RU2475640C2 - Способ гидродинамических исследований нефтяных скважин, оборудованных электроцентробежными насосами с преобразователем частоты тока - Google Patents
Способ гидродинамических исследований нефтяных скважин, оборудованных электроцентробежными насосами с преобразователем частоты тока Download PDFInfo
- Publication number
- RU2475640C2 RU2475640C2 RU2011111467/03A RU2011111467A RU2475640C2 RU 2475640 C2 RU2475640 C2 RU 2475640C2 RU 2011111467/03 A RU2011111467/03 A RU 2011111467/03A RU 2011111467 A RU2011111467 A RU 2011111467A RU 2475640 C2 RU2475640 C2 RU 2475640C2
- Authority
- RU
- Russia
- Prior art keywords
- well
- frequency
- flow rate
- mode
- electric
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000003129 oil well Substances 0.000 title claims abstract description 8
- 238000011835 investigation Methods 0.000 title abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 claims abstract description 38
- 239000012530 fluid Substances 0.000 claims abstract description 22
- 238000005259 measurement Methods 0.000 claims abstract description 14
- 238000011084 recovery Methods 0.000 claims abstract description 9
- 230000035699 permeability Effects 0.000 claims abstract description 7
- 230000009467 reduction Effects 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims description 17
- 238000010586 diagram Methods 0.000 claims description 11
- 238000011160 research Methods 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 241000208202 Linaceae Species 0.000 claims 1
- 235000004431 Linum usitatissimum Nutrition 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 230000007704 transition Effects 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 22
- 230000008859 change Effects 0.000 description 9
- 238000001914 filtration Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003001 depressive effect Effects 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
Abstract
Изобретение относится к способам гидродинамических исследований нефтяных скважин, оборудованных погружными электроцентробежными насосами (ЭЦН) и станциями управления с частотными преобразователями, и может быть использовано для выбора оптимального режима эксплуатации скважины. Способ гидродинамических исследований нефтяной скважины заключается в подключении ЭЦН к промышленной электросети через преобразователь частоты питающего ЭЦН тока. Замеряют дебит скважины по нефти при работе в режиме номинальной промышленной частоты. Создают депрессию путем повышения производительности ЭЦН за счет увеличения частоты тока до величины, обеспечивающей устойчивый режим работы скважины, при котором дебит скважины по жидкости максимальный. При этом замеряют дебит скважины по жидкости и обводненность ее продукции при работе в режиме номинальной частоты. После достижения максимального значения частоту тока снижают до величины, обеспечивающей устойчивый режим работы скважины, при котором дебит скважины по жидкости минимальный. При этом увеличение и снижение частоты тока проводят при непрерывной работе электроцентробежного насоса с постоянным замером давления и температуры на приеме насоса, дебита скважины и обводненности на устье скважины. По результатам замеров строят кривую восстановления давления при переходе режима работы скважины, при котором дебит скважины по жидкости максимальный, на режим работы, при котором дебит скважины по жидкости минимальный. Впоследствии определяют гидро- и пъезопроводность, проницаемость, радиус контура питания, скин-фактор. А также определяют оптимальную частоту питающего электроцентробежный насос тока, при которой обеспечивается снижение обводненности и рост дебита по нефти относительно аналогичных показателей при работе скважины в режиме номинальной частоты. Техническим результатом является повышение эффективности определения оптимального режима отборов из пласта, при котором отмечается снижение обводненности продукции и рост дебита по нефти относительно аналогичных показателей при работе скважины в режиме номинальной частоты. 2 з.п. ф-лы, 9 ил.
Description
Изобретение относится к способам гидродинамических исследований нефтяных скважин, оборудованных погружными электроцентробежными насосами (ЭЦН) и станциями управления с частотными преобразователями, и может быть использовано для выбора оптимального режима эксплуатации скважины.
Известен способ воздействия на призабойную зону скважины в процессе ее эксплуатации /SU 1262026, МПК Е21В 43/00, опубл. 1986.10.07/, включающий подключение скважинного электроцентробежного насоса к промышленной электросети через тиристорный преобразователь частоты тока и создание депрессии путем повышения производительности скважинного электроцентробежного насоса за счет увеличения частоты тока.
Недостатком известного способа эксплуатации скважинного насоса является то, что в процессе проведения исследований происходит остановка скважины, что приводит к потерям в добыче нефти.
Известен также способ гидродинамических исследований в скважине, оборудованной установкой электроцентробежного насоса с частотно-регулируемым приводом, выполненным на мобильном транспортном средстве / RU 2370635, МПК Е21В 43/00, Е21В 47/00, опубл. 2008.03.20/, включающий гидродинамические исследования устьевых параметров скважины и жидкости в скважине методом установившихся отборов, определение коэффициента продуктивности пласта при различных забойных давлениях и предельное напряжение сдвига жидкости. Для контроля и автоматической регистрации в цифровом виде устьевых параметров скважины применяют аппаратно-программный комплекс. Коэффициент продуктивности пласта и предельное напряжение сдвига определяют, по меньшей мере, на любых трех частотах питающего напряжения: 40±2, 45±2, 50±2, 55±2 и 60±2 Гц и осуществляют замеры давления и температуры на буфере и динамического уровня жидкости и давления в затрубном пространстве скважины, а также плотности устьевых проб флюидов и дебита. Предельное напряжение сдвига жидкости определяют путем перерасчета результатов измерений в забойные давления с построением в системе прямоугольных координат на плоскости, где на оси ординат откладываются значения забойного давления, а на оси абсцисс - значения дебита, индикаторной диаграммы зависимости дебита от забойного давления, с экстраполяцией до оси ординат, точка пересечения с которой показывает значение забойного давления, выше которого движение пластовой жидкости в скважину не происходит.
Недостатком данного способа по отношению к заявляемому является то, что исследования не включают проведение замеров параметров работы скважины на режимах максимального и минимального отбора жидкости, т.е. исследования проводятся не в полном объеме, что не позволяет установить оптимальный режим работы скважины, при котором происходит снижение обводненности и рост дебита по нефти. Отсутствие термоманометрической системы на приеме насоса не позволяет получить достоверные данные о забойных давлениях в скважине на разных режимах. Кроме того, проводимые исследования не позволяют получить кривую восстановления давления (КВД) ввиду отсутствия перехода с частоты тока, при котором приток жидкости из пласта максимален, на частоту, при котором приток жидкости из пласта минимален.
Известен способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом / RU 2322611, МПК Е21В 43/00, Е21В 47/00, опубл. 2008.04.20/, основанный на периодическом повторении циклов, включающий запуск электронасоса при увеличивающейся частоте питающего напряжения, подачу жидкости электронасосом при заданной частоте вращения, при этом откачку жидкости производят электронасосом с вентильным электродвигателем, при работе электронасоса в стационарном режиме через заданные интервалы времени, определяемые длительностью переходных процессов в системе "пласт-скважина", периодически увеличивают частоту вращения вентильного электродвигателя на заданную величину, определяемую порогом чувствительности тока вентильного электродвигателя, до снижения тока вентильного электродвигателя ниже его порогового значения на данной частоте вращения, соответствующего срыву подачи электронасоса, по которому судят о достижении критического динамического уровня жидкости в скважине, причем пороговое значение тока вентильного электродвигателя определяют по стендовым характеристикам с учетом коэффициента плотности реально перекачиваемой жидкости, после определения срыва подачи электронасос переводят в режим ожидания на пониженную частоту вращения, при которой предотвращается перегрев вентильного электродвигателя, на время, достаточное для достижения динамического уровня, при котором насос работает без срыва подачи, по окончании которого частоту вращения электронасоса вновь увеличивают до значения, меньшего, по крайней мере, на заданную величину, чем частота вращения, на которой произошел срыв подачи электронасоса, после чего электронасос переводят в режим работы вблизи критического динамического уровня жидкости в скважине, обеспечивающий максимальный приток.
Недостатком данного способа является то, что проводимые исследования направлены на получение максимального притока жидкости из пласта, что для высокообводненных скважин не всегда приводит к увеличению притока по нефти, так как в ряде случаев увеличение притока нефти и снижение обводненности происходит при уменьшении частоты тока ниже промышленной частоты. Проводимые исследования не позволяют получить КВД ввиду отсутствия перехода с максимальной частоты тока на минимальную.
Наиболее близким по технической сущности к заявляемому изобретению является способ воздействия на призабойную зону скважины в процессе ее эксплуатации /RU 2082879, МПК Е21В 43/25, опубл. 1997.06.27/, влючающий подключение скважинного электроцентробежного насоса к промышленной электросети через тиристорный преобразователь частоты тока и создание депрессии путем повышения производительности скважинного электроцентробежного насоса за счет увеличения частоты тока, при этом увеличение частоты тока производят до величины, обеспечивающей устойчивый максимальный дебит скважины по жидкости, после чего выдерживают паузу, а затем частоту питающего электроцентробежный насос тока снижают до промышленного значения и переключают элекроцентробежный насос на питание от промышленной электросети, при этом длительность депрессионного воздействия на пласт ограничивают моментом срыва подачи электроцентробежного насоса.
Недостатком данного технического решения является то, что снижение частоты питающего тока проводят до номинального значения, что не позволяет провести исследования режимов работы ЭЦН в полном объеме и выбрать оптимальный режим, так как в ряде случаев при увеличении депрессии увеличения притока нефти из пласта в скважину не происходит, а при уменьшении частоты тока ниже номинального значения наряду с уменьшением отборов жидкости отмечается снижение обводненности и рост дебита по нефти относительно аналогичных показателей при работе погружного электродвигателя (ПЭД) в режиме промышленной частоты. Перевод скважины по окончании проведения исследований в режим промышленной частоты обеспечивает только кратковременный эффект. Кроме того, в процессе проведения исследований происходит остановка скважины, что приводит к потерям в добыче нефти.
Задачей изобретения является создание способа проведения гидродинамических исследований на нефтяных скважинах, оборудованных ЭЦН с преобразователем частоты, позволяющего определить оптимальный режим отборов из пласта, при котором отмечается снижение обводненности продукции и рост дебита по нефти относительно аналогичных показателей при работе скважины в режиме номинальной частоты.
Поставленная задача решается за счет того, что в способе гидродинамических исследований нефтяной скважины, оборудованной электроцентробежным насосом с преобразователем частотны тока, включающем подключение электроцентробежного насоса к промышленной электросети через преобразователь частоты питающего электроцентробежный насос тока, замер дебита скважины по нефти при работе в режиме номинальной промышленной частоты, создание депрессии путем повышения производительности электроцентробежного насоса за счет увеличения частоты тока до величины, обеспечивающей устойчивый режим работы скважины, при котором дебит скважины по жидкости максимальный, согласно изобретению, замеряют дебит скважины по жидкости и обводненность ее продукции при работе в режиме номинальной частоты, после достижения максимального значения частоту тока снижают до величины, обеспечивающей устойчивый режим работы скважины, при котором дебит скважины по жидкости минимальный, при этом увеличение и снижение частоты тока проводят при непрерывной работе электроцентробежного насоса с постоянным замером давления и температуры на приеме насоса, дебита скважины и обводненности на устье скважины, по результатам замеров строят кривую восстановления давления при переходе режима работы скважины, при котором дебит скважины по жидкости максимальный, на режим работы, при котором дебит скважины по жидкости минимальный, с последующим определением гидро- и пъезопроводности, проницаемости, радиуса контура питания, скин-фактора, а также определяют оптимальную частоту питающего электроцентробежный насос тока, при которой обеспечивается снижение обводненности и рост дебита по нефти относительно аналогичных показателей при работе скважины в режиме номинальной частоты.
Кроме этого непрерывный замер давления и температуры на приеме насоса может быть осуществлен с помощью термоманометрической системы в режиме «он-лайн», а непрерывный замер дебита скважины и обводненности - с применением мобильной замерной установки.
Помимо этого по результатам замеров дебита скважины по жидкости и давления на приеме насоса может быть построена индикаторная диаграмма с последующим определением коэффициента продуктивности и пластового давления.
Актуальность проблемы заключается в том, что для получения данных о гидродинамических параметрах пласта в районе дренирования скважин, таких как пластовое давление, коэффициент продуктивности, гидропроводность, проницаемость и т.д., необходима длительная остановка скважины для снятия полноценной КВД методом эхометрирования, либо по показаниям системы термоманометрической системы, приводящая в конечном итоге к потерям в добыче нефти. Предлагаемый способ исследования скважин исключает все вышеперечисленные негативные моменты. Полученные в конечном итоге результаты могут быть использованы при построении карт изобар, решении вопросов гидродинамического моделирования процессов разработки залежей, подборе глубинно-насосного оборудования, оценке эффективности проведения геолого-технических мероприятий (ГТМ).
В настоящее время многие месторождения находятся на поздней стадии разработки, что характеризуется высокими значениями обводненности и низкими дебитами по нефти. Изменение частоты переменного тока приводит к изменению забойных давлений, а следовательно, депрессий, создаваемых на пластовую систему «матрица-трещины» в районе дренирования скважины, что, в свою очередь, позволяет получить дополнительную добычу нефти либо за счет подключения продуктивных пропластков, ранее не полностью вовлеченных в процесс эксплуатации, либо за счет форсирования отборов, либо за счет снижения процента попутно добываемой воды при уменьшении объемов отборов. Предлагаемый способ позволяет выбрать оптимальный режим работы скважины, при котором дебит по нефти максимальный, обводненность продукции - минимальная.
Реализация способа гидродинамических исследований скважин проиллюстрирована на следующих рисунках: на фиг.1 представлена диаграмма работы скважины «А» в период проведения гидродинамических исследований (ГДИ); на фиг.2 - диаграмма работы скважины «А» в период проведения ГДИ и в предшествующий ему период; на фиг.3 - КВД скважины «А»; на фиг.4 - индикаторная диаграмма скважины «А»; на фиг.5 - диаграмма работы скважины «Б» в период проведения ГДИ; на фиг.6 - график распределения обводненности продукции скважины при проведении ГДИ; на фиг.7 - график работы скважины «Б» на разных режимах; на фиг.8 - КВД скважины «Б»; на фиг.9 - индикаторная диаграмма скважины «Б».
Способ осуществляют следующим образом.
При проведении исследований с применением станции управления с частотным преобразователем ЭЦН работает в следующем порядке:
- «номинальный» режим;
- ступенчатый переход на режим максимально возможного отбора пластовой жидкости;
- режим минимально возможного отбора жидкости;
- оптимальный режим, при котором происходит максимальный отбор нефти при минимальной обводненности.
ЭЦН подключают к промышленной электросети через преобразователь частоты питающего ЭЦН тока, который размещается в станции управлении ЭЦН на устье скважины. При работе ЭЦН на номинальной частоте тока к скважине подключают замерную установку, например установку замерную мобильную (УЗМ.Т) производства ОАО «Сибнефтеавтоматика» [1] и проводят замер дебита и обводненности продукции скважины. Ступенчатым увеличением частоты тока ЭЦН переводят в режим максимально возможного отбора (дебита). По достижению установившегося режима работы скважины (дебит скважины по жидкости и давление на приеме насоса стабильны), определенного на основании данных замеров УЗМ.Т и термоманометрической системы (ТМС), например ТМС «СКАД», разработанной РУП «Производственное объединение «Белоруснефть» [2], ЭЦН переводят на следующий режим работы. Увеличение и снижение частоты тока проводят при непрерывной работе электроцентробежного насоса с постоянным замером давления и температуры на приеме насоса с помощью ТМС «СКАД», дебита скважины и обводненности на устье скважины с применением УЗМ.Т.
В конце проведения исследований скважину переводят в оптимальный режим работы, установленный в результате проведения исследований с применением частотного преобразователя, при котором отмечается снижение обводненности и рост дебита по нефти.
По общепринятым методикам проводят обработку полученных результатов. Полученную кривую восстановления давления при переходе режима работы скважины от «максимального» на «минимальный» обрабатывают по соответствующим методикам с получением данных по гидро- и пъезопроводности, проницаемости, радиусу контура питания, скин-фактору. По пересчетным забойным давлениям и дебиту скважины по жидкости на различных режимах фильтрации строят индикаторную диаграмму с последующим определением коэффициента продуктивности и пластового давления. Принимая во внимание дебит скважины по нефти и обводненность, строят диаграмму работы скважины с целью определения оптимального режима работы системы «пласт-скважина» в условиях порово-трещинного коллектора.
Все промысловые исследования проводят с подключением к скважине установки замерной мобильной ступенчатым переключением частоты напряжения питания и снятия информации на электронные носители. Все исследования проводят без остановок работы электроцентробежного насоса, что позволяет избежать потерь в добыче нефти.
Рассмотрим осуществление способа на примере гидродинамических исследований скважин «А» и «Б».
Снижение обводненности и рост дебита нефти по скважине «А» были получены за счет подключения пропластков, ранее не полностью вовлеченных в процесс эксплуатации. На фиг.1 представлена диаграмма работы скважины «А» в период проведения ГДИ.
Увеличение частоты переменного тока от номинальной (50 Гц) до 53 Гц привело к увеличению дебита по нефти на 155% и снижению обводненности на 19,5% относительно аналогичных показателей при работе в режиме номинальной частоты тока. Полученный эффект сохранился при последующем снижении частоты тока до 48 Гц. При работе на данном режиме увеличение дебита нефти составило 56%, снижение обводненности - 10,6% относительно номинальных показателей работы скважины.
На основании анализа проведенных исследований по скважине «А» установлен оптимальный режим эксплуатации - режим отбора при частоте 53 Гц, при котором обводненность продукции скважины минимальная, дебит по нефти максимальный.
Снижение обводненности и рост дебита скважины по нефти связан с изменением фильтрационных потоков и подключением в работу пропластков, ранее не полностью вовлеченных в процесс эксплуатации. Как известно, в подавляющем большинстве случаев смена фильтрационных потоков и путей движения подземных вод приводит к существенному изменению плотностей попутных вод. Последнее может зависеть от «промытости» новых фильтрационных каналов, количества вторичных солевых выполнений, находящихся на путях фильтрации закачиваемых вод, а также от количества поступающей пластовой воды. В любом случае изменение плотности попутных вод свидетельствует о смене фильтрационных потоков и указывает на достаточно высокое качество направленных на это работ. Так, в период проведения опытно-промысловых исследований с применением преобразователя частоты на скважине «А» усредненная плотность попутных вод снизилась от 1,146 до 1,139 г/см3 (фиг.2).
Проведенные исследования позволили получить кривую восстановления давления скважины «А» при переходе с 53 на 48 Гц (переход режима работы скважины от «максимального» на «минимальный»). График работы скважины при переходе с режима максимального отбора на режим минимального отбора представлен на фиг.3. В результате обработки КВД была получена информация о коэффициенте проницаемости, гидропроводности, пьезопроводности, радиусе питания и скин-факторе. Принимая во внимание полученные данные о текущих пластовых давлениях и коэффициентах продуктивности, был рассчитан оптимальный типоразмер насоса и глубина его спуска.
Для данной скважины по пересчетным забойным давлениям и дебиту по жидкости на различных режимах отбора была построена индикаторная диаграмма, представленная на фиг.4, по результатам обработки которой были определены пластовое давление и коэффициент продуктивности.
Снижение обводненности и рост дебита нефти по скважине «Б» были получены за счет снижения объемов отборов при работе в режиме с частотой тока ниже номинальной. На фиг.5 представлена диаграмма работы скважины «Б» в период проведения ГДИ.
Увеличение частоты тока от номинальной до 55 Гц привело к росту дебита по нефти на 71% и снижению обводненности на 6,39% относительно аналогичных показателей при работе ПЭД на номинальной частоте. Спустя 52,5 ч скважина была переведена на режим отбора в 60 Гц. За время работы на данном режиме дебит по нефти увеличился на 164,9%, обводненность снизилась на 4,29% относительно номинальных показателей и составила 82,06%. Снижение частоты тока до 40 Гц привело к росту дебита по нефти на 62,5% и снижению обводненности на 14,32% относительно аналогичных показателей при работе на номинальной частоте. Спустя 43 ч обводненность составила 72,03%. В рамках экспериментальных работ скважина была переведена на режим работы в 45 Гц, что привело к снижению дебита по нефти на 31% и росту обводненности до 83, 56%. Далее скважина была повторно переведена на режим 60 Гц. По данным УЗМ.Т дебит по нефти составил 42,6% относительно номинального показателя, обводненность - 88,87%. При переходе на данный режим отбора значения обводненности продукции колебались в диапазоне от 57% до 100%. График распределения обводненности продукции скважины при проведении ГДИ представлен на фиг.6.
Таким образом, кратковременное (в пределах проведения эксперимента) изменение частоты переменного тока привело к изменению дебитов и забойных давлений, а следовательно, депрессий, создаваемых на пластовую систему «матрица-трещины» в районе дренирования скважины, что, в свою очередь, позволило снизить обводненность и получить дополнительную добычу нефти. При проведении промысловых исследований увеличение отборов (60 Гц) привело к увеличению воронки депрессии и, как результат, подтягиванию воды, закачиваемой в соседнюю нагнетательную скважину. Уменьшение отборов на 26% (режим работы в 40 Гц) привело к уменьшению воронки депрессии и снижению обводненности на 14,32% при росте дебита по нефти на 62,5%.
На основании анализа проведенных исследований по скважине «Б» установлен оптимальный режим эксплуатации скважины - режим отбора при частоте 40 Гц, при котором снижение обводненности максимальное (14,32%), рост дебита по нефти составляет 62,5% (фиг.7).
Проведенные исследования позволили получить кривую восстановления давления скважины «Б» при переходе с 60 на 40 Гц (переход режима работы скважины от «максимального» на «минимальный»). График работы скважины при переходе с режима максимального отбора на режим минимального отбора представлен на фиг.8. В результате обработки КВД была получена информация о коэффициенте проницаемости, гидропроводности, пьезопроводности, радиусе питания и скин-факторе. Принимая во внимание полученные данные о текущих пластовых давлениях и коэффициентах продуктивности, был рассчитан оптимальный типоразмер насоса и глубина его спуска.
Для данной скважины была проведена интерпретация полученных данных по общепринятым методикам. По пересчетным забойным давлениям и дебиту по жидкости на различных режимах отбора была построена индикаторная диаграмма, представленная на фиг.9, по результатам обработки которой были определены пластовое давление и коэффициент продуктивности скважины.
Таким образом, использование заявляемого способа проведения гидродинамических исследований нефтяных скважин, оборудованных ЭЦН с преобразователем частоты, позволяет получать кривую восстановления давления, а также определять оптимальный режим отборов из пласта, при котором отмечается снижение обводненности продукции и рост дебита по нефти относительно аналогичных показателей при работе скважины в режиме номинальной частоты.
Источники информации
1. www.ingavtomatika.ru/upload/iblock/131/
2. www.irz.ru/files/9_3.pdf
Claims (3)
1. Способ гидродинамических исследований нефтяной скважины, оборудованной электроцентробежным насосом с преобразователем частотны тока, включающий подключение электроцентробежного насоса к промышленной электросети через преобразователь частоты питающего электроцентробежный насос тока, замер дебита скважины по нефти при работе в режиме номинальной промышленной частоты, создание депрессии путем повышения производительности электроцентробежного насоса за счет увеличения частоты тока до величины, обеспечивающей устойчивый режим работы скважины, при котором дебит скважины по жидкости максимальный, отличающийся тем, что замеряют дебит скважины по жидкости и обводненность ее продукции при работе в режиме номинальной частоты, после достижения максимального значения частоту тока снижают до величины, обеспечивающей устойчивый режим работы скважины, при котором дебит скважины по жидкости минимальный, при этом увеличение и снижение частоты тока проводят при непрерывной работе электроцентробежного насоса с постоянным замером давления и температуры на приеме насоса, дебита скважины и обводненности на устье скважины, по результатам замеров строят кривую восстановления давления при переходе режима работы скважины, при котором дебит скважины по жидкости максимальный, на режим работы, при котором дебит скважины по жидкости минимальный, с последующим определением гидро- и пъезопроводности, проницаемости, радиуса контура питания, скин-фактора, а также определяют оптимальную частоту питающего электроцентробежный насос тока, при которой обеспечивается снижение обводненности и рост дебита по нефти относительно аналогичных показателей при работе скважины в режиме номинальной частоты.
2. Способ по п.1, отличающийся тем, что непрерывный замер давления и температуры на приеме насоса осуществляют с помощью термоманометрической системы в режиме «он-лайн», а непрерывный замер дебита скважины и обводненности - с применением мобильной замерной установки.
3. Способ по любому из пп.1 и 2, отличающийся тем, что по результатам замеров дебита скважины по жидкости и давления на приеме насоса строят индикаторную диаграмму с последующим определением коэффициента продуктивности и пластового давления.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011111467/03A RU2475640C2 (ru) | 2011-03-25 | 2011-03-25 | Способ гидродинамических исследований нефтяных скважин, оборудованных электроцентробежными насосами с преобразователем частоты тока |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011111467/03A RU2475640C2 (ru) | 2011-03-25 | 2011-03-25 | Способ гидродинамических исследований нефтяных скважин, оборудованных электроцентробежными насосами с преобразователем частоты тока |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011111467A RU2011111467A (ru) | 2012-09-27 |
RU2475640C2 true RU2475640C2 (ru) | 2013-02-20 |
Family
ID=47078194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011111467/03A RU2475640C2 (ru) | 2011-03-25 | 2011-03-25 | Способ гидродинамических исследований нефтяных скважин, оборудованных электроцентробежными насосами с преобразователем частоты тока |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2475640C2 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2610941C1 (ru) * | 2015-12-02 | 2017-02-17 | Ильдар Зафирович Денисламов | Способ оценки обводненности продукции нефтедобывающей скважины |
RU2612410C1 (ru) * | 2016-01-11 | 2017-03-09 | Акционерное общество "Новомет-Пермь" | Установка для подъема пластовой жидкости |
RU2700149C1 (ru) * | 2018-07-30 | 2019-09-12 | Общество с ограниченной ответственностью "Центр образования, науки и культуры имени И.М. Губкина" (ООО "ЦОНиК им. И.М. Губкина") | Способ оптимизации работы скважины, оборудованной скважинным насосом |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2683435C1 (ru) * | 2018-01-31 | 2019-03-28 | Публичное акционерное общество "Татнефть" им. В.Д.Шашина | Способ подбора оптимального режима работы нефтяной скважины |
CN114598234A (zh) * | 2020-12-04 | 2022-06-07 | 中国石油化工股份有限公司 | 一种具有散热密封功能的电动潜油泵变频驱动系统 |
CN115961934B (zh) * | 2021-10-13 | 2025-06-24 | 中国石油化工股份有限公司 | 一种海上油田电泵井产量及产能的测试方法、测试装置及测试系统 |
CN116119764B (zh) * | 2023-04-19 | 2023-06-30 | 山东水利建设集团有限公司 | 一种生活污水净化槽及其控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3568771A (en) * | 1969-04-17 | 1971-03-09 | Borg Warner | Method and apparatus for lifting foaming crude by a variable rpm submersible pump |
RU2082879C1 (ru) * | 1992-09-02 | 1997-06-27 | Владимир Александрович Афанасьев | Способ воздействия на призабойную зону скважины |
RU2188934C2 (ru) * | 2000-07-04 | 2002-09-10 | ОАО "Сибнефть-Ноябрьскнефтегазгеофизика" | Способ интенсификации добычи нефти и газа |
RU2322611C1 (ru) * | 2006-08-25 | 2008-04-20 | ОАО "НК "Роснефть" | Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом |
RU2370635C2 (ru) * | 2007-09-18 | 2009-10-20 | Общество с ограниченной ответственностью "Универсал-Сервис" | Способ гидродинамических исследований в скважине, оборудованной установкой электроцентробежного насоса |
RU2394985C1 (ru) * | 2009-09-07 | 2010-07-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ исследования многозабойной горизонтальной скважины |
-
2011
- 2011-03-25 RU RU2011111467/03A patent/RU2475640C2/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3568771A (en) * | 1969-04-17 | 1971-03-09 | Borg Warner | Method and apparatus for lifting foaming crude by a variable rpm submersible pump |
RU2082879C1 (ru) * | 1992-09-02 | 1997-06-27 | Владимир Александрович Афанасьев | Способ воздействия на призабойную зону скважины |
RU2188934C2 (ru) * | 2000-07-04 | 2002-09-10 | ОАО "Сибнефть-Ноябрьскнефтегазгеофизика" | Способ интенсификации добычи нефти и газа |
RU2322611C1 (ru) * | 2006-08-25 | 2008-04-20 | ОАО "НК "Роснефть" | Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом |
RU2370635C2 (ru) * | 2007-09-18 | 2009-10-20 | Общество с ограниченной ответственностью "Универсал-Сервис" | Способ гидродинамических исследований в скважине, оборудованной установкой электроцентробежного насоса |
RU2394985C1 (ru) * | 2009-09-07 | 2010-07-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ исследования многозабойной горизонтальной скважины |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2610941C1 (ru) * | 2015-12-02 | 2017-02-17 | Ильдар Зафирович Денисламов | Способ оценки обводненности продукции нефтедобывающей скважины |
RU2612410C1 (ru) * | 2016-01-11 | 2017-03-09 | Акционерное общество "Новомет-Пермь" | Установка для подъема пластовой жидкости |
RU2700149C1 (ru) * | 2018-07-30 | 2019-09-12 | Общество с ограниченной ответственностью "Центр образования, науки и культуры имени И.М. Губкина" (ООО "ЦОНиК им. И.М. Губкина") | Способ оптимизации работы скважины, оборудованной скважинным насосом |
Also Published As
Publication number | Publication date |
---|---|
RU2011111467A (ru) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2475640C2 (ru) | Способ гидродинамических исследований нефтяных скважин, оборудованных электроцентробежными насосами с преобразователем частоты тока | |
CA2927234C (en) | Well testing and monitoring | |
CN106761681B (zh) | 基于时序数据分析的电泵井故障实时诊断系统及方法 | |
CN104141603B (zh) | 具有节能作用的水泵控制系统 | |
RU111190U1 (ru) | Нефтедобывающая скважина с искусственным интеллектом | |
CN103510940B (zh) | 机械采油井工况综合诊断分析方法及装置 | |
Liang et al. | Electrical submersible pump systems: Evaluating their power consumption | |
CN103670348A (zh) | 一种油井生产特性评价方法及装置 | |
RU2341004C1 (ru) | Система управления погружным электроцентробежным насосом | |
RU2433250C1 (ru) | Способ разработки нефтяной залежи с помощью периодической эксплуатации добывающих скважин, период работы которых изменяют в зависимости от изменения плотности скважинной жидкости | |
CN113027387B (zh) | 一种油井间抽控制系统及方法 | |
RU2522565C1 (ru) | Способ эксплуатации скважины насосной установкой с частотно-регулируемым приводом и устройство для его осуществления | |
RU2256065C1 (ru) | Устройство для эксплуатации погружного электронасосного агрегата в нефтегазовой скважине | |
RU2494236C1 (ru) | Способ разработки нефтяной залежи | |
RU2558088C2 (ru) | Способ управления нефтегазовой скважиной | |
US10612363B2 (en) | Electric submersible pump efficiency to estimate downhole parameters | |
RU2007134728A (ru) | Способ гидродинамических исследований в скважине, оборудованной установкой электроцентробежного насоса | |
Biantoro et al. | Performance analysis of DN1750 and DN1800 electric submersible pump for production optimization on the oil well | |
CN104405364A (zh) | 一种油井生产特性评价方法及装置 | |
CN202023738U (zh) | 一种潜油螺杆泵转速智能控制系统 | |
RU88167U1 (ru) | Система оптимального управления установкой электроцентробежного насоса | |
KR101447595B1 (ko) | 인버터 부스터 펌프 시스템의 성능 검증방법 | |
RU2322611C1 (ru) | Способ динамической эксплуатации скважины электронасосом с частотно-регулируемым приводом | |
CN212642702U (zh) | 一种多参数油井状态监测系统 | |
Muravyova et al. | Application of bottom hole pressure calculation method for the management of oil producing well |