RU2185688C2 - Солнечный элемент с небольшим затенением и способ его изготовления - Google Patents
Солнечный элемент с небольшим затенением и способ его изготовления Download PDFInfo
- Publication number
- RU2185688C2 RU2185688C2 RU99114608/28A RU99114608A RU2185688C2 RU 2185688 C2 RU2185688 C2 RU 2185688C2 RU 99114608/28 A RU99114608/28 A RU 99114608/28A RU 99114608 A RU99114608 A RU 99114608A RU 2185688 C2 RU2185688 C2 RU 2185688C2
- Authority
- RU
- Russia
- Prior art keywords
- grooves
- solar cell
- silicon substrate
- contact
- planes
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000758 substrate Substances 0.000 claims abstract description 58
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 31
- 239000010703 silicon Substances 0.000 claims abstract description 31
- 238000005530 etching Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 24
- 230000002441 reversible effect Effects 0.000 claims description 23
- 239000004065 semiconductor Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 12
- 238000009792 diffusion process Methods 0.000 claims description 6
- 230000000873 masking effect Effects 0.000 claims description 6
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 238000005275 alloying Methods 0.000 claims description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 3
- 238000007639 printing Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 1
- 238000009331 sowing Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 16
- 239000012535 impurity Substances 0.000 description 7
- 239000002800 charge carrier Substances 0.000 description 6
- 238000002161 passivation Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
- H10F10/146—Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
- H10F77/227—Arrangements for electrodes of back-contact photovoltaic cells for emitter wrap-through [EWT] photovoltaic cells, e.g. interdigitated emitter-base back-contacts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Изобретение относится к гелеоэнергетике. Технический результат изобретения заключается в создании простого и экономичного солнечного элемента с коэффициентом полезного действия свыше 20%. Сущность: предложено использовать кремниевую подложку с ориентацией (110), все контакты располагать на обратной стороне и электрическое присоединение лицевой стороны осуществлять посредством сильнолегированных пазов сквозь подложку. Пазы выполнены кристаллоориентированным травлением и ориентированы в подложке параллельно плоскостям (111). 2 с. и 10 з.п. ф-лы, 12 ил.
Description
Небольшое затенение может быть реализовано, например, в солнечном элементе, у которого как n-контакты, так и р-контакты находятся на обратной стороне. Таким образом лицевая сторона не затеняется никаким контактом и потому имеется в неограниченном распоряжении для облучения светом.
Солнечный элемент без металлизации лицевой стороны известен, например, из R. A.Sinton, P.J.Verlinden, R.A.Crane, R.M.Swanson, С.Tilford, J.Perkins and K.Garrison "Large-Area 21% Efficient Si Solar Cells", Proc. of the 23-rd IEEE Photovoltaic Specialists Conference, Louisville, 1993, стр. 157-161. Для их изготовления за несколько операций маскирования рядом образует по-разному легированные области и металлизируют или контактируют их посредством нанесения сверху многослойной металлической структуры. Нанесение металлических структур осуществляют при этом тонкопленочным методом.
Недостаток при этом в том, что способ требует нескольких операций маскирования и за счет этого является дорогим. Кроме того, все носители зарядов должны попадать в результате диффузии к обратной стороне солнечного элемента, причем повышается вероятность рекомбинации носителей зарядов, которая также снижает КПД фокусирования солнечного элемента.
Другая концепция солнечного элемента без металлизации лицевой стороны известна из статьи "Emitter Wrap-Through Solar Cell", James M. Gee et al в докладе на 23-rd Photovoltaic Specialists Conference 1993, Louisville, стр. 265-270. Описанный в нем солнечный элемент имеет расположенный вблизи лицевой стороны эмиттерный слой с примыкающим к нему p-n-переходом. Просверленные лазером и металлизированные контактные отверстия соединяют эмиттерный слой с расположенными на обратной стороне металлизированными контактами. Контакты обратной стороны расположены встречно-гребенчато по отношению к "контактам лицевой стороны" также на обратной стороне. Недостатком этого солнечного элемента является большое число просверливаемых лазером контактных отверстий; для солнечного элемента с типичным размером 100 см2 и типичным расстоянием 1 мм между отверстиями требуется около 10000 контактных отверстий. Это снижает производительность при автоматизированном производстве. Дополнительно контактные отверстия и соответствующие им, расположенные на обратной стороне контакты необходимо юстировать по отношению друг к другу. Кроме того, в просверленных лазером контактных отверстиях могут произойти нежелательные структурные превращения в кремнии, что может создать дополнительные центры рекомбинации для пар носителей зарядов, дополнительно снижающие КПД фокусирования. Меньшая механическая прочность может привести у солнечных элементов к их разрушению.
Из патента США 5067985 известен солнечный элемент со встречно-гребенчатыми задними контактами и углублениями на лицевой стороне. Углубления легированы так, что в направлении объемного полупроводника образуется p-n-переход. Эти углубления называются углублениями для захвата энергии и служат для повышения возможности поглощения, даже при многократном отражении внутри одного углубления. Подложка представляет собой полупроводниковую пластину (110), а углубления ограничены плоскостями (111) или эквивалентными плоскостями. В соответствии с указанной целью улучшения захвата излучения все углубления открыты к лицевой стороне.
Задачей настоящего изобретения является создание солнечного элемента без затеняющих контактов лицевой стороны, который был бы прост и экономичен в изготовлении, а также отвечал бы другим требованиям к высокопроизводительному солнечному элементу.
Эта задача решается согласно изобретению посредством солнечного элемента согласно п. 1 формулы изобретения. Предпочтительные варианты изобретения, а также способ изготовления приведены в остальных пунктах формулы изобретения.
Солнечный элемент согласно изобретению выполнен из кристаллической кремниевой подложки с ориентацией (110). Этот материал обладает тем преимуществом, что он имеет ориентированные перпендикулярно поверхности (110) плоскости (111). Посредством ориентированного по кристаллической структуре анизотропного травления можно выполнять углубления, отверстия или проемы с высоким аспектным соотношением и двумя вертикальными боковыми стенками в подложке (110). Солнечный элемент согласно изобретению имеет множество ориентированных параллельно плоскостям (111) продолговатых пазов, которые проходят по всей толщине кремниевой подложки или прорезают ее. Внутренние поверхности пазов высоколегированы в соответствии с типом проводимости выполненного по меньшей мере на лицевой стороне, плоского эмиттерного слоя. На обратной стороне солнечного элемента находится первое решетчатое контактное поле для электрического присоединения материала подложки. Встречно-гребенчато по отношению к нему на обратной стороне расположено второе решетчатое контактное поле, которое по меньшей мере частично перекрывает пазы и обеспечивает таким образом электрическое присоединение эмиттерного слоя.
Лицевая сторона солнечного элемента, согласно изобретению за исключением пазов, не нарушена и имеет высококачественную поверхность, обеспечивающую хорошее пассивирование и эффективный просветляющий слой. Благодаря возможности хорошего анизотропного травления кремния с ориентацией (110) в кремниевой подложке могут быть выполнены пазы с высокими аспектными соотношениями, например 1: 600. Таким образом удается минимизировать величину пазов и тем самым поверхностные потери. Выполненные анизотропным травлением в кремнии (110) пазы имеют боковые стенки, состоящие из плоскостей (111). Две эти плоскости расположены перпендикулярно поверхности подложки, тогда как обе "узкие стороны" проходят через подложку наклонно. При травлении с обратной стороны кремниевой подложки сечение пазов уменьшается, следовательно, к лицевой стороне, так что за счет этого дополнительно уменьшаются поверхностные потери благодаря пазам на лицевой стороне. Продолговатость пазов облегчает юстировку второго контактного поля, которое перекрывает пазы обратной стороны.
В пазах кремниевая подложка сильно легирована. Этим создаются обладающие достаточной электропроводностью цепи тока, которые соединяют лицевую сторону солнечного элемента с обратной стороной, например, с нанесенным на нее контактным полем. За счет достаточно плотного поля пазов и относительно небольшой толщины подложки цепи тока остаются для собравшихся на лицевой стороне носителей зарядов короткими. Таким образом, невелико также последовательное сопротивление солнечного элемента и возможен высокий коэффициент заполнения.
В предпочтительном варианте выполнения изобретения в качестве подложки используют так называемую трикристаллическую полупроводниковую пластину, известную, например, из статьи G.Martinelli in Solid State Phenomena Vol. 32 to 33, 1993, стр. 21-26. Такая полупроводниковая пластина имеет три наклоненные друг к другу монокристаллические зоны с ориентацией (110) каждая. Пограничные поверхности между монокристаллическими зонами проходят радиально к середине пластины, так что монокристаллические зоны образуют круговые секторы трикристаллической полупроводниковой пластины. Две из трех пограничных поверхностей являются при этом двойниковыми границами зерен первого порядка на плоскостях (111), которые особенно малодефектны.
Изготовленный из такой трикристаллической полупроводниковой пластины солнечный элемент согласно изобретению обладает тем преимуществом, что механическая стабильность полупроводниковой пластины и тем самым солнечного элемента по сравнению с монокристаллической подложкой резко повышена.
Таким образом можно уменьшить толщину подложки до значений 30-70 мкм без необходимости принятия во внимание повышенной опасности разрушения при обработке. Для изобретения трикристаллическая полупроводниковая пластина особенно пригодна, поскольку она имеет поверхности исключительно с ориентацией (110) или впервые дает достаточную возможность использовать кремниевые подложки с ориентацией (110). Вытягивать кристаллы для монокристаллических стержней с ориентацией (110) значительно сложнее, чем для обычных кремниевых стержней с ориентацией (100), поскольку быстрее происходит скольжение кристаллов по плоскостям спайности и быстрее возникают дефекты структуры, приводящие к преждевременному прекращению процесса выращивания. Вытягивание трикристалла, напротив, протекает в 2-3 раза быстрее, чем у кремниевых стержней с ориентацией (110). На конце стержня не требуется конуса. Процесс можно поэтому осуществлять квазинепрерывно и без дислокации. Тигель можно использовать до десяти раз.
Солнечный элемент с более тонкой кремниевой подложкой обладает наряду с экономией материала еще и дополнительными техническими преимуществами. Требование к высокопроизводительному солнечному элементу, заключающееся в том, чтобы длина диффузии неосновных носителей зарядов была больше трехкратной толщины подложки, выполняется у более тонкой подложки уже за счет материала более низкого электронного качества. Более тонкая кремниевая подложка вызывает поэтому в солнечном элементе меньшие рекомбинационные потери, чем более толстая подложка.
Солнечный элемент с трикристаллической кремниевой подложкой достаточно стабилен также при большом числе прорезающих подложку пазов. Тем не менее предпочтительно, если проходящие параллельно плоскостям (111) пазы смещены по отношению друг к другу, так что в одной и той же плоскости (111) друг за другом не расположено несколько пазов, которые могли бы способствовать разрушению подложки параллельно граням кристалла за счет заданной "перфорации".
Первое и второе контактные поля на обратной стороне солнечного элемента наносят преимущественно в виде толстопленочных контактов и, в частности, в виде спекаемой проводящей пасты. Первое и второе контактные поля образуют встречно-гребенчатую структуру, у которой пальцеобразные контакты первого и второго полей входят друг в друга, как зубцы застежки-молнии. Каждое контактное поле включает в себя по меньшей мере одну шинную структуру, которая соединяет между собой все пальцеобразные контакты. Преимущественно одна из шинных структур расположена огибающей вблизи края обратной стороны солнечного элемента. Преимущественно площади первого и второго контактных полей приблизительно равны, поскольку для обоих типов носителей зарядов необходимо транспортировать одинаковые количества зарядов, и таким образом последовательное сопротивление минимизировано.
Способ изготовления солнечного элемента согласно изобретению более подробно поясняется с помощью примеров выполнения и соответствующих десяти фигур. Фигуры относятся при этом исключительно к примерам выполнения, и их не следует рассматривать как ограничивающие.
На фиг. 1-7 с помощью схематичных сечений подложки изображены различные этапы способа изготовления солнечного элемента.
На фиг.8 и 9 с помощью схематичных сечений подложки изображены различные этапы варианта способа.
На фиг.10 в перспективе при виде сверху на кремниевую подложку изображен паз.
На фиг. 11 при виде сверху изображена трикристаллическая полупроводниковая пластина.
На фиг.12 изображено возможное расположение первого и второго контактных полей на обратной стороне.
Отправной точкой способа согласно изобретению является p-легированная, например, (акцепторной примесью) кремниевая полупроводниковая пластина 1 с ориентацией (110). На первом этапе выполняют пазы или поле пазов. Для этого сначала на всю поверхность лицевой VS и обратной RS сторон по периметру наносят оксидный или нитридный слой 2. Фотолитографическим способом в этом оксидном или нитридном слое 2 определяют затем прямоугольные, соответствующие полю пазов отверстия 3 и осуществляют свободное травление. На фиг.1 этот этап способа изображен с помощью схематичного и не в масштабе сечения кремниевой подложки.
За счет кристаллоориентированного щелочного травления в соответствии с определяемым в маскирующем слое 2 полем отверстий 3 в подложке 1 выполняют пазы 4. На фиг.2 это состояние изображено после удаления маскирующего слоя 2.
Фиг.3: За счет осуществляемого по периметру легирования фосфором на всех поверхностях кремниевой подложки 1, включая пазы, получают плоский, n+-легированный эмиттерный слой 5, например, глубиной 0,3-2 мкм.
Фиг. 4: На следующем этапе по периметру на все поверхности наносят пассивирующий слой 6, например, оксидный или нитридный слой толщиной обычно 70 нм.
Фиг. 5: На следующем этапе на обратную сторону толстопленочным методом наносят электрические контакты. Для первого контактного поля 7 для этого рядом с пазами 4 на обратную сторону RS наносят, например, пальцеобразные контакты для контактирования материала подложки, т.е. для контактирования внутренней, p-легированной (акцепторной примесью) зоны подложки. Это может осуществляться, например, путем нанесения спекаемой и проводящей пасты для трафаретной печати, содержащей частицы серебра или алюминия. Паста содержит либо алюминий, либо другой, создающий p-легирование (акцепторной примесью) легирующий материал, например бор. Второе контактное поле 8 наносят по меньшей мере частично над пазами 4, например, путем нанесения проводящей пасты с содержанием серебра. Первое 7 и/или второе 8 контактные поля выполнены решетчатыми и включают в себя по меньшей мере по одной шинной структуре и отходящие от нее пальцеобразные контакты. Расположение обоих контактных полей на обратной стороне подложки осуществляют при этом так, чтобы пальцеобразные контакты входили друг в друга встречно-гребенчато и пространственно были отделены друг от друга. На фиг.5 изображено расположение по завершении этого этапа способа.
На фиг. 6: На следующем этапе контакты вжигают и спекают, причем пассивирующий слой 6 под контактными полями 7 и 8 легируют так, чтобы он был электропроводящим. Содержащийся в пасте для первого контактного поля 7 легирующий материал создает p+-легирование 9, которое сверхкомпенсирует эмиттерный слой 5 и создает омический контакт с лежащей внутри, p-легированной (акцепторной примесью) зоной подложки 1. Материал второго контактного поля 8 создает проводящее соединение с n+-легированной зоной 5, т.е. эмиттерным слоем.
Фиг.7: С помощью первого 7 и второго 8 контактных полей в качестве самоюстирующейся маски на следующем этапе можно, при необходимости, разделить p-n-переход между первым и вторым контактными полями, например, посредством плазменного травления, причем между первым и вторым контактными полями образуются углубления 13. Если p+-легирование 9, которое представляет собой одновременно back surface field (BSF) (поле обратной стороны), препятствует проводящему соединению контактного поля 7 с эмиттерным слоем, плазменного травления не требуется.
Фиг.8: В одном варианте способа (следующем за этапом на фиг.4) пассивирующий слой 6 и эмиттерный слой 5 удаляют lift-off-способом, например посредством кратковременного плазменного травления, в зоне 14, предусмотренной для размещения первого контактного поля. Она поэтому немного больше, чем первое контактное поле.
Фиг.9: Затем первое 7 и второе 8 контактные поля наносят, например, посредством печати и при необходимости вжигают. Первое контактное поле может содержать при этом легирование, подходящее для создания BSF.
Можно однако вслед за изображенным на фиг.4 состоянием нанести сначала второе контактное поле 8 и использовать в качестве маски для lift-off-способа удаления пассивирующего 6 и эмиттерного 5 слоев, причем в зонах 14 образуются соответствующие и доходящие до материала подложки выемки. В этих выемках размещают затем первое контактное поле 7. В этом варианте предпочтительно образовать второе контактное поле 8 большей площади, чем первое контактное поле 7 с тем, чтобы получить максимальную площадь эмиттера lift-off-способом.
В любом случае нанесение первого 7 и второго 8 контактных полей осуществляют так, чтобы оба не перекрывали друг друга и были электрически отделены друг от друга.
На фиг.10 в перспективе изображена обратная сторона кремниевой подложки 1 с одним из пазов 4. Она имеет две противоположные вертикальные стенки 11, соответствующие плоскостям (111) в подложке. Узкие стороны пазов 4, напротив, ограничены проходящими наискось к ним гранями 12 кристалла, также соответствующими плоскостям (111). При определении поля пазов в маскирующем слое 2 в начале способа обращают внимание на то, чтобы продольная ось пазов была расположена параллельно вертикальным плоскостям (111). Длину l и ширину b пазов (на обратной стороне) выбирают так, чтобы при кристаллоориентированном травлении было выполнено именно одно прорезающее подложку 1 отверстие. Ширину b пазов устанавливают 5-50 мкм; она составляет, например, 15-20 мкм. Длина l пазов зависит от толщины кремниевой подложки 1. Преимущественно длину l выбирают так, чтобы воображаемая точка пересечения поверхностей 12, ограничивающих узкие стороны паза, была расположена вплотную над лицевой стороной VS кремниевой подложки 1. Таким образом получают рассматриваемый с лицевой стороной VS подложки 1 паз, "длина" которого соответствует b, а "ширина" минимизирована параллельно длине l паза.
На фиг.11 изображена трикристаллическая полупроводниковая пластина, используемая преимущественно в качестве подложки для солнечного элемента согласно изобретению. Она имеет три монокристаллические зоны M1, М2, М3 с ориентацией (110), которые однако наклонены друг к другу. На черетеже трикристаллическая полупроводниковая пластина расположена так, что между монокристаллическими зонами M1 и М2 возникает двойниковая граница KG12 зерен первого порядка с плоскостями (111) в качестве ограничивающих зерна граней кристалла. Также граница KG13 зерен между M1 и М3 является двойниковой границей зерен первого порядка с ограничивающими плоскостями (111) кристалла. Оптимально выросший трикристалл с двумя двойниковыми границами зерен первого порядка имеет идеальные внутренние углы между различными монокристаллическими зонами, составляющие для W1 ровно 109,47o, а для W2 и W3 ровно 125,26o. Однако и отличающиеся от них внутренние углы приводят к стабильной трикристаллической полупроводниковой пластине. Она может быть получена вырезанием из соответствующих трикристаллических стержней, причем вплоть до толщин пластины 30 мкм обеспечено надежное манипулирование соответствующей пластиной без повышенной опасности разрушения. Предпочтительные толщины пластины для солнечного элемента лежат, например, в пределах 60-150 мкм.
На фиг.11 изображен пример выполнения для расположения первого и второго контактных полей на обратной стороне трикристаллической полупроводниковой пластины. В соответствии с изображенной на фиг.9 ориентацией оба нижних луча образованной границами зерен "звезды" образуют двойниковые границы зерен первого порядка. Преимущественно пазы в трикристаллической полупроводниковой пластине располагают так, что их длина 1 ориентирована параллельно двойниковой границе зерен первого порядка. Преимущественно пазы ориентированы параллельно той двойниковой границе зерен первого порядка, которая лежит ближе всего к пазу. В соответствии с изображенным на фиг.9 расположением трикристаллической полупроводниковой пластины поле пазов ориентируют в первой ее половине слева от воображаемой оси А параллельно границе KG13 зерен, а в лежащей справа от оси А половине пластины - параллельно границе KG12 зерен. Пазы расположены преимущественно со смещением по отношению друг к другу, так что расположенные рядом в одном ряду пазы не попадают в одну и ту же плоскость (111). Они преимущественно смещены по отношению друг к другу более чем на одну целую ширину паза.
Соответствующее ему второе контактное поле 8, перекрывающее все пазы, изображено в качестве примера на фиг.12. Первое контактное поле 7 имеет шинную структуру, расположенную огибающей вблизи края подложки. Отходящие от нее контактные пальцы направлены наискось к центральной оси подложки. Второе контактное поле 8, напротив, имеет центральную шинную структуру, расположенную, например, параллельно изображенной на фиг.9 оси А. Отходящие от нее пальцеобразные контакты расположены встречно-гребенчато первой контактной структуре 7, не касаясь ее. Геометрическое ориентирование второго контактного поля 8 выбрано в примере выполнения так, что контактные пальцы ориентированы параллельно длине 1 пазов и перекрывают их поэтому по длине. Первое контактное поле 1 не перекрывает ни один из пазов. Можно, однако, поменять местами соответствие контактных полей p и n-легированным соответственно (акцепторной и донорной примесями) областям солнечного элемента, так, чтобы, например, контактное поле с огибающей шинной структурой перекрывало пазы и поэтому контактировало с n-легированными (донорной примесью) областями, а контактное поле с центральной шинной структурой служило для контактирования с p-легированным (акцепторной примесью) материалом подложки.
Ширину пальцеобразных контактов первого и второго контактных полей устанавливают, например, примерно 300 мкм. Такое контактное поле изготовляется надежно и с возможностью воспроизведения обычной техникой трафаретной печати. Возможны, однако, и гораздо более широкие или узкие пальцеобразные контакты. В соответствии с расстоянием между пазами пальцеобразные контакты контактного поля удалены друг от друга примерно на 3 мм.
После этого на пассивирующий слой 6 могут быть нанесены еще один или несколько просветляющих слоев подходящей толщины, например, дополнительные оксидные, нитридные слои или слои диоксида титана.
Изготовленный таким образом солнечный элемент согласно изобретению обладает всеми предпосылками, необходимыми для достижения КПД фокусирования свыше 20 процентов. Требованию, заключающемуся в том, чтобы длина диффузии для неосновных носителей зарядов была больше трехкратной толщины кремниевой подложки, отвечает солнечный элемент согласно изобретению уже с экономичными кристаллами кремния, выращенными методом Чохральского, у которого длина L диффузии превышает толщину d подложки в 1,5 раза (при d=60 мкм, L≥120 мкм). Высокое качество поверхности, выражающееся в низкой скорости S поверхностной рекомбинации, может быть простым образом надежно достигнуто как на лицевой, так и на обратной сторонах с помощью пассивирующих слоев. Над эмиттером высокое качество поверхности S<1000 см/с устанавливается с помощью оксидного пассивирования. Для качества обратной стороны требуется скорость поверхностной рекомбинации S<100 см/с, которая достигается у солнечного элемента согласно изобретению даже без дополнительных мер. Требованию к потерям от затенения менее 4 процентов также в сверхвысокой степени отвечает солнечный элемент согласно изобретению, поскольку он практически не имеет затенения. Низкие требуемые значения отражения < 4 процентов получают с помощью стандартных просветляющих покрытий. Также благодаря изобретению достигается коэффициент заполнения по меньшей мере 80 процентов.
Другое преимущество солнечных элементов с нанесенными исключительно на обратную сторону контактами состоит в облегчении машинного монтажа различных солнечных элементов в один модуль, поскольку для припаивания соответствующих соединений не требуется больше вводов на лицевой стороне. Это упрощает способ монтажа и повышает надежность способа. Солнечные элементы согласно изобретению имеют поэтому возможность промышленного изготовления полностью автоматически.
Claims (12)
1. Солнечный элемент, содержащий кристаллическую кремниевую подложку (1), имеющую на лицевой (VS) и обратной (RS) сторонах кристаллографические плоскости (110), плоский легированный эмиттерный слой (5) по меньшей мере на лицевой стороне (VS), множество ориентированных параллельно кристаллографическим плоскостям (111) продолговатых пазов (4), проходящих по всей толщине кремниевой подложки, сильное легирование в пазах, соответствующее типу проводимости эмиттерного слоя, первое решетчатое контактное поле (7) на обратной стороне для электрического присоединения материала подложки, второе решетчатое контактное поле (8) на обратной стороне для электрического присоединения эмиттерного слоя, причем второе контактное поле (8) по меньшей мере частично перекрывает пазы (4) и причем пазы (4) выполнены с обратной стороны (RS) посредством кристаллографического анизотропного травления, так что в пазах плоскости (111) (11, 12) служат ограничивающими поверхностями, причем пазы выполнены суженными в направлении лицевой стороны (VS) солнечного элемента посредством двух стенок (12), проходящих наклонно к поверхности солнечного элемента.
2. Элемент по п. 1, отличающийся тем, что кремниевая подложка (1) включает в себя трикристаллическую полупроводниковую пластину, имеющую три наклонные друг к другу монокристаллические зоны с ориентацией (110) каждая, взаимные пограничные поверхности (KGn, n+1) которых проходят радиально и образуют круговые секторы трикристаллической полупроводниковой пластины, причем две пограничные поверхности образуют двойниковые границы зерен первого порядка на плоскостях (111).
3. Элемент по одному из п. 1 или 2, отличающийся тем, что первое и второе контактные поля (7, 8) включают в себя выполненные посредством печати толстопленочные контакты.
4. Элемент по одному из пп. 1-3, отличающийся тем, что пазы (4) равномерно распределены по поверхности солнечного элемента и имеют ширину 5-50 мкм.
5. Элемент по одному из пп. 1-4, отличающийся тем, что пазы (4) проходят параллельно плоскостям (111), однако смещены по отношению друг к другу.
6. Элемент по одному из пп. 1-5, отличающийся тем, что первое и второе контактные поля (7, 8) включают в себя пальцеобразные, входящие друг в друга взаимно-гребенчато контакты и соответственно по меньшей мере одну шинную структуру, которая соответственно соединяет между собой все пальцеобразные контакты, причем одна из шинных структур (7) расположена на обратной стороне (RS) снаружи вблизи края солнечного элемента, огибая его.
7. Способ изготовления солнечного элемента с расположенными на обратной стороне (RS) контактами лицевой стороны по п. 1, при котором используют кристаллическую кремниевую подложку (1) с ориентацией (110), с обратной стороны посредством щелочного, кристаллоориентированного и маскирующего травления в кремниевой подложке (1) параллельно плоскостям (111) выполняют множество проходящих по всей толщине кремниевой подложки пазов (4), посредством диффузии легирующего материала образуют плоский эмиттерный слой (5), на обратной стороне (RS) посредством нанесения и вжигания проводящей пасты образуют первое и второе контактные поля (7, 8), причем второе контактное поле (8) располагают с перекрытием пазов (4).
8. Способ по п. 7, отличающийся тем, что диффузия легирующего материала происходит по периметру, легирование эмиттерного слоя (5) в зоне первого контактного поля (7) сверхкомпенсируют посредством легирования пасты при вжигании и эмиттерный слой (5) разделяют на обратной стороне между первым и вторым контактными полями.
9. Способ по п. 7 или 8, отличающийся тем, что травление пазов (4) осуществляют с помощью фотолитографически структурированной травильной маски (2) из нитрида или оксида.
10. Способ по одному из пп. 7-9, отличающийся тем, что травление пазов (4) осуществляют с контролем по времени и заканчивают в момент возникновения отверстия, проходящего через кремниевую подложку (1).
11. Способ по одному из пп. 7-10, отличающийся тем, что длину пазов (4) выбирают в зависимости от толщины кремниевой подложки (1) так, что воображаемая точка пересечения обеих плоскостей (111) (12), проходящих наклонно к поверхности кремниевой подложки и ограничивающих паз, расположена вне кремниевой подложки над лицевой стороной (VS).
12. Способ по одному из пп. 7-11, при котором эмиттерный слой (5) разделяют на обратной стороне (RS) между первым и вторым контактными полями посредством маскирующего травления, причем контактные поля (7, 8) используют в качестве маски.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19650111.3 | 1996-12-03 | ||
DE19650111A DE19650111B4 (de) | 1996-12-03 | 1996-12-03 | Solarzelle mit geringer Abschattung und Verfahren zur Herstellung |
Publications (2)
Publication Number | Publication Date |
---|---|
RU99114608A RU99114608A (ru) | 2001-05-20 |
RU2185688C2 true RU2185688C2 (ru) | 2002-07-20 |
Family
ID=7813503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99114608/28A RU2185688C2 (ru) | 1996-12-03 | 1997-11-19 | Солнечный элемент с небольшим затенением и способ его изготовления |
Country Status (8)
Country | Link |
---|---|
US (1) | US6143976A (ru) |
EP (1) | EP0948820B1 (ru) |
JP (1) | JP3924327B2 (ru) |
AU (1) | AU718786B2 (ru) |
DE (2) | DE19650111B4 (ru) |
ES (1) | ES2186011T3 (ru) |
RU (1) | RU2185688C2 (ru) |
WO (1) | WO1998025312A1 (ru) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10045249A1 (de) | 2000-09-13 | 2002-04-04 | Siemens Ag | Photovoltaisches Bauelement und Verfahren zum Herstellen des Bauelements |
AUPR174800A0 (en) | 2000-11-29 | 2000-12-21 | Australian National University, The | Semiconductor processing |
JP4726354B2 (ja) * | 2001-08-22 | 2011-07-20 | 東洋アルミニウム株式会社 | ペースト組成物およびそれを用いた太陽電池 |
IL162190A0 (en) | 2001-11-29 | 2005-11-20 | Origin Energy Solar Pty Ltd | Semiconductor texturing process |
US7169669B2 (en) | 2001-12-04 | 2007-01-30 | Origin Energy Solar Pty. Ltd. | Method of making thin silicon sheets for solar cells |
US7152289B2 (en) * | 2002-09-25 | 2006-12-26 | Intel Corporation | Method for forming bulk resonators silicon <110> substrate |
US7649141B2 (en) * | 2003-06-30 | 2010-01-19 | Advent Solar, Inc. | Emitter wrap-through back contact solar cells on thin silicon wafers |
JP4121928B2 (ja) * | 2003-10-08 | 2008-07-23 | シャープ株式会社 | 太陽電池の製造方法 |
US7335555B2 (en) * | 2004-02-05 | 2008-02-26 | Advent Solar, Inc. | Buried-contact solar cells with self-doping contacts |
US20060060238A1 (en) * | 2004-02-05 | 2006-03-23 | Advent Solar, Inc. | Process and fabrication methods for emitter wrap through back contact solar cells |
US7144751B2 (en) * | 2004-02-05 | 2006-12-05 | Advent Solar, Inc. | Back-contact solar cells and methods for fabrication |
US20050172996A1 (en) * | 2004-02-05 | 2005-08-11 | Advent Solar, Inc. | Contact fabrication of emitter wrap-through back contact silicon solar cells |
US7101789B2 (en) * | 2004-09-13 | 2006-09-05 | General Electric Company | Method of wet etching vias and articles formed thereby |
DE102004050269A1 (de) * | 2004-10-14 | 2006-04-20 | Institut Für Solarenergieforschung Gmbh | Verfahren zur Kontakttrennung elektrisch leitfähiger Schichten auf rückkontaktierten Solarzellen und Solarzelle |
US20060130891A1 (en) * | 2004-10-29 | 2006-06-22 | Carlson David E | Back-contact photovoltaic cells |
JP4887504B2 (ja) * | 2005-07-04 | 2012-02-29 | 国立大学法人東北大学 | 粒界性格制御多結晶の作製方法 |
KR101212198B1 (ko) * | 2006-04-06 | 2012-12-13 | 삼성에스디아이 주식회사 | 태양 전지 |
EP1993142A1 (de) * | 2007-05-14 | 2008-11-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Reflektiv beschichtetes Halbleiterbauelement, Verfahren zu dessen Herstellung sowie dessen Verwendung |
US8309844B2 (en) * | 2007-08-29 | 2012-11-13 | Ferro Corporation | Thick film pastes for fire through applications in solar cells |
EP2068369A1 (en) | 2007-12-03 | 2009-06-10 | Interuniversitair Microelektronica Centrum (IMEC) | Photovoltaic cells having metal wrap through and improved passivation |
EP2071632B1 (en) * | 2007-12-14 | 2013-02-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thin-film solar cell and process for its manufacture |
KR100953618B1 (ko) * | 2008-01-11 | 2010-04-20 | 삼성에스디아이 주식회사 | 태양 전지 |
CN101926009B (zh) * | 2008-01-25 | 2012-01-25 | 应用材料股份有限公司 | 自动化太阳能电池电连接设备 |
KR100927725B1 (ko) * | 2008-01-25 | 2009-11-18 | 삼성에스디아이 주식회사 | 태양 전지 및 이의 제조 방법 |
US20090239363A1 (en) * | 2008-03-24 | 2009-09-24 | Honeywell International, Inc. | Methods for forming doped regions in semiconductor substrates using non-contact printing processes and dopant-comprising inks for forming such doped regions using non-contact printing processes |
CN102047431A (zh) * | 2008-06-04 | 2011-05-04 | 索莱克山特公司 | 具有单片集成和背面接触器的薄膜太阳能电池 |
KR100997113B1 (ko) * | 2008-08-01 | 2010-11-30 | 엘지전자 주식회사 | 태양전지 및 그의 제조방법 |
US20100035422A1 (en) * | 2008-08-06 | 2010-02-11 | Honeywell International, Inc. | Methods for forming doped regions in a semiconductor material |
US8053867B2 (en) * | 2008-08-20 | 2011-11-08 | Honeywell International Inc. | Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants |
US7951696B2 (en) * | 2008-09-30 | 2011-05-31 | Honeywell International Inc. | Methods for simultaneously forming N-type and P-type doped regions using non-contact printing processes |
US8518170B2 (en) * | 2008-12-29 | 2013-08-27 | Honeywell International Inc. | Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks |
EP2412030A2 (en) * | 2009-03-26 | 2012-02-01 | BP Corporation North America Inc. | Apparatus and method for solar cells with laser fired contacts in thermally diffused doped regions |
US8742545B2 (en) * | 2009-04-15 | 2014-06-03 | Sunovel Suzhou Technologies Ltd. | Substrate strip plate structure for semiconductor device and method of manufacturing the same |
US8324089B2 (en) * | 2009-07-23 | 2012-12-04 | Honeywell International Inc. | Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions |
US20110048505A1 (en) * | 2009-08-27 | 2011-03-03 | Gabriela Bunea | Module Level Solution to Solar Cell Polarization Using an Encapsulant with Opened UV Transmission Curve |
US8377738B2 (en) | 2010-07-01 | 2013-02-19 | Sunpower Corporation | Fabrication of solar cells with counter doping prevention |
NL2006932C2 (en) * | 2011-06-14 | 2012-12-17 | Stichting Energie | Photovoltaic cell. |
US8629294B2 (en) | 2011-08-25 | 2014-01-14 | Honeywell International Inc. | Borate esters, boron-comprising dopants, and methods of fabricating boron-comprising dopants |
US8975170B2 (en) | 2011-10-24 | 2015-03-10 | Honeywell International Inc. | Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions |
US9812590B2 (en) | 2012-10-25 | 2017-11-07 | Sunpower Corporation | Bifacial solar cell module with backside reflector |
US9035172B2 (en) | 2012-11-26 | 2015-05-19 | Sunpower Corporation | Crack resistant solar cell modules |
US8796061B2 (en) | 2012-12-21 | 2014-08-05 | Sunpower Corporation | Module assembly for thin solar cells |
US9685571B2 (en) | 2013-08-14 | 2017-06-20 | Sunpower Corporation | Solar cell module with high electric susceptibility layer |
JP6338990B2 (ja) * | 2014-09-19 | 2018-06-06 | 株式会社東芝 | 多接合型太陽電池 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4838952A (en) * | 1988-04-29 | 1989-06-13 | Spectrolab, Inc. | Controlled reflectance solar cell |
US5067985A (en) * | 1990-06-08 | 1991-11-26 | The United States Of America As Represented By The Secretary Of The Air Force | Back-contact vertical-junction solar cell and method |
US5468652A (en) * | 1993-07-14 | 1995-11-21 | Sandia Corporation | Method of making a back contacted solar cell |
DE4343296C2 (de) * | 1993-12-17 | 1996-09-12 | Siemens Ag | Verfahren zur Herstellung einer Siliziumhalbleiterscheibe mit drei gegeneinander verkippten kreissektorförmigen monokristallinen Bereichen und seine Verwendung |
-
1996
- 1996-12-03 DE DE19650111A patent/DE19650111B4/de not_active Expired - Fee Related
-
1997
- 1997-11-19 EP EP97950204A patent/EP0948820B1/de not_active Expired - Lifetime
- 1997-11-19 WO PCT/EP1997/006465 patent/WO1998025312A1/de active IP Right Grant
- 1997-11-19 ES ES97950204T patent/ES2186011T3/es not_active Expired - Lifetime
- 1997-11-19 AU AU53231/98A patent/AU718786B2/en not_active Ceased
- 1997-11-19 DE DE59708512T patent/DE59708512D1/de not_active Expired - Fee Related
- 1997-11-19 RU RU99114608/28A patent/RU2185688C2/ru not_active IP Right Cessation
- 1997-11-19 JP JP52512698A patent/JP3924327B2/ja not_active Expired - Fee Related
- 1997-11-19 US US09/319,397 patent/US6143976A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AU718786B2 (en) | 2000-04-20 |
JP2001504996A (ja) | 2001-04-10 |
DE19650111A1 (de) | 1998-06-04 |
EP0948820A1 (de) | 1999-10-13 |
ES2186011T3 (es) | 2003-05-01 |
DE19650111B4 (de) | 2004-07-01 |
AU5323198A (en) | 1998-06-29 |
EP0948820B1 (de) | 2002-10-16 |
WO1998025312A1 (de) | 1998-06-11 |
DE59708512D1 (de) | 2002-11-21 |
US6143976A (en) | 2000-11-07 |
JP3924327B2 (ja) | 2007-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2185688C2 (ru) | Солнечный элемент с небольшим затенением и способ его изготовления | |
US4838952A (en) | Controlled reflectance solar cell | |
US9608131B2 (en) | Solar cell having doped semiconductor heterojunction contacts | |
US5468652A (en) | Method of making a back contacted solar cell | |
US3969746A (en) | Vertical multijunction solar cell | |
US7339110B1 (en) | Solar cell and method of manufacture | |
US4131984A (en) | Method of making a high-intensity solid-state solar cell | |
JP6059173B2 (ja) | 太陽電池 | |
US6559479B1 (en) | Thin-film solar array system and method for producing the same | |
US6333457B1 (en) | Edge passivated silicon solar/photo cell and method of manufacture | |
EP3170209B1 (en) | Solar cell with interdigitated back contact | |
US7964431B2 (en) | Method to make electrical contact to a bonded face of a photovoltaic cell | |
EP3327793B1 (en) | Solar cell and method of manufacturing the same | |
JP2008243830A (ja) | シリコン薄膜,集積化された太陽電池,モジュール,及びその製造方法 | |
JPH0661515A (ja) | 太陽電池及びその製造方法 | |
WO2018075295A1 (en) | Cascaded photovoltaic structures with interdigitated back contacts | |
US5103851A (en) | Solar battery and method of manufacturing the same | |
JPH0797653B2 (ja) | 光電変換素子 | |
TW201440235A (zh) | 具有加強射極層之背接面太陽能電池 | |
KR102018650B1 (ko) | 태양 전지 및 이의 제조 방법 | |
JP3026903B2 (ja) | 光電変換装置 | |
CN118053922A (zh) | 太阳能电池及其制备方法、光伏组件 | |
KR102010390B1 (ko) | 태양 전지의 제조 방법 및 불순물 영역의 형성 방법 | |
JP5645734B2 (ja) | 太陽電池素子 | |
JPH11135812A (ja) | 太陽電池素子の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20061120 |