[go: up one dir, main page]

NO150027B - DRAM AND GAMBLE HAMMER WITH COMBUSTION ENGINE DRIVE - Google Patents

DRAM AND GAMBLE HAMMER WITH COMBUSTION ENGINE DRIVE Download PDF

Info

Publication number
NO150027B
NO150027B NO792624A NO792624A NO150027B NO 150027 B NO150027 B NO 150027B NO 792624 A NO792624 A NO 792624A NO 792624 A NO792624 A NO 792624A NO 150027 B NO150027 B NO 150027B
Authority
NO
Norway
Prior art keywords
hammer
engine
crank
crankshaft
piston
Prior art date
Application number
NO792624A
Other languages
Norwegian (no)
Other versions
NO150027C (en
NO792624L (en
Inventor
Peter Gloor
Original Assignee
Hilti Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilti Ag filed Critical Hilti Ag
Publication of NO792624L publication Critical patent/NO792624L/en
Publication of NO150027B publication Critical patent/NO150027B/en
Publication of NO150027C publication Critical patent/NO150027C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/02Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for hand-held tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/12Means for driving the impulse member comprising a crank mechanism
    • B25D11/125Means for driving the impulse member comprising a crank mechanism with a fluid cushion between the crank drive and the striking body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • B25D9/08Means for driving the impulse member comprising a built-in air compressor, i.e. the tool being driven by air pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • B25D9/10Means for driving the impulse member comprising a built-in internal-combustion engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/06Means for driving the impulse member
    • B25D2211/068Crank-actuated impulse-driving mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0011Details of anvils, guide-sleeves or pistons
    • B25D2217/0023Pistons
    • B25D2217/0026Double pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Earth Drilling (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

Oppfinnelsen angår en bor- og meiselhammer med slagverk The invention relates to a drill and chisel hammer with a percussion mechanism

og forbrenningsmotor, hvor motorens veivaksel er koblet til en veiv som setter slagverkets drivstempel i en frem- og tilbakegående bevegelse via en veivstang. and internal combustion engine, where the engine's crankshaft is connected to a crank that sets the impactor's driving piston in a reciprocating motion via a crankshaft.

Bor- og meiselhammere av den ovennevnte type benyttes fremfor alt for større nedbrytningsyteiser. Ved de forbrennings-motorer som tjener til drift, dreier det seg som regel om såkalte to-takts-motorer. Denne utførelse har den fordel overfor en fire-takts-motor, at den har en enklere oppbygning og dermed også en mindre vekt ved sammenlignbar ytelse. To-takts-motorer er derfor vanlige av vekt- og~prismessige grunner ved håndbetjente apparater og maskiner. Hammer drills and chisels of the above type are used above all for larger demolition areas. The internal combustion engines used for operation are usually so-called two-stroke engines. This design has the advantage over a four-stroke engine that it has a simpler structure and thus also a smaller weight with comparable performance. Two-stroke engines are therefore common for weight and price reasons in hand-operated devices and machines.

To-takts-motoren må etter hvert arbeidsslag spyles med The two-stroke engine must be flushed after each working stroke

en blanding av bensin og luft, dvs. at de røkgasser som befinner seg i sylinderen,fortrenges av blandingen og motoren blir tilført en ny, tennbar ladning. For at blandingen skal kunne strømme inn i sylinderen er det imidlertid nødvendig med en pumpe. Ved praktisk talt alle mindre to-takts-motorer, benyttes motorens veivhus som spylepumpe. Dette er imidlertid forbundet med en betydelig ulempe. Veivakselens og veivstangens lagre såvel som sylinderveggen må smøres tilstrekkelig. Ved bensin-luft-blandingen blir imidlertid smøreoljen utvasket på kort tid, slik at maskinen i løpet av kort tid ville bli ødelagt uten motforholdsregler. For å avhjelpe dette, benyttes ved to-takts-motorer en bensin-olje-blanding. Oljen har da den oppgave å smøre drivverket. Bensinen er energibærer for forbrenningen. a mixture of petrol and air, i.e. that the flue gases in the cylinder are displaced by the mixture and the engine is supplied with a new, ignitable charge. In order for the mixture to flow into the cylinder, however, a pump is required. With practically all smaller two-stroke engines, the engine's crankcase is used as a flushing pump. However, this is associated with a significant disadvantage. The crankshaft and crankshaft bearings as well as the cylinder wall must be sufficiently lubricated. With the petrol-air mixture, however, the lubricating oil is washed out in a short time, so that the machine would be destroyed within a short time without countermeasures. To remedy this, two-stroke engines use a petrol-oil mixture. The oil then has the task of lubricating the drive mechanism. The petrol is the energy carrier for the combustion.

Da imidlertid den olje som kommer inn i forbrenningskammeret bare forbrenner ufullstendig under forbrenningen av bensin-luft-blandingen, fremtrer den som ubehagelig, blå eksosrøk. However, since the oil entering the combustion chamber only burns incompletely during the combustion of the petrol-air mixture, it appears as unpleasant, blue exhaust smoke.

Fremdeles er virkningsgraden for vanlige to-takts-motorer som regel mindre enn ved en sammenlignbar fire-takts-motor. Den mindre virkningsgrad kan hovedsakelig tilbakeføres til spyle-tapene ved spylingen av forbrenningskammeret. Ved større, stasjo-nære eller i kjøretøyer innbyggede motorer anvendes delvis en betydelig energi for spylingen av forbrenningskammeret. Således er f.eks. turbo-vifter, dreiesleide-vifter (Drehschieber-Geblase) eller stempelpumper kjent. Ved bærbare apparater, som f.eks. Still, the efficiency of ordinary two-stroke engines is generally less than that of a comparable four-stroke engine. The lower efficiency can mainly be traced back to the flushing losses when flushing the combustion chamber. In the case of larger, stationary or in-vehicle engines, considerable energy is partly used for flushing the combustion chamber. Thus, e.g. turbo fans, rotary vane fans (Drehschieber-Geblase) or piston pumps known. For portable devices, such as e.g.

bor- og meiselhammere, bortfaller imidlertid slike forholdsregler på forhånd av vekthensyn. drill and chisel hammers, however, such precautions are no longer required due to weight considerations.

Til grunn for oppfinnelsen ligger den oppgave å tilveie-bringe en bor- og meiselhammer med forbrenningsmotor, hvor motoren ved hjelp av god spyling oppnår en høy virkningsgrad og hele hammeren har en gunstig ytelsesvekt. The invention is based on the task of providing a drill and chisel hammer with a combustion engine, where the engine achieves a high degree of efficiency by means of good flushing and the whole hammer has a favorable performance weight.

Ifølge oppfinnelsen løses denne oppgave ved at slagverkets veiv er anordnet i et fra hammerens ytterligere deler adskilt rom, som har en inntaksventil, og over en utstrømningsåpning står i forbindelse med motorens inntakssliss som fører til brennkammeret. According to the invention, this task is solved by the percussion mechanism's crank being arranged in a room separated from the further parts of the hammer, which has an intake valve, and above an outflow opening is in connection with the engine's intake slot leading to the combustion chamber.

Når slagverkets veivhus er adskilt fra hammerens øvrige deler, kan dette benyttes som spylepumpe for motoren. Da slagverkets slagvolum for en gitt to-takts-motor omtrent tilsvarer motorens slagvolum, er slagverkets veivhus meget velegnet som spylepumpe for motoren. Opplagringen av veivakselen er vanligvis anordnet i motorens veivhus, og drivstempelet smøres vanligvis av slagverket. Slagverkets stempelstang-lagringer kan problemfritt utføres med tette, fettsmurte lagre. Smøring av slagverkets veivhus er derfor ikke nødvendig. Da motorens veivhus ved en for-gassermotor ikke kommer i berøring med drivstoff-luftblandingen, eller ved en innsprøytningsmotor ikke kommer i berøring med- den innsugde luft, kan smøringen av veivaksellagrene, veivstanglagrene og motorens sylinder-glideflater beregnes etter optimale syns-punkter. Således kan det f.eks. benyttes en dyppe- eller en oljestøvsmøring. Den innsugde drivstoff-luftblanding må således ikke oppfylle spesielle smørefunksjoner. Det er dermed mulig å drive apparatet uten oljeholdig to-takts-blanding, noe som inn- When the impactor's crankcase is separated from the hammer's other parts, this can be used as a flushing pump for the engine. As the stroke volume of the percussion mechanism for a given two-stroke engine roughly corresponds to the stroke volume of the engine, the crankcase of the percussion mechanism is very suitable as a flushing pump for the engine. The bearing of the crankshaft is usually arranged in the engine's crankcase, and the drive piston is usually lubricated by the striker. The impactor's piston rod bearings can be made without any problems with tight, grease-lubricated bearings. Lubrication of the impactor's crankcase is therefore not necessary. As the engine's crankcase in the case of a carburettor engine does not come into contact with the fuel-air mixture, or in the case of an injection engine does not come into contact with the intake air, the lubrication of the crankshaft bearings, the crankshaft bearings and the engine's cylinder sliding surfaces can be calculated according to optimal viewing points. Thus, it can e.g. dip or oil dust lubrication is used. The sucked-in fuel-air mixture must therefore not fulfill special lubrication functions. It is thus possible to operate the device without an oily two-stroke mixture, which in-

virker gunstig på driftomkostningene og avgassene. has a beneficial effect on operating costs and emissions.

De kjente to-takts-maskiner har en ytterligere ulempe. Ved spylingen går en del av drivstoff-luftblandingen som spyletap gjennom uttaksslissene over lydpotten ut i det fri. Dette lar seg i praksis ikke forhindre ved to-takts-motorer. Følgene av dette er et høyt drivstoff-forbruk, da dette drivstoff ikke lenger deltar i forbrenningsprosessen, samt en høy andel av uforbrente, The known two-stroke machines have a further disadvantage. During scavenging, part of the fuel-air mixture passes as scavenging loss through the outlet slits above the muffler into the open air. In practice, this cannot be prevented with two-stroke engines. The consequences of this are a high fuel consumption, as this fuel no longer participates in the combustion process, as well as a high proportion of unburned,

i det vesentlige giftige gasser, som unnviker gjennom eksosrøret. Ved de såkalte innsprøytningsmotorer forhindres dette ved at man spyler med ren luft. Så snart stempelet har dekket styreslissene og forbrenningskammeret dermed er tett, innsprøytes drivstoff ved hjelp av en høytrykks-innsprøytningsdyse. Dette tiltak resulterer i tre fordeler: Ved etterfølgende innsprøytning av drivstoff økes ytelsen merkbart, drivstoff-forbruket reduseres betydelig og avgasskvaliteten blir vesentlig bedre. Spylingen med slagverkets veivhus ifølge oppfinnelsen er egnet såvel for forgasser- som for innsprøytningsmotorer. essentially poisonous gases, which escape through the exhaust pipe. With the so-called injection engines, this is prevented by flushing with clean air. As soon as the piston has covered the guide slots and the combustion chamber is thus sealed, fuel is injected using a high-pressure injection nozzle. This measure results in three advantages: With the subsequent injection of fuel, performance is noticeably increased, fuel consumption is significantly reduced and exhaust gas quality is significantly improved. The flushing with the impactor's crankcase according to the invention is suitable for carburettors as well as for injection engines.

Gjennom inntaksventilen innsuges en tennbar blanding over en i og for seg kjent forgasser, eller også ren luft over et luftfilter. Selv om dette system er spesielt egnet for en forbrenningsmotor som arbeider etter to-takts-prinsippet, kan Through the intake valve, an ignitable mixture is sucked in over a carburettor known per se, or clean air over an air filter. Although this system is particularly suitable for an internal combustion engine that works according to the two-stroke principle, can

det f.eks. også ved en fire-takts-motor oppnås en såkalt forkompresjon og dermed en ytelsesøkning. Løsningen ifølge oppfinnelsen er spesielt enkel og krever, i forhold til en kjent, bor-og meiselhammer som drives av en forbrenningsmotor, kun en inntaksventil og en f orbsindelsesledning fra det adskilte roms utstrømningsåpning til motorens inntaksslisser. Forholdsreglene . ifølge oppfinnelsen medfører dermed praktisk talt ingen vektøkning. it e.g. also with a four-stroke engine, a so-called pre-compression is achieved and thus an increase in performance. The solution according to the invention is particularly simple and requires, in relation to a known, drill and chisel hammer which is driven by an internal combustion engine, only an intake valve and a forb-injection line from the separated room's outflow opening to the engine's intake slots. The Rules of Procedure. according to the invention thus entails practically no weight gain.

For å å oppnå en enkel oppbygning av apparatet er det hensiktsmessig at drivstempelets forside,som vender mot veivstangen, danner en veggdel av det rom som er adskilt fra hammerens øvringe deler. Spesielt er det ikke nødvendig med ytterligere forholdsregler ved et pneumatisk slagverk, da drivstempelet, In order to achieve a simple structure of the device, it is appropriate that the front side of the drive piston, which faces the crank rod, forms a wall part of the space that is separated from the other parts of the hammer. In particular, no further precautions are necessary with a pneumatic percussion mechanism, as the drive piston,

som beveger seg frem og tilbake i en sylinder, allerede er avtettet mot den luftpute som befinner seg mellom drivstempelet og et slag-stempel. Kompresjonen~av den innsugde luft eller blanding i det adskilte rom kan bestemmes optimalt ved fastlegning av veiv-slaget samtrestvolumetinnenfor bestemte grenser, uavhengig av which moves back and forth in a cylinder, is already sealed against the air cushion located between the driving piston and an impact piston. The compression of the aspirated air or mixture in the separated space can be optimally determined by determining the crank stroke and residual volume within certain limits, regardless of

drivmotoren. the drive motor.

Ved hjelp av et fra hammerens øvrige deler adskilt rom fås, i forhold til et kjent apparat hvor slagverkets veiv og drivmotorens veiv er anordnet i samme rom, nye muligheter. Ved en vanlig to-takts-motor innsuges luf t-d.rivstof f blandingen i motorens veivhus og forkomprimeres under ekspansjonsfasen i veivhusets forbrenningsrom. Kort før det nedre dødpunkt nås, fri-gis overløpskanalene av stempelet og den forkomprimerte blanding kan strømme inn i forbrenningsrommet fra veivhuset. Ved ytterligere dreining av veiven avtar imidlertid trykket i veivhuset såvel som i overløpskanalen, slik at innstrømningen i forbrenningsrommet går langsommere. Av denne grunn er bare en ufullstendig spyling av forbrenningsrommet mulig. Blir på den annen side spyletrykket ved forminskning av veivhuset øket, består den fare at en for stor del av den tennbare blanding strømmer uforbrent ut gjennom avgass-slissene som spyletap, noe som igjen fører til et øket drivstoff-forbruk. For nå optimalt å kunne til-passe spyletrykket til spyleprosessen, er det fordelaktig at slagverkets veiv er slik forskjøvet i forhold til motorens veiv- With the help of a room separated from the other parts of the hammer, new possibilities are obtained, compared to a known device where the crank of the percussion mechanism and the crank of the drive motor are arranged in the same room. In the case of a normal two-stroke engine, the air-fuel mixture is sucked into the engine's crankcase and precompressed during the expansion phase in the crankcase's combustion chamber. Shortly before bottom dead center is reached, the overflow channels are released by the piston and the pre-compressed mixture can flow into the combustion chamber from the crankcase. When the crank is turned further, however, the pressure in the crankcase as well as in the overflow channel decreases, so that the inflow into the combustion chamber is slower. For this reason, only an incomplete flushing of the combustion chamber is possible. If, on the other hand, the scavenging pressure is increased by reducing the crankcase, there is a risk that too large a portion of the ignitable mixture flows out unburned through the exhaust gas slits as scavenging loss, which in turn leads to increased fuel consumption. In order to now optimally adapt the flushing pressure to the flushing process, it is advantageous that the percussion mechanism's crank is thus offset in relation to the engine's crank

aksel at slagverket er forsinket i forhold til motoren med en veivforskyvning på fra 10° til 60° . Dermed er det mulig at et tilstrekkelig spyletrykk foreligger, inntil inntaks- eller overløps-slissene igjen dekkes av stempelet, når man med motorstempelets nedre dødpunkt som utgangspunkt dreier veivakselen videre. Da slagverket er koblet sammen med veivakselen,forblir denne veivforskyvning konstant. axle that the percussion mechanism is delayed in relation to the engine with a crank displacement of from 10° to 60°. Thus, it is possible that a sufficient flushing pressure exists, until the intake or overflow slots are again covered by the piston, when the crankshaft is turned further with the bottom dead center of the engine piston as a starting point. As the percussion mechanism is connected to the crankshaft, this crankshaft displacement remains constant.

I praksis har det vist seg hensiktsmessig at veiv-forskyvningen ligger på 40°. Derved bevirkes ved en gitt stilling av inntaks- eller overløpsslissene, at det foreligger et tilstrekkelig spyletrykk inntil inntaks- eller overløpsslissene lukkes, noe som forhindrer en tilbakestrømning av spyleluften og muliggjør en betydelig bedre spyling enn hva som kan oppnås ved en spyling fra veivhuset. På den annen side er trykkfallet mellom spyletrykket og trykket i forbrenningsrommet lite ved åpning av inntaksslissene, slik at det kan danne seg en strømning i forbrenningsrommet og den nyinnstrømmende blanding for det meste fortrenger de forbrente gasser gjennom avgass-slissene. In practice, it has proven appropriate that the crank offset is 40°. Thereby, at a given position of the intake or overflow slots, there is sufficient flushing pressure until the intake or overflow slots are closed, which prevents a backflow of the flushing air and enables a significantly better flushing than can be achieved by flushing from the crankcase. On the other hand, the pressure drop between the flushing pressure and the pressure in the combustion chamber is small when the intake slits are opened, so that a flow can form in the combustion chamber and the newly inflowing mixture mostly displaces the burned gases through the exhaust gas slits.

Oppfinnelsen vil i det følgende bli beskrevet nærmere ved hjelp av et eksempel under henvisning til tegningene, hvor fig. 1 viser en bor- og meiselhammer ifølge oppfinnelsen, delvis i snitt, fig. 2 viser slagverkets og motorens drivverksdeler i drivstempelets øvre dødpunktstilling, etter linjen A - A på In the following, the invention will be described in more detail by means of an example with reference to the drawings, where fig. 1 shows a drill and chisel hammer according to the invention, partly in section, fig. 2 shows the driving mechanism parts of the percussion mechanism and the engine in the top dead center position of the driving piston, following the line A - A on

fig. 1, og fig. 3 viser drivverksdelene i drivstempelets nedre dødpunktstilling. fig. 1, and fig. 3 shows the drive mechanism parts in the bottom dead center position of the drive piston.

Den på fig. 1 viste bor- og meiselhammer består hovedsakelig av et generelt med 1 betegnet hus. På husets 1 bakre ende er det festet et håndtak 2. På den side av huset 1 som ligger motsatt håndtaket 2 er det anordnet en verktøyholder 3. I huset 1 er en generelt med 4 betegnet veivaksel for forbrenningsmotoren dreibart lagret. Enveivstang 5 er dreibart festet til en veivtapp 4a. Veivstangen 5 er igjen forbundet med et stempel 6. Stempelet 6 er på sin side ført i en sylinder 1c. Ved den øvre ende av. veivakselen 4 er en generelt med 7 betegnet veiv via en en gjenge 4b forbundet med veivakselen 4. En veivstang 8 for slagverket er festet til en veivtapp 7a. Veivstangen 8 er på The one in fig. 1 shown hammer drill and chisel mainly consists of a general housing designated by 1. A handle 2 is attached to the rear end of the housing 1. A tool holder 3 is arranged on the side of the housing 1 which is opposite the handle 2. In the housing 1, a crankshaft for the internal combustion engine, generally denoted by 4, is rotatably mounted. Single crank rod 5 is rotatably attached to a crank pin 4a. The connecting rod 5 is again connected to a piston 6. The piston 6 is in turn guided in a cylinder 1c. At the upper end of. the crankshaft 4 is a crank generally denoted by 7 via a thread 4b connected to the crankshaft 4. A crank rod 8 for the percussion mechanism is attached to a crank pin 7a. The connecting rod 8 is on

sin side forbundet med et drivstempel 9, f.eks. for et pneumatisk slagverk. Drivstempelet 9 er ført i en sylinderføring 10. Slagverket er dermed koblet til forbrenningsmotoren. På huset 1 its side connected to a drive piston 9, e.g. for a pneumatic percussion instrument. The drive piston 9 is guided in a cylinder guide 10. The impact mechanism is thus connected to the internal combustion engine. On the house 1

er det anordnet en generelt med 11 betegnet inntaksventil i området for veiven 7. I inntaksventilen 11 blir en kule 11a trykket mot et ventilsete 11c ved hjelp av en fjær 11b. Inntaksventilen 11 an intake valve generally denoted by 11 is arranged in the area of the crank 7. In the intake valve 11, a ball 11a is pressed against a valve seat 11c by means of a spring 11b. The intake valve 11

funsjonerer således som en tilbakeslags- eller énveisventil. Når drivstempelet 9 beveger seg i retning av verktøyholderen, suges luft eller eventuelt en drivstoff-luftblanding gjennom inntaksventilen 11 inn i et rom 1a,i hvilket veiven 7 og veivstangen 8 beveger seg. Rommet 1 a er avtettet mot husets 1 øvrige deler ved hjelp av en pakning 12. Rommet 1a har videre en utstrømnings-åpning 1d. En rørledning 13 fører fra utstrømningsåpningen 1d til en inntakssliss 1e i sylinderen 1c. Når drivstempelet 9 for-andrer retning og igjen beveger seg mot håndtaket 2, reduseres rommet 1a og den i dette innsugde luft eller drivstoff-luft-blanding støtesut gjennom rørledningen 13. Når stempelet 6 frigir inntaksslissen 1e, kan luften strømme inn i forbrenningsrommet 1b. Derved fortrenges de forbrente avgasser,som befinner seg i forbrenningsrommet 1b etter tenningen, gjennom en avgassliss 1f. Denne prosess betegnes i fagsproget som spyling. Ved en såkalt for- thus functioning as a non-return or one-way valve. When the drive piston 9 moves in the direction of the tool holder, air or optionally a fuel-air mixture is sucked through the intake valve 11 into a space 1a, in which the crank 7 and the crank rod 8 move. The room 1a is sealed against the other parts of the housing 1 by means of a gasket 12. The room 1a also has an outflow opening 1d. A pipeline 13 leads from the outflow opening 1d to an intake slot 1e in the cylinder 1c. When the drive piston 9 changes direction and again moves towards the handle 2, the chamber 1a is reduced and the air or fuel-air mixture sucked into it is pushed through the pipeline 13. When the piston 6 releases the intake slot 1e, the air can flow into the combustion chamber 1b. Thereby, the burnt exhaust gases, which are in the combustion chamber 1b after ignition, are displaced through an exhaust gas slot 1f. This process is referred to in the technical language as flushing. In a so-called pre-

gassermotor blir det spylt med en antennbar drivstoff-luft-blanding. Dette medfører i og for seg den ulempe at en del av blandingen eventuelt kan unnvike gjennom avgasslissene 1 f og redusere forbrenningsmotorens virkningsgrad. Ved den såkalte innsprøytningsmotor spyles derimot med ren luft. Drivstoffet sprøytes gjennom en dyse i forbrenningsrommet 1 først når både inntaksslissen 1e og avgasslissen 1f er lukket. Dette virker igjen gunstig på virkningsgraden. På veivakselens 4 nedre ende er det anordnet et svinghjul 14 som det er vanlig ved forbrennings-motorer. Svinghjulet 14 tjener på den ene side til utligning mellom forbrenningsmotorens ytelsesavgivelse og motorens effekt-opptak under kompresjonsfasen samt slagverkets slagarbeide. Dess-uten blir svinghjulet i tillegg benyttet som generator for utvikling av tennspenningen og som viftehjul for en kjøleluft-strøm som suges inn gjennom et deksel 15 og blåses forbi sylinderen 1c. gas engine, it is flushed with an ignitable fuel-air mixture. This in itself entails the disadvantage that a part of the mixture may escape through the exhaust gas slits 1 f and reduce the efficiency of the internal combustion engine. With the so-called injection engine, on the other hand, clean air is flushed. The fuel is sprayed through a nozzle in the combustion chamber 1 only when both the intake slot 1e and the exhaust slot 1f are closed. This in turn has a beneficial effect on the efficiency. A flywheel 14 is arranged on the lower end of the crankshaft 4, which is usual for internal combustion engines. The flywheel 14 serves, on the one hand, to equalize between the combustion engine's output and the engine's power intake during the compression phase as well as the impact work of the percussion mechanism. In addition, the flywheel is used as a generator for developing the ignition voltage and as a fan wheel for a cooling air flow which is sucked in through a cover 15 and blown past the cylinder 1c.

Av det på fig. 2 viste snitt gjennom apparatet, etter linjen A - A på fig- 1, er de vesentlige drivverksdeler for apparatet vist. Drivstempelet 9 befinner seg der i sin øvre dødpunktstilling. Med hensyn til dreieretningen D, har stempelet 6 derimot allerede gått forbi sin øvre dødpunktstilling. Slagverkets veivtapp 7a er således forskjøvet i forhold til forbrenningsmotorens veivtapp 4a med en vinkel dL>, hvorved slagverket er forsinket i forhold til forbrenningsmotoren med denne vinkeloO. Ved ytterligere dreining av veiven 7 reduseres igjen rummet 1a og den luft eller luft-drivstoffblanding som befinner seg i dette støtes ut gjennom utstrømningsåpningen 1d. Denne forsinkelse av slagverket i forhold til forbrenningsmotoren har, sammenlignet med en vanlig to-takts-motor, hvor motorens veivhus virker som spylepumpe, den fordel at spyletrykket under hele spyleprosessen ligger over trykket i forbrenningsrommet, slik at en tilbakestrømning forhindres. Of that in fig. 2 shows a section through the device, following the line A - A in fig. 1, the essential drive mechanism parts for the device are shown. The drive piston 9 is there in its top dead center position. With regard to the direction of rotation D, however, the piston 6 has already passed its top dead center position. The impactor's crankpin 7a is thus offset relative to the internal combustion engine's crankpin 4a by an angle dL>, whereby the impactor is delayed in relation to the internal combustion engine by this angle oO. Upon further turning of the crank 7, the space 1a is reduced again and the air or air-fuel mixture that is in it is ejected through the outflow opening 1d. This delay of the percussion mechanism in relation to the combustion engine has, compared to a normal two-stroke engine, where the engine's crankcase acts as a scavenging pump, the advantage that the scavenging pressure during the entire scavenging process is above the pressure in the combustion chamber, so that a backflow is prevented.

Fig. 3 viser de samme drivverksdeler som fig. 2, men i drivstempelets 9 nedre dødpunktstilling. Stempelet 6 beveger seg derved allerede bort fra veiven 7. Derved komprimeres den drivstoff-luftblanding som er strømmet fra rommet 1a gjennom utstrømningsåpningen 1d og inntaksslissen 1e inn i forbrenningsrommet. I denne stilling er slagverkets effektbehov lite. Den energi som er lagret i svinghjulet kan således praktisk talt fullstendig benyttes for kompresjonen av den i forbrenningsrommet 1b inneholdte drivstoff-luftblanding. Således har også faseforskyvningen mellom slagverk og forbrenningsmotor en gunstig virkning. Fig. 3 shows the same drive unit parts as fig. 2, but in the bottom dead center position of the drive piston 9. The piston 6 thereby already moves away from the crank 7. Thereby, the fuel-air mixture which has flowed from the chamber 1a through the outflow opening 1d and the intake slot 1e is compressed into the combustion chamber. In this position, the percussion's power requirement is low. The energy stored in the flywheel can thus be practically completely used for the compression of the fuel-air mixture contained in the combustion chamber 1b. Thus, the phase shift between percussion and internal combustion engine also has a beneficial effect.

Claims (4)

1. Bor- og meiselhammer med slagverk og forbrenningsmotor, hvor motorens veivaksel er koblet til en veiv som setter slagverkets drivstempel i en frem- og tilbakegående bevegelse via en veivstang, karakterisert ved at slagverkets veiv (7) er anordnet i et fra hammerens øvrige deler adskilt rom (la) som har en inntaksventil (11), og over en ut-strømningsåpning (ld) står i forbindelse med motorens inntakssliss (le) som fører til brennkammeret (lb).1. Drilling and chisel hammer with hammer and internal combustion engine, where the engine's crankshaft is connected to a crank that sets the hammer's driving piston in a reciprocating movement via a crank rod, characterized in that the hammer's crank (7) is arranged in one of the hammer's other parts separate space (la) having an intake valve (11), and above an outflow opening (ld) is in communication with the engine intake slot (le) leading to the combustion chamber (lb). 2. Bor- og meiselhammer ifølge krav 1, karakterisert ved at drivstemplets (9) forside, som vender mot veivstangen (8), danner en veggdel av det rom (la) som er adskilt fra hammerens øvrige deler.2. Drill and chisel hammer according to claim 1, characterized in that the front side of the drive piston (9), which faces the crank rod (8), forms a wall part of the space (la) which is separated from the other parts of the hammer. 3. Bor- og meiselhammer ifølge krav 1-2, karakterisert ved at slagverkets veiv (7) er slik forskjø-vet i forhold til motorens veivaksel (4), at slagverket er forsinket i forhold til motoren med en vinkelforskyvning av veiv-akselenpå fra 10° til 60°.3. Drill and chisel hammer according to claims 1-2, characterized in that the percussion mechanism's crank (7) is so offset in relation to the engine's crankshaft (4), that the percussion mechanism is delayed in relation to the engine with an angular displacement of the crankshaft from 10° to 60°. 4. Bor- og meiselhammer ifølge krav 3, karakterisert ved at vinkelforskyvningen av veivakselen er 40°.4. Hammer drill and chisel according to claim 3, characterized in that the angular displacement of the crankshaft is 40°.
NO792624A 1978-08-14 1979-08-13 DRAM AND GAMBLE HAMMER WITH COMBUSTION ENGINE DRIVE NO150027C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2835570A DE2835570C2 (en) 1978-08-14 1978-08-14 Drill and chisel hammer with combustion engine drive

Publications (3)

Publication Number Publication Date
NO792624L NO792624L (en) 1980-02-15
NO150027B true NO150027B (en) 1984-04-30
NO150027C NO150027C (en) 1984-08-08

Family

ID=6047000

Family Applications (1)

Application Number Title Priority Date Filing Date
NO792624A NO150027C (en) 1978-08-14 1979-08-13 DRAM AND GAMBLE HAMMER WITH COMBUSTION ENGINE DRIVE

Country Status (25)

Country Link
JP (1) JPS5531590A (en)
AT (1) AT372327B (en)
AU (1) AU529523B2 (en)
BE (1) BE878204A (en)
CA (1) CA1118689A (en)
CH (1) CH641713A5 (en)
CS (1) CS208125B2 (en)
DD (1) DD145243A5 (en)
DE (1) DE2835570C2 (en)
DK (1) DK149510C (en)
ES (1) ES482955A1 (en)
FI (1) FI71818C (en)
FR (1) FR2433632A1 (en)
GB (1) GB2027629B (en)
HU (1) HU180243B (en)
IE (1) IE48460B1 (en)
IT (1) IT1125390B (en)
MX (1) MX147430A (en)
NL (1) NL186530C (en)
NO (1) NO150027C (en)
PL (1) PL117394B1 (en)
SE (1) SE436989B (en)
SU (1) SU1071233A3 (en)
YU (1) YU40846B (en)
ZA (1) ZA793299B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477150A (en) * 1988-07-25 1989-03-23 Hitachi Ltd Manufacture of semiconductor device
DE3936849A1 (en) * 1989-11-06 1991-05-08 Bosch Gmbh Robert ELECTRICALLY DRIVED MACHINE TOOL
US6390034B1 (en) * 2000-12-07 2002-05-21 Wacker Corporation Reciprocating impact tool having two-cycle engine oil supply system
DE102010004724A1 (en) * 2010-01-15 2011-07-21 Wacker Neuson SE, 80809 Drilling and / or hammer with cooling of device components
KR101642172B1 (en) * 2010-02-17 2016-07-29 프리마비스 에스.알.엘. Two-stroke enginge with low consumption and low emissions
RU2577635C2 (en) * 2011-08-09 2016-03-20 Лидия Петровна Ивлева Device for percussion-rotary engraving of material surface
CN102936998B (en) * 2012-11-08 2015-09-23 泉州市双环能源科技有限公司 Free-piston type percussion drilling system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB255519A (en) * 1925-04-21 1926-07-21 John Forster Alcock Improvements in or relating to percussive tools
FR943775A (en) * 1946-08-15 1949-03-17 Chicago Pneumatic Tool Co Motorized striker tool
GB698026A (en) * 1951-04-20 1953-10-07 Porsche Konstruktionen Gmbh Improvements in and relating to air-cooled two-stroke internal combustion engines
FR1102598A (en) * 1954-04-08 1955-10-24 Peugeot Cycles Internal combustion engine
US3154154A (en) * 1962-02-05 1964-10-27 Atlas Copco Ab Percussion tools incorporating a combustion cylinder for driving a reciprocable hammer piston
SE342166B (en) * 1970-05-29 1972-01-31 Bergman G
FR2291829A1 (en) * 1974-11-20 1976-06-18 Max Co Ltd STRIKING TOOL CONTROLS IN PARTICULAR BY THE PRESSURE DUE TO GASEOUS COMBUSTION

Also Published As

Publication number Publication date
DD145243A5 (en) 1980-12-03
ZA793299B (en) 1980-06-25
SE436989B (en) 1985-02-04
NL7904806A (en) 1980-02-18
SU1071233A3 (en) 1984-01-30
FI71818B (en) 1986-10-31
PL117394B1 (en) 1981-07-31
JPS6134951B2 (en) 1986-08-11
IE791469L (en) 1980-02-14
IT7923950A0 (en) 1979-06-28
CH641713A5 (en) 1984-03-15
SE7906633L (en) 1980-02-15
AT372327B (en) 1983-09-26
JPS5531590A (en) 1980-03-05
HU180243B (en) 1983-02-28
ES482955A1 (en) 1980-03-01
YU182579A (en) 1982-08-31
IE48460B1 (en) 1985-01-23
CS208125B2 (en) 1981-08-31
FI791781A (en) 1980-02-15
NL186530C (en) 1990-12-17
PL217730A1 (en) 1980-04-21
GB2027629B (en) 1982-12-08
DK149510B (en) 1986-07-07
GB2027629A (en) 1980-02-27
FR2433632A1 (en) 1980-03-14
DE2835570C2 (en) 1987-01-29
AU529523B2 (en) 1983-06-09
NO150027C (en) 1984-08-08
YU40846B (en) 1986-06-30
NO792624L (en) 1980-02-15
DK149510C (en) 1986-12-22
CA1118689A (en) 1982-02-23
MX147430A (en) 1982-12-02
BE878204A (en) 1979-12-03
DK338679A (en) 1980-02-15
FI71818C (en) 1987-02-09
FR2433632B1 (en) 1983-05-27
IT1125390B (en) 1986-05-14
ATA523779A (en) 1983-02-15
DE2835570A1 (en) 1980-02-28
AU4923079A (en) 1980-02-21

Similar Documents

Publication Publication Date Title
US7322322B2 (en) Stratified-scavenging two-stroke internal combustion engine
JP2820389B2 (en) Turbo compound arc piston engine
JP3672564B2 (en) Internal combustion engine
CA2127524A1 (en) Two-cycle, air cooled uniflow gasoline engine for powering a portable tool
NO150027B (en) DRAM AND GAMBLE HAMMER WITH COMBUSTION ENGINE DRIVE
US7428886B1 (en) Two-cycle engine and compressor
WO2000070211A1 (en) Low emissions two-cycle internal combustion engine
US6499445B2 (en) Two-stroke engine
JPH02108815A (en) Two-cycle/uniflow spark ignition engine
US20040035377A1 (en) Two-stroke cycle, free piston, shaft power engine
US4206727A (en) Two-stroke-cycle engine having an auxiliary piston and valve arrangement, and its associated drive mechanism
US1248250A (en) Internal-combustion engine.
WO2021176813A1 (en) Two-cycle internal combustion engine and engine work machine
US3731662A (en) Internal combustion two-stroke power unit
US2446830A (en) Percussive apparatus
JPH11236819A (en) Internal combustion engine and portable type power working machine
JP2882913B2 (en) 4 cycle engine
US1632879A (en) Internal-combustion engine
JPH1182047A (en) Portable power working machine
JPH1182032A (en) Internal combustion engine and portable power working machine
JPH1182009A (en) Portable power working machine
SU594307A1 (en) Diesel-driven punch
JPH06257445A (en) Two-cycle engine
JPS6035127A (en) Engine
JPH06257444A (en) Two-cycle engine