RU2350385C2 - Катализатор на основе смешанных оксидов металлов - Google Patents
Катализатор на основе смешанных оксидов металлов Download PDFInfo
- Publication number
- RU2350385C2 RU2350385C2 RU2005114479/04A RU2005114479A RU2350385C2 RU 2350385 C2 RU2350385 C2 RU 2350385C2 RU 2005114479/04 A RU2005114479/04 A RU 2005114479/04A RU 2005114479 A RU2005114479 A RU 2005114479A RU 2350385 C2 RU2350385 C2 RU 2350385C2
- Authority
- RU
- Russia
- Prior art keywords
- solution
- catalyst
- acetic acid
- ethylene
- ethane
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims 6
- 229910003455 mixed metal oxide Inorganic materials 0.000 title 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract 15
- 239000000203 mixture Substances 0.000 claims abstract 11
- 239000010955 niobium Substances 0.000 claims abstract 10
- 239000010931 gold Substances 0.000 claims abstract 9
- 230000003197 catalytic effect Effects 0.000 claims abstract 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims abstract 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract 4
- 239000005977 Ethylene Substances 0.000 claims abstract 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract 4
- 239000007789 gas Substances 0.000 claims abstract 4
- 229910052787 antimony Inorganic materials 0.000 claims abstract 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract 3
- 229910052802 copper Inorganic materials 0.000 claims abstract 3
- 229910052742 iron Inorganic materials 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims abstract 3
- 229910052760 oxygen Inorganic materials 0.000 claims abstract 3
- 239000001301 oxygen Substances 0.000 claims abstract 3
- 229910052697 platinum Inorganic materials 0.000 claims abstract 3
- 229910052702 rhenium Inorganic materials 0.000 claims abstract 3
- 229910052709 silver Inorganic materials 0.000 claims abstract 3
- 229910052718 tin Inorganic materials 0.000 claims abstract 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910052770 Uranium Inorganic materials 0.000 claims abstract 2
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 2
- 229910052788 barium Inorganic materials 0.000 claims abstract 2
- 229910052796 boron Inorganic materials 0.000 claims abstract 2
- 229910052793 cadmium Inorganic materials 0.000 claims abstract 2
- 229910052792 caesium Inorganic materials 0.000 claims abstract 2
- 229910052791 calcium Inorganic materials 0.000 claims abstract 2
- 229910052804 chromium Inorganic materials 0.000 claims abstract 2
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract 2
- 229910052733 gallium Inorganic materials 0.000 claims abstract 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910052737 gold Inorganic materials 0.000 claims abstract 2
- 229910052735 hafnium Inorganic materials 0.000 claims abstract 2
- 229910052738 indium Inorganic materials 0.000 claims abstract 2
- 229910052741 iridium Inorganic materials 0.000 claims abstract 2
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract 2
- 229910052745 lead Inorganic materials 0.000 claims abstract 2
- 229910052749 magnesium Inorganic materials 0.000 claims abstract 2
- 229910052748 manganese Inorganic materials 0.000 claims abstract 2
- 239000011733 molybdenum Substances 0.000 claims abstract 2
- 229910052759 nickel Inorganic materials 0.000 claims abstract 2
- 229910052758 niobium Inorganic materials 0.000 claims abstract 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract 2
- 230000003647 oxidation Effects 0.000 claims abstract 2
- 238000007254 oxidation reaction Methods 0.000 claims abstract 2
- 229910052763 palladium Inorganic materials 0.000 claims abstract 2
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract 2
- 229910052703 rhodium Inorganic materials 0.000 claims abstract 2
- 229910052701 rubidium Inorganic materials 0.000 claims abstract 2
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract 2
- 229910052710 silicon Inorganic materials 0.000 claims abstract 2
- 229910052712 strontium Inorganic materials 0.000 claims abstract 2
- 229910052715 tantalum Inorganic materials 0.000 claims abstract 2
- 229910052714 tellurium Inorganic materials 0.000 claims abstract 2
- 229910052716 thallium Inorganic materials 0.000 claims abstract 2
- 229910052719 titanium Inorganic materials 0.000 claims abstract 2
- 229910052720 vanadium Inorganic materials 0.000 claims abstract 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910052725 zinc Inorganic materials 0.000 claims abstract 2
- 229910052726 zirconium Inorganic materials 0.000 claims abstract 2
- 239000008246 gaseous mixture Substances 0.000 claims 2
- 235000002779 Morchella esculenta Nutrition 0.000 abstract 1
- 240000002769 Morchella esculenta Species 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/683—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
- B01J23/686—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with molybdenum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/215—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Настоящее изобретение относится к катализатору селективного окисления этана до уксусной кислоты и/или селективного окисления этилена до уксусной кислоты. Описана каталитическая композиция для окисления этана и/или этилена до уксусной кислоты, которая включает в сочетании с кислородом элементы молибден, ванадий, ниобий и золото в отсутствие палладия в соответствии с эмпирической формулой:
Description
Настоящее изобретение относится к катализатору селективного окисления этана до уксусной кислоты и/или селективного окисления этилена до уксусной кислоты и к способу получения уксусной кислоты с использованием вышеупомянутого катализатора.
Катализаторы, включающие молибден, ванадий и ниобий в сочетании с кислородом, предназначенные для применения в процессах получения уксусной кислоты окислением этана и этилена, в данной области техники известны, например, из US 4250346, ЕР-А-1043064, WO 99/20592 и DE 19630832.
В US № 4250346 описано окислительное дегидрирование этана до этилена в ходе проведения газофазной реакции с относительно высокими степенью превращения, селективностью и производительностью при температуре ниже примерно 550°С с применением в качестве катализатора композиции, включающей как элементы молибден, Х и Y в соотношении МоаХbYс, в котором Х обозначает Cr, Mn, Nb, Та, Ti, V и/или W, а предпочтительно Mn, Nb, V и/или W; Y обозначает Bi, Се, Со, Cu, Fe, К, Mg, Ni, P, Pb, Sb, Si, Sn, Tl и/или U, a предпочтительнее Sb, Се и/или U, а обозначает 1, b обозначает число от 0,05 до 1,0, с обозначает число от 0 до 2, а предпочтительно от 0,05 до 1,0, при условии, что общее значение с для Со, Ni и/или Fe составляет меньше 0,5.
WO 99/20592 относится к способу селективного получения уксусной кислоты из этана, этилена или их смесей и кислорода при высокой температуре в присутствии катализатора, отвечающего формуле MoaPdbXcYd, в которой Х обозначает один или несколько следующих элементов: Cr, Mn, Nb, Та, Ti, V, Те и W; Y обозначает один или несколько следующих элементов: В, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Au, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Nb, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl и U, а обозначает 1, b обозначает число от 0,0001 до 0,01, с обозначает число от 0,4 до 1, a d обозначает число от 0,005 до 1.
DE-A1 19630832 относится к аналогичной каталитической композиции, в которой а обозначает 1, b>0, c>0, a d обозначает число от 0 до 2. В предпочтительном варианте а обозначает 1, b обозначает число от 0,0001 от 0,5, с обозначает число от 0,1 до 1,0, а d обозначает число от 0 до 1,0.
Для действия катализаторов по обеим публикациям WO 99/20592 и DE 19630832 необходимо присутствие палладия.
В ЕР-А 1043064 описана каталитическая композиция для окисления этана до этилена и/или уксусной кислоты и/или для окисления этилена до уксусной кислоты; эта композиция включает в сочетании с кислородом элементы молибден, ванадий, ниобий и золото в отсутствие палладия в соответствие с эмпирической формулой:
в которой Y обозначает один или несколько элементов, выбранных из группы, включающей Cr, Mn, Та, Ti, В, Al, Ga, In, Pt, Zn, Cd, Bi, Се, Со, Rh, Ir, Cu, Ag, Fe, Ru, Os, К, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, U, Re, Те и La; а, b, с, d, e и f обозначают такие грамм-атомные соотношения элементов, при которых 0<а≤1; 0≤b<1 и а+b=1; 10-5<с≤0,02; 0<d≤2; 0<e≤1 и 0≤f≤2.
Сохраняется потребность в создании катализатора окисления этана и/или этилена до уксусной кислоты и разработке способа получения уксусной кислоты с применением такого катализатора, при осуществлении которого катализатор дает возможность добиться высокой селективности превращения в уксусную кислоту.
Неожиданно обнаружено, что с использованием катализатора, который в сочетании с кислородом включает молибден, ванадий, ниобий и золото в отсутствие палладия, где молибден, ванадий, ниобий и золото содержатся в особых количествах, этан и/или этилен может быть окислен до уксусной кислоты при повышенной селективности в отношении уксусной кислоты. Более того, была установлена возможность использования катализаторов по настоящему изобретению для достижения высокой селективности в отношении уксусной кислоты при пониженной селективности в отношении этилена.
Соответственно, в настоящем изобретении предлагается каталитическая композиция для окисления этана и/или этилена до уксусной кислоты, причем эта композиция в сочетании с кислородом включает элементы молибден, ванадий, ниобий и золото в отсутствие палладия в соответствие с эмпирической формулой:
в которой Y обозначает один или несколько элементов, выбранных из группы, включающей Cr, Mn, Та, Ti, В, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, U, Re, Те и La;
a, b, c, d, e и f обозначают такие грамм-атомные соотношения элементов, при которых
0<а≤1; 0≤b<1 и а+b=1;
10-5<с≤0,02;
0,4≤d≤0,865; 0,135≤e≤0,23; 0,55≤d+е≤1;
0≤f≤2.
Катализаторы, охватываемые формулой (I), включают:
MoaWbAucVdNbeYf
MoaAucVdNbeYf
MoaWbAucVdNbe
MoaAucVdNbe.
Примеры приемлемых катализаторов, отвечающих формуле (I), включают:
Mo1,00V0,455Nb0,200Au0,0008Oy; Mo1,00V0,547Nb0,163Au0,0009Oy и Mo1,000V0,661Nb0,174Au0,0009Oy, где y обозначает число, которое соответствует валентностям элементов в композиции для кислорода.
В предпочтительном варианте а>0,01, а наиболее предпочтительно а=1.
В предпочтительном варианте с>0,0001, а наиболее предпочтительно с>00005. В предпочтительном варианте с≤0,002, а наиболее предпочтительно с≤0,001.
В предпочтительном варианте d≥0,425, в частности d≥0,45, а наиболее предпочтительно d≥0,5. В предпочтительном варианте d≤0,8, а наиболее предпочтительно d≤0,7.
В предпочтительном варианте е≥0,14, наиболее предпочтительно е≥0,15. В более предпочтительном варианте е≤0,20, а наиболее предпочтительно е≤0,18.
В предпочтительном варианте d+е≥0,6, в частности d+е≥0,7. В наиболее предпочтительном варианте d+е≥0,8. В предпочтительном варианте d+е≥0,95, более предпочтительно d+е≤0,9.
В предпочтительном варианте f≤0,2, а наиболее предпочтительно f≤0,02.
В предпочтительном варианте а>0,01, 0,0001<с≤0,002, 0,425≤d≤0,8, 0,14≤е≤0,20, 0,6≤d+е≤0,95, a f≤0,2; где более предпочтительно 0,0005<с≤0,001, 0,45≤d≤0,7, е≥0,15, d+е≤0,9, a f≤0,02; преимущественно где d≥0,5, e≤0,18, a d+e≥0,7, в частности d+е≥0,8. В этом предпочтительном варианте наиболее предпочтительно а=1.
Y, когда он имеется, в предпочтительном варианте выбирают из группы, включающей Sn, Sb, Cu, Pt, Ag, Fe и Re.
Преимущество каталитических композиций в соответствии с настоящим изобретением состоит в том, что они могут быть более активными и селективными при превращении этана и/или этилена в уксусную кислоту, чем композиции, не соответствующие настоящему изобретению. С использованием каталитических композиций по настоящему изобретению может быть достигнута селективность в отношении уксусной кислоты как правило по меньшей мере 55 мольных %. В более предпочтительном варианте может быть достигнута селективность в отношении уксусной кислоты выше 60%, в частности, превышающая 70%.
Так, в частности, с использованием каталитических композиций по настоящему изобретению высокая селективность в отношении уксусной кислоты может быть достигнута в сочетании с низкой селективностью в отношении этилена, если она вообще проявляется.
При применении каталитических композиций по настоящему изобретению селективность в отношении этилена составляет как правило меньше 30 мольных %, предпочтительно меньше 20 мольных %, а наиболее предпочтительно меньше 10 мольных %.
В предпочтительном варианте при применении каталитических композиций по настоящему изобретению селективность в отношении уксусной кислоты составляет по меньшей мере 70 мольных %, а селективность в отношении этилена составляет меньше 10 мольных %.
В том смысле, в котором оно использовано в настоящем описании, понятие "селективность" относится к выраженной в процентах доле, которая отражает количество получаемой как продукт целевой уксусной кислоты в сравнении с общим количеством углерода в образующихся продуктах:
селективность, %=100 · число молей получаемой уксусной кислоты/S, где S обозначает сумму молярных эквивалентов кислоты (на углеродной основе) всех углеродсодержащих продуктов, за исключением алканов, в отходящем потоке.
Эти каталитические композиции могут быть приготовлены по любому из методов, обычно применяемых при получении катализаторов. Такой катализатор может быть успешно приготовлен из раствора растворимых соединений и/или комплексов, и/или соединений каждого из металлов. В предпочтительном варианте раствор представляет собой водную систему, значение рН которой находится в интервале от 1 до 12, предпочтительно от 2 до 8, при температуре от 20 до 100°С.
Обычно смесь соединений, содержащих такие элементы, готовят растворением достаточных количеств растворимых соединений и диспергированием всех нерастворимых соединений с тем, чтобы добиться требуемого грамм-атомного соотношения элементов в каталитической композиции. В дальнейшем каталитическая композиция может быть приготовлена удалением из смеси растворителя. Катализатор можно кальцинировать нагреванием до температуры от 200 до 550°С, целесообразно на воздухе или в кислороде, в течение периода от 1 мин до 24 ч. В предпочтительном варианте воздух или кислород представляет собой медленно движущийся поток.
Катализатор можно использовать не нанесенным или нанесенным на носитель. Приемлемые носители включают диоксид кремния, оксид алюминия, диоксид циркония, диоксид титана, карбид кремния и смеси двух или нескольких из них.
Дополнительные подробности приемлемого метода приготовления каталитической композиции можно обнаружить, например, в ЕР-А 0166438.
Катализатор можно использовать в форме неподвижного или псевдоожиженного слоя.
В другом варианте объектом настоящего изобретения является способ селективного получения уксусной кислоты из газообразной смеси, содержащей этан и/или этилен, причем этот способ включает введение газообразной смеси в контакт с содержащим молекулярный кислород газом при повышенной температуре в присутствии каталитической композиции, которая представлена в настоящем описании выше.
Исходный газ включает этан и/или этилен, предпочтительно этан.
Как этан, так и/или этилен может быть использован по существу в чистом виде или смешанным с одним или несколькими такими веществами, как азот, метан, диоксид углерода и вода в форме водяного пара, которые могут содержаться в больших количествах, например, более 5 об.%, или с одним или несколькими из таких веществ, как водород, моноксид углерода, С3/С4алканы и алкены, которые могут содержаться в небольших количествах, например, менее 5 об.%.
Содержащим молекулярный кислород газом может служить воздух или газ, более богатый или более бедный молекулярным кислородом, чем воздух, например, кислород. Приемлемым газом может быть, например, кислород, разбавленный подходящим разбавителем, например азотом.
В предпочтительном варианте, в дополнение к этану и/или этилену и содержащему молекулярный кислород газу в исходный материал добавляют воду (водяной пар), поскольку это может улучшить селективность в отношении уксусной кислоты.
Приемлемая повышенная температура находится в интервале от 200 до 500°С, предпочтительно от 200 до 400°С.
Приемлемое давление является атмосферным или повышенным, например, в интервале от 1 до 50 бар, предпочтительно от 1 до 30 бар.
В предпочтительном варианте перед использованием в способе по изобретению каталитическую композицию кальцинируют. Приемлемое кальцинирование может быть осуществлено выдерживанием при повышенной температуре, целесообразно в интервале от 250 до 500°С, в присутствии кислородсодержащего газа, например воздуха.
Рабочие условия и другую информацию, которая может быть использована для выполнения изобретения, можно почерпнуть в вышеупомянутой литературе, посвященной данной области техники, например в US № 4250346.
Способ по изобретению далее дополнительно проиллюстрирован со ссылкой на следующие примеры.
Приготовление катализатора
Примеры в соответствии с настоящим изобретением
Катализатор A (Mo1,00V0,455Nb0,200Au0,0008Oy).
Растворением с перемешиванием 22,070 г молибдата аммония и 0,0369 г тетрахлораурата аммония в 100 мл дистиллированной воды при 70°С готовили раствор 'А'. Растворением с перемешиванием 6,652 г ванадата аммония в 150 мл дистиллированной воды при 70°С готовили раствор 'Б'. Растворением с перемешиванием 6,704 г пентахлорида ниобия и 7,821 г щавелевой кислоты в 100 мл дистиллированной воды при 70°С готовили раствор 'В'. Каждый из растворов А, Б и В оставляли стоять в течение 15 мин, чтобы предоставить возможность для максимальной солюбилизации компонентов. Затем с перемешиванием при 70°С раствор В быстро вводили в раствор Б. Смешанный раствор Б/В перемешивали в течение 15 мин при 70°С, после чего быстро вводили в раствор А. Конечный смешанный раствор А/Б/В оставляли перемешиваться при 70°С в течение дополнительных 15 мин, после чего раствор нагревали до кипения для облегчения выпаривания воды. Полного выпаривания смеси реагентов добивались в течение 1,5 ч, в результате чего образовывалась сухая паста. Затем химический стакан с высушенной пастой переносили в сушильный шкаф для дополнительной сушки при 120°С в течение 2 ч. После сушки каталитический предшественник измельчали до тонкодисперсного порошка, а затем просеивали через сито с размерами ячеек 0,2 мм. Далее полученный из порошкообразного катализатора пирог кальцинировали в неподвижном воздухе в сушильном шкафу при 400°С в течение 4 ч. Приготовленный оксидный катализатор отвечал следующей номинальной формуле:
M1,00V0,455Nb0,200Au0,0008Oy
Катализатор Б (Mo1,00V0,547Nb0,163Au0,0009Oy)
Растворением с перемешиванием 22,070 г молибдата аммония и 0,0359 г тетрахлораурата аммония в 100 мл дистиллированной воды при 70°С готовили раствор 'А'. Растворением с перемешиванием 6,555 г ванадата аммония в 150 мл дистиллированной воды при 70°С готовили раствор 'Б'. Растворением с перемешиванием 5,134 г пентахлорида ниобия и 5,992 г щавелевой кислоты в 100 мл дистиллированной воды при 70°С готовили раствор 'В'. Каждый из растворов А, Б и В оставляли стоять в течение 15 мин, чтобы предоставить возможность для максимальной солюбилизации компонентов. Затем с перемешиванием при 70°С раствор В быстро вводили в раствор Б. Смешанный раствор Б/В перемешивали в течение 15 мин при 70°С, после чего быстро вводили в раствор А. Конечный смешанный раствор А/Б/В оставляли перемешиваться при 70°С в течение дополнительных 15 мин, после чего раствор нагревали до кипения для облегчения выпаривания воды. Полного выпаривания смеси реагентов добивались в течение 1,5 ч, в результате чего образовывалась сухая паста. Затем химический стакан с высушенной пастой переносили в сушильный шкаф для дополнительной сушки при 120°С в течение 2 ч. После сушки каталитический предшественник измельчали до тонкодисперсного порошка, а затем просеивали через сито с размерами ячеек 0,2 мм. Далее полученный из порошкообразного катализатора пирог кальцинировали в неподвижном воздухе в сушильном шкафу при 400°С в течение 4 ч. Приготовленный оксидный катализатор отвечал следующей номинальной формуле:
Mo1,00V0,547Nb0,163Au0,0009Oy.
Катализатор В (Mo1,00V0,661Nb0,174Au0,0009Oy)
Растворением с перемешиванием 22,070 г молибдата аммония и 0,0382 г тетрахлораурата аммония в 100 мл дистиллированной воды при 70°С готовили раствор 'А'. Растворением с перемешиванием 8,005 г ванадата аммония в 150 мл дистиллированной воды при 70°С готовили раствор 'Б'. Растворением с перемешиванием 5,488 г пентахлорида ниобия и 6,404 г щавелевой кислоты в 100 мл дистиллированной воды при 70°С готовили раствор 'В'. Каждый из растворов А, Б и В оставляли стоять в течение 15 мин, чтобы предоставить возможность для максимальной солюбилизации компонентов. Затем с перемешиванием при 70°С раствор В быстро вводили в раствор Б. Смешанный раствор Б/В перемешивали в течение 15 мин при 70°С, после чего быстро вводили в раствор А. Конечный смешанный раствор А/Б/В оставляли перемешиваться при 70°С в течение дополнительных 15 мин, после чего раствор нагревали до кипения для облегчения выпаривания воды. Полного выпаривания смеси реагентов добивались в течение 1,5 ч, в результате чего образовывалась сухая паста. Затем химический стакан с высушенной пастой переносили в сушильный шкаф для дополнительной сушки при 120°С в течение 2 ч. После сушки каталитический предшественник измельчали до тонкодисперсного порошка, а затем просеивали через сито с размерами ячеек 0,2 мм. Далее полученный из порошкообразного катализатора пирог кальцинировали в неподвижном воздухе в сушильном шкафу при 400°С в течение 4 ч. Приготовленный оксидный катализатор отвечал следующей номинальной формуле:
Mo1,000V0,661Nb0,174Au0,0009Oy
Примеры, не соответствующие изобретению
Сравнительный пример 1 (Mo1,00V0,423Nb0,115Au0,0008Oy).
Растворением с перемешиванием 22,070 г молибдата аммония и 0,0345 г тетрахлораурата аммония в 100 мл дистиллированной воды при 70°С готовили раствор 'А'. Растворением с перемешиванием 6,220 г ванадата аммония в 150 мл дистиллированной воды при 70°С готовили раствор 'Б'. Растворением с перемешиванием 3,918 г пентахлорида ниобия и 4,570 г щавелевой кислоты в 100 мл дистиллированной воды при 70°С готовили раствор 'В'. Каждый из растворов А, Б и В оставляли стоять в течение 15 мин, чтобы предоставить возможность для максимальной солюбилизации компонентов. Затем с перемешиванием при 70°С раствор В быстро вводили в раствор Б. Смешанный раствор Б/В перемешивали в течение 15 мин при 70°С, после чего быстро вводили в раствор А. Конечный смешанный раствор А/Б/В оставляли перемешиваться при 70°С в течение дополнительных 15 мин, после чего раствор нагревали до кипения для облегчения выпаривания воды. Полного выпаривания смеси реагентов добивались в течение 1,5 ч, в результате чего образовывалась сухая паста. Затем химический стакан с высушенной пастой переносили в сушильный шкаф для дополнительной сушки при 120°С в течение 2 ч. После сушки каталитический предшественник измельчали до тонкодисперсного порошка, а затем просеивали через сито с размерами ячеек 0,2 мм. Далее полученный из порошкообразного катализатора пирог кальцинировали в неподвижном воздухе в сушильном шкафу при 400°С в течение 4 ч. Приготовленный оксидный катализатор отвечал следующей номинальной формуле:
Mo1,000V0,423Nb0,115Au0,0008Oy.
Сравнительный пример 2 (Mo1,00V0,529Nb0,124Au0,0008Oy)
Растворением с перемешиванием 22,070 г молибдата аммония и 0,0411 г тетрахлораурата аммония в 100 мл дистиллированной воды при 70°С готовили раствор 'А'. Растворением с перемешиванием 7,741 г ванадата аммония в 150 мл дистиллированной воды при 70°С готовили раствор 'Б'. Растворением с перемешиванием 4,189 г пентахлорида ниобия и 4,889 г щавелевой кислоты в 100 мл дистиллированной воды при 70°С готовили раствор 'В'. Каждый из растворов А, Б и В оставляли стоять в течение 15 мин, чтобы предоставить возможность для максимальной солюбилизации компонентов. Затем с перемешиванием при 70°С раствор В быстро вводили в раствор Б. Смешанный раствор Б/В перемешивали в течение 15 мин при 70°С, после чего быстро вводили в раствор А. Конечный смешанный раствор А/Б/В оставляли перемешиваться при 70°С в течение дополнительных 15 мин, после чего раствор нагревали до кипения для облегчения выпаривания воды. Полного выпаривания смеси реагентов добивались в течение 1,5 ч, в результате чего образовывалась сухая паста. Затем химический стакан с высушенной пастой переносили в сушильный шкаф для дополнительной сушки при 120°С в течение 2 ч. После сушки каталитический предшественник измельчали до тонкодисперсного порошка, а затем просеивали через сито с размерами ячеек 0,2 мм. Далее полученный из порошкообразного катализатора пирог кальцинировали в неподвижном воздухе в сушильном шкафу при 400°С в течение 4 ч. Приготовленный оксидный катализатор отвечал следующей номинальной формуле:
Mo1,000V0,529Nb0,124Au0,0008Oy
Сравнительный пример 3 (Mo1,00V0,638Nb0,133Au0,0009Oy).
Растворением с перемешиванием 22,070 г молибдата аммония и 0,0395 г тетрахлораурата аммония в 100 мл дистиллированной воды при 70°С готовили раствор 'А'. Растворением с перемешиванием 9,356 г ванадата аммония в 150 мл дистиллированной воды при 70°С готовили раствор 'Б'. Растворением с перемешиванием 4,487 г пентахлорида ниобия и 5,234 г щавелевой кислоты в 100 мл дистиллированной воды при 70°С готовили раствор 'В'. Каждый из растворов А, Б и В оставляли стоять в течение 15 мин, чтобы предоставить возможность для максимальной солюбилизации компонентов. Затем с перемешиванием при 70°С раствор В быстро вводили в раствор Б. Смешанный раствор Б/В перемешивали в течение 15 мин при 70°С, после чего быстро вводили в раствор А. Конечный смешанный раствор А/Б/В оставляли перемешиваться при 70°С в течение дополнительных 15 мин, после чего раствор нагревали до кипения для облегчения выпаривания воды. Полного выпаривания смеси реагентов добивались в течение 1,5 ч, в результате чего образовывалась сухая паста. Затем химический стакан с высушенной пастой переносили в сушильный шкаф для дополнительной сушки при 120°С в течение 2 ч. После сушки каталитический предшественник измельчали до тонкодисперсного порошка, а затем просеивали через сито с размерами ячеек 0,2 мм. Далее полученный из порошкообразного катализатора пирог кальцинировали в неподвижном воздухе в сушильном шкафу при 400°С в течение 4 ч. Приготовленный оксидный катализатор отвечал следующей номинальной формуле:
Mo1,000V0,638Nb0,133Au0,0009Oy.
Сравнительный пример 4 (Mo1,00V0,362Nb0,143Au0,0008Oy)
Растворением с перемешиванием 22,070 г молибдата аммония и 0,0336 г тетрахлораурата аммония в 100 мл дистиллированной воды при 70°С готовили раствор 'А'. Растворением с перемешиванием 5,281 г ванадата аммония в 150 мл дистиллированной воды при 70°С готовили раствор 'Б'. Растворением с перемешиванием 4,828 г пентахлорида ниобия и 5,632 г щавелевой кислоты в 100 мл дистиллированной воды при 70°С готовили раствор 'В'. Каждый из растворов А, Б и В оставляли стоять в течение 15 мин, чтобы предоставить возможность для максимальной солюбилизации компонентов. Затем с перемешиванием при 70°С раствор В быстро вводили в раствор Б. Смешанный раствор Б/В перемешивали в течение 15 мин при 70°С, после чего быстро вводили в раствор А. Конечный смешанный раствор А/Б/В оставляли перемешиваться при 70°С в течение дополнительных 15 мин, после чего раствор нагревали до кипения для облегчения выпаривания воды. Полного выпаривания смеси реагентов добивались в течение 1,5 ч, в результате чего образовывалась сухая паста. Затем химический стакан с высушенной пастой переносили в сушильный шкаф для дополнительной сушки при 120°С в течение 2 ч. После сушки каталитический предшественник измельчали до тонкодисперсного порошка, а затем просеивали через сито с размерами ячеек 0,2 мм. Далее полученный из порошкообразного катализатора пирог кальцинировали в неподвижном воздухе в сушильном шкафу при 400°С в течение 4 ч. Приготовленный оксидный катализатор отвечал следующей номинальной формуле:
Mo1,000V0,362Nb0,143Au0,0008Oy.
Общий способ проведения реакции окисления этана
Как правило, 5 мл порошкообразного катализатора смешивали с 15 мл стеклянного бисера с диаметром шариков 0,4 мм, получая слой разбавленного катализатора объемом 20 мл. Далее этот разбавленный катализатор загружали в реактор с неподвижным слоем, выполненный из сплава "Хастеллой" (Hastelloy), с внутренним диаметром 12 мм и длиной 40 см. Катализатор удерживали в центре реактора с помощью кварцевых настенных штырей совместно с инертным насадочным материалом поверх слоя катализатора и под ним. Далее для проверки на наличие утечек реактор испытывали под давлением гелия 20 бар. После этого в гелии под давлением 16 бар катализатор активировали нагреванием до 220°С со скоростью 5°С/мин и выдержкой в течение 1 ч, чтобы гарантировать полное разложение каталитических предшественников.
Затем в реактор вводили потоки этана, этилена, 20% кислорода в гелии и воды, необходимые для гарантии создания требуемой входящей композиции. Эта композиция включала 52 об.% этана, 6,7 об.% кислорода, 10 об.% этилена, 5 об.% воды, а остальное - гелий. Общий расход исходных материалов поддерживали на таком уровне, при котором гарантировалась ССПГ 3200/ч. После установления равновесия в течение 60 мин из отходящего потока отбирали пробы газа для ГХ системы (Unicam модели 4400), с целью количественного определения этана, этилена, кислорода и гелия.
Для каждого из катализаторов от А до В в реакторе поддерживали температуру 300°С, чтобы облегчить прямое сравнение. По прошествии еще одного периода установления равновесия в течение 60 мин начинали собирать жидкий продукт, и этот процесс, как правило, продолжали в течение 18 ч. В течение периода эксперимента состав отходящего газа определяли ГХ анализом (ProGC, Unicam). Объем отходящего газа в период всего эксперимента измеряли расходомером для воды/газа. После периода эксперимента жидкие продукты собирали и взвешивали. Состав жидких продуктов определяли газохроматографическим анализом [приборы Unicam моделей 4400 и 4200, снабженные соответственно термокондуктометрическим детектором (ТКД) и пламенно-ионизационным детектором (ПИД)].
По данным анализа скоростей потоков и состава исходных материалов и продуктов рассчитывали следующие параметры:
степень превращения
этана=(число молей этана на входе - число молей этана на выходе)/число молей этана на входе × 100
кислорода=(число молей кислорода на входе - число молей кислорода на выходе)/число молей кислорода на входе × 100
селективность
в отношении уксусной кислоты (С, мольных %)=(число молей уксусной кислоты на выходе × 2)/((число молей этилена на выходе × 2 - число молей этилена на входе × 2) + число молей СО на выходе + число молей СО2 на выходе + число молей уксусной кислоты на выходе × 2) × 100
в отношении этилена (С, мольных %)=(число молей этилена на выходе × 2)/((число молей этилена на выходе × 2 - число молей этилена на входе × 2) + число молей СО на выходе + число молей СО2 на выходе + число молей уксусной кислоты на выходе × 2) × 100
в отношении СО (С, мольных %)=(число молей СО на выходе)/((число молей этилена на выходе × 2 - число молей этилена на входе × 2) + число молей СО на выходе + число молей СО2 на выходе + число молей уксусной кислоты на выходе × 2) × 100
в отношении СО2 (С, мольных %)=(число молей СО2 на выходе)/((число молей этилена на выходе × 2 - число молей этилена на входе × 2) + число молей СО на выходе + число молей СО2 на выходе + число молей уксусной кислоты на выходе × 2) × 100
в отношении СОх=селективность в отношении СО (С, мольных %) + селективность в отношении СО2 (С, мольных %)
ОПР (объемная производительность), % = (г уксусной кислоты)/кг каталитического слоя/ч.
Установлено, что массовый баланс и углеродный баланс для реакции, как правило, был равным 100±5%.
Эксперименты с А по В и сравнительные примеры с 1 по 4
При осуществлении вышеописанного общего способа проведения реакции использовали каждый катализатор. Результаты представлены в таблице. Каждый катализатор оценивали в обычных условиях, указанных в таблице.
Таблица | ||||||
Катализатор | Превращение (%) | Селективность в отношении (С, мольных %) | ||||
Этана | Этилена | АсОН | СО | СО2 | СОx | |
1 (сравнительный) | 7,3 | 29,9 | 54,1 | 10,6 | 5,5 | 16,1 |
2 (сравнительный) | 8,9 | 32,7 | 51,8 | 10,2 | 5,3 | 15,5 |
Катализатор | Превращение (%) | Селективность в отношении (С, мольных %) | ||||
3 (сравнительный) | 4,5 | 31,6 | 51,3 | 13,6 | 3,6 | 17,2 |
4 (сравнительный) | 7,2 | 38,2 | 48,8 | 9,6 | 3,4 | 13,0 |
А | 3,4 | 3,7 | 68,5 | 16,8 | 11,1 | 27,9 |
Б | 4,6 | 9,0 | 74,5 | 12,3 | 4,2 | 16,6 |
В | 4,1 | 0,0 | 80,8 | 14,6 | 4,6 | 19,2 |
Условия: 52 об.% этана, 6,6 об.% кислорода, 10 об.% этилена, 5 об.% воды, остальное - гелий, температура: 300°С, ССПГ: 3200 ч-1, манометрическое давление: 16 бар.
Приведенные в таблице данные показывают, что при сопоставлении с катализаторами сравнительных примеров профиль селективности Mo-V-Nb-Au катализаторов, соответствующих настоящему изобретению, неожиданно изменяется в направлении образования АсОН за счет расхода этилена.
Claims (9)
1. Каталитическая композиция для окисления этана и/или этилена до уксусной кислоты, которая включает в сочетании с кислородом элементы молибден, ванадий, ниобий и золото в отсутствие палладия в соответствии с эмпирической формулой ,
в которой Y обозначает один или несколько элементов, выбранных из группы, включающей Cr, Mn, Та, Ti, В, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, U, Re, Те и La; a a, b, c, d, e и f обозначают такие грамм-атомные соотношения элементов, при которых
0,01<а≤1; 0≤b<1 и а+b=1;
0,0005<с<0,001;
0,45≤d≤0,7; 0,15≤е≤0,20; 0,6≤d+e≤0,9 и
0≤f≤0,02.
в которой Y обозначает один или несколько элементов, выбранных из группы, включающей Cr, Mn, Та, Ti, В, Al, Ga, In, Pt, Zn, Cd, Bi, Ce, Co, Rh, Ir, Cu, Ag, Fe, Ru, Os, K, Rb, Cs, Mg, Ca, Sr, Ba, Zr, Hf, Ni, P, Pb, Sb, Si, Sn, Tl, U, Re, Те и La; a a, b, c, d, e и f обозначают такие грамм-атомные соотношения элементов, при которых
0,01<а≤1; 0≤b<1 и а+b=1;
0,0005<с<0,001;
0,45≤d≤0,7; 0,15≤е≤0,20; 0,6≤d+e≤0,9 и
0≤f≤0,02.
2. Каталитическая композиция по п.1, выбранная из группы, включающей MoaWbAucVdNbeYf; MoaAucVdNbeYf; MoaWbAucVdNbe и MoaAucVdNbe.
3. Каталитическая композиция по п.1, в которой d≥0,5, е≤0,18 и d+e≥0,7.
4. Каталитическая композиция по п.3, в которой d+e≥0,8.
5. Каталитическая композиция по п.1 или 2, в которой а=1.
6. Каталитическая композиция по п.1 или 2, в которой Y имеет значения, выбранные из группы, включающей Sn, Sb, Cu, Pt, Ag, Fe и Re.
7. Каталитическая композиция по п.1, отвечающая формуле, выбранной из группы, включающей Mo1,00V0,455Nb0,200Au0,0008Oy; Mo1,00V0,547Nb0,163Au0,0009Oy и Mo1,000V0,661Nb0,174Au0,0009Oy, где y обозначает число, которое соответствует валентностям элементов в композиции для кислорода.
8. Способ селективного получения уксусной кислоты из газообразной смеси, содержащей этан и/или этилен, который включает контактирование газообразной смеси с содержащим молекулярный кислород газом при повышенной температуре в присутствии каталитической композиции по одному из предыдущих пунктов.
9. Способ по п.8, в котором катализатор используют в форме псевдоожиженного слоя.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0223681.8 | 2002-10-10 | ||
GBGB0223681.8A GB0223681D0 (en) | 2002-10-10 | 2002-10-10 | Catalyst and process |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2005114479A RU2005114479A (ru) | 2006-01-20 |
RU2350385C2 true RU2350385C2 (ru) | 2009-03-27 |
Family
ID=9945751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2005114479/04A RU2350385C2 (ru) | 2002-10-10 | 2003-09-23 | Катализатор на основе смешанных оксидов металлов |
Country Status (18)
Country | Link |
---|---|
US (1) | US20070185349A1 (ru) |
EP (1) | EP1549432B1 (ru) |
JP (1) | JP2006501993A (ru) |
KR (1) | KR100978775B1 (ru) |
CN (1) | CN100352543C (ru) |
AT (1) | ATE521410T1 (ru) |
AU (1) | AU2003267593A1 (ru) |
BR (1) | BR0315236B1 (ru) |
CA (1) | CA2501050C (ru) |
GB (1) | GB0223681D0 (ru) |
MY (1) | MY145211A (ru) |
NO (1) | NO20052174L (ru) |
RS (1) | RS20050277A (ru) |
RU (1) | RU2350385C2 (ru) |
SG (1) | SG157227A1 (ru) |
TW (1) | TW200408446A (ru) |
UA (1) | UA79643C2 (ru) |
WO (1) | WO2004033090A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2462307C1 (ru) * | 2011-05-30 | 2012-09-27 | Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН | Катализатор и способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060217264A1 (en) * | 2003-08-21 | 2006-09-28 | Brazdil James F | Catalyst composition and use thereof in ethane oxidation |
DE102011109774B4 (de) * | 2011-08-09 | 2017-04-20 | Clariant Produkte (Deutschland) Gmbh | Katalysatormaterial für die Oxidation von Kohlenwasserstoffen |
DE102011109816B4 (de) * | 2011-08-09 | 2017-04-06 | Clariant Produkte (Deutschland) Gmbh | Katalysatormaterial für die Oxidation von Kohlenwasserstoffen |
WO2013164418A1 (en) * | 2012-05-04 | 2013-11-07 | Shell Internationale Research Maatschappij B.V. | Catalyst for alkane oxidative dehydrogenation and/or alkene oxidation |
CN104649894B (zh) * | 2013-11-19 | 2017-06-06 | 中国石油天然气股份有限公司 | 丙烯醛选择性氧化制备丙烯酸的方法 |
CN104649893B (zh) * | 2013-11-19 | 2016-07-13 | 中国石油天然气股份有限公司 | 一种制备不饱和酸的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9807142D0 (en) * | 1998-04-02 | 1998-06-03 | Bp Chem Int Ltd | Catalyst and process utilising the catalyst |
DE19823052A1 (de) * | 1998-05-22 | 1999-11-25 | Consortium Elektrochem Ind | Schalenkatalysator zur Herstellung von Essigsäure durch Gasphasenoxidation von gesättigten und/oder ungesättigten C4-Kohlenwasserstoffen |
GB9819221D0 (en) * | 1998-09-04 | 1998-10-28 | Bp Chem Int Ltd | Process for the production of acetic acid |
GB9907704D0 (en) * | 1999-04-01 | 1999-05-26 | Bp Chem Int Ltd | Catalyst and process utilising the catalyst |
JP2001033149A (ja) * | 1999-07-19 | 2001-02-09 | Fujitsu General Ltd | 冷蔵庫 |
DE10024437A1 (de) * | 2000-05-19 | 2001-11-29 | Aventis Res & Tech Gmbh & Co | Verfahren zur selektiven Herstellung von Essigsäure durch katalytische Oxidation von Ethan |
US6407280B1 (en) * | 2000-09-28 | 2002-06-18 | Rohm And Haas Company | Promoted multi-metal oxide catalyst |
-
2002
- 2002-10-10 GB GBGB0223681.8A patent/GB0223681D0/en not_active Ceased
-
2003
- 2003-09-23 US US10/530,715 patent/US20070185349A1/en not_active Abandoned
- 2003-09-23 UA UAA200504372A patent/UA79643C2/uk unknown
- 2003-09-23 AU AU2003267593A patent/AU2003267593A1/en not_active Abandoned
- 2003-09-23 WO PCT/GB2003/004060 patent/WO2004033090A1/en active Application Filing
- 2003-09-23 EP EP03748285A patent/EP1549432B1/en not_active Expired - Lifetime
- 2003-09-23 JP JP2004542603A patent/JP2006501993A/ja not_active Ceased
- 2003-09-23 RU RU2005114479/04A patent/RU2350385C2/ru not_active IP Right Cessation
- 2003-09-23 AT AT03748285T patent/ATE521410T1/de not_active IP Right Cessation
- 2003-09-23 CN CNB038239736A patent/CN100352543C/zh not_active Expired - Fee Related
- 2003-09-23 BR BRPI0315236-7A patent/BR0315236B1/pt not_active IP Right Cessation
- 2003-09-23 CA CA2501050A patent/CA2501050C/en not_active Expired - Fee Related
- 2003-09-23 KR KR1020057005976A patent/KR100978775B1/ko not_active IP Right Cessation
- 2003-09-23 SG SG200702541-4A patent/SG157227A1/en unknown
- 2003-09-23 RS YUP-2005/0277A patent/RS20050277A/sr unknown
- 2003-09-26 TW TW092126694A patent/TW200408446A/zh unknown
- 2003-10-07 MY MYPI20033826A patent/MY145211A/en unknown
-
2005
- 2005-05-03 NO NO20052174A patent/NO20052174L/no not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2462307C1 (ru) * | 2011-05-30 | 2012-09-27 | Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН | Катализатор и способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата |
Also Published As
Publication number | Publication date |
---|---|
CN1688389A (zh) | 2005-10-26 |
UA79643C2 (en) | 2007-07-10 |
BR0315236B1 (pt) | 2013-02-05 |
JP2006501993A (ja) | 2006-01-19 |
MY145211A (en) | 2012-01-13 |
US20070185349A1 (en) | 2007-08-09 |
CN100352543C (zh) | 2007-12-05 |
KR100978775B1 (ko) | 2010-08-30 |
CA2501050C (en) | 2011-06-14 |
EP1549432A1 (en) | 2005-07-06 |
RU2005114479A (ru) | 2006-01-20 |
KR20050049527A (ko) | 2005-05-25 |
TW200408446A (en) | 2004-06-01 |
CA2501050A1 (en) | 2004-04-22 |
EP1549432B1 (en) | 2011-08-24 |
ATE521410T1 (de) | 2011-09-15 |
RS20050277A (en) | 2007-06-04 |
GB0223681D0 (en) | 2002-11-20 |
NO20052174L (no) | 2005-05-03 |
WO2004033090A1 (en) | 2004-04-22 |
BR0315236A (pt) | 2005-08-23 |
SG157227A1 (en) | 2009-12-29 |
AU2003267593A1 (en) | 2004-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2238144C2 (ru) | Катализатор окисления и способ, осуществляемый с его применением | |
RU2208480C2 (ru) | Катализатор для окисления этана и/или этилена в уксусную кислоту (варианты), способ получения уксусной кислоты | |
JP2837244B2 (ja) | エチレンおよび酢酸の製造方法および触媒 | |
FR2696109A1 (fr) | Catalyseur d'oxydation et procédé d'oxydation partielle du méthane. | |
RU2346741C2 (ru) | Катализатор окисления и его приготовление | |
JP4006029B2 (ja) | エタンを酢酸に接触酸化する方法およびそのための触媒 | |
RU2387478C2 (ru) | Катализатор окисления этана и способ, в котором используют этот катализатор | |
RU2350385C2 (ru) | Катализатор на основе смешанных оксидов металлов | |
RU2189969C2 (ru) | Способ селективного получения уксусной кислоты и катализатор для селективного окисления этана и/или этилена в уксусную кислоту | |
RU2362622C2 (ru) | Композиция катализатора и способ селективного окисления этана и/или этилена до уксусной кислоты | |
JP4535608B2 (ja) | 触媒およびこの触媒を用いた不飽和ニトリルの製造方法 | |
JP4187839B2 (ja) | 酸化物触媒の製造方法およびその触媒を用いた不飽和ニトリルの製造方法 | |
UA80099C2 (en) | Catalyst composition for oxidation of ethane and/or of ethylene to acetic acid and method for producing acetic acid | |
JP2000342969A (ja) | 水素の選択的酸化触媒、水素の選択的酸化方法及び炭化水素の脱水素方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150924 |