[go: up one dir, main page]

NO321866B1 - Process for preparing a phospholipid suspension. - Google Patents

Process for preparing a phospholipid suspension. Download PDF

Info

Publication number
NO321866B1
NO321866B1 NO20003471A NO20003471A NO321866B1 NO 321866 B1 NO321866 B1 NO 321866B1 NO 20003471 A NO20003471 A NO 20003471A NO 20003471 A NO20003471 A NO 20003471A NO 321866 B1 NO321866 B1 NO 321866B1
Authority
NO
Norway
Prior art keywords
solution
aqueous solvent
lipid
mixture
suspension
Prior art date
Application number
NO20003471A
Other languages
Norwegian (no)
Other versions
NO20003471L (en
NO20003471D0 (en
Inventor
Poh K Hui
John E Bishop
Jr Eleodoro S Madrigal
Original Assignee
Du Pont Pharm Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Pharm Co filed Critical Du Pont Pharm Co
Publication of NO20003471D0 publication Critical patent/NO20003471D0/en
Publication of NO20003471L publication Critical patent/NO20003471L/en
Publication of NO321866B1 publication Critical patent/NO321866B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/226Solutes, emulsions, suspensions, dispersions, semi-solid forms, e.g. hydrogels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
    • A61K9/1277Preparation processes; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • A61K49/222Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations characterised by a special physical form, e.g. emulsions, liposomes
    • A61K49/227Liposomes, lipoprotein vesicles, e.g. LDL or HDL lipoproteins, micelles, e.g. phospholipidic or polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Foreliggende oppfinnelse beskriver fremgangsmåter for fremstillingen av en lipidblanding og en homogen filtrerbar fosfolipidsuspensjon inneholdende lipidblandingen, hvor en slik suspensjon er nyttig som et ultralydkontrastmiddel.The present invention describes processes for the preparation of a lipid composition and a homogeneous filterable phospholipid suspension containing the lipid composition, wherein such a suspension is useful as an ultrasonic contrast agent.

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for fremstilling av en homogen filtrerbar fosfolipidsuspensjon inneholdende en lipidblanding, hvorved det oppnås en suspensjon som er nyttig som et ultralydkontrastmiddel. The present invention relates to a method for producing a homogeneous filterable phospholipid suspension containing a lipid mixture, whereby a suspension is obtained which is useful as an ultrasound contrast agent.

Fremstilling av et fosfolipidkontrastmiddel kan deles i de følgende trinnene: (1) fremstilling av lipidblanding; (2) å blande bulkløsningen, hvilket invovlerer hydratisering og dispersjon av lipidblandingen i et stort sett vandig medium for å fremstille en lipidsuspensjon; (3) filtrering av bulkløsningen gjennom et steriliserende filter(e) for å gjøre suspensjonen fri for mikrobielle forurensninger; (4) fordele den sterile suspensjonen i individuelle medisinglass i et kontrollert aseptisk område; (5) å laste de tildelte medisinglassene inn i et lyofiliseirngskammer for å utbytte gassen øverst i medisinglasset med perfluorpropangass (PFP); (6) å forflytte de lukkede medisinglassene etter gassut-veksling til en autoklav for sluttsterilisering. Det er tre hovedhindre ved denne fremgangsmåten: (1) homogenitet av lipidblandingen; (2) hydratiseringen av lipidblandingen; (3) homogenitet og partikkelstørrelse av suspensjonen; og (4) steril filtrering av suspensjonen gjennom et steriliseringsfilter(e). Preparation of a phospholipid contrast agent can be divided into the following steps: (1) preparation of lipid mixture; (2) mixing the bulk solution, which involves hydration and dispersion of the lipid mixture in a largely aqueous medium to produce a lipid suspension; (3) filtering the bulk solution through a sterilizing filter(s) to render the suspension free of microbial contaminants; (4) dispense the sterile suspension into individual vials in a controlled aseptic area; (5) loading the assigned vials into a lyophilization chamber to replace the gas at the top of the vial with perfluoropropane (PFP) gas; (6) transferring the closed medicinal vials after gas exchange to an autoclave for final sterilization. There are three main obstacles to this method: (1) homogeneity of the lipid mixture; (2) the hydration of the lipid mixture; (3) homogeneity and particle size of the suspension; and (4) sterile filtering the suspension through a sterilizing filter(s).

Fosfolipidblandinger fremstilles typisk ved å oppløse eller suspendere de nødvendige lipidene i et passende vandig eller ikke-vandig løsmngsmiddelsystem, og deretter å redusere volumet enten ved lyofilisering eller destillasjon. Ideelt sett fremstiller denne fremgangsmåten blandede faste stoffer med høy homogenitet og renhet. Imidlertid, mens den fungerer bra i liten, laboratoireskala, er denne enkle tilnærmingen ofte prob-lematisk ved oppskalering til produksjonsstørrelsesmengder. Vanskelighetene inklude-rer: (1) å opprettholde homogenitet gjennom løsningsmiddelfjerningstrinnet (på grunn av forskjellige løseligheter); (2) å opprettholde renhet (ofte et problem når vann benyttes på grunn av hydrolyttiske sidereaksjoner); (3) å forbedre renhet; (4) å minimalisere løs-ningsmiddelvolum; og (5) utvinning av de endelige faste stoffene (for eksempel, det er ikke praktisk å skrape ut fast stoff fra en stor reaktor). Phospholipid mixtures are typically prepared by dissolving or suspending the required lipids in a suitable aqueous or non-aqueous solvent system, and then reducing the volume either by lyophilization or distillation. Ideally, this method produces mixed solids of high homogeneity and purity. However, while it works well on a small, laboratory scale, this simple approach is often problematic when scaling up to production-size quantities. Difficulties include: (1) maintaining homogeneity throughout the solvent removal step (due to different solubilities); (2) maintaining purity (often a problem when water is used due to hydrolytic side reactions); (3) to improve purity; (4) to minimize solvent volume; and (5) recovery of the final solids (eg, it is not practical to scrape out solids from a large reactor).

Etter fremstilling av en lipidblanding, involverer sluttblanding typisk introduksjon av blandingen i et vandig medium. Siden fosfolipider er hydrofobiske og ikke er lett løseli-ge i vann, forårsaker tilsetning av fosfolipider eller en lipidblanding direkte til en løs-ning at lipidpulveret aggregerer og danner klumper som er svært vanskelig å dispergere. Således kan ikke hydratiseringsprosessen kontrolleres innenfor en rimelig driftsperiode. Direkte hydratisering av fosfolipider eller en lipidblanding i et vandig medium gir en uklar suspensjon med partikler som strekker seg fra 0,6 (im til 100 um. På grunn av relativt stor partikkelstørrelsesdistribusjon, kan ikke suspensjonen filtreres ved romtemperatur når suspensjonsløsningstemperaturen er under gel-til-væskekrystallfaseover-gangstemperaturene for lipider. Lipidene ville akkumuleres i filterene hvilket ville for-årsake en begrensning i strømningshastigheten, og i de fleste tilfeller ville filterene bli fullstendig blokkert kort etter. Videre reduksjon i suspensjonspartikkelstørrelsen kan ikke oppnås gjennom en konvensjonell blandingsprosess ("batching process"), selv etter forlenget blanding (for eksempel 6 timer) ved forhøyede temperaturer (for eksempel 40°C til 80°C) med en vanlig benyttet skipspropell. After preparation of a lipid mixture, final mixing typically involves introducing the mixture into an aqueous medium. Since phospholipids are hydrophobic and are not readily soluble in water, adding phospholipids or a lipid mixture directly to a solution causes the lipid powder to aggregate and form clumps that are very difficult to disperse. Thus, the hydration process cannot be controlled within a reasonable operating period. Direct hydration of phospholipids or a lipid mixture in an aqueous medium yields a cloudy suspension with particles ranging from 0.6 (im to 100 µm. Because of the relatively large particle size distribution, the suspension cannot be filtered at room temperature when the suspension solution temperature is below the gel-to - the liquid crystal phase transition temperatures for lipids. The lipids would accumulate in the filters which would cause a limitation in the flow rate, and in most cases the filters would be completely blocked soon after. Further reduction in the suspension particle size cannot be achieved through a conventional mixing process ("batching process "), even after prolonged mixing (eg 6 hours) at elevated temperatures (eg 40°C to 80°C) with a commonly used marine propeller.

Selv om filtrering ved forhøyede temperaturer, dvs. ved temperaturer over faseover-gangstemperaturene for lipider, er mulig, ville en signifikant mengde av store lipidpartikler fremdeles bli ekskludert når et normalt filtreringstrykk benyttes. Videre, ville kon-sentrasjoner av det sterile filtratet ha variable lipidinnhold fra batch til batch avhengig av hvordan lipidene initielt er hydratisert som igjen er bestemt av de fysiske karakteris-tika, for eksempel morfologi, av utgangsmaterialene. Although filtration at elevated temperatures, i.e. at temperatures above the phase transition temperatures for lipids, is possible, a significant amount of large lipid particles would still be excluded when a normal filtration pressure is used. Furthermore, concentrations of the sterile filtrate would have variable lipid contents from batch to batch depending on how the lipids are initially hydrated, which in turn is determined by the physical characteristics, for example morphology, of the starting materials.

Fremgangsmåten med direkte å hydratisere lipidene eller lipidblandingen for å fremstille en homogen suspensjon og filtrering av suspensjonen gjennom et steriliseringsfilter(e) kan være vanskelig og kostbart å oppskalere til en rimelig kommersiell skala, for eksempel >201. The process of directly hydrating the lipids or lipid mixture to produce a homogeneous suspension and filtering the suspension through a sterilizing filter(s) can be difficult and expensive to scale up to a reasonable commercial scale, eg >201.

Således tar foreliggende fremgangsmåte for fremstilling av en fosfolipidsuspensjon, hvilken fremgangsmåte innbefatter trinn med fremstilling av en lipidblanding, sikte på å løse problemene som omtalt ovenfor ved å fremskaffe en praktisk fremgangsmåte som lett kan oppskaleres og tilpasses til forskjellige produksjonsanlegg uten kostbar modifi-sering eller individuell tilpasning av eksisterende utstyr. Thus, the present method for producing a phospholipid suspension, which method includes the step of producing a lipid mixture, aims to solve the problems discussed above by providing a practical method that can be easily scaled up and adapted to different production facilities without expensive modification or individual adaptation of existing equipment.

Følgelig er et formål ved foreliggende oppfinnelse å tilveiebringe en ny fremgangsmåte for å fremstille en fosfolipidsuspensjon innbefattende et forutgående trinn med fremstilling av nevnte lipidblanding. Accordingly, an aim of the present invention is to provide a new method for producing a phospholipid suspension including a prior step of producing said lipid mixture.

Dette og andre formål som vil bli åpenbare gjennom den følgende detaljerte beskrivelsen er oppnådd ved oppfinnernes funn av at det å oppløse en lipidblanding i et egnet ikke-vandig løsningsmiddel før introduksjonen av en vandig løsning tar hensyn til pro-duksjon av en fosfolipidsuspensjon. This and other objects which will become apparent through the following detailed description have been achieved by the inventors' discovery that dissolving a lipid mixture in a suitable non-aqueous solvent prior to the introduction of an aqueous solution allows for the production of a phospholipid suspension.

[1] Således tilveiebringer foreliggende oppfinnelse en fremgangsmåte for å fremstille en fosfolipidsuspensjon, og denne fremgangsmåten er kjennetegnet ved at den omfatter: [1] Thus, the present invention provides a method for producing a phospholipid suspension, and this method is characterized by the fact that it comprises:

(a) å kontakte minst to lipider med et første ikke-vandig løsningsmiddel for å danne en løsning; (b) å konsentrere løsningen til en tykk gel; (c) å kontakte den tykke gelen med et andre ikke-vandig løsningsmiddel for å danne en løsning; (d) å konsentrere denne løsningen fra trinn (c) for å danne en lipidblanding; (e) å kontakte lipidblandingen med et ikke-vandig løsningsmiddel, der lipidblandingen stort sett oppløses i det ikke-vandige løsningsmidlet for å danne en (a) contacting at least two lipids with a first non-aqueous solvent to form a solution; (b) concentrating the solution to a thick gel; (c) contacting the thick gel with a second non-aqueous solvent to form a solution; (d) concentrating this solution from step (c) to form a lipid mixture; (e) contacting the lipid mixture with a non-aqueous solvent, wherein the lipid mixture is substantially dissolved in the non-aqueous solvent to form a

løning; og salary; and

(f) uten å fjerne det ikke-vandige løsningsmidlet, å kontakte løsningen fra trinn (e) (f) without removing the non-aqueous solvent, contacting the solution from step (e)

med en vandig løsning for å danne en lipid suspensjon. with an aqueous solution to form a lipid suspension.

[2] Ved en foretrukket utførelsesform velges det ikke-vandige løsningsmidlet fra propylenglykol, etylenglykol og polyetylenglykol 300. [2] In a preferred embodiment, the non-aqueous solvent is selected from propylene glycol, ethylene glycol and polyethylene glycol 300.

[3] Ved en mer foretrukket utførelsesform er det ikke-vandige løsningsmidlet polypro-pylenglykol. [3] In a more preferred embodiment, the non-aqueous solvent is polypropylene glycol.

[4] Ved en annen utførelsesform omfatter lipidblandingen: (a) 1 ,2-dipalnutoyl-,s/z-glysero-3-fosfatidylcholin; (b) l,2-dipalmitoyl-s«-glysero-3-fosfotidin, mono natriumsalt; og (c) N-(metoksypolyetylenglykol 5000 karbamoyl)-l,2-dipalmitoyl-jw-glysero-3-fosfatidyletanolamin, mono natriumsalt. [4] In another embodiment, the lipid mixture comprises: (a) 1,2-dipalnutoyl-,s/z-glycero-3-phosphatidylcholine; (b) 1,2-dipalmitoyl-s'-glycero-3-phosphotidine, mono sodium salt; and (c) N-(methoxypolyethylene glycol 5000 carbamoyl)-1,2-dipalmitoyl-jw-glycero-3-phosphatidylethanolamine, mono sodium salt.

[5] Ved en annen foretrukket uførelsesform, varmes det ikke-vandige løsningsmidlet i trinn (1), til en temperatur på omtrent 30 til 70°C før det blir kontaktet med lipidblandingen. [5] In another preferred embodiment, the non-aqueous solvent in step (1) is heated to a temperature of about 30 to 70°C before being contacted with the lipid mixture.

[6] Ved en annen foretrukket utførelsesform oppvarmes det ikke-vandige løsningsmidlet til en temperatur på omtrent 50 til 55°C før det blir kontaktet med lipidblandingen. [6] In another preferred embodiment, the non-aqueous solvent is heated to a temperature of about 50 to 55°C before being contacted with the lipid mixture.

[7] Ved en annen foretrukket utførelsesform er forholdet av lipidblandingen til det ikke-vandige løsningsmidlet fra omtrent 5 mg av lipidblandingen pr. ml av ikke-vandig løs-ningsmiddel til omtrent 15 mg/ml. [7] In another preferred embodiment, the ratio of the lipid mixture to the non-aqueous solvent is from about 5 mg of the lipid mixture per ml of non-aqueous solvent to about 15 mg/ml.

[8] Ved en annen foretrukket utførelsesform er forholdet av lipidblanding til ikke-vandig løsningsmiddel omtrent 10 mg/ml. [8] In another preferred embodiment, the ratio of lipid mixture to non-aqueous solvent is about 10 mg/ml.

[9] Ved en annen foretrukket utførelsesform velges den vandige løsningen i trinn (2) fra vann, saltoppløsning, en saltoppløsning/glyserinblanding og en saltoppløs-ning/glyserin/ikke-vandigløsningsmiddelblanding. [9] In another preferred embodiment, the aqueous solution in step (2) is selected from water, salt solution, a salt solution/glycerin mixture and a salt solution/glycerin/non-aqueous solvent mixture.

[10] Ved en mer foretrukket utførelsesform er den vandige løsningen en saltoppløsning og glyserinblanding. [10] In a more preferred embodiment, the aqueous solution is a salt solution and glycerin mixture.

[11] Ved en annen foretrukket utførelsesform er den vandige løsningen en saltoppløs-ning, glyserin, og propylenglykolblanding. [11] In another preferred embodiment, the aqueous solution is a salt solution, glycerin and propylene glycol mixture.

[12] Ved en annen mer foretrukket utførelsesform er 6,8 mg/ml av natriumklorid tilstede, 0,1 ml/ml av glyserin tilstede, 0,1 ml/ml av propylenglykol tilstede, og omtrent 0,75 til 1,0 mg/ml av lipidblandingen tilstede. [12] In another more preferred embodiment, 6.8 mg/ml of sodium chloride is present, 0.1 ml/ml of glycerin is present, 0.1 ml/ml of propylene glycol is present, and about 0.75 to 1.0 mg /ml of the lipid mixture present.

[13] Ved en enda mer foretrukket utførelsesform er 0,75 mg/ml av lipidblandingen tilstede. [13] In an even more preferred embodiment, 0.75 mg/ml of the lipid mixture is present.

[14] Ved en annen mer foretrukket utførelsesform er 1,0 mg/ml av lipidblandingen tilstede. [14] In another more preferred embodiment, 1.0 mg/ml of the lipid mixture is present.

[15] Ved en annen foretrukket utførelsesform varmes den vandige løsningen i trinn (f), til en temperatur på omtrent 45 til 60°C før den kontaktes med løsningen fra trinn (e). [15] In another preferred embodiment, the aqueous solution in step (f) is heated to a temperature of about 45 to 60°C before being contacted with the solution from step (e).

[16] Ved en annen mer foretrukket utførelsesform oppvarmes den vandige løsningen til en temperatur fra omtrent 50 til 55°C før den kontaktes med løsningen fra trinn (e). [16] In another more preferred embodiment, the aqueous solution is heated to a temperature of about 50 to 55°C before contacting it with the solution from step (e).

[17] Ved en annen foretrukket utførelsesform omfatter fremgangsmåten videre: (g) å oppvarme lipidsuspensjonen fra trinn (f) til en temperatur omtrent lik med eller høyere enn den høyeste gel-til-væskekrystallfaseovergangstemperatur av lipidene tilstede i suspensjonen. [17] In another preferred embodiment, the method further comprises: (g) heating the lipid suspension from step (f) to a temperature approximately equal to or higher than the highest gel-to-liquid crystal phase transition temperature of the lipids present in the suspension.

[18] Ved en annen mer foretrukket utførelsesform oppvarmes lipidsuspensjonen i trinn (g) til en temperatur på minst omtrent 67°C. [18] In another more preferred embodiment, the lipid suspension is heated in step (g) to a temperature of at least about 67°C.

[19] Ved en annen mer foretrukket utførelsesform omfatter fremgangsmåten videre: [19] In another, more preferred embodiment, the method further comprises:

(h) å filtrere lipidsuspensjonen gjennom et steriliseringsfilter. (h) filtering the lipid suspension through a sterilizing filter.

[20] Ved en annen enda mer foretrukket utførelsesform utføres filtreringen i trinn (h) ved å benytte to steriliseringsfilterinnsatser. [20] In another even more preferred embodiment, the filtration is carried out in step (h) by using two sterilization filter inserts.

[21] Ved en videre foretrukket utførelsesform er steriliseringsfilterinnsatsene i trinn (h) ved en temperatur på fra omtrent 70 til 80°C. [21] In a further preferred embodiment, the sterilization filter inserts in step (h) are at a temperature of from approximately 70 to 80°C.

[22] Ved en annen videre foretrukket utførelsesform benyttes 0,2 nm hydrofile filtere i trinn (h). [22] In another further preferred embodiment, 0.2 nm hydrophilic filters are used in step (h).

[23] Ved en annen enda mer foretrukket utførelsesform omfatter fremgangsmåten videre: [23] In another even more preferred embodiment, the method further comprises:

(i) å fordele den filtrerte løsningen fra trinn (h) i et medisinglass. (i) dispensing the filtered solution from step (h) into a vial.

[24] Ved en annen videre foretrukket utførelsesform omfatter fremgangsmåten videre: (j) å utveksle gassen i den øvre delen av medisinglasset fra trinn (i) med en perfluorkarbongass. [24] In another further preferred embodiment, the method further comprises: (j) exchanging the gas in the upper part of the medicine glass from step (i) with a perfluorocarbon gas.

[25] Ved en annen enda videre foretrukket utførelsesform er perfluorkarbongassen perfluorpropan. [25] In another even further preferred embodiment, the perfluorocarbon gas is perfluoropropane.

[26] Ved en annen enda videre foretrukket utførelsesform utføres utskiftingen av den øvre gassen ved å benytte ete lyofiliseirngskammer. [26] In another even further preferred embodiment, the replacement of the upper gas is carried out by using a lyophilization chamber.

[27] Ved en annen enda videre foretrukket utførelsesform omfatter fremgangsmåten videre: [27] In another even further preferred embodiment, the method further comprises:

(k) å sterilisere medisinglasset fra trinn (j). (k) sterilizing the vial from step (j).

[28] Ved en ytterligere videre foretrukket utførelsesform steriliseres medisinglasset i trinn (k) ved omtrent 126-130°C i 1 til 10 minutter. [28] In a still further preferred embodiment, the vial is sterilized in step (k) at approximately 126-130°C for 1 to 10 minutes.

[29] Ved en annen foretrukket utførelsesform er det første ikke-vandige løsningsmidlet i trinn (a) en blanding av metanol og toluen. [29] In another preferred embodiment, the first non-aqueous solvent in step (a) is a mixture of methanol and toluene.

[30] Ved en annen foretrukket utførelsesform er det andre ikke-vandige løsningsmidlet i trinn (c) metyl t-butyleter. [30] In another preferred embodiment, the second non-aqueous solvent in step (c) is methyl t-butyl ether.

[31] Ved en annen foretrukket utførelsesform varmes løsningen i trinn (a) til en temperatur som er tilstrekkelig til å fullføre oppløsningen av lipidene i løsningsmidlet. [31] In another preferred embodiment, the solution in step (a) is heated to a temperature sufficient to complete the dissolution of the lipids in the solvent.

[32] Ved en annen mer foretrukket utførelsesform varmes løsningen i trinn (a) til omtrent 25 til 75°C. [32] In another more preferred embodiment, the solution in step (a) is heated to about 25 to 75°C.

[33] Ved en annen foretrukket utførelsesform vaskes de oppsamlede faste stoffene i trinn (d) med metyl t-butyleter og tørkes under vakuum. [33] In another preferred embodiment, the solids collected in step (d) are washed with methyl t-butyl ether and dried under vacuum.

Den ved foreliggende fremgangsmåte oppnådde fosfolipidsuspensjon kan hensiktsmes-sig omfatte: (a) en lipidblanding i en mengde på omtrent 0,75-1,0 mg/ml av suspensjon; (b) natriumklorid i en mengde på omtrent 6,8 mg/ml av suspensjon; (c) glyserin i en mengde på omtrent 0,1 ml/ml av suspensjon; (d) propylenglykol i en mengde på omtrent 0,1 ml/ml av suspensjon; og (e) vann, og denne suspensjonen kan fremstilles ved: (1) å kontakte en lipidblanding med et ikke-vandig løsningsmiddel, der lipidblandingen stort sett oppløses i det ikke-vandige løsningsmidlet; (2) å kontakte løsningen fra trinn (1) med en vandig løsning for å danne en lipidsuspensjon; (3) å varme opp lipidsuspensjonen fra trinn (2) til en temperatur omtrent lik med The phospholipid suspension obtained by the present method may conveniently comprise: (a) a lipid mixture in an amount of approximately 0.75-1.0 mg/ml of suspension; (b) sodium chloride in an amount of about 6.8 mg/ml of suspension; (c) glycerin in an amount of about 0.1 ml/ml of suspension; (d) propylene glycol in an amount of about 0.1 ml/ml of suspension; and (e) water, and this suspension can be prepared by: (1) contacting a lipid mixture with a non-aqueous solvent, wherein the lipid mixture is substantially dissolved in the non-aqueous solvent; (2) contacting the solution from step (1) with an aqueous solution to form a lipid suspension; (3) heating the lipid suspension from step (2) to a temperature approximately equal to

eller høyere enn den høyeste gel-til-væskekrystallfaseovergangstemperatur av lipidene tilstede i suspensjonen; og or higher than the highest gel-to-liquid crystal phase transition temperature of the lipids present in the suspension; and

(4) å filtrere lipidsuspensjonen gjennom et steriliseringsfilter. (4) filtering the lipid suspension through a sterilizing filter.

Formulering Formulation

Den foreliggende oppfinnelsen er tiltenkt å bli utført på minst en multigramskala, kilo-gramskala, multikilogramskala eller industriell skala. Multigramskal, slik det her er benyttet, er foretrukket skalaen der minst et utgangsmateriale er tilstede i 10 g eller mer, mer foretrukket minst 50 g eller mer, enda mer foretrukket minst 100 g eller mer. Multikilogramskala, slik det her er benyttet, er ment å bety skalaen der mer enn 1 kg av minst et utgangsmateriale benyttes. Industriell skala, slik det her er benyttet, er ment å bety en skala som er noe annet en laboratorieskala og som er tilstrekkelig til å forsyne produkt som er tilstrekkelig for enten kliniske tester eller distribusjon til forbrukere. Lipidblanding eller fosfolipidblanding slik det her er brukt, er ment å stå for to eller flere lipider som har blitt blandet. Lipidblandingen er generelt i en pulverform. Foretrukket er minst en av lipidene et fosfolipid. Foretrukket, inneholder lipidblandingen 1,2-dipalmitoyl-sn-glysero-3-fosfatidylcholin (DPPC), 1,2-dipalmitoyl-j/i-glysero-3-fosfotidin, mono natriumsalt (DPPA), og N-(metoksypolyetylenglykol 5000 karba-moyl)-l ,2-dipalmitoyl-j/i-glysero-3-fosfatidyletanolamin, mono natriumsalt (MPEG5000-DPPE). Mengden av hvert lipid tilstede i blandingen vil avhenge av det ønskede sluttproduktet. Foretrukne forhold av hvert lipid er beskrevet i eksempeldelen. Et bredt mangfold av andre lipider, slik som de beskrevet i Unger et al., U.S. patent nr. 5,469,854, hvorved innholdet av denne er innarbeidet her som referanse, kan benyttes i foreliggende fremgangsmåte. The present invention is intended to be performed on at least a multigram scale, kilogram scale, multikilogram scale, or industrial scale. Multigram scale, as used here, is preferably the scale where at least one starting material is present in 10 g or more, more preferably at least 50 g or more, even more preferably at least 100 g or more. Multi-kilogram scale, as used here, is intended to mean the scale where more than 1 kg of at least one starting material is used. Industrial scale, as used herein, is intended to mean a scale other than laboratory scale that is sufficient to supply product sufficient for either clinical testing or distribution to consumers. Lipid mixture or phospholipid mixture as used here is meant to represent two or more lipids that have been mixed. The lipid mixture is generally in a powder form. Preferably, at least one of the lipids is a phospholipid. Preferably, the lipid mixture contains 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-j/i-glycero-3-phosphotidine, mono sodium salt (DPPA), and N-(methoxypolyethylene glycol 5000 carba -moyl)-1,2-dipalmitoyl-j/i-glycero-3-phosphatidylethanolamine, mono sodium salt (MPEG5000-DPPE). The amount of each lipid present in the mixture will depend on the desired end product. Preferred ratios of each lipid are described in the examples section. A wide variety of other lipids, such as those described in Unger et al., U.S. patent no. 5,469,854, the content of which is incorporated here as a reference, can be used in the present method.

Fosfolipid, slik det her er benyttet, er en fettsubstans inneholdende en oljeaktig (hydro-fob) hydrokarbonkjede(r) med en polar (hydrofil) fosforsyrehovedgruppe. Fosfolipider er amfifiliske. De danner spontant grenser og lukker hulrom i vandige media. Fosfolipider består av omtrent 50% av mengden av dyrecelleplasmamembran. Phospholipid, as used here, is a fatty substance containing an oily (hydrophobic) hydrocarbon chain(s) with a polar (hydrophilic) phosphoric acid main group. Phospholipids are amphiphilic. They spontaneously form boundaries and close voids in aqueous media. Phospholipids comprise about 50% of the amount of animal cell plasma membrane.

Fremstilling av lipidblandingen Preparation of the lipid mixture

Lipidblandingen kan fremstilles via en vandig suspensjon-lyofiliseringsfremgangsmåte eller en organisk løsningsmiddeloppløsnings-utfellingsfremgangsmåte ved å benytte organiske løsningsmidler. Ved den vandige suspensjon-lyofiliseringsfremgangsmåten suspenderes de ønskede lipidene i vann ved en forhøyet temperatur og deretter konsentreres ved lyofilisering. Foretrukket benyttes en oppløsningsfremgangsmåte. The lipid mixture can be prepared via an aqueous suspension-lyophilization method or an organic solvent dissolution-precipitation method using organic solvents. In the aqueous suspension-lyophilization method, the desired lipids are suspended in water at an elevated temperature and then concentrated by lyophilization. A dissolution method is preferably used.

Trinn ( a ) : Step (a):

Den organiske løsningsmiddeloppløsnings-utfellingsfremgangsmåten omfatter å kontakte de ønskede lipidene (for eksempel DPPA, DPPC, og MPEG5000 DPPE) med et førs-te ikke-vandig løsningsmiddelsystem. Dette systemet er typisk en kombinasjon av løs-ningsmidler, for eksempel CHCl3/MeOH, CH2Cl2/MeOH og toluen/MeOH. Foretrukket er det første ikke-vandige løsningsmidlet en blanding av toluen og metanol. Det kan være ønskelig å varme lipidløsningen til en temperatur som er tilstrekkelig for å oppnå fullstendig oppløsning. En slik temperatur er foretrukket omtrent 25 til 75°C, mer foretrukket omtrent 35 til 65°C. The organic solvent dissolution-precipitation method involves contacting the desired lipids (eg, DPPA, DPPC, and MPEG5000 DPPE) with a first non-aqueous solvent system. This system is typically a combination of solvents, for example CHCl3/MeOH, CH2Cl2/MeOH and toluene/MeOH. Preferably, the first non-aqueous solvent is a mixture of toluene and methanol. It may be desirable to heat the lipid solution to a temperature sufficient to achieve complete dissolution. Such a temperature is preferably about 25 to 75°C, more preferably about 35 to 65°C.

Etter oppløsning, kan det være ønskelig å fjerne ikke oppløst fremmed materiale ved varmfiltrering eller avkjøling til romtemperatur og deretter filtrering. Kjente fremgangsmåter for filtrering kan benyttes (for eksempel tyngdekraftsfiltrering, vakuumfiltrering eller trykkfiltrering). After dissolution, it may be desirable to remove undissolved foreign material by hot filtration or cooling to room temperature and then filtration. Known methods of filtration can be used (for example gravity filtration, vacuum filtration or pressure filtration).

Trinn ( b ) : Step (b):

Løsningen konsentreres deretter til en tykk gel/halvfast stoff. Konsentrasjonen blir foretrukket utført ved vakuumdestillasjon. Andre fremgangsmåter for å konsentrere løs-ningen, slik som rotasjonsfordampning, kan også benyttes. Temperaturen i dette trinnet er foretrukket omtrent 20 til 60°C, mer foretrukket 30 til 50°C. The solution is then concentrated to a thick gel/semi-solid. The concentration is preferably carried out by vacuum distillation. Other methods for concentrating the solution, such as rotary evaporation, can also be used. The temperature in this step is preferably about 20 to 60°C, more preferably 30 to 50°C.

Trinn ( c) : Step (c):

Den tykke gelen/halvfaste stoffet blir deretter dispergert i et andre ikke-vandig løs-ningsmiddel. Blandingen slemmes opp, foretrukket nær romtemperatur (for eksempel 15-30°C). Anvendbare andre ikke-vandige løsningsmidler er de som forårsaker at lipidene utfelles fra den filtrerte løsningen. Det andre ikke-vandige løsningsmidlet er foretrukket metyl t-butyleter (MTBE). Andre etere og alkoholer kan også benyttes. The thick gel/semi-solid is then dispersed in a second non-aqueous solvent. The mixture is slurried, preferably close to room temperature (for example 15-30°C). Other useful non-aqueous solvents are those which cause the lipids to precipitate from the filtered solution. The second non-aqueous solvent is preferably methyl t-butyl ether (MTBE). Other ethers and alcohols can also be used.

Trinn ( d) : Step (d):

De faste stoffene fremstilt ved tilsetning av det andre ikke-vandige løsningsmidlet blir deretter samlet opp. De oppsamlede faste stoffene blir foretrukket vasket med en annen porsjon av det andre ikke-vandige løsningsmidlet (for eksempel MTBE). Oppsamling kan utføres via vakuumfiltrering eller sentrifugering, foretrukket ved romtemperatur. Etter oppsamling er det foretrukket at de faste stoffene tørkes under vakuum ved en temperatur på omtrent 20 til 60°C. The solids produced by the addition of the second non-aqueous solvent are then collected. The collected solids are preferably washed with another portion of the second non-aqueous solvent (eg MTBE). Collection can be carried out via vacuum filtration or centrifugation, preferably at room temperature. After collection, it is preferred that the solids are dried under vacuum at a temperature of approximately 20 to 60°C.

På grunn av de følgende årsakene, foretrekkes den organiske løsningsmiddeloppløs-ning-utfellingsfremgangsmåten foran den vandige suspensjon/lyoifliseringsfremgangsmåten: (1) Fordi lipidene er nokså løselige i toluen/metanol, reduseres løsningsmiddelvolumene betraktelig (relativ til det vandige prosedyren). (2) På grunn av denne økte løseligheten, blir driftstemperaturen også lavere relativt til den vandige prosedyren, og derved unngås den hydrolyttiske ustabiliteten ved fettsyre-estere. (3) Når den avkjøles tilbake til romtemperatur, forblir toluen/metanolløsningen av lipider homogen, hvilket tillater at en romtemperaturfiltrering fjerner fast fremmed materiale. (4) MTBE-utfellingen gir hurtig og enkel isolering av lipidblandingsfaststoff. Med den vandige fremgangsmåten benyttes en tidskrevende lyofiliseringsfremgangsmåte for å isolere materialet. (5) MTBE-utfellingen gir også mulighet for fjerningen av eventuelle MTBE-løselige urenheter, som føres inn i filtratavfallsstrømmen. Denne muligheten for urenhetsfjer-ning oppnås ikke når en løsning konsentreres direkte eller lyofiliseres til et fast stoff. For the following reasons, the organic solvent dissolution-precipitation method is preferred over the aqueous suspension/lyophilization method: (1) Because the lipids are quite soluble in toluene/methanol, the solvent volumes are greatly reduced (relative to the aqueous procedure). (2) Due to this increased solubility, the operating temperature is also lower relative to the aqueous procedure, thereby avoiding the hydrolytic instability of fatty acid esters. (3) When cooled back to room temperature, the toluene/methanol solution of lipids remains homogeneous, allowing a room temperature filtration to remove solid foreign material. (4) The MTBE precipitation provides rapid and easy isolation of lipid mixture solids. With the aqueous method, a time-consuming lyophilization method is used to isolate the material. (5) The MTBE precipitation also allows for the removal of any MTBE-soluble impurities, which are introduced into the filtrate waste stream. This possibility of impurity removal is not achieved when a solution is concentrated directly or lyophilized to a solid.

(6) Den foreliggende fremgangsmåten gir homogene faste stoffer. (6) The present process gives homogeneous solids.

Fremstilling av lipidsuspensjonen Preparation of the lipid suspension

Trinn ( é ) : Step (é):

I trinn (e) kontaktes en lipidblanding med et ikke-vandig løsningsmiddel, hvorved lipidblandingen i det alt vesentlige oppløses i det ikke-vandige løsningsmidlet. Alternativt, kan de individuelle lipidene kontaktes med det ikke-vandige løsningsmidlet sekvensielt i rekkefølgen: DPPC, DPPA og MPEG5000-DPPE; DPPC, MPEG5000-DPPE og DPPA; MPEG5000-DPPE, DPPA og DPPC; eller MPEG5000-DPPE, DPPC og DPPa. DPPA som er det minst løselige og minst overveldende av lipidene blir ikke tilsatt først. Å tilsette en av de andre lipidene før eller samtidig med å tilsette DPPA, letter oppløs-ningen av DPPA. Ved et annet alternativ kan de individuelle lipidene forenes i deres faste former og foreningen av de faste stoffene kontaktes med det ikke-vandige løs-ningsmidlet. In step (e), a lipid mixture is contacted with a non-aqueous solvent, whereby the lipid mixture is essentially dissolved in the non-aqueous solvent. Alternatively, the individual lipids can be contacted with the non-aqueous solvent sequentially in the order: DPPC, DPPA and MPEG5000-DPPE; DPPC, MPEG5000-DPPE and DPPA; MPEG5000-DPPE, DPPA and DPPC; or MPEG5000-DPPE, DPPC and DPPa. DPPA, which is the least soluble and least overwhelming of the lipids, is not added first. Adding one of the other lipids before or at the same time as adding DPPA facilitates the dissolution of DPPA. In another alternative, the individual lipids can be combined in their solid forms and the combination of the solids contacted with the non-aqueous solvent.

Vesentlig oppløsning indikeres generelt når blandingen av lipidblanding og ikke-vandig løsningsmiddel blir klar. Som bemerket tidligere, er fosfolipider generelte ikke vannlø-selige. Således forårsaker direkte tilførsel av en blanding av fosfolipidblanding i et vandig miljø at lipidblandingen aggregerer til å danne klumper som er svært vanskelige å dispergere. Den foreliggende oppfinnelsen overvinner denne begrensningen ved å opp-løse lipidblandingen i et ikke-vandig løsningsmiddel før den vandige løsningen tilføres. Dette gjør det mulig å dispergere lipidblandingen jevnt i en væske. Væskedispersjonen kan deretter tilføres et ønsket vandig miljø. Substantial dissolution is generally indicated when the mixture of lipid mixture and non-aqueous solvent becomes clear. As noted earlier, phospholipids are generally not water soluble. Thus, direct application of a mixture of phospholipid mixture in an aqueous environment causes the lipid mixture to aggregate to form clumps which are very difficult to disperse. The present invention overcomes this limitation by dissolving the lipid mixture in a non-aqueous solvent before the aqueous solution is added. This makes it possible to disperse the lipid mixture evenly in a liquid. The liquid dispersion can then be added to a desired aqueous environment.

Ikke-vandig er ment å bety et løsningsmiddel eller blanding av løsningsmidler der mengden av vann som er tilstede er tilstrekkelig lav til ikke å hindre oppløsning av lipidblandingen. Mengden av ikke-vandig løsningsmiddel som er nødvendig, vil avhenge av løseligheten av lipidblandingen og også den endelige ønskede konsentrasjonen av hver komponent. Som en fagmann på området vil forstå, vil nivået av vann tilstede i det ikke-vandige løsningsmidlet som kan tolereres, variere basert på vannløselighetene av de individuelle lipidene i lipidblandingen. Jo mer vannløselig de individuelle fosfolipi-dene er, jo mer vann kan være tilstede i trinn (1). Foretrukket benyttes propylenglykol som det ikke-vandige løsningsmidlet. Imidlertid, kan andre medlemmer av polyolfami-lien, slik som etylenglykol, og polyetylenglykol 300 benyttes. Non-aqueous is intended to mean a solvent or mixture of solvents in which the amount of water present is sufficiently low not to impede dissolution of the lipid mixture. The amount of non-aqueous solvent required will depend on the solubility of the lipid mixture and also the final desired concentration of each component. As one skilled in the art will appreciate, the level of water present in the non-aqueous solvent that can be tolerated will vary based on the water solubilities of the individual lipids in the lipid mixture. The more water soluble the individual phospholipids are, the more water can be present in step (1). Propylene glycol is preferably used as the non-aqueous solvent. However, other members of the polyol family, such as ethylene glycol, and polyethylene glycol 300 can be used.

Å blande lipidblandingen og det ikke-vandige løsningsmidlet mekanisk kan være nød-vendig for å oppnå fullstendig oppløsning. En fagmann på området vil forstå at et mangfold av blandemåter er tilgjengelige. Det er foretrukket at et kraftig skjærehomogenise-ringsapparat benyttes. Mechanical mixing of the lipid mixture and the non-aqueous solvent may be necessary to achieve complete dissolution. One skilled in the art will appreciate that a variety of mixing methods are available. It is preferred that a powerful cutting homogenisation apparatus is used.

En fagmann på området vil forstå at en økning av temperaturen av løsningsmidlet vil hjelpe ved oppløsning av lipidblandingen. Temperaturen hvorved trinn (1) kan utføres kan strekke seg fra romtemperatur til kokepunktet for det valgte løsningsmidlet. Foretrukket er temperaturen fra omtrent 30 til omtrent 70°C, mer foretrukket rundt 45 til rundt 60°C, og enda mer foretrukket omtrent 50, 51, 52, 53, 54 eller 55°C. Når etylenglykol eller polyetylenglykol 300 benyttes, er det foretrukket at temperaturen er fra omtrent 50 til omtrent 60°C og mer foretrukket omtrent 55°C. Ved å holde løsningen ved en forhøyet temperatur, vil løsningsviskositet reduseres og formuleringsfremstilling forenkles. One skilled in the art will appreciate that increasing the temperature of the solvent will aid in dissolving the lipid mixture. The temperature at which step (1) can be carried out can range from room temperature to the boiling point of the chosen solvent. Preferably, the temperature is from about 30 to about 70°C, more preferably about 45 to about 60°C, and even more preferably about 50, 51, 52, 53, 54 or 55°C. When ethylene glycol or polyethylene glycol 300 is used, it is preferred that the temperature is from about 50 to about 60°C and more preferably about 55°C. By keeping the solution at an elevated temperature, solution viscosity will be reduced and formulation preparation will be simplified.

En foretrukket fremgangsmåte for å oppløse lipidblandingen er som følger: (i) Tilsette propylenglykol til en passende veiebeholder. (ii) Varme opp polypropylenglykolet til omtrent 40 til 80°C ved et varmebad. (iii) Veie lipidblandingen inn i en separat behol-der, (iv) Når polypropylenglykolet har nådd det ønskede temperaturområdet, overføre løsningen til beholderen som inneholder lipidblandingen. (v) Plassere beholderen tilbake i varmebadet til løsningen blir klar. (vi) Blande lipidblanding-en/propylenglykolløsningen mekanisk for videre å sikre fullstendig oppløsning og homogen dispergering av lipidblandingen. A preferred method for dissolving the lipid mixture is as follows: (i) Add propylene glycol to a suitable weighing container. (ii) Heat the polypropylene glycol to about 40 to 80°C in a heat bath. (iii) Weigh the lipid mixture into a separate container, (iv) When the polypropylene glycol has reached the desired temperature range, transfer the solution to the container containing the lipid mixture. (v) Place the container back into the heat bath until the solution becomes clear. (vi) Mechanically mix the lipid mixture/propylene glycol solution to further ensure complete dissolution and homogeneous dispersion of the lipid mixture.

Forholdet av lipidblanding til ikke-vandig løsningsmiddel vi selvfølgelig være begrenset av løseligheten til lipidblandingen. Dette forholdet vil også være påvirket av den ønskede mengden av lipidblanding i den endelige formuleringen. Foretrukket, er forholdet fra omtrent 1 mg av lipidblanding pr. ml løsningsmiddel (mg/ml) til omtrent 100 mg/ml. Mer foretrukket er lipidblandingen tilstede i omtrent 5,6,7, 8,9,10,11,12,13,14 eller 15 mg/ml. Enda mer foretrukket er lipidblandingen tilstede i omtrent 10 mg/ml. The ratio of lipid mixture to non-aqueous solvent will of course be limited by the solubility of the lipid mixture. This ratio will also be influenced by the desired amount of lipid mixture in the final formulation. Preferably, the ratio is from about 1 mg of lipid mixture per ml of solvent (mg/ml) to about 100 mg/ml. More preferably, the lipid mixture is present at about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 mg/ml. Even more preferably, the lipid mixture is present at about 10 mg/ml.

Trinn ff) : Steps ff):

Det andre trinnet involverer å kontakte løsningen fra trinn (e) med en vandig løsning for å danne en lipidsuspensjon. Den vandige løsningen kan være vann, saltoppløsning, en saltoppløsning/glyserinblanding eller en saltoppløsning/glyserin/ikke-vandig løsnings-middelblanding. Ikke-vandig løsningsmiddel er som definert tidligere, foretrukket propylenglykol. Suspensjon, slik det her benyttes, er ment å indikere en dispersjon hvori uløselige partikler dispergeres i et væskemedium. The second step involves contacting the solution from step (e) with an aqueous solution to form a lipid suspension. The aqueous solution can be water, saline, a saline/glycerin mixture, or a saline/glycerin/non-aqueous solvent mixture. Non-aqueous solvent is, as defined earlier, preferably propylene glycol. Suspension, as used here, is intended to indicate a dispersion in which insoluble particles are dispersed in a liquid medium.

Med en gang fullstendig oppløsning av lipidblandingen er oppnådd (trinn (e)), kan den oppløsningen deretter tilføres til en vandig løsning. Den vandige løsningen kan inneholde en eller flere komponenter valgt fra natriumklorid, glyserin, og et ikke-vandig løs-ningsmiddel. Foretrukket inneholder den vandige løsningen glyserin og natriumklorid. Foretrukket er en tilstrekkelig mengde av propylenglykol tilstede i den vandige løsning-en før tilsetning av løsningen fra trinn 1, for å oppnå den endelige ønskede konsentrasjonen av propylenglykol. Once complete dissolution of the lipid mixture is achieved (step (e)), that solution can then be added to an aqueous solution. The aqueous solution may contain one or more components selected from sodium chloride, glycerin, and a non-aqueous solvent. Preferably, the aqueous solution contains glycerin and sodium chloride. Preferably, a sufficient amount of propylene glycol is present in the aqueous solution before the addition of the solution from step 1, to achieve the final desired concentration of propylene glycol.

Rekkefølgen av tilsetning av ønskede komponenter er ikke forventet å innvirke alvorlig på den oppnådde lipidsuspensjonen. Imidlertid, er det foretrukket at lipidblandingsløs-ningen tilsettes til vann, som allerede kan inneholde de ovenfor anmerkede ytterligere komponentene. Ytterligere ønskede komponenter kan deretter tilsettes. Det er mer foretrukket at lipidblandingsløsningen tilsettes en løsning av vann og natriumklorid (dvs. saltoppløsning). Det er videre foretrukket at lipidblandingsløsningen tilsettes en løsning av vann, natriumklorid, og glyserin. Det er enda mer foretrukket at lipidblandingsløs-ningen tilsettes en løsning av vann, natriumklorid, glyserin og propylenglykol. The order of addition of desired components is not expected to seriously affect the lipid suspension obtained. However, it is preferred that the lipid mixture solution is added to water, which may already contain the above-noted additional components. Additional desired components can then be added. It is more preferred that the lipid mixture solution is added to a solution of water and sodium chloride (ie saline). It is further preferred that the lipid mixture solution is added to a solution of water, sodium chloride and glycerin. It is even more preferred that the lipid mixture solution is added to a solution of water, sodium chloride, glycerin and propylene glycol.

Det er foretrukket av 6,8 mg NaCl er tilstede pr. ml formulering. Foretrukket er 0,1 ml glyserin pr. ml formulering tilstede. En sluttkonsentrasjon på 0,1 ml propylenglykol pr. ml formulering er foretrukket. Den endelige pH for formuleringen er foretrukket omtrent 5,5-7,0. Lipidblandingen er foretrukket tilstede i en mengde på 0,75-1,0 mg/ml i forhold til formulering. It is preferred by 6.8 mg NaCl is present per ml formulation. Preferred is 0.1 ml of glycerin per ml formulation present. A final concentration of 0.1 ml propylene glycol per ml formulation is preferred. The final pH of the formulation is preferably about 5.5-7.0. The lipid mixture is preferably present in an amount of 0.75-1.0 mg/ml in relation to the formulation.

Temperaturen av den vandige løsningen kan strekke seg fra romtemperatur til 70°C. Foretrukket er temperaturen omtrent 45 til 60°C, med 50,51,52,53,54 eller 55 som enda mer foretrukket. For å oppnå fullstendig oppløsning, vil blandingen ha behov for bevegelse, foretrukket røring. pH av løsningen kan også ha behov for å justeres, avhengig av den ønskede sluttformuleringen. Både syre (f.eks. HC1) eller base (f.eks. NaOH) kan tilsettes for å oppnå en slik justering. The temperature of the aqueous solution can range from room temperature to 70°C. The preferred temperature is about 45 to 60°C, with 50, 51, 52, 53, 54 or 55 being even more preferred. To achieve complete dissolution, the mixture will need movement, preferably stirring. The pH of the solution may also need to be adjusted, depending on the desired final formulation. Either acid (eg, HC1) or base (eg, NaOH) can be added to achieve such an adjustment.

Lipidsuspensjonen vil inneholde væskepartikler med varierende størrelser. En av forde-lene med den foreliggende oppfinnelsen er evnen til konsekvent å oppnå små partikler med nesten homogen størrelse. Således er det foretrukket at majoriteten av partikler oppnådd er mindre enn 100 nm i diameter, mer foretrukket mindre enn 50 nm. The lipid suspension will contain liquid particles of varying sizes. One of the advantages of the present invention is the ability to consistently obtain small particles of almost homogeneous size. Thus, it is preferred that the majority of particles obtained are less than 100 nm in diameter, more preferably less than 50 nm.

En foretrukket fremgangsmåte for å oppløse lipidblandingen er som følger: (i) Tilsette vann for injeksjon (WFI) i en blandingsformuleringsbeholder. (ii) Å starte blandingen og forsikre at temperaturen er fra 50 til 55°C. (iii) Tilsette natriumklorid til blandingsformuleringsbeholderen. Vente til det faste stoffet fullstendig har blitt oppløst før man fortsetter til det neste trinnet, (iv) Tilsette glyserin til blandingsformuleringsbeholderen. Gi tilstrekkelig tid for fullstendig blanding, (v) Tilsette det gjenværende propylenglykol som ikke er i lipidblandingen/propylenglykolløsningen. Gi tid til grundig blanding, (vi) Redusere blandingshastigheten for å redusere turbulens i blandingsformuleringsbeholderen. (vii) Tilsette lipidblandingen/propylenglykolløsningen til blandingsformuleringsbeholderen. (viii) Omstille blandingen til opprinnelig hastighet (ix) Tilsette ytterligere WFI om nødvendig, (x) Fortsette å blande i omtrent 25 minutter og forsikre fullstendig blanding, (xi) Kontrollere og justere løsningen til bestemt pH. A preferred method for dissolving the lipid mixture is as follows: (i) Add water for injection (WFI) to a mixture formulation container. (ii) Starting the mixture and ensuring that the temperature is from 50 to 55°C. (iii) Add sodium chloride to the mixture formulation container. Wait until the solid has completely dissolved before proceeding to the next step, (iv) Add glycerin to the compound formulation container. Allow sufficient time for complete mixing, (v) Add the remaining propylene glycol not in the lipid mixture/propylene glycol solution. Allow time for thorough mixing, (vi) Reduce mixing speed to reduce turbulence in the mixing formulation vessel. (vii) Add the lipid mixture/propylene glycol solution to the mixture formulation vessel. (viii) Return mixing to original speed (ix) Add additional WFI if necessary, (x) Continue mixing for approximately 25 minutes and ensure complete mixing, (xi) Check and adjust solution to specified pH.

Trinn ( g) : Step (g):

Trinn (g) involverer å oppvarme lipidsuspensjonen oppnådd i trinn (f) til en temperatur omtrent lik med eller over den høyeste gel-til-væskekrystallfaseovergangstemperaturen av lipidene tilstede i løsningen. Step (g) involves heating the lipid suspension obtained in step (f) to a temperature approximately equal to or above the highest gel-to-liquid crystal phase transition temperature of the lipids present in the solution.

En av formålene med dette trinnet er å tilveiebringe en filtrerbar suspensjon. En løs-ning/suspensjon betraktes som filtrerbar dersom det ikke er noen merkbar reduksjon i strømningshastigheten ved normal fremgangsmåte, og det ikke er noen merkbar økning i trykkfallet i filtreringssystemet. One of the purposes of this step is to provide a filterable suspension. A solution/suspension is considered to be filterable if there is no perceptible reduction in the flow rate by normal procedure, and there is no perceptible increase in the pressure drop in the filtration system.

Eksperimentelle data indikerer at lipidene i formuleringen bør være under deres gel-til-væskekrystallfaseovergang for å forenkle steril filtrering. Når lipidene er under faseovergangstemperaturen, er suspensjonspartiklene rigide. Imidlertid, når de er over deres respektive gel-væskekrystallfaseovergangstemperaturer, er de på en mer løselig organi-sert konfigurasjon og således lettere å filtrere. Experimental data indicate that the lipids in the formulation should be below their gel-to-liquid crystal phase transition to facilitate sterile filtration. When the lipids are below the phase transition temperature, the suspension particles are rigid. However, when they are above their respective gel-liquid crystal phase transition temperatures, they are in a more soluble organized configuration and thus easier to filter.

DPPC og DPPA viser faseoverganger på hhv. 41°C og 67°C. MPEG5000-DPPE er løse-lig i vann, og derfor fremviser det ikke en gel-væskekrystallfaseovergang som er karak-teristisk for de fleste hydratiserte lipidsuspensjoner. Fordi alle lipidene i den foretrukne formuleringen fremviser forskjellige gel-til-væskefaseoverganger, benyttes den høyeste faseovergangstemperaturen, 67°C, fortrinnsvis for å filtrere løsningen. Ved å opprettholde temperaturen ved eller under 67°C, er alle lipidene under deres respektive faseoverganger, hvilket forsikrer løselig konfigurasjon mens de passerer gjennom filterene. DPPC and DPPA show phase transitions of respectively 41°C and 67°C. MPEG5000-DPPE is soluble in water and therefore does not exhibit a gel-liquid crystal phase transition characteristic of most hydrated lipid suspensions. Because all the lipids in the preferred formulation exhibit different gel-to-liquid phase transitions, the highest phase transition temperature, 67°C, is preferably used to filter the solution. By maintaining the temperature at or below 67°C, all the lipids are under their respective phase transitions, ensuring soluble configuration as they pass through the filters.

Oppvarming kan oppnås ved å omslutte blandingsformuleringsbeholderen med en var-mevékslingsvikling. Varmt vann/damp fra en kontrollert kilde, f.eks. et varmtvannsbad, eller en vannvarmer, ville levere tilstrekkelig varme for å opprettholde blandingsformu-leringsløsningen ved en gitt temperatur. Andre varmekilder som er kjent for fagmannen på området kan også benyttes. Heating can be achieved by enclosing the mixture formulation container with a heat exchange coil. Hot water/steam from a controlled source, e.g. a hot water bath, or a water heater, would supply sufficient heat to maintain the compound formulation solution at a given temperature. Other heat sources known to those skilled in the art can also be used.

Trinn ( fr) : Step (fr):

Trinn (h) utføres ved å filtrere væskesuspensjonen gjennom et steriliseirngsfilter. Hen-sikten bak dette trinnet er å tilveiebringe en stort sett bakteriefri suspensjon. Et filtrat betraktes som stort sett bakteriefritt når sansynligheten for at filtratet inneholder minst en kolonidannende mikroorganisme er mindre enn IO"<6>. Step (h) is carried out by filtering the liquid suspension through a sterilizing filter. The purpose behind this step is to provide a largely bacteria-free suspension. A filtrate is considered largely bacteria-free when the probability that the filtrate contains at least one colony-forming microorganism is less than 10"<6>.

Filtrering utføres foretrukket ved å benytte steriliseringsiflterinnsatser. Et middel for å tvinge løsningen gjennom filterene kan også være nødvendig (f.eks. pumping eller trykksetting). Siden løsningen som filtreres trenger å opprettholdes ved en temperatur på eller over den høyeste gel-til-væskekrystallfaseovergangstemperaturen for lipidene tilstede i løsningen, bør filtreringen utføres ved omtrent disse samme temperaturene. For å oppnå dette, er filteret (f.eks. steriliseringsfilterinnsatsene) foretrukket innesperret i omsluttede filterhus som varmes kontinuerlig, f.eks. ved en varmtvannsstrøm fra et temperaturkontrollert varmebad, for å forsikre at suspensjonen er over lipidfaseover-gangstemperaturene. Temperaturen for steriliseringsfilteret er foretrukket fra 50 til 100°C, mer foretrukket fra 60 til 90°C, og enda mer foretrukket 70, 71, 72, 73, 74, 75, 76, 77,78,79 eller 80°C. Filtration is preferably carried out by using sterilization filter inserts. A means of forcing the solution through the filters may also be necessary (eg pumping or pressurizing). Since the solution being filtered needs to be maintained at a temperature at or above the highest gel-to-liquid crystal phase transition temperature of the lipids present in the solution, the filtration should be performed at approximately these same temperatures. To achieve this, the filter (e.g. the sterilizing filter inserts) is preferably enclosed in enclosed filter housings which are continuously heated, e.g. by a hot water stream from a temperature-controlled heating bath, to ensure that the suspension is above the lipid phase transition temperatures. The temperature of the sterilizing filter is preferably from 50 to 100°C, more preferably from 60 to 90°C, and even more preferably 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 or 80°C.

En eller flere steriliseringsfiltere kan benyttes for å filtrere suspensjonen. Det nødvendi-ge antall vil baseres på deres effektivitet for å fjerne bakterier. Det er foretrukket at to filtere benyttes. Størrelsen av filterporene vil være begrenset ved behovet for å fremskaffe en bakteriefri suspensjon. Foretrukket benyttes 0,2 um hydrofile filtere. One or more sterilization filters can be used to filter the suspension. The necessary number will be based on their effectiveness in removing bacteria. It is preferred that two filters are used. The size of the filter pores will be limited by the need to provide a bacteria-free suspension. 0.2 µm hydrophilic filters are preferably used.

En bulkløsning av den foretrukne formuleringen ble kontinuerlig filtrert gjennom to 0,2 um hydrofile filtere i opp til 3 timer ved en hastighet på omtrent 11 pr. minutt (1 l/min.), dvs. å føre en total på 1801 av suspensjonsløsningen gjennom filterene. De eksperimentelle resultatene viser at det er ingen synlig blokkade av filterene. Lipidundersøkelser viser at det ikke er noe målbart tap i løpet av filtreringsfremgangsmåten (p.g.a. akkumu-lering i filtermediet). A bulk solution of the preferred formulation was continuously filtered through two 0.2 µm hydrophilic filters for up to 3 hours at a rate of approximately 11 per minute (1 l/min.), i.e. passing a total of 1,801 of the suspension solution through the filters. The experimental results show that there is no visible blockage of the filters. Lipid studies show that there is no measurable loss during the filtration process (due to accumulation in the filter medium).

En bulkløsning av den foretrukne formuleringen ble blandet ved 40-80°C, og suspensjonen ble avkjølt til romtemperatur før steril filtrering. Ingen synlig tilstopping av filterene ble observert, hvilket indikerer at suspensjonspartikkelstørrelsesdistribusjonen er godt under 0,2 um av filterporestørrelsen. Det er ønskelig å benytte varme gjennom filtreringen for å forsikre maksimal utvinning av lipidblandingen i det sterile filtratet (dvs. å minimalisere potensiell bibeholdelse av lipidpartikler i filtermediet). A bulk solution of the preferred formulation was mixed at 40-80°C and the suspension was cooled to room temperature before sterile filtration. No visible clogging of the filters was observed, indicating that the suspension particle size distribution is well below 0.2 µm of the filter pore size. It is desirable to use heat throughout the filtration to ensure maximum recovery of the lipid mixture in the sterile filtrate (ie to minimize potential retention of lipid particles in the filter medium).

En foretrukket fremgangsmåte for å filtrere lipidsuspensjone er som følger: (a) Forsikre at alle omsluttede filtere er ved 70-80°C. (b) Forsikre at alle ventiler i filtreringsenheten er lukket, (c) Forbinde filtreringsinnløpsslange med utløpet av blandingsformuleringsbeholderen. (d) Åpne ventiler for å la løsning passere gjennom filterene. (e) Spyle tre liter løsning gjennom filterene før filtratet samles opp. (f) Fortsette filtrering til den er fullført. A preferred method for filtering lipid suspensions is as follows: (a) Ensure all encapsulated filters are at 70-80°C. (b) Ensure that all valves in the filtration unit are closed, (c) Connect the filtration inlet hose to the outlet of the compound formulation vessel. (d) Open valves to allow solution to pass through the filters. (e) Flush three liters of solution through the filters before collecting the filtrate. (f) Continue filtering until complete.

Trinn ( i ) : Step ( i ) :

Å overføre den filtrerte løsningen til et medisinglass fullfører trinn (i). Foretrukket utfø-res dette trinnet i et kontrollert antiseptisk område. En fagmann på området vil forstå at medisinglasset som velges og mengden av suspensjon som fylles i medisinglasset vil avhenge av den anvendelsen som lipidsuspensjonen er tiltenkt å ha. Overføringen kan oppnås gjennom et mangfold av fremgangsmåter, inkludert pipette, håndholdt sprøyte-beholder (f.eks. Filamatic®-sprøytefordelingsmaskin), eller industriell autoforde-lingsmaskin (f.eks. Cozzoli eller TL-autofyllingsmaskin). Transferring the filtered solution to a vial completes step (i). This step is preferably carried out in a controlled antiseptic area. A person skilled in the art will understand that the vial selected and the amount of suspension filled into the vial will depend on the intended use of the lipid suspension. The transfer can be achieved through a variety of methods, including pipette, hand-held syringe container (eg, Filamatic® Syringe Dispenser), or industrial auto-dispensing machine (eg, Cozzoli or TL auto-filler).

Trinn ( i) : Step (i):

Trinn (j) utføres ved å utveksle gassen øverst i medisinglassene fra trinn (i) med en perfluorkarbongass. En foretrukket fremgangsmåte for utveksling er å laste de tildelte medisinglassene inn i et lyofiliseirngskammer og bytte ut den øvre gassen i medisinglasset med en perfluorkarbongass. En foretrukken gass er perfluorpropan (PFP). Andre fremgangsmåter for å utveksle den øvre gassen som er kjent innenfor fagområdet kan benyttes. Step (j) is carried out by exchanging the gas at the top of the medicine glasses from step (i) with a perfluorocarbon gas. A preferred method of exchange is to load the allocated vials into a lyophilization chamber and exchange the upper gas in the vial with a perfluorocarbon gas. A preferred gas is perfluoropropane (PFP). Other methods for exchanging the upper gas known in the art can be used.

Medisinglassene forsegles ved fullførelse av gassutbyttingssyklusen. Når lyofilise-ringskammertrykket er bragt tilbake til atmosfærisk trykk ved ladning i kammeret med PFP. Medisinglasskorker plasseres for å forsegle medisinglassene. The medication vials are sealed upon completion of the gas exchange cycle. When the lyophilization chamber pressure has been brought back to atmospheric pressure by charging the chamber with PFP. Medicine vial stoppers are placed to seal the medicine vials.

Trinn ( k) : Step (k):

Trinn (k) involverer å sluttsterilisere et medisinglass etter trinn (j). En fremgangsmåte for avsluttende sterilisering er gjennom anvendelse av en autoklav. Også de forseglede medisinglassene kan sluttsteirliseres i dampsteriliseringsenhet for ytterligere å forbedre sterilitetssikkerheten av produktet. Det må utvises forsiktighet i steriliseringsprosessen ettersom degradering av lipider kan observeres som et resultat av autoklavering. Foretrukket, steriliseres medisinglasset ved omtrent 126-130°C i 1 til 10 minutter. Step (k) involves final sterilizing a vial after step (j). One method for final sterilization is through the use of an autoclave. Also the sealed medicine jars can be final sterilized in a steam sterilization unit to further improve the sterility safety of the product. Care must be taken in the sterilization process as degradation of lipids may be observed as a result of autoclaving. Preferably, the vial is sterilized at about 126-130°C for 1 to 10 minutes.

Andre trekk ifølge oppfinnelsen vil åpenbares ved den følgende beskrivelsen av utførel-sesformer som skal tjene som eksempler som er gitt for å illustrere oppfinnelsen og er ikke ment å være begrensende for denne. Other features according to the invention will be revealed by the following description of embodiments which are to serve as examples which are given to illustrate the invention and are not intended to be limiting of it.

EKSEMPLER EXAMPLES

En kolbe fylles med toluen (3,3 1), metanol (1,2 1), DPPA (59,6 g), DPPC (535 g), og MPEG5000 DPPE (405 g). Etter å ha skylt faste kontaktoverflater med 0,91 metanol, varmes slurryen til 45-55°C til oppløsning er fullstendig. A flask is charged with toluene (3.3 L), methanol (1.2 L), DPPA (59.6 g), DPPC (535 g), and MPEG5000 DPPE (405 g). After rinsing solid contact surfaces with 0.91 methanol, the slurry is heated to 45-55°C until dissolution is complete.

Løsningen filtreres og konsentreres deretter under vakuum ved 35-45°C til en tykk gel. Metyl t-butyleter (MTBE, 5,41) tilsettes og blandingen slemmes opp ved 15-30°C. Hvitt fast stoff samles opp ved sentrifugering eller vakuumfiltrering, og vaskes med MTBE (0,9 1). De faste stoffene plasseres deretter i en vakuumovn og tørkes til en konstant vekt ved 40-50°C. Den tørkede lipidblandingen overføres til en flaske og lagres ved -15 til - 25°C. The solution is filtered and then concentrated under vacuum at 35-45°C to a thick gel. Methyl t-butyl ether (MTBE, 5.41) is added and the mixture is slurried at 15-30°C. White solid is collected by centrifugation or vacuum filtration, and washed with MTBE (0.9 L). The solids are then placed in a vacuum oven and dried to a constant weight at 40-50°C. The dried lipid mixture is transferred to a bottle and stored at -15 to -25°C.

Ved en annen utførelsesform av lipidblandingsproduksjonsprosedyren ifølge den foreliggende oppfinnelsen, kan også følgende prosedyre benyttes. In another embodiment of the lipid mixture production procedure according to the present invention, the following procedure can also be used.

Alternativ lipidblandingsproduksjonsprosedyre Alternative lipid mixture production procedure

Fosfolipidmengder ble regulert for renhet basert på en "benyttes som"-verdi fra sertifi-katene av analyse. Batchstørrelsen (forenet fosfolipidvekt) for dette eksperimentet var 2 kg. Phospholipid amounts were adjusted for purity based on an "as used" value from the certificates of analysis. The batch size (pooled phospholipid weight) for this experiment was 2 kg.

En rotasjonsfordampningskolbe fylles sekvensielt med toluen (3,300 ml), metanol (1,200 ml), DPPA (122,9 g; korrigert for "benyttet som" renhet på 97,0%), DPPC (1098,5 g totalt; 500,8 g fra en mengde med 98,4% "benyttet som" renhet og 5597,7 g fra en mengde med 96,7% "benyttet som" renhet), og MPEG5000 DPPE (815,7 g, korrigert for "benyttet som" renhet på 99,3%). Etter å ha skylt gjenværende fast stoff i kolben med metanol (900 ml), plasseres kolben på en rotasjonsfordamper (ikke vakuum) og slurryien varmes til mellom 45 og 55°C (eksternt). Etter av oppløsningen er fullstendig, senkes den eksterne temperaturen til mellom 35 og 45°C, og vakuum påføres, og løsningen konsentreres til et hvitt halvfast stoff. Kolben fjernes fra fordamperen og fast stoff løsnes med en spatel. Kolben settes igjen på fordamperen og konsentreringen fortsetter. Etter at endepunktet er nådd (sluttvakuumtrykk 20 mbar; hvitt, granulært, tykt fast stoff), tilsettes MTBE (5 400 ml) gjennom rotasjonsfordamperens tilsetningsrør, vakuumet avbrytes og blandingen slemmes opp i 15 til 45 minutter ved 15 til 30°C. Fast stoff isoleres ved enten sentrifugal eller vakuumfiltrering, skylles med MTBE (3 800 ml), og tørkes til konstant vekt i en vakuumovn (40 til 50°C). Før overføringen til poly-etylenflasker med polypropylenhetter, oppdeles fast stoff gjennom en skjerm (0,079 tommer masker), hvilket gir 1 966,7 g (98%) av lipidblanding (SG896) som et hvitt fast stoff. A rotary evaporation flask is charged sequentially with toluene (3,300 mL), methanol (1,200 mL), DPPA (122.9 g; corrected for "as used" purity of 97.0%), DPPC (1098.5 g total; 500.8 g from a batch with 98.4% "as-used" purity and 5597.7 g from a batch with 96.7% "as-used" purity), and MPEG5000 DPPE (815.7 g, corrected for "as-used" purity of 99.3%). After rinsing the remaining solid in the flask with methanol (900 mL), the flask is placed on a rotary evaporator (not vacuum) and the slurry is heated to between 45 and 55°C (externally). After dissolution is complete, the external temperature is lowered to between 35 and 45°C, and vacuum is applied, and the solution is concentrated to a white semi-solid. The flask is removed from the evaporator and solids are loosened with a spatula. The flask is placed back on the evaporator and concentration continues. After the end point is reached (final vacuum pressure 20 mbar; white, granular, thick solid), MTBE (5,400 mL) is added through the addition tube of the rotary evaporator, the vacuum is interrupted, and the mixture is slurried for 15 to 45 minutes at 15 to 30°C. Solid is isolated by either centrifugal or vacuum filtration, rinsed with MTBE (3800 mL), and dried to constant weight in a vacuum oven (40 to 50°C). Prior to transfer to polyethylene bottles with polypropylene caps, solids are passed through a screen (0.079 inch mesh) yielding 1966.7 g (98%) of lipid mixture (SG896) as a white solid.

Den foretrukne lipidsuspensjonen inneholder: The preferred lipid suspension contains:

l,2-dipalmitoyl-jw-glysero-3-fosfotidin, mononatriumsalt (DPPA); 1 ,2-dipalmitoyl-i?^glysero-3-fosfatidylcholin (DPPC); 1,2-dipalmitoyl-jw-glycero-3-phosphotidine, monosodium salt (DPPA); 1,2-dipalmitoyl-1β-glycero-3-phosphatidylcholine (DPPC);

N-(metoksypolyetylenglykol 5000 karbamoyl)-1,2-dipalmitoyl-jn-glysero-3-fosfatidyletanolamin, mononatriumsalt (MPEG5000-DPPE); N-(Methoxypolyethylene glycol 5000 carbamoyl)-1,2-dipalmitoyl-jn-glycero-3-phosphatidylethanolamine, monosodium salt (MPEG5000-DPPE);

Propylenglykol, USP; Propylene Glycol, USP;

Glyserin, USP; Glycerin, USP;

Natriumklorid, USP; og Sodium Chloride, USP; and

Vann for injeksjon, USP. Water for injection, USP.

Det ferdige produktets fyllevolum kan være fra 1,0 til 2,0 ml/medisinglass. The finished product's filling volume can be from 1.0 to 2.0 ml/medication glass.

Ved fremstillingen av den foretrukne formuleringen, når lipidblandingen hydratiseres direkte med den vandige matriksløsningen omfattende vann for injeksjon, natriumklorid, glyserin og propylenglykol, har filtratene mindre lipider sammenlignet med bulk-løsningen før filtrering. Tapet av lipider varierer fra 12% til 48%. Disse resultatene viser at den sterile filtreringsfremgangsmåten ikke kontrolleres effektivt, og derfor er slutt-produktlipidinnholdet svært variabelt. In the preparation of the preferred formulation, when the lipid mixture is directly hydrated with the aqueous matrix solution comprising water for injection, sodium chloride, glycerin and propylene glycol, the filtrates have less lipids compared to the bulk solution before filtration. The loss of lipids varies from 12% to 48%. These results show that the sterile filtration procedure is not effectively controlled and therefore the final product lipid content is highly variable.

Derimot, ved å anvende foreliggende beskrevne fremgangsmåte, viser forsøksresultater av lipidene fullstendig gjenvinning av lipider gjennom filtreringsfremgangsmåten. Vari-abiliteten av forsøksresultater rundt de teoretiske målene er innenfor normal forsøksme-todevariabilitet. Partikkelstørrelsesdistribusjon basert på antall, basert på volum og basert på reflektiv intensitet av en suspensjon fremstilt ved først å oppløse lipidblandingen i propylenglykol indikerer at majoriteten av partiklene er mindre enn 50 nm i bulk-løsningen før filtrering ved 55°C så vel som ved 70°C. Partikkeldistribusjonsprofilen forandres ikke etter filtrering. In contrast, by using the present described method, experimental results of the lipids show complete recovery of lipids through the filtration method. The variability of experimental results around the theoretical targets is within normal experimental method variability. Particle size distribution based on number, based on volume and based on reflective intensity of a suspension prepared by first dissolving the lipid mixture in propylene glycol indicates that the majority of particles are smaller than 50 nm in the bulk solution before filtration at 55°C as well as at 70° C. The particle distribution profile does not change after filtration.

UTNYTTELSESDEL EXPLOITATION PART

Foreliggende fremgangsmåte er nyttig for å fremstille ultralydkontrastmidler. Slike mid-ler bør være nyttige for et mangfold av avbildningsaspplikasjoner, inkludert å forbedre kontrasten i ekkokardiografiske og radiologiske ultralydsavbildninger. The present method is useful for producing ultrasound contrast agents. Such agents should be useful for a variety of imaging applications, including enhancing contrast in echocardiographic and radiological ultrasound imaging.

Mangfoldige modifikasjoner og variasjoner av den foreliggende oppfinnelsen er åpen-bart mulige i lys av informasjonen over. Det skal derfor forstås at innenfor omfanget av de vedlagte patentkravene, kan oppfinnelsen utføres annerledes enn hva som spesifikt er beskrevet her. Multiple modifications and variations of the present invention are obviously possible in light of the information above. It should therefore be understood that within the scope of the attached patent claims, the invention can be carried out differently than what is specifically described here.

Claims (18)

1. Fremgangsmåte for å fremstille en fosfolipidsuspensjon, karakterisert ved at den omfatter: (a) å kontakte minst to lipider med et første ikke-vandig løsningsmiddel for å danne en løsning; (b) å konsentrere løsningen til en tykk gel; (c) å kontakte den tykke gelen med et andre ikke-vandig løsningsmiddel for å danne en løsning; (d) å konsentrere denne løsningen fra trinn (c) for å danne en lipidblanding; (e) å kontakte lipidblandingen med et ikke-vandig løsningsmiddel, der lipidblandingen stort sett oppløses i det ikke-vandige løsningsmidlet for å danne en løning; og (f) uten å fjerne det ikke-vandige løsningsmidlet, å kontakte løsningen fra trinn (e) med en vandig løsning for å danne en lipid suspensjon.1. A method of preparing a phospholipid suspension, characterized in that it comprises: (a) contacting at least two lipids with a first non-aqueous solvent to form a solution; (b) concentrating the solution to a thick gel; (c) contacting the thick gel with a second non-aqueous solvent to form a solution; (d) concentrating this solution from step (c) to form a lipid mixture; (e) contacting the lipid mixture with a non-aqueous solvent, wherein the lipid mixture is substantially dissolved in the non-aqueous solvent to form a slurry; and (f) without removing the non-aqueous solvent, contacting the solution from step (e) with an aqueous solution to form a lipid suspension. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at det ikke-vandige løsningsmidlet fra trinn (e) er valgt fra propylenglykol, etylenglykol, og polyetylenglykol 300.2. Method according to claim 1, characterized in that the non-aqueous solvent from step (e) is selected from propylene glycol, ethylene glycol and polyethylene glycol 300. 3. Fremgangsmåte ifølge krav 2, karakterisert ved at lipidblandingen omfatter: (a) 1,2-dipalmitoyl-jrt-glysero-3-fosfaitdylcholin; (b) l,2-dipalmitoyl-sn-glysero-3-fosfotidin, mononatriumsalt; og (c) N-(metoksypolyetylenglykol 5000 karbamoyl)-l,2-dipalmitoyl-s«-glysero-3-fosfatidyletanolamin, mononatriumsalt.3. Method according to claim 2, characterized in that the lipid mixture comprises: (a) 1,2-dipalmitoyl-jrt-glycero-3-phosphatidylcholine; (b) 1,2-dipalmitoyl-sn-glycero-3-phosphotidine, monosodium salt; and (c) N-(methoxypolyethylene glycol 5000 carbamoyl)-1,2-dipalmitoyl-s'-glycero-3-phosphatidylethanolamine, monosodium salt. 4. Fremgangsmåte ifølge krav 2, karakterisert ved at det ikke-vandige løsningsmidlet fra trinn (e) oppvarmes til en temperatur på omtrent 30 til 70°C før det kontaktes med lipidblandingen.4. Method according to claim 2, characterized in that the non-aqueous solvent from step (e) is heated to a temperature of approximately 30 to 70°C before it is contacted with the lipid mixture. 5. Fremgangsmåte ifølge krav 2, karakterisert ved at forholdet av lipidblanding til ikke-vandig løsningsmiddel fra trinn (e) er fra omtrent 5 mg av lipidblanding pr. ml av ikke-vandig løsningsmiddel til 15 mg/ml.5. Method according to claim 2, characterized in that the ratio of lipid mixture to non-aqueous solvent from step (e) is from about 5 mg of lipid mixture per ml of non-aqueous solvent to 15 mg/ml. 6. Fremgangsmåte ifølge krav 2, karakterisert ved at den vandige løsningen i trinn (f) er valgt fra vann, saltoppløsning, en saltoppløs-ning/glyseirnblanding, og en saltoppløsning/glyserin/ikke-vandig løsningsmiddelblan-ding.6. Method according to claim 2, characterized in that the aqueous solution in step (f) is selected from water, salt solution, a salt solution/glycerin mixture, and a salt solution/glycerin/non-aqueous solvent mixture. 7. Fremgangsmåte ifølge krav 6, karakterisert ved at den vandige løsningen er en saltoppløsning, glyserin, og propylenglykolblanding.7. Method according to claim 6, characterized in that the aqueous solution is a salt solution, glycerin and propylene glycol mixture. 8. Fremgangsmåte ifølge krav 7, karakterisert ved at 6,8 mg/ml av natriumklorid er tilstede, 0,1 ml/ml glyserin er tilstede, 0,1 ml/ml propylenglykol er tilstede, og 0,75 til 1,0 mg/ml av lipidblandingen er tilstede.8. Method according to claim 7, characterized in that 6.8 mg/ml of sodium chloride is present, 0.1 ml/ml glycerin is present, 0.1 ml/ml propylene glycol is present, and 0.75 to 1.0 mg/ml of the lipid mixture is present. 9. Fremgangsmåte ifølge krav 1, karakterisert ved at fremgangsmåten videre omfatter: (g) å varme opp lipidsuspensjonen fra trinn (f) til en temperatur lik med eller over den høyeste gel-til-væskekrystallfaseovergangstemperatur av lipidene tilstede i suspensjonen.9. Method according to claim 1, characterized in that the method further comprises: (g) heating the lipid suspension from step (f) to a temperature equal to or above the highest gel-to-liquid crystal phase transition temperature of the lipids present in the suspension. 10. Fremgangsmåte ifølge krav 9, karakterisert ved at lipidsuspensjonen i trinn (g) varmes opp til en temperatur på minst omtrent 67°C.10. Method according to claim 9, characterized in that the lipid suspension in step (g) is heated to a temperature of at least approximately 67°C. 11. Fremgangsmåte ifølge krav 9, karakterisert ved at fremgangsmåten videre omfatter: (h) å filtrere lipidsuspensjonen gjennom et steriliseirngsfilter.11. Method according to claim 9, characterized in that the method further comprises: (h) filtering the lipid suspension through a sterilization filter. 12. Fremgangsmåte ifølge krav 11, karakterisert ved at fremgangsmåten videre omfatter: (i) å fordele den filtrerte løsningen fra trinn (h) til et medisinglass.12. Method according to claim 11, characterized in that the method further comprises: (i) distributing the filtered solution from step (h) into a medicine glass. 13. Fremgangsmåte ifølge krav 12, karakterisert ved at fremgangsmåten videre omfatter: (j) å utveksle gassen øverst i medisinglasset fra trinn (i) med en perfluorkarbongass.13. Method according to claim 12, characterized in that the method further comprises: (j) exchanging the gas at the top of the medicine glass from step (i) with a perfluorocarbon gas. 14. Fremgangsmåte ifølge krav 13, karakterisert ved at perfluorkarbongassen er perfluorpropan.14. Method according to claim 13, characterized in that the perfluorocarbon gas is perfluoropropane. 15. Fremgangsmåte ifølge krav 14, karakterisert ved at utvekslingen av den øvre gassen utføres ved å benytte et lyofiliseringskammer.15. Method according to claim 14, characterized in that the exchange of the upper gas is carried out by using a lyophilization chamber. 16. Fremgangsmåte ifølge krav 13, karakterisert ved at fremgangsmåten videre omfatter: (k) å sterilisere medisinglasset fra trinn (j).16. Method according to claim 13, characterized in that the method further comprises: (k) sterilizing the medicine glass from step (j). 17. Fremgangsmåte ifølge krav 1, karakterisert ved at det første ikke-vandige løsningsmidlet i trinn (a) er en blanding av metanol og toluen.17. Method according to claim 1, characterized in that the first non-aqueous solvent in step (a) is a mixture of methanol and toluene. 18. Fremgangsmåte ifølge krav 1, karakterisert ved at det andre ikke-vandige løsningsmidlet i trinn (c) er en metyl t-butyleter.18. Method according to claim 1, characterized in that the second non-aqueous solvent in step (c) is a methyl t-butyl ether.
NO20003471A 1998-01-14 2000-07-05 Process for preparing a phospholipid suspension. NO321866B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US7133298P 1998-01-14 1998-01-14
PCT/US1999/000747 WO1999036104A2 (en) 1998-01-14 1999-01-14 Preparation of a lipid blend and a phospholipid suspension containing the lipid blend, and contrast agents based on these

Publications (3)

Publication Number Publication Date
NO20003471D0 NO20003471D0 (en) 2000-07-05
NO20003471L NO20003471L (en) 2000-08-29
NO321866B1 true NO321866B1 (en) 2006-07-17

Family

ID=22100659

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20003471A NO321866B1 (en) 1998-01-14 2000-07-05 Process for preparing a phospholipid suspension.

Country Status (31)

Country Link
US (8) US20010003580A1 (en)
EP (2) EP1027035A2 (en)
JP (2) JP5160702B2 (en)
KR (1) KR100711663B1 (en)
CN (1) CN1191822C (en)
AR (1) AR016444A1 (en)
AT (1) ATE447976T1 (en)
AU (1) AU746067C (en)
BR (1) BR9907066A (en)
CA (1) CA2317921C (en)
DE (1) DE69941634D1 (en)
DK (1) DK1419789T3 (en)
EA (1) EA002978B1 (en)
EE (1) EE04900B1 (en)
ES (1) ES2336669T3 (en)
HK (1) HK1064301A1 (en)
HR (1) HRP990012A2 (en)
HU (1) HUP0100206A3 (en)
IL (2) IL137018A0 (en)
MY (1) MY137255A (en)
NO (1) NO321866B1 (en)
NZ (1) NZ505082A (en)
PH (1) PH12012000094A1 (en)
PL (1) PL193672B1 (en)
PT (1) PT1419789E (en)
SI (1) SI1419789T1 (en)
SK (1) SK285333B6 (en)
TW (1) TWI242448B (en)
UA (1) UA75023C2 (en)
WO (1) WO1999036104A2 (en)
ZA (1) ZA99247B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006200015B8 (en) * 1998-01-14 2008-02-21 Dupont Pharmaceuticals Company Preparation of a lipid blend and a phospholipid suspension containing a lipid blend, and contrast agents based on these
US20010003580A1 (en) 1998-01-14 2001-06-14 Poh K. Hui Preparation of a lipid blend and a phospholipid suspension containing the lipid blend
US6975924B2 (en) * 1999-12-03 2005-12-13 Baxter International Inc. Method and apparatus for controlling the strategy of compounding pharmaceutical admixtures
CN1518479A (en) * 2001-04-03 2004-08-04 ����˹�ж�-����˹˹����ҩƷ��˾ Stabilization and Terminal Disinfection of Phospholipid Preparations
US8541399B2 (en) 2002-02-19 2013-09-24 Resolution Chemicals Limited Solvent-based sterilisation of pharmaceuticals
RU2345793C2 (en) * 2003-02-04 2009-02-10 Бракко Интернэшнл Б.В. Ultrasonic contrast mediums and method of production thereof
AU2004308756B2 (en) 2003-12-22 2010-06-24 Bracco Suisse S.A. Gas-filled microvesicle assembly for contrast imaging
CN1321697C (en) * 2003-12-23 2007-06-20 中国人民解放军军事医学科学院毒物药物研究所 Ultrasound contrast medium composition with phospholipid as membrane material and its preparation method
US7618651B2 (en) 2004-06-24 2009-11-17 Idexx Laboratories Pharmaceutical compositions for drug delivery and methods of treating or preventing conditions using same
US7854943B2 (en) 2004-06-24 2010-12-21 Idexx Laboratories Phospholipid gel compositions for drug delivery and methods of treating conditions using same
US7858115B2 (en) * 2004-06-24 2010-12-28 Idexx Laboratories Phospholipid gel compositions for drug delivery and methods of treating conditions using same
CA2575677C (en) 2004-08-18 2013-01-22 Bracco Research Sa Gas-filled microvesicles composition for contrast imaging
US8017159B2 (en) * 2005-11-16 2011-09-13 Idexx Laboratories, Inc. Phospholipid gel compositions for delivery of aptamers and methods of treating conditions using same
CN102137713A (en) * 2008-12-24 2011-07-27 生物制药开发股份有限公司 Method for producing liposome and method for dissolving cholesterol
JP5771366B2 (en) * 2009-09-02 2015-08-26 株式会社バイオメッドコア Liposome production apparatus and method
JP2012086166A (en) * 2010-10-20 2012-05-10 Biomedcore Inc Apparatus for producing liposome
JP2016519731A (en) 2013-03-04 2016-07-07 エコージェン パワー システムズ エル.エル.シー.Echogen Power Systems, L.L.C. Heat engine system with high net power supercritical carbon dioxide circuit
TWI552761B (en) * 2013-05-03 2016-10-11 博信生物科技股份有限公司 An lipid-based micro/nano-bubble, and an optimized preparing method and equipment thereof
GB201411423D0 (en) 2014-06-26 2014-08-13 Ge Healthcare As Lipid sterilisation method
KR20220003127A (en) * 2014-10-30 2022-01-07 랜티우스 메디컬 이메징, 인크. Lipid encapsulated gas microsphere compositions and related methods
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
EP3240579B1 (en) * 2014-12-31 2022-07-27 Lantheus Medical Imaging, Inc. Lipid-encapsulated gas microsphere compositions and related methods
CN115531560B (en) * 2016-05-04 2024-05-17 蓝瑟斯医学影像公司 Method and device for preparing ultrasound contrast agent
US9789210B1 (en) * 2016-07-06 2017-10-17 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents
US20200368352A1 (en) * 2017-08-15 2020-11-26 The Board Of Trustees Of The Leland Stanford Junior University Polymeric perfluorocarbon nanoemulsions for ultrasonic drug uncaging
US11166846B2 (en) 2019-01-04 2021-11-09 California Institute Of Technology Method for eye lens removal using cavitating microbubbles
RU2745290C2 (en) * 2019-04-12 2021-03-23 Ирина Николаевна Кузнецова Emulsion of perfluorocarbon compounds for biomedical purposes and a method for its production
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
NL2027237B1 (en) 2020-12-27 2022-07-21 Solstice Pharmaceuticals B V Process for controlled manufacturing of mono-disperse microbubbles

Family Cites Families (396)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015128A (en) 1960-08-18 1962-01-02 Southwest Res Inst Encapsulating apparatus
NL302030A (en) 1962-12-21 1900-01-01
US3291843A (en) 1963-10-08 1966-12-13 Du Pont Fluorinated vinyl ethers and their preparation
BE661981A (en) 1964-04-03
US3594326A (en) 1964-12-03 1971-07-20 Ncr Co Method of making microscopic capsules
US3968203A (en) 1965-10-01 1976-07-06 Jerome G. Spitzer Aerosol astringent composition
US3488714A (en) 1966-09-19 1970-01-06 Dow Chemical Co Formed laminate structure and method of preparation
US3615972A (en) 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
US3532500A (en) 1967-07-25 1970-10-06 Eastman Kodak Co Light sensitive vesicular composition comprising an azido-s-triazine compound
US3557294A (en) 1967-10-12 1971-01-19 Allied Chem Fluorinated ethers as inhalation convulsants
US3479811A (en) 1967-11-29 1969-11-25 Dow Chemical Co Yarn and method of making the same
US3732172A (en) 1968-02-28 1973-05-08 Ncr Co Process for making minute capsules and prefabricated system useful therein
US3650831A (en) 1969-03-10 1972-03-21 Armour Dial Inc Method of cleaning surfaces
US4027007A (en) 1970-12-09 1977-05-31 Colgate-Palmolive Company Antiperspirants formulated with borax
US3873564A (en) 1971-03-03 1975-03-25 Synvar Ass 2-Imidazolinyl-3-oxide-1-oxypropionic acid
US4108806A (en) 1971-12-06 1978-08-22 The Dow Chemical Company Thermoplastic expandable microsphere process and product
US4179546A (en) 1972-08-28 1979-12-18 The Dow Chemical Company Method for expanding microspheres and expandable composition
US3960583A (en) 1974-05-02 1976-06-01 Philadelphia Quartz Company Method of preparing modified hollow, largely spherical particles by spray drying
CH588887A5 (en) 1974-07-19 1977-06-15 Battelle Memorial Institute
US3945956A (en) * 1975-06-23 1976-03-23 The Dow Chemical Company Polymerization of styrene acrylonitrile expandable microspheres
US4138383A (en) 1975-11-24 1979-02-06 California Institute Of Technology Preparation of small bio-compatible microspheres
US4004384A (en) 1976-02-06 1977-01-25 Curoco Stairway unit
GB1523965A (en) 1976-03-19 1978-09-06 Ici Ltd Pharmaceutical compositions containing steroids
US4162282A (en) 1976-04-22 1979-07-24 Coulter Electronics, Inc. Method for producing uniform particles
GB1599881A (en) 1977-02-02 1981-10-07 Millington A R Preparation for diagnostic radiology
CH624011A5 (en) 1977-08-05 1981-07-15 Battelle Memorial Institute
CH621479A5 (en) 1977-08-05 1981-02-13 Battelle Memorial Institute
US4235871A (en) * 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4192859A (en) 1978-09-29 1980-03-11 E. R. Squibb & Sons, Inc. Contrast media containing liposomes as carriers
US4310506A (en) 1979-02-22 1982-01-12 California Institute Of Technology Means of preparation and applications of liposomes containing high concentrations of entrapped ionic species
US4276885A (en) 1979-05-04 1981-07-07 Rasor Associates, Inc Ultrasonic image enhancement
US4265251A (en) 1979-06-28 1981-05-05 Rasor Associates, Inc. Method of determining pressure within liquid containing vessel
US4303736A (en) 1979-07-20 1981-12-01 Leonard Torobin Hollow plastic microspheres
US4310505A (en) 1979-11-08 1982-01-12 California Institute Of Technology Lipid vesicles bearing carbohydrate surfaces as lymphatic directed vehicles for therapeutic and diagnostic substances
US4342826A (en) 1980-02-04 1982-08-03 Collaborative Research, Inc. Immunoassay products and methods
US4421562A (en) 1980-04-13 1983-12-20 Pq Corporation Manufacturing process for hollow microspheres
US4344929A (en) 1980-04-25 1982-08-17 Alza Corporation Method of delivering drug with aid of effervescent activity generated in environment of use
US4315514A (en) 1980-05-08 1982-02-16 William Drewes Method and apparatus for selective cell destruction
US4331654A (en) 1980-06-13 1982-05-25 Eli Lilly And Company Magnetically-localizable, biodegradable lipid microspheres
US4657756A (en) 1980-11-17 1987-04-14 Schering Aktiengesellschaft Microbubble precursors and apparatus for their production and use
AU545866B2 (en) 1980-11-17 1985-08-01 Schering Aktiengesellschaft Microbubble precursors and methods for their production and use
US4681119A (en) 1980-11-17 1987-07-21 Schering Aktiengesellschaft Method of production and use of microbubble precursors
US4442843A (en) 1980-11-17 1984-04-17 Schering, Ag Microbubble precursors and methods for their production and use
US4420442A (en) 1981-04-13 1983-12-13 Pq Corporation Manufacturing process for hollow microspheres
US4533254A (en) 1981-04-17 1985-08-06 Biotechnology Development Corporation Apparatus for forming emulsions
EP0068961A3 (en) 1981-06-26 1983-02-02 Thomson-Csf Apparatus for the local heating of biological tissue
US4426330A (en) 1981-07-20 1984-01-17 Lipid Specialties, Inc. Synthetic phospholipid compounds
US4534899A (en) 1981-07-20 1985-08-13 Lipid Specialties, Inc. Synthetic phospholipid compounds
US4569836A (en) 1981-08-27 1986-02-11 Gordon Robert T Cancer treatment by intracellular hyperthermia
IL63734A (en) * 1981-09-04 1985-07-31 Yeda Res & Dev Lipid fraction,its preparation and pharmaceutical compositions containing same
DE3141641A1 (en) 1981-10-16 1983-04-28 Schering Ag, 1000 Berlin Und 4619 Bergkamen ULTRASONIC CONTRAST AGENTS AND THEIR PRODUCTION
BR8107560A (en) 1981-11-19 1983-07-05 Luiz Romariz Duarte ULTRASONIC STIMULATION OF BONE FRACTURE CONSOLIDATION
US4748216A (en) * 1982-01-25 1988-05-31 Hercules Incorporated Purified cycloolefin polymerization composition
US4522803A (en) * 1983-02-04 1985-06-11 The Liposome Company, Inc. Stable plurilamellar vesicles, their preparation and use
US4540629A (en) 1982-04-08 1985-09-10 Pq Corporation Hollow microspheres with organosilicon-silicate walls
JPS58201711A (en) * 1982-05-19 1983-11-24 Eisai Co Ltd Coated liposome containing ubidecarenone
DE3225848A1 (en) 1982-07-07 1984-01-19 Schering AG, 1000 Berlin und 4709 Bergkamen PREPARATION OF CORTICOIDS FOR TOPICAL APPLICATION
JPS58501576A (en) 1982-09-22 1983-09-22 エム.ビイ−.フイラ−ズ プテイ.リミテツド Material, hollow bilayer silicate microspheres
FR2534487B1 (en) 1982-10-15 1988-06-10 Dior Christian Parfums METHOD FOR THE HOMOGENEIZATION OF HYDRATED LIPIDAL LAMELLAR PHASE DISPERSIONS, AND SUSPENSIONS OBTAINED THEREBY
DE3374522D1 (en) * 1982-10-26 1987-12-23 University Of Aberdeen
US4603044A (en) 1983-01-06 1986-07-29 Technology Unlimited, Inc. Hepatocyte Directed Vesicle delivery system
US4731239A (en) 1983-01-10 1988-03-15 Gordon Robert T Method for enhancing NMR imaging; and diagnostic use
GB8301506D0 (en) 1983-01-20 1983-02-23 Electricity Council Fluorinated ethers
US4572203A (en) 1983-01-27 1986-02-25 Feinstein Steven B Contact agents for ultrasonic imaging
US4718433A (en) 1983-01-27 1988-01-12 Feinstein Steven B Contrast agents for ultrasonic imaging
US4775522A (en) 1983-03-04 1988-10-04 Children's Hospital Research Foundation, A Division Of Children's Hospital Medical Center NMR compositions for indirectly detecting a dissolved gas in an animal
US4981692A (en) 1983-03-24 1991-01-01 The Liposome Company, Inc. Therapeutic treatment by intramammary infusion
US5141738A (en) 1983-04-15 1992-08-25 Schering Aktiengesellschaft Ultrasonic contrast medium comprising gas bubbles and solid lipophilic surfactant-containing microparticles and use thereof
US4485193A (en) 1983-05-10 1984-11-27 The Dow Chemical Company Expandable synthetic resinous thermoplastic particles, method for the preparation thereof and the application therefor
US4515736A (en) * 1983-05-12 1985-05-07 The Regents Of The University Of California Method for encapsulating materials into liposomes
US4900540A (en) 1983-06-20 1990-02-13 Trustees Of The University Of Massachusetts Lipisomes containing gas for ultrasound detection
US4544545A (en) 1983-06-20 1985-10-01 Trustees University Of Massachusetts Liposomes containing modified cholesterol for organ targeting
JPS607932A (en) * 1983-06-29 1985-01-16 Dai Ichi Seiyaku Co Ltd Preparation of liposome
JPS6019033A (en) 1983-07-12 1985-01-31 Matsumoto Yushi Seiyaku Kk Hollow micro-balloon and preparation thereof
US4519024A (en) 1983-09-02 1985-05-21 At&T Bell Laboratories Two-terminal transistor rectifier circuit arrangement
US4615879A (en) 1983-11-14 1986-10-07 Vanderbilt University Particulate NMR contrast agents for gastrointestinal application
FR2563725B1 (en) 1984-05-03 1988-07-15 Dory Jacques APPARATUS FOR EXAMINING AND LOCATING ULTRASONIC TUMORS WITH A LOCALIZED HYPERTHERMAL TREATMENT DEVICE
SE463651B (en) 1983-12-21 1991-01-07 Nycomed As DIAGNOSTIC AND CONTRACTOR
JPH0753661B2 (en) 1984-03-08 1995-06-07 フアレス フアーマスーチカル リサーチ エヌブイ Pro-liposome composition and method of making an aqueous dispersion of liposomes
GB8407557D0 (en) 1984-03-23 1984-05-02 Hayward J A Polymeric lipsomes
FR2562421B1 (en) * 1984-04-09 1989-02-17 Sandoz Sa IMPROVEMENTS ON INTERLEUKIN THERAPY
US4728575A (en) 1984-04-27 1988-03-01 Vestar, Inc. Contrast agents for NMR imaging
US5008109A (en) 1984-05-25 1991-04-16 Vestar, Inc. Vesicle stabilization
CA1264668A (en) 1984-06-20 1990-01-23 Pieter R. Cullis Extrusion techniques for producing liposomes
US5008050A (en) 1984-06-20 1991-04-16 The Liposome Company, Inc. Extrusion technique for producing unilamellar vesicles
US4620546A (en) 1984-06-30 1986-11-04 Kabushiki Kaisha Toshiba Ultrasound hyperthermia apparatus
SE8403905D0 (en) 1984-07-30 1984-07-30 Draco Ab LIPOSOMES AND STEROID ESTERS
US4880635B1 (en) 1984-08-08 1996-07-02 Liposome Company Dehydrated liposomes
US4761288A (en) * 1984-09-24 1988-08-02 Mezei Associates Limited Multiphase liposomal drug delivery system
US4767610A (en) 1984-10-19 1988-08-30 The Regents Of The University Of California Method for detecting abnormal cell masses in animals
US4789501A (en) 1984-11-19 1988-12-06 The Curators Of The University Of Missouri Glass microspheres
US4921706A (en) 1984-11-20 1990-05-01 Massachusetts Institute Of Technology Unilamellar lipid vesicles and method for their formation
US4946787A (en) * 1985-01-07 1990-08-07 Syntex (U.S.A.) Inc. N-(ω,(ω-1)-dialkyloxy)- and N-(ω,(ω-1)-dialkenyloxy)-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4753788A (en) * 1985-01-31 1988-06-28 Vestar Research Inc. Method for preparing small vesicles using microemulsification
US4830858A (en) 1985-02-11 1989-05-16 E. R. Squibb & Sons, Inc. Spray-drying method for preparing liposomes and products produced thereby
US4689986A (en) 1985-03-13 1987-09-01 The University Of Michigan Variable frequency gas-bubble-manipulating apparatus and method
US4680171A (en) * 1985-03-15 1987-07-14 William Shell Visualization of a bloodstream circulation with biodegradable microspheres
US5186922A (en) 1985-03-15 1993-02-16 See/Shell Biotechnology, Inc. Use of biodegradable microspheres labeled with imaging energy constrast materials
US4663161A (en) 1985-04-22 1987-05-05 Mannino Raphael J Liposome methods and compositions
WO1986006959A1 (en) 1985-05-22 1986-12-04 Liposome Technology, Inc. Liposome inhalation method and system
US4683092A (en) * 1985-07-03 1987-07-28 Damon Biotech, Inc. Capsule loading technique
DE3677112D1 (en) 1985-08-12 1991-02-28 Battelle Memorial Institute POROESE FILTRATION GLASS BALLS AND METHOD FOR THE PRODUCTION THEREOF.
US4684479A (en) 1985-08-14 1987-08-04 Arrigo Joseph S D Surfactant mixtures, stable gas-in-liquid emulsions, and methods for the production of such emulsions from said mixtures
DE3529195A1 (en) * 1985-08-14 1987-02-26 Max Planck Gesellschaft CONTRAST AGENTS FOR ULTRASONIC EXAMINATIONS AND METHOD FOR THE PRODUCTION THEREOF
US4938947A (en) 1985-11-01 1990-07-03 Centre National De La Recherche Scientifique (Cnrs) Aerosol composition for in vivo imaging
US4927623A (en) 1986-01-14 1990-05-22 Alliance Pharmaceutical Corp. Dissolution of gas in a fluorocarbon liquid
US4987154A (en) 1986-01-14 1991-01-22 Alliance Pharmaceutical Corp. Biocompatible, stable and concentrated fluorocarbon emulsions for contrast enhancement and oxygen transport in internal animal use
US5077036A (en) 1986-01-14 1991-12-31 Alliance Pharmaceutical Corp. Biocompatible stable fluorocarbon emulsions for contrast enhancement and oxygen transport comprising 40-125% wt./volume fluorocarbon combined with a phospholipid
US4865836A (en) 1986-01-14 1989-09-12 Fluoromed Pharmaceutical, Inc. Brominated perfluorocarbon emulsions for internal animal use for contrast enhancement and oxygen transport
US5080885A (en) 1986-01-14 1992-01-14 Alliance Pharmaceutical Corp. Brominated perfluorocarbon emulsions for internal animal use for contrast enhancement and oxygen transport
US5514720A (en) 1986-07-09 1996-05-07 Hemagen/Pfc Stable emulsions of highly fluorinated organic compounds
ES2054658T3 (en) 1986-01-24 1994-08-16 Childrens Hosp Medical Center METHOD FOR THE PREPARATION OF A PHYSIOLOGICALLY ACCEPTABLE EMULSION.
US5684050A (en) 1986-01-24 1997-11-04 Hemagen/Pfc Stable emulsions of highly fluorinated organic compounds
US5536753A (en) 1986-01-24 1996-07-16 Children's Hospital Research Foundation, A Division Of Children's Hospital Medical Center And Hemagen/Pfc Stable perfluorocarbon and oil emulsions
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
US4834964A (en) 1986-03-07 1989-05-30 M.R.I., Inc. Use of charged nitroxides as NMR image enhancing agents for CSF
JPH0751496B2 (en) 1986-04-02 1995-06-05 武田薬品工業株式会社 Manufacturing method of liposome
DE3614657A1 (en) 1986-04-30 1987-11-05 Dornier Medizintechnik LIPID VESICLES CONTAINING PHARMAKA, METHOD FOR THE PRODUCTION AND INTRODUCTION THEREOF IN THE BODY OF A LIVING BEING AND RELEASE OF THE PHARMACA CONTAINING IN THE LIPID VESICLES
JPS62286534A (en) 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk Manufacture of thermal expansion microcapsule
FR2602774B1 (en) 1986-07-29 1990-10-19 Atta NOVEL POLYHYDROXYLATED AND PERFLUOROALKYLATED AMPHIPHILIC MOLECULES HAVING SURFACTANT PROPERTIES
IL79559A0 (en) 1986-07-29 1986-10-31 Univ Ramot Contrast agents for nmr medical imaging
US4728578A (en) 1986-08-13 1988-03-01 The Lubrizol Corporation Compositions containing basic metal salts and/or non-Newtonian colloidal disperse systems and vinyl aromatic containing polymers
US4776991A (en) 1986-08-29 1988-10-11 The United States Of America As Represented By The Secretary Of The Navy Scaled-up production of liposome-encapsulated hemoglobin
US4781871A (en) 1986-09-18 1988-11-01 Liposome Technology, Inc. High-concentration liposome processing method
US4769241A (en) 1986-09-23 1988-09-06 Alpha Therapeutic Corporation Apparatus and process for oxygenation of liquid state dissolved oxygen-carrying formulation
JPS6360943U (en) 1986-10-09 1988-04-22
ZW11287A1 (en) 1986-11-04 1989-01-25 Aeci Ltd Process for the production of an explosive
DE3637926C1 (en) 1986-11-05 1987-11-26 Schering Ag Ultrasonic manometry in a liquid using microbubbles
US5049388A (en) 1986-11-06 1991-09-17 Research Development Foundation Small particle aerosol liposome and liposome-drug combinations for medical use
US4863717A (en) 1986-11-10 1989-09-05 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Methods for circumventing the problem of free radial reduction associated with the use of stable nitroxide free radicals as contrast agents for magnetic reasonance imaging
US4933121A (en) 1986-12-10 1990-06-12 Ciba Corning Diagnostics Corp. Process for forming liposomes
DK175531B1 (en) 1986-12-15 2004-11-22 Nexstar Pharmaceuticals Inc Delivery vehicle with amphiphil-associated active ingredient
FR2608942B1 (en) 1986-12-31 1991-01-11 Centre Nat Rech Scient PROCESS FOR THE PREPARATION OF COLLOIDAL DISPERSIBLE SYSTEMS OF A SUBSTANCE, IN THE FORM OF NANOCAPSULES
US5174930A (en) * 1986-12-31 1992-12-29 Centre National De La Recherche Scientifique (Cnrs) Process for the preparation of dispersible colloidal systems of amphiphilic lipids in the form of oligolamellar liposomes of submicron dimensions
FR2634375B3 (en) * 1988-06-30 1991-07-05 Centre Nat Rech Scient PROCESS FOR THE PREPARATION OF DISPERSIBLE COLLOIDAL LIPID AMPHIPHILIC SYSTEMS IN THE FORM OF SUBMICRON LIPOSOMES
US5283255A (en) 1987-01-20 1994-02-01 The University Of British Columbia Wavelength-specific cytotoxic agents
US5089181A (en) * 1987-02-24 1992-02-18 Vestar, Inc. Method of dehydrating vesicle preparations for long term storage
CA1321048C (en) 1987-03-05 1993-08-10 Robert W. J. Lencki Microspheres and method of producing same
US5219538A (en) 1987-03-13 1993-06-15 Micro-Pak, Inc. Gas and oxygen carrying lipid vesicles
US5000960A (en) 1987-03-13 1991-03-19 Micro-Pak, Inc. Protein coupling to lipid vesicles
US4722943A (en) * 1987-03-19 1988-02-02 Pierce & Stevens Corporation Composition and process for drying and expanding microspheres
US4866096A (en) 1987-03-20 1989-09-12 Air Products And Chemicals, Inc. Stable fluorochemical aqueous emulsions
US4895876A (en) 1987-03-20 1990-01-23 Air Products And Chemicals, Inc. Concentrated stable fluorochemical aqueous emulsions containing triglycerides
JPS63277618A (en) * 1987-03-31 1988-11-15 Noebia:Kk Production of liposome
CH672733A5 (en) 1987-05-22 1989-12-29 Bracco Ind Chimica Spa
US5053214A (en) * 1987-06-19 1991-10-01 Manville Corporation Process for producing zirconium based granules
US4984573A (en) 1987-06-23 1991-01-15 Hafslund Nycomed Innovation Ab Method of electron spin resonance enhanced magnetic resonance imaging
US5354549A (en) 1987-07-24 1994-10-11 Nycomed Imaging As Iodinated esters
US4978483A (en) 1987-09-28 1990-12-18 Redding Bruce K Apparatus and method for making microcapsules
US5178875A (en) * 1991-01-14 1993-01-12 The Board Of Regents, The University Of Texas System Liposomal-polyene preliposomal powder and method for its preparation
US4839702A (en) 1987-11-20 1989-06-13 Bell Communications Research, Inc. Semiconductor device based on charge emission from a quantum well
US4873035A (en) * 1987-11-25 1989-10-10 Abbott Laboratories Preparation of sized populations of liposomes
DE3741201A1 (en) 1987-12-02 1989-06-15 Schering Ag ULTRASONIC PROCESS AND METHOD FOR IMPLEMENTING IT
US4844882A (en) 1987-12-29 1989-07-04 Molecular Biosystems, Inc. Concentrated stabilized microbubble-type ultrasonic imaging agent
IE61591B1 (en) 1987-12-29 1994-11-16 Molecular Biosystems Inc Concentrated stabilized microbubble-type ultrasonic imaging agent and method of production
JP2907911B2 (en) 1988-02-05 1999-06-21 シエーリング アクチエンゲゼルシヤフト Ultrasound contrast agent, method for producing the same, and diagnostic or therapeutic preparation comprising the ultrasound contrast agent
US5425366A (en) 1988-02-05 1995-06-20 Schering Aktiengesellschaft Ultrasonic contrast agents for color Doppler imaging
DE3803972A1 (en) 1988-02-05 1989-08-10 Schering Ag Ultrasound contrast media
US4898734A (en) 1988-02-29 1990-02-06 Massachusetts Institute Of Technology Polymer composite for controlled release or membrane formation
DE3812816A1 (en) 1988-04-16 1989-11-02 Lawaczeck Ruediger Dipl Phys P METHOD FOR SOLUBILIZING LIPOSOMES AND / OR BIOLOGICAL MEMBRANES AND THE USE THEREOF
US5171755A (en) 1988-04-29 1992-12-15 Hemagen/Pfc Emulsions of highly fluorinated organic compounds
US4893624A (en) 1988-06-21 1990-01-16 Massachusetts Institute Of Technology Diffuse focus ultrasound hyperthermia system
DE3824354A1 (en) 1988-07-19 1990-01-25 Basf Ag, 67063 Ludwigshafen METHOD FOR THE PRODUCTION OF CELL-CONTAINING PLASTICS BY THE POLYISOCYANATE-POLYADDITION PROCESS BY MEANS OF STORAGE-STABLE, FUEL-CONTAINING EMULSIONS AND THESE EMULSIONS
US4993415A (en) 1988-08-19 1991-02-19 Alliance Pharmaceutical Corp. Magnetic resonance imaging with perfluorocarbon hydrides
US4996041A (en) 1988-08-19 1991-02-26 Toshiyuki Arai Method for introducing oxygen-17 into tissue for imaging in a magnetic resonance imaging system
DE3828905A1 (en) 1988-08-23 1990-03-15 Schering Ag MEDIALLY COMPOSED OF CAVITATE OR CLATHRATE MAKING HOST / GUEST COMPLEX AS A CONTRAST
US5730954A (en) * 1988-08-23 1998-03-24 Schering Aktiengesellschaft Preparation comprising cavitate- or clathrate-forming host/guest complexes as contrast agent
US5045304A (en) 1988-08-31 1991-09-03 Wayne State University Contras agent having an imaging agent coupled to viable granulocytes for use in magnetic resonance imaging of abscess and a method of preparing and using same
US5410516A (en) 1988-09-01 1995-04-25 Schering Aktiengesellschaft Ultrasonic processes and circuits for performing them
DE3829999A1 (en) 1988-09-01 1990-03-15 Schering Ag ULTRASONIC METHOD AND CIRCUITS THEREOF
US4957656A (en) * 1988-09-14 1990-09-18 Molecular Biosystems, Inc. Continuous sonication method for preparing protein encapsulated microbubbles
IL91664A (en) 1988-09-28 1993-05-13 Yissum Res Dev Co Ammonium transmembrane gradient system for efficient loading of liposomes with amphipathic drugs and their controlled release
FR2637182B1 (en) 1988-10-03 1992-11-06 Lvmh Rech COMPOSITIONS BASED ON HYDRATED LIPID LAMID PHASES OR LIPOSOMES CONTAINING AN ECDYSTEROID, PREFERABLY ECDYSTERONE, OR A DERIVATIVE THEREOF; AND COSMETIC, PHARMACEUTICAL, ESPECIALLY DERMATOLOGICAL, SERICULTURE OR PHYTOSANITARY COMPOSITIONS INCORPORATING THE SAME
GB8824593D0 (en) 1988-10-20 1988-11-23 Royal Free Hosp School Med Liposomes
JPH04501723A (en) 1988-11-09 1992-03-26 アンガー,エヴァン,シー. Liposomal radiocontrast agent
US5006343A (en) * 1988-12-29 1991-04-09 Benson Bradley J Pulmonary administration of pharmaceutically active substances
LU87449A1 (en) 1989-02-09 1990-09-19 Oreal PROCESS FOR THE MANUFACTURE OF FOAMS FOR USE IN THE COSMETIC AND PHARMACEUTICAL AREAS AND FOAMS OBTAINED BY THIS PROCESS
FR2645866B1 (en) 1989-04-17 1991-07-05 Centre Nat Rech Scient NEW LIPOPOLYAMINES, THEIR PREPARATION AND THEIR USE
US5114703A (en) 1989-05-30 1992-05-19 Alliance Pharmaceutical Corp. Percutaneous lymphography using particulate fluorocarbon emulsions
AU639008B2 (en) 1989-06-22 1993-07-15 Alliance Pharmaceutical Corporation Fluorine and phosphorous-containing amphiphilic molecules with surfactant properties
FR2649335B1 (en) 1989-07-05 1991-09-20 Texinfine Sa METHOD AND DEVICE FOR THE DIRECT PRODUCTION OF LIPOSOMES
US5019370A (en) 1989-07-10 1991-05-28 University Of Kentucky Research Foundation Biodegradable, low biological toxicity radiographic contrast medium and method of x-ray imaging
US5194266A (en) 1989-08-08 1993-03-16 Liposome Technology, Inc. Amphotericin B/cholesterol sulfate composition and method
US5100662A (en) * 1989-08-23 1992-03-31 The Liposome Company, Inc. Steroidal liposomes exhibiting enhanced stability
US5562608A (en) 1989-08-28 1996-10-08 Biopulmonics, Inc. Apparatus for pulmonary delivery of drugs with simultaneous liquid lavage and ventilation
WO1991003267A1 (en) 1989-08-28 1991-03-21 Sekins K Michael Lung cancer hyperthermia via ultrasound and/or convection with perfluorocarbon liquids
US5620689A (en) 1989-10-20 1997-04-15 Sequus Pharmaceuuticals, Inc. Liposomes for treatment of B-cell and T-cell disorders
US5843473A (en) * 1989-10-20 1998-12-01 Sequus Pharmaceuticals, Inc. Method of treatment of infected tissues
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5705187A (en) * 1989-12-22 1998-01-06 Imarx Pharmaceutical Corp. Compositions of lipids and stabilizing materials
US5776429A (en) * 1989-12-22 1998-07-07 Imarx Pharmaceutical Corp. Method of preparing gas-filled microspheres using a lyophilized lipids
US5580575A (en) 1989-12-22 1996-12-03 Imarx Pharmaceutical Corp. Therapeutic drug delivery systems
US5656211A (en) 1989-12-22 1997-08-12 Imarx Pharmaceutical Corp. Apparatus and method for making gas-filled vesicles of optimal size
US5088499A (en) 1989-12-22 1992-02-18 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US6088613A (en) * 1989-12-22 2000-07-11 Imarx Pharmaceutical Corp. Method of magnetic resonance focused surgical and therapeutic ultrasound
US5209720A (en) 1989-12-22 1993-05-11 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes
US5733572A (en) * 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US5469854A (en) 1989-12-22 1995-11-28 Imarx Pharmaceutical Corp. Methods of preparing gas-filled liposomes
US5123414A (en) 1989-12-22 1992-06-23 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5922304A (en) * 1989-12-22 1999-07-13 Imarx Pharmaceutical Corp. Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents
US5228446A (en) * 1989-12-22 1993-07-20 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US5230882A (en) 1989-12-22 1993-07-27 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5773024A (en) * 1989-12-22 1998-06-30 Imarx Pharmaceutical Corp. Container with multi-phase composition for use in diagnostic and therapeutic applications
US5305757A (en) * 1989-12-22 1994-04-26 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US5149319A (en) 1990-09-11 1992-09-22 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids
US5585112A (en) 1989-12-22 1996-12-17 Imarx Pharmaceutical Corp. Method of preparing gas and gaseous precursor-filled microspheres
US6001335A (en) 1989-12-22 1999-12-14 Imarx Pharmaceutical Corp. Contrasting agents for ultrasonic imaging and methods for preparing the same
US5352435A (en) * 1989-12-22 1994-10-04 Unger Evan C Ionophore containing liposomes for ultrasound imaging
US6146657A (en) 1989-12-22 2000-11-14 Imarx Pharmaceutical Corp. Gas-filled lipid spheres for use in diagnostic and therapeutic applications
US6551576B1 (en) * 1989-12-22 2003-04-22 Bristol-Myers Squibb Medical Imaging, Inc. Container with multi-phase composition for use in diagnostic and therapeutic applications
US5334381A (en) * 1989-12-22 1994-08-02 Unger Evan C Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same
US5542935A (en) * 1989-12-22 1996-08-06 Imarx Pharmaceutical Corp. Therapeutic delivery systems related applications
US5741513A (en) * 1990-02-08 1998-04-21 A. Natterman & Cie. Gmbh Alcoholic aqueous gel-like phospholipid composition, its use and topical preparations containing it
DE4004430A1 (en) 1990-02-09 1991-08-14 Schering Ag CONSTRUCTED POLYALDEHYDE CONSTITUENTS
GB9003821D0 (en) 1990-02-20 1990-04-18 Danbiosyst Uk Diagnostic aid
US5556610A (en) 1992-01-24 1996-09-17 Bracco Research S.A. Gas mixtures useful as ultrasound contrast media, contrast agents containing the media and method
US5578292A (en) 1991-11-20 1996-11-26 Bracco International B.V. Long-lasting aqueous dispersions or suspensions of pressure-resistant gas-filled microvesicles and methods for the preparation thereof
IN172208B (en) 1990-04-02 1993-05-01 Sint Sa
US5445813A (en) 1992-11-02 1995-08-29 Bracco International B.V. Stable microbubble suspensions as enhancement agents for ultrasound echography
US5279833A (en) * 1990-04-04 1994-01-18 Yale University Liposomal transfection of nucleic acids into animal cells
US5672585A (en) 1990-04-06 1997-09-30 La Jolla Cancer Research Foundation Method and composition for treating thrombosis
US5368840A (en) 1990-04-10 1994-11-29 Imarx Pharmaceutical Corp. Natural polymers as contrast media for magnetic resonance imaging
EP0526503B1 (en) 1990-04-10 1997-06-04 Imarx Pharmaceutical Corp. Polymers as contrast media for magnetic resonance imaging
US5358702A (en) 1990-04-10 1994-10-25 Unger Evan C Methoxylated gel particle contrast media for improved diagnostic imaging
US5078994A (en) 1990-04-12 1992-01-07 Eastman Kodak Company Microgel drug delivery system
JPH03297475A (en) 1990-04-16 1991-12-27 Ken Ishihara Controlling method for emission of medicine by means of resonance sound wave
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US5091188A (en) * 1990-04-26 1992-02-25 Haynes Duncan H Phospholipid-coated microcrystals: injectable formulations of water-insoluble drugs
US5205287A (en) * 1990-04-26 1993-04-27 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
US5190982A (en) 1990-04-26 1993-03-02 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
US5246707A (en) * 1990-04-26 1993-09-21 Haynes Duncan H Sustained release delivery of water-soluble bio-molecules and drugs using phospholipid-coated microcrystals, microdroplets and high-concentration liposomes
US5137928A (en) 1990-04-26 1992-08-11 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
AU636481B2 (en) 1990-05-18 1993-04-29 Bracco International B.V. Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography
CA2081560A1 (en) 1990-06-01 1991-12-02 Evan C. Unger Contrast media for ultrasonic imaging
US5196348A (en) 1990-06-11 1993-03-23 Air Products And Chemicals, Inc. Perfluoro-crown ethers in fluorine magnetic resonance spectroscopy of biopsied tissue
US5315997A (en) 1990-06-19 1994-05-31 Molecular Biosystems, Inc. Method of magnetic resonance imaging using diamagnetic contrast
US5215680A (en) 1990-07-10 1993-06-01 Cavitation-Control Technology, Inc. Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles
FR2665159B1 (en) 1990-07-24 1992-11-13 Rhone Poulenc Sante NEW PYRIDINE AND QUINOLEIN DERIVATIVES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
IL95743A (en) 1990-09-19 1993-02-21 Univ Ramot Method of measuring blood flow
US5487390A (en) 1990-10-05 1996-01-30 Massachusetts Institute Of Technology Gas-filled polymeric microbubbles for ultrasound imaging
WO1992005806A1 (en) 1990-10-05 1992-04-16 Sintetica S.A. Method for the preparation of stable suspensions of hollow gas-filled microspheres suitable for ultrasonic echography
IS1685B (en) 1990-12-11 1998-02-24 Bracco International B.V. Method of making liposomes that are endowed with enhanced ability to absorb and contain foreign matter
CA2098849C (en) 1990-12-20 2007-07-10 Ralph R. Weichselbaum Control of gene expression by ionizing radiation
DE4100470A1 (en) 1991-01-09 1992-07-16 Byk Gulden Lomberg Chem Fab Echo contrast agent
US5193237A (en) * 1991-01-28 1993-03-16 Holdredge Terry K Pneumatic wheel chair cushion for reducing ischemic injury
US5107842A (en) 1991-02-22 1992-04-28 Molecular Biosystems, Inc. Method of ultrasound imaging of the gastrointestinal tract
CA2063529A1 (en) 1991-03-22 1992-09-23 Katsuro Tachibana Booster for therapy of diseases with ultrasound and pharmaceutical liquid composition containing the same
GB9106686D0 (en) 1991-03-28 1991-05-15 Hafslund Nycomed As Improvements in or relating to contrast agents
GB9106673D0 (en) 1991-03-28 1991-05-15 Hafslund Nycomed As Improvements in or relating to contrast agents
WO1992017436A1 (en) 1991-03-28 1992-10-15 Holmes, Michael, John Cross-linking agent
US5205290A (en) 1991-04-05 1993-04-27 Unger Evan C Low density microspheres and their use as contrast agents for computed tomography
US5874062A (en) * 1991-04-05 1999-02-23 Imarx Pharmaceutical Corp. Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents
US5496535A (en) 1991-04-12 1996-03-05 Alliance Pharmaceutical Corp. Fluorocarbon contrast media for use with MRI and radiographic imaging
US5147631A (en) 1991-04-30 1992-09-15 Du Pont Merck Pharmaceutical Company Porous inorganic ultrasound contrast agents
DK0586524T3 (en) 1991-06-03 1997-05-20 Nycomed Imaging As
JP2868335B2 (en) 1991-06-13 1999-03-10 富士通株式会社 Switching system and disconnection notification method in switching system
CA2110490C (en) 1991-06-18 2008-07-29 Evan C. Unger Drug delivery systems comprising gas-filled liposomes at least 90% devoid of liquid in their interior
AU675050B2 (en) * 1991-07-05 1997-01-23 Nycomed Imaging As Improvements in or relating to contrast agents
WO1993000933A1 (en) 1991-07-05 1993-01-21 University Of Rochester Ultrasmall non-aggregated porous particles entrapping gas-bubbles
GB9116610D0 (en) 1991-08-01 1991-09-18 Danbiosyst Uk Preparation of microparticles
US5283185A (en) * 1991-08-28 1994-02-01 University Of Tennessee Research Corporation Method for delivering nucleic acids into cells
US5409688A (en) 1991-09-17 1995-04-25 Sonus Pharmaceuticals, Inc. Gaseous ultrasound contrast media
MX9205298A (en) 1991-09-17 1993-05-01 Steven Carl Quay GASEOUS ULTRASOUND CONTRASTING MEDIA AND METHOD FOR SELECTING GASES TO BE USED AS ULTRASOUND CONTRASTING MEDIA
EP0605477B2 (en) 1991-09-17 2007-06-20 GE Healthcare AS Gaseous ultrasound contrast media
AU2789192A (en) 1991-10-04 1993-05-03 Mallinckrodt Medical, Inc. Gaseous ultrasound contrast agents
US5362477A (en) 1991-10-25 1994-11-08 Mallinckrodt Medical, Inc. 19F magnetic resonance imaging agents which include a nitroxide moiety
US5264220A (en) 1991-11-12 1993-11-23 Long David M Jr Method of extending the vascular dwell-time of particulate therapeutic and particulate diagnostic agents
US5196183A (en) 1991-12-04 1993-03-23 Sterling Winthrop Inc. Contrast agents for ultrasound imaging
US5403575A (en) 1991-12-12 1995-04-04 Hemagen/Pfc Highly fluorinated, chloro-substituted organic compound-containing emulsions and methods of using them
GB9200391D0 (en) 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
GB9200388D0 (en) 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
GB9200387D0 (en) * 1992-01-09 1992-02-26 Nycomed As Improvements in or relating to contrast agents
IL104084A (en) 1992-01-24 1996-09-12 Bracco Int Bv Sustainable aqueous suspensions of pressure-resistant and gas-filled blisters, their preparation, and contrast agents containing them
US5470582A (en) 1992-02-07 1995-11-28 Syntex (U.S.A.) Inc. Controlled delivery of pharmaceuticals from preformed porous polymeric microparticles
JP3325300B2 (en) 1992-02-28 2002-09-17 株式会社東芝 Ultrasound therapy equipment
JP3650393B2 (en) 1992-03-06 2005-05-18 アメルシャム ヘルス アクスイェ セルスカプ Improvements in or on contrast media
US5247935A (en) 1992-03-19 1993-09-28 General Electric Company Magnetic resonance guided focussed ultrasound surgery
US5858399A (en) 1992-04-09 1999-01-12 Northwestern University Acoustically reflective liposomes and methods to make and use the same
WO1993020802A1 (en) 1992-04-09 1993-10-28 Northwestern University Acoustically reflective liposomes and methods to make and use the same
US5339814A (en) 1992-04-14 1994-08-23 Lasker Sigmund E Process for visualizing tissue metabolism using oxygen-17
US5846516A (en) 1992-06-03 1998-12-08 Alliance Pharmaceutial Corp. Perfluoroalkylated amphiphilic phosphorus compounds: preparation and biomedical applications
DE4221256C2 (en) 1992-06-26 1997-07-10 Lancaster Group Ag Galenic composition for topical use
US5334761A (en) * 1992-08-28 1994-08-02 Life Technologies, Inc. Cationic lipids
DK0660724T3 (en) 1992-09-16 1998-11-02 Nycomed Imaging As Preparations for contrast agents
DE4232755A1 (en) 1992-09-26 1994-03-31 Schering Ag Microparticle preparations made from biodegradable copolymers
US5552155A (en) 1992-12-04 1996-09-03 The Liposome Company, Inc. Fusogenic lipsomes and methods for making and using same
US5326552A (en) * 1992-12-17 1994-07-05 Sterling Winthrop Inc. Formulations for nanoparticulate x-ray blood pool contrast agents using high molecular weight nonionic surfactants
US5558855A (en) 1993-01-25 1996-09-24 Sonus Pharmaceuticals Phase shift colloids as ultrasound contrast agents
DE69427185T2 (en) 1993-01-25 2001-12-06 Sonus Pharmaceutical, Inc. Phase-pen colloids for use as ultrasound contrast agents
FR2700952B1 (en) 1993-01-29 1995-03-17 Oreal New cosmetic or dermopharmaceutical compositions in the form of aqueous gels modified by the addition of expanded microspheres.
SE501697C2 (en) * 1993-02-11 1995-04-24 Svenska Mejeriernas Riksforeni Process for the recovery of sphingomyelin
PT693924E (en) 1993-02-22 2004-09-30 American Biosciences PROCESSES FOR THE ADMINISTRATION (IN VIVO) OF BIOLOGICAL AND COMPOSITION SUBSTANCES USED IN THESE PROCESSES
US5362478A (en) 1993-03-26 1994-11-08 Vivorx Pharmaceuticals, Inc. Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell
JPH06247842A (en) * 1993-02-23 1994-09-06 Green Cross Corp:The Production of liposome composition
GB9305351D0 (en) 1993-03-16 1993-05-05 Nycomed Imaging As Improvements in or relating to contrast agents
AU6365894A (en) 1993-03-16 1994-10-11 Alliance Pharmaceutical Corporation Fluorocarbon compositions containing a visible or fluorescent label
GB9305349D0 (en) 1993-03-16 1993-05-05 Nycomed Imaging As Improvements in or relating to contrast agents
DE4313402A1 (en) * 1993-04-23 1994-10-27 Hexal Pharma Gmbh Transdermal preparation of active compound
US5567415A (en) 1993-05-12 1996-10-22 The Board Of Regents Of The University Of Nebraska Ultrasound contrast agents and methods for their manufacture and use
US5701899A (en) 1993-05-12 1997-12-30 The Board Of Regents Of The University Of Nebraska Perfluorobutane ultrasound contrast agent and methods for its manufacture and use
US5716597A (en) 1993-06-04 1998-02-10 Molecular Biosystems, Inc. Emulsions as contrast agents and method of use
KR100218642B1 (en) 1993-07-02 1999-09-01 스티븐 로손 Method for preparing encapsulated microspheres from heat denatured protein
US5855865A (en) 1993-07-02 1999-01-05 Molecular Biosystems, Inc. Method for making encapsulated gas microspheres from heat denatured protein in the absence of oxygen gas
US5565215A (en) 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
US5853755A (en) * 1993-07-28 1998-12-29 Pharmaderm Laboratories Ltd. Biphasic multilamellar lipid vesicles
US5798091A (en) * 1993-07-30 1998-08-25 Alliance Pharmaceutical Corp. Stabilized gas emulsion containing phospholipid for ultrasound contrast enhancement
EP0711179B2 (en) 1993-07-30 2010-09-01 IMCOR Pharmaceutical Co. Stabilized microbubble compositions for ultrasound
GB9318288D0 (en) 1993-09-03 1993-10-20 Nycomed Imaging As Improvements in or relating to contrast agents
WO1995007072A2 (en) 1993-09-09 1995-03-16 Schering Aktiengesellschaft Active principles and gas containing microparticles
ES2115343T3 (en) 1993-11-05 1998-06-16 Amgen Inc METHOD OF PREPARATION OF LIPOSOMES AND ENCAPSULATION OF MATERIAL.
US5433204A (en) 1993-11-16 1995-07-18 Camilla Olson Method of assessing placentation
US7083572B2 (en) * 1993-11-30 2006-08-01 Bristol-Myers Squibb Medical Imaging, Inc. Therapeutic delivery systems
DE69432295T2 (en) 1993-12-15 2003-08-14 Bracco Research Sa GAS MIXTURES CAN BE USED AS ULTRASONIC CONTRAST
NO940711D0 (en) 1994-03-01 1994-03-01 Nycomed Imaging As Preparation of gas-filled microcapsules and contrast agents for diagnostic imaging
US5776488A (en) * 1994-03-11 1998-07-07 Yoshitomi Pharmaceutical Industries, Ltd. Liposome preparation
US5667472A (en) 1994-03-18 1997-09-16 Clarus Medical Systems, Inc. Surgical instrument and method for use with a viewing system
EP0752889B1 (en) 1994-03-28 2002-06-26 Nycomed Imaging AS Liposomes containing a x-ray- or ultrasound contrast agent
US5545396A (en) 1994-04-08 1996-08-13 The Research Foundation Of State University Of New York Magnetic resonance imaging using hyperpolarized noble gases
JPH10503480A (en) 1994-05-03 1998-03-31 モレキュラー バイオシステムズ, インコーポレイテッド Composition for ultrasonically quantifying myocardial perfusion
US5571797A (en) 1994-05-11 1996-11-05 Arch Development Corporation Method of inducing gene expression by ionizing radiation
US5502094A (en) 1994-05-20 1996-03-26 Minnesota Mining And Manufacturing Company Physiologically acceptable emulsions containing perfluorocarbon ether hydrides and methods for use
US5736121A (en) 1994-05-23 1998-04-07 Imarx Pharmaceutical Corp. Stabilized homogenous suspensions as computed tomography contrast agents
US5571498A (en) 1994-06-02 1996-11-05 Hemagen/Pfc Emulsions of paramagnetic contrast agents for magnetic resonance imaging (MRI).
WO1996001798A1 (en) * 1994-07-07 1996-01-25 Bayer Aktiengesellschaft 2-aryl cyclopentane-1,3-dione derivatives
US6066331A (en) * 1994-07-08 2000-05-23 Barenholz; Yechezkel Method for preparation of vesicles loaded with biological structures, biopolymers and/or oligomers
US6159445A (en) 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
US5562893A (en) 1994-08-02 1996-10-08 Molecular Biosystems, Inc. Gas-filled microspheres with fluorine-containing shells
US5965109A (en) * 1994-08-02 1999-10-12 Molecular Biosystems, Inc. Process for making insoluble gas-filled microspheres containing a liquid hydrophobic barrier
US5509896A (en) 1994-09-09 1996-04-23 Coraje, Inc. Enhancement of thrombolysis with external ultrasound
US6113570A (en) * 1994-09-09 2000-09-05 Coraje, Inc. Method of removing thrombosis in fistulae
JPH08151335A (en) 1994-09-27 1996-06-11 Otsuka Pharmaceut Co Ltd Ultrasonic contrast medium and production thereof
US5540909A (en) 1994-09-28 1996-07-30 Alliance Pharmaceutical Corp. Harmonic ultrasound imaging with microbubbles
AU3559695A (en) * 1994-09-30 1996-04-26 Inex Pharmaceuticals Corp. Glycosylated protein-liposome conjugates and methods for their preparation
US5820873A (en) * 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US5569448A (en) 1995-01-24 1996-10-29 Nano Systems L.L.C. Sulfated nonionic block copolymer surfactants as stabilizer coatings for nanoparticle compositions
EP0727225A3 (en) 1995-02-14 1997-01-15 Sonus Pharma Inc Compositions and methods for directed ultrasound imaging
US5556372A (en) 1995-02-15 1996-09-17 Exogen, Inc. Apparatus for ultrasonic bone treatment
US5830430A (en) 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof
US5560364A (en) 1995-05-12 1996-10-01 The Board Of Regents Of The University Of Nebraska Suspended ultra-sound induced microbubble cavitation imaging
EP0825834A4 (en) 1995-05-15 2000-01-05 Coraje Inc Enhancement of ultrasound thrombolysis
US5558092A (en) 1995-06-06 1996-09-24 Imarx Pharmaceutical Corp. Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
US5997898A (en) 1995-06-06 1999-12-07 Imarx Pharmaceutical Corp. Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery
US6139819A (en) 1995-06-07 2000-10-31 Imarx Pharmaceutical Corp. Targeted contrast agents for diagnostic and therapeutic use
ATE265863T1 (en) * 1995-06-07 2004-05-15 Imarx Pharmaceutical Corp NEW TARGETED AGENTS FOR DIAGNOSTIC AND THERAPEUTIC USE
US5804162A (en) 1995-06-07 1998-09-08 Alliance Pharmaceutical Corp. Gas emulsions stabilized with fluorinated ethers having low Ostwald coefficients
US6033645A (en) * 1996-06-19 2000-03-07 Unger; Evan C. Methods for diagnostic imaging by regulating the administration rate of a contrast agent
US6521211B1 (en) 1995-06-07 2003-02-18 Bristol-Myers Squibb Medical Imaging, Inc. Methods of imaging and treatment with targeted compositions
US6231834B1 (en) * 1995-06-07 2001-05-15 Imarx Pharmaceutical Corp. Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same
US5606973A (en) 1995-06-07 1997-03-04 Molecular Biosystems, Inc. Liquid core microdroplets for ultrasound imaging
US5897851A (en) 1995-06-07 1999-04-27 Sonus Pharmaceuticals, Inc. Nucleation and activation of a liquid-in-liquid emulsion for use in ultrasound imaging
US5958371A (en) 1995-06-08 1999-09-28 Barnes-Jewish Hospital Site specific binding system, nuclear imaging compositions and methods
US5780010A (en) 1995-06-08 1998-07-14 Barnes-Jewish Hospital Method of MRI using avidin-biotin conjugated emulsions as a site specific binding system
US6120794A (en) * 1995-09-26 2000-09-19 University Of Pittsburgh Emulsion and micellar formulations for the delivery of biologically active substances to cells
US5648098A (en) 1995-10-17 1997-07-15 The Board Of Regents Of The University Of Nebraska Thrombolytic agents and methods of treatment for thrombosis
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US6165442A (en) * 1996-02-19 2000-12-26 Nycomed Imaging As Thermally stabilized ultrasound contrast agent
US5879659A (en) * 1996-03-13 1999-03-09 Dupont Pharmaceuticals Company Ternary radiopharmaceutical complexes
US6455277B1 (en) * 1996-04-22 2002-09-24 Amgen Inc. Polynucleotides encoding human glial cell line-derived neurotrophic factor receptor polypeptides
ATE345682T1 (en) 1996-05-01 2006-12-15 Imarx Pharmaceutical Corp IN VITRO METHOD FOR INTRODUCING NUCLEIC ACIDS INTO A CELL
US5976501A (en) 1996-06-07 1999-11-02 Molecular Biosystems, Inc. Use of pressure resistant protein microspheres encapsulating gases as ultrasonic imaging agents for vascular perfusion
US5849727A (en) 1996-06-28 1998-12-15 Board Of Regents Of The University Of Nebraska Compositions and methods for altering the biodistribution of biological agents
US6214375B1 (en) 1996-07-16 2001-04-10 Generex Pharmaceuticals, Inc. Phospholipid formulations
US5837221A (en) 1996-07-29 1998-11-17 Acusphere, Inc. Polymer-lipid microencapsulated gases for use as imaging agents
US6414139B1 (en) 1996-09-03 2002-07-02 Imarx Therapeutics, Inc. Silicon amphiphilic compounds and the use thereof
DK0977597T3 (en) 1996-09-11 2003-05-05 Imarx Pharmaceutical Corp Improved methods of diagnostic imaging using a contrast agent and a vasodilator.
US5846517A (en) 1996-09-11 1998-12-08 Imarx Pharmaceutical Corp. Methods for diagnostic imaging using a renal contrast agent and a vasodilator
ES2197336T3 (en) 1996-10-21 2004-01-01 Amersham Health As IMPROVEMENTS INTRODUCED OR RELATED TO CONTRAST AGENTS IN THE FORMATION OF PICTURES BY ULTRASOUNDS.
DE69735901T2 (en) 1996-10-28 2007-05-10 Ge Healthcare As ENHANCING OR IN CONNECTION WITH DIAGNOSTIC / THERAPEUTIC AGENTS
US6331289B1 (en) * 1996-10-28 2001-12-18 Nycomed Imaging As Targeted diagnostic/therapeutic agents having more than one different vectors
WO1998018495A2 (en) 1996-10-28 1998-05-07 Marsden, John, Christopher Improvements in or relating to diagnostic/therapeutic agents
US6261537B1 (en) 1996-10-28 2001-07-17 Nycomed Imaging As Diagnostic/therapeutic agents having microbubbles coupled to one or more vectors
EP0973552B1 (en) 1996-10-28 2006-03-01 Amersham Health AS Improvements in or relating to diagnostic/therapeutic agents
EP0963209A2 (en) 1996-10-28 1999-12-15 Marsden, John Christopher Improvements in or relating to diagnostic/therapeutic agents
US6210707B1 (en) * 1996-11-12 2001-04-03 The Regents Of The University Of California Methods of forming protein-linked lipidic microparticles, and compositions thereof
US6090800A (en) * 1997-05-06 2000-07-18 Imarx Pharmaceutical Corp. Lipid soluble steroid prodrugs
US6143276A (en) 1997-03-21 2000-11-07 Imarx Pharmaceutical Corp. Methods for delivering bioactive agents to regions of elevated temperatures
US6537246B1 (en) * 1997-06-18 2003-03-25 Imarx Therapeutics, Inc. Oxygen delivery agents and uses for the same
CA2286052A1 (en) * 1997-04-17 1998-10-29 Lise Sylvest Nielsen A novel bioadhesive drug delivery system based on liquid crystals
AU6974798A (en) 1997-05-06 1998-11-27 Imarx Pharmaceutical Corp. Novel prodrugs comprising fluorinated amphiphiles
US6416740B1 (en) * 1997-05-13 2002-07-09 Bristol-Myers Squibb Medical Imaging, Inc. Acoustically active drug delivery systems
US5980936A (en) 1997-08-07 1999-11-09 Alliance Pharmaceutical Corp. Multiple emulsions comprising a hydrophobic continuous phase
GB9717588D0 (en) 1997-08-19 1997-10-22 Nycomed Imaging As Improvements in or relating to contrast agents
US6548047B1 (en) * 1997-09-15 2003-04-15 Bristol-Myers Squibb Medical Imaging, Inc. Thermal preactivation of gaseous precursor filled compositions
US6123923A (en) 1997-12-18 2000-09-26 Imarx Pharmaceutical Corp. Optoacoustic contrast agents and methods for their use
US20010003580A1 (en) 1998-01-14 2001-06-14 Poh K. Hui Preparation of a lipid blend and a phospholipid suspension containing the lipid blend
NZ506051A (en) 1998-02-09 2003-08-29 Bracco Res S Targeted delivery of biologically active media
US6261231B1 (en) * 1998-09-22 2001-07-17 Dupont Pharmaceuticals Company Hands-free ultrasound probe holder
US6398772B1 (en) * 1999-03-26 2002-06-04 Coraje, Inc. Method and apparatus for emergency treatment of patients experiencing a thrombotic vascular occlusion
US6254852B1 (en) * 1999-07-16 2001-07-03 Dupont Pharmaceuticals Company Porous inorganic targeted ultrasound contrast agents
US6572840B1 (en) * 1999-07-28 2003-06-03 Bristol-Myers Squibb Pharma Company Stable microbubbles comprised of a perfluoropropane encapsulated lipid moiety for use as an ultrasound contrast agent
GB9920392D0 (en) 1999-08-27 1999-11-03 Nycomed Imaging As Improvemets in or relating to diagnostic imaging
US6635017B1 (en) * 2000-02-09 2003-10-21 Spentech, Inc. Method and apparatus combining diagnostic ultrasound with therapeutic ultrasound to enhance thrombolysis
EP1371041A4 (en) * 2001-02-02 2006-04-19 Bristol Myers Squibb Pharma Co Apparatus and methods for on-line monitoring of fluorinated material in headspace of vial
CN100356984C (en) * 2002-01-24 2007-12-26 巴内斯-朱威胥医院 Integrin targeted imaging agents
US20040062748A1 (en) 2002-09-30 2004-04-01 Mountain View Pharmaceuticals, Inc. Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof
US10279053B2 (en) 2011-07-19 2019-05-07 Nuvox Pharma Llc Microbubble compositions, method of making same, and method using same

Also Published As

Publication number Publication date
US20150023880A1 (en) 2015-01-22
CN1288373A (en) 2001-03-21
AR016444A1 (en) 2001-07-04
AU746067C (en) 2003-06-05
PL342473A1 (en) 2001-06-04
EE04900B1 (en) 2007-10-15
EP1419789A2 (en) 2004-05-19
DK1419789T3 (en) 2010-03-29
SI1419789T1 (en) 2010-03-31
IL137018A0 (en) 2001-06-14
HK1064301A1 (en) 2005-01-28
UA75023C2 (en) 2006-03-15
EE200000422A (en) 2001-12-17
US20170312375A1 (en) 2017-11-02
AU2115599A (en) 1999-08-02
BR9907066A (en) 2001-09-04
NO20003471L (en) 2000-08-29
SK10312000A3 (en) 2000-11-07
KR100711663B1 (en) 2007-04-27
SK285333B6 (en) 2006-11-03
CA2317921A1 (en) 1999-07-22
MY137255A (en) 2009-01-30
IL137018A (en) 2013-10-31
PH12012000094A1 (en) 2016-07-04
DE69941634D1 (en) 2009-12-24
US9545457B2 (en) 2017-01-17
HUP0100206A2 (en) 2001-06-28
EP1419789B1 (en) 2009-11-11
ZA99247B (en) 2000-07-14
US20120027688A1 (en) 2012-02-02
AU746067B2 (en) 2002-04-11
US20010003580A1 (en) 2001-06-14
EP1027035A2 (en) 2000-08-16
ATE447976T1 (en) 2009-11-15
PT1419789E (en) 2010-02-17
PL193672B1 (en) 2007-03-30
US8685441B2 (en) 2014-04-01
WO1999036104A2 (en) 1999-07-22
EA200000765A1 (en) 2000-12-25
ES2336669T3 (en) 2010-04-15
WO1999036104A3 (en) 2000-01-13
KR20010034106A (en) 2001-04-25
CA2317921C (en) 2011-03-22
EP1419789A3 (en) 2004-05-26
JP5160702B2 (en) 2013-03-13
US20120128595A1 (en) 2012-05-24
US8747892B2 (en) 2014-06-10
US8658205B2 (en) 2014-02-25
NO20003471D0 (en) 2000-07-05
NZ505082A (en) 2002-11-26
TWI242448B (en) 2005-11-01
EA002978B1 (en) 2002-12-26
HUP0100206A3 (en) 2011-04-28
HRP990012A2 (en) 1999-10-31
CN1191822C (en) 2005-03-09
JP2012211184A (en) 2012-11-01
JP2002509121A (en) 2002-03-26
US8084056B2 (en) 2011-12-27
US20130309175A1 (en) 2013-11-21
US20130309174A1 (en) 2013-11-21
US20040057991A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
NO321866B1 (en) Process for preparing a phospholipid suspension.
CN103249416B (en) Sustained-release preparation for injection
JP2976350B2 (en) Synthetic viscoelastic composition applied to the eye
KR101650222B1 (en) Method for dissolving hyaluronic acid and/or a salt thereof
CN108840929A (en) Anti-human papilloma virus (anti-HPV) small molecular antibody and combinations thereof and preparation method and application
JP5457238B2 (en) Heat sterilization method of hyaluronic acid and / or salt-containing liquid
MXPA00006299A (en) Preparation of a lipid blend and a phospholipid suspension containing the lipid blend
AU2006200015A1 (en) Preparation of a lipid blend and a phospholipid suspension containing a lipid blend, and contrast agents based on these
CZ20002562A3 (en) Process for preparing lipid mixture and phospholipid suspension containing the lipid mixture
BRPI9907066B1 (en) PROCESS FOR PREPARING A SUSPENSION OF PHOSPHOLIPIDES
JP2011195604A (en) Method for removing foreign matter in solution containing hyaluronic acid and/or salt thereof
CN118490631A (en) Polyvinyl alcohol eye drops and production process thereof

Legal Events

Date Code Title Description
MK1K Patent expired