PL244523B1 - Sposób wytwarzania 4’-hydroksyflawanonu - Google Patents
Sposób wytwarzania 4’-hydroksyflawanonu Download PDFInfo
- Publication number
- PL244523B1 PL244523B1 PL439091A PL43909121A PL244523B1 PL 244523 B1 PL244523 B1 PL 244523B1 PL 439091 A PL439091 A PL 439091A PL 43909121 A PL43909121 A PL 43909121A PL 244523 B1 PL244523 B1 PL 244523B1
- Authority
- PL
- Poland
- Prior art keywords
- hydroxyflavanone
- carried out
- hours
- organic solvent
- water
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/02—Oxygen as only ring hetero atoms
- C12P17/06—Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/22—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
- C07D311/26—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
- C07D311/28—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
- C07D311/32—2,3-Dihydro derivatives, e.g. flavanones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/22—Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/645—Fungi ; Processes using fungi
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Przedmiotem zgłoszenia jest sposób wytwarzania 4'-hydroksyflawanonu polegający na tym, że do podłoża odpowiedniego dla grzybów strzępkowych wprowadza się szczep Isaria fumosorosea KCH J2, następnie po upływie co najmniej 72 godzin do hodowli wprowadza się substrat, którym jest 4'-metyloflawanon o wzorze 1, rozpuszczony w rozpuszczalniku organicznym mieszającym się z wodą, transformację prowadzi się w temperaturze od 20 do 30 stopni Celsjusza, przy ciągłym wstrząsaniu, co najmniej 96 godzin, po czym produkt ekstrahuje się rozpuszczalnikiem organicznym niemieszającym się z wodą i oczyszcza chromatograficznie, przy czym 4'-hydroksyflawanon o wzorze 2 znajduje się we frakcji o pośredniej polarności w trzecim paśmie od linii startu.
Description
Przedmiotem wynalazku jest sposób wytwarzania 4’-hydroksyflawanonu.
4’-Hydroksyflawanon może znaleźć zastosowanie jako związek przeciwutleniający i przeciwdrobnoustrojowy w preparatach farmaceutycznych i kosmetycznych oraz produktach spożywczych.
Związki flawonoidowe z grupami hydroksylowymi i metylowymi wykazują aktywność przeciwdrobnoustrojową. Chalkony z azjatyckiego drzewa Syzygium nervosum (Cleistocalyx operculatus): (E )-4,2’,4’-trihydroksy-6’-metoksy-3’,5’-dimetylochalkon, (E )-2’,4’-dihydroksy-6’-metoksy-3’,5’-dimetylochalkon, (E)-2’,4’-dihydroksy-6’-metoksy-3’-metylochalkon, (E)-2,2’,4’-trihydroksy-6’-metoksy-3’,5’-dimetylochalkon wykazywały silną inhibicję wobec enzymów pochodzących od dwóch szczepów wirusa grypy: H1N1 oraz H9N2. Blokowały one działanie neuraminidaz, umożliwiających wirusom opuszczanie zakażonych komórek poprzez rozkład ich błon komórkowych (Dao T. T. , Tung B. T, Nguyen P. H., Thuong P T, Yoo S. S., Kim E. H., Kim S. K., Oh W. K. C-methylated flavonoids form Cleistocalyx operculatus and their inhibitory effects on novel influenza A (H1N1 ) neuraminidase. Journal of Natural Products 2010, 73, 1636-1642).
Podobnie (2S)-5,7,2’-trihydroksy-8-metyloflawanon izolowany z krzewu Pisonia aculeate wykazywał aktywność przeciwdrobnoustrojową podczas badania in vitro z udziałem szczepu Mycobacterium tuberculosis H37Rv. Związek ten wywoływał inhibicję wzrostu bakterii przy minimalnym stężeniu hamującym wynoszącym 50 μg/cm3 (Wu M. C., Peng C. F., Chen I. S., Tsai I. L. Antitubercular chromones and flavanoids from Pisonia aculeata. Journal of Natural Products 2011, 74, 976-982).
Aktywność antybakteryjną i antygrzybiczną potwierdzono również dla flawonoidów wyekstrahowanych z naziemnych części rośliny Eysenhardtia texana: (2S)-4’,5,7-trihydroksy-8-metylo-6-prenyloflawanonu oraz (2S)-4’,5,7-trihydroksy-6-metylo-8-prenyloflawanonu. Dowiedziono, że w stężeniu 0,1 mg/cm3 hamowały wzrost Staphylococcus aureus. (2S)-4’,5,7-trihydroksy-8-metylo-6-prenyloflawanon spowalniał również wzrost Candida albicans (Wachter G. A., Hoffmann J. J., Furbacher T. T, Blake M. E., Timmermann B. N. Antibacterial and antifungal flavanones from Eysenhardtia texana. Phytochemistry 1999, 52, 1469-1471).
Znany jest szczep Isaria fumosorosea KCH J2 ujawniony w zgłoszeniu patentowym o numerze P.416996.
W ostatnich latach, w leczeniu różnych chorób i ich zapobieganiu, coraz większe znaczenie zyskują związki pochodzenia naturalnego oraz ich odpowiedniki uznawane za naturalne, które uzyskano na drodze przekształceń mikrobiologicznych. Dlatego istotne jest opracowywanie nowych metod wytwarzania związków aktywnych biologicznie na drodze biotransformacji, użytecznych dla przemysłu farmaceutycznego, kosmetycznego i spożywczego.
Istotą wynalazku jest sposób otrzymywania 4’-hydroksyflawanonu.
Istota sposobu polega na tym, że do podłoża odpowiedniego dla grzybów strzępkowych wprowadza się szczep Isaria fumosorosea KCH J2. Po upływie co najmniej 72 godzin do hodowli wprowadza się substrat, którym jest 4’-metyloflawanon, rozpuszczony w rozpuszczalniku organicznym mieszającym się z wodą. Transformację prowadzi się w temperaturze od 20 do 30 stopni Celsjusza, przy ciągłym wstrząsaniu, przez co najmniej 96 godzin. Następnie produkt ekstrahuje się rozpuszczalnikiem organicznym niemieszającym się z wodą oraz oczyszcza chromatograficznie. 4’-Hydroksyflawanon znajduje się we frakcji o pośredniej polarności, w trzecim paśmie od linii startu.
Korzystnie jest, gdy stosunek masy dodawanego substratu do objętości hodowli wynosi 0,1 mg : 1 cm3.
Korzystnie także jest, gdy proces prowadzi się w temperaturze 25 stopni Celsjusza.
Dodatkowo, korzystnie jest, gdy transformację prowadzi się przez 9 dni.
Korzystnie również jest, gdy oczyszczanie prowadzi się, wykorzystując cienkowarstwową chromatografię preparatywną w układzie eluującym z chloroformem i metanolem w stosunku objętościowym 9 : 1.
Postępując zgodnie z wynalazkiem, w wyniku działania układu enzymatycznego zawartego w komórkach szczepu Isaria fumosorosea KCH J2, następuje odszczepienie grupy metylowej oraz hydroksylacja przy C-4’. Uzyskany w ten sposób produkt wydziela się z wodnej kultury mikroorganizmu, znanym sposobem, przez ekstrakcję rozpuszczalnikiem organicznym niemieszającym się z wodą (octan etylu).
Zasadniczą zaletą wynalazku jest otrzymanie 4’-hydroksyflawanonu w temperaturze pokojowej i przy pH naturalnym dla szczepu oraz wykorzystując mikroorganizm niebędący patogenem ludzkim.
PL 244523 BI
Wykorzystanie biotransformacji, zamiast syntezy chemicznej, umożliwia, w sposób przyjazny dla środowiska, uzyskanie związków o większej biodostępności i aktywności biologicznej niż użyte substraty.
Wynalazek jest bliżej objaśniony na przykładzie wykonania.
Przykład. Do kolby stożkowej o pojemności 2000 cm3, w której znajduje się 500 cm3 sterylnej pożywki zawierającej 10 g aminobaku i 30 g glukozy, wprowadza się szczep Isaria fumosorosea KCH J2. Po 72 godzinach jego wzrostu dodaje się 50 mg 4’-metyloflawanonu o wzorze 1, rozpuszczonego w 1 cm3 dimetylosulfotlenku. Transformację prowadzi się w 25 stopniach Celsjusza przy ciągłym wstrząsaniu przez 9 dni. Następnie mieszaninę poreakcyjną ekstrahuje się dwukrotnie octanem etylu, osusza bezwodnym siarczanem magnezu i odparowuje rozpuszczalnik. Otrzymany ekstrakt oczyszcza się chromatograficznie z zastosowaniem jako eluentu mieszaniny chloroformu i metanolu w stosunku objętościowym 9:1. Produkt znajduje się we frakcji o pośredniej polarności, w trzecim paśmie od linii startu.
Na tej drodze otrzymuje się 3,4 mg 4’-hydroksyflawanonu (wydajność 6,7%). Stopień konwersji substratu według HPLC >99%.
Uzyskany produkt charakteryzuje się następującymi danymi spektralnymi.
Opis sygnałów pochodzących z widma 1H NMR (601 MHz, Aceton-ds)
Sygnały pochodzące od protonów szkieletu flawonoidowego | ||
δ [ppm] | J [Hz] | H |
5,77 (dd) | 13,1; 2,9 | 2 |
3,16 (dd) | 16,8; 13,1 | 3ax |
2,94 (dd) | 16,7; 3,0 | 3eq |
7,86 (dd) | 7,7; 1,8 | 5 |
7,12 (m) | 6 | |
7,61 (ddd) | 8,8; 7,2; 1,7 | 7 |
7,12 (m) | 8 | |
7,75 (d) | 8,2 | 2’ |
8,12 (d) | 8,4 | 3’ |
8,12 (d) | 8,4 | 5’ |
7,75 (d) | 8,2 | 6’ |
Claims (5)
1. Sposób wytwarzania 4’-hydroksyflawanonu znamienny tym, że do podłoża odpowiedniego dla grzybów strzępkowych wprowadza się szczep Isaria fumosorosea KCH J2, następnie po upływie co najmniej 72 godzin do hodowli wprowadza się substrat, którym jest 4’-metyloflawanon o wzorze 1, rozpuszczony w rozpuszczalniku organicznym mieszającym się z wodą, transformację prowadzi się w temperaturze od 20 do 30 stopni Celsjusza, przy ciągłym wstrząsaniu, co najmniej 96 godzin, po czym produkt ekstrahuje się rozpuszczalnikiem organicznym niemieszającym się z wodą i oczyszcza chromatograficznie, przy czym 4’-hydroksyflawanon o wzorze 2 znajduje się we frakcji o pośredniej polarności, w trzecim paśmie od linii startu.
2. Sposób według zastrz. 1, znamienny tym, że stosunek masy dodawanego substratu do objętości hodowli wynosi 0,1 mg : 1 cm3.
PL 244523 BI
3. Sposób według zastrz. 1, znamienny tym, że proces prowadzi się w temperaturze 25 stopni Celsjusza.
4. Sposób według zastrz. 1, znamienny tym, że transformację prowadzi się przez 9 dni.
5. Sposób według zastrz. 1, znamienny tym, że oczyszczanie prowadzi się wykorzystując cienkowarstwową chromatografię preparatywną w układzie eluującym chloroform : metanol w stosunku objętościowym 9:1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL439091A PL244523B1 (pl) | 2021-09-30 | 2021-09-30 | Sposób wytwarzania 4’-hydroksyflawanonu |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL439091A PL244523B1 (pl) | 2021-09-30 | 2021-09-30 | Sposób wytwarzania 4’-hydroksyflawanonu |
Publications (2)
Publication Number | Publication Date |
---|---|
PL439091A1 PL439091A1 (pl) | 2023-04-03 |
PL244523B1 true PL244523B1 (pl) | 2024-02-05 |
Family
ID=85784016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PL439091A PL244523B1 (pl) | 2021-09-30 | 2021-09-30 | Sposób wytwarzania 4’-hydroksyflawanonu |
Country Status (1)
Country | Link |
---|---|
PL (1) | PL244523B1 (pl) |
-
2021
- 2021-09-30 PL PL439091A patent/PL244523B1/pl unknown
Also Published As
Publication number | Publication date |
---|---|
PL439091A1 (pl) | 2023-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PL246768B1 (pl) | Sposób wytwarzania 2’-hydroksy-2-metylo-3’-O-β-D-(4’’-Ometyloglukopiranozylo)- dihydrochalkonu | |
PL241534B1 (pl) | 2′-Hydroksy-5’-metylo-3-O-β-D-(4’’-O-metyloglukopiranozylo)- chalkon i sposób wytwarzania 2′-hydroksy-5’-metylo-3-O-β-D-(4’’- O-metyloglukopiranozylo)-chalkonu | |
PL246775B1 (pl) | Sposób wytwarzania 2’,4-dihydroksy-2-metylo-3’-O-β-D-(4’’- O-metyloglukopiranozylo)-dihydrochalkonu | |
Haque et al. | Biotransformation of newly synthesized coumarin derivatives by Candida albicans as potential antibacterial, antioxidant and cytotoxic agents | |
Elnaggar et al. | Cytotoxic and antimicrobial mycophenolic acid derivatives from an endophytic fungus Penicillium sp. MNP–HS–2 associated with Macrozamia communis | |
PL238972B1 (pl) | 6,8-Dichloro-4’-O-β-D-(4”-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6,8-dichloro-4’-O-β-D-(4”-O-metyloglukopiranozylo)- flawonu | |
PL242335B1 (pl) | 6-Hydroksymetylo-3’-O-β-D-(4’’-O-metyloglukopiranozylo)- flawanon i sposób wytwarzania 6-hydroksymetylo-3’-O-β-D-(4’’- O-metyloglukopiranozylo)-flawanonu | |
PL242333B1 (pl) | 4’-Hydroksy-6-metyleno-O-β-D-(4’’-O-metyloglukopiranozylo)- flawanon i sposób wytwarzania 4’-hydroksy-6-metyleno-O- -β-D-(4’’-O-metyloglukopiranozylo)-flawanonu | |
PL242468B1 (pl) | Sposób wytwarzania 6-metylo-4’-O-β-D-(4’’-O-metyloglukopiranozylo)- flawanonu | |
PL244523B1 (pl) | Sposób wytwarzania 4’-hydroksyflawanonu | |
PL244831B1 (pl) | Sposób wytwarzania 4’-hydroksyflawonu | |
PL244301B1 (pl) | Sposób wytwarzania 4’-hydroksyflawanonu | |
PL244524B1 (pl) | Sposób wytwarzania 4’-hydroksymetyloflawonu | |
PL241533B1 (pl) | 2-Fenylo-6-metylo-4-O-β-D-(4’’-O-metyloglukopiranozylo)- chroman i sposób wytwarzania 2-fenylo-6-metylo-4-O-β-D-(4’’-Ometyloglukopiranozylo)- chromanu | |
PL238971B1 (pl) | 6-Chloro-4’-O-β-D-(4”-O-metyloglukopiranozylo)-flawon i sposób wytwarzania 6-chloro-4’-O-β-D-(4”-O-metyloglukopiranozylo)- flawonu | |
PL244302B1 (pl) | Sposób wytwarzania 4’-metyleno-O-β-D-(4’’-O-metyloglukopiranozylo)- flawanonu | |
PL244830B1 (pl) | Sposób wytwarzania 4’-metyleno-O-β-D-(4’’-O-metyloglukopiranozylo)- flawanonu | |
PL246797B1 (pl) | Sposób wytwarzania 2-(2’-metylofenylo)-4-O-β-D-(4’’-O-metyloglukopiranozylo)- chromanu | |
PL242469B1 (pl) | 3’,4’-Dihydroksy-6-hydroksymetyloflawanon i sposób wytwarzania 3’,4’-dihydroksy-6-hydroksymetyloflawanonu | |
PL242334B1 (pl) | 4’-Hydroksy-6-metylo-3’-O-β-D-(4’’-O-metyloglukopiranozylo)- flawanon i sposób wytwarzania 4’-hydroksy-6-metylo-3’-O-β-D-(4’’- -O-metyloglukopiranozylo)-flawanonu | |
PL241535B1 (pl) | 6-Metylo-4’-O-β-D-(4”-O-metyloglukopiranozylo)-flawanon i sposób wytwarzania 6-metylo-4’-O-β-D-(4”-O-metyloglukopiranozylo)- flawanonu | |
PL242336B1 (pl) | 4’-Hydroksy- 6 -hydroksymetylo-3’- O -β-D- (4’ ’- O - metyloglukopiranozylo)-flawanon i sposób wytwarzania 4’-hydroksy- 6-hydroksymetylo-3’-O-β-D-(4’’-O-metyloglukopiranozylo)- flawanonu | |
PL246839B1 (pl) | Sposób wytwarzania 3-chloro-2’-O-β-D-(4’’-O-metyloglukopiranozylo)- dihydrochalkonu | |
PL246798B1 (pl) | Sposób wytwarzania 2-metylo-4-O-β-D-(4’-O-metyloglukopiranozylo)- kwasu benzoesowego | |
PL246027B1 (pl) | 2’-Hydroksy-4-hydroksymetylo-5’-O-β-D-(4’’-O-metyloglukopiranozylo)- chalkon i sposób wytwarzania 2’-hydroksy-4-hydroksymetylo- 5’-O-β-D-(4’’-O-metyloglukopiranozylo)-chalkonu |