RU2014114C1 - Катализатор для получения окиси этилена - Google Patents
Катализатор для получения окиси этилена Download PDFInfo
- Publication number
- RU2014114C1 RU2014114C1 SU925010577A SU5010577A RU2014114C1 RU 2014114 C1 RU2014114 C1 RU 2014114C1 SU 925010577 A SU925010577 A SU 925010577A SU 5010577 A SU5010577 A SU 5010577A RU 2014114 C1 RU2014114 C1 RU 2014114C1
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- carrier
- alumina
- mass
- oxide
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/03—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
- C07D301/04—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
- C07D301/08—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
- C07D301/10—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/688—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/066—Zirconium or hafnium; Oxides or hydroxides thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Epoxy Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Использование: нефтехимия. Катализатор содержит 1 - 25 мас.% серебра, 10 - 3000 ч. /млн, щелочного металла, 0,1 - 10 ммоль/грения и остальное - носитель. Носитель содержит α - оксид алюминия, БФ альфа - Al2O3 предпочтительно в количестве свыше 90 мас.% и дополнительно 0,05 - 6 мас.% оксида щелочноземельного металла, предпочтительно 0,05 - 5 мас.%, 0,01 - 5 мас.% диоксида кремния БФ SiO , предпочтительно 0,05 - 3 и 0 - 10 мас.% диоксида циркония, предпочтительно 0,5 - 2 мас.%. Носитель имеет объем пор по воде , предпочтительно 0.3-0.5 см3/г , и удельную поверхность 0.15-3 м2/г , предпочтительно 0.3-2.0 м2/г. В качестве щелочноземельного металла катализатор содержит металл из группы, состоящей из оксида кальция, оксида магния или их смесей, в количестве 0,05 - 2 мас.%. Катализатор может содержать сопромотор, выбранный из группы, состоящей из серы, молибдена, вольфрама, хрома или их смеси, в количестве 0,1 - 15 мкмоль/г катализатора. 7 з.п.ф-лы, 2 ил.
Description
Изобретение касается катализатора, содержащего серебро, применяемого для производства оксида этилена. Катализатор приготовляют с применением уникального носителя из α-оксид алюминия.
Катализаторы для производства оксида этилена из этилена и молекулярного кислорода обычно содержит серебро, нанесенное на носитель, состоящий по существу из α-оксида алюминия. Такие катализаторы обычно промотируют щелочными металлами. Другими промоторами, которые можно применять, являются, например, рений или его смесь с серой, молибденом, вольфрамом и хромом.
Известна добавка диоксида кремния в носитель из α-оксида алюминия, а также добавка алюмината или силиката бария в носители из оксида алюминия во время их приготовления. Согласно другому источнику, диоксид кремния и соль щелочного металла смешивают с водой и соединением алюминия и прокаливают для получения носителя из α-оксида алюминия, содержащего диоксид кремния и щелочной металл. В носитель из α-оксида алюминия добавляют соединение олова и соединение щелочного металла.
Изобретение касается катализатора для производства оксида этилена, содержащего серебро и в качестве промоторов щелочной металл, рений и возможно сопромоторы с рением, выбранные из группы серы, молибден, вольфрам, хром и их смеси, нанесенные на носитель, состоящий, по крайней мере из 85, предпочтительно, по крайней мере из 90 мас.% α-оксида алюминия, 0,01-6 мас. % (измеренные как оксид) оксида щелочноземельного металла, 0,01-5 мас.% (измеренных как диоксид) оксида кремния и от нуля до 10, предпочтительно 0,1-10 мас.% (в форме диоксида) оксида циркония. Предпочтительно щелочноземельным металлом является кальция и/или магний.
Носитель приготовляют посредством смешения порошкообразной α-оксида алюминия, имеющей чистоту свыше примерно 98%, средний размер частиц 0,5-5 мкм и средний размер кристаллитов от примерно 0,5 до 5 мкм, соединения щелочноземельного металла, соединения кремния и возможно соединения циркония, воды, связующего вещества и/или выгораемого материала для приготовления смеси, которую экструдируют и прокаливают при максимальной температуре свыше примерно 1300οС и предпочтительно в интервале 1350-1500oС.
Катализаторы в соответствии с настоящим изобретением имеют исключительную начальную активность и улучшенную стабильность в течение продолжительного времени. Катализаторы согласно изобретению содержат каталитически активное количество серебра, промотирующее количество щелочного металла, ревия и возможно промотирующее количество сопромотора, выбранного из группы: серы, хром, молибден, вольфрам и их смеси, нанесенные на новый носитель из α-оксида алюминия. Дальше будут подробно описаны носитель, катализатор, приготовленный с носителем, и применение катализатора.
Новый носитель, применяемый для приготовления катализаторов согласно настоящему изобретению, можно получить из порошка высокочистой α-оксида алюминия, соединения для образования оксида щелочноземельного металла, соединения, образующего оксид кремния и обычных связующих выгораемых веществ.
α-оксид алюминия, используемая для приготовления носителя, обычно имеет чистоту свыше примерно 98%, предпочтительно свыше 98,5%, и меньше, чем 0,06 мас. %, например от 0,02 до 0,06% по массе примесей карбоната натрия. Оксид алюминия имеет форму тонкоизмельченного порошка, предпочтительно со средним размером частиц 0,5-100 мкм. Особенно предпочтителен небольшой размер, например, примерно 0,5-5 мкм, а лучше примерно 1-4 мкм. Средний размер можно определить посредством измерения максимального размера некоторого количества и определения их среднего размера. Средний размер кристаллитов, который может составлять 0,1-5 мкм и более предпочтительно 2-4 мкм, определяют путем измерения максимального размера некоторого количества кристаллитов и определения их среднего размера. В прокаленном носителе α-оксид алюминия присутствует в количестве выше примерно 85%, предпочтительно 90%, а лучше всего 95% по массе всего носителя.
Компонент щелочноземельного металла в носителе может присутствовать в количестве 0,01-6 мас. % (измерено как оксид) от массы носителя, но предпочтительно это количество составляет 0,03-5,0% и особенно 0,05-2,0% от общей массы.
Соединения щелочноземельного металла, которые можно применять для приготовления носителей, представляют собой оксиды или соединения, которые разлагаются до оксидов или образуют оксиды после прокаливания. Примерами могут быть карбонаты, нитраты и карбоксилаты. Соответствующие соединения включают в себя оксиды щелочноземельных металлов, а также смешанные оксиды, например, щелочноземельных металлов, силикаты, алюминаты, алюмосиликаты, цирконаты и т. п. Предпочтительными соединениями являются нитрат, оксид и силикат кальция (СаSiO2).
Соединениями кремния, применяемыми для приготовления носителей, являются оксиды или соединения, которые разлагаются до оксидов или образуют оксиды после прокаливания. Соответствующие соединения включают в себя диоксид кремния, а также смешанные оксиды, например силикаты щелочноземельного металла, силикаты циркония, алюмосиликаты, включая цеолиты, гидролизуемые соединения кремния, полисилоксаны и т. п. Количество применяемого компонента кремния должно быть такое, чтобы конечный состав носителя содержал 0,01-5,0% , предпочтительно 0,03-4,0%, а лучше 0,05-3,0% от массы (измерено, как диоксид кремния).
Циркониевый компонент, хотя он и является необязательным, присутствует в количестве, которое составляет 0,1-10,0%, предпочтительно 0,3-5,0%, а лучше всего в количестве 0,5-2,0 мас. % от массы носителя. Когда оксид циркония образуется на месте, то следует выбирать такое количество для применения, чтобы получить конечный состав в пределах этих параметров.
Соединениями циркония, которые можно применять для приготовления носителей, являются оксиды или соединения, которые разлагаются или образуют оксиды после прокаливания. Примеры включают в себя карбонаты, нитраты и карбоксилаты. Соответствующие соединения включают в себя нитрат, диоксид циркония, а также смешанные оксиды, например, силикаты, алюмосиликаты циркония, цирконаты и т. п. Предпочтительным соединением является диоксид циркония.
Предпочтительные составы носителей включают соединения, содержащие щелочноземельный металл и кремний в форме простого соединения, силикат щелочноземельного металла, который можно добавлять в качестве исходного компонента, либо его можно получить на месте посредством реакции диоксида кремния или соединений, образующих диоксид кремния, с соединениями, которые разлагаются до оксида щелочноземельного металла при нагреве, причем количество образующегося оксида находится в стехиометрическом эквиваленте или превышает количество диоксида кремния.
Хотя щелочноземельный компонент катализатора, можно выбрать из магния, кальция, стронция и бария, однако предпочтительны кальций и магний, причем более предпочтителен кальций. В последующем описании этого изобретения для упрощения часто будут ссылаться на кальций.
Предпочтительные носители можно приготовить посредством смешения порошкообразного α-оксида алюминия, силиката кальция и диоксида циркония с водой и связующим и/или выгораемым материалом для получения смеси, которую затем экструдируют и прокаливают при температуре в интервале 1350 - 1500oС. Более предпочтительно, порошок α-оксида алюминия смешивают с силикатом кальция, но, как было указано, можно также применять соединение, образующее оксид кальция и диоксид кремния или соединения, образующее диоксид кремния в таких пропорциях, чтобы при нагреве образовывался силикат кальция. Эти компоненты смешивают с диоксидом циркония или соединением, образующим диоксид циркония (когда она присутствует), связующим, выгораемым веществом, и водой, из смеси формуют формы и прокаливают.
Выгораемое вещество представляет собой материал, который добавляют в смесь, таким образом после прокаливания оно полностью удаляется из носителя, оставляя в носителе контролируемую пористость. Этими материалами являются углеродистые материалы, например кокс, порошкообразный углерод, графит, порошкообразный пластик, например, полиэтилен, полистирол и поликарбонат, смола, целлюлоза и материалы на основе целлюлозы, древесные опилки и другие растительные материалы, например, скорлупа от земляных орехов, американских орехов, орехов кешу, грецких орехов и фундука. Выгораемые вещества на основе углерода можно также применять в качестве связующих. Удаляемые вещества присутствуют в таком количестве и при таком распределении размера частиц, чтобы получить готовый носитель, имеющий объем пор по воде в пределах 0,2-0,6, предпочтительно 0,3-0,5 см3/г. Предпочтительными выгораемыми веществами являются материалы на основе целлюлозы, например скорлупа земляных орехов.
Термин "связующее вещество", как он применяется здесь, относится к веществу, которое связывает вместе различные компоненты носителя до прокаливания для получения экструдируемой массы, т. е. так называемый низкотемпературный связующий агент. Связующий агент также упрощает процесс экструдирования, улучшая связывающую способность. Типичные связующие агенты включают в себя гели из оксида алюминия, особенно в комбинации с пептизирующим агентом, например азотная или уксусная кислота. Также можно применять материалы на основе углерода, которые также могут служить в качестве выгораемых веществ, например целлюлоза и замещенная целлюлоза, например метилцеллюлоза, этилцеллюлоза и карбоксиэтилцеллюлоза, стеараты, например сложные эфиры органического стеарата, например метил- или этилстеарат, воск, полиолефиновые оксиды и т. п. Предпочтительными связующими агентами являются оксиды полиолефинов.
Применение силиката кальция, полученного непосредственно или на месте с описанными выше ограничениями, позволяет использовать связи, содержащие в целом более низкое количество диоксида кремния, чем в обычных связях. Также это позволяет исключить чрезмерное количество диоксида кремния, которая обычно содержит вредное количество примесей натрия, железа и/или калия, особенно когда она присутствует в глине, бентоните и т. п. Роль диоксида циркония, когда ее применяют, не совсем понятна, но по-видимому она стабилизирует определенные составы катализатора для частичного окисления. Силикат кальция по-видимому применяют также для стабилизации по крайней мере части диоксида циркония в более активной тетрагональной форме вместо моноклинной формы, в которую переходит смешанная фаза во время нагрева при отсутствии силиката кальция.
При указании на оксид (оксиды) щелочноземельного металла (металлы), кремний или цирконий, которые присутствуют в обработанном носителе и/или катализаторе, то имеется в виду, что оксид может быть оксидом только одного металла либо может быть сложным оксидом указанного металла и одного или нескольких других металлов, а также оксид алюминия и/или активаторы катализатора, например щелочные металлы.
После смешения компонентов носителя вместе, например, посредством перетирания, из смешанного материала экструдируют таблетки, например цилиндрики, кольца, трилистники, четырехлистники и т. п. Экструдированный материал сушат для удаления воды, которая может превратиться в пар во время прокаливания и разрушить экструдированные тела. После сушки до низкого содержания воды, например, примерно 2% экструдированный материал прокаливают в условиях, достаточных для удаления выжигаемых и связующих веществ и для расправления частиц α-оксида алюминия в пористую твердую массу. Прокаливание обычно осуществляют в окислительной атмосфере, например в атмосфере кислорода или предпочтительно воздуха, и при максимальной температуре свыше примерно 1300°С и предпочтительно в интервале 1350 - 1500 . Интервал времени при этих максимальных температурах обычно составляет 0,1-10 ч, предпочтительно 0,5-5 ч.
Прокаленные носители и катализаторы имеют объем пор по воде в пределах 0,2-0,6, предпочтительно 0,3-0,5 см3/г, и удельную поверхность в интервале 0,15-3 м2/г, предпочтительно 0,3-2 м2/г.
Носитель предпочтительно имеет низкое содержание карбоната натрия, которое составляет меньше, чем 0,06 мас.%. На практике очень трудно получить свободный от карбоната натрия состав, причем обычно приемлемо содержание карбоната натрия 0,02-0,06 мас.%.
Описанные носители особенно пригодны для приготовления катализаторов, которые имеют высокую начальную избирательность, для производства окиси этилена.
Катализаторы согласно настоящему изобретению содержат каталитически эффективное количество серебра, промотирующее количество щелочного металла, промотирующее количество рения и возможно промотирующее количество сопромотора, выбранного из серебра, хрома, молибдена, вольфрама и их смесей, нанесенных на носитель из α-оксида алюминия. В предпочтительном исполнении в качестве промотора щелочным металлом является калий, рубидий, цезий или их смеси. В особенно предпочтительном исполнении применяют в качестве щелочного металла - цезий. Цезий в комбинации с литием также обеспечивает очень желательные преимущества, и эта комбинация является предпочтительной. Могут присутствовать другие промоторы, например, соактиваторы, выбранные из серы, молибдена, вольфрама, хрома и их смесей. Особенно предпочтительным сопромотором является сульфат. Эти катализаторы и их получение уже описаны.
Количество серебра, присутствующего на катализаторе, обычно составляет 1-25 мас.% предпочтительно 5-20 мас.% от всего катализатора. Количество щелочного металла, присутствующего предпочтительно в качестве промотора на катализаторе, обычно находится между 10 и 3000 мас. ч., предпочтительно 20-2000 мас. ч. , а 50-1500 мас. ч. (основной металл) на миллион по массе всего катализатора. Количество рениевого промотора, предпочтительно присутствующего на катализаторе, обычно находится между 0,1 и 10, лучше всего между 0,2 и 5 (основной металл) на грамм всего катализатора. Рениевый сопромотор, когда его применяют, предпочтительно присутствует на катализаторе в количестве между 0 и 15, лучше между 0,1-15 мкмоль (основной металл) на 1 г всего катализатора.
Способы получения настоящих катализаторов являются известными и описаны. Носитель смешивают с водным раствором сложного соединения серебра, предпочтительно в присутствии солюбилизирующего агента, например, этилендиамина, таким образом носитель пропитывается этим раствором, после этого носитель отделяют от раствора и затем сушат. Пропитанный носитель нагревают до температуры 100-400oС в течение времени, необходимого для разложения сложного соединения серебра и образования тонко распределенного слоя металлического серебра, который связан с поверхностью носителя. Промоторы можно также растворить в растворе, содержащем серебро, для получения требуемого количества, либо их можно нанести отдельно или вместе на носитель посредством стадии пропитки отдельно от стадии пропитки серебром. Предпочтительно серебро и промоторы объединены в одну стадию пропитки.
В промышленном производстве этилен и кислород превращают в оксид этилена в реакторе для производства оксида этилена, который включает в себя большой кожухотрубный теплообменник, содержащий несколько тысяч трубок, заполненных катализатором. Для отвода тепла реакции на стороне кожуха реактора применяют охлаждающую среду. Часто температуру охлаждающей среды используют в качестве показателя активности катализатора, причем более высокие температуры охлаждающей среды соответствуют более низкой активности катализатора.
В реакции этилена с кислородом для получения оксида этилена этилен расходуется по крайней мере в двойном молекулярном количестве, но количество применяемого этилена обычно значительно выше. Таким образом, конверсию обычно определяют в зависимости от количества превращенного кислорода в реакции и следовательно от конверсии кислорода. Эта конверсия кислорода зависит от температуры реакции и является показателем активности катализатора. Например, значение Т40 относится к температуре при 40 моль% конверсии кислорода, подаваемого в реактор, Т - температура в реакторе или более предпочтительно температура охлаждающей среды, которая прямо связана с первым параметром. Обычно температуры выше для более высокой конверсии, и они зависят от применяемого катализатора и условий реакции. Избирательность является показателем эффективности катализатора, и она указывает на количество этилена в исходном сырье, которое превращается в оксид этилена в продукте. Например, избирательность обозначают, как S40, что означает избирательность при 40 мол.% конверсии кислорода.
Условия проведения реакции окисления этилена в присутствии серебряных катализаторов в соответствии с настоящим изобретением в общем включают в себя те, которые описаны в известных технических решениях. Это относится, например, к соответствующим температурам, давлению, времени нахождения, разбавляющим материалам, например азот, диоксид углерода, пар, аргон, метан или другие насыщенные углеводороды, присутствию замедлителей для регулирования каталитического действия, например 1, 2-дихлорэтан, винилхлорид, этилхлорид или хлорированные соединения полифенила, желательно применение операций рецикла или применение последовательных конверсий в различных реакторах для увеличения выхода оксида этилена и любых других особых условий, которые могут быть выбраны в процессах получения оксида этилена. Обычно применяют давление в интервале от атмосферного до 35 бар. Однако никоим образом не исключается более высокое давление. Молекулярный кислород, применяемый в качестве реагента, можно получить из известных источников. Соответствующее исходное кислородсодержащее вещество может состоять по существу из сравнительно чистого кислорода, концентрированного потока кислорода, включающий в себя кислород в большом количестве с меньшим количеством одного или нескольких разбавителей, например азот и аргон или другой кислородсодержащий поток, например воздух. Применение катализаторов, содержащих серебро, в соответствии с настоящим изобретением в реакциях окисления этилена никоим образом не ограничено какими-либо специальными условиями, например, которые известны как эффективные. Только для целей иллюстрации следующая таблица показывает пределы условий, которые часто применяют в современных промышленных реакторах для производства оксида этилена и которые также пригодны для данного способа.
Чистая объемная скорость газа 1500 - 10000
Давление на входе/ кПа 103-276
Исходное сырье на входе/ %
этилен 1-40
кислород 3-12
CO2 2-40
этан 0-3
Аргон и/или метан и/или хлор-
углеводородный замедлитель в качестве
разбавителя азота/
ч/млн. от общего объема 0/3-20
Температура охлаждающей среды/ oC 180-315
Температура катализатора/ oC 180-325
Уровень конверсии кислорода/ % 10-60%
Выход оксида этилена (производи-
тельность)/ фунты оксида этилена
куб.фут. катализатора в час 2-16
Литры газа при стандартной температуре и давлении, пропускаемого над 1 л уплотненного слоя катализатора в час.
Давление на входе/ кПа 103-276
Исходное сырье на входе/ %
этилен 1-40
кислород 3-12
CO2 2-40
этан 0-3
Аргон и/или метан и/или хлор-
углеводородный замедлитель в качестве
разбавителя азота/
ч/млн. от общего объема 0/3-20
Температура охлаждающей среды/ oC 180-315
Температура катализатора/ oC 180-325
Уровень конверсии кислорода/ % 10-60%
Выход оксида этилена (производи-
тельность)/ фунты оксида этилена
куб.фут. катализатора в час 2-16
Литры газа при стандартной температуре и давлении, пропускаемого над 1 л уплотненного слоя катализатора в час.
В предпочтительном применении серебряных катализаторов в соответствии с настоящим изобретением оксид этилена образуется, когда кислородсодержащий газ контактирует с этиленом в присутствии данных катализаторов при температуре в интервале 180-330oС, предпочтительно 200-325oС.
Пример 1. Приготовление носителя.
Носитель А:
Для приготовления носителя применяли порошок α-окиси алюминия (оксид алюминия #10), имеющий свойства, указанные ниже.
Для приготовления носителя применяли порошок α-окиси алюминия (оксид алюминия #10), имеющий свойства, указанные ниже.
Свойства оксида алюминия #10
Средний размер частиц/ мкм 3/0-3/4
Средний размер кристаллитов/ мкм 1/8-2/2
Содержание карбоната натрия/ мас.% 0/02-0/06
Этот порошок применяли для получения состава из следующих керамических компонентов, %:
α-оксид алюминия 98/8
диоксид циркония 1/0
силикат кальция 0/2
Добавляли следующие компоненты в указанных пропорциях от массы этого состава, %:
выгораемые вещества (мука из
скорлупы грецкого ореха) 25/0
борная кислота 0/1
средство для экструдирования
(оксид полиолефина) 5/0
После смешивания в течение 45 с указанных выше компонентов добавляли достаточное количество воды для получения экструдируемой смеси (на практике примерно 30% ), и смешение продолжали еще в течение 4 мин. Затем добавляли 5% (от массы керамических компонентов) вазелина и смешение продолжали еще в течение 3 мин.
Средний размер частиц/ мкм 3/0-3/4
Средний размер кристаллитов/ мкм 1/8-2/2
Содержание карбоната натрия/ мас.% 0/02-0/06
Этот порошок применяли для получения состава из следующих керамических компонентов, %:
α-оксид алюминия 98/8
диоксид циркония 1/0
силикат кальция 0/2
Добавляли следующие компоненты в указанных пропорциях от массы этого состава, %:
выгораемые вещества (мука из
скорлупы грецкого ореха) 25/0
борная кислота 0/1
средство для экструдирования
(оксид полиолефина) 5/0
После смешивания в течение 45 с указанных выше компонентов добавляли достаточное количество воды для получения экструдируемой смеси (на практике примерно 30% ), и смешение продолжали еще в течение 4 мин. Затем добавляли 5% (от массы керамических компонентов) вазелина и смешение продолжали еще в течение 3 мин.
Из этого материала экструдировали полые цилиндры размером "5/16 х 5/16" (7,9 мм х 7,9 мм) и сушили до содержания меньше, чем 2% влаги. Затем их прокаливали в туннельной печи до максимальной температуры 1390oС в течение примерно 4 ч.
После такой обработки носитель имел следующие характеристики:
Поглощение воды/ % 40/8
Сопротивление измельчению/ кг 8/5
Удельная поверхность/ м2/г 0/54
Общий объем пор (Hg)/ см3/г 0/43
Средний диаметр пор/ мкм 4/6
Выщелачиваемые компоненты (в 10%-ной азотной кислоте), ч/млн:
Na 141
K 55
Ca 802
Al 573
SiO2 1600
Подобным образом были приготовлены описанным способом дополнительные носители, но применяли различные исходные материалы. Свойства различных исходных оксидов алюминия показаны в табл. 1.
Поглощение воды/ % 40/8
Сопротивление измельчению/ кг 8/5
Удельная поверхность/ м2/г 0/54
Общий объем пор (Hg)/ см3/г 0/43
Средний диаметр пор/ мкм 4/6
Выщелачиваемые компоненты (в 10%-ной азотной кислоте), ч/млн:
Na 141
K 55
Ca 802
Al 573
SiO2 1600
Подобным образом были приготовлены описанным способом дополнительные носители, но применяли различные исходные материалы. Свойства различных исходных оксидов алюминия показаны в табл. 1.
Таблица 1
Объем пор по воде, удельная поверхность и температура прокаливания указаны в табл. 2, а другие исходные материалы и их содержание указаны в табл. 3.
Объем пор по воде, удельная поверхность и температура прокаливания указаны в табл. 2, а другие исходные материалы и их содержание указаны в табл. 3.
Приготовили носитель для сравнения, содержащий оксид алюминия, способом, описанным для носителя А, за исключением того, что не добавляли диоксид циркония или силикат кальция. Этот сравнительный носитель обозначен как Срав. - А. Его свойства указаны в табл. 2.
Таблица 2.
Таблица 3.
Получение катализатора.
Описанный выше носитель А является предпочтительным, и его применяли для приготовления катализатора для производства окиси этилена. В смеси воды и этилендиамина растворяли оксалат серебра, гидроксид цезия, перренат аммония, сульфат лития и нитрат лития в достаточном количестве для получения в пропитанном носителе (на основе сухой массы носителя) 13,5 мас.% серебра, 437 ч. /млн. цезия, 1,5 мкмоль/г перрената аммония, 1,5 мкмоль/г сульфата лития и 12 мкмоль/г нитрата лития. Примерно 30 г носители поместили под вакуум величиной 22 мм на 3 мин при комнатной температуре. Затем ввели примерно 50 г пропитывающего раствора для погружения носителя, при этом в течение дополнительных 3 мин поддерживали вакуум при 25 мм. После этого вакуум сняли и лишний пропитывающий раствор удалили из носителя посредством центрифугирования в течение 2 мин при скорости 500 об/мин. Затем пропитанный носитель сушили посредством непрерывного встряхивания в потоке 300 куб. футов/ч воздуха при температуре 250oС в течение 5 мин. Высушенный катализатор, обозначенный как С-А1 был готов к испытанию.
Истинное содержание серебра в катализаторе можно определить любым из множества опубликованных стандартных способов. Фактический уровень рения в катализаторах, приготовленных описанным способом, можно определить путем обработки 20 мМ водного раствора едкого натра с последующим спектрофотометрическим определением рения в экстракте. Испытанный уровень цезия на катализаторе можно определить посредством применения основного раствора гидроксида цезия, который был помечен радиоактивным изотопом цезия во время приготовления катализатора. Затем можно определить содержание цезия в катализаторе посредством измерения радиоактивности катализатора. Содержание цезия в катализаторе можно также определить путем выщелачивания катализатора кипящей деионизированной водой. В этом процессе экстрагирования содержание цезия, а также других щелочных металлов, измеряют путем извлечения из катализатора посредством кипячения 10 г всего катализатора в 25 мл воды в течение 5 мин, повторения указанной процедуры еще два раза, объединения упомянутых экстракций и определения содержания присутствующего щелочного металла путем сравнения с стандартными растворами щелочных металлов, выбранных для сравнения посредством применения атомной адсорбционной спектроскопии (применяют модель Varian Fechtron 1200 или эквивалент). Следует отметить, что содержание цезия в катализаторе, определенное методом выщелачивания водой, может быть меньше, чем содержание цезия в катализаторе, определенное радиоактивным индикатором.
Для приготовления катализаторов, указанных в таблице 6, применяли носители из табл. 2 и 3. С-А и С-А1 обозначают катализаторы, полученные с носителем П, С-В обозначают катализаторы с носителем В и т. п. С - Сопр. - А - это катализатор, изготовленный из носителя Сопр. - А.
Таблица 4.
Дальше будут описаны стандартные условия испытаний катализатора в микрореакторе и способы, применяемые для испытания катализаторов для производства оксида этилена из этилена и кислорода.
3-5 г измельченного катализатора (14-20 меш) загружают в V-образную трубку из нержавеющей стали с внутренним диаметром 0,23 дюйма (5,9 мм). V-образную трубку погружают в ванну расплавленного металла (теплая среда), а ее концы соединяют с системой подачи газа. Массу применяемого катализатора и скорость потока входящего газа регулируют для достижения часовой объемной скорости газа 3300 см3 газа на 1 см3 катализатора в час. Давление входящего газа равняется 1550 кПа.
Газовая смесь, пропускаемая через слой катализатора (однопроходная операция), состоит из 30% этилена, 8,5% кислорода, 5-7% диоксида углерода, 0,5% аргона, остальное - азот и 0,5-5 об. ч./млн, хлористого этила.
До контактирования с газами-реагентами катализаторы обычно предварительно обрабатывают газом-азотом при температуре 225oС в течение 3 ч для всех свежих катализаторов и в течение 24 ч или больше для долгохранившихся, но не испытанных катализаторов.
Начальная температура (теплая среда) в реакторе 225oС. Спустя 1 ч при этой начальной температуре температуру увеличивают до 235oС в течение 1 ч и затем - до 245oС в течение 1 ч. После этого температуру регулируют для достижения постоянного уровня конверсии кислорода 40% (Т40). Уровень замедлителя изменяют/ и процесс осуществляют в течение 4-24 ч при каждом уровне для определения оптимального уровня замедлителя для максимальной избирательности. Данные рабочих характеристик при оптимальном уровне замедлителя и при Т40 обычно достигаются, когда катализатор был в работе, в общем, в течение примерно 24 часов, и ниже представлены примеры. Из-за незначительных различий в составе исходного газа расходе газа и калибровании аналитических приборов, применяемых для определения составов исходного газа и получаемого газа, измеренная избирательность и активность данного катализатора может слегка изменяться от одного испытания до другого.
Чтобы провести значительное сравнение рабочих характеристик катализаторов, испытанных в различное время, все катализаторы, описанные в этом иллюстративном примере, были испытаны одновременно с стандартным контрольным катализатором. Все данные рабочих характеристик, сообщенные в этом иллюстративном примере, откорректировали для приведения в соответствии с средней начальной характеристикой контрольного катализатора, которой были S4o = 81,0% и Т40 = 230oС.
Катализаторы, приготовленные как было описано, были испытаны согласно упомянутой процедуре, а результаты представлены в табл. 5.
Таблица 5.
Пример 2. Рабочую характеристику предпочтительного катализатора в соответствии с изобретением сравнивали в ходе процесса производства оксида этилена с рабочей характеристикой сравнительного катализатора, имеющего те же самые активные компоненты на слегка ионом носителе.
Катализатор согласно изобретению был обозначен в табл. 4 как катализатор С-А1.
Сравнительный катализатор, который обозначен как С-Соmp-В, содержит 13,2 мас.% серебра, 1,5 мкмоль/г NH4ReO4, 1,5 мкмоль Li2SO4, 2 мкмоль/г LiNo3 и CsOH, добавленный для получения 415 ч/млн, цезия на носителе на основе алюминия, содержащем 54,5 мас.% Al, 0,039 мас.% Ca(OH)2 0,092 мас.% SiO2 и без присутствия циркония и имеющем процент поглощения воды 36,0%, сопротивление раздавливанию 7 кг, удельную поверхность 0,45 м2/г, общий объем пор 58% и средний диаметр пор 3,6 мкм.
Оба катализатора постоянно использовали в промышленной установке для производства оксида этилена с последующим применением в течение периода 338 дней (С-А1) и 312 дней (С-Соmp.-В). Во время этого периода поддерживали следующие средние условия для соответствующих катализаторов:
расход газа на входе 3100 и 3400 см3 газа на 1 см3 катализатора в час,
давление газа на входе 1550 и 1550 кПа,
загрузка газа, содержащая, мас.%; 29,7 и 30,4 этилена, 7,9 и 7,4 кислорода; 3,6 и 4,0 диоксида углерода, 0,2 и 0,2 этана, для равновесия метан и 0,5 об. ч./млн. хлористого этила.
расход газа на входе 3100 и 3400 см3 газа на 1 см3 катализатора в час,
давление газа на входе 1550 и 1550 кПа,
загрузка газа, содержащая, мас.%; 29,7 и 30,4 этилена, 7,9 и 7,4 кислорода; 3,6 и 4,0 диоксида углерода, 0,2 и 0,2 этана, для равновесия метан и 0,5 об. ч./млн. хлористого этила.
Избирательность при 40 мол.% конверсии (S40) и активность, измеряемую по температуре охлаждающей среды при 4 мол.% конверсии (Т40 oС) кислорода, определяли повторно во время работы, и результаты представлены на фиг. 1 и 2 соответственно.
Из результатов видно, что катализатор согласно изобретению значительно больше устойчивый во время работы в условиях промышленной установки.
Claims (8)
1. КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ОКИСИ ЭТИЛЕНА в паровой фазе из этилена и кислорода, содержащий 1 - 25 мас.% серебра, 10 - 3000 млн-1 щелочного металла, 0,1 - 10,0 моль/г рения, нанесенные на носитель на основе α-оксида алюминия, отличающийся тем, что катализатор содержит носитель на основе α-оксида алюминия, дополнительно включающий 0,05 - 6,0 мас.% оксида щелочноземельного металла, 0,01 - 5,0 мас.% диоксида кремния и 0 - 10 мас.% диоксида циркония.
2. Катализатор по п.1, отличающийся тем, что он содержит носитель с объемом пор по воде 0,2 - 0,6 см3/г и удельной поверхностью 0,15 - 3,0 м2/г.
3. Катализатор по п.2, отличающийся тем, что содержит носитель с объемом пор по воде 0,3 - 0,5 см3/г и удельной поверхностью 0,3 - 2,0 м2/г.
4.Катализатор по п.1, отличающийся тем, что он содержит носитель, включающий α-оксид алюминия в количестве свыше 90 мас.%, оксид щелочноземельного металла 0,05 - 5,0 мас.%, диоксид кремния 0,05 - 4 мас.% и диоксид циркония - 0,3 - 5,0 мас.%.
5. Катализатор по п.4, отличающийся тем, что он содержит носитель с содержанием α-оксида алюминия свыше 95 мас.%, оксида щелочноземельного металла 0,05 - 4 мас.%, диоксида кремния -0,05 - 3,0 мас.% и диоксида циркония 0,5 - 2,0 мас.%.
6.Катализатор по п.5, отличающийся тем, что он содержит оксид щелочноземельного металла, выбранный из группы, состоящей их оксида кальция, оксида магния и их смесей, в количестве 0,05 - 2,0 мас.%.
7.Катализатор по п.1, отличающийся тем, что он содержит носитель, включающий α-оксид алюминия с содержанием карбоната натрия меньше 0,06 мас.%.
8. Катализатор по п.1, отличающийся тем, что он дополнительно содержит сопромотор, выбранный из группы, состоящей из серы, молибдена, вольфрама, хрома или их смесей, в количестве 0,1 - 15,0 ммоль/г катализатора.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64360691A | 1991-01-22 | 1991-01-22 | |
US643606 | 1991-01-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2014114C1 true RU2014114C1 (ru) | 1994-06-15 |
Family
ID=24581537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU925010577A RU2014114C1 (ru) | 1991-01-22 | 1992-01-20 | Катализатор для получения окиси этилена |
Country Status (20)
Country | Link |
---|---|
US (1) | US5145824A (ru) |
EP (1) | EP0496470B1 (ru) |
JP (1) | JP3302387B2 (ru) |
KR (1) | KR100225874B1 (ru) |
CN (1) | CN1035161C (ru) |
AU (1) | AU641584B2 (ru) |
BR (1) | BR9200166A (ru) |
CA (1) | CA2059711C (ru) |
CZ (1) | CZ281977B6 (ru) |
DE (1) | DE69200450T2 (ru) |
DK (1) | DK0496470T3 (ru) |
ES (1) | ES2061309T3 (ru) |
IN (1) | IN184775B (ru) |
MX (1) | MX9200243A (ru) |
PL (1) | PL174992B1 (ru) |
RU (1) | RU2014114C1 (ru) |
SA (1) | SA92120369B1 (ru) |
SK (1) | SK279174B6 (ru) |
TR (1) | TR25623A (ru) |
ZA (1) | ZA92376B (ru) |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5447897A (en) * | 1993-05-17 | 1995-09-05 | Shell Oil Company | Ethylene oxide catalyst and process |
PH11994048580B1 (en) * | 1993-07-07 | 2001-01-12 | Shell Int Research | Epoxidation catalyst |
DE69426321T2 (de) * | 1993-08-06 | 2001-04-05 | Sumitomo Chemical Co., Ltd. | Verfahren zur Herstellung von Olefinoxiden |
US5418202A (en) * | 1993-12-30 | 1995-05-23 | Shell Oil Company | Ethylene oxide catalyst and process |
US5545603A (en) * | 1994-11-01 | 1996-08-13 | Shell Oil Company | Ethylene oxide catalyst and process |
US5705661A (en) * | 1995-09-25 | 1998-01-06 | Mitsubishi Chemical Corporation | Catalyst for production of ethylene oxide |
US5763630A (en) * | 1996-03-18 | 1998-06-09 | Arco Chemical Technology, L.P. | Propylene oxide process using alkaline earth metal compound-supported silver catalysts |
US5733842A (en) * | 1996-04-30 | 1998-03-31 | Norton Checmical Process Products Corporation | Method of making porous catalyst carrier without the addition of pore forming agents |
US5864047A (en) * | 1997-04-10 | 1999-01-26 | Arco Chemical Technology, L.P. | Propylene oxide process using alkaline earth metal compound-supported silver catalysts containing rhenium and potassium promoters |
US5861519A (en) * | 1997-05-23 | 1999-01-19 | Arco Chemical Technology, L.P. | Propylene oxide process using alkaline earth metal compound-supported silver catalysts containing tungsten and potassium promoters |
US6455713B1 (en) | 1998-09-14 | 2002-09-24 | Eastman Chemical Company | Reactivation of Cs-promoted, Ag catalysts for the selective epoxidation of butadiene to 3,4-epoxy-1-butene |
TW460325B (en) * | 1998-11-17 | 2001-10-21 | Nippon Catalytic Chem Ind | Carrier for catalyst for use in production of ethylene oxide, catalyst for use in production of ethylene oxide, and method for production of ethylene oxide |
US6172245B1 (en) | 1999-12-16 | 2001-01-09 | Eastman Chemical Company | Gas phase process for the epoxidation of non-allylic olefins |
AU5724101A (en) * | 2000-05-01 | 2001-11-12 | Scient Design Co | Ethylene oxide catalyst |
ZA200200049B (en) * | 2001-01-25 | 2002-07-16 | Nippon Catalytic Chem Ind | Fixed-bed shell-and-tube reactor and its usage. |
JP4050041B2 (ja) * | 2001-11-06 | 2008-02-20 | 株式会社日本触媒 | 酸化エチレン製造用触媒、その製造方法および当該触媒による酸化エチレンの製造方法 |
US7193094B2 (en) | 2001-11-20 | 2007-03-20 | Shell Oil Company | Process and systems for the epoxidation of an olefin |
CA2477069C (en) * | 2002-02-25 | 2012-08-21 | Shell Internationale Research Maatschappij B.V. | Silver-based catalyst and an epoxidation process using the catalyst |
US6831037B2 (en) * | 2002-02-25 | 2004-12-14 | Saint-Gobain Norpro Corporation | Catalyst carriers |
WO2004002954A2 (en) * | 2002-06-28 | 2004-01-08 | Shell Internationale Research Maatschappij B.V. | A method for improving the selectivity of a catalyst and a process for the epoxidation of an olefin |
AU2003284195A1 (en) * | 2002-10-28 | 2004-05-25 | Shell Internationale Research Maatschappij B.V. | Olefin oxide catalysts |
ATE376879T1 (de) * | 2003-04-01 | 2007-11-15 | Shell Int Research | Olefinepoxidationsverfahren und katalysator zur verwendung bei dem verfahren |
US6858560B2 (en) | 2003-04-23 | 2005-02-22 | Scientific Design Co., Inc. | Ethylene oxide catalyst |
EP1624964B1 (en) | 2003-05-07 | 2019-07-31 | Shell International Research Maatschappij B.V. | Silver-containing catalysts, the manufacture of such silver-containing catalysts, and the use thereof |
US20040225138A1 (en) * | 2003-05-07 | 2004-11-11 | Mcallister Paul Michael | Reactor system and process for the manufacture of ethylene oxide |
US20040224841A1 (en) * | 2003-05-07 | 2004-11-11 | Marek Matusz | Silver-containing catalysts, the manufacture of such silver-containing catalysts, and the use thereof |
US8148555B2 (en) | 2003-06-26 | 2012-04-03 | Shell Oil Company | Method for improving the selectivity of a catalyst and a process for the epoxidation of an olefin |
JP4870561B2 (ja) * | 2003-08-22 | 2012-02-08 | ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー | アルキレンオキサイドの製造用の改良されたアルミナ担体及び銀系触媒 |
CN101767039B (zh) * | 2003-10-16 | 2015-04-01 | 陶氏技术投资有限责任公司 | 用于烯化氧制备的具有提高稳定性、效率和/或活性的催化剂 |
TW200613056A (en) * | 2004-04-01 | 2006-05-01 | Shell Int Research | A process for preparing a silver catalyst, the catalyst, and a use of the catalyst for olefin oxidation |
TW200602123A (en) * | 2004-04-01 | 2006-01-16 | Shell Int Research | Process for preparing a catalyst, the catalyst, and a use of the catalyst |
TW200600190A (en) * | 2004-04-01 | 2006-01-01 | Shell Int Research | Process for preparing a silver catalyst, the catalyst, and use thereof in olefin oxidation |
WO2006028544A2 (en) | 2004-06-18 | 2006-03-16 | Shell International Research Maatschappij B.V. | A process for the production of an olefin oxide, a 1,2-diol, a 1.2-diol ether, or an alkanolamine |
MY140566A (en) | 2004-06-18 | 2009-12-31 | Shell Int Research | A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, or an alkanolamine |
US7767619B2 (en) * | 2004-07-09 | 2010-08-03 | Sud-Chemie Inc. | Promoted calcium-aluminate supported catalysts for synthesis gas generation |
US20060036104A1 (en) * | 2004-08-12 | 2006-02-16 | Shell Oil Company | Method of preparing a shaped catalyst, the catalyst, and use of the catalyst |
US8536083B2 (en) | 2004-09-01 | 2013-09-17 | Shell Oil Company | Olefin epoxidation process, a catalyst for use in the process, a carrier for use in preparing the catalyst, and a process for preparing the carrier |
US7560411B2 (en) | 2004-09-01 | 2009-07-14 | Shell Oil Company | Olefin epoxidation process, a catalyst for use in the process, a carrier for use in preparing the catalyst, and a process for preparing the carrier |
US7835868B2 (en) * | 2004-09-24 | 2010-11-16 | Shell Oil Company | Process for selecting shaped particles for use in a packed bed |
US7759284B2 (en) * | 2005-05-09 | 2010-07-20 | Scientific Design Company, Inc. | Calcination in an inert gas in the presence of a small concentration of an oxidizing component |
DE102005023955A1 (de) * | 2005-05-20 | 2006-11-23 | Basf Ag | Inertmaterial für den Einsatz in exothermen Reaktionen |
MX2007015465A (es) | 2005-06-07 | 2008-02-25 | Saint Gobain Ceramics | Un portador catalizador y un procedimiento para preparar el portador catalizador. |
RU2007149318A (ru) * | 2005-06-07 | 2009-07-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) | Кктализатор, способ приготовления катализатора и способ получения оксида олефина, 1, 2-диола, эфира 1, 2-диола или алканоламина |
EP1912738A1 (en) * | 2005-08-11 | 2008-04-23 | Shell International Research Maatschappij B.V. | A method of preparing a shaped catalyst, the catalyst, and use of the catalyst |
CN100577289C (zh) * | 2006-01-28 | 2010-01-06 | 中国石油化工股份有限公司 | 环氧乙烷生产用银催化剂的载体、其制备方法及其应用 |
WO2007092738A2 (en) * | 2006-02-03 | 2007-08-16 | Shell Oil Company | A process for treating a catalyst, the catalyst, and use of the catalyst |
WO2007095453A2 (en) * | 2006-02-10 | 2007-08-23 | Shell Oil Company | A process for preparing a catalyst, the catalyst, and a process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, or an alkanolamine |
US20090177000A1 (en) * | 2006-04-18 | 2009-07-09 | Natal Manuel A W | Alkylene oxide catalyst and use thereof |
US20070280877A1 (en) * | 2006-05-19 | 2007-12-06 | Sawyer Technical Materials Llc | Alpha alumina supports for ethylene oxide catalysts and method of preparing thereof |
DE102007017080A1 (de) | 2007-04-10 | 2008-10-16 | Basf Se | Verfahren zur Beschickung eines Längsabschnitts eines Kontaktrohres |
CN101678332A (zh) | 2007-05-09 | 2010-03-24 | 国际壳牌研究有限公司 | 环氧化催化剂及其制备方法和生产环氧烷、1,2-二醇、1,2-二醇醚、1,2-碳酸酯或烷醇胺的方法 |
EP2162446B8 (en) | 2007-05-11 | 2016-06-01 | SD Lizenzverwertungsgesellschaft mbH & Co. KG | Start-up of high selectivity catalysts in olefin oxide plants |
TWI446959B (zh) | 2007-05-18 | 2014-08-01 | Shell Int Research | 反應器系統、吸收劑及用於反應進料的方法 |
US20090050535A1 (en) * | 2007-05-18 | 2009-02-26 | Wayne Errol Evans | Reactor system, and a process for preparing an olefin oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate and an alkanolamine |
DE102007028332A1 (de) | 2007-06-15 | 2008-12-18 | Basf Se | Verfahren zum Beschicken eines Reaktors mit einem Katalysatorfestbett, das wenigstens ringförmige Katalysatorformkörper K umfasst |
DE102007028333A1 (de) | 2007-06-15 | 2008-12-18 | Basf Se | Verfahren zum Einbringen einer wenigstens einer Produktionscharge von ringförmigen Schalenkatalysatoren K entnommenen Teilmenge in ein Reaktionsrohr eines Rohrbündelreaktors |
JP5581058B2 (ja) * | 2008-01-11 | 2014-08-27 | 株式会社日本触媒 | エチレンオキシド製造用触媒およびエチレンオキシドの製造方法 |
EP2293872A1 (en) * | 2008-04-30 | 2011-03-16 | Dow Technology Investments LLC | Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same |
EP2282832A1 (en) * | 2008-04-30 | 2011-02-16 | Dow Technology Investments LLC | Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same |
US8685883B2 (en) * | 2008-04-30 | 2014-04-01 | Dow Technology Investments Llc | Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same |
PL2297125T3 (pl) * | 2008-05-07 | 2013-12-31 | Shell Int Research | Sposób wytwarzania tlenku olefiny, 1,2-diolu, eteru 1,2-diolu, 1,2-węglanu albo alkanoloaminy |
CA2723517C (en) | 2008-05-07 | 2017-03-07 | Shell Internationale Research Maatschappij B.V. | A process for the start-up of an epoxidation process, a process for the production of ethylene oxide, a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine |
TWI455930B (zh) | 2008-05-15 | 2014-10-11 | Shell Int Research | 製備碳酸伸烷酯及/或烷二醇的方法 |
WO2009140318A1 (en) * | 2008-05-15 | 2009-11-19 | Shell Oil Company | Process for the preparation of an alkylene carbonate and an alkylene glycol |
JPWO2010001732A1 (ja) | 2008-06-30 | 2011-12-15 | 株式会社日本触媒 | 固定床多管式反応器への固体粒状物の充填方法 |
EP2313385A2 (en) * | 2008-07-14 | 2011-04-27 | Velocys Inc. | Process for making ethylene oxide using microchannel process technology |
EP2300447A1 (en) * | 2008-07-14 | 2011-03-30 | Basf Se | Process for making ethylene oxide |
US8349765B2 (en) * | 2008-07-18 | 2013-01-08 | Scientific Design Company, Inc. | Mullite-containing carrier for ethylene oxide catalysts |
JP2010234264A (ja) * | 2009-03-31 | 2010-10-21 | Nippon Shokubai Co Ltd | エチレンオキシド製造用触媒およびエチレンオキシドの製造方法 |
WO2010113963A1 (ja) * | 2009-03-31 | 2010-10-07 | 株式会社日本触媒 | エチレンオキシド製造用触媒およびエチレンオキシドの製造方法 |
TWI462912B (zh) * | 2009-04-21 | 2014-12-01 | Dow Technology Investments Llc | 環氧化反應及其操作條件 |
JP5756087B2 (ja) * | 2009-04-21 | 2015-07-29 | ダウ テクノロジー インベストメンツ リミティド ライアビリティー カンパニー | 高効率触媒による特定のアルキレンオキサイド製造パラメーターを達成かつ維持する改良方法 |
CN102414187B (zh) * | 2009-04-21 | 2016-06-01 | 陶氏技术投资有限公司 | 采用催化剂随其老化而制备环氧烷的方法 |
US8524927B2 (en) * | 2009-07-13 | 2013-09-03 | Velocys, Inc. | Process for making ethylene oxide using microchannel process technology |
JP2011121048A (ja) | 2009-12-09 | 2011-06-23 | Rohm & Haas Co | 固体触媒物質をブレンドし、管状構造物に装填する方法 |
EP2519509B1 (en) * | 2009-12-28 | 2017-06-07 | Dow Technology Investments LLC | Method of controlling the production of silver chloride on a silver catalyst in the production of alkylene oxides |
KR101822673B1 (ko) | 2010-03-01 | 2018-01-26 | 쉘 인터내셔날 리써취 마트샤피지 비.브이. | 에폭시화 촉매, 그 촉매의 제조 방법, 및 올레핀 옥시드의 제조 방법 |
WO2011143097A2 (en) * | 2010-05-10 | 2011-11-17 | Advanced Catalyst Technologies, Llc | Nanostructured catalyst pellets, catalyst surface treatment and highly selective catalyst for ethylene epoxidation |
US9018126B2 (en) | 2010-07-13 | 2015-04-28 | Shell Oil Company | Epoxidation catalyst, a process for preparing the catalyst, and a process for the production of an olefin oxide |
CN104125858B (zh) | 2011-12-19 | 2017-07-11 | 陶氏技术投资有限责任公司 | 根据催化剂参考性质配制环氧烷催化剂的方法 |
CN103357437B (zh) * | 2012-03-28 | 2016-03-30 | 中国石油化工股份有限公司 | 制备用于银催化剂的氧化铝载体的方法及其银催化剂 |
JP6090567B2 (ja) | 2012-12-18 | 2017-03-08 | 京進工業株式会社 | 拡管装置 |
FR3001969B1 (fr) | 2013-02-12 | 2015-08-21 | IFP Energies Nouvelles | Procede de production d'oxyde d'ethylene a partir d'un flux d'ethanol thermiquement integre |
FR3001968B1 (fr) | 2013-02-12 | 2015-02-27 | IFP Energies Nouvelles | Procede de production d'oxyde d'ethylene a partir d'un flux d'ethanol thermo-mecaniquement integre |
TWI632138B (zh) * | 2013-05-16 | 2018-08-11 | 科學設計股份有限公司 | 具有降低鈉含量之建基於銀之環氧乙烷觸媒 |
CN104549543B (zh) * | 2013-10-29 | 2017-08-25 | 中国石油化工股份有限公司 | 氧化铝载体、由其制成的银催化剂及其应用 |
WO2018029189A1 (en) | 2016-08-08 | 2018-02-15 | Basf Se | Catalyst for the oxidation of ethylene to ethylene oxide |
CN110035998B (zh) | 2016-12-02 | 2024-02-20 | 国际壳牌研究有限公司 | 调节乙烯环氧化催化剂的方法和生产环氧乙烷的相关方法 |
CN108283943B (zh) * | 2017-01-10 | 2021-07-02 | 中国石油化工股份有限公司 | 氧化铝载体及其制备方法、乙烯环氧化反应用银催化剂及乙烯环氧化制备环氧乙烷的方法 |
TWI808125B (zh) * | 2018-02-07 | 2023-07-11 | 德商巴斯夫歐洲公司 | 有效地將乙烯氧化轉化為環氧乙烷之催化劑 |
CN111072803B (zh) * | 2018-10-19 | 2022-07-12 | 中国石油化工股份有限公司 | 烯烃聚合催化剂载体及其制备方法和应用 |
TW202239752A (zh) | 2020-12-29 | 2022-10-16 | 荷蘭商蜆殼國際研究所 | 用於生產環氧乙烷之製程 |
TW202237260A (zh) * | 2021-01-19 | 2022-10-01 | 美商科學設計有限公司 | 用於製造管間距減小的立式沸騰反應器的管與管板焊接 |
CN115382525B (zh) * | 2021-05-24 | 2024-05-10 | 中国石油化工股份有限公司 | 一种α-氧化铝载体及其制备方法和银催化剂和应用 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3725307A (en) * | 1967-01-30 | 1973-04-03 | Halcon International Inc | Process for preparing a silver-supported catalyst |
US4428863A (en) * | 1982-07-06 | 1984-01-31 | The Dow Chemical Company | Alumina compositions of improved strength useful as catalyst supports |
NL8501862A (nl) * | 1985-06-28 | 1987-01-16 | Shell Int Research | Werkwijze ter bereiding van een zilver-houdende katalysator. |
JPH084745B2 (ja) * | 1986-05-09 | 1996-01-24 | 三菱化学株式会社 | エチレンオキシド製造用銀触媒 |
US4820675A (en) * | 1986-10-31 | 1989-04-11 | Shell Oil Company | Ethylene oxide catalyst & process for preparing the catalyst |
IN169589B (ru) * | 1986-10-31 | 1991-11-16 | Shell Int Research | |
US4766105A (en) * | 1986-10-31 | 1988-08-23 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
US4761394A (en) * | 1986-10-31 | 1988-08-02 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
GB8626687D0 (en) * | 1986-11-07 | 1986-12-10 | Shell Int Research | Preparing silver catalyst |
GB8716653D0 (en) * | 1987-07-15 | 1987-08-19 | Shell Int Research | Silver-containing catalyst |
US4874879A (en) * | 1988-07-25 | 1989-10-17 | Shell Oil Company | Process for starting-up an ethylene oxide reactor |
EP0357293B1 (en) * | 1988-08-30 | 1996-02-28 | Union Carbide Corporation | Catalysts for the production of ethylene oxide and their preparation processes |
-
1991
- 1991-12-09 US US07/804,494 patent/US5145824A/en not_active Expired - Lifetime
- 1991-12-23 IN IN1271DE1991 patent/IN184775B/en unknown
-
1992
- 1992-01-17 DE DE69200450T patent/DE69200450T2/de not_active Expired - Lifetime
- 1992-01-17 EP EP92200142A patent/EP0496470B1/en not_active Expired - Lifetime
- 1992-01-17 ES ES92200142T patent/ES2061309T3/es not_active Expired - Lifetime
- 1992-01-17 DK DK92200142.5T patent/DK0496470T3/da active
- 1992-01-17 BR BR929200166A patent/BR9200166A/pt not_active IP Right Cessation
- 1992-01-18 KR KR1019920000684A patent/KR100225874B1/ko not_active IP Right Cessation
- 1992-01-20 JP JP02755792A patent/JP3302387B2/ja not_active Expired - Lifetime
- 1992-01-20 PL PL92293237A patent/PL174992B1/pl unknown
- 1992-01-20 ZA ZA92376A patent/ZA92376B/xx unknown
- 1992-01-20 CZ CS92166A patent/CZ281977B6/cs not_active IP Right Cessation
- 1992-01-20 CN CN92100325A patent/CN1035161C/zh not_active Expired - Lifetime
- 1992-01-20 TR TR92/0043A patent/TR25623A/xx unknown
- 1992-01-20 SK SK166-92A patent/SK279174B6/sk unknown
- 1992-01-20 AU AU10341/92A patent/AU641584B2/en not_active Ceased
- 1992-01-20 MX MX9200243A patent/MX9200243A/es not_active IP Right Cessation
- 1992-01-20 CA CA002059711A patent/CA2059711C/en not_active Expired - Lifetime
- 1992-01-20 RU SU925010577A patent/RU2014114C1/ru active
- 1992-02-05 SA SA92120369A patent/SA92120369B1/ar unknown
Also Published As
Publication number | Publication date |
---|---|
CA2059711A1 (en) | 1992-07-23 |
CA2059711C (en) | 2002-07-30 |
EP0496470B1 (en) | 1994-09-28 |
AU641584B2 (en) | 1993-09-23 |
AU1034192A (en) | 1992-07-30 |
KR100225874B1 (ko) | 1999-10-15 |
ES2061309T3 (es) | 1994-12-01 |
BR9200166A (pt) | 1992-10-06 |
PL293237A1 (en) | 1992-11-02 |
SA92120369B1 (ar) | 2004-07-12 |
CN1035161C (zh) | 1997-06-18 |
ZA92376B (en) | 1992-09-30 |
MX9200243A (es) | 1992-07-01 |
EP0496470A1 (en) | 1992-07-29 |
US5145824A (en) | 1992-09-08 |
DE69200450D1 (de) | 1994-11-03 |
TR25623A (tr) | 1993-07-01 |
CN1063427A (zh) | 1992-08-12 |
KR920014515A (ko) | 1992-08-25 |
CS16692A3 (en) | 1992-08-12 |
JP3302387B2 (ja) | 2002-07-15 |
DK0496470T3 (da) | 1994-10-24 |
PL174992B1 (pl) | 1998-10-30 |
DE69200450T2 (de) | 1995-02-23 |
IN184775B (ru) | 2000-09-30 |
SK279174B6 (sk) | 1998-07-08 |
CZ281977B6 (cs) | 1997-04-16 |
JPH0584440A (ja) | 1993-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2014114C1 (ru) | Катализатор для получения окиси этилена | |
RU2126296C1 (ru) | Катализатор для парофазного эпоксидирования олефинов и способ получения носителя для него | |
SU509206A3 (ru) | Катализатор дл окислени этиленав окись этилена | |
US5100859A (en) | Catalyst carrier | |
AU711973B2 (en) | Epoxidation catalyst and process | |
JP3953101B2 (ja) | 酸化アルキレン触媒及び製造方法 | |
MXPA97005608A (en) | Alkylene oxide catalyst and proc | |
CA2286866C (en) | Ethylene oxide catalyst | |
KR20080096678A (ko) | 올레핀 산화 촉매용 담체, 그 제조 방법 및 적용 | |
NL193590C (nl) | Werkwijze voor de bereiding van een zilverkatalysator op drager en werkwijze voor de oxidatie van ethyleen tot ethyleenoxide. | |
AU715586B2 (en) | Niobium or tantalum promoted silver catalyst | |
US4400308A (en) | Silver-containing supported catalysts and catalyst intermediate products, processes for their preparation and their use | |
WO1996023648A1 (en) | Process for the manufacture of moulded articles that are partly coloured or have regions of different colours | |
US5703001A (en) | Promoted silver catalyst | |
JP6033124B2 (ja) | エチレンオキシド製造用触媒およびエチレンオキシドの製造方法 | |
JP2006524129A (ja) | エチレンオキシド触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REG | Reference to a code of a succession state |
Ref country code: RU Ref legal event code: MM4A Effective date: 20100121 |