[go: up one dir, main page]

RU2536317C1 - Способ изготовления магниторезистивного датчика - Google Patents

Способ изготовления магниторезистивного датчика Download PDF

Info

Publication number
RU2536317C1
RU2536317C1 RU2013118368/28A RU2013118368A RU2536317C1 RU 2536317 C1 RU2536317 C1 RU 2536317C1 RU 2013118368/28 A RU2013118368/28 A RU 2013118368/28A RU 2013118368 A RU2013118368 A RU 2013118368A RU 2536317 C1 RU2536317 C1 RU 2536317C1
Authority
RU
Russia
Prior art keywords
photolithographic etching
sputtering
sensor
vacuum
formation
Prior art date
Application number
RU2013118368/28A
Other languages
English (en)
Other versions
RU2013118368A (ru
Inventor
Валентин Константинович Гусев
Татьяна Геннадьевна Андреева
Виктор Аркадьевич Негин
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом", Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"
Priority to RU2013118368/28A priority Critical patent/RU2536317C1/ru
Publication of RU2013118368A publication Critical patent/RU2013118368A/ru
Application granted granted Critical
Publication of RU2536317C1 publication Critical patent/RU2536317C1/ru

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Изобретение относится к области автоматики и магнитометрии. Способ изготовления магниторезистивного датчика заключается в формировании на изолирующей подложке моста Уинстона путем вакуумного напыления магниторезистивной структуры с последующим формированием магниторезистивных полосок методом фотолитографического травления и напылении первого проводящего слоя с последующим формированием перемычек, проводников и контактных площадок методом фотолитографического травления, нанесении первого изоляционного слоя из полиимида с последующей его имидизацией в вакууме, напылении второго проводящего слоя и формировании на нем плоской катушки индуктивности «set/reset» методом фотолитографического травления, нанесении второго изоляционного слоя из полиимида с последующей его имидизацией в вакууме, напылении третьего проводящего слоя и формировании на нем плоской катушки индуктивности «offset» методом фотолитографического травления, нанесении конструктивной защиты с последующим вскрытием контактных площадок первого проводящего слоя,при этом проводящие слои получают путем вакуумного напыления структуры Cr-Cu-Cr, которую травят послойно и селективно, а на контактных площадках, находящихся на первом проводящем слое, дополнительно формируют пленку Al путем его напыления на датчик после нанесения конструктивной защиты с последующим фотолитографическим травлением. Изобретения способа лбеспечивает повышение технических характеристик: повышение удельной чувствительности, уменьшение разбаланса и снижение стоимости датчика. 3 ил.

Description

Изобретение относится к области автоматики и магнитометрии и может быть использовано при изготовлении датчиков перемещений, устройств измерения электрического тока и магнитных полей, а именно при изготовлении датчиков угла поворота, устройств с гальванической развязкой, магнитометров, электронных компасов и т.д.
Известен магниторезистивный датчик, описанный в патенте США 5247278, кл. H01L, 43/00 от 11 июля 1989 г. Его формируют методом вакуумного напыления на кремниевую пластину магниторезистивных и проводящих слоев с последующим фотолитографическим травлением рисунка схемы. Для получения магниторезистивных полосок напыляют кобальтсодержащий сплав NiFeCo, а для проводящих дорожек, перемычек между магниторезистивными полосками и контактных площадок напыляют Al+4% Cu. Для изоляции кремниевой пластины и верхнего проводящего слоя наносят SiO2+Si3N4 соответственно.
Недостатком такого способа является невозможность создания надежной изоляции, т.к. пленки оксида и нитрида кремния имеют высокий уровень внутренних напряжений и растрескиваются в процессе изготовления датчика. Особенно это заметно, когда изготавливается более сложная структура датчика с двумя плоскими катушками индуктивности «set/reset» и «offset», где требуется три слоя более толстой изоляции, чем толщина, указанная в этом патенте (~1 мкм).
Этот недостаток учтен в «Способе изготовления магниторезистивного датчика», патент РФ 2463688 C1, кл. H01L 43/12 от 23.06.2011 г., взятый за прототип.
В этом способе в качестве изоляции используется полиимидный лак, который имидизируется при нагреве в вакууме при приложении магнитного поля в плоскости подложки в направлении ОЛН, а в качестве электропроводящего материала используют структуру V-Cu-Ni, вместо Al, т.к. последний травится в травителе для полиимида при формировании переходных отверстий и вскрытии контактных площадок.
Данный способ существенно повысил надежность датчика и выход годных, однако и он не лишен недостатков.
Прежде всего, это относится к точности воспроизведения рисунка шаблона на проводящем слое. Так травление структуры V-Cu-Ni не обеспечивает необходимой точности в силу того, что подтрав может достигать 10 мкм и более. Это приводит к увеличению зазоров при изготовлении полюсов Барбера, что ведет к уменьшению поля смещения, а тем самым к уменьшению чувствительности датчика, а также к увеличению разбаланса моста Уинстона.
Кроме того, напыление верхнего слоя никеля предполагает приварку золотой проволоки к контактным площадкам, что, во-первых, дорого, а во-вторых, нетехнологично, т.к. при высокой теплопроводности кремния требуется приложение большой мощности, что зачастую приводит к перегоранию электрода и не обеспечивает необходимую прочность сварного соединения. Это снижает выход годных, а тем самым увеличивает себестоимость датчика.
Техническим результатом предлагаемого способа является повышение технических характеристик (повышение удельной чувствительности, уменьшение разбаланса), а также снижение его стоимости.
Указанный технический результат достигается тем, что в способе изготовления магниторезистивного датчика, заключающемся в формировании на изолирующей подложке моста Уинстона путем вакуумного напыления магниторезистивной структуры с последующим формированием магниторезистивных полосок методом фотолитографического травления и напылении первого проводящего слоя с последующим формированием перемычек, проводников и контактных площадок методом фотолитографического травления, нанесении первого изоляционного слоя из полиимида с последующей его имидизацией в вакууме, напылении второго проводящего слоя и формировании на нем плоской катушки индуктивности «set/reset» методом фотолитографического травления, нанесении второго изоляционного слоя из полиимида с последующей его имидизацией в вакууме, напылении третьего проводящего слоя и формировании на нем плоской катушки индуктивности «offset» методом фотолитографического травления, нанесении конструктивной защиты с последующим вскрытием контактных площадок первого проводящего слоя, проводящие слои получают путем вакуумного напыления структуры Cr-Cu-Cr, которую травят послойно и селективно, а на вскрытых контактных площадках, находящихся на первом проводящем слое, формируют пленку Al путем его напыления на датчик с последующим фотолитографическим травлением.
На фиг.1а, 1б и 1в представлена топология датчика:
1а - мост Уинстона, сформированные на первом проводящем слое контактные площадки и проводящие дорожки трех функциональных элементов (моста Уинстона, катушки индуктивности «set/reset» и катушки индуктивности «offset»):
1 - контактная площадка с проводящей дорожкой катушки индуктивности «set/reset»;
2 - контактная площадка с проводящей дорожкой моста Уинстона;
3 - контактная площадка с проводящей дорожкой моста Уинстона;
4 - контактная площадка с проводящей дорожкой моста Уинстона;
5 - контактная площадка с проводящей дорожкой катушки индуктивности «offset»;
6 - контактная площадка с проводящей дорожкой катушки индуктивности «set/reset»;
7 - контактная площадка с проводящей дорожкой моста Уинстона;
8 - контактная площадка с проводящей дорожкой катушки индуктивности «offset».
1б - мост Уинстона и катушка индуктивности «set/reset», сформированная на втором проводящем слое.
1в - мост Уинстона, катушка индуктивности «set/reset» и катушка индуктивности «offset», сформированная на третьем проводящем слое.
На фиг.2 показана топология одного из плеч моста Уинстона:
9 - магниторезистивные полоски с заостренными концами;
10-перемычки;
11 - полюса Барбера.
На фиг.3 приведена структура датчика в разрезе:
12 - подложка;
13 - изоляция из SiO2;
14 - изоляция из Si3N4;
15 - магниторезистивная структура;
16 - первый проводящий слой;
17 - полюса Барбера (Cr-Cu-Cr), сформированные на первом проводящем слое;
18 - первая изоляция из полиимида;
19 - катушка индуктивности «set/reset» (Cr-Cu-Cr), сформированная на втором проводящем слое;
20 - вторая изоляция из полиимида;
21 - катушка индуктивности «offset» (Cr-Cu-Cr), сформированная на третьем проводящем слое;
22 - конструктивная защита;
23 - контактные площадки (Al);
24 - межуровневые соединения.
Пример реализации способа.
Предлагаемый способ был реализован при изготовлении магниторезистивного датчика, имеющего нечетную ВЭХ.
Датчик состоит из моста Уинстона (контактные площадки 2, 3, 4, 7 фиг.1а), катушки индуктивности «set/reset» (контактные площадки 1, 6 фиг.1а) и катушки индуктивности «offset» (контактные площадки 5, 8 фиг.1а).
Мост Уинстона содержит четыре плеча (фиг.2), каждое из которых состоит из магниторезистивных полосок с заостренными концами 9, перемычек 10 и полюсов Барбера 11, позволяющих смещать ВЭХ датчика в линейную область.
Содержание и последовательность технологических операций по изготовлению датчика можно понять из рассмотрения фиг.3.
На кремниевую пластину 12, содержащую изоляцию из SiO2 13 толщиной 0,3 мкм и Si3N4 14 толщиной 0,15 мкм, напыляли магниторезистивную структуру Fe(15%)Ni(65%)Co(20%)-Ta-Fe(15%)Ni(65%)Co(20%) 15 толщиной ~50-60 нм и формировали магниторезистивные полоски 9 (фиг.2) методом фотолитографии и травления в составе:
Кислота азотная 100 мл
Натрий фтористый 10 г
Калий азотнокислый 30 г
Вода дистиллированная 20 мл
Температура травления (18-23)°C, время травления 40-60 с.
Далее наносили первый проводящий слой Cr-Cu-Cr общей толщиной ~0,5 мкм, методом фотолитографии создавали маску и формировали контактные площадки и проводящие дорожки трех функциональных элементов - моста Уинстона 2, 3, 4, 7 (фиг.1а), катушки индуктивности «set/reset» 1, 6 (фиг.1а), катушки индуктивности «offset» 5, 8 (фиг.1a), а также полюса Барбера 17 (фиг.3) и перемычки 10 (фиг.2).
Травление хрома проводили в травителе HCl:H2O=1:1 при температуре (40±5)°C. Этот травитель является селективным по отношению к меди и выступает в качестве металлорезиста при ее травлении в составе:
Кислота фосфорная 60 мл
Кислота уксусная 10 мл
Кислота азотная 10 мл
Вода дистиллированная 20 мл
Температура травления (40±5)°C.
После травления меди снова стравливали хром в соляной кислоте, которая стравливала верхний тонкий слой кобальтсодержащего сплава до тантала, оставляя его только под полюсами Барбера и перемычками. Такое раздельное травление позволило уменьшить подтрав структуры Cr-Cu-Cr и получить полюса Барбера и зазоры между ними необходимого размера (17×17 мкм соответственно).
Далее нанесение лака АД 910318, 20 и его имидизацию в вакууме проводили по прототипу (патент RU 2463688 C1).
На поверхность подложки со сформированным мостом Уинстона наносили первый изоляционный слой лака АД-9103 18 толщиной 2-4 мкм методом центрифугирования.
Далее проводили сушку изоляционного слоя ступенчато: при температуре 60°C в течение 10 мин, при температуре 80°C в течение 10 мин, при температуре 100°C в течение 10 мин, при температуре 120°C в течение 30 мин.
Имидизацию изоляционного слоя в вакуумной установке проводили при температуре 350-380°C в магнитном поле величиной 120-140Э, приложенном в плоскости подложки в том же направлении, что и при напылении магниторезистивной структуры «FeNi(FeNiCo)-Ta-FeNi(FeNiCo)».
Для изготовления катушки индуктивности «set/reset» 19 напыляли второй проводящий слой Cr-Cu-Cr толщиной ~2 мкм и проводили фотолитографическое травление рисунка в соответствии с фиг.16.
Далее повторяли операцию по нанесению лака АД 9103 18 и его имидизации в вакууме по режиму, указанному ранее.
Для изготовления катушки индуктивности «offset» 21 напыляли третий проводящий слой Cr-Cu-Cr толщиной ~2 мкм и проводили фотолитографическое травление рисунка в соответствии с фиг.1в.
В качестве конструктивной защиты наносили лак АД-9103 23, а затем проводили его термообработку на воздухе при температуре 200°C в течение 30 мин. Далее вскрывали лак на контактных площадках 1-8 первого проводящего слоя.
Последними операциями являлись напыление на готовый датчик (со вскрытыми контактными площадками 1-8 первого проводящего слоя) пленки алюминия ~1 мкм и его фотолитографическое травление по рисунку, позволяющему оставить алюминий 23 только на контактных площадках 1-8 первого проводящего слоя.
Межуровневые соединения 24 от катушек индуктивности 19, 21 на проводящие дорожки соответствующих контактных площадок датчика получали, так называемым «каскадным методом», заключающимся в том, что межуровневые соединения 24 формируют путем пропыления переходных окон одновременно с напылением проводящего слоя соответствующего уровня и изготовления рисунка схемы методом фотолитографии, причем межуровневые соединения формируют большего размера, чем размер переходных окон в плане, а в каждом последующем изоляционном слое вытравливают переходные окна большего размера, чем в предыдущем (см. патент №2474004 на изобретение RU 2474004 C1 от 16 августа 2011 г.).
Таким образом, в предлагаемом способе использование известных материалов и приемов изготовления датчика, но при изменении очередности операций и использовании селективных свойств травителей Cr и Cu при изготовлении элементов рисунка из первого, второго и третьего проводящих слоев дало новый положительный эффект, заключающийся в повышении технических характеристик датчика и уменьшении его стоимости.
Так, возможность более точного воспроизведения рисунка шаблона на структуре Cr-Cu-Cr позволило повысить чувствительность датчика с полюсами Барбера с 0,5 мВ/(В×Э) до 0,8-0,9 мВ/(В×Э), уменьшить разбаланс моста Уинстона в среднем с 8-12 мВ до 4-6 мВ, что позволило отказаться от подгоночного сопротивления и тем самым уменьшить размеры датчика и исключить из технологии операцию подгонки моста Уинстона.
Использование Al сверху контактных площадок позволило применить ультразвуковую приварку алюминиевой фольги, при этом прочность сварного соединения увеличилась с 20-22 г для золотой проволоки до 50 г для алюминиевой фольги (определялась динамометрическим методом путем отрыва алюминиевой фольги от алюминиевой КП). Кроме того, в этом случае очевидно удешевление этой операции, а в целом и датчика по сравнению с приваркой золотой проволоки.
Аналогичным образом был изготовлен датчик, мост Уинстона которого содержит наклонные полоски. Выход годных датчиков с разбалансом 4 мВ увеличился на 30% по сравнению с прототипом.

Claims (1)

  1. Способ изготовления магниторезистивного датчика, заключающийся в формировании на изолирующей подложке моста Уинстона путем вакуумного напыления магниторезистивной структуры с последующим формированием магниторезистивных полосок методом фотолитографического травления и напылении первого проводящего слоя с последующим формированием перемычек, проводников и контактных площадок методом фотолитографического травления, нанесении первого изоляционного слоя из полиимида с последующей его имидизацией в вакууме, напылении второго проводящего слоя и формировании на нем плоской катушки индуктивности «set/reset» методом фотолитографического травления, нанесении второго изоляционного слоя из полиимида с последующей его имидизацией в вакууме, напылении третьего проводящего слоя и формировании на нем плоской катушки индуктивности «offset» методом фотолитографического травления, нанесении конструктивной защиты с последующим вскрытием контактных площадок первого проводящего слоя, отличающийся тем, что проводящие слои получают путем вакуумного напыления структуры Cr-Cu-Cr, которую травят послойно и селективно, а на вскрытых контактных площадках, находящихся на первом проводящем слое, дополнительно формируют пленку Al путем его напыления на датчик с последующим фотолитографическим травлением.
RU2013118368/28A 2013-04-19 2013-04-19 Способ изготовления магниторезистивного датчика RU2536317C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013118368/28A RU2536317C1 (ru) 2013-04-19 2013-04-19 Способ изготовления магниторезистивного датчика

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013118368/28A RU2536317C1 (ru) 2013-04-19 2013-04-19 Способ изготовления магниторезистивного датчика

Publications (2)

Publication Number Publication Date
RU2013118368A RU2013118368A (ru) 2014-10-27
RU2536317C1 true RU2536317C1 (ru) 2014-12-20

Family

ID=53286329

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013118368/28A RU2536317C1 (ru) 2013-04-19 2013-04-19 Способ изготовления магниторезистивного датчика

Country Status (1)

Country Link
RU (1) RU2536317C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2601360C1 (ru) * 2015-07-14 2016-11-10 федеральное государственное бюджетное учреждение "Научно-производственный комплекс "Технологический центр" МИЭТ Магниторезистивный элемент
RU2617454C1 (ru) * 2016-02-17 2017-04-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ изготовления магниторезистивного датчика
RU2659877C1 (ru) * 2017-08-16 2018-07-04 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления магниторезистивного датчика
RU2767593C1 (ru) * 2021-07-19 2022-03-17 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления магниторезистивных наноструктур

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247278A (en) * 1991-11-26 1993-09-21 Honeywell Inc. Magnetic field sensing device
RU2066504C1 (ru) * 1994-07-20 1996-09-10 Институт проблем управления РАН Магниторезистивный датчик
US6295718B1 (en) * 1999-08-16 2001-10-02 Headway Technologies, Inc. Method for fabricating a non-parallel magnetically biased multiple magnetoresistive (MR) layer magnetoresistive (MR) sensor element
RU2320051C1 (ru) * 2006-10-27 2008-03-20 Государственное учреждение "Научно-производственный комплекс "Технологический центр" Московского государственного института электронной техники" Способ изготовления магниторезистивных датчиков
RU2347302C1 (ru) * 2007-09-11 2009-02-20 Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова" Магниторезистивный датчик
RU2463688C1 (ru) * 2011-06-23 2012-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ изготовления магниторезистивного датчика

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247278A (en) * 1991-11-26 1993-09-21 Honeywell Inc. Magnetic field sensing device
RU2066504C1 (ru) * 1994-07-20 1996-09-10 Институт проблем управления РАН Магниторезистивный датчик
US6295718B1 (en) * 1999-08-16 2001-10-02 Headway Technologies, Inc. Method for fabricating a non-parallel magnetically biased multiple magnetoresistive (MR) layer magnetoresistive (MR) sensor element
RU2320051C1 (ru) * 2006-10-27 2008-03-20 Государственное учреждение "Научно-производственный комплекс "Технологический центр" Московского государственного института электронной техники" Способ изготовления магниторезистивных датчиков
RU2347302C1 (ru) * 2007-09-11 2009-02-20 Федеральное государственное унитарное предприятие федеральный научно-производственный центр "Научно-исследовательский институт измерительных систем им. Ю.Е. Седакова" Магниторезистивный датчик
RU2463688C1 (ru) * 2011-06-23 2012-10-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ изготовления магниторезистивного датчика

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2601360C1 (ru) * 2015-07-14 2016-11-10 федеральное государственное бюджетное учреждение "Научно-производственный комплекс "Технологический центр" МИЭТ Магниторезистивный элемент
RU2617454C1 (ru) * 2016-02-17 2017-04-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ изготовления магниторезистивного датчика
RU2659877C1 (ru) * 2017-08-16 2018-07-04 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления магниторезистивного датчика
RU2767593C1 (ru) * 2021-07-19 2022-03-17 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления магниторезистивных наноструктур

Also Published As

Publication number Publication date
RU2013118368A (ru) 2014-10-27

Similar Documents

Publication Publication Date Title
US7078238B2 (en) Method for manufacturing magnetic sensor
US10066940B2 (en) Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method
RU2536317C1 (ru) Способ изготовления магниторезистивного датчика
JP6380521B2 (ja) 電子装置
TW200906260A (en) Circuit board structure and fabrication method thereof
CN103904052A (zh) 后钝化结构中的电容器及其形成方法
US8988073B2 (en) Magnetoresistive sensor
US20130241684A1 (en) Method for manufacturing common mode filter and common mode filter
KR102343804B1 (ko) 자기 센서 및 그 제조 방법
US20160313375A1 (en) Chip scale current sensor package and method of producing a current sensor package
JPS63293934A (ja) 半導体素子検査装置
WO2024022300A1 (zh) 电阻结构及其制作方法
CN107424978A (zh) 一种化合物半导体层间介电导线及其制备方法
RU2463688C1 (ru) Способ изготовления магниторезистивного датчика
RU2474004C1 (ru) Способ изготовления многоуровневых тонкопленочных микросхем
CN105977240A (zh) 一种单片集成微型变压器
JP2004186439A (ja) 半導体装置およびその製造方法
RU2617454C1 (ru) Способ изготовления магниторезистивного датчика
RU2659877C1 (ru) Способ изготовления магниторезистивного датчика
TWI576871B (zh) 電感結構及其製作方法
JP2013128053A (ja) 半導体素子検査方法およびテスト素子
JP2007019333A (ja) 半導体装置及びその製造方法
JPS59182586A (ja) ジヨセフソン接合素子
CN105470276A (zh) 一种高性能磁阻器件及制造工艺
JPH0766263A (ja) 多層金属配線の接触抵抗測定方法並びに半導体装置及び半導体ウェハ

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20190507