RU2633858C1 - Способ производства холоднокатаной двухфазной феррито-мартенситной автолистовой стали - Google Patents
Способ производства холоднокатаной двухфазной феррито-мартенситной автолистовой стали Download PDFInfo
- Publication number
- RU2633858C1 RU2633858C1 RU2016148361A RU2016148361A RU2633858C1 RU 2633858 C1 RU2633858 C1 RU 2633858C1 RU 2016148361 A RU2016148361 A RU 2016148361A RU 2016148361 A RU2016148361 A RU 2016148361A RU 2633858 C1 RU2633858 C1 RU 2633858C1
- Authority
- RU
- Russia
- Prior art keywords
- temperature
- carried out
- steel
- rolled
- cold
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 26
- 239000010959 steel Substances 0.000 claims abstract description 26
- 238000000137 annealing Methods 0.000 claims abstract description 19
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 238000005098 hot rolling Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 238000005097 cold rolling Methods 0.000 claims abstract description 10
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 238000010583 slow cooling Methods 0.000 claims abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000003921 oil Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000011572 manganese Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 230000006835 compression Effects 0.000 claims description 4
- 238000007906 compression Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 238000004804 winding Methods 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 238000003723 Smelting Methods 0.000 claims 2
- 230000000694 effects Effects 0.000 abstract description 10
- 239000000126 substance Substances 0.000 abstract description 5
- 238000002844 melting Methods 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 3
- 230000032683 aging Effects 0.000 abstract description 2
- 238000005272 metallurgy Methods 0.000 abstract description 2
- 238000004321 preservation Methods 0.000 abstract 1
- 238000002791 soaking Methods 0.000 abstract 1
- 229910001566 austenite Inorganic materials 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000010955 niobium Substances 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 102220479482 Puromycin-sensitive aminopeptidase-like protein_C21D_mutation Human genes 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 239000011265 semifinished product Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа феррито-мартенситной стали способ включает выплавку стали, содержащей, мас.%: С 0,10-0,15, Si 0,10-0,40, Mn 1,8-2,4, Cr 0,20-0,40, Mo 0,10-0,40, Al 0,02-0,08, P не более 0,02, S не более 0,02, Fe и неизбежные примеси, горячую прокатку при температуре начала от 1050 до 1200°C и конца 800-890°C, смотку листа в рулон при 580-650°C, холодную прокатку с суммарным обжатием 45-70% на толщину 0,9-1,5 мм и термическую обработку в агрегате непрерывного действия путем нагрева до температуры отжига 730-790°C, выдержки, замедленного охлаждения до температур ниже Ar1, ускоренного охлаждения до 250-330°C и перестаривания при упомянутой температуре. Лист перемещают в агрегате со скоростью при условии: Vдв.пол=[(Тотж-680°С/k-10м/мин]÷[(Тотж-680°C/k+10 м/мин], где Vдв.пол - скорость движения полосы в агрегате, м/мин, k=1×мин×°C/м, Тотж - температура отжига, °C. 3 табл.
Description
Изобретение относится к области металлургии, а именно к способам производства холоднокатаных высокопрочных листовых двухфазных феррито-мартенситных сталей, которые могут быть использованы в автомобильной промышленности.
Основные требования к разработанной стали включают в себя: предел прочности (σв) не ниже 780 МПа, предел текучести (σт) в интервале 440-550 МПа, относительное удлинение (δ) не ниже 14%, ВН-эффект (ВН) не ниже 30 МПа. Также для автопроизводителей важен такой параметр как способность к раздаче отверстия (1), характеризующий способность проката к проведению холодной штамповке без возникновения дефектов.
Известен способ изготовления холодно- или горячекатаной ленты из двухфазной стали с повышенной прочностью и высокой характеристикой деформируемости, предназначенной, в частности, для автомобилей с облегченной конструкцией, содержащей следующие элементы, вес.%: углерод от 0,1 до 0,16, алюминий от 0,02 до 0,05, кремний от 0,40 до 0,60, марганец 1,5 до 2,0, фосфор меньше или равно 0,020, сера меньше или равно 0,003, азот меньше или равно 0,01, ниобий 0,01-0,04, ванадий 0,02-0,08, остальное - железо и присущие стали сопутствующие элементы, а также оптимальная добавка титана до 0,01, при этом двухфазная структура образуется при непрерывном отжиге, отличающийся тем, что холодно- или горячекатаную стальную ленту нагревают в проходной печи за одну стадию до температуры от 820 до 1000°С, предпочтительно от 840 до 1000°С, затем отожженную стальную ленту охлаждают с температуры отжига при скорости от 15 до 30°С/с. Способ обеспечивает получение однородных механических и технологических свойств при изготовлении ленты с изменяющейся толщиной по длине и ширине (Патент RU 2443787, МПК C21D 8/02, C21D 9/46, C22C 38/12, опубликован 27.02.2012.)
Недостаток данного способа заключается в том, что термообработка производится до температур значительно выше Ac3, что может привести к формированию разнозернистой структуры и, следовательно, к анизотропии свойств, также отсутствует отпуск проката после ускоренного охлаждения, что отрицательно сказывается на таких показателях пластичности, как относительное удлинение и способность к раздаче отверстия.
Известен способ производства холоднокатаных листов из двухфазной стали, содержащей в мас. %: 0,055≤С≤0,095, 2≤Mn≤2,6, 0,005≤Si≤0,35, S≤0,005, Р≤0,050, 0,1≤Al≤0,3, 0,05≤Мо≤0,2, 0,2≤Cr≤0,5, при условии, что Cr+2Мо≤0,6, Ni<0,1, 0,010≤Nb≤0,040, 0,010≤Ti≤0,050, 0,0005≤В≤0,0025, 0,002≤N≤0,007, остальное железо и неизбежные примеси, отливают полуфабрикат, нагревают его до 1150°C≤TR≤1250°C и подвергают горячей прокатке при температуре конца прокатки TFL≤Ar3, а затем сматывают в рулон при температуре в пределах 500°C≤Tbob≤570°C. Очищают от окалины и проводят холодную прокатку при обжатии от 30 до 80%. Холоднокатаный полуфабрикат нагревают со скоростью 1°C/сек≤VC≤5°C/сек до температуры отжига Тм, определяемой как Ас1+40°C≤Тм≤Ас3-30°C/сек, при которой выдерживают в течение времени 30 сек≤tм≤300 сек для образования структуры, содержащей аустенит, после чего охлаждают до температуры ниже Ms со скоростью V, достаточно высокой для превращения всего количества аустенита в мартенсит. Получаемые листы обладают хорошей способностью к формованию, особенно хорошей способностью к изгибам, при обеспечении прочности стали от 980 до 1100 МПа и удлинении при разрыве выше 9%. (Патент RU 2470087, МПК C22C 38/58, C21D 8/02, опубликован 20.12.2012.)
Недостаток данного способа заключается в том, что смотка при горячей прокатке в указанном интервале температур приведет к тому, что карбонитриды ниобия не будут выделятся во время смотки. Также не применяется отпуск после ускоренного охлаждения, что отрицательно сказывается на таких показателях пластичности, как относительное удлинение и способность к раздаче отверстия.
Наиболее близким аналогом заявленного изобретения является способ получения высокопрочного холоднокатаного стального листа с пределом прочности на разрыв 780 МПа или более. Способ включает получение слябов, из стали, содержащей, мас. %: С: 0,05-0,09, Si: 0,4-1,3, Mn: 2,5-3,2, Р: 0,001-0,05, N: 0,0005-0,006, Al: 0,005-0,1, Ti: 0,001-0,045, S в диапазоне, определяемом выражением (А), остальное - Fe и неизбежные примеси. Сталь может дополнительно содержать, мас. %: Nb 0,001-0,04, В 0,0002-0,0015, Мо 0,05-0,50, Са 0,0003-0,01, Mg 0,0002-0,01, REM 0,0002-0,01, Cu 0,2-2,0, Ni 0,05-2,0. Слябы помещают в печь повторного нагрева в состоянии высокой температуры или после охлаждения до комнатной температуры, нагревают в диапазоне температур от 1150 до 1250°C, затем подвергают чистовой прокатке в диапазоне температур от 800 до 950°C и охлаждают до температуры 700°C или ниже, и в результате получают горячекатаные стальные листы, которые подвергают травлению, холодной прокатке и отжигу при температуре от 700°C до менее 900°C. Микроструктура полученного стального листа состоит из 7% или больше бейнита, а остальное - феррит, мартенсит, закаленный мартенсит и остаточный аустенит или их комбинация. Лист обладает высокой прочностью и хорошей свариваемостью. (Патент RU 2312163, МПК C22C 38/04, опубликован 10.12.2007, описание, прототип.)
Недостатком способа – прототипа - является отсутствие таких важных показателей механических свойств, как ВН-эффект и способность к раздаче отверстия.
Техническим результатом настоящего изобретения является получение необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении комплекса механических свойств, присущего классу прочности 780 МПа двухфазной ферритомартенситной стали.
Указанный технический результат достигается тем, что в способе производства холоднокатаной двухфазной феррито-мартенситной автолистовой стали, включающем горячую прокатку, холодную прокатку на толщину 0,9-1,5 мм и термическую обработку в агрегате непрерывного действия по режиму, состоящую из нагрева до температуры отжига, выдержки, замедленного охлаждения до температур ниже Ar1, ускоренного охлаждения и перестаривания, согласно изобретению, горячую прокатку начинают в температурном интервале от 1050 до 1200°C и заканчивают в температурном интервале 800-890°C, температура смотки в рулон 580-650°C, холодную прокатку проводят с суммарным обжатием 45-70%, термическую обработку ведут при температуре отжига 730-790°C, окончание ускоренного охлаждения и перестаривания проводят при температурах 250-330°C, при этом сталь содержит следующие компоненты, мас. %:
Углерод 0,10-0,15
Кремний 0,10-0,40
Марганец 1,8-2,4
Хром 0,20 0,40
Молибден 0,10-0,40
Алюминий 0,02-0,08
Фосфор не более 0,02
Сера не более 0,02
Железо и неизбежные примеси остальное.
скорость движения полосы в агрегате задают в зависимости от температуры отжига в соответствии с условием
Vдв.пол=[(Тотж-680°С)/k-10 м/мин]÷[(Tотж-680°C)/ k+10 м/мин],
где Vдв.пол - скорость движения полосы в агрегате, м/мин,
k=1×мин×°C/м,
Тотж - температура отжига, °C.
Сущность изобретения заключается в том, что обеспечение необходимого комплекса механических свойств, включающего предел прочности, предел текучести, относительное удлинение, ВН-эффект, способность к раздаче отверстия достигается использованием определенного химического состава и способа получения проката двухфазной ферритомартенситной стали. Величина ВН-эффекта значительно изменяется при изменении скорости движения полосы при сохранении неизменной температуры отжига, так при снижении скорости движения полосы снижается и уровень ВН-эффекта. Также существует зависимость между способностью к раздаче отверстия и скоростью движения полосы, так при увеличении скорости движения полосы способность к раздаче отверстия снижается. Поэтому важно обеспечить сбалансированную скорость движения полосы, которая позволит сформироваться необходимому уровню механических свойств.
При температуре начала горячей прокатки ниже 1050°C способствует возрастанию нагрузки на клети стана горячей прокатки. Если температура начала горячей прокатки выше 1200°C, то происходит чрезмерный рост зерна аустенита и это снижает пластичность конечного проката.
Снижение температуры окончания прокатки ниже 800°C ведет к чрезмерному измельчению зеренной структуры, что приводит к повышенным значениям предела текучести. Если же температура окончания прокатки выше 890°C, то из-за высокой устойчивости аустенита в горячекатаном подкате формируется бейнит вместо перлита, при этом снижается технологичность холодной прокатки, а также это ведет к формированию более устойчивого аустенита при термической обработке, что в свою очередь формирует большое количество упрочняющей фазы и увеличивает предел текучести.
Температура смотки ниже 580°C также способствует формированию бейнита, что ведет к формированию более устойчивого аустенита при термической обработке, что в свою очередь формирует большое количество упрочняющей фазы и увеличивает предел текучести.
Обжатия при холодной прокатке ниже 45% недостаточно измельчают структуру из-за формирования недостаточного количества центров зарождения зерен. При обжатиях выше 70% сильно увеличивается плотность дислокаций, что приводит к более низким температурам начала рекристаллизации, увеличению размера зерна из-за развития собирательной рекристаллизации. Все это сильно снижает предел текучести.
Температура отжига ниже 730°C не позволяет в полной мере пройти рекристаллизации в результате чего снижается пластичность и может сформироваться анизотропия свойств. При температуре отжига выше 790°C из-за увеличения объемной доли аустенита увеличивается и количество упрочняющей фазы, что увеличивает предел текучести.
Снижение температуры перестаривания ниже 250°C не позволяет пройти отпуску мартенсита, в результате чего значительно снижается пластичность проката. Если же температура перестаривания поднимается выше 330°C, то происходит разупрочнение стали за счет процесса отпуска.
Содержание углерода, кремния, марганца, хрома и молибдена в заданных интервалах позволяет получить требуемый комплекс свойств, включающий в себя предел текучести, предел прочности, относительное удлинение, ВН-эффект, способность к раздаче отверстия. Снижение содержания этих элементов ниже заданного интервала значительно снижает весь комплекс свойств, в частности предел прочности, формируя более низкий класс прочности. Увеличение содержания этих элементов в свою очередь ведет к формированию более высокого класса прочности. Если же изменять содержание одного из указанных элементов, то возникает разбалансировка, ведущая к слабо прогнозируемым результатам по механическим свойствам. Содержание в заданном интервале алюминия, серы и фосфора позволяет минимизировать содержание в структуре неметаллических включений.
Примеры конкретного выполнения способа.
В вакуумной индукционной печи получено 3 плавки с химическим составом, представленным в таблице 1.
Горячую прокатку на толщину 3 мм производили по режиму: температура начала прокатки 1120°С, температура окончания прокатки Ткп=830°C. После окончания прокатки полосу охлаждали до температуры Тсм=630°C.
Холодную прокатку полос толщиной 3 мм осуществляли на толщину 1 мм (суммарное обжатие 66%).
Термическая обработка заключалась в нагреве до температуры отжига, выдержке при этой температуре, замедленном охлаждении до 680°C, ускоренном охлаждении до температуры перестаривания 250°C, выдержке при этой температуре и окончательном охлаждении. При этом скорость движения полосы (таблица 2) в агрегате непрерывного действия определялась исходя из температуры отжига, рассчитанной по формуле 1.
Vдв.пол=[(Тотж-680°C)/k-10 м/мин]÷[(Тотж-680°C)/k+10 м/мин],
Из полученного проката вырезались поперечные образцы для определения предела прочности на разрыв. Также проводились испытания для определения ВН-эффекта. Величина упрочнения при сушке (ВН) определялась по формуле:
где σTmin - минимальное значение предела текучести при растяжении после деформации 2% и выдержки при температуре 170°C в течение 20 минут; σ2 - напряжение при деформации 2%.
Полученные значения механических свойств приведены в таблице 3.
Видно, что прочность плавки 1 полностью соответствует требованиям, предъявляемым к двухфазным ферритомартенситным сталям класса прочности 780 МПа.
В плавке 2, с содержанием алюминия выше заявленных пределов, предел прочности значительно ниже необходимого уровня. Подобный эффект возникает из-за того, что алюминий сильно смещает критические точки в сторону более высоких температур в стали, в результате чего в стали остается больше феррита, который увеличивает относительное удлинение, но снижает при этом предел прочности.
Для плавки 3, имеющей химический состав, соответствующий заявленному составу, предел прочности не получен в результате того, что скорость движения полосы была очень низкой, как и температура отжига, в результате чего рекристаллизация произошла лишь частично.
Таким образом, показано, что совокупность заявленных признаков (химический состав, режимы горячей и холодной прокатки, термической обработки в пределах, указанных в формуле изобретения) обеспечивает получение двухфазных ферритомартенситных сталей с благоприятным комплексом механических свойств.
Claims (7)
- Способ производства холоднокатаного листа из двухфазной феррито-мартенситной стали, включающий выплавку стали, горячую прокатку, смотку в рулон, холодную прокатку на толщину 0,9-1,5 мм и термическую обработку в агрегате непрерывного действия путем нагрева до температуры отжига, выдержки, замедленного охлаждения до температур ниже Ar1, ускоренного охлаждения и перестаривания, отличающийся тем, что осуществляют выплавку стали, содержащей, мас.%:
-
углерод 0,10-0,15 кремний 0,10-0,40 марганец 1,8-2,4 хром 0,20-0,40 молибден 0,10-0,40 алюминий 0,02-0,08 фосфор не более 0,02 сера не более 0,02 железо и неизбежные примеси остальное, - при этом горячую прокатку начинают в температурном интервале от 1050 до 1200°C и заканчивают при 800-890°C, смотку в рулон ведут при 580-650°C, холодную прокатку проводят с суммарным обжатием 45-70%, нагрев под отжиг ведут до температуры 730-790°C, ускоренное охлаждение осуществляют до температуры 250-330°C и при упомянутой температуре проводят перестаривание, причем скорость движения полосы в агрегате задают в соответствии с условием:
- Vдв.пол=[(Тотж-680°C)/k-10 м/мин]÷[(Тотж-680°C)/k+10 м/мин],
- где Vцв.пол - скорость движения полосы в агрегате, м/мин,
- k=1×мин×°C/м,
- Тотж - температура отжига, °C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016148361A RU2633858C1 (ru) | 2016-12-09 | 2016-12-09 | Способ производства холоднокатаной двухфазной феррито-мартенситной автолистовой стали |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016148361A RU2633858C1 (ru) | 2016-12-09 | 2016-12-09 | Способ производства холоднокатаной двухфазной феррито-мартенситной автолистовой стали |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2633858C1 true RU2633858C1 (ru) | 2017-10-18 |
Family
ID=60129391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016148361A RU2633858C1 (ru) | 2016-12-09 | 2016-12-09 | Способ производства холоднокатаной двухфазной феррито-мартенситной автолистовой стали |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2633858C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2743946C1 (ru) * | 2019-11-05 | 2021-03-01 | Публичное акционерное общество "Магнитогорский металлургический комбинат" | Способ производства холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали |
RU2813161C1 (ru) * | 2023-03-31 | 2024-02-06 | Публичное акционерное общество "Магнитогорский металлургический комбинат" | Способ производства холоднокатаной стали повышенной коррозионной стойкости |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2312163C2 (ru) * | 2003-05-21 | 2007-12-10 | Ниппон Стил Корпорейшн | ВЫСОКОПРОЧНЫЙ ХОЛОДНОКАТАНЫЙ СТАЛЬНОЙ ЛИСТ С ПРЕДЕЛОМ ПРОЧНОСТИ НА РАЗРЫВ 780 МПа ИЛИ БОЛЕЕ, ИМЕЮЩИЙ ПРЕВОСХОДНУЮ ЛОКАЛЬНУЮ ДЕФОРМИРУЕМОСТЬ И ЗАМЕДЛЕННОЕ ПОВЫШЕНИЕ ТВЕРДОСТИ МЕСТА СВАРКИ |
RU2361936C1 (ru) * | 2008-01-09 | 2009-07-20 | Открытое акционерное общество "Северсталь" (ОАО "Северсталь" | Способ производства горячеоцинкованного проката повышенной прочности |
RU2433192C1 (ru) * | 2010-08-13 | 2011-11-10 | Открытое акционерное общество "Северсталь" (ОАО "Северсталь") | Способ производства холоднокатаной полосы (варианты) |
US20150176108A1 (en) * | 2013-12-24 | 2015-06-25 | Nucor Corporation | High strength high ductility high copper low alloy thin cast strip product and method for making the same |
RU2574555C2 (ru) * | 2011-09-30 | 2016-02-10 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Высокопрочный гальванизированный погружением стальной лист, высокопрочный, подвергнутый легированию, гальванизированный погружением стальной лист с превосходной способностью к термическому упрочнению, и способ их изготовления |
-
2016
- 2016-12-09 RU RU2016148361A patent/RU2633858C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2312163C2 (ru) * | 2003-05-21 | 2007-12-10 | Ниппон Стил Корпорейшн | ВЫСОКОПРОЧНЫЙ ХОЛОДНОКАТАНЫЙ СТАЛЬНОЙ ЛИСТ С ПРЕДЕЛОМ ПРОЧНОСТИ НА РАЗРЫВ 780 МПа ИЛИ БОЛЕЕ, ИМЕЮЩИЙ ПРЕВОСХОДНУЮ ЛОКАЛЬНУЮ ДЕФОРМИРУЕМОСТЬ И ЗАМЕДЛЕННОЕ ПОВЫШЕНИЕ ТВЕРДОСТИ МЕСТА СВАРКИ |
RU2361936C1 (ru) * | 2008-01-09 | 2009-07-20 | Открытое акционерное общество "Северсталь" (ОАО "Северсталь" | Способ производства горячеоцинкованного проката повышенной прочности |
RU2433192C1 (ru) * | 2010-08-13 | 2011-11-10 | Открытое акционерное общество "Северсталь" (ОАО "Северсталь") | Способ производства холоднокатаной полосы (варианты) |
RU2574555C2 (ru) * | 2011-09-30 | 2016-02-10 | Ниппон Стил Энд Сумитомо Метал Корпорейшн | Высокопрочный гальванизированный погружением стальной лист, высокопрочный, подвергнутый легированию, гальванизированный погружением стальной лист с превосходной способностью к термическому упрочнению, и способ их изготовления |
US20150176108A1 (en) * | 2013-12-24 | 2015-06-25 | Nucor Corporation | High strength high ductility high copper low alloy thin cast strip product and method for making the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2743946C1 (ru) * | 2019-11-05 | 2021-03-01 | Публичное акционерное общество "Магнитогорский металлургический комбинат" | Способ производства холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали |
RU2813161C1 (ru) * | 2023-03-31 | 2024-02-06 | Публичное акционерное общество "Магнитогорский металлургический комбинат" | Способ производства холоднокатаной стали повышенной коррозионной стойкости |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7068434B2 (ja) | 高強度鋼板を製造する方法 | |
JP6893560B2 (ja) | 降伏比が低く均一伸びに優れた焼戻しマルテンサイト鋼及びその製造方法 | |
JP5292698B2 (ja) | 極軟質高炭素熱延鋼板およびその製造方法 | |
JP6703111B2 (ja) | 高強度及び優れた耐久性を有する自動車用部品及びその製造方法 | |
KR102478025B1 (ko) | 열간 압연 평탄형 강 제품 및 그 제조 방법 | |
US7794552B2 (en) | Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity | |
JP6236078B2 (ja) | 冷間圧延鋼板製品およびその製造方法 | |
JP6843244B2 (ja) | 曲げ加工性に優れた超高強度鋼板及びその製造方法 | |
JP4291860B2 (ja) | 高強度鋼板およびその製造方法 | |
JP5739669B2 (ja) | 延性に優れた高強度冷延鋼板の製造方法 | |
US11401569B2 (en) | High-strength cold-rolled steel sheet and method for manufacturing same | |
JP5365758B2 (ja) | 鋼板及びその製造方法 | |
JP4325223B2 (ja) | 焼付け硬化性に優れる超高強度冷延鋼板およびその製造方法 | |
JP2006097109A (ja) | 高炭素熱延鋼板およびその製造方法 | |
RU2743946C1 (ru) | Способ производства холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали | |
RU2633858C1 (ru) | Способ производства холоднокатаной двухфазной феррито-мартенситной автолистовой стали | |
RU2677426C1 (ru) | Способ производства горячекатаного проката из конструкционной стали | |
RU2633196C1 (ru) | Способ изготовления холоднокатаной двухфазной феррито-мартенситной стали, микролегированной ниобием | |
KR20230056822A (ko) | 연성이 우수한 초고강도 강판 및 그 제조방법 | |
KR20130046935A (ko) | 냉연강판 및 그 제조 방법 | |
KR102568217B1 (ko) | 구멍확장성이 우수한 초고강도 냉연강판 및 그 제조방법 | |
JPH09263838A (ja) | 伸びフランジ性に優れた高強度冷延鋼板の製造方法 | |
CN119256108A (zh) | 伸长率和扩孔性优异的超高强度钢板及其制造方法 | |
KR20240098674A (ko) | 강판 및 그 제조방법 | |
CN116194609A (zh) | 扩孔性优异的高强度钢板及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20180514 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181210 |
|
RH4A | Copy of patent granted that was duplicated for the russian federation |
Effective date: 20200220 |