[go: up one dir, main page]

KR20230073794A - DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME - Google Patents

DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME Download PDF

Info

Publication number
KR20230073794A
KR20230073794A KR1020210160551A KR20210160551A KR20230073794A KR 20230073794 A KR20230073794 A KR 20230073794A KR 1020210160551 A KR1020210160551 A KR 1020210160551A KR 20210160551 A KR20210160551 A KR 20210160551A KR 20230073794 A KR20230073794 A KR 20230073794A
Authority
KR
South Korea
Prior art keywords
zeolite
catalyst
denitration catalyst
crystalline zeolite
titania
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020210160551A
Other languages
Korean (ko)
Other versions
KR102758432B1 (en
Inventor
김대성
전명표
울라 마흐붑
서민채
김정유
김종만
최지훈
Original Assignee
한국세라믹기술원
한국남동발전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원, 한국남동발전 주식회사 filed Critical 한국세라믹기술원
Priority to KR1020210160551A priority Critical patent/KR102758432B1/en
Publication of KR20230073794A publication Critical patent/KR20230073794A/en
Application granted granted Critical
Publication of KR102758432B1 publication Critical patent/KR102758432B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention relates to a deNOx catalyst for removing nitrogen oxides by selective ammonia reduction and a method for preparing the same, and more specifically, to a titania-based deNOx catalyst supported with crystalline zeolites, the catalyst which is prepared by supporting crystalline zeolites prepared without a template on a titania-based catalyst, and a method for preparing the same. The deNOx catalyst of the present invention has improved alkali-resistant deNOx properties, thereby solving the problem of alkali metal poisoning.

Description

결정성 제올라이트가 담지된 탈질촉매 및 그의 제조 방법{DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME}DeNOx catalyst supported with crystalline zeolite and method for producing the same

본 발명은 암모니아 선택적 환원법에 의한 질소산화물 제거용 탈질촉매 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 주형물질 없이 제조된 결정성 제올라이트를 티타니아계 촉매에 담지하여 제조되는, 결정성 제올라이트가 담지된 티타니아계 탈질촉매 및 그의 제조 방법에 관한 것이다. 본 발명의 탈질촉매는 내알칼리성이 향상됨으로써, 알칼리 금속의 피독 문제를 해결할 수 있다.The present invention relates to a denitration catalyst for removing nitrogen oxides by an ammonia selective reduction method and a method for producing the same, and more particularly, to a catalyst supported on a crystalline zeolite prepared by supporting a crystalline zeolite prepared without a template material on a titania-based catalyst. It relates to a titania-based denitrification catalyst and a method for preparing the same. The denitrification catalyst of the present invention can solve the problem of alkali metal poisoning by improving alkali resistance.

에너지 소비가 증가함에 따라, 화력발전소, 산업용 보일러, 폐기물 소각설비, 석유화학 플랜트 등을 통해 화석연료의 사용량이 증가하고, 이에 따라 화석연료의 연소에 의해 여러 가지 유해한 배출가스가 생성됨으로 인해 대기오염이 문제가 되고 있다. 이러한 연소 배출가스 중 대표적인 오염물질인 질소산화물(NOx)은 인체에 유해할 뿐 아니라 광화학 스모그 생성, 산성비 등의 환경오염의 주요 원인이 된다. As energy consumption increases, the use of fossil fuels increases through thermal power plants, industrial boilers, waste incineration facilities, petrochemical plants, etc. As a result, various harmful exhaust gases are generated by burning fossil fuels, resulting in air pollution. This is becoming a problem. Nitrogen oxide (NOx), a typical pollutant among these combustion exhaust gases, is not only harmful to the human body, but also a major cause of environmental pollution such as photochemical smog and acid rain.

이러한 질소산화물의 제거를 위한 종래 기술로서 선택적 촉매환원법(Selective Catalytic Reduction; SCR)이 가장 널리 사용되고 있다. 선택적 촉매환원법은 암모니아를 환원제로 사용하여, 이를 NOx와 혼합하여 촉매층을 통과시킴으로써 질소와 수증기 형태로 제거하는 탈질 방법으로서, 제올라이트는 NOx의 SCR을 위한 촉매로 사용된다.As a prior art for removing these nitrogen oxides, Selective Catalytic Reduction (SCR) is the most widely used. The selective catalytic reduction method uses ammonia as a reducing agent, mixes it with NOx and passes it through a catalyst layer to remove nitrogen and vapor in the form of nitrogen and water vapor. Zeolite is used as a catalyst for SCR of NOx.

그러나, NH3-SCR 촉매는 알칼리 금속으로 인한 촉매 활성의 감소 및 촉매 피독이 발생하는 문제가 있다.However, the NH 3 -SCR catalyst has problems in that catalytic activity is reduced and catalyst poisoning occurs due to alkali metals.

상기와 같은 문제점을 해소하기 위하여, 선택적 촉매환원법에 사용되는 촉매의 개선에 관한 여러 기술들이 개발되어 왔다. 그 중, 국내공개특허 제10-2019-0003863호에는 제올라이트를 NH4+ 이온 교환하여 촉매를 제조하는 기술을 개시하고 있고, 국내공개특허 제10-2003-0046881호에는 천연 제올라이트를 가열 및 산처리작업을 거쳐 촉매지지체 시료를 제조하는 기술을 개시하고 있고, 국내공개특허 제10-2018-7025353호에는 착화제를 필요로 하지 않는 Fe-AEI 제올라이트를 직접 합성하여 300oC 이상의 온도에서 높은 활성을 가지고 있는 촉매 제조 기술을 개시하고 있다.In order to solve the above problems, various techniques for improving the catalyst used in the selective catalytic reduction method have been developed. Among them, Korean Patent Publication No. 10-2019-0003863 discloses a technique for preparing a catalyst by exchanging NH4 + ion with zeolite, and Korean Patent Publication No. 10-2003-0046881 discloses natural zeolite for heating and acid treatment. A technology for preparing a catalyst support sample is disclosed, and in Korean Patent Publication No. 10-2018-7025353, Fe-AEI zeolite, which does not require a complexing agent, is directly synthesized and has high activity at a temperature of 300 ° C or higher. A catalyst manufacturing technology is disclosed.

그러나, 상기 특허들은 천연 제올라이트를 열처리, 산처리, 또는 이온교환하여 수득된 제올라이트를 사용한 촉매 제조 공정을 개시하고 있을 뿐, 주형물질 없이 제조된 결정성 제올라이트를 촉매에 담지함으로써, 탈질 효율을 개선하고 촉매 피독 문제를 해결할 수 있다는 기술사상에 대해서는 전혀 시사하고 있지 않다.However, the above patents only disclose a catalyst manufacturing process using zeolite obtained by heat treatment, acid treatment, or ion exchange of natural zeolite, and by carrying crystalline zeolite prepared without a template material on the catalyst, the denitration efficiency is improved and It does not suggest at all about the technical idea that the catalyst poisoning problem can be solved.

[특허문헌 1] 국내공개특허 제10-2019-0003863호[Patent Document 1] Domestic Patent Publication No. 10-2019-0003863 [특허문헌 2] 국내공개특허 제10-2003-0046881호[Patent Document 2] Korean Patent Publication No. 10-2003-0046881 [특허문헌 3] 국내공개특허 제10-2018-7025353호[Patent Document 3] Domestic Patent Publication No. 10-2018-7025353 [특허문헌 4] 국내등록특허 제10-0996794호[Patent Document 4] Korean Patent Registration No. 10-0996794

본 발명은 탈질촉매, 특히 대형 연소기관에서 운영되는 NH3-SCR 탈질 공정에 적합하게 응용될 수 있는 탈질촉매를 제공하는 것을 목적으로 한다. 특히, 본 발명은 주형물질 없이 제조된 결정성 제올라이트를 포함함으로써 촉매 피독시에도 높은 탈질효율을 나타내는 내알칼리성 탈질촉매를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a denitration catalyst that can be suitably applied to an NH 3 -SCR denitration process operated in a large combustion engine. In particular, an object of the present invention is to provide an alkali-resistant NOx removal catalyst that exhibits high NOx removal efficiency even when the catalyst is poisoned by including a crystalline zeolite prepared without a template material.

또한, 본 발명은 상기 내알칼리성 탈질촉매의 제조 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for preparing the alkali-resistant denitrification catalyst.

본 발명에 따른 탈질촉매는, 티타니아계 담체와, 상기 티타니아계 담체에 담지된 결정성 제올라이트 및 활성금속화합물을 포함하는 것을 특징으로 한다.The denitration catalyst according to the present invention is characterized by comprising a titania-based support, a crystalline zeolite and an active metal compound supported on the titania-based support.

본 발명의 탈질촉매에 있어서, 상기 결정성 제올라이트는 상기 탈질촉매의 전체 중량 대비 1.0~10.0중량%의 함량으로 포함될 수 있다.In the denitration catalyst of the present invention, the crystalline zeolite may be included in an amount of 1.0 to 10.0% by weight based on the total weight of the denitration catalyst.

상기 결정성 제올라이트는 주형물질없이 제조된 제올라이트로서, ZSM-5, 베타 제올라이트, L 제올라이이트, 천연 제올라이트(Natural zeolite), 모더나이트(Mordenite), 및 금속이온으로 이온교환된 제올라이트 또는 금속산화물이 담지된 제올라이트로부터 선택되는 1종 이상일 수 있다.The crystalline zeolite is a zeolite prepared without a template material, and ZSM-5, beta zeolite, L zeolite, natural zeolite, mordenite, and zeolite ion-exchanged with metal ions or metal oxides It may be at least one selected from the supported zeolites.

본 발명의 탈질촉매에 있어서, 상기 티타니아계 담체는 아나타제상 티타니아(TiO2) 담체일 수 있다. In the denitration catalyst of the present invention, the titania-based support may be an anatase-phase titania (TiO 2 ) support.

본 발명의 탈질촉매에 있어서, 상기 활성금속화합물은 상기 탈질촉매의 전체 중량 대비 0.1~10.0중량%의 함량으로 포함될 수 있다.In the denitration catalyst of the present invention, the active metal compound may be included in an amount of 0.1 to 10.0% by weight based on the total weight of the denitration catalyst.

상기 활성금속산화물은 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물로부터 선택되는 1종 이상일 수 있다. The active metal oxide may be at least one selected from tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide, and vanadium oxide.

본 발명에 따른 탈질촉매의 제조 방법은, 다음의 단계들을 포함하는 것을 특징으로 한다:The method for preparing a denitration catalyst according to the present invention is characterized by comprising the following steps:

1) 아나타제상 티타니아계 담체를 준비하는 단계;1) preparing an anatase-phase titania-based carrier;

2) 주형물질 없이 결정성 제올라이트를 제조하는 단계;2) preparing a crystalline zeolite without a template material;

3) 상기 1) 단계의 티타니아계 담체에 상기 2) 단계의 주형물질없이 제조된 결정성 제올라이트 및 활성금속화합물을 담지하는 단계;3) supporting the crystalline zeolite and the active metal compound prepared without the template material in step 2) on the titania-based carrier in step 1);

4) 상기 3) 단계의 결과물을 소성하여, 결정성 제올라이트가 담지된 탈질촉매를 제조하는 단계.4) Calcining the product of step 3) to prepare a denitration catalyst supported with crystalline zeolite.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 1) 단계는 티타늄 전구체 화합물과 증류수를 혼합 후 가수분해한 다음 고액분리, 수세 및 중화하는 것을 포함할 수 있다.In the method for preparing the denitration catalyst of the present invention, step 1) may include mixing the titanium precursor compound and distilled water, followed by hydrolysis, followed by solid-liquid separation, washing with water, and neutralization.

상기 티타늄 전구체화합물은 TiOSO4, TiOCl2, TiCl4, 및 Ti{OCH(CH3)2}4로부터 선택되는 1종 이상일 수 있다.The titanium precursor compound may be at least one selected from TiOSO 4 , TiOCl 2 , TiCl 4 , and Ti{OCH(CH 3 ) 2 } 4 .

상기 가수분해는 70~100℃에서 5~48시간 동안 수행될 수 있다.The hydrolysis may be performed at 70 to 100 ° C for 5 to 48 hours.

상기 중화는 pH 7~8로 조정함으로써 수행될 수 있다.The neutralization may be performed by adjusting the pH to 7-8.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 2) 단계에서 결정성 제올라이트는 유기 주형물질 없이 실리카 전구체 및 알루미나 전구체를 포함하는 혼합용액에 하이드록실 이온공급원을 혼합한 후 밀링 및 수열합성을 거쳐 제조될 수 있다.In the method for preparing the denitration catalyst of the present invention, in step 2), the crystalline zeolite is prepared by mixing a hydroxyl ion source with a mixed solution containing a silica precursor and an alumina precursor without an organic template material, followed by milling and hydrothermal synthesis. It can be.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 3) 단계는 상기 티타니아계 담체의 슬러리에 상기 결정성 제올라이트 및 활성금속화합물을 첨가하고, 함침 처리하여 수행될 수 있다.In the preparation method of the denitration catalyst of the present invention, step 3) may be performed by adding the crystalline zeolite and the active metal compound to the slurry of the titania-based carrier and performing an impregnation treatment.

상기 함침 처리는 회전감압증류기에서 150~200mmbar, 80∼100℃의 조건 하에 수행될 수 있다.The impregnation treatment may be performed under conditions of 150 to 200 mmbar and 80 to 100° C. in a rotary vacuum distillation machine.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 4) 단계에서의 소성은 400~600℃에서 1~10시간 수행될 수 있다.In the manufacturing method of the denitration catalyst of the present invention, the firing in step 4) may be performed at 400 to 600 ° C. for 1 to 10 hours.

본 발명에 따른 NH3-SCR(Selective Catalytic Reduction)용 탈질촉매는 화력발전소에서 알칼리 금속류, 플라이애쉬(Fly ash), 이물질 등으로 인한 촉매 피독을 개선함으로써 우드펠렛을 사용하는 화력발전소에서 높은 탈질성능을 보이는 이점이 있다.The denitrification catalyst for NH 3 -SCR (Selective Catalytic Reduction) according to the present invention improves catalyst poisoning caused by alkali metals, fly ash, foreign substances, etc. in thermal power plants, resulting in high denitrification performance in thermal power plants using wood pellets. has the advantage of showing

또한, 본 발명에 따른 탈질촉매의 제조방법에 의하면, 제올라이트를 전처리 하지 않고 주형물질 없이 제조된 결정성 제올라이트를 사용함으로써, 촉매 제조의 경제적 측면에서 유리할 뿐 아니라, 상기 결정성 제올라이트를 촉매에 담지함으로써, 내알칼리성이 향상되어 촉매 피독 성능이 개선된 탈질촉매를 제조할 수 있다. In addition, according to the method for preparing a denitration catalyst according to the present invention, by using crystalline zeolite prepared without pretreatment of zeolite and without a template material, it is advantageous in terms of economy of catalyst production, and by supporting the crystalline zeolite on the catalyst , it is possible to prepare a denitration catalyst with improved catalyst poisoning performance due to improved alkali resistance.

도 1은 본 발명의 일 실시예에 따른 탈질촉매의 제조공정의 순서도를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른, 모더나이트가 담지된 탈질촉매 및 모더나이트의 XRD(X-ray Diffractometer) 패턴을 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른, 모더나이트의 FE-SEM 이미지를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른, ZSM-5(25)가 담지된 탈질촉매의 칼륨 피독 전후에 따른 탈질효율을 비교하여 나타낸 그래프이다.
도 5는 비교예 1에 따른, 결정성 제올라이트의 담지없이 제조된 탈질촉매의 칼륨 피독 전후에 따른 탈질효율을 비교하여 나타낸 그래프이다.
1 is a flowchart of a manufacturing process of a denitration catalyst according to an embodiment of the present invention.
2 shows XRD (X-ray Diffractometer) patterns of a denitration catalyst supported with mordenite and mordenite according to an embodiment of the present invention.
3 shows a FE-SEM image of mordenite according to an embodiment of the present invention.
4 is a graph showing the comparison of denitrification efficiency according to an embodiment of the present invention, before and after potassium poisoning of a denitration catalyst carrying ZSM-5 (25).
5 is a graph showing the comparison of denitrification efficiencies before and after potassium poisoning of a denitration catalyst prepared without supporting crystalline zeolite according to Comparative Example 1.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention, and how to achieve them, will become clear with reference to the detailed description of the embodiments below. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the present embodiments allow the disclosure of the present invention to be complete, and the common knowledge in the art to which the present invention belongs. It is provided to fully inform the holder of the scope of the invention, and the present invention is only defined by the scope of the claims.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한, 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used in a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless specifically defined explicitly.

이하, 본 발명에 따른 탈질촉매 및 그의 제조 방법에 대하여 상세히 설명한다. Hereinafter, a denitrification catalyst and a manufacturing method thereof according to the present invention will be described in detail.

본 발명에 따른 탈질촉매는, 티타니아계 담체 및 상기 티타니아계 담체에 담지된 결정성 제올라이트 및 활성금속화합물을 포함하는 것을 특징으로 한다.The denitration catalyst according to the present invention is characterized by comprising a titania-based support, a crystalline zeolite and an active metal compound supported on the titania-based support.

본 발명의 탈질촉매에 있어서, 상기 결정성 제올라이트는 상기 탈질촉매의 전체 중량 대비 1.0~10.0중량%, 바람직하게는 2~8중량%의 함량으로 포함될 수 있는데, 상기 함량 범위 미만이면 제올라이트의 담지에 의한 효과가 미흡하고, 상기 함량 범위를 초과하면 필요 이상의 높은 제올라이트의 함량으로 인해 촉매 표면의 활성면적이 감소하여 탈질성능의 저하를 초래할 수도 있으며, 또한 저가 제올라이트의 제조기술임에도 불구하고 티타니아계 담체에 비해 상대적으로 비용이 상승하는 단점이 있으므로 바람직하지 않다.In the denitration catalyst of the present invention, the crystalline zeolite may be included in an amount of 1.0 to 10.0% by weight, preferably 2 to 8% by weight, based on the total weight of the denitration catalyst. If the effect is insufficient, and if the content exceeds the above range, the active area of the catalyst surface may decrease due to the higher than necessary content of zeolite, resulting in a decrease in denitrification performance. In addition, despite the low-cost zeolite manufacturing technology, It is not preferable because it has the disadvantage of relatively increasing cost compared to the above method.

상기 결정성 제올라이트는 ZSM-5, 베타 제올라이트, L 제올라이이트, 천연 제올라이트, 모더나이트 및 금속이온으로 이온교환된 제올라이트, 예로서 Fe-모더나이트, 또는 금속산화물이 담지된 제올라이트로부터 선택되는 1종 이상일 수 있다.The crystalline zeolite is It may be at least one selected from ZSM-5, beta zeolite, L zeolite, natural zeolite, mordenite, and zeolite ion-exchanged with metal ions, such as Fe-mordenite, or zeolite supported with metal oxide.

본 발명의 탈질촉매에 있어서, 상기 티타니아계 담체는 아나타제상을 가지는 것이 바람직하다. 티타니아(TiO2)는 일반적으로 브루카이트(brookite), 루타일(rutile), 아나타제(anatase)의 3가지 결정구조를 가지는데, 아나타제상의 결정상을 갖는 티타니아는 황화합물과 쉽게 반응하지 않는 화학적 안정성을 갖고, 다른 상에 비해 촉매 활성이 더 우수하다. In the denitrification catalyst of the present invention, the titania-based support preferably has an anatase phase. Titania (TiO 2 ) generally has three crystal structures: brookite, rutile, and anatase. , which has better catalytic activity compared to other phases.

본 발명의 탈질촉매에 있어서, 상기 활성금속화합물은 상기 탈질촉매의 전체 중량 대비 0.1~10.0중량%, 특히 1~3중량%의 함량으로 담지되는 것이 바람직한데, 담지량이 0.1중량% 미만인 경우는 활성금속화합물의 담지에 따른 효과가 미흡하고, 10.0중량%를 초과하면 촉매의 상용화를 위한 비용이 증가하게 되어 경제성이 저하되므로 바람직하지 않다. In the denitration catalyst of the present invention, the active metal compound is preferably supported in an amount of 0.1 to 10.0% by weight, particularly 1 to 3% by weight, based on the total weight of the denitration catalyst. The effect of the support of the metal compound is insufficient, and if it exceeds 10.0% by weight, the cost for commercialization of the catalyst increases, which is undesirable because economical efficiency decreases.

상기 활성금속산화물은 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물로부터 선택되는 1종 이상일 수 있으나, 이들에 제한되지는 않으며, 특히 텅스텐산화물 및 바나듐산화물이 바람직하다. The active metal oxide may be at least one selected from tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide and vanadium oxide, but is not limited thereto, and tungsten oxide and vanadium oxide are particularly preferred.

본 발명에 따른 탈질촉매의 제조 방법은, 다음의 단계들을 포함할 수 있다.The method for preparing a denitration catalyst according to the present invention may include the following steps.

1) 아나타제상 티타니아계 담체를 준비하는 단계;1) preparing an anatase-phase titania-based carrier;

2) 주형물질 없이 결정성 제올라이트를 제조하는 단계;2) preparing a crystalline zeolite without a template material;

3) 상기 1) 단계의 티타니아계 담체에 상기 2) 단계의 주형물질없이 제조된 결정성 제올라이트 및 활성금속화합물을 담지하는 단계;3) supporting the crystalline zeolite and the active metal compound prepared without the template material in step 2) on the titania-based carrier in step 1);

4) 상기 3) 단계의 결과물을 소성하여, 결정성 제올라이트가 담지된 탈질촉매를 제조하는 단계.4) Calcining the product of step 3) to prepare a denitration catalyst supported with crystalline zeolite.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 1) 단계는 티타늄 전구체 화합물과 증류수를 혼합 후 가수분해한 다음 고액분리, 수세 및 중화하는 것을 포함할 수 있다.In the method for preparing the denitration catalyst of the present invention, step 1) may include mixing the titanium precursor compound and distilled water, followed by hydrolysis, followed by solid-liquid separation, washing with water, and neutralization.

상기 티타늄 전구체화합물은 티타닐설페이트(TiOSO4), 티타늄옥시클로라이드(TiOCl2), 티타늄테트라클로라이드(TiCl4), 티타늄이소프로폭사이드(Ti{OCH(CH3)2}4; TTIP) 등으로부터 선택되는 1종 이상일 수 있으나, 이들에 제한되는 것은 아니며, 특히 TiOSO4가 바람직하다. The titanium precursor compound is obtained from titanyl sulfate (TiOSO 4 ), titanium oxychloride (TiOCl 2 ), titanium tetrachloride (TiCl 4 ), titanium isopropoxide (Ti{OCH(CH 3 ) 2 } 4 ; TTIP), and the like. It may be one or more selected, but is not limited thereto, and TiOSO 4 is particularly preferred.

상기 가수분해는 효과적인 가수분해의 진행을 위하여 70~100℃에서 10~20시간, 바람직하게는 90~100℃에서 15~18시간 동안 수행될 수 있다.The hydrolysis may be carried out at 70 to 100 ° C for 10 to 20 hours, preferably at 90 to 100 ° C for 15 to 18 hours for effective hydrolysis.

상기 중화는 암모니아수와 같은 염기성 화합물의 첨가에 의해 pH 7~8로 조정함으로써 수행될 수 있으며, 이와 같은 중화 처리는 이후에 활성금속화합물의 효과적인 담지를 위한 것이기도 하다.The neutralization may be performed by adjusting the pH to 7-8 by adding a basic compound such as ammonia water, and such neutralization treatment is also for effective support of the active metal compound thereafter.

상기 활성금속화합물로는 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물 등으로부터 선택되는 1종 이상을 들 수 있으나, 이들에 제한되는 것은 아니다.The active metal compound may include at least one selected from among tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide, and vanadium oxide, but is not limited thereto.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 2) 단계에서 결정성 제올라이트의 제조는, 유기 주형물질 없이 실리카 전구체 및 알루미나 전구체를 포함하는 혼합용액에 하이드록실 이온공급원을 혼합한 후 밀링 및 수열합성하는 것을 포함할 수 있다. 이러한 제조방법에 의하면 낮은 제조비용으로 결정성 제올라이트를 얻을 수 있다. 또한, 상기 결정성 제올라이트의 제조 시 금속산화물 또는 금속 이온을 첨가 또는 이온교환하는 것을 더 포함할 수 있다. 본 발명의 바람직한 일 구체예에 따르면, 상기 결정성 제올라이트는 국내등록특허 제10-0996794호에 기재된 방법에 따라 제조될 수 있으며, 상기 국내등록특허는 그 전체가 본 명세서에 참고문헌으로 통합된다.In the method for preparing the denitration catalyst of the present invention, in step 2), the crystalline zeolite is prepared by mixing a hydroxyl ion source with a mixed solution containing a silica precursor and an alumina precursor without an organic template material, followed by milling and hydrothermal synthesis may include doing According to this manufacturing method, crystalline zeolite can be obtained at a low manufacturing cost. In addition, when preparing the crystalline zeolite, adding or ion-exchanging a metal oxide or metal ion may be further included. According to a preferred embodiment of the present invention, the crystalline zeolite may be prepared according to the method described in Korean Patent Registration No. 10-0996794, and the Korean Patent Registration is incorporated herein by reference in its entirety.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 3) 단계는 상기 티타니아계 담체의 슬러리에 상기 결정성 제올라이트 및 활성금속화합물을 포함하는 슬러리를 첨가하고, 함침 처리하여 수행될 수 있다. In the preparation method of the denitration catalyst of the present invention, step 3) may be performed by adding a slurry containing the crystalline zeolite and an active metal compound to the slurry of the titania-based carrier, and subjecting the slurry to impregnation.

상기 함침 처리는 효과적인 함침을 위하여 회전감압증류기에서 150~200mmbar, 바람직하게는 150~180mmbar, 가장 바람직하게는 170mmbar로, 80~100℃, 바람직하게는 90℃의 조건 하에 수행될 수 있다.The impregnation treatment may be carried out at 150 to 200 mmbar, preferably 150 to 180 mmbar, most preferably 170 mmbar, and 80 to 100 ° C., preferably 90 ° C., in a rotary vacuum distillation chamber for effective impregnation.

상기 3) 단계에서 담지된 활성금속화합물은 촉매의 활성온도와 산점의 확장, 소결 및 상전이 억제 등의 역할을 한다. The active metal compound supported in the step 3) serves to expand the active temperature of the catalyst and acid sites, and inhibit sintering and phase transition.

상기 3) 단계에서, 상기 결정성 제올라이트 및 활성금속화합물의 담지 순서에는 특별히 제한이 없다.In the step 3), the order in which the crystalline zeolite and the active metal compound are loaded is not particularly limited.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 4) 단계에서의 소성은 400~600℃, 바람직하게는 450~550℃에서 1~10시간, 바람직하게는 3~4시간 수행될 수 있다.In the method for preparing the denitration catalyst of the present invention, the firing in step 4) may be performed at 400 to 600 ° C, preferably 450 to 550 ° C for 1 to 10 hours, preferably 3 to 4 hours.

이하, 본 발명에 따른, 주형물질없이 제조된 결정성 제올라이트가 담지된 탈질촉매의 제조를 위한 실시예 및 무정형 탈질촉매의 제조를 위한 비교예를 통하여 본 발명을 더욱 상세히 설명하나, 본 발명은 하기 실시예들에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples for preparing a denitration catalyst prepared without a template material and supported with crystalline zeolite and a comparative example for preparing an amorphous denitration catalyst according to the present invention. It is not limited by the examples.

실시예 1Example 1

도 1에 나타낸 탈질촉매의 제조 공정에 따라, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25)가 담지된 탈질촉매를 제조하였다. According to the manufacturing process of the denitration catalyst shown in FIG. 1, a denitration catalyst supported with ZSM-5 (25) as a crystalline zeolite prepared without a template material was prepared.

황산티타닐(TiOSO4) 분말을 증류수와 혼합한 후 100℃에서 16시간 동안 가수분해하여 100~150g/L의 아나타제 티타니아(TiO2) 슬러리(TiO2 졸)를 제조하였다. 상기 TiO2 졸에 대해 10중량%의 결정성 제올라이트(ZSM-5(25)), 텅스텐산화물(WO3)이 3중량%가 되도록 텅스텐 전구체((NH4)6W12O39·XH2O(Ammonium meta tungstate)) 및 바나듐산화물이 1중량%가 되도록 NH4VO3를 증류수 200ml에 용해시킨 후 C2H2O4 를 첨가한 용액을 2시간 교반하여 Zeolite/V2O5WO3/TiO2 소재를 제조하였다. 교반이 완료된 Zeolite/V2O5WO3/TiO2 슬러리는 감압증류하여 용매를 증발시켜 분말을 제조하고, 500℃에서 4시간 동안 소성하여, 결정성 제올라이트가 담지된 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다.Titanyl sulfate (TiOSO 4 ) The powder was mixed with distilled water and hydrolyzed at 100° C. for 16 hours to prepare 100-150 g/L of anatase titania (TiO 2 ) slurry (TiO 2 sol). A tungsten precursor ((NH 4 ) 6 W 12 O 39·X H 2 so that 10% by weight of crystalline zeolite (ZSM-5 (25)) and tungsten oxide (WO 3 ) are 3% by weight relative to the TiO 2 sol After dissolving NH 4 VO 3 in 200 ml of distilled water so that O (Ammonium meta tungstate) and vanadium oxide are 1% by weight, the solution to which C 2 H 2 O 4 was added was stirred for 2 hours to obtain Zeolite/V 2 O 5 WO 3 /TiO 2 material was prepared. The stirred Zeolite/V 2 O 5 WO 3 /TiO 2 slurry was distilled under reduced pressure to evaporate the solvent to prepare a powder, and calcined at 500° C. for 4 hours to obtain Zeolite/V 2 O 5 WO loaded with crystalline zeolite. A 3 /TiO 2 denitrification catalyst was prepared.

본 실시예에서 제조된 ZSM-5가 담지된 탈질촉매의 칼륨 피독 전후에 따른 탈질촉매의 탈질효율을 비교한 그래프를 도 4에 나타내었다.FIG. 4 shows a graph comparing the denitrification efficiency of the denitrification catalyst prepared in this example, the ZSM-5-supported denitrification catalyst before and after potassium poisoning.

실시예 2Example 2

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 ZSM-5(1000)를 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, it was carried out in the same manner as in Example 1, except that ZSM-5 (1000) was used instead of ZSM-5 (25) as a crystalline zeolite prepared without a template material. A Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared.

실시예 3Example 3

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 10중량%의 ZSM-5(25) 대신에 3중량%의 모더나이트(20)을 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, except that 3 wt% of mordenite (20) was used instead of 10 wt% of ZSM-5 (25) as a crystalline zeolite prepared without a template material, A Zeolite/V 2 O 5 WO 3 /TiO 2 denitration catalyst was prepared in the same manner as in Example 1.

실시예 4 Example 4

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 모더나이트(20)을 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, Zeolite was carried out in the same manner as in Example 1, except that mordenite (20) was used instead of ZSM-5 (25) as a crystalline zeolite prepared without a template material. /V 2 O 5 WO 3 /TiO 2 A denitrification catalyst was prepared.

본 실시예에서 사용된 모더나이트(20) 및 상기 모더나이트(20)가 담지된 탈질촉매의 XRD 패턴을 도 2에 나타내었고, 상기 모더나이트(20)의 FE-SEM 이미지를 도 3에 나타내었다.The XRD patterns of the mordenite 20 used in this example and the denitration catalyst supported by the mordenite 20 are shown in FIG. 2, and the FE-SEM image of the mordenite 20 is shown in FIG. 3 .

실시예 5Example 5

모더나이트 분말을 FeCl2.4H2O수용액에 첨가한 후 60℃에서 24시간동안 교반하여 이온교환하였고, 이온교환이 종료된 용액을 증류수로 세척하였다. 상기 과정을 2회 진행하여 이온교환한 Fe-모더나이트(20)을 제조하였다.After adding the mordenite powder to an aqueous solution of FeCl 2 .4H 2 O, ion exchange was performed by stirring at 60° C. for 24 hours, and the ion exchange solution was washed with distilled water. The above process was performed twice to prepare ion-exchanged Fe-mordenite (20).

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 상기에서 제조된 Fe-모더나이트(20)을 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, Example 1, except that the Fe-mordenite (20) prepared above was used instead of ZSM-5 (25) as a crystalline zeolite prepared without a template material. Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared in the same manner as in

실시예 6Example 6

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 베타 제올라이트(13)를 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, Zeolite was carried out in the same manner as in Example 1, except that beta zeolite (13) was used instead of ZSM-5 (25) as a crystalline zeolite prepared without a template material. /V 2 O 5 WO 3 /TiO 2 A denitrification catalyst was prepared.

실시예 7Example 7

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 천연 제올라이트(2.5)를 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, Zeolite was carried out in the same manner as in Example 1, except that natural zeolite (2.5) was used instead of ZSM-5 (25) as a crystalline zeolite prepared without a template material. /V 2 O 5 WO 3 /TiO 2 A denitrification catalyst was prepared.

비교예 1Comparative Example 1

실시예 1에서, 주형물질없이 제조된 결정성 제올라이트인 ZSM-5(25)를 담지하지 않은 것을 제외하고는, 실시예 1과 동일하게 실시하여 분말 상태의 V2O5WO3/TiO2 탈질촉매를 제조하였다.In Example 1, V 2 O 5 WO 3 /TiO 2 denitrification in powder state was carried out in the same manner as in Example 1, except that ZSM-5 (25), which is a crystalline zeolite manufactured without a template material, was not supported. A catalyst was prepared.

본 비교예에서 제조된탈질촉매의 칼륨 피독 전후에 따른 탈질촉매의 탈질효율을 비교한 그래프를 도 5에 나타내었다.A graph comparing the denitrification efficiency of the denitration catalyst prepared in this comparative example before and after potassium poisoning is shown in FIG. 5 .

비교예 2Comparative Example 2

실시예 1에서, 10중량%의 ZSM-5(25) 대신에 3중량%의 ZrO2를 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 다공판상체 MgO가 담지된 ZrO2/V2O5WO3/TiO2 탈질촉매를 제조하였다. In Example 1, except that 3% by weight of ZrO 2 was supported instead of 10% by weight of ZSM-5 (25), ZrO 2 / V supported with porous plate-shaped MgO was carried out in the same manner as in Example 1. 2 O 5 WO 3 /TiO 2 A denitrification catalyst was prepared.

비교예 3Comparative Example 3

실시예 1에서, 10중량%의 ZSM-5(25) 대신에 3중량%의 Al2O3를 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Al2O3/V2O5WO3/TiO2 탈질촉매를 제조하였다. In Example 1, Al 2 O 3 / V 2 O 5 was carried out in the same manner as in Example 1, except that 3% by weight of Al 2 O 3 was supported instead of 10% by weight of ZSM- 5 (25). A WO 3 /TiO 2 denitrification catalyst was prepared.

[특성평가] [Characteristic evaluation]

1. 탈질촉매의 특성 평가1. Characteristic evaluation of denitrification catalyst

상기 실시예 1 내지 7 및 비교예 1 내지 3에서 제조된 탈질촉매들의 탈질특성을 하기와 같이 평가하였다. The denitration properties of the denitration catalysts prepared in Examples 1 to 7 and Comparative Examples 1 to 3 It was evaluated as follows.

밸런스가스로 N2가스를 사용하였고, NOx, NH3가스의 농도를 300ppm으로 고정하고, NOx와 NH3 반응 비율은 1:1로 하였다. 반응 가스 내 산소 농도는 5vol%로 주입하였고, 반응기내 가스 유량은 300cc/min로 유지하였다. NOx를 제거하기 위한 촉매고정층은 공간속도 60,000(hr-1)로 유지하였고, 공간속도에 맞게 촉매량을 조절하여 세라믹울을 사용하여 파우더 고정층을 형성하였다. 평가방법은 반응기상에 촉매를 장착한 후 N2, O2, NO, NH3 가스를 흘려주어 예상되는 농도가 일정해질 때까지 안정화하고. NOx 제거 효율은 25℃에서 500℃까지 5℃/min의 승온속도로 NOx 농도 변화를 관찰하였다. N 2 gas was used as a balance gas, the concentrations of NOx and NH 3 gas were fixed at 300 ppm, and the reaction ratio between NOx and NH 3 was set to 1:1. The oxygen concentration in the reaction gas was injected at 5 vol%, and the gas flow rate in the reactor was maintained at 300 cc/min. The catalyst fixing layer for removing NOx was maintained at a space velocity of 60,000 (hr -1 ), and a powder fixing layer was formed using ceramic wool by adjusting the catalyst amount according to the space velocity. The evaluation method is to stabilize the catalyst until the expected concentration is constant by flowing N 2 , O 2 , NO, NH 3 gas after installing the catalyst on the reactor. As for the NOx removal efficiency, the NOx concentration change was observed at a heating rate of 5°C/min from 25°C to 500°C.

실시예 및 비교예에 따른 탈질촉매들의 탈질특성의 평가 결과를 하기 표 1에 나타내었다. The evaluation results of the NOx removal characteristics of the NOx removal catalysts according to Examples and Comparative Examples are shown in Table 1 below.

Figure pat00001
Figure pat00001

주): 1) 탈질전환율: 380℃에서의 탈질 효율을 의미함. Note): 1) Denitration conversion rate: Means the denitrification efficiency at 380℃.

2) K1%, K2%: 촉매를 각각 칼륨(K) 1중량% 및 2중량%로 피독시켜, 25∼500℃까지 탈질 효율을 측정한 결과, 380℃에서의 탈질 효율을 의미함. 2) K1%, K2%: As a result of poisoning the catalyst with 1% by weight and 2% by weight of potassium (K), and measuring the denitrification efficiency from 25 to 500 ° C, it means the denitrification efficiency at 380 ° C.

상기 표 1에 나타난 바와 같이, 본 발명에 따른 실시예들에서 제조된 주형물질없이 제조된 결정성 제올라이트가 담지된 Zeolite/V2O5WO3/TiO2 탈질촉매는 비교예들에서 제조된 탈질촉매에 비하여, 탈질전환율이 높은 것을 알 수 있다. 또한, 본 발명에 따른 실시예들에서 제조된 주형물질없이 제조된 결정성 제올라이트가 담지된 Zeolite/V2O5WO3/TiO2 탈질촉매는 칼륨을 피독한 경우에 비교예들에 비해 탈질전환율이 현저히 높은 것을 확인할 수 있다.As shown in Table 1, the Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalysts supported with crystalline zeolite prepared without a template material prepared in Examples according to the present invention are denitrification catalysts prepared in Comparative Examples. It can be seen that the denitration conversion rate is higher than that of the catalyst. In addition, the Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalysts supported with crystalline zeolite prepared without a template material prepared in Examples according to the present invention have a higher denitration conversion rate than comparative examples when potassium is poisoned. It can be seen that this is remarkably high.

상기의 결과로 확인된 바와 같이, 본 발명에 따른 탈질촉매는 내알칼리성 탈질촉매로서, 바이오매스 화력발전소에서 운영되는 NH3-SCR 탈질 공정에 있어 알칼리 금속에 의한 피독 내성이 우수함으로써 촉매활성점을 더 오래 유지할 수 있어 경제성을 향상시킬 수 있다.As confirmed by the above results, the denitrification catalyst according to the present invention is an alkali-resistant denitrification catalyst, and has excellent resistance to poisoning by alkali metals in the NH 3 -SCR denitrification process operated in a biomass thermal power plant, thereby reducing the catalytically active point. It can be maintained for a longer time, which can improve economic efficiency.

Claims (14)

티타니아계 담체와, 상기 티타니아계 담체에 담지된 결정성 제올라이트 및 활성금속화합물을 포함하는 탈질촉매.A denitration catalyst comprising a titania-based support, a crystalline zeolite and an active metal compound supported on the titania-based support. 제1항에 있어서, 상기 결정성 제올라이트는 상기 탈질촉매의 전체 중량 대비 1.0~10.0중량%의 함량으로 포함되는 탈질촉매.The denitration catalyst according to claim 1, wherein the crystalline zeolite is included in an amount of 1.0 to 10.0% by weight based on the total weight of the denitration catalyst. 제1항에 있어서, 상기 결정성 제올라이트는 주형물질없이 제조된 제올라이트로서, ZSM-5, 베타 제올라이트, L 제올라이이트, 천연 제올라이트, 모더나이트, 및 금속이온으로 이온교환된 제올라이트 또는 금속산화물이 담지된 제올라이트로부터 선택되는 1종 이상인 탈질촉매.The crystalline zeolite according to claim 1, wherein the crystalline zeolite is a zeolite prepared without a template material, and includes ZSM-5, beta zeolite, L zeolite, natural zeolite, mordenite, and zeolite ion-exchanged with metal ions or metal oxides. At least one denitrification catalyst selected from supported zeolites. 제1항에 있어서, 상기 티타니아계 담체는 아나타제상 티타니아(TiO2) 담체인 탈질촉매. The denitration catalyst according to claim 1, wherein the titania-based support is an anatase-phase titania (TiO 2 ) support. 제1항에 있어서, 상기 활성금속화합물은 상기 탈질촉매의 전체 중량 대비 0.1~10.0중량%의 함량으로 포함되는 탈질촉매.The denitration catalyst according to claim 1, wherein the active metal compound is included in an amount of 0.1 to 10.0% by weight based on the total weight of the denitration catalyst. 제1항에 있어서, 상기 활성금속산화물은 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물로부터 선택되는 1종 이상인 탈질촉매. The denitration catalyst according to claim 1, wherein the active metal oxide is at least one selected from tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide and vanadium oxide. 다음의 단계들을 포함하는, 제1항 내지 제6항 중 어느 한 항의 탈질촉매의 제조 방법:
1) 아나타제상 티타니아계 담체를 준비하는 단계;
2) 주형물질 없이 결정성 제올라이트를 제조하는 단계;
3) 상기 1) 단계의 티타니아계 담체에 상기 2) 단계의 주형물질없이 제조된 결정성 제올라이트 및 활성금속화합물을 담지하는 단계;
4) 상기 3) 단계의 결과물을 소성하여, 결정성 제올라이트가 담지된 탈질촉매를 제조하는 단계.
A method for producing the NOx removal catalyst according to any one of claims 1 to 6, comprising the following steps:
1) preparing an anatase-phase titania-based carrier;
2) preparing a crystalline zeolite without a template material;
3) supporting the crystalline zeolite and the active metal compound prepared without the template material in step 2) on the titania-based carrier in step 1);
4) Calcining the product of step 3) to prepare a denitration catalyst supported with crystalline zeolite.
제7항에 있어서, 상기 1) 단계는 티타늄 전구체 화합물과 증류수를 혼합 후 가수분해한 다음 고액분리, 수세 및 중화하는 것을 포함하는 탈질촉매의 제조 방법.The method of claim 7, wherein the step 1) comprises mixing the titanium precursor compound with distilled water, hydrolyzing it, followed by solid-liquid separation, washing with water, and neutralization. 제8항에 있어서, 상기 티타늄 전구체 화합물은 TiOSO4, TiOCl2, TiCl4, 및 Ti{OCH(CH3)2}4로부터 선택되는 1종 이상인 탈질촉매의 제조 방법.The method of claim 8, wherein the titanium precursor compound is at least one selected from TiOSO 4 , TiOCl 2 , TiCl 4 , and Ti{OCH(CH 3 ) 2 } 4 . 제8항에 있어서, 상기 가수분해는 70~100℃에서 5~48시간 동안 수행되고, 상기 중화는 pH 7~8로 조정함으로써 수행되는 탈질촉매의 제조 방법.The method of claim 8, wherein the hydrolysis is performed at 70 to 100° C. for 5 to 48 hours, and the neutralization is performed by adjusting the pH to 7 to 8. 제7항에 있어서, 상기 2) 단계에서 상기 결정성 제올라이트의 제조는 유기 주형물질 없이 실리카 전구체 및 알루미나 전구체를 포함하는 혼합용액에 하이드록실 이온공급원을 혼합한 후 밀링 및 수열합성하여 수행되는 탈질촉매의 제조 방법.The denitration catalyst according to claim 7, wherein the production of the crystalline zeolite in step 2) is performed by mixing a hydroxyl ion source with a mixed solution containing a silica precursor and an alumina precursor without an organic template material, followed by milling and hydrothermal synthesis. manufacturing method. 제7항에 있어서, 상기 3) 단계는 상기 티타니아계 담체의 슬러리에 상기 결정성 제올라이트 및 활성금속화합물을 첨가하고, 함침 처리하여 수행되는 탈질촉매의 제조 방법.The method of claim 7, wherein the step 3) is performed by adding the crystalline zeolite and the active metal compound to the slurry of the titania-based carrier and performing an impregnation treatment. 제12항에 있어서, 상기 함침 처리는 회전감압증류기에서 150~200mmbar, 80~100℃의 조건 하에 수행되는 탈질촉매의 제조 방법.The method of claim 12, wherein the impregnation treatment is performed in a rotary vacuum distillation machine at 150 to 200 mm bar and 80 to 100 ° C. 제7항에 있어서, 상기 4) 단계에서의 소성은 400~600℃에서 1~10시간 수행되는 탈질촉매의 제조 방법.The method of claim 7, wherein the firing in step 4) is performed at 400 to 600° C. for 1 to 10 hours.
KR1020210160551A 2021-11-19 2021-11-19 DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME Active KR102758432B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210160551A KR102758432B1 (en) 2021-11-19 2021-11-19 DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210160551A KR102758432B1 (en) 2021-11-19 2021-11-19 DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME

Publications (2)

Publication Number Publication Date
KR20230073794A true KR20230073794A (en) 2023-05-26
KR102758432B1 KR102758432B1 (en) 2025-01-21

Family

ID=86537427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210160551A Active KR102758432B1 (en) 2021-11-19 2021-11-19 DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME

Country Status (1)

Country Link
KR (1) KR102758432B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030046881A (en) 2001-12-07 2003-06-18 현대중공업 주식회사 Double hull construction of Oil or product carrier
KR20060087084A (en) * 2005-01-28 2006-08-02 주식회사 나노 Titania manufacturing method for denitrification catalyst extrusion
KR100996794B1 (en) 2008-05-15 2010-11-25 테크노세미켐 주식회사 Manufacturing methods of Crystalline zeolite
WO2018025353A1 (en) 2016-08-03 2018-02-08 三菱電機株式会社 Refrigerator
KR20190003863A (en) 2007-04-26 2019-01-09 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Transition metal/zeolite scr catalysts
KR20210006380A (en) * 2018-04-23 2021-01-18 바스프 코포레이션 Selective catalytic reduction catalyst for diesel engine exhaust gas treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030046881A (en) 2001-12-07 2003-06-18 현대중공업 주식회사 Double hull construction of Oil or product carrier
KR20060087084A (en) * 2005-01-28 2006-08-02 주식회사 나노 Titania manufacturing method for denitrification catalyst extrusion
KR20190003863A (en) 2007-04-26 2019-01-09 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Transition metal/zeolite scr catalysts
KR100996794B1 (en) 2008-05-15 2010-11-25 테크노세미켐 주식회사 Manufacturing methods of Crystalline zeolite
WO2018025353A1 (en) 2016-08-03 2018-02-08 三菱電機株式会社 Refrigerator
KR20210006380A (en) * 2018-04-23 2021-01-18 바스프 코포레이션 Selective catalytic reduction catalyst for diesel engine exhaust gas treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
강태훈, 물리적으로 혼합한 바나듐-텅스텐 티타니아 및 무기화합물 촉매 상에서 암모니아를 사용한 질소산화물 선택적 촉매 환원, 서울대학교 대학원 화학생물공학부, 공학박사 학위논문 (2021.08.) *

Also Published As

Publication number Publication date
KR102758432B1 (en) 2025-01-21

Similar Documents

Publication Publication Date Title
US7695703B2 (en) High temperature catalyst and process for selective catalytic reduction of NOx in exhaust gases of fossil fuel combustion
CN101590404B (en) A kind of low vanadium denitration catalyst and its preparation method and application
CN102658172A (en) SCR denitration catalyst as well as preparation method and application thereof
KR20170009150A (en) SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof
CN111530475B (en) Rare earth-based medium-low temperature denitration catalyst powder and preparation method thereof
KR101102714B1 (en) Method for preparing catalyst for removing nitrogen oxide using dry ball milling
CN109351358A (en) A kind of transition metal oxide composite catalyst and its preparation method and use
GB2562611A (en) A catalyst for treating an exhaust gas, an exhaust system and a method
JP2003251180A (en) Catalyst for removing nitrogen oxide, manufacturing method therefor, and method for removing nitrogen oxide
JP2005125211A (en) Exhaust gas treatment method
KR100456748B1 (en) Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
CN109745995B (en) Wide-temperature-window SCR flue gas denitration catalyst and preparation method and application thereof
CN109012703A (en) A kind of new method preparing iron sulphur titanium group high temperature NH3-SCR denitrating catalyst
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
CN113244908A (en) Vanadium-based SCR catalyst and preparation method and application thereof
KR102758432B1 (en) DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME
JPH11342334A (en) Nox removal catalyst, its production and method for removing nox using the same
CN110961094A (en) Low-temperature SCR catalyst for promoting decomposition of ammonium bisulfate and preparation method thereof
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
CN114471532B (en) Preparation method and application of valley-shaped samarium-manganese composite oxide denitration catalyst
KR102665354B1 (en) DeNOx CATALYST LOADED WITH POROUS FLAKE MgO AND METHOD FOR PREPARATION OF THE SAME
JPH11300213A (en) Denitration catalyst
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JP3749078B2 (en) NOx removal catalyst and NOx removal method

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20211119

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20230713

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20231222

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240718

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20250117

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20250117

End annual number: 3

Start annual number: 1

PG1601 Publication of registration