RU2634615C1 - Filter of interference rejection - Google Patents
Filter of interference rejection Download PDFInfo
- Publication number
- RU2634615C1 RU2634615C1 RU2016145195A RU2016145195A RU2634615C1 RU 2634615 C1 RU2634615 C1 RU 2634615C1 RU 2016145195 A RU2016145195 A RU 2016145195A RU 2016145195 A RU2016145195 A RU 2016145195A RU 2634615 C1 RU2634615 C1 RU 2634615C1
- Authority
- RU
- Russia
- Prior art keywords
- unit
- inputs
- complex
- delay
- block
- Prior art date
Links
- 230000021615 conjugation Effects 0.000 claims abstract description 6
- 238000000605 extraction Methods 0.000 abstract description 5
- 230000001427 coherent effect Effects 0.000 abstract description 2
- 238000004891 communication Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 230000008707 rearrangement Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000003111 delayed effect Effects 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S13/522—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
- G01S13/524—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S13/522—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
- G01S13/524—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
- G01S13/526—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on the whole spectrum without loss of range information, e.g. using delay line cancellers or comb filters
- G01S13/528—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on the whole spectrum without loss of range information, e.g. using delay line cancellers or comb filters with elimination of blind speeds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/36—Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
Изобретение относится к радиолокационной технике и может быть использовано в когерентно-импульсных радиолокационных системах для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов.The invention relates to radar technology and can be used in coherent-pulse radar systems to isolate the signals of moving targets against the background of passive interference during group tuning of the carrier frequency of the probe pulses.
Известно радиолокационное устройство для обнаружения движущейся цели [1], содержащее последовательно включенные блоки задержки, умножитель комплексных чисел и вычитатель. Однако это устройство обладает низкой эффективностью выделения сигнала движущейся цели.Known radar device for detecting a moving target [1], containing sequentially included delay blocks, a complex number multiplier and a subtractor. However, this device has a low signal extraction efficiency for a moving target.
Другим известным устройством является корреляционный автокомпенсатор [2], который содержит ряд блоков задержки, два перемножителя, сумматор и блок оценки параметров коррелированной помехи. Недостатком этого устройства является плохое подавление кромок протяженной помехи из-за большой постоянной времени цепи адаптивной обратной связи.Another known device is the correlation auto-compensator [2], which contains a number of delay units, two multipliers, an adder and a unit for estimating the parameters of the correlated noise. The disadvantage of this device is the poor suppression of the edges of the extended interference due to the large time constant of the adaptive feedback circuit.
Наиболее близкое к изобретению цифровое устройство для подавления пассивных помех [3], выбранное в качестве прототипа, содержит два блока задержки, блок весовых коэффициентов, два комплексных перемножителя, весовой блок и комплексный сумматор. Однако данное устройство из-за переходного процесса при поступлении кромки пассивной помехи имеет низкую эффективность выделения сигналов движущихся целей.Closest to the invention, a digital device for suppressing passive interference [3], selected as a prototype, contains two delay blocks, a block of weight coefficients, two complex multipliers, a weight block and a complex adder. However, this device due to the transient process upon receipt of the edge of the passive interference has a low efficiency of signal extraction of moving targets.
Задачей, решаемой в изобретении, является повышение эффективности режектирования пассивной помехи и выделения сигналов движущихся целей при обработке группы импульсов на фоне пассивных помех с априорно неизвестной доплеровской скоростью.The problem to be solved in the invention is to increase the efficiency of rejecting passive interference and isolating signals of moving targets when processing a group of pulses against a background of passive interference with an a priori unknown Doppler speed.
Для решения поставленной задачи в фильтр режектирования помех, содержащий первый и второй блоки задержки, блок весовых коэффициентов, первый и второй комплексные перемножители, весовой блок, комплексный сумматор и синхрогенератор, введены третий блок задержки, блок комплексного сопряжения, блок переключения, блок точности, блок коммутации и двухканальный коммутатор.To solve this problem, an interference rejection filter, containing the first and second delay blocks, a weight coefficient block, the first and second complex multipliers, a weight block, a complex adder and a clock generator, introduces a third delay block, a complex conjugation block, a switching block, an accuracy block, a block switching and two-channel switch.
Дополнительные блоки, введенные в предлагаемое устройство, являются известными. Так, соединенные вместе первый блок задержки, первый комплексный перемножитель, весовой блок и комплексный сумматор применяются для режектирования пассивных помех, однако неизвестно их применение совместно с блоком коммутации и двухканальным коммутатором для более точной компенсации помехи. Новыми являются связи между третьим блоком задержки и весовым блоком, блоком весовых коэффициентов и блоком переключения и весовым блоком, блоком точности и вторым комплексным перемножителем, вторым блоком задержки, двухканальным коммутатором, вторым комплексным перемножителем и блоком коммутации, а также связи между синхрогенератором и введенными блоками устройства, обеспечивающими оптимальную и согласованную обработку группы импульсов, что приводит с учетом более точной компенсации помехи к повышению эффективности выделения сигналов движущихся целей при перестройке несущей частоты на фоне пассивных помех с априорно неизвестной доплеровской скоростью.Additional blocks introduced into the proposed device are known. Thus, the first delay unit, the first complex multiplier, the weight unit, and the complex adder connected together are used for rejecting passive interference, but their application together with the switching unit and two-channel switch is not known for more accurate interference compensation. The links between the third delay unit and the weight unit, the weighting unit and the switching unit and the weight unit, the accuracy unit and the second complex multiplier, the second delay unit, the two-channel switch, the second complex multiplier and the switching unit, as well as the communication between the sync generator and input units are new devices that provide optimal and consistent processing of a group of pulses, which, taking into account more accurate compensation of interference, leads to an increase in the efficiency of signal isolation In the process of tuning the carrier frequency against the background of passive interference with an a priori unknown Doppler speed.
Сравнение с техническими решениями, известными из опубликованных источников информации, показывает, что заявляемое решение обладает новизной и имеет изобретательский уровень.Comparison with technical solutions known from published sources of information shows that the claimed solution has novelty and has an inventive step.
Заявляемое решение носит технический характер, осуществимо, воспроизводимо и, следовательно, является промышленно применимым.The claimed solution is technical in nature, feasible, reproducible and, therefore, is industrially applicable.
На фиг. 1 представлена структурная электрическая схема фильтра режектирования помех; на фиг. 2 - блок задержки; на фиг. 3 - блок комплексного сопряжения; на фиг. 4 - комплексный перемножитель; на фиг. 5 - весовой блок; на фиг. 6 - комплексный сумматор; на фиг. 7 - блок переключения; на фиг. 8 - блок точности; на фиг. 9 - накопитель; на фиг. 10 - блок вычисления модуля; на фиг. 11 - двухканальный коммутатор.In FIG. 1 is a block diagram of an interference rejection filter; in FIG. 2 - delay unit; in FIG. 3 - block complex conjugation; in FIG. 4 - complex multiplier; in FIG. 5 - weight block; in FIG. 6 - complex adder; in FIG. 7 - switching unit; in FIG. 8 - precision block; in FIG. 9 - drive; in FIG. 10 - unit calculation module; in FIG. 11 - two-channel switch.
Фильтр режектирования помех (фиг. 1) содержит первый блок 1 задержки, блок 2 весовых коэффициентов, первый комплексный перемножитель 3, весовой блок 4, комплексный сумматор 5, второй комплексный перемножитель 6, второй блок 7 задержки, синхрогенератор 8, третий блок 9 задержки, блок 10 комплексного сопряжения, блок 11 переключения, блок 12 точности, блок 13 коммутации и двухканальный коммутатор 14.The interference rejection filter (Fig. 1) comprises a
Блоки 1, 7 и 9 задержки (фиг. 2) содержат два оперативных запоминающих устройства 15; блок 10 комплексного сопряжения (фиг. 3) содержит инвертор 16; комплексный перемножитель 3, 6 (фиг. 4) содержит два канала (I, II), каждый из которых содержит перемножители 17, 18 и сумматор 19; весовой блок 4 (фиг. 5) содержит два перемножителя 20; комплексный сумматор 5 (фиг. 6) содержит два сумматора 21; блок 11 переключения (фиг. 7) содержит счетчик 22, дешифратор 23, блоки 24 совпадений и сумматор 25; блок 12 точности (фиг. 8) содержит накопитель 26, блок 27 вычисления модуля и два делителя 28; накопитель 26 (фиг. 9) содержит два канала (I, II), состоящих из n элементов 29 задержки на интервал tд и n сумматоров 30; блок 27 вычисления модуля (фиг. 10) содержит два перемножителя 31, сумматор 32 и блок 33 извлечения квадратного корня; двухканальный коммутатор 14 (фиг. 11) содержит два коммутатора 34.
Фильтр режектирования помех работает следующим образом.The interference rejection filter operates as follows.
Группа когерентных радиоимпульсов, первоначально излученных с одинаковой несущей частотой и состоящих из сигнала от движущейся цели и пассивной помехи, значительно превышающей сигнал, поступает на вход радиоприемного устройства, в котором усиливается, в квадратурных фазовых детекторах переносится на видеочастоту, а затем подвергается аналого-цифровому преобразованию (соответствующие блоки на фиг. 1 не показаны).A group of coherent radio pulses, initially radiated with the same carrier frequency and consisting of a signal from a moving target and passive interference significantly exceeding the signal, is fed to the input of a receiving device, in which it is amplified, is transferred to the video frequency in quadrature phase detectors, and then subjected to analog-to-digital conversion (corresponding blocks in Fig. 1 are not shown).
Цифровые коды обеих квадратурных проекций, следующие через период повторения T, в каждом элементе разрешения по дальности (кольце дальности) каждого периода повторения образуют комплексные числаDigital codes of both quadrature projections following through the repetition period T, in each range resolution element (range ring) of each repetition period form complex numbers
, ,
где k - номер текущего периода, - номер текущего кольца дальности, - доплеровский сдвиг фазы за период повторения (обычно помехи, ввиду ее значительного превышения над сигналом), равный , здесь - доплеровская частота помехи.where k is the number of the current period, - number of the current range ring, - Doppler phase shift during the repetition period (usually interference, due to its significant excess over the signal), equal , here - Doppler interference frequency.
Цифровые отсчеты в заявляемом устройстве (фиг. 1) поступают на входы первого блока 1 задержки (фиг. 2) и на соединенные с ними входы третьего блока 9 задержки. Каждый из блоков 1, 7 и 9 задержки (фиг. 2) состоит из параллельно включенных оперативных запоминающих устройств (ОЗУ) 15. ОЗУ 15 блоков 1, 7 задержки служат для хранения отсчетов в течение одного периода T, а ОЗУ 15 третьего блока 9 задержки - в течение интервала τ.Digital readings in the inventive device (Fig. 1) are supplied to the inputs of the first delay unit 1 (Fig. 2) and to the inputs of the
В блоке 10 комплексного сопряжения с помощью инвертора 15 (фиг. 3) происходит инвертирование знака мнимых проекций задержанных отсчетов. В первом комплексном перемножителе 3 происходит перемножение соответствующих комплексных чисел, реализуемое путем операций с проекциями этих чисел в соответствии с фиг. 4. Образованные величиныIn
поступают в блок 12 точности (фиг. 8), в котором накопитель 26 (фиг. 9) осуществляет с помощью элементов 29 задержки и сумматоров 30 скользящее вдоль дальности в каждом периоде повторения суммирование произведений с n+1 смежных элементов разрешения по дальности строба, кроме элемента с номером n/2+1, для чего выходные величины элемента 29 задержки с номером n/2 поступают только на последующий элемент 29 задержки (фиг. 9). На выходах накопителя 26 (фиг. 9) образуются величиныenter the accuracy block 12 (Fig. 8), in which the drive 26 (Fig. 9) performs, using
где - оценка сдвига фазы помехи за период повторения, усредненная по n смежным элементам разрешения по дальности.Where - an estimate of the phase shift of the interference over the repetition period averaged over n adjacent range resolution elements.
В блоке 27 вычисления модуля (фиг. 10) определяются величины |Yk|, а затем на выходах делителей 28 (фиг. 8) - величины , поступающие на первые входы второго комплексного перемножителя 6.In
Выходные отсчеты блока 9 задержки поступают в весовой блок 4 (фиг. 5), в котором происходит взвешивание поступающих отсчетов весовыми коэффициентами gk, которые хранятся в блоке 2 весовых коэффициентов. Число весовых коэффициентов gk определяется реализуемым порядком фильтра режектирования помех m, связанным с числом импульсов в группе, равным m+1. В частности, при m=1 весовые коэффициенты g0=-g1=1; при m=2-g0=g2=1, g1=-2; при m=3-g0=-g3=1, g2=-g3=-3. Весовые коэффициенты переключаются в каждом периоде повторения блоком 11 переключения (фиг. 7), который обеспечивает обработку группы импульсов (отсчетов) с одинаковой исходной несущей частотой.The output samples of the
Импульс от синхронизатора радиолокатора (на фиг. 1 не показан), соответствующий излучению зондирующего импульса в каждом периоде, поступает на первый управляющий вход (1) фильтра режектирования помех (фиг. 1), являющийся первым управляющим входом (1) блока 11 переключения, а затем на счетный вход счетчика 22 (фиг. 7). Показания счетчика, соответствующие номеру импульса в группе, в дешифраторе 23 преобразуются в единичный сигнал на соответствующем номеру импульса выходе дешифратора 23. Этот сигнал открывает подключенный к нему каскад совпадений 24, через который проходит соответствующий весовой коэффициент, поступающий через сумматор 25 на выход блока 11 переключения. Таким образом, каждому импульсу в группе соответствует свой весовой коэффициент.The pulse from the radar synchronizer (not shown in Fig. 1), corresponding to the radiation of the probe pulse in each period, is fed to the first control input (1) of the interference rejection filter (Fig. 1), which is the first control input (1) of the
Взвешенные в весовом блоке 4 отсчеты суммируются в комплексном сумматоре 5 с задержанными во втором блоке 7 задержки на период повторения T, прошедшими через двухканальный коммутатор 14 и умноженными во втором комплексном перемножителе 6 на величину весовыми суммами отсчетов всех предыдущих импульсов группы. В конечном счете, в результате весовой обработки отсчетов m+1 периодов образуется величинаThe samples weighted in the
. .
Двумерный поворот задержанных отсчетов на угол обеспечивает синфазность суммируемых отсчетов, а их взвешивание коэффициентами gk - режектирование (компенсацию) слагаемых отсчетов помехи. Сигнал от движущейся цели из-за сохранения доплеровских сдвигов фазы не подавляется.Two-dimensional rotation of delayed samples at an angle provides the phase matching of the summed samples, and their weighing by the coefficients g k - reckoning (compensation) of the summands of the interference samples. The signal from a moving target due to the conservation of Doppler phase shifts is not suppressed.
В третьем блоке 9 задержки отсчеты задерживаются на интервал τ, равный задержке оценок по отношению к среднему элементу обучающей выборки, исключенному в накопителе 26 (фиг. 9) в соответствии с выражением (1). Величина τ определяется выражениемIn the
τ=tв+ntд/2,τ = t in + nt d / 2,
где tв - время вычисления оценки фазы помехи, n - количество элементов обучающей выборки, tд - интервал (период) дискретизации.where t in is the calculation time of the estimation of the interference phase, n is the number of elements of the training sample, t d is the interval (period) discretization.
При этом обеспечивается соответствие вводимых во втором комплексном перемножителе 6 фазовых сдвигов среднему элементу, исключенному из обучающей выборки. Тогда в случае сигнала, соизмеримого по величине с помехой, или разрывной помехи при режектировании отсчетов помехи с элемента разрешения, содержащего сигнал, исключается возможность ослабления или подавления сигнала за счет его влияния на используемые оценки.In this case, the correspondence of the 6 phase shifts introduced in the second complex multiplier to the middle element excluded from the training set is ensured. Then, in the case of a signal commensurate in magnitude with the interference, or discontinuous interference when rejecting the interference samples from the resolution element containing the signal, the possibility of attenuation or suppression of the signal due to its influence on the estimates used is excluded.
После завершения обработки данных m+1 периодов и очередной перестройки несущей частоты на вторые управляющие входы (2) устройства (фиг. 1) и блока 11 переключения (фиг. 7) и управляющий вход блока 13 коммутации поступает импульс, который обнуляет счетчик 22, а в блоке 13 коммутации переключает релаксационный генератор (мультивибратор). По команде блока 13 коммутации двухканальный коммутатор 14 переключает выход второго блока 7 задержки к выходу фильтра, и в течение периода повторения Т происходит считывание результатов режектирования V. На вход фильтра режектирования помех поступают и начинают обрабатываться данные первого периода следующей группы.After the processing of data of m + 1 periods and the next tuning of the carrier frequency to the second control inputs (2) of the device (Fig. 1) and the switching unit 11 (Fig. 7) and the control input of the
Синхронизация фильтра режектирования помех осуществляется подачей на все блоки заявляемого устройства последовательности синхронизирующих импульсов от синхрогенератора 8 (фиг. 1), управляемого совместно с блоком 11 переключения импульсами (1) синхронизатора радиолокатора (на фиг. 1 не показан), следующими с интервалом Т. Период повторения синхронизирующих импульсов равен интервалу дискретизации tд, выбираемому из условия требуемой разрешающей способности по дальности.The interference rejection filter is synchronized by applying to all the units of the claimed device a sequence of synchronizing pulses from the synchro-generator 8 (Fig. 1), controlled together with the radar synchronizer pulses (1) switching unit 11 (not shown in Fig. 1), following with an interval T. Period repetition of synchronizing pulses is equal to the interval discretization t d selected from the conditions of the required resolution in range.
Достигаемый технический результат состоит в следующем. На выход устройства не поступают некомпенсированные остатки помехи в переходном режиме, традиционно маскирующие сигнал от цели. В предлагаемом устройстве на выход поступают только скомпенсированные остатки помехи в установившемся режиме, что исключает эффект «кромки» помехи и повышает эффективность выделения сигналов движущихся целей.The technical result achieved is as follows. The output device does not receive uncompensated residual interference in the transition mode, traditionally masking the signal from the target. In the proposed device, the output receives only compensated residual noise in the steady state, which eliminates the effect of the "edge" of the noise and increases the efficiency of signal extraction of moving targets.
Таким образом, фильтр режектирования помех повышает эффективность компенсации пассивной помехи и выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестной доплеровской скоростью.Thus, the interference rejection filter increases the efficiency of compensating for passive interference and isolating the signals of moving targets against passive interference with an a priori unknown Doppler speed.
БиблиографияBibliography
1. Патент №63-49193 (Япония), МПК G01S 13/52. Радиолокационное устройство для обнаружения движущейся цели / К.К. Тосиба. Опубл. 03.10.1988. - Изобретения стран мира. - 1989. - Выпуск 109. - №15. - С. 52.1. Patent No. 63-49193 (Japan), IPC
2. Радиоэлектронные системы: основы построения и теория. Справочник / Я.Д. Ширман, С.Т. Багдасарян, А.С. Маляренко, Д.И. Леховицкий [и др.]; под ред. Я.Д. Ширмана. - 2-е изд., перераб. и доп. – М.: Радиотехника, 2007; с. 439, рис. 25.22.2. Radio-electronic systems: fundamentals of construction and theory. Reference book / Ya.D. Shirman, S.T. Baghdasaryan, A.S. Malyarenko, D.I. Lekhovitsky [et al.]; under the editorship of POISON. Shirman. - 2nd ed., Revised. and add. - M .: Radio engineering, 2007; from. 439, fig. 25.22.
3. Авт.св. СССР 743208, МПК G01S 7/36. Цифровое устройство для подавления пассивных помех / Д.И. Попов. - №2540079/09; заявл. 03.11.1977; опубл. 25.06.1980, Бюл. №23. - 4 с.3. Auto USSR 743208,
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016145195A RU2634615C1 (en) | 2016-11-17 | 2016-11-17 | Filter of interference rejection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016145195A RU2634615C1 (en) | 2016-11-17 | 2016-11-17 | Filter of interference rejection |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2634615C1 true RU2634615C1 (en) | 2017-11-02 |
Family
ID=60263818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016145195A RU2634615C1 (en) | 2016-11-17 | 2016-11-17 | Filter of interference rejection |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2634615C1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2759150C1 (en) * | 2021-03-24 | 2021-11-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Rotary filter |
RU2796445C1 (en) * | 2022-05-13 | 2023-05-23 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Noise rejection filter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU743208A1 (en) * | 1977-11-03 | 1980-06-25 | Рязанский Радиотехнический Институт | Digital device for suppressing passive noise |
FR2735634A1 (en) * | 1995-06-14 | 1996-12-20 | Alcatel Telspace | DEVICE FOR CORRECTING THE AMPLITUDE / FREQUENCY CHARACTERISTIC OF A SIGNAL HAVING TRANSITED THROUGH A CORRESPONDING CABLE AND FREQUENCY EQUALIZER |
SU1098399A1 (en) * | 1981-06-12 | 1998-12-20 | Рязанский Радиотехнический Институт | Device for adaptive noise rejection |
US8350746B2 (en) * | 2007-10-10 | 2013-01-08 | Semiconductor Ideas To The Market (Itom) B.V. | Anti jamming system |
RU158304U1 (en) * | 2015-07-03 | 2015-12-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | ADAPTIVE DEVICE FOR REJECTING PASSIVE INTERFERENCE |
RU2593276C1 (en) * | 2015-08-04 | 2016-08-10 | Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" | Method of selecting moving targets |
-
2016
- 2016-11-17 RU RU2016145195A patent/RU2634615C1/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU743208A1 (en) * | 1977-11-03 | 1980-06-25 | Рязанский Радиотехнический Институт | Digital device for suppressing passive noise |
SU1098399A1 (en) * | 1981-06-12 | 1998-12-20 | Рязанский Радиотехнический Институт | Device for adaptive noise rejection |
FR2735634A1 (en) * | 1995-06-14 | 1996-12-20 | Alcatel Telspace | DEVICE FOR CORRECTING THE AMPLITUDE / FREQUENCY CHARACTERISTIC OF A SIGNAL HAVING TRANSITED THROUGH A CORRESPONDING CABLE AND FREQUENCY EQUALIZER |
US8350746B2 (en) * | 2007-10-10 | 2013-01-08 | Semiconductor Ideas To The Market (Itom) B.V. | Anti jamming system |
RU158304U1 (en) * | 2015-07-03 | 2015-12-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | ADAPTIVE DEVICE FOR REJECTING PASSIVE INTERFERENCE |
RU2593276C1 (en) * | 2015-08-04 | 2016-08-10 | Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" | Method of selecting moving targets |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2759150C1 (en) * | 2021-03-24 | 2021-11-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Rotary filter |
RU2796445C1 (en) * | 2022-05-13 | 2023-05-23 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Noise rejection filter |
RU2817398C1 (en) * | 2023-05-31 | 2024-04-16 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Noise rejection filter |
RU222210U1 (en) * | 2023-08-22 | 2023-12-18 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | INTERFERENCE FILTER |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2628904C1 (en) | Computer for improvement of interference | |
RU2642418C1 (en) | Interference reject filter | |
RU2634190C1 (en) | Interference rejecting counter | |
RU2674468C1 (en) | Interference rejection filter | |
RU173289U1 (en) | INTERFERENCE COMPRESSION DEVICE | |
RU2680202C1 (en) | Calculator for interference rejecting | |
RU2634191C1 (en) | Interference rejection counter | |
RU2642808C1 (en) | Interference suppressor | |
RU2660803C1 (en) | Filter of noise notching | |
RU2634615C1 (en) | Filter of interference rejection | |
RU2579998C1 (en) | Adaptive band-stop filter | |
RU172405U1 (en) | PASSIVE INTERFERENCE REDUCTION DEVICE | |
RU2646330C1 (en) | Computer for rejective interference filtration | |
RU172504U1 (en) | COMPUTING DEVICE OF INTERFERENCE OF INTERFERENCE | |
RU2628907C1 (en) | Computer for interference compensation | |
RU2641647C1 (en) | Rejection filter | |
RU172404U1 (en) | PASSIVE INTERFERENCE MANAGER | |
RU2674467C1 (en) | Filter compensation of passive interference | |
RU172503U1 (en) | LIABILITY COMPUTER-REDUCER | |
RU182621U1 (en) | ADAPTIVE INTERFERENCE FILTER FILTER | |
RU2679972C1 (en) | Interference suppression computer | |
RU182703U1 (en) | INTERFERENCE REDUCTION COMPUTER | |
RU2680203C1 (en) | Calculator for interference rejection | |
RU2661914C1 (en) | Passive interference rejection filter | |
RU2658651C2 (en) | Interference compensation filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181118 |