltd. 紫外線吸収剤
JP5270134B2 (ja) * 2007-11-12 2013-08-21 株式会社コーセー 紫外線吸収剤水分散組成物
FR2924930A1 (fr) 2007-12-18 2009-06-19 Oreal Emulsions photoprotectrices huile-dans-eau fluides contenant des agents tensioactifs gemines et un copolymere reticule d'acide methacrylique et d'acrylate d'alkyle en c1-c4; procede de preparation de ces emulsions
JP5312922B2 (ja) 2007-12-19 2013-10-09 ロート製薬株式会社 有機紫外線吸収剤内包マイクロカプセル
US7989572B2 (en) 2008-01-17 2011-08-02 Eastman Chemical Company Polyvinyl ultraviolet light absorbers for personal care
JP5402063B2 (ja) 2008-03-13 2014-01-29 信越化学工業株式会社 化粧料
EP2105124A1 (de) 2008-03-26 2009-09-30 Bayer MaterialScience AG Sonnenschutz-Zusammensetzungen
US20090258230A1 (en) 2008-04-11 2009-10-15 Kobo Products, Inc. Porous and/or hollow material containing uv attenuating nanoparticles, method of production and use
US20100129303A1 (en) 2008-10-17 2010-05-27 Dueva-Koganov Olga V Sunscreen and personal care compositions comprising a random terpolymer
FR2938767B1 (fr) 2008-11-25 2012-06-08 Oreal Composition photoprotectrice contenant un amidon gelifiant et des particules de polyamide
US9044623B2 (en) 2009-01-27 2015-06-02 Isp Investments Inc. Polymer-bound UV absorbers in personal care compositions
CN102348378A (zh) 2009-03-13 2012-02-08 巴斯夫欧洲公司 包含农药和苯并三唑类uv吸收剂的组合物
US8540976B2 (en) 2009-04-01 2013-09-24 University Of Florida Research Foundation, Inc. Poly (non-conjugated diene) based sunscreens
JP2013508351A (ja) 2009-10-22 2013-03-07 ロレアル 光防御組成物およびフィルム、ならびに製造方法
CA2779722A1 (en) 2009-11-02 2011-05-05 Inolex Investment Corporation Uv absorbing complex polyester polymers, compositions containing uv absorbing complex polyester polymers, and related methods
EP2509576B1 (en) 2009-12-09 2014-08-27 DSM IP Assets B.V. Polyglycerol based UV filter comprising p-dimethylamino benzoate
US20120282201A1 (en) 2009-12-09 2012-11-08 Alexander Schlifke-Poschalko Novel compounds
US20130115179A1 (en) 2009-12-09 2013-05-09 Anne Janssen Novel compounds
WO2011070077A2 (en) 2009-12-09 2011-06-16 Dsm Ip Assets B.V. Novel compound
CN102655849B (zh) 2009-12-09 2015-04-15 帝斯曼知识产权资产管理有限公司 新颖的化合物
DE102009059104A1 (de) 2009-12-18 2011-06-22 Johannes-Gutenberg-Universität Mainz, 55122 Funktionelle verzweigte Polyether Copolymere sowie Verfahren zu ihrer Herstellung
US8475774B2 (en) 2010-02-08 2013-07-02 Johnson & Johnson Consumer Companies, Inc. Sunscreen compositions comprising an ultraviolet radiation-absorbing polymer
US8211850B2 (en) 2010-11-15 2012-07-03 Johnson & Johnson Consumer Companies, Inc. Polyglyceryl compounds and compositions
US20140004058A1 (en) 2012-06-28 2014-01-02 Johnson & Johnson Consumer Companies, Inc. Sunscreen compositions containing an ultraviolet radiation-absorbing polyester
US20140004056A1 (en) 2012-06-28 2014-01-02 Susan Daly Sunscreen compositions containing an ultraviolet radiation-absorbing polyester
US20140004055A1 (en) 2012-06-28 2014-01-02 Susan Daly Sunscreen compositions containing an ultraviolet radiation-absorbing polyester
US9255180B2 (en) 2012-06-28 2016-02-09 Johnson & Johnson Consumer Inc. Ultraviolet radiation absorbing polyethers
US9469725B2 (en) 2012-06-28 2016-10-18 Johnson & Johnson Consumer Inc. Ultraviolet radiation absorbing polymers
EP2866783B1 (en) 2012-06-28 2018-01-10 Johnson & Johnson Consumer Inc. Sunscreen compositions containing an ultraviolet radiation-absorbing polymer
US20140004057A1 (en) 2012-06-28 2014-01-02 Johnson & Johnson Consumer Companies, Inc. Sunscreen compositions containing an ultraviolet radiation-absorbing polyester
US20140004059A1 (en) 2012-06-28 2014-01-02 Johnson & Johnson Consumer Companies, Inc. Sunscreen compositions containing an ultraviolet radiation-absorbing polyester
US20140004054A1 (en) 2012-06-28 2014-01-02 Susan Daly Sunscreen compositions containing an ultraviolet radiation-absorbing polyester
US20150164771A1 (en) 2013-12-18 2015-06-18 Johnson & Johnson Consumer Companies, Inc. Sunscreen compositions containing an ultraviolet radiation-absorbing polymer
US10874603B2 (en) 2014-05-12 2020-12-29 Johnson & Johnson Consumer Inc. Sunscreen compositions containing a UV-absorbing polyglycerol and a non-UV-absorbing polyglycerol

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322522A (en) * 1980-07-08 1982-03-30 Akzona Incorporated Polyester/polyether segmented copolymers stabilized against degradation by UV light via copolymerization with analogs of 2,2,6,6-tetramethylpiperidine derivatives
JPS6099186A (ja) * 1983-11-04 1985-06-03 Pola Chem Ind Inc 高分子量紫外線吸収及びこれを含有する化粧料
US5039782A (en) * 1990-12-11 1991-08-13 Lever Brothers Company, Division Of Conopco, Inc. Polymeric whitening agent
EP0523955A2 (en) * 1991-07-17 1993-01-20 Unilever Plc Water dispersible or water soluble copolymer containing UV-absorbing monomer
WO1996003369A1 (en) * 1994-07-26 1996-02-08 The Procter & Gamble Company Fatty amine derivatives of butylated hydroxy toluene for the protection of surfaces from physical and chemical degradation
WO2005092282A1 (en) * 2004-03-25 2005-10-06 Dsm Ip Assets B.V. Uv absorbing chromophores covalently bonded to hyperbranched polymers
RU2009124703A (ru) * 2008-06-30 2011-01-10 Джонсон Энд Джонсон Конзьюмер Компаниз, Инк. (Us) Композиции, содержащие поглощающий ультрафиолетовое излучение полимер
WO2011070050A1 (en) * 2009-12-09 2011-06-16 Dsm Ip Assets B.V. Uv absorbing dentritic polyether prepared by polymerization of oxetanes
JP6099186B2 (ja) * 2012-07-10 2017-03-22 国立研究開発法人国際農林水産業研究センター キャッサバ粕の処理方法

Also Published As

Publication number Publication date
AU2013206511A1 (en) 2014-01-16
RU2013129556A (ru) 2015-01-10
TW201414521A (zh) 2014-04-16
CA2819831C (en) 2021-07-13
US9758618B2 (en) 2017-09-12
US9255180B2 (en) 2016-02-09
CN111454445A (zh) 2020-07-28
KR20140001796A (ko) 2014-01-07
CA2819831A1 (en) 2013-12-28
EP2679616B1 (en) 2018-05-16
KR102404300B1 (ko) 2022-06-07
NZ612371A (en) 2014-06-27
CN103601882A (zh) 2014-02-26
TWI624289B (zh) 2018-05-21
ES2673961T3 (es) 2018-06-26
ZA201304820B (en) 2015-06-24
BR102013016646A2 (pt) 2018-02-27
EP2679616A1 (en) 2014-01-01
BR102013016646B8 (pt) 2022-08-16
BR102013016646B1 (pt) 2020-11-24
AU2013206511B2 (en) 2016-06-09
US20140004061A1 (en) 2014-01-02
US20160137780A1 (en) 2016-05-19
KR20200019916A (ko) 2020-02-25

Similar Documents

Publication Publication Date Title
RU2635624C2 (ru) Полиэфиры, поглощающие ультрафиолетовое излучение
RU2678580C2 (ru) Солнцезащитные композиции, содержащие поглощающий ультрафиолетовое излучение полимер
RU2642974C2 (ru) Поглощающие ультрафиолетовое излучение полимеры