[go: up one dir, main page]

RU2134877C1 - Защита от электростатического разряда датчиков на ионно-селективных полевых транзисторах - Google Patents

Защита от электростатического разряда датчиков на ионно-селективных полевых транзисторах Download PDF

Info

Publication number
RU2134877C1
RU2134877C1 RU96115918A RU96115918A RU2134877C1 RU 2134877 C1 RU2134877 C1 RU 2134877C1 RU 96115918 A RU96115918 A RU 96115918A RU 96115918 A RU96115918 A RU 96115918A RU 2134877 C1 RU2134877 C1 RU 2134877C1
Authority
RU
Russia
Prior art keywords
liquid
ispt
ion
substrate
esd
Prior art date
Application number
RU96115918A
Other languages
English (en)
Other versions
RU96115918A (ru
Inventor
Д.Бакстер Рональд
Г.Коннери Джеймс
Д.Фогель Джон
В.Силверторн Спенсер
Original Assignee
Ханивелл Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ханивелл Инк. filed Critical Ханивелл Инк.
Publication of RU96115918A publication Critical patent/RU96115918A/ru
Application granted granted Critical
Publication of RU2134877C1 publication Critical patent/RU2134877C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/60Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
    • H10D89/601Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/60Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

Использование: производство микросхем, обеспечивающих защиту приборов для избирательного измерения ионов в жидкостях, от электростатических разрядов. Сущность изобретения: представлены способ, устройство и технология изготовления микросхемы, которые обеспечивают защиту от электростатического разряда (ЭСР) для основанного на ионно-селективном полевом транзисторе (ИСПТ) прибора (250), используемого для избирательного измерения ионов в жидкости (299). В соответствии с одним аспектом изобретения схема защиты от ЭСР, сделанная из обычных защитных элементов (201, 202, 206), объединена на том же кремниевом кристалле, на котором сформирован ИСПТ (250), наряду с устройством сопряжения (203), которое находится в контакте с измеряемой жидкостью (299), и которое не открывает путей для токов утечки постоянного тока между ИСПТ (250) и жидкостью (299). В соответствии с предпочтительным вариантом осуществления изобретения в качестве устройства сопряжения между защитной схемой (201, 202 и 206) и образцом жидкости (299) используется структура конденсатора. Следующие аспекты изобретения направлены на способы, предназначение, по существу, для обеспечения зашиты от ЭСР ИСПТ-датчиков, использующих упомянутое выше средство сопряжения (203), например структуру конденсатора, и процессы, предназначенные для изготовления нового устройства сопряжения на кремниевой пластине. Техническим результатом изобретения является обеспечение защиты от электростатического разряда, при одновременном исключении трудностей создания металлического электрода, предназначенного для надежного низкоимпедансного контакта с жидкостью. 7 с. и 12 з.п.ф-лы, 4 ил.

Description

Изобретение касается в общем способов и устройства, предназначенных для (a) изменения ионов в жидкости; (b) защиты таких устройств от воздействия электростатического разряда; и (c) изготовления такого устройства, включающего в себя схему защиты от электростатического разряда, на кремниевой пластине.
Более конкретно изобретение касается способов, устройства и технологии производства микросхем, которые обеспечивают защиту от электростатических разрядов (ЭСР) приборов, основанных на ионо-селективных полевых транзисторах (ИСПТ), используемых для избирательного измерения ионов в жидкости.
В соответствии с одним аспектом изобретения, схема защиты от ЭСР, сделанная из обычных защитных элементов, интегрируется на том же кремниевом кристалле, на котором сформирован ИСПТ, вместе с новым устройством сопряжения. В соответствии с изобретением, новое устройство сопряжения представляет собой структуру, соприкасающуюся с жидкостью, подлежащей измерению, которая не дает возможности прохождения токам утечки постоянного тока между ИСПТ и жидкостью.
В соответствии с предпочтительным вариантом осуществления изобретения в качестве устройства сопряжения между схемой защиты и образцом жидкости используют структуру конденсатора.
Другие аспекты изобретения направлены на способы, предназначенные непосредственно для обеспечения защиты от ЭСР датчиков на ИСПТ, использующих упоминаемое выше средство сопряжения (например, конденсаторную структуру), и процессов, предназначенных для изготовления нового устройства сопряжения на кремниевой пластине.
Специалистам в данной области техники хорошо известны способы и устройства, предназначенные для измерения ионов в жидкости, использующие ИСПТ. Например, Джонсон в патенте США под номером 4.020.830 и Коннери и др. в патенте США под номером 4.851.104, включенных здесь путем иллюстрации состояния техники, предлагают использовать такое устройство. Такие приборы обычно включают в себя измерительную схему и ИСПТ, погруженный в жидкость, предназначенный для избирательного измерения в ней ионного коэффициента активности.
Вышеупомянутые приборы имеют многочисленные применения, включающие применения в области медицины и биомедицины, где, как известно, используются различные ИСПТ для измерения различных ионных коэффициентов активности, таких, например, как pH (водородный показатель), pK (показатель кислотности) и pNa.
Хотя известны чувствительные к ЭСР (электростатическому разряду) структуры типа полупроводниковых полевых транзисторов (ПТ), до недавнего времени многие полагали, что структуры ИСПТ (ионно-селективные полевые транзисторы) преимущественно нечувствительны к воздействию ЭСР, поскольку (1) ИСПТ не содержат в себе металлизированный электрод затвора (которые обычно непосредственно вовлекается в электростатическое повреждение), и (2) опыт, накопленный в течение времени, показал, что такими приборами могут манипулировать много людей без какого-либо признака электростатического повреждения. Однако исследования электродов ИСПТ показали, что могут происходить большие отклонения приборов после случая ЭСР.
Специалисты в данной области техники знают, что несмотря на то, что делались попытки решить проблему предотвращения повреждения от ЭСР в основанных на ИСПТ датчиках, известные подходы для разрешения этой проблемы содержат присущие им ограничения, в частности, когда датчик изготовлен на кремниевой пластине.
До описания этих ограничений для сравнения с предлагаемым изобретением типом способов и аппаратуры защиты от ЭСР будут представлены примеры состояния существующих устройств, предназначенных для защиты основанных на ИСПТ датчиков от воздействия ЭСР.
Здесь будет наглядно показано, что можно предотвратить повреждение от ЭСР (в соответствии с положениями изобретения) путем использования схемы защиты (внутри узла зонда, основанного на ИСПТ), которая позволяет осуществлять накопленные электрические разряды в исследуемом образце во время прохождения ЭСР, одновременно переводя заряд в исток, сток и подложку ИСПТ.
Этот подход к обеспечению защиты от ЭСР минимизирует поле, образующееся в изолирующей структуре транзистора, путем быстрого выравнивания зарядов на любой стороне изолятора во время явления ЭСР.
В схеме защиты от повреждения, вызываемого ЭСР, предназначенной для осуществления вышеуказанной функции, можно использовать, например, импульсные симметричные стабилитроны, подсоединенные между исследуемой жидкостью и проводниками истока, стока и подложки полевого транзистора, и также подробно описанные ниже со ссылкой на чертеж.
Электрический контакт с исследуемой жидкостью можно обеспечить при использовании электрода счетчика, типа электрода счетчика, описанного в вышеупомянутом патенте США N 4.851.104, упоминавшемся выше путем ссылки.
Другой пример состояния имеющейся аппаратуры, предназначенной для выборочного измерения ионов в жидкости и защиты от явлений ЭСР, предложен Лигтенбергом и др. в патенте США под номером 4.589.970. Патент N 4.589.970 включен здесь путем ссылки в отношении его описания схемы защиты от ЭСР, используемой в основном на ИСПТ датчике.
Схема защиты от ЭСР, предлагаемая в патенте N 4.589.970, содержит в себе по меньшей мере один электрод, подсоединенный через контакт с низким импедансом к подлежащей исследованию жидкости, связанный с ИСПТ с помощью защитного элемента, имеющего низкий импеданс для высоких напряжений и большое сопротивление для низких напряжений.
Включенный в описание патент N 4.589.970 устанавливает, что однонаправленные стабилизаторы, механические переключатели и полевые транзисторы с изолированным затвором с высоким пороговым напряжением можно использовать вместо или параллельно с симметричными стабилитронами, для защиты против явлений ЭСР.
Использование дискретных компонентов, расположенных в блоке зонда, для формирования схемы защиты и (или) интеграция схемы на кремниевой подложке ИСПТ предлагается во включенном в описании патенте N 4.589.970.
Что касается упомянутых выше ограничений, одно препятствие интеграции схемы защиты, описанной во включенном в описание патенте N 4.589.970 (и любые подобные схемы), на кремниевой подложке ИСПТ, представляет собой трудность создания металлического электрода, который обеспечивает надежный низкоимпедансный контакт с жидкостью.
Во включенном в описание изобретения патенте N 4.589.970 предлагается использовать для образования контакта алюминиевые пленки или пленки из поликристаллического кремния; однако, обе пленки подвержены химическому воздействию во многих жидкостях, которые необходимо измерять с помощью ИСПТ.
В качестве альтернативы для контакта можно напылять пленку, состоящую из благородного металла, типа золота или платины. К сожалению, для пленок из золота и платины обычно требуется промежуточный слой, для которого используют материалы типа титана или хрома, для обеспечения хорошего сцепления с подложкой; таким образом, химическая стойкость электрода может подвергаться опасности из-за добавления другого слоя, особенно если в пленке из благородного металла возникают микроотверстия.
Другая проблема, возникающая в контакте металла с низким импедансом, используемом между исследуемой жидкостью (образцом) и схемой защиты, представляет собой пути, открываемые для токов утечки постоянного тока через схему защиты между образцом и стоком и подложкой ИСПТ.
В соответствии с этим, было бы желательно иметь способ и устройство, которые обеспечивают защиту от ЭСР основных на ИСПТ приборов, применяемых для избирательного измерения ионов в жидкости, используя (а) схему защиты от ЭСР, сделанную из обычных защитных элементов, интегрированных на том же кремниевом кристалле, на котором сформирован ИСПТ; и (в) средство сопряжения, находящееся в контакте с подлежащей измерению жидкостью, которое не открывает пути для токов утечки постоянного тока между ИСПТ и жидкостью.
Кроме того, желательно обеспечить способы изготовления, которые позволили бы вышеупомянутую схему защиты объединить на кремниевой подложке ИСПТ таким образом, который позволяет избегать сложность в создании металлического электрода, который должен служить в качестве надежного низкоимпедансного соприкосновения с жидкостью.
Более того, было бы желательно обеспечить устройство, использующее контактные пленки, которые устойчивы к химическому воздействию многих из жидкостей, подлежащих измерению с помощью ИСПТ, не прибегая к использованию благородных металлов и промежуточных слоев для обеспечения хорошего сцепления пленки с подложкой.
В соответствии с этим, в основу настоящего изобретения положена задача обеспечить способы и устройство, предназначенные для измерения ионов в жидкости, и которые неотъемлемо защищают устройство от воздействия электростатического разряда.
Еще одной задачей, решаемой настоящим изобретением, является создание технологических приемов, предназначенных для изготовления вышеупомянутого устройства (то есть устройства, предназначенного для измерения ионов в жидкости, объединенного со схемой защиты от электростатических разрядов) на кремниевой подложке.
Более конкретно, в основу изобретения положены задачи обеспечить защиту от электростатических разрядов для основанных на ИСПТ приборов, используемых для избирательного измерения ионов в жидкости.
Кроме того, настоящее изобретение позволяет обеспечить способы и устройство, которые предлагают защиту от ЭСР для основанных на ИСПТ приборов, используемых для избирательного измерения ионов в жидкости, используя (а) схему защиты от ЭСР, собранную из обычных защитных элементов, объединенных на том же кремниевом кристалле, на котором образован ИСПТ; и (в) средство сопряжения, находящееся в контакте с измеряемой жидкостью, которое не открывает пути для токов утечки постоянного тока между ИСПТ и жидкостью.
Далее, настоящее изобретение позволяет обеспечить технологические приемы изготовления микросхем, которые позволяют осуществлять объединение вышеупомянутой схемы защиты на кремниевой подложке ИСПТ таким образом, который аннулирует трудности в создании металлического электрода, предназначенного для службы в качестве надежного низкоимпедансного контакта с жидкостью.
Кроме того, настоящее изобретение обеспечивает основанное на ИСПТ устройство, предназначенное для измерения ионов в жидкости, которое использует неметаллические контактные пленки, устойчивые к химическому воздействию, и которые не требуют использования промежуточных слоев для обеспечения хорошего сцепления пленки с подложкой.
В соответствии с одним аспектом изобретения, схема защиты от ЭСР, собранная из обычных защитных элементов, объединена на том же самом кремниевом кристалле, на котором образован ИСПТ, наряду с новым устройством сопряжения. Новым устройством сопряжения является структура, находящаяся в контакте с измеряемой жидкостью, которая не открывает путей для токов утечки постоянного тока между ИСПТ и жидкостью.
В соответствии с предпочтительным вариантом осуществления изобретения, в качестве устройства сопряжения между схемой защиты и образцом жидкости используется конденсаторная структура.
В соответствии с одним особым аспектом изобретения, устройство, предназначенное для выборочного измерения ионов в жидкости, содержит в себе: (а) измерительную схему, включающую в себя химически чувствительный к ионам датчик в форме ионно-селективного полевого транзистора (ИСПТ), сформированного на кремниевой подложке; (b) схему защиты от электростатического разряда (ЭСР), объединенную на подложке; и (c) средство сопряжения, объединенное на подложке, предназначенное для обеспечения устройства сопряжения между схемой защиты и жидкостью, отличающееся тем, что средство сопряжения обеспечивает контакт с жидкостью, не открывая путей для токов утечки постоянного тока между ИСПТ и жидкостью.
В соответствии с предпочтительным вариантом осуществления изобретения, средство сопряжения представляет собой конденсаторную структуру, включающую в себя (a) электрод, находящийся в электрическом контакте со схемой защиты; и (b) диэлектрик конденсатора, находящийся в контакте с электродом и подлежащий измерению жидкостью.
Кроме того, в соответствии с предпочтительным вариантом осуществления изобретения (a) вышеупомянутый электрод представляет собой металлическую пленку, демонстрирующую такую характеристику, что ее окись является изолятором (примеры подходящих металлических пленок включают в себя алюминий, сурьму, гафний, ниобий, тантал, вольфрам, иттрий и цирконий); а вышеупомянутый диэлектрик конденсатора представляет собой окись металла, выбранного для использования в качестве электрода. Используемый здесь термин "металлическая пленка" обозначает металлическую пленку, демонстрирующую такую характеристику, что ее окись является изолятором.
Далее, в соответствии с предпочтительным вариантом осуществления изобретения защитная схема включает в себя средство, предназначенное для переноса заряда, возникающего в исследуемом образце жидкости в результате явления ЭСР. Средство, предназначенное для переноса заряда (к истоку, стоку и подложке имеющегося в составе датчика ИСПТ), включает в себя: (a) первый симметричный стабилитрон, расположенный между вышеупомянутым средством сопряжения и истоком ИСПТ; (b) второй симметричный стабилитрон, расположенный между средством сопряжения и стоком ИСПТ; и (c) однонаправленный стабилитрон, расположенный между средством сопряжения и подложкой.
Следующие аспекты изобретения направлены на способы, обеспечивающие, по существу, защиту от ЭСР для датчиков на ИСПТ, использующих упоминаемое выше средство сопряжения (например, структуру конденсатора), и технологию, предназначенную для производства нового устройства сопряжения на кремниевой пластине.
В частности, один следующий аспект изобретения направлен на способ, предназначенный для обеспечения защиты от электростатического разряда (ЭСР) ионно-селективного полевого транзистора (ИСПТ), основанного на ионно-селективных электродах, содержащий в себе этапы: (a) формирования схемы ИСПТ на кремниевом кристалле; (b) объединения защитной схемы на кристалле, на котором сформирован ИСПТ; и (c) объединение на кристалле устройства сопряжения между защитной схемой и жидкостью, где устройство сопряжения обеспечивает контакт с жидкостью, не открывая путей для токов утечки постоянного тока между ИСПТ и жидкостью.
Предполагаемые еще одним аспектом изобретения процессы изготовления включают в себя процесс, предназначенный для изготовления конденсатора, служащего в качестве устройства сопряжения между измеряемой жидкостью и защитной схемой, включаемой в микросхему ионно-селективного полевого транзистора (ИСПТ), где микросхема ИСПТ используется для измерения ионов в жидкости, и где, кроме того, микросхема включает в себя кремниевую подложку, защитный оксидный слой и по меньшей мере один химический обедненный слой и диффузионную область p+ -типа, предназначенную для подсоединения конденсатора к защитной схеме, содержащие в себе этапы: (a) открывания межслойного перехода в защитном слое оксида и по меньшей мере одном химическом обедненном слое; (b) осаждения методом распыления металлической пленки на микросхему с целью создания нижнего электрода для конденсатора; (c) подсоединения пленки к диффузионной области p+ -типа через межслойный переход; и (d) образования окиси упомянутой металлической пленки с целью образования диэлектрика для конденсатора.
Изобретение характеризует сборочные узлы ИСПТ, встроенные в соответствии с положениями настоящего изобретения, которые при использовании в зонах датчиков подвергаются многократному воздействию ЭСР с уровнями 20000 В при испытании в соответствии со стандартом IEC (Международной электротехнической комиссии) 801-2.
Кроме того, изобретение представляет технологию изготовления микросхем, которая обеспечивает возможность вышеупомянутую защитную схему объединить на кремниевой подложке ИСПТ таким образом, который устраняет трудности в создании металлического электрода, служащего в качестве надежного низкоимпедансного контакта с испытываемым образцом жидкости. Более того, использование предлагаемым изобретением неметаллической контактной пленки устойчиво к химическому воздействию и не требует использования промежуточных слоев для обеспечения хорошего сцепления пленки с подложкой.
Эти и другие решаемые задачи, варианты осуществления и особенности настоящего изобретения и способ их выполнения станут ясными специалистам в данной области техники, а само изобретение будет лучше понятным при прочтении последующего подробного описания совместно с прилагаемыми чертежами.
Фиг. 1 представляет иллюстративную защитную схему внутри узла, основанного на ИСПТ зонда, которая позволяет наращивать заряд в исследуемом образце жидкости во время явления ЭСР, одновременно передавая заряд на исток, сток и подложку ИСПТ.
Фиг. 2 представляет защитную схему, предназначенную для основанного на ИСПТ датчика, которая включает в себя средство сопряжения в форме структуры конденсатора, представляемого в предпочтительном варианте осуществления изобретения типа.
Фиг. 3 представляет структуру примерного конденсатора сопряжения, представляемого одним аспектом изобретения типа, изготавливаемого на кремниевой пластине.
Фиг. 4 представляет пример соответствующего изобретению способа объединения ИСПТ, защитной схемы и средства устройства сопряжения, реализуемого на кремниевой подложке
Как было показано выше, известно, что повреждение от ЭСР можно предотвратить посредством использования защитных схем (в узле основанного на ИСПТ зонда), которая позволяет наращивать заряд в исследуемом образце во время осуществления ЭСР, одновременно перенося заряд в сток, исток и подложку ИСПТ. Такой подход минимизирует поле, создающееся в изоляторной структуре транзистора, путем быстрого выравнивания зарядов на обеих сторонах изолятора во время осуществления ЭСР.
Примерная защитная схема (в узле основанного на ИСПТ зонда), которая позволяет наращивать заряд в исследуемом образце во время события ЭСР, одновременно перенося заряд на сток, исток и подложку ИСПТ, показана на фиг. 1 транзистора.
Как показано на фиг. 1, в примерной защитной схеме (которая подобна схеме, раскрытой во включенном в описание патенте N 4.589.970) использованы импульсные симметричные стабилитроны 101-103, соединенные с исследуемой жидкостью 199 и проводниками истока (151), стока (152) и подложки (153) ИСПТ 150. Электрический контакт с исследуемой жидкостью 199 достигается при использовании электрода пересчетного устройства (185), который, как показано выше, может быть сделан в соответствии с технологией патента США под номером 4.851.104, включенного здесь выше путем ссылки.
Работу представленной на фиг. 1 примерной защитной схемы можно кратко изложить следующим образом. В случае появления ЭСР можно ожидать, что заряд будет нарастать в исследуемом образце 199 до достижения напряжения туннельного пробоя р-п-перехода.
Полагая, что значение напряжения симметричного стабилитрона существенно меньше, чем напряжение, требуемое для повреждения прибора, как только это напряжение превышается, в любом направлении заряд будет проводиться между электродом 185 пересчетного устройства и истоком, стоком и подложкой ИСПТ, изображенными на фиг. 1. Поскольку дифференциальное напряжение изолятора ограничено напряжением туннельного пробоя р-п-перехода, изолятор и сам ИСПТ-датчик защищены.
Специалистам в данной области техники понятно, что важно расстояние соединения между точкой соприкосновения с жидкостью через стабилитроны 101-103 до проводников истока, стока и подложки. Поскольку продолжительность события ЭСР составляет порядка 30 нс, при скорости, приблизительно соответствующей скорости света, равной 1 футу (0,305 м) за 1 нс, путь между электродом 185 пересчетного устройства и кремниевыми клеммами должна ограничиваться расстоянием порядка 2,4 дюйма (6,1 • 10-2м). Если это приблизительное расстояние превышено, что для переноса заряда между электродами пересчетного устройства и кремния имеется недостаточно времени, чтобы ограничить поле изолятора 200 В.
Это требование к расстоянию предотвращает возможность размещения стабилитронов снаружи от электрода и служит весьма убедительным фактором в пользу осуществления интеграции либо на кремниевом кристалле, либо в непосредственной близости от него.
Как было показано выше, в патенте США N 4.589.970 Лигтенберга и др. (включенном здесь прежде путем ссылки) описано использование схемы, подобной изображенной на фиг. 1. Включенный здесь патент N 4.589.970 устанавливает также, что вместо симметричных стабилитронов или параллельно с ними можно использовать однонаправленные стабилитроны, конденсаторы, механические переключатели и МОП-транзисторы с высоким пороговым напряжением.
Кроме того, как было показано выше, введенным здесь патентом N 4.589.970 предлагалось также использование дискретных элементов, размещенных в корпусе зонда для образования защитной схемы и (или) объединение схемы на кремниевой подложке ИСПТ.
Как отмечалось в предпосылках создания изобретения, важной проблемой, касающейся объединения описанной во введенном здесь в качестве ссылки патенте N 4.589.970 защитной схемы (и любых подобных схем) на кремниевой подложке ИСПТ, является сложность в создании металлического электрода, который обеспечивает надежный низкоимпедансный контакт с жидкостью.
Во введенном здесь в качестве ссылки патенте N 4.589.970 предлагается использовать алюминиевые или поликремниевые пленки для образования контакта: однако, как отмечалось выше, обе пленки подвержены химическому воздействию во многих из подлежащих измерению с помощью ИСПТ жидкостях.
Альтернативой осаждения пленки, состоящей из благородного металла, предназначенной для контакта, и соответствующих требований в отношении промежуточного слоя, является использование для него таких материалов, как титан или хром, с целью обеспечения хорошего сцепления с подложкой и т.д. (как описывалось выше, наряду с другими проблемами, связанными с использованием контакта из благородных металлов), облегчает задачу отклонения использования в качестве альтернативы благородных металлов.
Вместо этого, в соответствии с одним аспектом изобретения, для обеспечения сопряжения между исследуемой жидкостью и защитной схемой используют средство сопряжения (предпочтительно конденсаторную структуру), сделанное из обычных схемных элементов.
Рассмотрим фиг. 2, которая, как отмечалось выше, изображает защитную схему, включающую в себя предлагаемое изобретением средство сопряжения, объединенное с большинством схемных элементов, подобных описанным со ссылкой на фиг. 1. Оно включает в себя стабилитроны с двухсторонним ограничением 201 и 202, показанные соответственно между средством сопряжения 203 (показанным в виде предпочтительно конденсатора сопряжения, который называется далее сопрягающим конденсатором 203), и истоком 204 и стоком 205; а также однонаправленный стабилитрон 206, показанный расположенным между сопрягающим конденсатором 203 и подложкой (207).
Во время возникновения ЭСР заряд в подлежащей исследованию жидкости (показанной на фиг. 2 позицией 299) накапливается, как описывалось выше в связи с фиг. 1. Сопрягающий конденсатор 203 связывает импульс ЭСР со стабилитронами 201, 202 и 206. Когда напряжения на стабилитронах превысят их напряжения туннельного пробоя р-п-перехода, импульс, в свою очередь, подается на исток, сток и подложку транзистора ИСПТ 250. Поле в области затвора ИСПТ 250 минимизируется.
Основным преимуществом использования конденсатора для обеспечения сопряжения между жидкостью и защитной схемой является то, что отсутствует контактирующий с жидкостью металлический электрод.
Устраняется проблема выбора подходящего контактного металла или комбинации металлов. Другое преимущество использования конденсатора заключается в том, что пути токов утечки постоянного тока, которые могут существовать между жидкостью и истоком, стоком и подложкой ИСПТ через защитную схему, по существу, сокращены.
Обратимся теперь к фиг. 3, на которой показана структура примерного сопрягающего конденсатора (конденсатор 300), который в соответствии с одним аспектом изобретения объединен на кремниевой подложке 340 с другими элементами защиты от ЭСР, показанным на фиг. 2.
В соответствии с предпочтительным вариантом осуществления изобретения, нижний электрод конденсатора 300 (то есть электрод 301) состоит из металлической пленки, осажденной методом распыления. На фиг. 3 металлическая пленка показана подсоединенной к другим схемным элементам на кристалле через межслойный переход, открытый в защитном слое оксида (слой 302), и другие осажденные пленки (слой/слои/303), используемые в качестве химических барьеров. Через химическое окисление или анодирование металлической пленки можно образовать слой оксидной пленки (304) для использования ее в качестве диэлектрика конденсатора. В соответствии с предпочтительным вариантом осуществления изобретения исследуемая жидкость 399 находится в контакте в диэлектриком конденсатора.
Рассмотрим теперь фиг. 4, на которой показан способ выполнения на кремниевой подложке 400 соответствующей изобретению структуры ИСПТ и защитной схемы.
На фиг. 4 изображены две борные диффузионные области p+ - типа 401 и 402, служащие в качестве истока и стока, соответственно изображенного ИСПТ. Области 401 и 402, кроме того, служат в качестве анодов для защитных стабилитронов, показанных на фиг. 2. Другие две борные диффузионные области p+ -типа, иллюстрируемые на фиг. 4 (области 403 и 404), служат в качестве анодов и для симметричного и для однонаправленного стабилитронов, которые изображены на фиг. 2.
Катод или фоновая область для стабилитронов обеспечены с помощью фосфорных диффузионных областей п-типа 405 и 406. Выбор поверхностной концентрации лигирующей примести и глубины залегания области п-типа определяет напряжение туннельного пробоя р-п-перехода. Клеммы для истока, стока и подложки транзистора ИСПТ обеспечены на задней стороне подложки.
Специалистам в данной области техники теперь легко понять (со ссылками на фиг. 2 - 4), что в соответствии с одним конкретным аспектом изобретения, устройство, предназначенное для избирательного измерения ионов в жидкости, включает в себя: (a) измерительную схему, включающую в себя химически чувствительный к ионам датчик в форме ионно-селективного полевого транзистора (ИСПТ), образованного на кремниевой подложке (где ИСПТ можно образовать так, как показано на фиг. 4); (b) защитную схему от электростатического разряда (ЭСР) (такого типа, как было описано в связи с фиг. 2), интегрированную на подложке (так же, как показано в качестве примера на фиг. 4); и (c) средство сопряжения, объединенное на подложке, предназначенное для обеспечения сопряжения между защитной схемой и жидкостью, отличающееся тем, что средство сопряжения обеспечивает контакт с жидкостью, не открывая пути для токов утечки постоянного тока между ИСПТ и жидкостью.
На фиг. 3 - 4 можно также видеть, что в соответствии с предпочтительным вариантом осуществления изобретение предполагает процесс, предназначенный для изготовления: (a) конденсатора, служащего в качестве устройства сопряжения между измеряемой жидкостью (типа показанной на фиг. 3 жидкости 309), и (b) защитной схемы, включенной на кристалле ионночувствительного полевого транзистора (ИСПТ) (типа кристалла, показанного на фиг. 4), где микросхема ИСПТ используется для измерения ионов в жидкости, к, кроме того, где микросхема включает в себя кремниевую подложку (показанную, например, в виде подложки 340 на фиг. 3), защитный оксидный слой (302 на фиг. 3) и по меньшей мере один химический барьерный слой (303 на фиг. 3), и диффузионную область p+ - типа (305 на фиг. 3), предназначенную для подсоединения конденсатора к защитной схеме; содержащий в себе этапы: (a) открытия межслойного перехода в защитном слое оксида и по меньшей мере в одном химическом барьерном слое ; (b) осаждения методом распыления металлической пленки на кристалле с целью создания нижнего электрода для конденсатора; (c) соединения пленки с диффузионной областью p+ -типа через межслойный переход; и (d) формирования окиси металлической пленки, служащей в качестве диэлектрика для конденсатора. Все вышеупомянутые этапы были описаны выше в связи с фиг. 3.
Выше были подробно описаны способы, устройство и технология изготовления микросхемы, которые позволяют решить все вышепоставленные задачи. Как показано выше, специалистам в данной области техники должно быть ясно, что приведенное выше описание представлено только для иллюстрации и описания. Оно не предназначено в качестве исчерпывающего описания или ограничения изобретения точно раскрытой формой, и очевидно, что в свете вышеизложенного положения возможно множество модификаций и вариантов.
Приведенные здесь варианты осуществления и примеры были представлены для лучшего понимания принципов настоящего изобретения и его практических применений, обеспечивая тем самым возможность другим специалистам в данной области техники лучше использовать настоящее изобретение в различных вариантах осуществления и с различными модификациями для конкретного рассматриваемого использования.
Следовательно, в свете вышеизложенного должно быть понятно, что прилагаемая формула изобретения предназначена для того, чтобы перекрыть все такие модификации и варианты, которые находятся в пределах истинных объема и сущности притязаний изобретения.

Claims (19)

1. Устройство для избирательного измерения ионов в жидкости, содержащее а) измерительную схему, включающую химически чувствительный к ионам датчик в форме ионно-селективного полевого транзистора (ИСПТ), сформированного на кремниевой подложке, в) схему защиты от электростатического разряда (ЭСР), объединенную на упомянутой подложке, и с) средство сопряжения, объединенное на упомянутой подложке, выполненное с возможностью сопряжения между упомянутой схемой защиты и упомянутой жидкостью, отличающееся тем, что упомянутое средство сопряжения обеспечивает контакт с упомянутой жидкостью, не открывая путей для токов утечки постоянного тока между ИСПТ и упомянутой жидкостью.
2. Устройство по п.1, отличающееся тем, что упомянутое средство сопряжения дополнительно содержит в себе структуру конденсатора.
3. Устройство по п.2, отличающееся тем, что упомянутая структура конденсатора дополнительно содержит а) электрод, находящийся в электрическом контакте с упомянутой защитной схемой, и в) диэлектрик конденсатора, находящийся в контакте с упомянутым электродом и измеряемой жидкостью.
4. Устройство по п.3, отличающееся тем, что упомянутый электрод представляет собой металлическую пленку.
5. Устройство по п.3, отличающееся тем, что упомянутый диэлектрик конденсатора представляет собой окись упомянутой металлической пленки.
6. Устройство по п.1, отличающееся тем, что упомянутая схема защиты дополнительно содержит первый симметричный стабилитрон, расположенный между упомянутым средством сопряжения и истоком упомянутого ИСПТ, второй симметричный стабилитрон, расположенный между упомянутым средством сопряжения и стоком упомянутого ИСПТ, и однонаправленный стабилитрон, расположенный между упомянутым средством сопряжения и упомянутой подложкой.
7. Устройство по п.6, отличающееся тем, что упомянутое средство сопряжения дополнительно содержит в себе структуру конденсатора.
8. Устройство для защиты от электростатического разряда (ЭСР) для основанного на ионно-селективном полевом транзисторе (ИСПТ) измерительного прибора, используемого для измерения ионного коэффициента активности в жидкости, содержащее а) схему защиты от ЭСР, изготовленную на кремниевой подложке, включающую а1) первый симметричный стабилитрон, подсоединенный к истоку упомянутого ИСПТ, а2) второй симметричный стабилитрон, подсоединенный к стоку упомянутого ИСПТ, и а3) однонаправленный стабилитрон, подсоединенный к упомянутой подложке, и в) средство сопряжения, объединенное на упомянутой подложке вместе с упомянутой схемой защиты от ЭСР, предназначенное для обеспечения сопряжения между упомянутой схемой защиты и упомянутой жидкостью, не открывая путей для токов утечки постоянного тока между ИСПТ и упомянутой жидкостью.
9. Устройство по п.8, отличающееся тем, что упомянутое средство сопряжения соединено последовательно с каждым из упомянутого первого симметричного стабилитрона, упомянутого второго симметричного стабилитрона и упомянутого однонаправленного стабилитрона.
10. Устройство, предназначенное для обеспечения защиты от электростатического разряда (ЭСР) для основанной на ионно-селективном полевом транзисторе (ИСПТ) микросхемы датчика, используемой для измерения ионного коэффициента активности в исследуемом образце жидкости, содержащее а) средство, предназначенное для переноса заряда, накопленного в упомянутом исследуемом образце жидкости в результате события ЭСР, в исток, сток и подложку упомянутого ИСПТ, и в) средство сопряжения, объединенное в упомянутой микросхеме вместе с упомянутым средством, предназначенным для переноса заряда, для обеспечения сопряжения между упомянутой схемой защиты и упомянутой жидкостью, не открывая путей для токов утечки постоянного тока между ИСПТ и упомянутой жидкостью.
11. Устройство по п.10, отличающееся тем, что упомянутое средство сопряжения дополнительно содержит в себе структуру конденсатора.
12. Способ обеспечения защиты от электростатического разряда (ЭСР) для основанных на ионно-селективном полевом транзисторе (ИСПТ) избирающих ионы электродов, содержащий в себе этапы: а) формируют схему ИСПТ на кремниевом кристалле, в) объединяют схему защиты на упомянутом кристалле, на котором сформирован упомянутый ИСПТ, и с) объединяют на упомянутом кристалле устройство сопряжения между упомянутой схемой защиты и упомянутой жидкостью, отличающийся тем, что упомянутое устройство сопряжения обеспечивает контакт с упомянутой жидкостью, не открывая путей для токов утечки постоянного тока между ИСПТ и упомянутой жидкостью.
13. Способ по п.12, отличающийся тем, что устройство сопряжения, объединенное на упомянутом кристалле, представляет собой структуру конденсатора.
14. Способ изготовления конденсатора, служащего в качестве устройства сопряжения между измеряемой жидкостью и защитной схемой, включенной в микросхему ионно-селективного полевого транзистора (ИСПТ), отличающийся тем, что упомянутая микросхема ИСПТ используется для измерения ионов в упомянутой жидкости, и дополнительно тем, что упомянутая микросхема включает в себя кремниевую подложку, защитный слой оксида и по меньшей мере один химический барьерный слой и диффузионную область p+ - типа, предназначенную для подсоединения упомянутого конденсатора к упомянутой схеме защиты, содержащий этапы: а) осуществляют открывание межслойного перехода в упомянутом защитном слое оксида и упомянутом по меньшей мере одном химическом барьерном слое, в) осаждают методом распыления металлической пленки на упомянутом кристалле для создания нижнего электрода для упомянутого конденсатора, с) подсоединяют упомянутую пленку к упомянутой диффузионной области p+ - типа через упомянутый межслойный переход, и d) формируют окись упомянутой металлической пленки, служащей в качестве диэлектрика для упомянутого конденсатора.
15. Способ по п.14, отличающийся тем, что упомянутый этап формирования окиси осуществляют путем химического окисления упомянутой металлической пленки.
16. Способ по п.14, дополнительно отличающийся тем, что упомянутый этап формирования окиси осуществляют путем анодирования упомянутой металлической пленки.
17. Способ для обеспечения защиты от электростатического разряда (ЭСР) для основанной на ионно-селективном транзисторе (ИСПТ) микросхеме датчика, используемого для измерения ионного коэффициента активности в исследуемом образце жидкости, содержащий в себе этапы: а) осуществляют накопление заряда в упомянутом исследуемом образце во время протекания ЭСР, и в) переносят накопленный в упомянутом исследуемом образце жидкости заряд, в результате упомянутого явления ЭСР, одновременно в исток, сток и подложку упомянутого ИСПТ.
18. Устройство для обеспечения защиты от электростатического разряда (ЭСР), основанной на ионно-селективном полевом транзисторе (ИСПТ) микросхемы датчика, используемого для измерения ионного коэффициента активности в исследуемом образце жидкости, содержащее а) средство, предназначенное для накапливания заряда в упомянутом исследуемом образце во время явления ЭСР, и в) средство, предназначенное для переноса заряда, накопленного в упомянутом исследуемом образце жидкости в результате упомянутого явления ЭСР, в исток, сток и подложку упомянутого ИСПТ.
19. Устройство по п. 18, отличающееся тем, что упомянутое средство, предназначенное для накапливания заряда, и упомянутое средство, предназначенное для переноса заряда, объединены в упомянутой микросхеме.
RU96115918A 1994-01-19 1995-01-12 Защита от электростатического разряда датчиков на ионно-селективных полевых транзисторах RU2134877C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US183733 1994-01-19
US08/183,733 US5414284A (en) 1994-01-19 1994-01-19 ESD Protection of ISFET sensors
PCT/US1995/000426 WO1995020243A1 (en) 1994-01-19 1995-01-12 Electrostatic discharge protection of isfet sensors

Publications (2)

Publication Number Publication Date
RU96115918A RU96115918A (ru) 1998-11-27
RU2134877C1 true RU2134877C1 (ru) 1999-08-20

Family

ID=22674080

Family Applications (1)

Application Number Title Priority Date Filing Date
RU96115918A RU2134877C1 (ru) 1994-01-19 1995-01-12 Защита от электростатического разряда датчиков на ионно-селективных полевых транзисторах

Country Status (10)

Country Link
US (2) US5414284A (ru)
EP (1) EP0749632B1 (ru)
JP (1) JP3701308B2 (ru)
KR (1) KR100358534B1 (ru)
CN (1) CN1120985C (ru)
AU (1) AU1602195A (ru)
CA (1) CA2181591C (ru)
DE (1) DE69535202T2 (ru)
RU (1) RU2134877C1 (ru)
WO (1) WO1995020243A1 (ru)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869869A (en) * 1996-01-31 1999-02-09 Lsi Logic Corporation Microelectronic device with thin film electrostatic discharge protection structure
US5747839A (en) * 1996-09-30 1998-05-05 Motorola, Inc. Chemical sensing trench field effect transistor
US5833824A (en) * 1996-11-15 1998-11-10 Rosemount Analytical Inc. Dorsal substrate guarded ISFET sensor
US5811868A (en) * 1996-12-20 1998-09-22 International Business Machines Corp. Integrated high-performance decoupling capacitor
US5944970A (en) * 1997-04-29 1999-08-31 Honeywell Inc. Solid state electrochemical sensors
US5892252A (en) * 1998-02-05 1999-04-06 Motorola, Inc. Chemical sensing trench field effect transistor and method for same
WO1999063596A1 (de) * 1998-06-04 1999-12-09 GFD-Gesellschaft für Diamantprodukte mbH Diamantbauelement mit rückseitenkontaktierung und verfahren zu seiner herstellung
US6300148B1 (en) * 1998-10-05 2001-10-09 Advanced Micro Devices Semiconductor structure with a backside protective layer and backside probes and a method for constructing the structure
US6387724B1 (en) 1999-02-26 2002-05-14 Dynamics Research Corporation Method of fabricating silicon-on-insulator sensor having silicon oxide sensing surface
TW434704B (en) * 1999-06-11 2001-05-16 Univ Nat Yunlin Sci & Tech Device of amorphous WO3 ion sensitive field effect transistor (ISFET) and method for making the same
JP2000356619A (ja) * 1999-06-14 2000-12-26 Sumitomo Metal Ind Ltd pHセンサおよびそれを使用したpH測定方法
US6218208B1 (en) 1999-07-02 2001-04-17 National Science Council Fabrication of a multi-structure ion sensitive field effect transistor with a pH sensing layer of a tin oxide thin film
US6538300B1 (en) 2000-09-14 2003-03-25 Vishay Intertechnology, Inc. Precision high-frequency capacitor formed on semiconductor substrate
US7151036B1 (en) * 2002-07-29 2006-12-19 Vishay-Siliconix Precision high-frequency capacitor formed on semiconductor substrate
TW468233B (en) 2000-09-16 2001-12-11 Univ Nat Yunlin Sci & Tech Apparatus and measurement method of hysteresis and time shift for ISFET containing amorphous silicon hydride sensing membrane
KR20030075437A (ko) * 2002-03-19 2003-09-26 (주)티오스 감이온 전계효과 트랜지스터-미터의 정전기로 인한 손상방지를 위한 감이온 전계효과 트랜지스터-프로브 제작 및측정기 본체의 회로 설계 기술
TW544752B (en) 2002-05-20 2003-08-01 Univ Nat Yunlin Sci & Tech Method for producing SnO2 gate ion sensitive field effect transistor (ISFET), and method and device for measuring the temperature parameters, drift and hysteresis values thereof
US20040104454A1 (en) * 2002-10-10 2004-06-03 Rohm Co., Ltd. Semiconductor device and method of producing the same
DE10260961A1 (de) * 2002-12-20 2004-07-01 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Halbleitersensor mit frontseitiger Kontaktierung
US7337898B2 (en) * 2003-09-30 2008-03-04 Fred Lewter Golf bag
AU2005208303A1 (en) * 2004-01-21 2005-08-11 Rosemount Analytical Inc. Ion sensitive field effect transistor (ISFET) sensor with improved gate configuration
JP4065855B2 (ja) * 2004-01-21 2008-03-26 株式会社日立製作所 生体および化学試料検査装置
TWI241020B (en) * 2004-03-31 2005-10-01 Univ Nat Yunlin Sci & Tech Method of manufacturing TiO2 sensing film, ISFET having TiO2 sensing film, and methods and apparatus for measuring the temperature parameter, drift, and hysteresis thereof
US20050225916A1 (en) * 2004-04-02 2005-10-13 Siemens Medical Solutions Usa, Inc. Ultrasound membrane transducer collapse protection system and method
ITTO20040386A1 (it) * 2004-06-09 2004-09-09 Infm Istituto Naz Per La Fisi Dispositivo ad effetto di campo per la rilevazione di piccole quantita' di carica elettrica, come quelle generate in processi biomolecolari, immobilizzate nelle vicinanze della superficie.
GB2416210B (en) * 2004-07-13 2008-02-20 Christofer Toumazou Ion sensitive field effect transistors
CN100446417C (zh) * 2004-12-23 2008-12-24 中国科学院电子学研究所 基于双模式的集成isfet传感器信号差分读出电路
US20060174683A1 (en) * 2005-02-07 2006-08-10 Ulrich Bonne Functionalized field effect transistor sensor with self checking
TWI244702B (en) * 2005-04-04 2005-12-01 Univ Nat Yunlin Sci & Tech Titanium oxide thin film for extended gate field effect transistor using reactive sputtering
EP1729121A1 (de) * 2005-05-30 2006-12-06 Mettler-Toledo AG Elektrochemischer Sensor
CN101101272B (zh) * 2006-07-07 2010-10-13 中国科学院电子学研究所 一种生化微传感集成芯片、制作及模具制备方法
DE102006052863B4 (de) 2006-11-09 2018-03-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schutzstruktur für Halbleitersensoren und deren Verwendung
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
ES2923759T3 (es) 2006-12-14 2022-09-30 Life Technologies Corp Aparato para medir analitos utilizando matrices de FET
US8017982B2 (en) * 2007-06-12 2011-09-13 Micron Technology, Inc. Imagers with contact plugs extending through the substrates thereof and imager fabrication methods
EP2982437B1 (en) 2008-06-25 2017-12-06 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale fet arrays
US8207894B2 (en) * 2008-09-11 2012-06-26 Google Inc. Multilayer compact antenna
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
EP2320222A1 (en) * 2009-11-04 2011-05-11 Nxp B.V. Electrostatic discharge (ESD) protection for biosensors
TWI400009B (zh) * 2010-04-12 2013-06-21 Ili Technology Corp Electrostatic discharge protection module
CN106449632B (zh) 2010-06-30 2019-09-20 生命科技公司 阵列列积分器
TWI569025B (zh) 2010-06-30 2017-02-01 生命技術公司 用於測試離子感測場效電晶體(isfet)陣列之裝置及方法
US8858782B2 (en) 2010-06-30 2014-10-14 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
CN103168341B (zh) 2010-07-03 2016-10-05 生命科技公司 具有轻度掺杂的排出装置的化学敏感的传感器
EP2617061B1 (en) 2010-09-15 2021-06-30 Life Technologies Corporation Methods and apparatus for measuring analytes
US8796036B2 (en) 2010-09-24 2014-08-05 Life Technologies Corporation Method and system for delta double sampling
GB2484339B (en) 2010-10-08 2016-12-21 Dnae Group Holdings Ltd Electrostatic discharge protection
JP5749566B2 (ja) * 2011-05-20 2015-07-15 株式会社堀場製作所 Isfetセンサ
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8871549B2 (en) * 2013-02-14 2014-10-28 International Business Machines Corporation Biological and chemical sensors
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
WO2014149779A1 (en) 2013-03-15 2014-09-25 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
WO2014149780A1 (en) 2013-03-15 2014-09-25 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
CN105283758B (zh) 2013-03-15 2018-06-05 生命科技公司 具有一致传感器表面区域的化学传感器
US20140336063A1 (en) 2013-05-09 2014-11-13 Life Technologies Corporation Windowed Sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US9978689B2 (en) 2013-12-18 2018-05-22 Nxp Usa, Inc. Ion sensitive field effect transistors with protection diodes and methods of their fabrication
US9442090B2 (en) 2014-03-27 2016-09-13 Honeywell International Inc. Magnetic stimulus of ISFET-based sensor to enable trimming and self-compensation of sensor measurement errors
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
EP3234575B1 (en) 2014-12-18 2023-01-25 Life Technologies Corporation Apparatus for measuring analytes using large scale fet arrays
CN107250784B (zh) 2014-12-18 2020-10-23 生命科技公司 具有发送器配置的高数据率集成电路
EP3206027B1 (en) 2016-02-11 2019-09-11 Sensirion AG Sensor chip comprising electrostatic discharge protection element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020830A (en) * 1975-03-12 1977-05-03 The University Of Utah Selective chemical sensitive FET transducers
US4397714A (en) * 1980-06-16 1983-08-09 University Of Utah System for measuring the concentration of chemical substances
JPS57159055A (en) * 1981-03-25 1982-10-01 Toshiba Corp Manufacture of semiconductor device
NL8302963A (nl) * 1983-08-24 1985-03-18 Cordis Europ Inrichting voor het selectief meten van ionen in een vloeistof.
US4505799A (en) * 1983-12-08 1985-03-19 General Signal Corporation ISFET sensor and method of manufacture
GB8428138D0 (en) * 1984-11-07 1984-12-12 Sibbald A Semiconductor devices
US4851104A (en) * 1987-02-27 1989-07-25 General Signal Corporation Instrument for potentiometric electrochemical measurements
JP2610294B2 (ja) * 1988-03-31 1997-05-14 株式会社東芝 化学センサ
DD275958A1 (de) * 1988-10-03 1990-02-07 Akad Wissenschaften Ddr Chemischer sensor mit elektrostatischem schutz
US4898839A (en) * 1988-11-15 1990-02-06 Sanyo Electric Co., Ltd. Semiconductor integrated circuit and manufacturing method therefor
US5025298A (en) * 1989-08-22 1991-06-18 Motorola, Inc. Semiconductor structure with closely coupled substrate temperature sense element
US5130760A (en) * 1991-06-11 1992-07-14 Honeywell Inc. Bidirectional surge suppressor Zener diode circuit with guard rings
FR2683947B1 (fr) * 1991-11-18 1994-02-18 Sgs Thomson Microelectronics Sa Diode de protection monolithique basse tension a faible capacite.
DE4232532A1 (de) * 1992-09-29 1994-04-28 Ct Fuer Intelligente Sensorik Anordnung und Verfahren zur Erhöhung der Zuverlässigkeit von ionensensitiven Feldeffekttransistoren

Also Published As

Publication number Publication date
EP0749632A1 (en) 1996-12-27
US5407854A (en) 1995-04-18
JPH09508207A (ja) 1997-08-19
DE69535202D1 (de) 2006-10-12
CA2181591A1 (en) 1995-07-27
KR100358534B1 (ko) 2003-01-25
US5414284A (en) 1995-05-09
JP3701308B2 (ja) 2005-09-28
AU1602195A (en) 1995-08-08
EP0749632A4 (en) 1999-11-24
CN1143428A (zh) 1997-02-19
EP0749632B1 (en) 2006-08-30
CN1120985C (zh) 2003-09-10
DE69535202T2 (de) 2007-07-19
CA2181591C (en) 2008-04-29
WO1995020243A1 (en) 1995-07-27

Similar Documents

Publication Publication Date Title
RU2134877C1 (ru) Защита от электростатического разряда датчиков на ионно-селективных полевых транзисторах
US9964516B2 (en) Methods and apparatus for an ISFET
RU96115918A (ru) Защита от электростатического разряда датчиков на ионно-селективных полевых транзисторах
US4636827A (en) Semiconductor device responsive to ions
DE4333875C2 (de) Halbleiter-Gassensor auf der Basis eines Kapazitiv Gesteuerten Feldeffekttransistors (Capacitive Controlled Field Effect Transistor, CCFET)
US5097302A (en) Semiconductor device having current detection capability
DE4232532A1 (de) Anordnung und Verfahren zur Erhöhung der Zuverlässigkeit von ionensensitiven Feldeffekttransistoren
US20110074459A1 (en) Structure and method for semiconductor testing
US5619050A (en) Semiconductor acceleration sensor with beam structure
US12087708B2 (en) Chip protected against back-face attacks
US5846848A (en) Polysilicon electromigration sensor which can detect and monitor electromigration in composite metal lines on integrated circuit structures with improved sensitivity
WO1996015553A1 (en) Transistor structure with specific gate and pad areas
EP0215493B1 (en) Protected mos transistor circuit
US5394101A (en) Method for detecting mobile ions in a semiconductor device
EP0814508B1 (en) Semiconductor device having element with high breakdown voltage
US4513304A (en) Semiconductor memory device and process for producing the same
KR910000229B1 (ko) 보호장치를 구비하고 있는 반도체집적회로와 그 제조방법
JP3897339B2 (ja) Soiデバイスのプラズマ・チャージング損傷を最小化する構造および方法
KR940008730B1 (ko) 반도체장치
US5712492A (en) Transistor for checking radiation-hardened transistor
Baldi et al. Electrostatic discharge sensitivity tests for ISFET sensors
US4987464A (en) Encapsulated FET semiconductor device with large W/L ratio
KR100575861B1 (ko) 반도체 소자의 정전기 방지 구조
JPH02105470A (ja) 電界効果トランジスタ
RU2029393C1 (ru) Динамическая ячейка памяти

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110113