RU2012118782A - Кодер аудиосигнала, декодер аудиосигнала, способ кодированного представления аудиоконтента, способ декодированного представления аудиоконтента и компьютерная программа для приложений с малой задержкой - Google Patents
Кодер аудиосигнала, декодер аудиосигнала, способ кодированного представления аудиоконтента, способ декодированного представления аудиоконтента и компьютерная программа для приложений с малой задержкой Download PDFInfo
- Publication number
- RU2012118782A RU2012118782A RU2012118782/08A RU2012118782A RU2012118782A RU 2012118782 A RU2012118782 A RU 2012118782A RU 2012118782/08 A RU2012118782/08 A RU 2012118782/08A RU 2012118782 A RU2012118782 A RU 2012118782A RU 2012118782 A RU2012118782 A RU 2012118782A
- Authority
- RU
- Russia
- Prior art keywords
- audio content
- fragment
- window
- encoded
- mode
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims 5
- 238000004590 computer program Methods 0.000 title claims 3
- 239000012634 fragment Substances 0.000 claims abstract 92
- 230000003595 spectral effect Effects 0.000 claims abstract 13
- 230000005236 sound signal Effects 0.000 claims abstract 12
- 238000006243 chemical reaction Methods 0.000 claims abstract 3
- 238000001228 spectrum Methods 0.000 claims abstract 3
- 238000009795 derivation Methods 0.000 claims abstract 2
- 230000009466 transformation Effects 0.000 claims abstract 2
- 230000005284 excitation Effects 0.000 claims 17
- 238000011914 asymmetric synthesis Methods 0.000 claims 7
- 230000007704 transition Effects 0.000 claims 6
- 230000015572 biosynthetic process Effects 0.000 claims 4
- 238000005303 weighing Methods 0.000 claims 4
- 230000002123 temporal effect Effects 0.000 claims 3
- 230000000977 initiatory effect Effects 0.000 claims 2
- 238000003786 synthesis reaction Methods 0.000 claims 2
- 230000003213 activating effect Effects 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 230000001960 triggered effect Effects 0.000 claims 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/0212—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/022—Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
- G10L19/18—Vocoders using multiple modes
- G10L19/20—Vocoders using multiple modes using sound class specific coding, hybrid encoders or object based coding
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
1. Кодер аудиосигнала (100), предназначенный для формирования кодированного представления (112) звуковых данных на основе входного представления (110) аудиоконтента, включающий тракт области трансформанты (120), реализованный для выведения набора спектральных коэффициентов (124) и информации о формировании искажения (126) на основе представления во временной области (122) фрагмента аудиоконтента, подлежащего кодированию в режиме области трансформанты, в результате чего спектральные коэффициенты (124) описывают спектр ограниченной по шуму версии (223а; 262а; 285а) аудиоконтента; при этом тракт области трансформанты (120; 200; 230; 260) включает в себя время-частотный преобразователь (130; 222; 264; 284), выполняющий оконное взвешивание представления аудиоконтента во временной области (220а; 280а) или его предобработанной версии (262а) с выведением оконно-взвешенного представления (221а; 263а; 283а) аудиоконтента и рассчитывающий при время-частотном преобразовании из оконно-взвешенного представления аудиоконтента во временной области набор спектральных коэффициентов (222а; 264а; 284а); и тракт области линейного предсказания с кодовым возбуждением (тракт CELP) (140), реализованный для формирования данных кодового возбуждения (144) и параметров области линейного предсказания (146) на базе фрагмента аудиоконтента, подлежащего кодированию в режиме области линейного предсказания с кодовым возбуждением (в режиме CELP); где время-частотный преобразователь (130; 221, 222; 263, 264; 283, 284) предусматривает применение заданного асимметричного окна анализа (520; 1130; 1330) для оконного взвешивания текущего фрагмента (1132; 1332) аудиоконтента, подлежащего кодированию в режиме области трансформа�
Claims (27)
1. Кодер аудиосигнала (100), предназначенный для формирования кодированного представления (112) звуковых данных на основе входного представления (110) аудиоконтента, включающий тракт области трансформанты (120), реализованный для выведения набора спектральных коэффициентов (124) и информации о формировании искажения (126) на основе представления во временной области (122) фрагмента аудиоконтента, подлежащего кодированию в режиме области трансформанты, в результате чего спектральные коэффициенты (124) описывают спектр ограниченной по шуму версии (223а; 262а; 285а) аудиоконтента; при этом тракт области трансформанты (120; 200; 230; 260) включает в себя время-частотный преобразователь (130; 222; 264; 284), выполняющий оконное взвешивание представления аудиоконтента во временной области (220а; 280а) или его предобработанной версии (262а) с выведением оконно-взвешенного представления (221а; 263а; 283а) аудиоконтента и рассчитывающий при время-частотном преобразовании из оконно-взвешенного представления аудиоконтента во временной области набор спектральных коэффициентов (222а; 264а; 284а); и тракт области линейного предсказания с кодовым возбуждением (тракт CELP) (140), реализованный для формирования данных кодового возбуждения (144) и параметров области линейного предсказания (146) на базе фрагмента аудиоконтента, подлежащего кодированию в режиме области линейного предсказания с кодовым возбуждением (в режиме CELP); где время-частотный преобразователь (130; 221, 222; 263, 264; 283, 284) предусматривает применение заданного асимметричного окна анализа (520; 1130; 1330) для оконного взвешивания текущего фрагмента (1132; 1332) аудиоконтента, подлежащего кодированию в режиме области трансформанты и следующего за фрагментом (1122; 1322) аудиоконтента, закодированным в режиме области трансформанты, в обоих случаях, когда за текущим фрагментом аудиоконтента следует фрагмент (1142; 1342) аудиоконтента, подлежащий кодированию в режиме области трансформанты, и когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, подлежащий кодированию в режиме CELP; одновременно, аудиокодер выполнен с возможностью избирательного формирования антиалиасинговой информации (164), содержащей компоненты антиалиасингового сигнала, которые будут введены в представление последующего фрагмента(1142; 1342) аудиоконтента в области трансформанты, когда за текущим фрагментом (1132; 1332) аудиоконтента следует фрагмент (1142; 1342) аудиоконтента, подлежащий кодированию в режиме CELP.
2. Кодер аудиосигнала (100) по п.1, в котором время-частотный преобразователь (130; 222; 264; 284) использует одно и то же окно (520, 1130, 1330) для взвешивания текущего фрагмента (1132; 1332) аудиоконтента, подлежащего кодированию в режиме области трансформанты и следующего за фрагментом (1122; 1322) аудиоконтента, закодированным в режиме области трансформанты, в обоих случаях, когда за текущим фрагментом аудиоконтента следует фрагмент (1142; 1342) аудиоконтента, подлежащий кодированию в режиме области трансформанты, и когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, подлежащий кодированию в режиме CELP.
3. Кодер аудиосигнала (100) по п.1, использующий заданное асимметричное окно анализа (520, 1130, 1330), которое состоит из левой половины окна и правой половины окна, из которых левая половина окна содержит левосторонний скос фронта перехода (522), где значения оконной взвешивающей функции монотонно возрастают от нуля до центрального значения окна, и содержит участок всплеска (524), где значения оконной функции превышают центральное значение окна, и где оконная функция достигает своего максимального значения (524а); и из которых правая половина окна содержит правосторонний скат перехода (528), где значения оконной взвешивающей функции монотонно убывают от центрального значения окна до нуля, и содержит правостороннюю нулевую область (530).
4. Кодер аудиосигнала (100) по п.3, задействующий окно, у которого левая половина содержит не более одного процента нулевых значений оконной функции, и у которого правосторонняя нулевая область (530) содержит, по меньшей мере, 20% значений правой половины окна.
5. Кодер аудиосигнала (100) по п.3, использующий заданное асимметричное окно анализа (520), правая половина которого содержит значения, меньшие, чем центральное значение окна, и не содержит участок всплеска.
6. Кодер аудиосигнала (100) по п.1, использующий заданное асимметричное окно анализа (520), ненулевая область которого короче, по меньшей мере, на 10%, чем длина фрейма.
7. Кодер аудиосигнала (100) по п.1, предусматривающий, по меньшей мере, 40-процентное временное перекрывание при кодировании последовательных фрагментов (1122, 1132, 1162, 1172; 1322, 1332, 1362, 1372) аудиоконтента в режиме трансформанты; и предусматривающий временное перекрывание при кодировании текущего фрагмента (1132; 1332) аудиоконтента в режиме области трансформанты и кодировании последующего фрагмента (1142; 1342) аудиоконтента в режиме области линейного предсказания с кодовым возбуждением; и выполненный с возможностью избирательной подготовки антиалиасинговой информации (164) для инициации на стороне аудиодекодера (300) антиалиасингового сигнала (364), устраняющего артефакты алиасинга при переходе от фрагмента (1232) аудиоконтента, закодированного в режиме трансформанты, к фрагменту (1242) аудиоконтента, закодированному в режиме CELP.
8. Кодер аудиосигнала (100) по п.1, предусматривающий возможность выбора окна (1130; 1330) для взвешивания текущего фрагмента (1132; 1332) аудиоконтента, независимо от режима кодирования последующего фрагмента (1142; 1342) аудиоконтента, который перекрывает по времени текущий фрагмент аудиоконтента таким образом, что оконно-взвешенное представление (221а; 263а; 283а) текущего фрагмента аудиоконтента взаимно перекрывается с последующим фрагментом (1142; 1342) аудиоконтента, даже если последующий фрагмент аудиоконтента кодируется в режиме CELP; и предусматривающий в качестве отклика на распознавание ожидаемого кодирования последующего фрагмента (1142; 1342) аудиоконтента в режиме CELP формирование антиалиасинговой информации (164), содержащей компоненты антиалиасингового сигнала, которые вводятся в представление последующего фрагмента (1142; 1342) аудиоконтента в режиме области трансформанты.
9. Кодер аудиосигнала (100) по п.1, в котором время-частотный преобразователь (130; 221, 222; 263, 264; 283, 284) использует заданное асимметричное окно анализа (520; 1160) для взвешивания текущего фрагмента (1162) аудиоконтента, подлежащего кодированию в режиме трансформанты и следующего за фрагментом (1152) аудиоконтента, закодированным в режиме CELP, таким образом, что оконно-взвешенное представление (221а; 263а; 283а) текущего фрагмента (1162) аудиоконтента, подлежащего кодированию в режиме области трансформанты, перекрывает по времени предшествующий фрагмент (1152) аудиоконтента, закодированный в режиме CELP, и таким образом, что фрагменты (1122, 1132, 1162, 1172) аудиоконтента, подлежащие кодированию в режиме трансформанты взвешиваются с использованием одного и того же заданного асимметричного окна анализа (530, 1120, 1130, 1160, 1170) независимо от режима кодирования предшествующего фрагмента аудиоконтента и независимо от режима кодирования последующего фрагмента аудиоконтента.
10. Кодер аудиосигнала (100) по п.9, выполненный с возможностью избирательного формирования антиалиасинговой информации (164), когда текущий фрагмент (1162) аудиоконтента следует за фрагментом (1152) аудиоконтента, закодированным в режиме CELP.
11. Кодер аудиосигнала (100) по п.1, в котором время-частотный преобразователь (130; 221, 222; 263, 264; 283, 284) выполнен с возможностью применения целевого асимметричного окна анализа перехода (1360), отличного от заданного асимметричного окна анализа (520; 1320, 1330, 1370), для оконного взвешивания текущего фрагмента (1362) аудиоконтента, подлежащего кодированию в режиме трансформанты и следующего за фрагментом (1352) аудиоконтента, закодированным в режиме CELP.
12. Кодер аудиосигнала по п.1, в котором тракт области линейного предсказания с кодовым возбуждением (тракт CELP) (140), представляющий собой тракт области линейного предсказания с алгебраическим кодовым возбуждением, формирует информацию о алгебраическом кодовом возбуждении (144) и информацию о параметрах области линейного предсказания (146) на базе фрагмента аудиоконтента, подлежащего кодированию в режиме области линейного предсказания с алгебраическим кодовым возбуждением (режим CELP).
13. Декодер аудиосигнала (300), предназначенный для формирования декодированного представления (312) аудиоконтента на основе кодированного представления (310) аудиоконтента, включающий тракт области трансформанты (320; 400; 430; 460), реализованный для формирования представление во временной области (326; 416; 446; 476) фрагмента (1222, 1232, 1262, 1272; 1422, 1432, 1462, 1472) аудиоконтента, закодированного в режиме области трансформанты на основе набора спектральных коэффициентов (322; 412, 442, 472) и информации о формировании искажения (324; 414; 444; 474); при этом тракт области трансформанты включает частотно-временной преобразователь (330; 423, 424; 451, 452; 484, 485), выполняющий преобразование из частотной области во временную (423; 451; 484) и оконное взвешивание (424; 452; 485) с выведением оконно-взвешенного представления аудиоконтента во временной области (424а; 452а; 485а) из набора спектральных коэффициентов или из его предобработанной версии; тракт области линейного предсказания с кодовым возбуждением (340), реализованный для формирования представления во временной области (346) аудиоконтента, закодированного в режиме области линейного предсказания с кодовым возбуждением (в режиме CELP) на базе информации о кодовом возбуждении (342) и информации о параметрах области линейного предсказания (344); и где частотно-временной преобразователь предусматривает применение заданного асимметричного окна синтеза (620; 1230; 1430) для оконного взвешивания текущего фрагмента (1232; 1432) аудиоконтента, закодированного в режиме области трансформанты и следующего за фрагментом (1222; 1422) аудиоконтента, закодированного в режиме области трансформанты, в обоих случаях, когда за текущим фрагментом аудиоконтента следует фрагмент (1242; 1442) аудиоконтента, закодированный в режиме области трансформанты, и когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, закодированный в режиме CELP; одновременно, аудиодекодер (300) выполнен с возможностью избирательной инициации антиалиасингового сигнала (364), исходя из антиалиасинговой информации (362), включенной в представление аудиоконтента, содержащей компоненты антиалиасингового сигнала, введенные в представление последующего фрагмента (1142; 1342) аудиоконтента в области трансформанты, когда за текущим фрагментом аудиоконтента, закодированным в режиме области трансформанты, следует фрагмент аудиоконтента, закодированный в режиме CELP.
14. Декодер аудиосигнала (300) по п.13, в составе которого частотно-временной преобразователь (330; 423, 424; 451, 452; 484, 485) использует одно и то же окно (620; 1230; 1430) для взвешивания текущего фрагмента (1232; 1432) аудиоконтента, закодированного в режиме области трансформанты и следующего за фрагментом (1222; 1422) аудиоконтента, закодированным в режиме области трансформанты, в обоих случаях, когда за текущим фрагментом (1232; 1432) аудиоконтента следует фрагмент (1242; 1442) аудиоконтента, закодированный в режиме области трансформанты, и когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, закодированный в режиме CELP.
15. Декодер аудиосигнала (300) по п.13, использующий заданное асимметричное окно синтеза (620; 1230; 1430), которое состоит из левой половины окна и правой половины окна, из которых левая половина окна содержит левостороннюю нулевую область (622) и левосторонний скос фронта перехода (624), где значения оконной функции монотонно возрастают от нуля до центрального значения окна; и из которых правая половина окна содержит участок всплеска (628), где значения оконной функции превышают центральное значение окна, и где оконная функция достигает своего максимального значения (628а), и содержит правосторонний скат перехода (630), где значения оконной функции монотонно убывают от центрального значения окна до ноля.
16. Декодер аудиосигнала (300) по п.15, задействующий окно, у которого левостороння нулевая область (622) содержит, по меньшей мере, 20% значений левой половины окна, и у которого правая половина окна содержит не более одного процента нулевых значений оконной функции.
17. Декодер аудиосигнала (300) по п.15, использующий заданное асимметричное окно синтеза (620; 1220, 1230, 1260; 1420, 1430, 1470), левая сторона которого содержит значения, меньшие, чем центральное значение окна, и не содержит участок всплеска.
18. Декодер аудиосигнала по п.13, использующий заданное асимметричное окно синтеза (620; 1220, 1230, 1260; 1420, 1430, 1470), ненулевая область которого короче, по меньшей мере, на 10%, чем длина фрейма.
19. Декодер аудиосигнала (300) по п.13, предусматривающий, по меньшей мере, 40 процентное временное перекрывание последовательных фрагментов (1222, 1232, 1262, 1272; 1422, 1432, 1462, 1472) аудиоконтента, закодированных в режиме области трансформанты; и предусматривающий временное перекрывание текущего фрагмента (1232; 1432) аудиоконтента, закодированного в режиме области трансформанты, и следующего за ним фрагмента (1242; 1442) аудиоконтента, закодированного в режиме области линейного предсказания с кодовым возбуждением; и выполненный с возможностью избирательный инициации на основе антиалиасинговой информации (362) антиалиасингового сигнала (364), ослабляющего или нейтрализующего артефакты алиасинга при переходе от текущего фрагмента аудиоконтента, закодированного в режиме области трансформанты, к следующему фрагменту аудиоконтента, закодированному в режиме CELP.
20. Декодер аудиосигнала (300) по п.13, предусматривающий возможность выбора окна (1230; 1430) для взвешивания текущего фрагмента (1232; 1432) аудиоконтента, независимо от режима кодирования последующего фрагмента (1242; 1442) аудиоконтента, который перекрывает по времени текущий фрагмент (1232; 1432) аудиоконтента таким образом, что оконно-взвешенное представление (424а; 452а; 485а) текущего фрагмента аудиоконтента обоюдно перекрывается по времени с последующим фрагментом аудиоконтента, даже если последующий фрагмент аудиоконтента закодирована в режиме CELP; и предусматривающий в качестве отклика на распознавание кодирования последующего фрагмента аудиоконтента в режиме CELP инициацию антиалиасингового сигнала (364), ослабляющего или устраняющего артефакты алиасинга при переходе от текущего фрагмента (1232; 1432) аудиоконтента, закодированного в режиме области трансформанты, к следующему за ним фрагменту (1242; 1442) аудиоконтента, закодированному в режиме CELP.
21. Декодер аудиосигнала (300) по п.13, в составе которого частотно-временной преобразователь (330; 423, 424; 451, 452; 484, 485) использует заданное асимметричное окно синтеза (620; 1230; 1430) для оконного взвешивания текущего фрагмента (1262; 1462) аудиоконтента, закодированного в режиме области трансформанты и следующего за фрагментом (1252; 1452) аудиоконтента, закодированным в режиме CELP, таким образом, что фрагменты (1222; 1232; 1262; 1272) аудиоконтента, закодированные в режиме области трансформанты, взвешиваются с использованием одного и того же заданного асимметричного окна синтеза (620; 1220, 1230, 1260, 1270) независимо от режима кодирования предшествующего фрагмента аудиоконтента и независимо от режима кодирования последующего фрагмента аудиоконтента, и таким образом, что оконно-взвешенное представление во временной области (424а; 452а; 485а) текущего фрагмента аудиоконтента, закодированного в режиме области трансформанты перекрывает по времени предыдущий фрагмент (1252; 1452) аудиоконтента, закодированный в режиме CELP.
22. Декодер аудиосигнала (300) по п.21, выполненный с возможностью избирательной активации антиалиасингового сигнала (364), исходя из антиалиасинговой информации (362), когда текущий фрагмент (1262) аудиоконтента следует за фрагментом (1252) аудиоконтента, закодированным в режиме CELP.
23. Декодер аудиосигнала (300) по п.13, в составе которого частотно-временной преобразователь (330; 423, 424; 451, 452; 484, 485) выполнен с возможностью применения целевого асимметричного окна синтеза перехода (1460), отличного от заданного асимметричного окна синтеза (620; 1230; 1430), для оконного взвешивания текущего фрагмента (1462) аудиоконтента, закодированного в режиме области трансформанты и следующего за фрагментом (1452) аудиоконтента, закодированным в режиме CELP.
24. Декодер аудиосигнала по п.13, в составе которого тракт области линейного предсказания с кодовым возбуждением (340), представляющий собой тракт области линейного предсказания с алгебраическим кодовым возбуждением, формирует представление во временной области (346) аудиоконтента, закодированного в режиме области линейного предсказания с алгебраическим кодовым возбуждением на основе информации о алгебраическом кодовом возбуждении (342) и информации о параметрах области линейного предсказания (344).
25. Способ формирования кодированного представления аудиоконтента на основе представления входного массива акустических данных, включающий в себя: выведение набора спектральных коэффициентов и информации о формировании искажения на основе представления во временной области фрагмента аудиоконтента, подлежащего кодированию в режиме области трансформанты, таким образом, что спектральные коэффициенты описывают спектр ограниченной по шуму версии аудиоконтента; при этом представление аудиоконтента во временной области, подлежащее кодированию в режиме области трансформанты, или его предобработанную версию, взвешивают, и оконно-взвешенное временное представление аудиоконтента преобразуют из временной области в частотную область, выводя набор спектральных коэффициентов; подготовку информации о кодовом возбуждении и данных области линейного предсказания на базе фрагмента аудиоконтента, подлежащего кодированию в режиме области линейного предсказания с кодовым возбуждением (режим CELP); при этом с помощью заданного асимметричного окна анализа выполняют оконное взвешивание текущего фрагмента аудиоконтента, подлежащего кодированию в режиме области трансформанты и следующего за фрагментом аудиоконтента, закодированным в режиме области трансформанты, в обоих случаях, когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, подлежащий кодированию в режиме области трансформанты, и когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, подлежащий кодированию в режиме CELP; и при этом антиалиасинговая информация, которая содержит компоненты антиалиасингового сигнала, введенные в представление последующего фрагмента (1142; 1342) аудиоконтента в области трансформанты, формируется избирательно, когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, подлежащий кодированию в режиме CELP.
26. Способ формирования декодированного представления аудиоконтента на основе кодированного представления аудиоконтента, включающий в себя: формирование представления во временной области фрагмента аудиоконтента, закодированного в режиме области трансформанты на базе набора спектральных коэффициентов и информации о формировании искажения, при этом для формирования оконно-взвешенного представления аудиоконтента во временной области на основе набора спектральных коэффициентов или их предобработанной версии выполняют частотно-временное преобразование и оконное взвешивание; и формирование временного представления аудиоконтента, закодированного в режиме области линейного предсказания с кодовым возбуждением на основе информации о кодовом возбуждении и информации о параметрах области линейного предсказания; при этом с помощью заданного асимметричного окна синтеза выполняют оконное взвешивание текущего фрагмента аудиоконтента, закодированного в режиме области трансформанты и следующего за фрагментом аудиоконтента, закодированным в режиме области трансформанты, в обоих случаях, когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, закодированный в режиме области трансформанты, и когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, закодированный в режиме CELP; и при этом на основе антиалиасинговой информации, включенной в представление аудиоконтента, содержащей компоненты антиалиасингового сигнала, введенные в представление последующего фрагмента (1142; 1342) аудиоконтента в области трансформанты, избирательно инициируется антиалиасинговый сигнал, когда за текущим фрагментом аудиоконтента следует фрагмент аудиоконтента, закодированный в режиме CELP.
27. Компьютерная программа для осуществления способа по п.25 или 26 при условии выполнения этой компьютерной программы с использованием компьютерной техники.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25345009P | 2009-10-20 | 2009-10-20 | |
US61/253,450 | 2009-10-20 | ||
PCT/EP2010/065753 WO2011048118A1 (en) | 2009-10-20 | 2010-10-19 | Audio signal encoder, audio signal decoder, method for providing an encoded representation of an audio content, method for providing a decoded representation of an audio content and computer program for use in low delay applications |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012118782A true RU2012118782A (ru) | 2013-11-10 |
RU2596594C2 RU2596594C2 (ru) | 2016-09-10 |
Family
ID=43447915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012118782/08A RU2596594C2 (ru) | 2009-10-20 | 2010-10-19 | Кодер аудиосигнала, декодер аудиосигнала, способ кодированного представления аудиоконтента, способ декодированного представления аудиоконтента и компьютерная программа для приложений с малой задержкой |
Country Status (16)
Country | Link |
---|---|
US (1) | US8630862B2 (ru) |
EP (1) | EP2473995B9 (ru) |
JP (1) | JP5243661B2 (ru) |
KR (1) | KR101414305B1 (ru) |
CN (1) | CN102859588B (ru) |
AR (1) | AR078702A1 (ru) |
BR (3) | BR112012009032B1 (ru) |
CA (1) | CA2778373C (ru) |
ES (1) | ES2533098T3 (ru) |
MX (1) | MX2012004518A (ru) |
MY (1) | MY162251A (ru) |
PL (1) | PL2473995T3 (ru) |
RU (1) | RU2596594C2 (ru) |
TW (1) | TWI435317B (ru) |
WO (1) | WO2011048118A1 (ru) |
ZA (1) | ZA201203611B (ru) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102105930B (zh) * | 2008-07-11 | 2012-10-03 | 弗朗霍夫应用科学研究促进协会 | 用于编码采样音频信号的帧的音频编码器和解码器 |
ES2657393T3 (es) * | 2008-07-11 | 2018-03-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Codificador y descodificador de audio para codificar y descodificar muestras de audio |
MX2011000375A (es) * | 2008-07-11 | 2011-05-19 | Fraunhofer Ges Forschung | Codificador y decodificador de audio para codificar y decodificar tramas de una señal de audio muestreada. |
EP2658281A1 (en) * | 2010-12-20 | 2013-10-30 | Nikon Corporation | Audio control device and image capture device |
MY164797A (en) | 2011-02-14 | 2018-01-30 | Fraunhofer Ges Zur Foederung Der Angewandten Forschung E V | Apparatus and method for processing a decoded audio signal in a spectral domain |
ES2725305T3 (es) * | 2011-02-14 | 2019-09-23 | Fraunhofer Ges Forschung | Aparato y procedimiento para codificar una señal de audio usando una parte de anticipación alineada |
WO2012110481A1 (en) | 2011-02-14 | 2012-08-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio codec using noise synthesis during inactive phases |
MY167853A (en) | 2011-02-14 | 2018-09-26 | Fraunhofer Ges Forschung | Apparatus and method for error concealment in low-delay unified speech and audio coding (usac) |
BR112012029132B1 (pt) | 2011-02-14 | 2021-10-05 | Fraunhofer - Gesellschaft Zur Förderung Der Angewandten Forschung E.V | Representação de sinal de informações utilizando transformada sobreposta |
TWI488176B (zh) | 2011-02-14 | 2015-06-11 | Fraunhofer Ges Forschung | 音訊信號音軌脈衝位置之編碼與解碼技術 |
KR101525185B1 (ko) | 2011-02-14 | 2015-06-02 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | 트랜지언트 검출 및 품질 결과를 사용하여 일부분의 오디오 신호를 코딩하기 위한 장치 및 방법 |
PT3239978T (pt) | 2011-02-14 | 2019-04-02 | Fraunhofer Ges Forschung | Codificação e descodificação de posições de pulso de faixas de um sinal de áudio |
AR085794A1 (es) | 2011-02-14 | 2013-10-30 | Fraunhofer Ges Forschung | Prediccion lineal basada en esquema de codificacion utilizando conformacion de ruido de dominio espectral |
TWI591621B (zh) * | 2011-04-21 | 2017-07-11 | 三星電子股份有限公司 | 線性預測編碼係數的量子化方法、聲音編碼方法、線性預測編碼係數的去量子化方法、聲音解碼方法以及記錄媒體 |
CN105244034B (zh) * | 2011-04-21 | 2019-08-13 | 三星电子株式会社 | 针对语音信号或音频信号的量化方法以及解码方法和设备 |
EP2772914A4 (en) * | 2011-10-28 | 2015-07-15 | Panasonic Corp | DECODER FOR HYBRID SOUND SIGNALS, COORDINATORS FOR HYBRID SOUND SIGNALS, DECODING PROCEDURE FOR SOUND SIGNALS AND CODING SIGNALING PROCESSES |
US9489962B2 (en) * | 2012-05-11 | 2016-11-08 | Panasonic Corporation | Sound signal hybrid encoder, sound signal hybrid decoder, sound signal encoding method, and sound signal decoding method |
JP6113278B2 (ja) * | 2012-06-28 | 2017-04-12 | フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. | 改良された確率分布推定を使用する線形予測に基づくオーディオ符号化 |
US9129600B2 (en) * | 2012-09-26 | 2015-09-08 | Google Technology Holdings LLC | Method and apparatus for encoding an audio signal |
KR101701081B1 (ko) | 2013-01-29 | 2017-01-31 | 프라운호퍼-게젤샤프트 츄어 푀르더룽 데어 안게반텐 포르슝에.파우. | 제 1 오디오 인코딩 알고리즘 및 제 2 오디오 인코딩 알고리즘 중 하나를 선택하기 위한 장치 및 방법 |
JP6286552B2 (ja) | 2013-08-23 | 2018-02-28 | フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. | オーバーラップ範囲における組み合わせを用いて音声信号を処理するための装置及び方法 |
CN104681034A (zh) | 2013-11-27 | 2015-06-03 | 杜比实验室特许公司 | 音频信号处理 |
CN105336336B (zh) * | 2014-06-12 | 2016-12-28 | 华为技术有限公司 | 一种音频信号的时域包络处理方法及装置、编码器 |
EP2980797A1 (en) | 2014-07-28 | 2016-02-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio decoder, method and computer program using a zero-input-response to obtain a smooth transition |
EP3067886A1 (en) * | 2015-03-09 | 2016-09-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio encoder for encoding a multichannel signal and audio decoder for decoding an encoded audio signal |
EP3107096A1 (en) | 2015-06-16 | 2016-12-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Downscaled decoding |
US10008214B2 (en) * | 2015-09-11 | 2018-06-26 | Electronics And Telecommunications Research Institute | USAC audio signal encoding/decoding apparatus and method for digital radio services |
US10146500B2 (en) * | 2016-08-31 | 2018-12-04 | Dts, Inc. | Transform-based audio codec and method with subband energy smoothing |
EP3382700A1 (en) * | 2017-03-31 | 2018-10-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for post-processing an audio signal using a transient location detection |
EP3483883A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio coding and decoding with selective postfiltering |
EP3483880A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Temporal noise shaping |
EP3483884A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Signal filtering |
EP3483886A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Selecting pitch lag |
WO2019091573A1 (en) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for encoding and decoding an audio signal using downsampling or interpolation of scale parameters |
WO2019091576A1 (en) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio encoders, audio decoders, methods and computer programs adapting an encoding and decoding of least significant bits |
EP3483878A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio decoder supporting a set of different loss concealment tools |
EP3483879A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Analysis/synthesis windowing function for modulated lapped transformation |
EP3483882A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Controlling bandwidth in encoders and/or decoders |
EP3719799A1 (en) | 2019-04-04 | 2020-10-07 | FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. | A multi-channel audio encoder, decoder, methods and computer program for switching between a parametric multi-channel operation and an individual channel operation |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6134518A (en) * | 1997-03-04 | 2000-10-17 | International Business Machines Corporation | Digital audio signal coding using a CELP coder and a transform coder |
RU2256293C2 (ru) * | 1997-06-10 | 2005-07-10 | Коудинг Технолоджиз Аб | Усовершенствование исходного кодирования с использованием дублирования спектральной полосы |
US7315815B1 (en) * | 1999-09-22 | 2008-01-01 | Microsoft Corporation | LPC-harmonic vocoder with superframe structure |
US7020605B2 (en) * | 2000-09-15 | 2006-03-28 | Mindspeed Technologies, Inc. | Speech coding system with time-domain noise attenuation |
CN1157076C (zh) * | 2001-04-19 | 2004-07-07 | 北京邮电大学 | 移动通信系统性能的仿真方法 |
US6658383B2 (en) * | 2001-06-26 | 2003-12-02 | Microsoft Corporation | Method for coding speech and music signals |
US6785645B2 (en) * | 2001-11-29 | 2004-08-31 | Microsoft Corporation | Real-time speech and music classifier |
CN1485849A (zh) * | 2002-09-23 | 2004-03-31 | 上海乐金广电电子有限公司 | 数字音频编码器及解码方法 |
US7876966B2 (en) * | 2003-03-11 | 2011-01-25 | Spyder Navigations L.L.C. | Switching between coding schemes |
CA2457988A1 (en) * | 2004-02-18 | 2005-08-18 | Voiceage Corporation | Methods and devices for audio compression based on acelp/tcx coding and multi-rate lattice vector quantization |
FI118835B (fi) * | 2004-02-23 | 2008-03-31 | Nokia Corp | Koodausmallin valinta |
US7739120B2 (en) * | 2004-05-17 | 2010-06-15 | Nokia Corporation | Selection of coding models for encoding an audio signal |
AU2004319555A1 (en) * | 2004-05-17 | 2005-11-24 | Nokia Corporation | Audio encoding with different coding models |
US7596486B2 (en) * | 2004-05-19 | 2009-09-29 | Nokia Corporation | Encoding an audio signal using different audio coder modes |
US7386445B2 (en) * | 2005-01-18 | 2008-06-10 | Nokia Corporation | Compensation of transient effects in transform coding |
PL1869671T3 (pl) * | 2005-04-28 | 2009-12-31 | Siemens Ag | Sposób i urządzenie do tłumienia szumów |
US7490036B2 (en) * | 2005-10-20 | 2009-02-10 | Motorola, Inc. | Adaptive equalizer for a coded speech signal |
US7987089B2 (en) * | 2006-07-31 | 2011-07-26 | Qualcomm Incorporated | Systems and methods for modifying a zero pad region of a windowed frame of an audio signal |
JP5171842B2 (ja) * | 2006-12-12 | 2013-03-27 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | 時間領域データストリームを表している符号化および復号化のための符号器、復号器およびその方法 |
CN101971251B (zh) * | 2008-03-14 | 2012-08-08 | 杜比实验室特许公司 | 像言语的信号和不像言语的信号的多模式编解码方法及装置 |
KR101655913B1 (ko) * | 2008-09-17 | 2016-09-08 | 오렌지 | 디지털 오디오 신호에서의 프리-에코 감쇠 |
EP3764356B1 (en) * | 2009-06-23 | 2025-01-08 | VoiceAge Corporation | Forward time-domain aliasing cancellation with application in weighted or original signal domain |
-
2010
- 2010-10-19 WO PCT/EP2010/065753 patent/WO2011048118A1/en active Application Filing
- 2010-10-19 CN CN201080047598.XA patent/CN102859588B/zh active Active
- 2010-10-19 EP EP10768928.3A patent/EP2473995B9/en active Active
- 2010-10-19 BR BR112012009032-1A patent/BR112012009032B1/pt active IP Right Grant
- 2010-10-19 CA CA2778373A patent/CA2778373C/en active Active
- 2010-10-19 JP JP2012534674A patent/JP5243661B2/ja active Active
- 2010-10-19 KR KR1020127010336A patent/KR101414305B1/ko active Active
- 2010-10-19 PL PL10768928T patent/PL2473995T3/pl unknown
- 2010-10-19 BR BR122020024236-1A patent/BR122020024236B1/pt active IP Right Grant
- 2010-10-19 BR BR122020024243-4A patent/BR122020024243B1/pt active IP Right Grant
- 2010-10-19 TW TW099135557A patent/TWI435317B/zh active
- 2010-10-19 MY MYPI2012001633A patent/MY162251A/en unknown
- 2010-10-19 ES ES10768928.3T patent/ES2533098T3/es active Active
- 2010-10-19 MX MX2012004518A patent/MX2012004518A/es active IP Right Grant
- 2010-10-19 RU RU2012118782/08A patent/RU2596594C2/ru not_active Application Discontinuation
- 2010-10-20 AR ARP100103829A patent/AR078702A1/es active IP Right Grant
-
2012
- 2012-04-19 US US13/450,792 patent/US8630862B2/en active Active
- 2012-05-17 ZA ZA2012/03611A patent/ZA201203611B/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN102859588B (zh) | 2014-09-10 |
ES2533098T3 (es) | 2015-04-07 |
CN102859588A (zh) | 2013-01-02 |
BR112012009032A2 (pt) | 2020-08-18 |
JP2013508766A (ja) | 2013-03-07 |
WO2011048118A1 (en) | 2011-04-28 |
CA2778373A1 (en) | 2011-04-28 |
TW201137861A (en) | 2011-11-01 |
CA2778373C (en) | 2015-12-01 |
JP5243661B2 (ja) | 2013-07-24 |
RU2596594C2 (ru) | 2016-09-10 |
AU2010309839A1 (en) | 2012-05-17 |
PL2473995T3 (pl) | 2015-06-30 |
BR112012009032B1 (pt) | 2021-09-21 |
MX2012004518A (es) | 2012-05-29 |
MY162251A (en) | 2017-05-31 |
EP2473995A1 (en) | 2012-07-11 |
EP2473995B1 (en) | 2014-12-17 |
HK1172992A1 (en) | 2013-05-03 |
KR101414305B1 (ko) | 2014-07-02 |
KR20120063527A (ko) | 2012-06-15 |
EP2473995B9 (en) | 2016-12-21 |
BR122020024236B1 (pt) | 2021-09-14 |
TWI435317B (zh) | 2014-04-21 |
ZA201203611B (en) | 2013-02-27 |
US20120265541A1 (en) | 2012-10-18 |
US8630862B2 (en) | 2014-01-14 |
AR078702A1 (es) | 2011-11-30 |
BR122020024243B1 (pt) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2012118782A (ru) | Кодер аудиосигнала, декодер аудиосигнала, способ кодированного представления аудиоконтента, способ декодированного представления аудиоконтента и компьютерная программа для приложений с малой задержкой | |
JP7138140B2 (ja) | パラメトリック・マルチチャネル・エンコードのための方法 | |
JP6173288B2 (ja) | マルチモードオーディオコーデックおよびそれに適応されるcelp符号化 | |
JP5253580B2 (ja) | 音声復号器、音声信号の復号化方法およびコンピュータプログラム | |
CA2778382C (en) | Audio signal encoder, audio signal decoder, method for encoding or decoding an audio signal using an aliasing-cancellation | |
US20200302945A1 (en) | Audio decoding device, audio coding device, audio decoding method, audio coding method, audio decoding program, and audio coding program | |
JP6185530B2 (ja) | 符号化/復号化方法および符号化/復号化デバイス | |
RU2015117332A (ru) | Избирательный басовый постфильтр | |
US9280974B2 (en) | Audio decoding device, audio decoding method, audio decoding program, audio encoding device, audio encoding method, and audio encoding program | |
RU2017106099A (ru) | Кодер и декодер аудиосигнала , использующие процессор частотной области, процессор временной области и кросспроцессор для непрерывной инициализации | |
RU2017105448A (ru) | Кодер и декодер аудиосигнала, использующие процессор частотной области с заполнением промежутка в полной полосе и процессор временной области | |
RU2016121148A (ru) | Аудиодекодер и способ обеспечения декодированной аудиоинформации с использованием маскирования ошибки, модифицирующего сигнал возбуждения во временной области | |
JP2013242514A5 (ru) | ||
TW201126513A (en) | Sound signal coding method, sound signal decoding method, coding device, decoding device, sound signal processing system, sound signal coding program, and sound signal decoding program | |
RU2547241C1 (ru) | Аудиокодек, поддерживающий режимы кодирования во временной области и в частотной области | |
US20130246055A1 (en) | System and Method for Post Excitation Enhancement for Low Bit Rate Speech Coding | |
US20140058737A1 (en) | Hybrid sound signal decoder, hybrid sound signal encoder, sound signal decoding method, and sound signal encoding method | |
US10204633B2 (en) | Periodic-combined-envelope-sequence generation device, periodic-combined-envelope-sequence generation method, periodic-combined-envelope-sequence generation program and recording medium | |
CN107945813B (zh) | 解码方法、解码装置、和计算机可读取的记录介质 | |
KR101896486B1 (ko) | 오디오 신호의 시간 엔벨로프를 처리하기 위한 방법과 장치, 및 인코더 | |
KR20100114450A (ko) | 가변 비트율을 갖는 잔차 신호 부호화를 이용한 고품질 다객체 오디오 부호화 및 복호화 장치 | |
JP5323144B2 (ja) | 復号装置およびスペクトル整形方法 | |
CN103119650B (zh) | 编码装置和编码方法 | |
JP5197838B2 (ja) | 音信号符号化方法、音信号復号方法、符号化装置、復号装置、音信号処理システム、音信号符号化プログラム、及び、音信号復号プログラム | |
JP5127170B2 (ja) | 復号装置およびスペクトル整形方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FA92 | Acknowledgement of application withdrawn (lack of supplementary materials submitted) |
Effective date: 20150529 |
|
FZ9A | Application not withdrawn (correction of the notice of withdrawal) |
Effective date: 20160321 |