[go: up one dir, main page]

RU2588212C2 - Микроволновой плазменный газификатор с внешним нагревом и способ получения синтез-газа - Google Patents

Микроволновой плазменный газификатор с внешним нагревом и способ получения синтез-газа Download PDF

Info

Publication number
RU2588212C2
RU2588212C2 RU2014131270/05A RU2014131270A RU2588212C2 RU 2588212 C2 RU2588212 C2 RU 2588212C2 RU 2014131270/05 A RU2014131270/05 A RU 2014131270/05A RU 2014131270 A RU2014131270 A RU 2014131270A RU 2588212 C2 RU2588212 C2 RU 2588212C2
Authority
RU
Russia
Prior art keywords
synthesis gas
furnace body
temperature
plasma
gasifier
Prior art date
Application number
RU2014131270/05A
Other languages
English (en)
Other versions
RU2014131270A (ru
Inventor
Илун ЧЭНЬ
Яньфын ЧЖАН
Мингуй СЯ
Лян ЧЖАН
Original Assignee
Ухань Кайди Инджиниринг Текнолоджи Рисерч Инститьют Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011104494897A external-priority patent/CN102530859B/zh
Application filed by Ухань Кайди Инджиниринг Текнолоджи Рисерч Инститьют Ко., Лтд. filed Critical Ухань Кайди Инджиниринг Текнолоджи Рисерч Инститьют Ко., Лтд.
Publication of RU2014131270A publication Critical patent/RU2014131270A/ru
Application granted granted Critical
Publication of RU2588212C2 publication Critical patent/RU2588212C2/ru

Links

Images

Abstract

Изобретение может быть использовано для получения синтез-газа. Микроволновой плазменный газификатор содержит вертикально расположенный цилиндрический корпус 2, питающее устройство 1, верхнюю форсунку 5 распыления пара, нижнюю форсунку 4 диоксида углерода/пара, выпуск для синтез-газа, блок мониторинга 6, микроволновой генератор плазмы, внешнее нагревающее устройство 9. Способ газификации биотоплива с использованием микроволнового плазменного газификатора заключается в том, что получают синтез-газ, смешивают его с плазменными окислителями и осуществляют внешний нагрев газификатора с помощью непрореагировавших углеродных остатков и материалов слоя, нагреваемых во внешнем нагревающем устройстве 9. Изобретение позволяет повысить содержание эффективных компонентов в синтез-газе, создать более эффективный и экономичный процесс полной утилизации в комбинации с получением различных видов энергий. 3 н. и 6 з.п. ф-лы, 2 ил., 2 пр.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Данное изобретение касается газификации биомассы и твердых отходов и, более конкретно, газификатора и способа газификации биомассы и твердых отходов в синтез-газ высокого качества в присутствии внешней термической энергии и микроволновой плазмы.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Так как обычные основные источники энергии, такие как ископаемое топливо, быстро уменьшаются, человечество уделяет все большее и большее внимание низкокалорийным топливам, таким как биотопливо, уголь, городские твердые отходы и др., особенно биотопливо, которое, главным образом, включает в себя органическое вещество, полученное фотосинтезом. Таким образом, биотопливо происходит от солнечной энергии, которая является возобновляемой и имеет богатый и обширный источник.
В настоящее время среди многих путей превращения и применения энергии биомассы использование биомассы для получения синтез-газа является одним из наиболее эффективных вариантов. Как эффективно получать высококачественный синтез-газ, всегда было трудной проблемой в промышленности.
Обычная газификация биомассы в неподвижном слое отличается простой структурой, гибкой работой, длительным временем пребывания твердых материалов в неподвижном слое и высокой эффективностью крекинга. Топливо из биомассы в неподвижном слое требует только первоначального дробления, чтобы иметь однородный размер частиц. Однако температура газификации является низкой и неравномерной, содержание смолы является высоким, активные компоненты в синтез-газе малочисленны и эффективность газификации низкая, все это сильно ограничивает газификацию биомассы.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Ввиду вышеописанных проблем одной задачей данного изобретения является обеспечить микроволновой плазменный газификатор с внешним нагревом и способ его применения для газификации биомассы и твердых отходов с получением синтез-газа высокого качества.
Для достижения вышеуказанной цели приняты следующие технические схемы.
Микроволновой плазменный газификатор с внешним нагревом содержит вертикально расположенный корпус печи, питающее устройство, расположенное в средней части корпуса печи и сообщающееся с корпусом печи, один или два слоя микроволновых генераторов плазмы, внешний нагреватель, приспособленный подавать внешнюю термическую энергию для газификатора, и блок мониторинга. Корпус печи содержит верхнюю форсунку для распыления пара, нижнюю форсунку для распыления CO2/пара, выпуск для синтез-газа, расположенный в верхней части корпуса печи. Верхняя форсунка для распыления пара расположена в свободной зоне корпуса печи, а нижняя форсунка для распыления CO2/пара находится в зоне слоя корпуса печи; блок мониторинга расположен возле выпуска для синтез-газа; один или два слоя микроволновых генераторов плазмы находятся выше верхней форсунки в свободной зоне газификатора; каждый слой микроволновых генераторов плазмы содержит три или четыре впуска для рабочего газа, и поток плазмы распыляется в свободную зону газификатора горизонтально/тангенциально; внешний нагреватель интегрирован с корпусом печи или отделен от корпуса печи; и внешний нагреватель содержит выпуск для шлака для выпуска шлаков.
Выпуск для циркулирующего материала расположен в нижней части корпуса печи, а впуск для циркулирующего материала находится в верхней части корпуса печи или и выпуск для циркулирующего материала, и впуск для циркулирующего материала находятся на боковой стенке корпуса печи; внешний нагреватель отделен от корпуса печи и находится между выпуском для циркулирующего материала и впуском для циркулирующего материала, так что циркулирующие материалы могут вытекать из выпуска для циркулирующего материала, нагреваться внешним нагревателем и течь обратно в корпус печи через впуск для циркулирующего материала; источником тепла внешнего нагревателя являются микроволны, высокотемпературная микроволновая плазма, лазер, плазменная дуга, солнечная энергия или их комбинация.
Внешний нагреватель интегрирован с корпусом печи, и источником тепла внешнего нагревателя являются микроволны, высокотемпературная микроволновая плазма, лазер, плазменная дуга, солнечная энергия, высокотемпературный материал слоя из циркуляционного бойлера с псевдоожиженным слоем (CFB) или их комбинация.
Микроволновые генераторы плазмы имеют большое межэлектродное расстояние, высокую активность плазмы и широкой диапазон объема; источник микроволновой энергии микроволновых генераторов плазмы имеет базовую частоту 2,45 ГГц, и мощность одного микроволнового генератора плазмы находится в пределах 200 кВт.
Данное изобретение также обеспечивает способ газификации с использованием микроволнового плазменного газификатора с внешним нагревом. Данный способ применяет внешнюю термическую энергию, чтобы газифицировать биотопливо, и данный способ содержит следующие этапы:
1) введение сырья, содержащего биотопливо и твердые отходы, в корпус печи через питающее устройство, газификация и пиролиз данного сырья в зоне высокотемпературного слоя с получением синтез-газа, содержащего большое количество СО, Н2, CO2 и небольшое количество СН4 и смолы;
2) предоставление возможности синтез-газу течь вверх в свободную зону газификатора, запуск микроволновых генераторов плазмы, чтобы генерировать высокотемпературные плазменные окислители, имеющие высокую активность, высокую степень ионизации в неравновесном состоянии, так что синтез-газ смешивается с плазменными окислителями и крекирует, распыление пара в корпус печи из верхней форсунки, регулирование температуры свободной зоны между 1000 и 1200°С, регулирование скорости потока плазменных окислителей так, чтобы гарантировать, что синтез-газ остается в плазменной атмосфере в течение от 3 до 10 секунд, перемешивание потока плазмы так, чтобы интенсифицировать тепло- и массоперенос, и отбор конечного полученного синтез-газа из выпуска для синтез-газа, расположенного в верхней части корпуса печи;
3) распыление высокотемпературного CO2 и пара из нижней форсунки в корпус печи, так что углеродные остатки в зоне слоя уменьшаются или окисляются;
4) перенос непрореагировавших углеродных остатков и материалов слоя во внешний нагреватель через выпуск для циркулирующего материала, где углеродные остатки сгорают, материалы слоя нагреваются и отделяются от шлаков, и выпуск шлаков из выпуска для шлаков;
5) возврат отделенных материалов слоя в корпус печи из впуска для циркулирующего материала, течение материалов слоя вниз, теплообмен с высокотемпературным синтез-газом, текущим в обратную сторону, и выделение термической энергии в зоне слоя с получением температуры от 600 до 1000°С; перенос охлажденных материалов слоя во внешний нагреватель для повторного нагрева и повторение циркуляции несколько раз по необходимости; температура выпуска для циркулирующего материала составляет от 750 до 1200°С, а температура нагретых материалов слоя выше, чем температура зоны слоя; и
6) контроль с помощью блока мониторинга температуры и состава синтез-газа, регулирование скорости потока CO2, скорости потока пара и микроволновой мощности, чтобы гарантировать осуществления газификации.
На этапе 2) время пребывания синтез-газа, находящегося в плазменной атмосфере в свободной зоне, составляет от 3 до 6 секунд.
На этапе 2) время пребывания синтез-газа, находящегося в плазменной атмосфере в свободной зоне, составляет от 4 до 6 секунд.
На этапах 3)-5) температура реакции в зоне слоя газификатора регулируется от 600 до 850°С.
Данный способ применяет внешнюю термическую энергию, чтобы газифицировать биотопливо, и данный способ содержит следующие этапы:
1) введение сырья, содержащего биотопливо и твердые отходы, в корпус печи через питающее устройство, газификация и пиролиз данного сырья в зоне высокотемпературного слоя с получением синтез-газа, содержащего большое количество СО, Н2, CO2 и небольшое количество СН4 и смолы;
2) предоставление возможности синтез-газу течь вверх в свободную зону газификатора, запуск микроволновых генераторов плазмы, чтобы генерировать высокотемпературные плазменные окислители, имеющие высокую активность, высокую степень ионизации в неравновесном состоянии, так что синтез-газ смешивается с плазменными окислителями и крекирует, распыление пара в корпус печи из верхней форсунки, регулирование температуры свободной зоны между 1000 и 1200°С, регулирование скорости потока плазменных окислителей так, чтобы гарантировать, что синтез-газ остается в плазменной атмосфере в течение от 3 до 10 секунд, перемешивание потока плазмы так, чтобы интенсифицировать тепло- и массоперенос, и отбор конечного полученного синтез-газа из выпуска для синтез-газа, расположенного в верхней части корпуса печи;
3) нагрев газификатора с помощью внешнего нагревателя, расположенного у нижней части газификатора, так, чтобы поддерживать температуру в зоне слоя между 600 и 1000°С, а температуру в свободной зоне между 750 и 1600°С; и
4) контроль с помощью блока мониторинга температуры и состава синтез-газа, регулирование скорости потока CO2, скорости потока пара и микроволновой мощности, чтобы гарантировать осуществления газификации, и регулирование температуры выпуска для синтез-газа между 750 и 1200°С.
Преимущества согласно вариантам осуществления данного изобретения суммированы следующим образом.
1. Газификатор использует внешний нагреватель, чтобы подавать термическую энергию, поэтому химическая энергия биомассы может больше использоваться для генерации активных компонентов даже без добавления окислителей, и объемный процент активных компонентов (СО+Н2) в синтез-газе может превышать 90%.
2. Микроволновой генератор плазмы, расположенный в свободной зоне газификатора, способствует неравновесной реакции расщепления смолы, получается мало смолы или не получается совсем, тем самым достигается хорошая экономическая эффективность.
3. Газификатор не имеет особых требований к размеру частиц биотоплива, первоначальное дробление может удовлетворять требованиям размера частиц, и, таким образом, производственные затраты являются низкими, с хорошей экономической эффективностью.
4. Внешний источник тепла может быть любым типом источников тепла, например, промышленным отходящим теплом, что подходит для полной утилизации источников энергии.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Изобретение описывается ниже со ссылкой на сопровождающие чертежи, где:
Фиг. 1 показывает схематичное изображение микроволнового плазменного газификатора с внешним нагревом и схему последовательности действий способа газификации с его применением согласно одному варианту осуществления данного изобретения.
Фиг. 2 представляет собой вид в разрезе, сделанный по линии А-А на Фиг. 1.
На чертежах использовали следующие ссылочные обозначения: 1. Питающее устройство; 2. Корпус печи; 3. Микроволновой генератор плазмы; 4. Нижняя форсунка; 5. Верхняя форсунка; 6. Блок мониторинга; 7. Выпуск для циркулирующего материала; 8. Свободная зона газификатора; 9. Внешний нагреватель; 10. Впуск для циркулирующего материала.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
ПРИМЕР 1
Микроволновой плазменный газификатор с внешним нагревом содержит вертикально расположенный корпус печи 2, питающее устройство 1, сообщающееся с корпусом печи 2, микроволновой генератор 3 плазмы, внешний нагреватель 9, приспособленный подавать внешнюю термическую энергию для газификатора, и блок 6 мониторинга. Корпус печи 2 содержит верхнюю форсунку 5 для распыления пара, нижнюю форсунку 4 для распыления CO2/пара, выпуск для синтез-газа, расположенный в верхней части корпуса печи. Верхняя форсунка 5 для распыления пара расположена в свободной зоне корпуса печи, а нижняя форсунка 4 для распыления CO2/пара находится в зоне слоя корпуса печи. Блок 6 мониторинга расположен возле выпуска для синтез-газа. Выпуск 7 для циркулирующего материала расположен в нижней части корпуса печи, а впуск 10 для циркулирующего материала находится в верхней части корпуса печи. Внешний нагреватель 9 отделен от корпуса печи 2 и находится между выпуском 7 для циркулирующего материала и впуском 10 для циркулирующего материала, так что циркулирующие материалы могут вытекать из выпуска 7 для циркулирующего материала, нагреваться внешним нагревателем 9 и течь обратно в корпус печи через впуск 10 для циркулирующего материала. Внешний нагреватель содержит выпуск для шлака для выпуска шлаков.
Необязательно, выпуск 7 для циркулирующего материала и впуск 10 для циркулирующего материала находятся на боковой стенке корпуса печи 2.
Питающее устройство 1 расположено в средней части корпуса печи 2. Один или два слоя микроволновых генераторов плазмы 3 находятся выше верхней форсунки в свободной зоне 8 газификатора; каждый слой микроволновых генераторов плазмы содержит три или четыре впуска для рабочего газа, и поток плазмы распыляется в свободную зону 8 газификатора горизонтально/тангенциально. Генераторы микроволновой плазмы имеют большое межэлектродное расстояние, высокую активность плазмы и широкой диапазон объема; источник микроволновой энергии генераторов микроволновой плазмы имеет базовую частоту 2,45 ГГц, и мощность одного генератора микроволновой плазмы находится в пределах 200 кВт.
Источником тепла внешнего нагревателя 9 являются микроволны, высокотемпературная микроволновая плазма, лазер, плазменная дуга, солнечная энергия или промышленное отходящее тепло. Внешний нагреватель 9 нагревает материалы слоя, чтобы они имели высокую температуру для циркуляции. Во внешнем нагревателе 9 связанные углеродные материалы могут полностью сгорать, а материалы слоя и шлаки из биомассы могут полностью отделяться.
Способ газификации с использованием микроволнового плазменного газификатора с внешним нагревом содержит следующие этапы:
1) введение сырья, содержащего биотопливо и твердые отходы, в корпус печи 2 через питающее устройство 1, газификация и пиролиз данного сырья в зоне высокотемпературного слоя с получением синтез-газа, содержащего большое количество СО, Н2, CO2 и небольшое количество СН4 и смолы;
2) предоставление возможности синтез-газу течь вверх в свободную зону 8 газификатора, запуск микроволновых генераторов плазмы, чтобы генерировать высокотемпературные плазменные окислители, имеющие высокую активность, высокую степень ионизации в неравновесном состоянии, так что синтез-газ смешивается с плазменными окислителями и крекирует, распыление пара в корпус печи из верхней форсунки 5, регулирование температуры свободной зоны между 1000 и 1200°С, регулирование скорости потока плазменных окислителей так, чтобы гарантировать, что синтез-газ остается в плазменной атмосфере в течение от 3 до 10 секунд, перемешивание потока плазмы так, чтобы интенсифицировать тепло- и массоперенос, и отбор конечного полученного синтез-газа из выпуска для синтез-газа, расположенного в верхней части корпуса печи, причем полученный синтез-газ содержит мало смолы или не содержит совсем;
3) распыление высокотемпературного CO2 и пара из нижней форсунки 4 в корпус печи, когда содержание связанного углерода является высоким и зона слоя имеет достаток тепла (то есть внешняя термическая энергия, подаваемая внешним нагревателем 9, является достаточной), так что углеродные остатки в зоне слоя уменьшаются или окисляются, давая больше CO2 или Н2 в синтез-газе; перенос непрореагировавших углеродных остатков и материалов слоя во внешний нагреватель 9 через выпуск для циркулирующего материала, где углеродные остатки сгорают, материалы слоя нагреваются и отделяются от шлаков, и выпуск шлаков из выпуска для шлаков; возврат отделенных материалов слоя в корпус печи из впуска для циркулирующего материала, течение материалов слоя вниз, теплообмен с высокотемпературным синтез-газом, текущим в обратную сторону, так что синтез-газ нагревается до температуры от 1000 до 1200°С, и выделение термической энергии в зоне слоя, так что он имеет температуру от 600 до 1000°С; перенос охлажденных материалов слоя во внешний нагреватель 9 для повторного нагрева и повторение циркуляции несколько раз по необходимости; температура выпуска 7 для циркулирующего материала составляет от 750 до 1200°С; и
4) контроль с помощью блока мониторинга температуры и состава синтез-газа, регулирование скорости потока CO2, скорости потока пара и микроволновой мощности, чтобы гарантировать осуществления газификации, и регулирование температуры выпуска для синтез-газа между 800 и 1200°С.
На этапе 2) время пребывания синтез-газа, находящегося в плазменной атмосфере в свободной зоне, составляет от 3 до 6 секунд, особенно от 4 до 6 секунд.
На этапе 3) температура реакции в зоне слоя газификатора регулируется от 600 до 850°С.
На этапе 3) распыляемый рабочий газ представляет собой высокотемпературный CO2 или высокотемпературный пар, что определяется требованиями к составу синтез-газа.
Материалы слоя газификатора образованы из устойчивых к высокой температуре материалов, имеющих большую способность сохранения тепла. Биотопливо, нагретое с помощью внешнего нагревателя, входит в газификатор и обменивается теплом с высокотемпературным синтез-газом, текущим в обратную сторону, и затем течет вниз в зону высокотемпературного слоя, где биотопливо быстро нагревается. Биотопливо имеет высокое содержание кислорода и низкое содержание связанного углерода. Таким образом, в зоне слоя биотопливо пиролизуется, давая летучие вещества и полукокс. Чтобы поддерживать высокую температуру в зоне пиролиза, надлежащий высокотемпературный пар/CO2 распыляют в газификатор, так что данные летучие вещества крекируют под действием высокой температуры, давая большое количество активных компонентов (CO+Н2) и небольшое количество паров смолы, которые текут вверх в свободную зону газификатора. Непрореагировавшие углеродные остатки и материалы слоя переносятся во внешний нагреватель, где углеродные остатки и материалы слоя нагреваются, и вводятся окислители, чтобы способствовать полному сгоранию углеродных остатков в данной смеси. Материалы слоя отделяются от шлаков. Нагретые материалы слоя переносятся в корпус печи из его верхней или боковой стороны, текут вниз, обмениваясь теплом с высокотемпературным синтез-газом, текущим в обратном направлении, снижая температуру синтез-газа и увеличивая температуру материалов слоя. Высокотемпературные материалы слоя падают в зону слоя, снабжая термической энергией нововведенное биотопливо и поддерживая температуру для реакции крекинга. После теплообмена охлажденные материалы слоя переносятся во внешний нагреватель для последующего нагрева и отделения. Вышеуказанные этапы повторяются несколько раз по необходимости. Показатель циркуляции материалов слоя определяется параметрами топлива.
Синтез-газ, содержащий небольшое количество паров смолы и зольной пыли, течет вверх в свободную зону газификатора, где находится микроволновой генератор плазмы. В присутствии плазменного окислителя, имеющего высокую активность, высокую степень ионизации в неравновесном состоянии, пары смолы в высокотемпературном синтез-газе быстро крекируют для полного удаления смолы. Синтез-газ на выпуске для синтез-газа является охлажденным и очищенным, достигая уровня непосредственного применения.
ПРИМЕР 2
Газификатор в этом примере, в основном, такой же, как газификатор в примере 1, за исключением того, что (А) внешний нагреватель 9 не отделен от корпуса печи 2, но интегрирован с корпусом печи 2, и выпуск для циркулирующего материала, расположенный в нижней части корпуса печи, и впуск для циркулирующего материала, расположенный в верхней части корпуса печи, отсутствуют. Таким образом, внешний источник тепла может вводиться в газификатор, процесс циркуляции материал отпускается, давая, тем самым, простую систему, высокое удобство эксплуатации и высокую эффективность.
(В) Источником тепла внешнего нагревателя являются микроволны, высокотемпературная микроволновая плазма, лазер, плазменная дуга, солнечная энергия, высокотемпературный материал слоя из циркуляционного бойлера с псевдоожиженным слоем (CFB) или их комбинация.
Способ газификации с использованием микроволнового плазменного газификатора с внешним нагревом содержит следующие этапы:
1) введение сырья, содержащего биотопливо и твердые отходы, в корпус печи через питающее устройство, газификация и пиролиз данного сырья в зоне высокотемпературного слоя с получением синтез-газа, содержащего большое количество СО, Н2, CO2 и небольшое количество СН4 и смолы;
2) предоставление возможности синтез-газу течь вверх в свободную зону газификатора, запуск микроволновых генераторов плазмы, чтобы генерировать высокотемпературные плазменные окислители, имеющие высокую активность, высокую степень ионизации в неравновесном состоянии, так что синтез-газ смешивается с плазменными окислителями и крекирует, распыление пара в корпус печи из верхней форсунки, регулирование температуры свободной зоны между 1000 и 1200°С, регулирование скорости потока плазменных окислителей так, чтобы гарантировать, что синтез-газ остается в плазменной атмосфере в течение от 3 до 10 секунд, перемешивание потока плазмы так, чтобы интенсифицировать тепло- и массоперенос, и отбор конечного полученного синтез-газа из выпуска для синтез-газа, расположенного в верхней части корпуса печи;
3) нагрев газификатора с помощью внешнего нагревателя, расположенного у нижней части газификатора, так, чтобы поддерживать температуру в зоне слоя между 600 и 1000°С, а температуру в свободной зоне между 750 и 1600°С; и
4) контроль с помощью блока мониторинга температуры и состава синтез-газа, регулирование скорости потока CO2, скорости потока пара и микроволновой мощности, чтобы гарантировать осуществления газификации, и регулирование температуры выпуска для синтез-газа между 750 и 1200°С.
Чтобы достичь оптимальных рабочих условий и удовлетворить требования полного осуществления газификации, ключом является регулирование температуры зоны слоя, регулирование подачи материала слоя и регулирование скорости потока CO2, скорости потока пара и микроволновой мощности. Блок мониторинга, расположенный возле выпуска для синтез-газа, может обеспечивать мониторинг вышеуказанных компонентов в реальном времени, регулируя, тем самым, процесс газификации с помощью цепочечной и полной автоматизации и поддерживая стабильность работы газификатора.
Хотя показаны и описаны конкретные варианты осуществления данного изобретения, специалистам в данной области техники будет очевидно, что изменения и модификации могут быть сделаны без отклонения от данного изобретения в его широких аспектах, и поэтому задачей формулы изобретения является покрывать все такие изменения и модификации, как попадающие в истинную сущность и объем изобретения.

Claims (9)

1. Микроволновой плазменный газификатор с внешним нагревом, содержащий вертикально расположенный корпус печи, питающее устройство, расположенное в средней части корпуса печи и сообщающееся с корпусом печи, один или два слоя микроволновых генераторов плазмы, внешний нагреватель, выполненный с возможностью подачи внешней термической энергии для газификатора, и блок мониторинга, причем корпус печи содержит верхнюю форсунку для распыления пара, нижнюю форсунку для распыления CO2/пара, выпуск для синтез-газа, расположенный в верхней части корпуса печи; причем верхняя форсунка для распыления пара расположена в свободной зоне корпуса печи, а нижняя форсунка для распыления CO2/пара находится в зоне слоя корпуса печи; блок мониторинга расположен возле выпуска для синтез-газа; один или два слоя микроволновых генераторов плазмы находятся выше верхней форсунки в свободной зоне газификатора; каждый слой микроволновых генераторов плазмы содержит три или четыре впуска для рабочего газа и поток плазмы распыляется в свободную зону газификатора горизонтально/тангенциально; внешний нагреватель интегрирован с корпусом печи или отделен от корпуса печи и внешний нагреватель содержит выпуск для шлака для выпуска шлаков.
2. Газификатор по п. 1, отличающийся тем, что выпуск для циркулирующего материала расположен в нижней части корпуса печи, а впуск для циркулирующего материала находится в верхней части корпуса печи, или и выпуск для циркулирующего материала, и впуск для циркулирующего материала находятся на боковой стенке корпуса печи; внешний нагреватель отделен от корпуса печи и находится между выпуском для циркулирующего материала и впуском для циркулирующего материала, так что циркулирующие материалы могут вытекать из выпуска для циркулирующего материала, нагреваться внешним нагревателем и течь обратно в корпус печи через впуск для циркулирующего материала; источником тепла внешнего нагревателя являются микроволны, высокотемпературная микроволновая плазма, лазер, плазменная дуга, солнечная энергия или их комбинация.
3. Газификатор по п. 1, отличающийся тем, что внешний нагреватель интегрирован с корпусом печи и источником тепла внешнего нагревателя являются микроволны, высокотемпературная микроволновая плазма, лазер, плазменная дуга, солнечная энергия, высокотемпературный материал слоя из циркуляционного бойлера с псевдоожиженным слоем (CFB) или их комбинация.
4. Газификатор по любому из пп. 1-3, отличающийся тем, что микроволновые генераторы плазмы имеют большое межэлектродное расстояние, высокую активность плазмы и широкой диапазон объема; источник микроволновой энергии микроволновых генераторов плазмы имеет базовую частоту 2,45 ГГц, и мощность одного микроволнового генератора плазмы находится в пределах 200 кВт.
5. Способ газификации с использованием микроволнового плазменного газификатора с внешним нагревом по любому из пп. 1, 2 и 4, причем способ применяет внешнюю термическую энергию, чтобы газифицировать биотопливо, и способ содержит следующие этапы:
1) вводят сырье, содержащее биотопливо и твердые отходы, в корпус печи через питающее устройство, выполняют газификацию и пиролиз данного сырья в зоне высокотемпературного слоя с получением синтез-газа, содержащего большое количество СО, Н2, CO2 и малое количество СН4 и смолы;
2) позволяют синтез-газу течь вверх в свободную зону газификатора, запускают микроволновые генераторы плазмы, чтобы генерировать высокотемпературные плазменные окислители, имеющие высокую активность, высокую степень ионизации в неравновесном состоянии, так что синтез-газ смешивается с плазменными окислителями и крекирует, распыляют пар в корпус печи из верхней форсунки, регулируют температуру свободной зоны между 1000 и 1200°С, регулируют скорость потока плазменных окислителей так, чтобы гарантировать, что синтез-газ остается в плазменной атмосфере в течение от 3 до 10 секунд, перемешивают поток плазмы так, чтобы интенсифицировать тепло- и массоперенос, и отбирают конечный полученный синтез-газ из выпуска для синтез-газа, расположенного в верхней части корпуса печи;
3) распыляют высокотемпературный CO2 и пар из нижней форсунки в корпус печи, так что углеродные остатки в зоне слоя уменьшаются или окисляются;
4) переносят непрореагировавшие углеродные остатки и материалы слоя во внешний нагреватель через выпуск для циркулирующего материала, где углеродные остатки сгорают, материалы слоя нагреваются и отделяются от шлаков, и выпускают шлаки из выпуска для шлаков;
5) возвращают отделенные материалы слоя в корпус печи из впуска для циркулирующего материала, обеспечивают течение материалов слоя вниз, обеспечивают теплообмен с высокотемпературным синтез-газом, текущим в обратную сторону, и выделяют термическую энергию в зоне слоя с получением температуры между 600 и 1000°С; переносят охлажденные материалы слоя во внешний нагреватель для повторного нагрева и повторяют циркуляцию несколько раз по необходимости; температура выпуска для циркулирующего материала составляет от 750 до 1200°С, а температура нагретых материалов слоя выше, чем температура зоны слоя; и
6) обеспечивают мониторинг с помощью блока мониторинга температуры и компонентов синтез-газа, регулируют скорость потока CO2, скорость потока пара и микроволновую мощность, чтобы гарантировать осуществление газификации.
6. Способ по п. 5, отличающийся тем, что на этапе 2) время пребывания синтез-газа, находящегося в плазменной атмосфере в свободной зоне, составляет от 3 до 6 секунд.
7. Способ по п. 5, отличающийся тем, что на этапе 2) время пребывания синтез-газа, находящегося в плазменной атмосфере в свободной зоне, составляет от 4 до 6 секунд.
8. Способ по любому из пп. 5-7, отличающийся тем, что температуру реакции в зоне слоя газификатора регулируют между 600 и 850°С.
9. Способ газификации с использованием микроволнового плазменного газификатора с внешним нагревом по любому из пп. 1, 3 и 4, причем способ применяет внешнюю термическую энергию, чтобы газифицировать биотопливо, и содержит следующие этапы:
1) вводят сырье, содержащее биотопливо и твердые отходы, в корпус печи через питающее устройство, выполняют газификацию и пиролиз сырья в зоне высокотемпературного слоя с получением синтез-газа, содержащего большое количество СО, Н2, CO2 и малое количество СН4 и смолы;
2) позволяют синтез-газу течь вверх в свободную зону газификатора, запускают микроволновые генераторы плазмы, чтобы генерировать высокотемпературные плазменные окислители, имеющие высокую активность, высокую степень ионизации в неравновесном состоянии, так что синтез-газ смешивается с плазменными окислителями и крекирует, распыляют пар в корпус печи из верхней форсунки, регулируют температуру свободной зоны между 1000 и 1200°С, регулируют скорость потока плазменных окислителей так, чтобы гарантировать, что синтез-газ остается в плазменной атмосфере в течение от 3 до 10 секунд, перемешивают поток плазмы так, чтобы интенсифицировать тепло- и массоперенос, и отбирают конечный полученный синтез-газ из выпуска для синтез-газа, расположенного в верхней части корпуса печи;
3) нагревают газификатор с помощью внешнего нагревателя, расположенного у нижней части газификатора, так, чтобы поддерживать температуру в зоне слоя между 600 и 1000°С, а температуру в свободной зоне между 750 и 1600°С; и
4) обеспечивают мониторинг с помощью блока мониторинга температуры и компонентов синтез-газа, регулируют скорость потока CO2, скорость потока пара и микроволновую мощность, чтобы гарантировать осуществление газификации, и регулируют температуру выпуска для синтез-газа между 750 и 1200°С.
RU2014131270/05A 2011-12-29 2012-10-26 Микроволновой плазменный газификатор с внешним нагревом и способ получения синтез-газа RU2588212C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110449489.7 2011-12-29
CN2011104494897A CN102530859B (zh) 2011-12-29 2011-12-29 一种外热型微波等离子气化炉及合成气生产方法
PCT/CN2012/083566 WO2013097533A1 (zh) 2011-12-29 2012-10-26 一种外热型微波等离子气化炉及合成气生产方法

Publications (2)

Publication Number Publication Date
RU2014131270A RU2014131270A (ru) 2016-02-20
RU2588212C2 true RU2588212C2 (ru) 2016-06-27

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2318722C2 (ru) * 2006-04-10 2008-03-10 Федеральное государственное учреждение Российский научный центр "Курчатовский институт" Плазменный конвертор газообразного и жидкого углеводородного сырья и топлив в синтез-газ на основе микроволнового разряда
CN101906326A (zh) * 2010-07-20 2010-12-08 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化工艺及其设备
CN201770675U (zh) * 2010-07-20 2011-03-23 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化设备
CN102260537A (zh) * 2011-06-10 2011-11-30 杨清萍 一种等离子热解及富氧助燃物料制取可燃气的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2318722C2 (ru) * 2006-04-10 2008-03-10 Федеральное государственное учреждение Российский научный центр "Курчатовский институт" Плазменный конвертор газообразного и жидкого углеводородного сырья и топлив в синтез-газ на основе микроволнового разряда
CN101906326A (zh) * 2010-07-20 2010-12-08 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化工艺及其设备
CN201770675U (zh) * 2010-07-20 2011-03-23 武汉凯迪控股投资有限公司 生物质双炉连体裂解气化设备
CN102260537A (zh) * 2011-06-10 2011-11-30 杨清萍 一种等离子热解及富氧助燃物料制取可燃气的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ПОЛИТЕХНИЧЕСКИЙ СЛОВАРЬ, под ред. А.Ю. Ишлинского, Москва, Большая Российская энциклопедия, 2000, с. 481. *

Similar Documents

Publication Publication Date Title
EP2799523B1 (en) Externally heated microwave plasma gasifier and synthesis gas production method
Yoon et al. Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier
KR101625152B1 (ko) 극초단파 플라즈마 바이오매스 가스화 고정층 가스화기 및 방법
JP2015507673A5 (ru)
CN102391893B (zh) 生物质气化-活化联用及活性多孔炭材料的制备方法
CN101412915B (zh) 内热式连续制备生物质热解气化煤气的方法及热解气化炉
CN103666580A (zh) 一种耦合式生物质加压热解工艺及系统
US20110206571A1 (en) Cascading planar baffle reactor
KR101632147B1 (ko) 바이오매스 발전설비
CN102746902A (zh) 一种有机废弃物的气化方法及专用气化炉
Cai et al. Two-stage pyrolysis/gasification and plasma conversion technology for the utilization of solid waste
WO2017204703A1 (en) Process and reactor for producing biochar from renewable material
US11220643B2 (en) Hydrogen generation furnace using decomposition of biomass stream
JP5748333B2 (ja) 電気加熱式バイオマスガス化装置
JP2007127330A (ja) 炭化炉による熱併給発電方法及びシステム
RU2588212C2 (ru) Микроволновой плазменный газификатор с внешним нагревом и способ получения синтез-газа
CN105925282A (zh) 一种基于碳循环的生物质热转换装置及方法
JP2017014474A (ja) 連続式熱化学型バイオマス原料ガス化装置
CN201180123Y (zh) 一种固体生物质半水煤气发生炉
CN202465607U (zh) 一种外热型微波等离子气化炉
JP6041451B2 (ja) 固形有機原料のガス化方法及びガス化装置
KR102402473B1 (ko) 통합형 바이오매스 반탄화 가스화 장치 및 가스화 방법
CN205821242U (zh) 一种基于碳循环的生物质热转换装置
RU92150U1 (ru) Установка для переработки углеводородного сырья
RU2588211C2 (ru) Микроволновой плазменный газификатор биомассы с неподвижным слоем и способ газификации