[go: up one dir, main page]

RU2322611C1 - Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом - Google Patents

Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом Download PDF

Info

Publication number
RU2322611C1
RU2322611C1 RU2006130700/03A RU2006130700A RU2322611C1 RU 2322611 C1 RU2322611 C1 RU 2322611C1 RU 2006130700/03 A RU2006130700/03 A RU 2006130700/03A RU 2006130700 A RU2006130700 A RU 2006130700A RU 2322611 C1 RU2322611 C1 RU 2322611C1
Authority
RU
Russia
Prior art keywords
pump
well
electric pump
frequency
valve motor
Prior art date
Application number
RU2006130700/03A
Other languages
English (en)
Inventor
шов Сергей Иванович Кудр (RU)
Сергей Иванович Кудряшов
Сергей Евгеньевич Здольник (RU)
Сергей Евгеньевич Здольник
Виталий Анатольевич Литвиненко (RU)
Виталий Анатольевич Литвиненко
Дмитрий Валерьевич Маркелов (RU)
Дмитрий Валерьевич Маркелов
Александр Александрович Иванов (RU)
Александр Александрович Иванов
Евгений Модестович Черемисинов (RU)
Евгений Модестович Черемисинов
Андрей В чеславович Фрадкин (RU)
Андрей Вячеславович Фрадкин
Олег Александрович Оводков (RU)
Олег Александрович Оводков
Original Assignee
ОАО "НК "Роснефть"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОАО "НК "Роснефть" filed Critical ОАО "НК "Роснефть"
Priority to RU2006130700/03A priority Critical patent/RU2322611C1/ru
Application granted granted Critical
Publication of RU2322611C1 publication Critical patent/RU2322611C1/ru

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

Изобретение относится к скважинной добыче нефти и может быть использовано для эксплуатации скважин, оборудованных электронасосами, в частности погружными электронасосами с вентильным приводом. Техническим результатом изобретения является повышение эффективности процесса поиска рабочего режима насоса, дающего наибольший дебит скважины за счет исключения измерения давлений в колонне труб. Для этого откачку жидкости производят электронасосом с вентильным электродвигателем (ВЭД). При работе электронасоса в стационарном режиме через заданные интервалы времени, определяемые длительностью переходных процессов в системе пласт-скважина, периодически увеличивают частоту вращения ВЭД на заданную величину, определяемую порогом чувствительности тока ВЭД, до снижения тока ВЭД ниже его порогового значения на данной частоте вращения, соответствующего срыву подачи электронасоса, по которому судят о достижении критического динамического уровня жидкости в скважине. Причем пороговое значение тока ВЭД определяют по стендовым характеристикам с учетом коэффициента плотности реально перекачиваемой жидкости. После определения срыва подачи электронасос переводят в режим ожидания на пониженную частоту вращения для предотвращения перегрева вентильного электродвигателя на время, достаточное для изменения динамического уровня жидкости в скважине, по окончании которого частоту вращения электронасоса вновь увеличивают до значения, меньшего, по крайней мере, на заданную величину, чем частота вращения, на которой произошел срыв подачи электронасоса. После этого электронасос переводят в режим работы вблизи критического динамического уровня жидкости в скважине, обеспечивающий максимальный приток. 3 ил.

Description

Изобретение относится к добыче нефти и может быть использовано для эксплуатации скважин, оборудованных электронасосами, в частности погружными электронасосами с вентильным приводом.
Известен способ эксплуатации скважины насосом с частотно-регулируемым электроприводом (Авторское свидетельство СССР №1262026), основанный на регулировании скорости притока жидкости из пласта в скважину путем периодического повторения циклов, каждый из которых состоит из последовательно осуществляемых процессов запуска при увеличивающейся частоте питающего напряжения, подачи жидкости насосом в колонну подъемных труб при повышенной в сравнении с номинальным значением частоте и уменьшении до нуля подачи насоса путем снижения частоты питающего напряжения после достижения заданной величины давления в колонне труб, с последующим отключением насоса и сливом жидкости из колонны подъемных труб через насос в скважину, после завершения которого цикл повторяют.
Особенность этого способа состоит в ограничении притока жидкости из пласта в скважину в результате систематического слива жидкости из колонны подъемных труб, а это не обеспечивает эффективного регулирования режима эксплуатации скважины.
Наиболее близким к предлагаемому является способ эксплуатации скважины электронасосом с частотно-регулируемым приводом (Патент РФ на изобретение №2119578), в котором динамическая эксплуатация скважины включает периодическое повторение циклов, в которых осуществляют запуск насоса при увеличивающейся частоте питающего напряжения и подачу жидкости насосом при заданной частоте, причем после достижения заданной величины давления в колонне труб в текущем цикле уменьшают частоту питающего напряжения до прекращения подачи насоса, с последующим поддержанием для обеспечения притока жидкости из пласта максимальной частоты, при которой насос не возобновляет подачу, а после достижения в процессе притока максимальной величины давления на приеме насоса цикл повторяют, восстанавливая подачу насоса переводом его на повышенную частоту, при этом в фазе притока текущего цикла осуществляют модуляцию частоты напряжения питания электронасоса в области значений частоты, соответствующих изменяющимся в процессе притока параметрам насоса при прекращении и возобновлении подачи. В процессе притока модулируют частоту напряжения питания электронасоса с заданной периодичностью и во времени, и в заданном диапазоне отклонений от частоты при прекращении подачи насоса до максимальной частоты, при которой насос не возобновляет подачу.
Известное изобретение является способом динамической эксплуатации скважины насосом с частотно-регулируемым приводом. Указанный способ состоит в целенаправленной реализации режимов работы УЭЦН, учитывающей изменение параметров системы "пласт-скважина-УЭЦН" на всем периоде эксплуатации установки. Однако данный способ предназначен, главным образом, для регулирования с учетом параметров скважины и требует измерения давления в колонне труб.
В основу предлагаемого изобретения положена задача разработать способ динамической эксплуатации скважины электронасосом с вентильным электродвигателем с частотно-регулируемым приводом, позволяющий организовать динамическую эксплуатацию скважины без проведения измерения давлений в колонне труб и сделать процесс поиска рабочего режима насоса, дающего наибольший дебит скважины, более эффективным, т.е. обеспечить достижение максимально возможного дебита жидкости (технического потенциала) для данной скважины и параметров установки.
Задача решается тем, что способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом, основанный на периодическом повторении циклов, включает запуск электронасоса при увеличивающейся частоте питающего напряжения, подачу жидкости электронасосом при заданной частоте вращения, причем откачку жидкости производят электронасосом с вентильным электродвигателем, при работе электронасоса в стационарном режиме через заданные интервалы времени, определяемые длительностью переходных процессов в системе "пласт-скважина", периодически увеличивают частоту вращения вентильного электродвигателя на заданную величину, определяемую порогом чувствительности тока вентильного электродвигателя, до снижения тока вентильного электродвигателя ниже его порогового значения на данной частоте вращения, соответствующего срыву подачи электронасоса, по которому судят о достижении критического динамического уровня жидкости в скважине, причем пороговое значение тока вентильного электродвигателя определяют по стендовым характеристикам с учетом коэффициента плотности реально перекачиваемой жидкости, после определения срыва подачи электронасос переводят в режим ожидания на пониженную частоту вращения, при которой предотвращается перегрев вентильного электродвигателя, на время, достаточное для достижения динамического уровня, при котором насос работает без срыва подачи, по окончании которого частоту вращения электронасоса вновь увеличивают до значения, меньшего, по крайней мере, на заданную величину, чем частота вращения, на которой произошел срыв подачи электронасоса, после чего электронасос переводят в режим работы вблизи критического динамического уровня жидкости в скважине, обеспечивающий максимальный приток.
Использование предлагаемого способа позволяет более точно определять режим работы насоса, обеспечивающий максимальную производительность скважины, в отличие от прототипа, через зависимости:
N=f1(n,M), M=f2(I),
где N, n, M, I - соответственно мощность на валу, частота вращения вала электродвигателя, вращающий момент на валу и ток электродвигателя.
Стендовые характеристики насоса включают, в частности, семейство расходно-напорных характеристик насоса (при испытаниях на стенде роль пластовой жидкости выполняет вода) и соответствующее им семейство токовых характеристик двигателя.
Сущность изобретения поясняется чертежами. На фиг.1 представлена блок-схема частотно-регулируемого привода электронасоса с вентильным электродвигателем, который в совокупности с насосом представляет собой установку, с помощью которой осуществляют способ динамической эксплуатации скважины. В этом способе используется режим сканирования частоты вращения вала электродвигателя. Это позволяет найти режимы работы насоса с максимально возможным притоком пластовой жидкости.
На фиг.2 и фиг.3 разъясняется алгоритм вышеуказанного способа динамической эксплуатации электронасоса с частотно-регулируемым приводом в условиях притока, достаточного для работы в рабочей зоне насоса, с помощью напорно-расходных характеристик насоса, индикаторной диаграммы скважины (фиг.2) и схемы динамических уровней для работающей в скважине насосной установки (фиг.3). Работу алгоритма поясняет фиг.3, где показаны напорно-расходные характеристики насоса на разных частотах вращения (n1, n2, n3 ...). Индикаторная кривая - кривая продуктивности скважины (показана штрихпунктирной линией на фиг.2). Продуктивность скважины (Кпр) считается постоянной.
Схема включает управляющий вычислительный блок 1, содержащий блок интерфейса оператора 2, блок памяти 3 для хранения параметров скважины и установки, например, параметров, касающихся приращения частоты вращения при изменении тока вентильного электродвигателя, блок памяти 4 для хранения архива работы электронасоса, аналого-цифровой преобразователь 5, блок связи 6 управляющего вычислительного блока 1, соединенные с блоком процессора 7 управляющего вычислительного блока 1, и блок измерения 8 времени.
Питание электродвигателя 14 с погружным электронасосом 15 осуществляется через повышающий (высокочастотный) трансформатор 16, соединенный с инвертором 11. Блок датчиков тока 17 соединен с электродвигателем и с аналого-цифровым преобразователем 5 управляющего вычислительного блока 1. Выпрямитель 10 и инвертор 11 образуют силовую часть преобразователя 9 частоты. Блок процессора 13 с блоком связи 12 образуют управляющую часть преобразователя частоты 9.
По представленной схеме можно осуществлять регулировку работы установки для осуществления вышеуказанного способа динамической эксплуатации скважины. Управляющий вычислительный блок 1 через блок связи 6 (по интерфейсу RS-485) задает напряжение преобразователю частоты 9 и контролирует n-текущую частоту вращения вентильного электродвигателя 14 (информация о частоте передается также через блок 12 от преобразователя частоты 9). Частота вращения вентильного электродвигателя 14 определяется частотой напряжения на выходе преобразователя частоты 9.
В процессе работы сигнал с блока 17 датчиков тока поступает в аналого-цифровой преобразователь 5 и далее текущее значение тока Iдв вентильного электродвигателя поступает в блок процессора 7. Блок процессора 7 получает от преобразователя частоты 9 через блок связи 6 текущую частоту вращения и, анализируя базу данных блока памяти 3 с характеристиками установки (токовые и расходно-напорные характеристики), вычисляет требуемую оптимальную частоту вращения погружного электронасоса, учитывая динамику изменения параметров работы всей установки. Затем блок процессора 7 изменяет заданное значение напряжения так, чтобы текущая частота вращения стала равна требуемой, и так далее.
Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом может быть рассмотрен на следующем примере.
В вертикальной скважине 18 находится погружная насосная установка с глубиной подвеса Нп (фиг.3). Глубина подвеса Нп, в случае вертикальной скважины, определяется расстоянием от точки входа пластовой жидкости в насос (например, от входных отверстий газосепаратора насоса 15 до уровня поверхности земли в районе устья скважины 22). Погружная часть насосной установки содержит вентильный двигатель 14, погружной насос 15. Погружная часть насосной установки соединена кабелем 19 со станцией управления 20, содержащей вышеуказанные блоки (фиг 1). Она подключена к сети электропитания 21. Статический уровень скважины (т.е насос не включен) - Нст. R - рабочая зона насоса (границы ее показаны штриховой линией на фиг.2). Считаем продуктивность скважины постоянной, т.е индикаторная кривая не меняется.
Пусть установка начала работать с динамического уровня Нд1 (отсчитывается от уровня поверхности земли до уровня пластовой жидкости) на расчетной частоте вращения n1, полученной при подборе скважины. Вначале установка работает в точке А (фиг.2), в которую она автоматически перешла из вывода на режим или после запуска. Далее установка начнет отслеживать момент стабилизации тока. Эта стабилизация тока указывает на стабилизацию динамического уровня в точке В на уровне Нд2. Точка образована пересечением индикаторной кривой скважины с напорно-расходной характеристикой насоса на частоте n1. Критерием стабилизации является неизменность тока (в диапазоне заданного порога чувствительности изменения тока двигателя) в течение заданного времени, определенного из предыдущего опыта эксплуатации скважин и находящегося в блоке памяти установки. Если же раньше, чем наступит стабилизация, пройдет заданное максимальное время (заранее введенное в базу данных установки), то установка начинает изменять частоту вращения, не дожидаясь стабилизации по току. Происходит повышение частоты вращения на заданное значение (сканирование) до n2 (точка С).
Далее установка повторяет цикл - работает по вышеуказанной схеме - снова фиксируется момент стабилизации динамического уровня Нд3 в точке D и после стабилизации производится очередное сканирование. Установка увеличит частоту, перейдя в точку Е на расходно-напорной кривой, соответствующей частоте n3. После этого установка снова будет стремиться в точку равновесия (точка G), однако она ее не достигнет, так как при движении к ней по расходно-напорной характеристике, соответсвующей частоте n3, при достижении динамического уровня Ндкр при откачке (точка F) начнется разгазирование пластовой жидкости, при этом ток падает ниже значения, соответствующего срыву подачи насоса. В этом случае установка переходит в режим ожидания (точка К) и начинает работать на пониженной частоте вращения nпаузы (при которой предотвращается перегрев двигателя, кроме того, снижается вероятность заклинивания насоса). Когда пройдет предварительно заданное время, установка автоматически выйдет на частоту вращения, соответствующую последней расходно-напорной кривой, на которой она работала еще без срыва подачи, т.е. на n2 в нашем случае (и попадает на точку L, соответвующую уровню Нд4 (расстояние выделено штриховкой на фиг.3, отсчитывается от уровня поверхности земли до уровня пластовой жидкости), причем Нд4<Нд3<Ндкр) и снова будет ждать стабилизации режима в точке D с динамическим уровнем Нд3. Таким образом, установка будет поддерживать режим работы вблизи критического динамического уровня, обеспечивая максимальный приток. Т.к. интервал сканирования задается достаточно большим (несколько суток), а время работы на пониженной частоте малым (несколько десятков минут), то работа в режиме ожидания практически не будет влиять на уровень добычи.
Установка, реализующая указанный способ, прошла испытания на скважине.

Claims (1)

  1. Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом, основанный на периодическом повторении циклов, включающий запуск электронасоса при увеличивающейся частоте питающего напряжения, подачу жидкости электронасосом при заданной частоте вращения, характеризующийся тем, что откачку жидкости производят электронасосом с вентильным электродвигателем, при работе электронасоса в стационарном режиме через заданные интервалы времени, определяемые длительностью переходных процессов в системе "пласт-скважина", периодически увеличивают частоту вращения вентильного электродвигателя на заданную величину, определяемую порогом чувствительности тока вентильного электродвигателя, до снижения тока вентильного электродвигателя ниже его порогового значения на данной частоте вращения, соответствующего срыву подачи электронасоса, по которому судят о достижении критического динамического уровня жидкости в скважине, причем пороговое значение тока вентильного электродвигателя определяют по стендовым характеристикам с учетом коэффициента плотности реально перекачиваемой жидкости, после определения срыва подачи электронасос переводят в режим ожидания на пониженную частоту вращения, при которой предотвращается перегрев вентильного электродвигателя, на время, достаточное для достижения динамического уровня, при котором насос работает без срыва подачи, по окончании которого частоту вращения электронасоса вновь увеличивают до значения, меньшего, по крайней мере, на заданную величину, чем частота вращения, на которой произошел срыв подачи электронасоса, после чего электронасос переводят в режим работы вблизи критического динамического уровня жидкости в скважине, обеспечивающий максимальный приток.
RU2006130700/03A 2006-08-25 2006-08-25 Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом RU2322611C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006130700/03A RU2322611C1 (ru) 2006-08-25 2006-08-25 Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006130700/03A RU2322611C1 (ru) 2006-08-25 2006-08-25 Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом

Publications (1)

Publication Number Publication Date
RU2322611C1 true RU2322611C1 (ru) 2008-04-20

Family

ID=39454078

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006130700/03A RU2322611C1 (ru) 2006-08-25 2006-08-25 Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом

Country Status (1)

Country Link
RU (1) RU2322611C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475640C2 (ru) * 2011-03-25 2013-02-20 Республиканское Унитарное Предприятие "Производственное Объединение "Белоруснефть" Способ гидродинамических исследований нефтяных скважин, оборудованных электроцентробежными насосами с преобразователем частоты тока
CN109915077A (zh) * 2019-03-06 2019-06-21 中国石油天然气股份有限公司 抽油机的运行频率确定方法、装置及煤层气井排采系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2475640C2 (ru) * 2011-03-25 2013-02-20 Республиканское Унитарное Предприятие "Производственное Объединение "Белоруснефть" Способ гидродинамических исследований нефтяных скважин, оборудованных электроцентробежными насосами с преобразователем частоты тока
CN109915077A (zh) * 2019-03-06 2019-06-21 中国石油天然气股份有限公司 抽油机的运行频率确定方法、装置及煤层气井排采系统

Similar Documents

Publication Publication Date Title
US7558699B2 (en) Control system for centrifugal pumps
RU2463449C2 (ru) Способ и установка для автоматического обнаружения и разрушения газовых пробок в электрическом погружном насосе
CN104141603B (zh) 具有节能作用的水泵控制系统
US10001121B2 (en) System and method for operating a pump
US20080067116A1 (en) Determination And Control Of Wellbore Fluid Level, Output Flow, And Desired Pump Operating Speed, Using A Control System For A Centrifugal Pump Disposed Within The Wellbore
EA011044B1 (ru) Система управления для насоса
RU2475640C2 (ru) Способ гидродинамических исследований нефтяных скважин, оборудованных электроцентробежными насосами с преобразователем частоты тока
RU2322611C1 (ru) Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом
RU2341004C1 (ru) Система управления погружным электроцентробежным насосом
RU2522565C1 (ru) Способ эксплуатации скважины насосной установкой с частотно-регулируемым приводом&amp;nbsp;и устройство для его осуществления
US9835160B2 (en) Systems and methods for energy optimization for converterless motor-driven pumps
EP3456972B1 (en) Method of operating an electric induction motor in the event of a power loss
RU2682043C2 (ru) Способ отключения насоса, а также конструкция насосной станции
JP2019515189A (ja) スノーリングを確認する方法
JP6490416B2 (ja) ポンプ装置の消費電気エネルギを低減する制御プロセス
RU2322571C1 (ru) Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом
RU2181829C2 (ru) Способ вывода скважины, оборудованной установкой электроцентробежного насоса с частотно-регулируемым приводом, на стационарный режим работы
CA2586674A1 (en) Determination and control of wellbore fluid level, output flow, and desired pump operating speed, using a control system for a centrifugal pump disposed within the wellbore
CN104160156A (zh) 控制电动潜水泵的方法
RU2814706C1 (ru) Способ периодической эксплуатации скважины погружной насосной установкой с электроприводом
RU2474675C1 (ru) Способ эксплуатации скважины электронасосом с частотно-регулируемым приводом
RU2758326C1 (ru) Способ регулирования режима работы скважины, оборудованной установкой электроцентробежного насоса, в системе межскважинной перекачки
RU2553744C1 (ru) Способ периодической эксплуатации нефтяной скважины погружной насосной установкой с регулируемым электрическим приводом
KR20200073380A (ko) 인버터 부스터 펌프 시스템의 제어방법
CN113614381B (zh) 在用于输送液体的机器的操作期间检测空吸发生的方法