RU2554944C2 - Способ приготовления фосфатированных продуктов поликонденсации и их применение - Google Patents
Способ приготовления фосфатированных продуктов поликонденсации и их применение Download PDFInfo
- Publication number
- RU2554944C2 RU2554944C2 RU2011117406/04A RU2011117406A RU2554944C2 RU 2554944 C2 RU2554944 C2 RU 2554944C2 RU 2011117406/04 A RU2011117406/04 A RU 2011117406/04A RU 2011117406 A RU2011117406 A RU 2011117406A RU 2554944 C2 RU2554944 C2 RU 2554944C2
- Authority
- RU
- Russia
- Prior art keywords
- different
- same
- represented
- iii
- monomer
- Prior art date
Links
- 238000006068 polycondensation reaction Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000000178 monomer Substances 0.000 claims abstract description 67
- 150000001491 aromatic compounds Chemical class 0.000 claims abstract description 22
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 19
- 239000011230 binding agent Substances 0.000 claims abstract description 16
- 239000000654 additive Substances 0.000 claims abstract description 10
- 230000000996 additive effect Effects 0.000 claims abstract description 6
- 239000003054 catalyst Substances 0.000 claims abstract description 6
- 239000007900 aqueous suspension Substances 0.000 claims abstract description 5
- 125000003118 aryl group Chemical group 0.000 claims abstract 13
- 239000000047 product Substances 0.000 claims description 58
- 239000011541 reaction mixture Substances 0.000 claims description 23
- 150000005840 aryl radicals Chemical class 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- -1 alkyl radical Chemical class 0.000 claims description 16
- 150000007514 bases Chemical class 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 125000003172 aldehyde group Chemical group 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 229920006395 saturated elastomer Polymers 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 229940043430 calcium compound Drugs 0.000 claims description 2
- 150000001674 calcium compounds Chemical class 0.000 claims description 2
- 239000007795 chemical reaction product Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 5
- 229910019142 PO4 Inorganic materials 0.000 abstract description 4
- 239000004567 concrete Substances 0.000 abstract description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract description 4
- 239000010452 phosphate Substances 0.000 abstract description 4
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 abstract 3
- 229910052739 hydrogen Chemical group 0.000 abstract 2
- 230000000694 effects Effects 0.000 abstract 1
- 230000003993 interaction Effects 0.000 abstract 1
- 239000004014 plasticizer Substances 0.000 abstract 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 21
- 150000003839 salts Chemical class 0.000 description 18
- 239000000203 mixture Substances 0.000 description 16
- 238000001556 precipitation Methods 0.000 description 11
- 239000004568 cement Substances 0.000 description 9
- 150000002390 heteroarenes Chemical class 0.000 description 9
- 235000011121 sodium hydroxide Nutrition 0.000 description 8
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 6
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 5
- 150000003014 phosphoric acid esters Chemical class 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229930040373 Paraformaldehyde Natural products 0.000 description 4
- 239000004566 building material Substances 0.000 description 4
- 159000000007 calcium salts Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 229920002866 paraformaldehyde Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229940098779 methanesulfonic acid Drugs 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 3
- 239000004604 Blowing Agent Substances 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910052925 anhydrite Inorganic materials 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- 229940092714 benzenesulfonic acid Drugs 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical compound CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- 125000004204 2-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C(OC([H])([H])[H])C([H])=C1[H] 0.000 description 1
- 125000004208 3-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C([H])C(*)=C1[H] 0.000 description 1
- 125000004207 3-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(OC([H])([H])[H])=C1[H] 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000008032 concrete plasticizer Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- YAMHXTCMCPHKLN-UHFFFAOYSA-N imidazolidin-2-one Chemical compound O=C1NCCN1 YAMHXTCMCPHKLN-UHFFFAOYSA-N 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- WLGDAKIJYPIYLR-UHFFFAOYSA-N octane-1-sulfonic acid Chemical compound CCCCCCCCS(O)(=O)=O WLGDAKIJYPIYLR-UHFFFAOYSA-N 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 150000003388 sodium compounds Chemical class 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/243—Phosphorus-containing polymers
- C04B24/246—Phosphorus-containing polymers containing polyether side chains
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/321—Polymers modified by chemical after-treatment with inorganic compounds
- C08G65/327—Polymers modified by chemical after-treatment with inorganic compounds containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/335—Polymers modified by chemical after-treatment with organic compounds containing phosphorus
- C08G65/3353—Polymers modified by chemical after-treatment with organic compounds containing phosphorus containing oxygen in addition to phosphorus
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/302—Water reducers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/32—Superplasticisers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Polyethers (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Изобретение относится к способу приготовления фосфатированного продукта поликонденсации, который может использоваться в качестве добавки для водных суспензий гидравлических связующих веществ и связующих веществ со скрытыми гидравлическими свойствами. В предложенном способе для получения продукта поликонденсации проводят взаимодействие мономера формулы (I), фосфатированного мономера формулы (II) и мономера формулы (IV) при 20-140°C и 1-10 бар, причем, по меньшей мере, одну ароматическую сульфокислоту применяют в качестве катализатора, молярное соотношение мономеров (IV):[(I)+(II)] составляет 1:0.5-2, молярное соотношение мономеров (I):(II) составляет 1:10-10:1,
где А представлены ароматическим соединением, которое имеет 5-10 углеродных атомов, В является О, n=1, R1 и R2 представляют собой С1-С10-алкил, арил или Н, а является целым числом от 1 до 300, X является C1-С10-алкилом, арилом или Н, D является ароматическим соединением, которое имеет 5-10 углеродных атомов, Е является О, m=1, R3 и R4 представлены С1-С10-алкилом, арилом или Н, b является целым числом от 0 до 300, R5 и R6 являются Н. Предложен эффективный способ получения нового фосфатированного продукта поликонденсации, пригодного в качестве пластификатора для бетона и добавки для водных суспензий гидравлических связующих веществ. 3 н. и 13 з.п. ф-лы, 5 пр., 4 табл.
Description
Данное изобретение относится к способу для приготовления фосфатированного продукта поликонденсации и к его применению в качестве добавки в смесях для изготовления строительных материалов.
Известно, что добавки в виде диспергирующих агентов добавляют к водным шламам или порошкообразным неорганическим или органическим веществам, таким как глина, силикатный порошок, мел, сажа, щебень и гидравлические связующие вещества, для улучшения их способности к обработке, т.е. способности к замешиванию, способности к растеканию, способности наноситься пульверизацией, способности к перекачиванию или текучести. Такие добавки способны предотвратить образование твердых агломератов и диспергировать частицы, которые уже существуют, и те, которые вновь образовались путем гидратации, и таким образом улучшают способность к обработке. Это действие используют в частности намеченным способом в приготовлении смесей для изготовления строительных материалов, которые содержат гидравлические связующие вещества, такие как цемент, известь, гипс, полугидрат или ангидрит.
Для преобразования этих смесей для изготовления строительных материалов, основанных на указанных связующих веществах, в готовую к применению, способную к обработке форму, как правило, необходимо значительно большее количество воды для замешивания, чем было бы необходимо для последующей гидратации или застывания. Количество пор, которые образуются в бетоне в чрезмерном количестве, с последующим испарением воды, приводит к значительному ухудшению механической прочности и устойчивости.
Для уменьшения этого чрезмерного количества воды при заданной рабочей консистенции и/или для улучшения способности к обработке при заданном соотношении вода/связующее вещество, применяют добавки, которые обычно относят к таким как пластифицирующие добавки или смягчители. На практике, в качестве таких добавок применяют в частности продукты поликонденсации и сополимеры.
WO 2006/042709 описывает продукты поликонденсации, основанные на ароматическом или гетероароматическом соединении (А), которое имеет 5-10 С атомов или гетероатомов, которое имеет по меньшей мере один оксиэтиленовый или оксипропиленовый радикал, и альдегиде (С), выбранном из группы, которая состоит из формальдегида, глиоксиловой кислоты и бензальдегида или их смесей, которые приводят к улучшенному пластицирующему действию суспензий неорганических связующих веществ по сравнению с условно применимыми продуктами поликонденсации и поддерживают это действие в течение длительного периода ("сохранение осадки"). В особенном варианте осуществления, это также могут быть фосфатированные продукты поликонденсации. В качестве катализаторов для поликонденсации применяют минеральные кислоты.
Для получения лучшей стабильности при хранении и лучших свойств продукта, реакционные растворы, полученные согласно предыдущему уровню техники, обрабатывают основными соединениями, особенно гидроксидом натрия. В данном случае было обнаружено, что получение применимых катализаторов в виде солей, которые лишь трудно растворимы в продукте поликонденсации в реакции с основными соединениями, является неблагоприятным. Это может привести к нежелательному выпадению соответствующих солей в конечном продукте. Обычно на практике это приводит к разбавлению полученных растворов до концентраций не более 30 масс.% в перерасчете на сухое вещество. В качестве альтернативы, растворы концентрированного продукта могут быть приготовлены путем удаления образовавшихся солей, что является трудоемким процессом, различными способами.
Поэтому, задачей данного изобретения было обеспечить экономичный способ приготовления фосфатированного продукта поликонденсации, в котором продукт поликонденсации применяют в качестве смягчителя/пластифицирующей добавки для бетона, и он может быть приготовлен простым методом и при низких расходах. В частности, способ позволит получение нейтрализованного фосфатированного продукта поликонденсации, который, без дополнительной очистки, может иметь высокое содержание сухого вещества без какого-либо выпадения в нем солей.
Задача была достигнута путем применения по меньшей мере одной сульфокислоты в качестве катализатора для поликонденсации. В частности, было обнаружено, что насыщенные и ненасыщенные алкилсульфокислоты, такие как метансульфокислота, октилсульфокислота, додецилсульфокислота, винилсульфокислота, и/или аллилсульфокислота, а также ароматические сульфокислоты, такие как пара-толуолсульфокислота, бензолсульфокислота, и/или додецилбензолсульфокислота, являются особенно подходящими.
Неожиданно было обнаружено, что сульфокислоты не только являются очень подходящими в качестве катализаторов для поликонденсации, но соли, образовавшиеся в процессе нейтрализации, также обладают очень хорошей растворимостью в водных фосфатированных продуктах поликонденсации.
В предпочтительном варианте осуществления, фосфатированный продукт поликонденсации данного изобретения присутствует в водном растворе, который содержит 35-75 масс.% воды и 25-65 масс.% растворенного сухого вещества, особенно предпочтительно 40-60 масс.% воды и 40-60 масс.% растворенного сухого вещества, в частности 45-55 масс.% воды и 45-55 масс.% растворенного сухого вещества. Сухое вещество состоит главным образом из безводного фосфатированного продукта поликонденсации, однако в нем также могут присутствовать такие дополнительные компоненты, как противовспениватели, порообразователи, и другие вспомогательные вещества.
В предпочтительном варианте осуществления, реакционная смесь содержит по меньшей мере
(I) мономер, который имеет полиэфирную боковую цепь и ароматические или гетероароматические соединения,
(II) фосфатированный мономер, который имеет ароматические или гетероароматические соединения, и
(IV) мономер, который имеет альдегидную группу.
Молярное соотношение применимых мономеров (I), (II) и (IV) может меняться в пределах широкого диапазона. Оказалось, что подходящим является, если молярное соотношение применимых мономеров (IV):[(I)+(II)] составляет 1:0.5-2, в частности 1:0.9-2. Молярное соотношение применимых мономеров (I): (II) обычно составляет 1:10-10:1, в частности 1:5-3:1.
В особенно предпочтительном варианте осуществления, реакционная смесь содержит по меньшей мере
(I) мономер, который имеет полиэфирную боковую цепь и ароматические или гетероароматические соединения,
(III) мономер, который имеет ароматические или гетероароматические соединения, причем (III) является по меньшей мере частично фосфатированным в течение реакции, и образует мономер (II) и/или, в продукте поликонденсации, структурное звено (II), и
(IV) мономер, который имеет альдегидную группу и фосфатирующий агент.
Мономеры (I), (II) и (III) являются в данном случае идентичными структурным звеньям (I), (II) и (III), образовавшимся в продукте поликонденсации.
Молярное соотношение применимых мономеров (I), (II), (III) и (IV) может меняться в пределах широкого диапазона. Оказалось, что является подходящим, если молярное соотношение применимых мономеров (IV):[(I)+(III)] составляет 1:0.5-2, в частности 1:0.9-2.
Молярное соотношение применимых мономеров (I):(II) обычно составляет 1:10-10:1, в частности 1:5-3:1.
В предпочтительном варианте осуществления, молярное соотношение структурных звеньев (II):(III) задано до 1:0.005-1:10, более того 1:0.01-1:1, в частности 1:0.01-1:0.2 и особенно предпочтительно 1:0.01-1:0.1.
Мономеры (I), (II), (III) и (IV) и, в продукте поликонденсации, структурные звенья (I), (II) и (III) предпочтительно представлены следующими общими формулами
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим или гетероароматическим соединением, которое имеет 5-10 С атомов,
где
В являются одинаковыми или разными и представлены N, NH или О
где
n=2, если В=N, и n=1, если В=NH или О,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, С5-С8-циклоалкильным радикалом, арильным радикалом, гетероарильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
Х являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, С5-С8-циклоалкильным радикалом, арильным радикалом, гетероарильным радикалом или Н
для (II) и (III),
где
D являются одинаковыми или разными и представлены замещенным или незамещенным гетероароматическим соединением, которое имеет 5-10 С атомов,
где
Е являются одинаковыми или разными и представлены N, NH или О,
где
m=2, если Е=N, и m=1, если Е=NH или О
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, С5-С8-циклоалкильным радикалом, арильным радикалом, гетероарильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
где
R5 являются одинаковыми или разными и представлены Н, СН3, СООН или замещенным или незамещенным ароматическим или гетероароматическим соединением, которое имеет 5-10 С атомов,
где
R6 являются одинаковыми или разными и представлены Н, СН3, СООН или замещенным или незамещенным ароматическим или гетероароматическим соединением, которое имеет 5-10 С атомов.
В данном случае, R5 и R6 в мономере (IV), независимо друг от друга, предпочтительно представлены Н, СООН и/или метилом.
Группы А и D мономеров (I), (II) и (III) и структурных звеньев (I), (II) и (III) обычно представлены фенилом, 2-гидроксифенилом, 3-гидроксифенилом, 4-гидроксифенилом, 2-метоксифенилом, 3-метоксифенилом, 4-метоксифенилом, нафтилом, 2-гидроксинафтилом, 4-гидроксинафтилом, 2-метоксинафтилом, 4-метоксинафтилом, предпочтительно фенилом, А и D могут быть выбраны независимо друг от друга, а также в каждом случае состоять из смеси указанных соединений. Группы В и Е, независимо друг от друга, предпочтительно представлены О.
Радикалы R1, R2, R3 и R4 могут быть выбраны независимо друг от друга и предпочтительно представлены Н, метилом, этилом или фенилом, особенно предпочтительно Н или метилом и особенно предпочтительно Н.
а в мономере (I) и структурном звене (I) предпочтительно представлено целым числом от 5 до 280, в частности 10-160 и особенно предпочтительно 12-120 и b в мономерах (II) и (III) и структурных звеньях (II) и (III) представлено целым числом от 0 до 10, предпочтительно 1-7 и особенно предпочтительно 1-5. Соответствующие радикалы, длина которых определяется a и b, соответственно, могут в данном случае состоять из однородных элементов структуры, но смесь разных элементов структуры может также быть подходящей. Кроме того, радикалы в мономерах (I) или (II) и (III) и структурные звенья (I) или (II) и (III), независимо друг от друга, могут каждый иметь одинаковую длину цепей, а и b каждый представлен числом. Однако, как правило, было бы целесообразно, если бы смеси, которые имеют разную длину цепей, присутствовали в каждом случае, с тем, чтобы радикалы мономеров или структурных звеньев в продукте поликонденсации имели разные числовые значения для а и независимо для b.
Часто, фосфатированный продукт поликонденсации согласно изобретению имеет среднемассовую молекулярную массу 4000 г/моль - 150000 г/моль, предпочтительно 10000-100000 г/моль и особенно предпочтительно 20000-75000 г/моль.
В особенном варианте осуществления, данное изобретение предусматривает разные варианты порядка проведения реакции. Один из возможных заключается в реакции мономеров (I), (II) и (IV) в присутствии сульфокислоты. Однако, также может быть целесообразно провести фосфатирование мономера (III) до получения мономера (II) и последующую реакцию с мономерами (I), (IV) и сульфокислотой в одной реакционной смеси. Под этим следует понимать, что фосфатированный компонент, образовавшийся в реакционном растворе, не очищают и не выделяют. В данном случае не обязательно, чтобы мономер (III) был полностью фосфатирован. Даже может быть лучше, когда неизмененный мономер (III) присутствует в продукте поликонденсации.
Фосфатирование мономера (III) можно проводить до, во время или после поликонденсации. В данном случае считается предпочтительным проводить как фосфатирование, так и поликонденсацию в одном реакционном сосуде.
Один из вариантов заключается в том, что сначала вводят в реакцию мономер (III) с фосфатирующим агентом и подвергают таким образом полученный мономер (II) поликонденсации с мономерами (I), (IV), сульфокислотой и, при необходимости, мономером (III). Мономер (III) может образоваться в данном случае в результате незавершенной реакции в течение реакции фосфатирования или может быть намеренно добавлен к реакционной смеси после реакции фосфатирования.
Однако также можно подвергать мономеры (I), (III) и (IV) в присутствии сульфокислоты поликонденсации и затем вводить в реакцию полученный продукт поликонденсации с фосфатирующим агентом. В дополнительном варианте осуществления, мономеры (I), (III), (IV), сульфокислоту и фосфатирующий агент вводят в реакцию одновременно.
В частности, в данном случае полифосфорная кислота и/или фосфорный ангидрид оказались подходящими в качестве фосфатирующих агентов.
Поликонденсацию и, при необходимости, фосфатирование преимущественно проводят при температуре 20-140°С и давлении 1-10 бар. В частности, подходящей температурой оказалась температура в пределах 80-110°С. Продолжительность реакции может составлять 0.1-24 часов, в зависимости от температуры, химической природы применимых мономеров и желаемой степени сшивания. Как только желаемая степень сшивания достигнута, которую также можно определить, например, измерением вязкости реакционной смеси, реакционную смесь охлаждают.
Согласно особенному варианту осуществления, реакционную смесь подвергают дополнительной термической обработке при значении рН 8-13 и температуре 60-130°С после завершения реакции конденсации и, при необходимости, реакции фосфатирования. В результате дополнительной термической обработки, которая преимущественно длится от 5 минут до 5 часов, можно значительно уменьшить содержание альдегида, в частности содержание формальдегида, в реакционном растворе.
В дополнительном особенном варианте осуществления, данное изобретение предусматривает подвержение реакционной смеси дополнительной вакуумной обработке при давлении 10-900 мбар после завершения реакции конденсации и фосфатирования, для уменьшения содержания альдегида. Кроме того, однако, другие известные специалисту в данной области техники методы для уменьшения содержания формальдегида могут также применяться. Примером является добавление небольшого количества бисульфита натрия, этиленмочевины и/или полиэтиленимина.
Полученные фосфатированные продукты поликонденсации можно применять непосредственно в качестве смягчителей. Для получения лучшего срока хранения и лучших свойств продукта, лучше обрабатывать реакционные растворы основными соединениями. Поэтому считается предпочтительным вводить в реакцию реакционную смесь после завершения реакции конденсации и, при необходимости, реакции фосфатирования, с основным соединением натрия, калия, аммония или кальция. Гидроксид натрия, гидроксид калия, гидроксид аммония или гидроксид кальция оказался особенно подходящим в данном случае, считается, что он является предпочтительным для нейтрализации реакционной смеси. Однако, другие соли щелочных металлов и щелочноземельных металлов и соли органического амина являются применимыми в качестве солей фосфатированных продуктов поликонденсации. Предпочтительный вариант осуществления предусматривает введение в реакцию реакционной смеси, после завершения реакции конденсации и, при необходимости, реакции фосфатирования, с основными соединениями натрия и/или кальция.
Кроме того, считается предпочтительным приготовление смешанных солей фосфатированных продуктов поликонденсации. Их целесообразно приготавливать путем введения в реакцию продуктов поликонденсации с по меньшей мере двумя основными соединениями.
Таким образом, намеченным выбором подходящих гидроксидов щелочных металлов и/или щелочноземельных металлов, возможно путем нейтрализации приготовить соли продуктов поликонденсации согласно изобретению, с помощью которых можно повлиять на длительность способности к обработке водных суспензий неорганических связующих веществ и в частности бетона. В то время как снижение способности к обработке со временем наблюдается в случае соли натрия, полная противоположность такого поведения имеет место в случае соли кальция того же самого полимера, меньшее снижение содержания воды (меньшая осадка) имеет место в начале и увеличивается со временем. Вследствие этого, соли натрия фосфатированных продуктов поликонденсации со временем приводят к снижению способности к обработке материала, который содержит связующее вещество, такого как, например, бетон или строительный раствор, тогда как соответствующие соли кальция приводят со временем к улучшенной способности к обработке. Таким образом, путем подходящего выбора количества применимых солей натрия и кальция фосфатированных продуктов поликонденсации, можно контролировать развитие способности к обработке материалов, которые содержат связующее вещество, как временную функцию. Целесообразно приготавливать соответствующие фосфатированные продукты поликонденсации, которые состоят из солей натрия и кальция, путем введения в реакцию со смесью основных соединений кальция и натрия, в частности гидроксидов кальция и гидроксидов натрия, нейтрализация реакционной смеси является особенно предпочтительной.
Наконец, данное изобретение обеспечивает фосфатированные продукты поликонденсации, которые могут быть приготовлены вышеописанным способом.
Также изобретение относится к применению фосфатированного продукта поликонденсации согласно изобретению в качестве добавки для водных суспензий гидравлических и/или связующих веществ со скрытыми гидравлическими свойствами.
В основном, гидравлическое связующее вещество присутствует в виде цемента, извести, гипса, полугидрата или ангидрита или в виде смесей этих компонентов, предпочтительно в виде цемента. Связующее вещество со скрытыми гидравлическими свойствами обычно присутствует в виде летучей золы, трасса или доменного шлака.
На основе массы неорганического связующего вещества фосфатированный продукт поликонденсации применяют в количестве 0.01-10 масс.%, в частности 0.05-5 масс.%.
В приготовлении фосфатированных продуктов поликонденсации согласно предыдущему уровню техники из-за применения концентрированных минеральных кислот, в частности хлористоводородной кислоты и серной кислоты, должны использоваться реакторы, изготовленные из эмалированной стали или особенно коррозионно-устойчивых и дорогих специальных сплавов. Поэтому в изобретательском применении сульфокислот считается особенно преимущественным то, что реакцию можно проводить в стандартных реакторах, изготовленных из нержавеющей стали. Способ согласно изобретению для приготовления фосфатированных продуктов поликонденсации является кроме того очень недорогим, не нужна дополнительная очистка промежуточных продуктов. В частности, в способе согласно изобретению отсутствуют отходы, которые необходимо удалить из формы. Таким образом, заявленный способ также дополнительно представляет прогресс по сравнению с предыдущим уровнем техники с точки зрения борьбы с загрязнением окружающей среды. Полученную реакционную смесь можно вводить в действие непосредственно для предназначенного применения в качестве добавки для смесей строительных материалов, после обработки основными соединениями. В данном случае, является особенно преимущественным то, что не происходит выпадение солей после обработки основными соединениями, когда содержание сухого вещества в растворе продукта при 20°С составляет более 30%. Полученная согласно изобретению реакционная смесь, которая, в предпочтительном варианте осуществления, может содержать 65% сухого вещества, имеет, в качестве дополнительно преимущества, улучшенную смешиваемость с другими органическими добавками, особенно противовспенивателями и порообразователями. Кроме того, относительно высококонцентрированные растворы приводят к снижению затрат на транспортировку и хранение. Таким образом, основная задача изобретения достигается в полной мере.
Данное изобретение более подробно описано ниже с ссылками на рабочие примеры.
Примеры
Пример 1 (сравнительный пример)
Нагреваемый реактор, оснащенный мешалкой, наполняют 445 частями поли(этилен оксид) монофенилового эфира (средняя молекулярная масса 5000 г/моль), 34.9 частями концентрированной серной кислоты, 23.2 частями воды, 57.7 частями сложного эфира фосфорной кислоты и олигоэтиленгликольмонофенилового простого эфира (средняя молекулярная масса 324 г/моль) и 26.7 частями 30%-ного раствора формальдегида. Реакционную смесь нагревают до 105°С в течение 6 часов с перемешиванием. После этого, позволяют ей охладиться и нейтрализуют 50%-ным раствором гидроксида натрия до достижения значения рН 6.5-7. Полученный таким образом продукт поликонденсации имеет, согласно ГПХ, среднюю молекулярную массу Mw=28500 г/моль вместе с полидисперсностью прибл. 1.8.
Пример 2
Нагреваемый реактор, оснащенный мешалкой, наполняют 600 частями поли(этилен оксид) монофенилового эфира (средняя молекулярная масса 5000 г/моль), 47.2 частями концентрированной метансульфокислоты, 12 частями воды, 110 частями сложного эфира фосфорной кислоты и олигоэтиленгликольмонофенилового простого эфира (средняя молекулярная масса 368 г/моль) и 14.7 частями параформальдегида. Реакционную смесь нагревают до 115°С в течение 3 часов с перемешиванием. После этого, ей позволяют охладиться и нейтрализуют 50%-ным раствором гидроксида натрия до достижения значения рН 6.5-7.
Полученный таким образом продукт поликонденсации имеет, согласно ГПХ, среднюю молекулярную массу Mw=33500 г/моль вместе с полидисперсностью прибл. 2.0.
Исследование фазовой стабильности продуктов поликонденсации при двух разных условиях хранения
В данном случае будет проверяться, могут ли продукты поликонденсации согласно изобретению храниться в течение длительного периода при относительно высоком содержании сухого вещества без нежелательного явления фазового разделения (выпадение солей), к которому это приводит. Для этого, продукты поликонденсации, описанные в примерах 1 и 2, каждый разделяют на 4 части. К этим частям добавляют разные количества воды, так что в каждом случае получают четыре образца с разным содержанием сухого вещества (см. таблица 1):
Таблица 1 | ||||
Содержание сухого вещества в масс.% | ||||
Пример 1 | 29.8 | 36.1 | 47.8 | 60.1 |
Пример 2 | 30.4 | 34.9 | 48.3 | 58.5 |
Каждую из 8 частей, перечисленных в таблице 1, делят на 2 части одинакового размера, которые хранят при двух разных условиях: ряд А из 8 частей хранят при комнатной температуре, в то время как другой ряд В хранят, при 24-часовом чередовании температуры, в холодильнике при 4°С и при комнатной температуре. Эти значительные колебания температуры, как правило, значительно ускоряют фазовое разделение. Оба ряда наблюдают в течение 6 недель. Результаты представлены в таблицах 2 и 3. Исследования ясно показывают, что продукты поликонденсации согласно примеру 1 (сравнительный пример) можно сохранять с длительной фазовой стабильностью только при содержании сухого вещества ниже 30 масс.%, в то время как продукты поликонденсации согласно изобретению, согласно примеру 2, можно сохранять с длительной фазовой стабильностью при значительно более высоком содержании сухого вещества почти до 50 масс.%.
Таблица 2 | ||||
Ряд А (комнатная температура) | Содержание сухого вещества в масс.% | |||
Пример 1 | 29.8 | 36.1 | 47.8 | 60.1 |
Фазовая стабильность | прозрачный раствор, стабильный в течение 6 недель | прозрачный раствор, выпадение соли с 16 дня | мутный раствор, выпадение соли с 1 дня | мутный раствор, выпадение соли с 1 дня |
Пример 2 | 30.4 | 34.9 | 48.3 | 58.5 |
Фазовая | прозрачный | прозрачный | прозрачный | мутный |
стабильность | раствор, стабильный в течение 6 недель | раствор, стабильный в течение 6 недель | раствор, стабильный в течение 6 недель | раствор, выпадение соли с 9 дня |
Таблица 3 | ||||
Ряд В (чередуемая температура 4°С - прибл. 21°С) | Содержание сухого вещества в масс.% | |||
Пример 1 | 29.8 | 36.1 | 47.8 | 60.1 |
Фазовая стабильность | прозрачный раствор, стабильный в течение 6 недель | прозрачный раствор, выпадение соли с 3 дня | мутный раствор, выпадение соли с 1 дня | мутный раствор, выпадение соли с 1 дня |
Пример 2 | 30.4 | 34.9 | 48.3 | 58.5 |
Фазовая стабильность | прозрачный раствор, стабильный в течение 6 недель | прозрачный раствор, стабильный в течение 6 недель | прозрачный раствор, стабильный в течение 6 недель | мутный раствор, выпадение соли с 3 дня |
Пример 3
Нагреваемый реактор, оснащенный мешалкой, наполняют 800 частями поли(этилен оксид) монофенилового эфира (средняя молекулярная масса 5000 г/моль), 65.8 частями 70%-ной метансульфокислоты, 147 частями сложного эфира фосфорной кислоты и олигоэтиленгликольмонофенилового простого эфира (средняя молекулярная масса 368 г/моль) и 18.6 частями параформальдегида. Реакционную смесь нагревают до 115°С в течение 5 часов с перемешиванием. После этого, ей позволяют охладиться и нейтрализуют 50%-ным раствором гидроксида натрия до достижения значения рН 6.5-7. В заключение, ее разбавляют до содержания сухого вещества 46-48% путем добавления воды.
Полученный таким образом продукт поликонденсации имеет, согласно ГПХ, среднюю молекулярную массу Mw=33200 г/моль вместе с полидисперсностью прибл. 1.9.
Пример 4
Нагреваемый реактор, оснащенный мешалкой, наполняют 600 частями поли(этилен оксид) монофенилового эфира (средняя молекулярная масса 5000 г/моль), 105.4 частями 65%-ной пара-толуолсульфокислоты, 110 частями сложного эфира фосфорной кислоты и олигоэтиленгликольмонофенилового простого эфира (средняя молекулярная масса 368 г/моль) и 14 частями параформальдегида. Реакционную смесь нагревают до 110°С в течение 5 часов с перемешиванием. После этого, смеси позволяют охладиться и нейтрализуют 50%-ным раствором гидроксида натрия до достижения значения рН 6.5-7. В заключение, ее разбавляют до содержания сухого вещества 46-48% путем добавления воды.
Полученный таким образом продукт поликонденсации имеет, согласно ГПХ, среднюю молекулярную массу Mw=19370 г/моль вместе с полидисперсностью прибл. 2.1.
Пример 5
Нагреваемый реактор, оснащенный мешалкой, наполняют 600 частями поли(этилен оксид) монофенилового эфира (средняя молекулярная масса 5000 г/моль), 82.7 частями пара-толуолсульфокислоты, 110 частями сложного эфира фосфорной кислоты и олигоэтиленгликольмонофенилового простого эфира (средняя молекулярная масса 368 г/моль) и 14 частями параформальдегида. Реакционную смесь нагревают до 115°С в течение 5 часов с перемешиванием. После этого, смеси позволяют охладиться и нейтрализуют 50%-ным раствором гидроксида натрия до достижения значения рН 6.5-7. В заключение ее разбавляют до содержания сухого вещества 46-48% путем добавления воды.
Полученный таким образом продукт поликонденсации имеет, согласно ГПХ, среднюю молекулярную массу Mw=24560 г/моль вместе с полидисперсностью прибл. 2.0.
Исследование на применение: снижение потребного количества воды строительного раствора с поддержанием консистенции.
Последовательность с перемешиванием для смеси строительного раствора: 600 г цементного порошка подвергают гомогенизации в сухом состоянии и вводят в мешалку RILEM. После этого, необходимое количество воды, соответствующее значению вода/цемент, добавляют и осуществляют перемешивание в течение 30 с при 140 об/мин (скорость I). Потом добавление песчаной смеси осуществляют с помощью воронки, в то время как работает мешалка, и перемешивание осуществляют в течение 30 с при 140 об/мин (скорость I). После перерыва 1.5 мин в перемешивании, кромки мешалки чистят и добавляют соответствующее количество смягчителя. Перемешивание осуществляют в течение дополнительных 60 с при 285 об/мин (скорость II) и потом определяют осадку путем выпускания смеси 10 раз на виброплощадку с помощью конуса Хегерманна (DIN EN 1015-3). В данном случае, дозировку смягчителей поддерживают неизменной и отношение вода/цемент регулируют таким образом, чтобы достичь осадки приблизительно 24.5 см. Применяют строительный раствор на основе Karlstadt СЕМ I 42.5 R и отношении песок/цемент 2.2. Песок состоит из смеси 70 масс.% стандартного песка и 30 масс.% кварцевого песка.
Результаты исследования на применение продуктов, полученных согласно примерам 1-4, показаны в таблице ниже:
Пример | Доза [% сухое вещество на основе цемента] | Отношение вода/цемент | Осадка [см] |
Нулевое значение | - | 0.570 | 24.7 |
1 | 0.2 | 0.425 | 25 |
2 | 0.2 | 0.415 | 24.8 |
3 | 0.2 | 0.428 | 24.3 |
4 | 0.2 | 0.435 | 24.0 |
5 | 0.2 | 0.425 | 24.4 |
Claims (16)
1. Способ приготовления фосфатированного продукта поликонденсации, который отличается тем, что реакционная смесь содержит по меньшей мере
(I) мономер, который представляет собой полиэфир с насыщенной цепью и ароматической группой,
(II) фосфатированный мономер, который имеет ароматические группы и
(IV) мономер, который имеет альдегидную группу,
и что реакцию поликонденсации указанных мономеров (I), (II) и (IV) проводят при температуре 20-140°C и давлении 1-10 бар, и
в котором по меньшей мере одну ароматическую сульфокислоту применяют в качестве катализатора,
в котором молярное соотношение применимых мономеров (IV):[(I)+(II)] составляет 1:0.5-2,
в котором молярное соотношение применимых мономеров (I):(II) составляет 1:10-10:1,
в котором мономеры (I), (II) и (IV) и в продукте поликонденсации структурные звенья (I) и (II) представлены следующими общими формулами
(I)
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
,
где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
(I) мономер, который представляет собой полиэфир с насыщенной цепью и ароматической группой,
(II) фосфатированный мономер, который имеет ароматические группы и
(IV) мономер, который имеет альдегидную группу,
и что реакцию поликонденсации указанных мономеров (I), (II) и (IV) проводят при температуре 20-140°C и давлении 1-10 бар, и
в котором по меньшей мере одну ароматическую сульфокислоту применяют в качестве катализатора,
в котором молярное соотношение применимых мономеров (IV):[(I)+(II)] составляет 1:0.5-2,
в котором молярное соотношение применимых мономеров (I):(II) составляет 1:10-10:1,
в котором мономеры (I), (II) и (IV) и в продукте поликонденсации структурные звенья (I) и (II) представлены следующими общими формулами
(I)
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
,
где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
2. Способ по п. 1, который отличается тем, что продукт реакции присутствует в водном растворе, который содержит 35-75 масс. % воды и 25-65 масс. % растворенного сухого вещества.
3. Способ по п. 2, который отличается тем, что реакционная смесь содержит по меньшей мере
(I) мономер, который представляет собой полиэфир с насыщенной цепью и ароматической группой,
(II) фосфатированный мономер, который имеет ароматические группы, и
(IV) мономер, который имеет альдегидную группу.
(I) мономер, который представляет собой полиэфир с насыщенной цепью и ароматической группой,
(II) фосфатированный мономер, который имеет ароматические группы, и
(IV) мономер, который имеет альдегидную группу.
4. Способ по п. 1, который отличается тем, что реакционная смесь содержит по меньшей мере
(I) мономер, который представляет собой полиэфир с насыщенной цепью и ароматической группой,
(III) мономер с ароматическими группами, который в течение реакции поликонденсации по меньшей мере частично фосфатируется с получением мономера (II), причем мономер (III) представлен в продукте поликонденсации структурным звеном общей формулы (III)
,
где
D является одинаковым или разным и представлен замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
где
b является одинаковым или разным и представлен целым числом от 0 до 300, и
(IV) мономер, который имеет альдегидную группу и фосфатирующий агент.
(I) мономер, который представляет собой полиэфир с насыщенной цепью и ароматической группой,
(III) мономер с ароматическими группами, который в течение реакции поликонденсации по меньшей мере частично фосфатируется с получением мономера (II), причем мономер (III) представлен в продукте поликонденсации структурным звеном общей формулы (III)
,
где
D является одинаковым или разным и представлен замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
где
b является одинаковым или разным и представлен целым числом от 0 до 300, и
(IV) мономер, который имеет альдегидную группу и фосфатирующий агент.
5. Способ по п. 2, который отличается тем, что реакционная смесь содержит по меньшей мере
(I) мономер, который представляет собой полиэфир с насыщенной цепью и ароматической группой,
(III) мономер с ароматическими группами, который в течение реакции поликонденсации по меньшей мере частично фосфатируется с получением мономера (II), причем мономер (III) представлен в продукте поликонденсации структурным звеном общей формулы (III)
,
где
D является одинаковым или разным и представлен замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где m=1, где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b является одинаковым или разным и представлен целым числом от 0 до 300, и
(IV) мономер, который имеет альдегидную группу и фосфатирующий агент.
(I) мономер, который представляет собой полиэфир с насыщенной цепью и ароматической группой,
(III) мономер с ароматическими группами, который в течение реакции поликонденсации по меньшей мере частично фосфатируется с получением мономера (II), причем мономер (III) представлен в продукте поликонденсации структурным звеном общей формулы (III)
,
где
D является одинаковым или разным и представлен замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где m=1, где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b является одинаковым или разным и представлен целым числом от 0 до 300, и
(IV) мономер, который имеет альдегидную группу и фосфатирующий агент.
6. Способ по п. 4, который отличается тем, что молярное соотношение применимых мономеров (IV):[(I)+(III)] составляет 1:0.5-2.
7. Способ по п. 4, который отличается тем, что молярное соотношение применимых мономеров (I):(III) составляет 1:10-10:1.
8. Способ по п. 4, который отличается тем, что молярное соотношение структурных звеньев (II):(III) составляет 1:0.005-1:10.
9. Способ по п. 4, который отличается тем, что
мономеры (I), (II), (III) и (IV) и в продукте поликонденсации структурные звенья (I), (II) и (III) представлены следующими общими формулами
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
,
(III)
для (II) и (III), где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов,
где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
мономеры (I), (II), (III) и (IV) и в продукте поликонденсации структурные звенья (I), (II) и (III) представлены следующими общими формулами
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
,
(III)
для (II) и (III), где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов,
где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
10. Способ по п. 6, который отличается тем, что
мономеры (I), (II), (III) и (IV) и в продукте поликонденсации структурные звенья (I), (II) и (III) представлены следующими общими формулами
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
(II)
,
для (II) и (III),
где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов,
где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
мономеры (I), (II), (III) и (IV) и в продукте поликонденсации структурные звенья (I), (II) и (III) представлены следующими общими формулами
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
(II)
,
для (II) и (III),
где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов,
где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
11. Способ по п. 7, который отличается тем, что
мономеры (I), (II), (III) и (IV) и в продукте поликонденсации структурные звенья (I), (II) и (III) представлены следующими общими формулами
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов,
где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
,
для (II) и (III),
где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
мономеры (I), (II), (III) и (IV) и в продукте поликонденсации структурные звенья (I), (II) и (III) представлены следующими общими формулами
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов,
где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
,
для (II) и (III),
где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
12. Способ по п. 8, который отличается тем, что
мономеры (I), (II), (III) и (IV) и в продукте поликонденсации структурные звенья (I), (II) и (III) представлены следующими общими формулами
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-C10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
,
для (II) и (III),
где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
мономеры (I), (II), (III) и (IV) и в продукте поликонденсации структурные звенья (I), (II) и (III) представлены следующими общими формулами
,
где
А являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
В является О,
где
n=1,
где
R1 и R2, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-C10-алкильным радикалом, арильным радикалом или Н,
где
а являются одинаковыми или разными и представлены целым числом от 1 до 300,
где
X являются одинаковыми или разными и представлены разветвленным или неразветвленным C1-С10-алкильным радикалом, арильным радикалом или Н,
,
для (II) и (III),
где
D являются одинаковыми или разными и представлены замещенным или незамещенным ароматическим соединением, которое имеет 5-10 углеродных атомов, где
Е является О,
где
m=1,
где
R3 и R4, независимо друг от друга, являются одинаковыми или разными и представлены разветвленным или неразветвленным С1-С10-алкильным радикалом, арильным радикалом или Н,
где
b являются одинаковыми или разными и представлены целым числом от 0 до 300,
,
где R5 и R6 являются Н.
13. Способ по п. 1, который отличается тем, что фосфатированный продукт поликонденсации дополнительно вводят в реакцию с основными соединениями натрия и/или кальция.
14. Способ по п. 4, который отличается тем, что фосфатированный продукт поликонденсации дополнительно вводят в реакцию с основными соединениями натрия и/или кальция.
15. Фосфатированный продукт поликонденсации, который приготовлен способом по любому из пп. 1-14.
16. Применение фосфатированного продукта поликонденсации по п. 15 в качестве добавки для водных суспензий гидравлических связующих веществ и/или связующих веществ со скрытыми гидравлическими свойствами.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08165916.1 | 2008-10-06 | ||
EP08165916 | 2008-10-06 | ||
PCT/EP2009/061545 WO2010040611A1 (de) | 2008-10-06 | 2009-09-07 | Verfahren zur herstellung phosphatierter polykondensationsprodukte und deren verwendung |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011117406A RU2011117406A (ru) | 2012-12-27 |
RU2554944C2 true RU2554944C2 (ru) | 2015-07-10 |
Family
ID=41334411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011117406/04A RU2554944C2 (ru) | 2008-10-06 | 2009-09-07 | Способ приготовления фосфатированных продуктов поликонденсации и их применение |
Country Status (12)
Country | Link |
---|---|
US (1) | US9156737B2 (ru) |
EP (1) | EP2344566B1 (ru) |
JP (1) | JP5762292B2 (ru) |
CN (1) | CN102171273B (ru) |
AU (1) | AU2009301287B2 (ru) |
BR (1) | BRPI0920812B1 (ru) |
CA (1) | CA2738722C (ru) |
ES (1) | ES2616877T3 (ru) |
MX (1) | MX2011003689A (ru) |
RU (1) | RU2554944C2 (ru) |
WO (1) | WO2010040611A1 (ru) |
ZA (1) | ZA201103224B (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2741290C2 (ru) * | 2016-08-11 | 2021-01-25 | Басф Се | Композиция диспергатора для суспензий неорганических твердых веществ |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6057712B2 (ja) | 2009-09-02 | 2017-01-11 | コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH | 吹付け可能な水硬性結合剤組成物及びその使用方法 |
AU2011219771B2 (en) | 2010-02-25 | 2014-06-26 | Construction Research & Technology Gmbh | Hardening accelerator composition containing dispersants |
CA2814342A1 (en) * | 2010-10-11 | 2012-04-19 | Basf Construction Polymers Gmbh | Dispersant containing gypsum slurry |
AU2011357525B2 (en) | 2011-01-26 | 2015-07-09 | Construction Research & Technology Gmbh | A process for producing polycondensation product |
EP2694570B1 (de) * | 2011-04-08 | 2018-10-31 | BASF Construction Polymers GmbH | Polyelektrolytisches fliessmittel |
US9233875B2 (en) * | 2011-04-08 | 2016-01-12 | Basf Construction Solutions Gmbh | Polyelectrolytic flow agent |
EP2615073B1 (de) | 2012-01-13 | 2018-04-04 | Construction Research & Technology GmbH | Dispergiermittel für anorganische Partikel |
ES2924096T3 (es) | 2012-04-11 | 2022-10-04 | Construction Research & Technology Gmbh | Producto de policondensación a base de compuestos aromáticos, procedimiento para su fabricación, y su uso |
JP6226986B2 (ja) | 2012-08-13 | 2017-11-08 | コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH | 硬化促進剤組成物 |
ES2618517T3 (es) | 2012-08-13 | 2017-06-21 | Construction Research & Technology Gmbh | Composición aceleradora de endurecimiento para composiciones de cemento |
FR3009553B1 (fr) * | 2013-08-08 | 2015-08-28 | Coatex Sas | Poly(ethylene glycol) gemine ester phosphate, utilisation comme additif dans les compositions hydrauliques et compositions le contenant |
EP2886580A1 (en) | 2013-12-20 | 2015-06-24 | Construction Research & Technology GmbH | Additive for rheology improvement of inorganic binders |
CN105271887B (zh) * | 2015-10-20 | 2017-10-10 | 江苏苏博特新材料股份有限公司 | 一种保坍型改性萘系减水剂及其制备方法 |
EP3390489B1 (en) | 2015-12-17 | 2020-09-09 | Construction Research & Technology GmbH | Polycondensate based water-reducer |
CN105646871A (zh) * | 2015-12-31 | 2016-06-08 | 江苏苏博特新材料股份有限公司 | 一种聚合物的制备方法及其应用 |
CN105712649B (zh) | 2015-12-31 | 2018-06-26 | 江苏苏博特新材料股份有限公司 | 一种磷酸化缩聚物高效减水剂及其制备方法 |
CN107337788B (zh) * | 2016-12-30 | 2020-08-07 | 江苏苏博特新材料股份有限公司 | 中低坍落度混凝土专用多元磷酸基外加剂及其制备方法 |
CN109880035B (zh) * | 2018-09-28 | 2023-05-05 | 江苏苏博特新材料股份有限公司 | 一种中低坍落度混凝土专用磷酸基保坍剂及其制备方法 |
JP2022536764A (ja) | 2019-06-14 | 2022-08-18 | ビーエーエスエフ ソシエタス・ヨーロピア | 安定化された石膏粒子 |
EP4388874A1 (en) | 2022-12-23 | 2024-06-26 | Bind-X GmbH | Particulate weed control |
CN117700655B (zh) * | 2023-11-16 | 2024-10-22 | 江苏博思通新材料有限公司 | 一种功能性磷酸基减水剂、超塑化剂及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3275667A (en) * | 1959-02-24 | 1966-09-27 | Hoechst Ag | Process for the manufacture of phosphate ester derivatives of polyalkylene glycols |
RU2123018C1 (ru) * | 1997-12-01 | 1998-12-10 | Тенишева Ольга Борисовна | Композиция для получения пенопластов |
EP0989162A1 (en) * | 1998-03-31 | 2000-03-29 | Daicel Chemical Industries, Ltd. | Thermoplastic resin composition, water-based composition, heat-sensitive pressure-sensitive adhesive, and heat-sensitive sheet |
WO2003072632A1 (en) * | 2002-02-28 | 2003-09-04 | The Lubrizol Corporation | Phosphate esters dispersants |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5614017A (en) * | 1996-03-26 | 1997-03-25 | Arco Chemical Technology, L.P. | Cement additives |
DE69821304T2 (de) * | 1997-10-03 | 2004-11-18 | Jsr Corp. | Strahlungsempfindliche Harzzusammensetzung |
ES2154254T3 (es) * | 1999-06-15 | 2004-11-01 | Sika Schweiz Ag | Polimeros dispersantes de cemento, de aplicaciones generales, para hormigon de alta fluidez y alta resistencia. |
FR2801597B1 (fr) | 1999-11-26 | 2005-03-11 | Atofina | Compositions de polyesters thermoplastiques a proprietes choc ameliorees |
FR2801596B1 (fr) | 1999-11-26 | 2004-12-03 | Atofina | Polyesters thermoplastiques a proprietes choc ameliorees et compositions de modifiants choc |
JP2002256046A (ja) * | 2001-02-28 | 2002-09-11 | Yokkaichi Chem Co Ltd | ポリオール化合物の製造方法、ポリオール化合物、およびそのポリオール化合物を用いたポリウレタンフォーム |
CN1298726C (zh) * | 2004-07-16 | 2007-02-07 | 中国石油天然气集团公司 | 双磷酸季戊四醇酯三聚氰胺盐的合成方法 |
DE102004050395A1 (de) | 2004-10-15 | 2006-04-27 | Construction Research & Technology Gmbh | Polykondensationsprodukt auf Basis von aromatischen oder heteroaromatischen Verbindungen, Verfahren zu seiner Herstellung und dessen Verwendung |
EP1681294A1 (en) * | 2005-01-17 | 2006-07-19 | Solutia Europe N.V./S.A. | Process for the manufacture of aminopolyalkylene-phosphonic acid compounds |
DE102005060947A1 (de) * | 2005-12-20 | 2007-06-28 | Construction Research & Technology Gmbh | Pulverförmige Polykondensationsprodukte |
EP2473456B1 (de) * | 2009-09-01 | 2017-12-13 | Construction Research & Technology GmbH | Polykondensate mit isobutylen-seitenkette |
-
2009
- 2009-09-07 CN CN200980139356.0A patent/CN102171273B/zh active Active
- 2009-09-07 BR BRPI0920812-7A patent/BRPI0920812B1/pt active IP Right Grant
- 2009-09-07 JP JP2011530438A patent/JP5762292B2/ja active Active
- 2009-09-07 CA CA2738722A patent/CA2738722C/en active Active
- 2009-09-07 US US13/120,949 patent/US9156737B2/en active Active
- 2009-09-07 AU AU2009301287A patent/AU2009301287B2/en active Active
- 2009-09-07 ES ES09782687.9T patent/ES2616877T3/es active Active
- 2009-09-07 MX MX2011003689A patent/MX2011003689A/es active IP Right Grant
- 2009-09-07 EP EP09782687.9A patent/EP2344566B1/de active Active
- 2009-09-07 WO PCT/EP2009/061545 patent/WO2010040611A1/de active Application Filing
- 2009-09-07 RU RU2011117406/04A patent/RU2554944C2/ru active
-
2011
- 2011-05-04 ZA ZA2011/03224A patent/ZA201103224B/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3275667A (en) * | 1959-02-24 | 1966-09-27 | Hoechst Ag | Process for the manufacture of phosphate ester derivatives of polyalkylene glycols |
RU2123018C1 (ru) * | 1997-12-01 | 1998-12-10 | Тенишева Ольга Борисовна | Композиция для получения пенопластов |
EP0989162A1 (en) * | 1998-03-31 | 2000-03-29 | Daicel Chemical Industries, Ltd. | Thermoplastic resin composition, water-based composition, heat-sensitive pressure-sensitive adhesive, and heat-sensitive sheet |
WO2003072632A1 (en) * | 2002-02-28 | 2003-09-04 | The Lubrizol Corporation | Phosphate esters dispersants |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2741290C2 (ru) * | 2016-08-11 | 2021-01-25 | Басф Се | Композиция диспергатора для суспензий неорганических твердых веществ |
Also Published As
Publication number | Publication date |
---|---|
BRPI0920812A2 (pt) | 2015-12-22 |
WO2010040611A1 (de) | 2010-04-15 |
JP2012504695A (ja) | 2012-02-23 |
BRPI0920812B1 (pt) | 2019-05-21 |
US9156737B2 (en) | 2015-10-13 |
MX2011003689A (es) | 2011-05-02 |
CA2738722C (en) | 2016-09-06 |
JP5762292B2 (ja) | 2015-08-12 |
US20110281975A1 (en) | 2011-11-17 |
CA2738722A1 (en) | 2010-04-15 |
ZA201103224B (en) | 2012-07-25 |
AU2009301287A1 (en) | 2010-04-15 |
AU2009301287B2 (en) | 2014-11-20 |
ES2616877T3 (es) | 2017-06-14 |
EP2344566B1 (de) | 2016-11-23 |
RU2011117406A (ru) | 2012-12-27 |
CN102171273B (zh) | 2014-10-22 |
EP2344566A1 (de) | 2011-07-20 |
CN102171273A (zh) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2554944C2 (ru) | Способ приготовления фосфатированных продуктов поликонденсации и их применение | |
JP5507809B2 (ja) | 芳香族化合物又は複素芳香族化合物を主体とする重縮合生成物、その製造方法、及びその使用 | |
AU2013291939B2 (en) | Additive for hydraulically setting compositions | |
US20130217808A1 (en) | Production of comb polymers by means of esterification | |
AU2015208282B2 (en) | Additive for hydraulically setting compositions | |
RU2634311C2 (ru) | Композиция ускорителя твердения для цементных композиций | |
JP5638153B2 (ja) | 重縮合生成物の製造方法 | |
US5891983A (en) | Water-soluble formaldehyde-free polycondensation products based on amino-s-triazines | |
AU2014222757B2 (en) | Additive for hydraulically setting compounds | |
AU2016301696A1 (en) | Polycondensation product containing phenolic copolymer and dispersant for hydraulic composition containing the same | |
RU2716663C2 (ru) | Добавка для гидравлически застывающих композиций | |
EP2641885B1 (en) | Hydraulic composition dispersing agent | |
JP6739784B2 (ja) | コンクリート用後添加混和剤及びコンクリートの流動性保持方法 | |
JP6362531B2 (ja) | 水硬性組成物 | |
US20120255464A1 (en) | Polyelectrolytic flow agent | |
JPH10291846A (ja) | セメント混和剤 | |
JPH10291847A (ja) | セメント混和剤 | |
HK1115577A1 (en) | Pulverulent polycondensation products |