[go: up one dir, main page]

RU2593418C2 - Способ определения запаса усталостной прочности каната - Google Patents

Способ определения запаса усталостной прочности каната Download PDF

Info

Publication number
RU2593418C2
RU2593418C2 RU2013157367/28A RU2013157367A RU2593418C2 RU 2593418 C2 RU2593418 C2 RU 2593418C2 RU 2013157367/28 A RU2013157367/28 A RU 2013157367/28A RU 2013157367 A RU2013157367 A RU 2013157367A RU 2593418 C2 RU2593418 C2 RU 2593418C2
Authority
RU
Russia
Prior art keywords
rope
force
measurement
calculation
bending
Prior art date
Application number
RU2013157367/28A
Other languages
English (en)
Other versions
RU2013157367A (ru
Inventor
Жиль ОВАНЕСЯН
Александр ШАПЕРОН
Эрик МЕЛЛЬЕ
Original Assignee
Солетанш Фрейсине
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Солетанш Фрейсине filed Critical Солетанш Фрейсине
Publication of RU2013157367A publication Critical patent/RU2013157367A/ru
Application granted granted Critical
Publication of RU2593418C2 publication Critical patent/RU2593418C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0025Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к способу определения запаса усталостной прочности каната, поддерживающего строительную конструкцию, а также к устройству определения запаса усталостной прочности такого каната. Способ определения запаса усталостной прочности каната, поддерживающего строительную конструкцию, содержит: этап (S1, S2) измерения, в ходе которого синхронно измеряют растягивающее усилие на канате и изгибающее усилие на канате, с тем чтобы получить комбинированное усилие на канате, этап (S3) расчета, в ходе которого на основании измеренных комбинированных усилий производят расчет числа циклов усилия в зависимости от амплитуды усилия, этап (S4) оценки запаса усталостной прочности каната, в ходе которого определяют запас усталостной прочности посредством сравнения результатов расчета, произведенного на этапе расчета, с кривой Велера, предварительно построенной для каната. Технический результат - обеспечение возможности отслеживания изменения первоначального запаса усталостной прочности каната, поддерживающего конструкцию, в ходе эксплуатации указанной конструкции. 2 н. и 13 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к способу определения запаса усталостной прочности каната, поддерживающего строительную конструкцию, а также к устройству определения запаса усталостной прочности такого каната.
Канатами поддерживаются многие строительные конструкции, в частности, но не исключительно, вантовые или висячие мосты.
Как правило, эти канаты закреплены на строительной конструкции при помощи средства крепления, которое может иметь вид анкерного крепления, которое не всегда является идеальным. В результате, в дополнение к продольному растягивающему усилию, канаты подвергаются действию паразитных изгибающих нагрузок, которые создают локальные изгибные напряжения.
Канаты подвергаются различным воздействиям, в частности так называемым статическим и динамическим воздействиям.
Как правило, статические воздействия связаны с медленными изменениями, например с колебаниями температуры, или с общими изменениями нагрузки на строительную конструкцию.
Динамические воздействия соответствуют более быстрым изменениям, например порывам ветра или прохождению грузовика по строительной конструкции.
Вытекающие из этих воздействий напряжения, даже если они не превышают запаса прочности каната, могут привести к разрыву указанного каната, если они повторяются многократно. В этом случае говорят об усталостном разрыве материала, из которого выполнен канат.
Существуют правила вычисления, позволяющие убедиться, что размеры канатов совместимы с воздействиями, которым конструкция должна подвергаться в течение срока ее службы.
Как правило, эти правила вычисления предусматривают на первом этапе определение запаса усталостной прочности или первоначального ресурса каната. На втором этапе производят оценку воздействий, которым будет подвергаться конструкция в течение срока службы, а также частотности этих воздействий. Наконец, проверяют, чтобы оценочные воздействия лишь частично влияли на первоначальный ресурс каната.
Канаты подвергаются действию усталости, в частности, в зоне их крепления, где колебания натяжения или осевые напряжения объединяются с изгибными напряжениями.
Изгибные напряжения, возникающие в канате, могут быть значительными, так как происходит изменение углового положения каната, в результате указанный канат теряет идеальное линейное совмещение с креплением. Колебание этого угла крепления, связанное с движениями конструкции, с колебаниями каната или с колебанием его цепочки, связанным с изменениями натяжения, приводит к переменным и значительным изгибным напряжениям.
Вычисления позволяют оценить во время проектирования усталостный износ канатов и, следовательно, срок их службы, но эти вычисления ограничены исходными гипотезами.
Например, в случае моста усталость канатов, связанная с автомобильным движением по мосту, основана на оценках, которые со временем могут быть превышены.
Кроме того, динамические воздействия, связанные с прохождением автопоездов, в частности колонн грузовиков, в настоящее время не поддаются нормальной оценке. Наконец, некоторые динамические воздействия, связанные с состоянием дорожного покрытия, просто невозможно спрогнозировать.
Кроме того, динамические воздействия ветра практически не поддаются количественной оценке. В ходе проектирования невозможно заранее прогнозировать колебания, их амплитуду и частотность появления.
Поэтому возникает необходимость в отслеживании изменения первоначального запаса усталостной прочности каната, поддерживающего конструкцию, в ходе эксплуатации указанной конструкции.
Таким образом, в случае ненормального сокращения запаса усталостной прочности или в случае, когда он практически исчерпан, можно планировать мероприятия по техническому обслуживанию или ремонту.
Настоящее изобретение обеспечивает способ, позволяющий определять запас усталостной прочности каната, поддерживающего строительную конструкцию.
В связи с этим объектом изобретения является способ определения запаса усталостной прочности каната, поддерживающего строительную конструкцию, содержащий:
- этап измерения, в ходе которого синхронно измеряют растягивающее усилие на канате и изгибающее усилие на канате, чтобы получить комбинированное усилие на канате,
- этап расчета, в ходе которого на основании измеренных комбинированных нагрузок производят расчет числа циклов нагрузок в зависимости от амплитуды нагрузки,
- этап оценки запаса усталостной прочности каната, в ходе которого определяют запас усталостной прочности посредством сравнения результатов расчета, произведенного на этапе расчета, с кривой Велера, предварительно построенной для каната.
Предпочтительно заявленный способ позволяет узнать реальную нагрузку, которой подвергается канат, и посредством экстраполяции оценить прошлую и будущую нагрузку и изменение запаса усталостной прочности указанного каната.
Способ определения запаса усталостной прочности каната в соответствии с изобретением может также иметь один или несколько из следующих факультативных признаков, рассматриваемых отдельно или в любых возможных комбинациях:
- измерение растягивающего усилия на канате производят напрямую, например, при помощи датчика усилия; и/или
- измерение растягивающего усилия на канате производят опосредованно, например, при помощи датчика деформации, установленного на креплении, или посредством измерения силы на одной пряди из множества прядей каната, или при помощи метода вибрирующей струны и посредством измерения собственных частот колебаний каната; и/или
- измерение изгибающего усилия на канате производят напрямую; и/или
- измерение изгибающего усилия на канате производят при помощи одного или нескольких датчиков деформации, установленных внутри крепления, или на креплении, или на канате; и/или
- измерение изгибающего усилия на канате производят опосредованно, например, посредством измерения перемещений каната в плоскости, секущей его ось, например перпендикулярной к этой оси, и на известном расстоянии от крепления; и/или
- измерение перемещений каната осуществляют в демпфере, установленном на канате для демпфирования поперечных колебаний; и/или
- измерение перемещений получают путем двойного интегрирования акселерометрических измерений; и/или
- измерение перемещений получают посредством интегрирования скоростей, получаемых при помощи геофона; и/или
- измерение растяжения и/или изгиба осуществляют с частотой примерно от 1 Гц до 1 кГц; и/или
- этап измерения осуществляют в течение как можно более короткого периода измерения, чтобы он был экономичным, но в то же время достаточно продолжительным для обеспечения репрезентативности и реалистической экстраполяции предыдущих или будущих нагрузок на период измерения; как правило, эта продолжительность составляет от одной недели до одного месяца; и/или
- этап измерения осуществляют непрерывно, начиная с момента установки каната, чтобы измерять усилия растяжения и изгиба в канате с момента его установки; и/или
- этап расчета осуществляют посредством расчета капельного типа; и/или
- хронологию или экстраполяцию прошлых усилий используют для сравнения реального усталостного износа каната с гипотетическими значениями, предназначенными во время строительства; и/или
- экстраполяции будущих усилий используют для оценки остаточного ресурса или срока службы каната относительно усталостного износа; и/или
- датчик перемещения, используемый для измерения изгиба, встроен в демпфер, используемый для ограничения колебаний каната; и/или
- датчик перемещения, встроенный в демпфер, используют также для измерения совокупного хода демпфера и для отслеживания его старения.
Объектом изобретения является также устройство, позволяющее определять запас усталостной прочности каната, поддерживающего строительную конструкцию, при этом устройство содержит средства для осуществления заявленного способа, а именно:
- средства измерения общего растягивающего усилия, действующего на канат,
- средства измерения общего изгибающего усилия, действующего на канат,
- средства расчета числа циклов усилия в зависимости от амплитуды усилий растяжения и изгиба, действующих на канат, и
- средства сравнения результатов расчета, произведенного средствами расчета, с кривой Велера, предварительно построенной для каната.
Заявленное устройство может также иметь один или несколько из следующих факультативных признаков, рассматриваемых отдельно или в любых возможных комбинациях:
- оно содержит средства тревожной сигнализации (16), позволяющие автоматически получать информацию, когда ресурс каната или его остаточный срок службы уменьшается ниже заранее определенного порога; и/или
- устройство крепления каната на строительной конструкции содержит демпфер, включающий в себя датчик, обеспечивающий измерение изгибного усилия на канате.
Изобретение будет более очевидно из нижеследующего описания, представленного исключительно в качестве примера, со ссылками на прилагаемые чертежи, на которых:
фиг.1 - различные этапы способа согласно варианту выполнения изобретения;
фиг.2 - схематичный вид канатного моста, содержащего заявленное устройство.
Для большей ясности различные элементы, представленные на чертежах, могут быть показаны не в масштабе.
Задачей изобретения является определение запаса усталостной прочности по меньшей мере одного каната, поддерживающего строительную конструкцию, в частности висячий мост или вантовый мост.
Согласно варианту выполнения способ в соответствии с изобретением содержит:
- этап измерения растяжения S1,
- этап измерения изгиба S2,
- этап расчета S3 и
- этап определения S4 запаса усталостной прочности каната.
В ходе этапов измерения растяжения S1 и измерения изгиба S2 измерения производят таким образом, чтобы оценить напряжения там, где усилия являются максимальными, либо в целом в зоне крепления каната строительной конструкции. Кроме того, этапы измерения растяжения S1 и измерения изгиба S2 осуществляют синхронно, чтобы получить измерение комбинированного усилия на канате.
Согласно варианту выполнения изобретения в ходе этапа измерения растяжения S1 измерение растягивающего усилия на канате можно осуществлять напрямую при помощи любого известного специалисту средства. Например, измерение растягивающего усилия можно осуществлять при помощи датчика усилия. В данном случае под «датчиком усилия» следует понимать датчик, специально разработанный для измерения натяжения в канате или в одной из прядей каната. Существует различные датчики этого типа. Предпочтительно этот вариант выполнения позволяет получать информацию прямого использования.
Согласно варианту выполнения изобретения в ходе этапа измерения растяжения S1 измерение растягивающего усилия на канате можно осуществлять опосредованно при помощи любого известного специалисту средства. Например, измерение растягивающего усилия можно осуществлять при помощи датчика деформации, установленного на креплении. В данном случае под «датчиком деформации» следует понимать датчик, позволяющий измерять изменение деформации стали в результате изменения усилия. Иногда эти датчики ошибочно называют тензометрами, так как знание модуля стали позволяет вычислять локальное напряжение на основании деформации (σ=Е·ε). Существуют различные датчики этого типа, работающие на электрических или оптических принципах. В этом случае может понадобиться интерпретация и, возможно, этап калибровки для оценки натяжения каната на основании измерений, произведенных датчиками. Как правило, этот вариант выполнения применяют, когда невозможно осуществить прямое измерение, например когда невозможно установить датчик.
Другой способ опосредованного измерения растягивающего усилия на многожильном канате, натянутом методом изонатяжения, обеспечивающим равнозначное натяжение жил (например, как описано в ЕР 0421862), может быть основан на измерении усилия на одной пряди.
Еще один способ опосредованного измерения растягивающего усилия на канате может предусматривать применение метода вибрирующей струны и измерение собственных частот колебаний каната.
Во время этапа измерения изгибающего усилия на канате выполняют измерения вблизи крепления указанного каната на конструкции, например на уровне крепления.
Согласно варианту выполнения изобретения измерение изгиба можно производить посредством измерения относительного наклона каната по отношению к его креплению в строительной конструкции.
Согласно варианту выполнения изобретения измерение изгибающего усилия на канате можно осуществлять напрямую при помощи любого известного специалисту средства.
Например, его можно осуществлять при помощи одного или нескольких датчиков деформации, установленных на креплении, или внутри крепления, или на канате. Предпочтительно можно использовать датчики такого же типа, что и для осевого измерения.
Согласно варианту выполнения изобретения измерение изгибающего усилия на канате можно осуществлять опосредованно при помощи любого известного специалисту средства. Например, его можно осуществлять посредством измерения перемещений каната в плоскости, секущей его ось, например перпендикулярной к его оси, и на заранее определенном расстоянии от крепления. Предпочтительно этот вариант выполнения не требует доступа к зоне максимального изгиба, который часто бывает затрудненным, или установки датчиков, обеспечивающих прямое измерение, которое часто невозможно произвести в этом месте.
Общее изгибающее усилие можно определить при помощи датчика, позволяющего измерять угол, который канат образует относительно своего крепления. Это измерение угла позволяет путем вычисления определить изгибное напряжение, которое возникает в канате.
Для измерения изгибающего усилия на канате можно использовать измерители угла наклона. Согласно варианту выполнения изобретения первый измеритель угла наклона располагают на канате на выходе крепления, что позволяет определить абсолютный наклон указанного каната.
Второй измеритель угла наклона, располагаемый на конструкции вблизи крепления, позволяет определить абсолютный наклон указанной конструкции. Разность наклонов позволяет определить относительный наклон каната в его креплении, при этом крепление жестко соединено с конструкцией.
Согласно другому варианту выполнения изобретения можно определять изгибающее усилие на уровне крепления посредством измерения перемещения каната по отношению к конструкции на определенном расстоянии от крепления.
Предпочтительно это расстояние является достаточно большим, чтобы перемещения были значительными и измеряемыми, и достаточно малым, чтобы можно было упростить вычисление, уподобив канат закрепленной балке, конец которой подвергается действию нагрузки. Порядок величины составляет от 1 до 10 м.
Вычисление изгибающего усилия на основании измеренного перемещения должно соответствовать конфигурации каната и крепления (размеры, присутствие отклоняющего устройства и т.д.).
Например, в случае канатов, нижнее крепление которых находится в настиле моста, предпочтительным является расстояние, соответствующее выходу трубчатого чехла.
На некоторых мостах выход трубчатого чехла оборудован демпфером. В этом случае предпочтительно датчик перемещения можно встроить в демпфер. При этом, в дополнение к оценке изгибающего усилия на канате на выходе крепления, он позволяет отслеживать совокупный ход демпфера, что является существенным параметром для отслеживания его старения и для планирования его обслуживания. Это измерение можно осуществлять при помощи датчиков перемещения, или посредством видеосъемки в сочетании с анализом изображения, или при помощи любого другого известного специалисту средства.
Согласно варианту выполнения изобретения этапы измерения растяжения S1 и измерения изгиба S2 можно осуществлять с частотой, превышающей или равной 1 Гц, например превышающей или равной 10 Гц, и меньшей или равной 1 кГц, например меньшей или равной 500 Гц или меньшей или равной 100 Гц. На практике, значение в несколько Гц (предположим, от 10 Гц для «гибкого» сооружения до 50 Гц для «жесткого» сооружения) обычно является достаточным для измерения колебаний, связанных с первыми собственными модами колебаний.
Вместе с тем может потребоваться избыточность калибровки для измерения колебаний, связанных дорожным движением, или применение цифровой фильтрации, чтобы избежать явлений свертывания.
Предпочтительно частоту измерения выбирают таким образом, чтобы можно было учитывать наибольшее число изменений усилия в канате и, в частности, предельные значения, достигаемые в ходе каждого цикла.
Можно учитывать собственные частоты колебаний каната и скорость движения автопоездов вблизи каната. Как правило, за цикл колебания осуществляют около сорока измерений, и одно измерение производят примерно через каждые 10 см во время движения автопоезда на максимальной скорости.
Например, для автопоезда, движущегося со скоростью 100 км/ч, то есть 10000/3600 м/с, и при измерении через каждые 10 см данные регистрируются с частотой 10000/0.1/3600=примерно 300 Гц.
Этапы измерения растяжения S1 и измерения изгиба S2 осуществляют в течение максимально короткого периода измерения, чтобы обеспечивать экономичность, но в тоже время достаточно длительного, чтобы обеспечивать репрезентативность и реалистичную экстраполяцию нагрузок, предшествующих и последующих за периодом измерения. Как правило, эта продолжительность составляет от недели до месяца.
Способ в соответствии с изобретением дополнительно содержит этап расчета, в ходе которого на основании совокупного и измеренного усилия осуществляют расчет числа циклов усилия в зависимости от амплитуды усилия.
Согласно варианту выполнения изобретения этап расчета осуществляют посредством расчета типа «капельного».
Расчет «капельного» типа применяют для интерпретации нагрузки под напряжением в зависимости от длительности циклов простых напряжений, характеризующихся минимальным напряжением и максимальным напряжением. Речь идет о разложении нагрузки, связывая парами возрастающие минимумы и понижающиеся максимумы. Однако такое связывание может потребовать последующий анализ полной нагрузки в зависимости от времени и необходимость сохранения полной хронологии нагрузки. Чтобы избежать этого сохранения, алгоритм связывает пары минимумов и максимумов для получения частичных циклов во время нагрузки.
Этап определения запаса усталостной прочности каната позволяет определить запас усталостной прочности посредством сравнения расчета, осуществленного в ходе этапа расчета, с кривой Велера, предварительно построенной для каната.
Кривая Велера определяет отношение между прикладываемым напряжением σ (сигма), иногда обозначаемым S, и числом циклов при разрыве NR, иначе говоря, числом циклов, при котором наблюдают Р% разрывов. На практике кривую Велера получают для вероятности разрыва Р=0,5.
Предпочтительно хронологию или экстраполяцию прошлых усилий можно сравнить с усталостным износом, которому реально подвергается канат, чтобы проверить гипотетические значения, предполагаемые во время строительства сооружения.
Кроме того, можно применять экстраполяции будущих усилий, чтобы оценить ресурс или остаточный срок службы каната по отношению к усталостному износу.
Объектом изобретения является также устройство, позволяющее определить запас усталостной прочности каната, поддерживающего строительную конструкцию.
На фиг.2 показан пример строительной конструкции, поддерживаемой канатами.
На фиг.2 представлен схематичный вид вантового моста 1. Вантовый мост 1 содержит наклонные канаты 2, отходящие от опоры 6 и поддерживающие настил 4.
Показанный на фиг.2 мост оборудован устройством согласно варианту выполнения изобретения.
На уровне крепления каната 2 на настиле 4 расположены средства 8 измерения общего растягивающего усилия на канате.
Вдоль каната 2 расположены средства 10 измерения общего изгибающего усилия изгиба на канате.
Средства измерения общего растягивающего усилия 8 и изгибающего усилия 10 связаны со средством 12 расчета. Средство 12 расчета позволяет рассчитывать число циклов усилия в зависимости от амплитуды растягивающих и изгибающих усилий, действующих на канат. Например, средство расчета может представлять собой процессор, запрограммированный с возможностью осуществления расчета.
Согласно варианту выполнения, показанному на фиг.2, средство 12 расчета передает результат произведенного расчета в средства 14 сравнения. Средства 14 сравнения позволяют сравнить результат расчета, произведенного средством расчета, с кривой Велера, предварительно построенной для каната 2.
Согласно варианту выполнения заявленное устройство может содержать средства 16 тревожной сигнализации, позволяющие узнать, когда ресурс каната или его срок службы уменьшились ниже заранее определенного порога.
Изобретение не ограничивается описанными вариантами изобретения, возможности его интерпретации не ограничены, и оно может охватывать любой эквивалентный вариант выполнения.

Claims (15)

1. Способ определения запаса усталостной прочности каната, поддерживающего строительную конструкцию, содержащий:
- этап (S1, S2) измерения, в ходе которого синхронно измеряют растягивающее усилие на канате и изгибающее усилие на канате, чтобы получить комбинированное усилие на канате,
- этап (S3) расчета, в ходе которого на основании измеренных комбинированных усилий рассчитывают число циклов усилия в зависимости от амплитуды усилия,
- этап (S4) оценки запаса усталостной прочности каната, в ходе которого определяют запас усталостной прочности посредством сравнения результатов расчета, произведенного на этапе расчета, с кривой Велера, предварительно построенной для каната.
2. Способ по п.1, в котором измерение растягивающего усилия на канате производят напрямую, например, при помощи датчика усилия.
3. Способ по п.1, в котором измерение растягивающего усилия на канате производят опосредованно, например, при помощи датчика деформации, установленного на креплении или канате, или посредством измерения силы на одной пряди из множества прядей каната, или при помощи метода вибрирующей струны и посредством измерения собственных частот колебаний каната.
4. Способ по п.1, в котором измерение изгибающего усилия на канате производят напрямую.
5. Способ по п.1, в котором измерение изгибающего усилия на канате производят опосредованно, например, посредством измерения перемещений каната в плоскости, пересекающей его ось, и на известном расстоянии от крепления.
6. Способ по п.5, в котором измерение перемещений каната осуществляют в демпфере, установленном на канате для демпфирования его поперечных колебаний.
7. Способ по п.1, в котором измерения растяжения и/или изгиба осуществляют с частотой примерно от 1 Гц до 1 кГц.
8. Способ по п.1, в котором этап измерения осуществляют периодически с момента установки каната, при этом измеренные данные применяют для экстраполяции предыдущих или будущих нагрузок на период измерения.
9. Способ по п.1, в котором этап измерения осуществляют непрерывно, начиная с момента установки каната, с тем чтобы измерять растягивающие усилия и изгибающие усилия на канате с момента его установки.
10. Способ по п.1, в котором этап расчета осуществляют посредством расчета капельного типа.
11. Способ по п.1, в котором хронологию или экстраполяцию прошлых усилий используют для сравнения реального усталостного износа каната с гипотетическими значениями, предполагаемыми во время строительства.
12. Способ по п.1, в котором экстраполяции будущих усилий используют для оценки остаточного ресурса или срока службы каната относительно усталостного износа.
13. Устройство для определения запаса усталостной прочности каната (2), поддерживающего строительную конструкцию (1), содержащее средства для осуществления способа по любому из пп.1-12, а именно:
- средства (8) измерения общего растягивающего усилия на канате (2),
- средства (10) измерения общего изгибающего усилия на канате (2),
- средства (12) расчета числа циклов усилия в зависимости от амплитуды растягивающих и изгибающих усилий, действующих на канат, и
- средства (14) сравнения результатов расчета, произведенного средствами расчета, с кривой Велера, предварительно построенной для каната.
14. Устройство по п.13, дополнительно содержащее средства (16) тревожной сигнализации, позволяющие автоматически получать информацию, когда ресурс каната или его остаточный срок службы уменьшается ниже заранее определенного порога.
15. Устройство по п.13, в котором устройство крепления каната на строительной конструкции содержит демпфер, включающий в себя датчик, обеспечивающий измерение изгибающего усилия на канате.
RU2013157367/28A 2011-06-03 2012-06-04 Способ определения запаса усталостной прочности каната RU2593418C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11305684.0 2011-06-03
EP11305684.0A EP2530449B1 (fr) 2011-06-03 2011-06-03 Procédé de détermination du capital fatigue d'un cable
PCT/EP2012/060534 WO2012164104A1 (fr) 2011-06-03 2012-06-04 Procede de détermination du capital fatigue d'un câble

Publications (2)

Publication Number Publication Date
RU2013157367A RU2013157367A (ru) 2015-07-20
RU2593418C2 true RU2593418C2 (ru) 2016-08-10

Family

ID=46208072

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013157367/28A RU2593418C2 (ru) 2011-06-03 2012-06-04 Способ определения запаса усталостной прочности каната

Country Status (12)

Country Link
US (1) US9038478B2 (ru)
EP (1) EP2530449B1 (ru)
JP (1) JP6043788B2 (ru)
KR (1) KR101976655B1 (ru)
AU (1) AU2012264610B2 (ru)
DK (1) DK2530449T3 (ru)
ES (1) ES2472716T3 (ru)
HK (1) HK1174384A1 (ru)
MX (1) MX342745B (ru)
PL (1) PL2530449T3 (ru)
RU (1) RU2593418C2 (ru)
WO (1) WO2012164104A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU180016U1 (ru) * 2017-12-28 2018-05-30 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Устройство для моделирования характеристик натурных вант в упругоподобных моделях мостов

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868732A (zh) * 2014-03-10 2014-06-18 东南大学 线位移应变监测问题索载荷递进式识别方法
CN103852321A (zh) * 2014-03-10 2014-06-11 东南大学 角度监测问题索载荷递进式识别方法
CN103868716B (zh) * 2014-03-10 2016-04-06 东南大学 空间坐标监测问题索载荷角位移递进式识别方法
CN103868714A (zh) * 2014-03-10 2014-06-18 东南大学 线位移应变监测受损索载荷递进式识别方法
CN103868734A (zh) * 2014-03-10 2014-06-18 东南大学 线位移索力监测问题索载荷识别方法
CN103868706A (zh) * 2014-03-10 2014-06-18 东南大学 空间坐标监测受损索载荷线位移识别方法
CN103868742A (zh) * 2014-03-10 2014-06-18 东南大学 角位移应变监测问题索载荷递进式识别方法
CN103913324A (zh) * 2014-03-10 2014-07-09 东南大学 线位移空间坐标监测问题索载荷识别方法
CN103852334A (zh) * 2014-03-10 2014-06-11 东南大学 角度监测受损索载荷广义位移识别方法
CN103852333A (zh) * 2014-03-10 2014-06-11 东南大学 应变监测受损索载荷线位移识别方法
CN103852299A (zh) * 2014-03-10 2014-06-11 东南大学 线位移空间坐标监测受损索载荷识别方法
CN103868710A (zh) * 2014-03-10 2014-06-18 东南大学 应变监测受损索载荷递进式识别方法
CN103868736A (zh) * 2014-03-10 2014-06-18 东南大学 线位移索力监测受损索载荷递进式识别方法
CN103852303A (zh) * 2014-03-10 2014-06-11 东南大学 空间坐标监测受损索载荷递进式识别方法
CN103852301A (zh) * 2014-03-10 2014-06-11 东南大学 混合监测问题索载荷递进式识别方法
CN103852302A (zh) * 2014-03-10 2014-06-11 东南大学 混合监测受损索载荷识别方法
CN103913328A (zh) * 2014-03-10 2014-07-09 东南大学 广义位移混合监测受损索载荷递进式识别方法
JP6285230B2 (ja) * 2014-03-19 2018-02-28 株式会社ブリヂストン ホースの残存寿命予測方法及びホースの劣化度診断方法
CN103940626B (zh) * 2014-04-01 2016-06-01 上海交通大学 在役正交异性钢桥面板疲劳开裂后剩余使用寿命评估方法
CN105067318A (zh) * 2015-07-23 2015-11-18 东南大学 精简线位移空间坐标监测受损索载荷识别方法
CN105115753A (zh) * 2015-07-23 2015-12-02 东南大学 精简角度监测问题索载荷递进式识别方法
CN105403471B (zh) * 2015-12-22 2018-06-26 广东中德电缆有限公司 线缆柔软度测试机
CN105824988B (zh) * 2016-03-09 2019-01-29 华南理工大学 一种考虑索梁温差效应的混凝土斜拉桥的增量调索法
CN105865821A (zh) * 2016-05-19 2016-08-17 东南大学 一种装配式双塔地锚悬索桥模型试验系统
CN105928646B (zh) * 2016-07-15 2018-07-24 重庆交通大学 基于光纤分布式测量的斜拉索锚头性能衰退状态监测方法
US10883894B2 (en) * 2016-09-16 2021-01-05 Onesubsea Ip Uk Limited Conduit fatigue management systems and methods
EP3605051B1 (en) * 2017-03-31 2022-05-04 Nec Corporation Analyzing device, diagnosing device, analysis method, and computer-readable recording medium
DK3483579T3 (da) * 2017-11-08 2022-10-17 Nkt Hv Cables Ab Metode og system til træthedsovervågning af et undersøisk kabel i offshore operationer
JP7490505B2 (ja) 2020-09-01 2024-05-27 神鋼鋼線工業株式会社 線状体の張力及び剛性の算定方法
CN112749683B (zh) * 2021-01-27 2022-11-08 吉林大学 一种保留载荷时序的雨流计数方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652866B1 (fr) 1989-10-05 1994-01-07 Freyssinet International Perfectionnements aux procedes et dispositifs pour mettre sous tension des cables a brins multiples.
JP2003075301A (ja) * 2001-09-07 2003-03-12 Topy Ind Ltd 構造物の疲労亀裂モニタリングシステム
DE10340713B3 (de) * 2003-09-04 2005-04-14 Steag Ag Verfahren zum Bestimmen der Restlebensdauer von Trossen
KR100710662B1 (ko) * 2005-03-25 2007-04-23 감문호 구조물의 피로 강도 모니터링 시스템
FR2930337B1 (fr) * 2008-04-22 2011-03-25 Freyssinet Systeme pour obtenir des informations relativement a une canalisation et procede associe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Gilles Hovhanessian "Health Monitoring of Cable Stayed Structures Experience and Implementation", Conference: 2006 IMAC-XXIV: Conference & Exposition on Structural Dynamics, 12.11.2010. D Siegert et al "Fatigue of stay cables inside end fittings high frequencies of wind induced vibrations", 13.07.2004. M Poser at al "Bending Fatigue Tests on Stays Cables", 13.07.2008. Li H et al "Applications of optical fibre Bragg gratings sensing technology-based smart stay cables", Optics and Lasers in Engineering, Elsevier, vol.47., 01.10.2009. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU180016U1 (ru) * 2017-12-28 2018-05-30 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Устройство для моделирования характеристик натурных вант в упругоподобных моделях мостов

Also Published As

Publication number Publication date
MX2013014188A (es) 2014-09-25
AU2012264610A1 (en) 2014-01-16
ES2472716T3 (es) 2014-07-02
JP6043788B2 (ja) 2016-12-14
PL2530449T3 (pl) 2014-09-30
AU2012264610B2 (en) 2015-04-16
RU2013157367A (ru) 2015-07-20
KR20140036291A (ko) 2014-03-25
HK1174384A1 (en) 2013-06-07
MX342745B (es) 2016-10-10
EP2530449B1 (fr) 2014-04-23
JP2014517301A (ja) 2014-07-17
EP2530449A1 (fr) 2012-12-05
KR101976655B1 (ko) 2019-08-28
DK2530449T3 (da) 2014-06-23
US20140190268A1 (en) 2014-07-10
WO2012164104A1 (fr) 2012-12-06
US9038478B2 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
RU2593418C2 (ru) Способ определения запаса усталостной прочности каната
KR102488932B1 (ko) 진동-기반 승강기 인장 부재 마모 및 수명 모니터링 시스템
Wu et al. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads
JP6463028B2 (ja) 浮体施設の荷重・応力モニタリング方法及び浮体施設の荷重・応力モニタリングシステム
JP2008533482A (ja) 構造物内部の破断を検出する方法及びその方法を実施するシステム
EP3951344A1 (en) Methods and systems for damage evaluation of structural assets
Torres et al. Long-term static and dynamic monitoring to failure scenarios assessment in steel truss railway bridges: A case study
Nicoletti et al. Operational modal analysis for supporting the retrofit design of bridges
KR20080016116A (ko) 교량의 내하력 산정 기법
Fujino et al. Structural health monitoring of bridges in Japan: An overview of the current trend
KR102197696B1 (ko) 광섬유 기반 하이브리드 신경망 센서를 이용한 시설물 건전도 모니터링 시스템 및 그 방법
Cartiaux et al. Traffic and temperature effects monitoring on bridges by optical strands strain sensors
EP4075114A1 (en) Method for real-time monitoring of structural changes
KR20230159445A (ko) 구조 실패 위험을 결정하는 시스템 및 방법
Astiz Towards a standard policy for structural monitoring in cable-stayed bridges
Dammika et al. An investigation on modal damping ratio as an indicator of invisible damage in PC bridges
Araki et al. Ambient vibration testing of the hawkshaw bridge
Winkler Parallel monostrand stay cable bending fatigue: Static and dynamic experimental investigations
KR200239375Y1 (ko) 계측용 교좌장치
Naranjo-Pérez et al. Vibration-based NDT system for external tendons: Anomaly detection through machine learning classifiers
Winkler Parallel Mono-strand Stay Cable Bending Fatigue
Gangone et al. Wireless sensing system for bridge condition assessment and health monitoring
Tanaka et al. Damping properties of existing single-span prestressed concrete girder bridges with different service periods
Lee et al. Probabilistic fatigue life prediction for bridges using system reliability analysis and SHM-based finite element model updating
Kaiwan Traffic Volume Estimation using Dynamic Response Data acquired in a Cable-stayed Bridge