JP4798909B2 - Nitrogen oxide removing catalyst and method for producing the same - Google Patents
Nitrogen oxide removing catalyst and method for producing the same Download PDFInfo
- Publication number
- JP4798909B2 JP4798909B2 JP2001296580A JP2001296580A JP4798909B2 JP 4798909 B2 JP4798909 B2 JP 4798909B2 JP 2001296580 A JP2001296580 A JP 2001296580A JP 2001296580 A JP2001296580 A JP 2001296580A JP 4798909 B2 JP4798909 B2 JP 4798909B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- oxide
- aqueous solution
- slurry
- soluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、窒素酸化物除去用触媒およびその製造方法に関し、更に詳しくは、重油や石炭焚きボイラ、火力発電所、製鉄所などをはじめ各種工場の燃焼炉などから排出される排ガス中に含有される窒素酸化物(以下、NOXと略記する)の除去用触媒およびその製造方法に関するものである。
【0002】
【従来技術】
排ガス中のNOXを、アンモニアなどの還元剤を使用して除去する脱硝触媒としては、一般に酸化チタン担体に酸化タングステン、酸化バナジウムなどの活性成分を担持した、ハニカム形状の触媒が工業的に使用されている。工業的に使用される脱硝触媒は、排ガス中に含まれるダスト、硫黄化合物(以下、SOXと略記する)などにも対処することが必要であるため、ただ単に脱硝活性が高いだけでなく、SO3への酸化能(SO3転化率)が低いこと等の種々の性能が要求される。
【0003】
一般に、排ガス中に含まれるSOXの大部分はSO2であるが、このSO2の一部は脱硝触媒上で酸化されてSO3となり、このSO3は還元剤として使用するNH3の未反応分と結合して酸性硫安を生成し、後流の熱交換器などの装置の閉塞を起こすため、またSO3そのものが装置などの腐蝕を起こすなどの問題があった。そこでSO3への転化率の低い脱硝触媒が望まれていた。
【0004】
前述のSO3への転化率を抑制した触媒に関して、特公平4−17091号公報には、予めチタンとタングステン及びケイ素の三元系酸化物を形成せしめた後該酸化物にバナジウム化合物を添加することを特徴とする脱硝触媒の調製方法が提案されている。
【0005】
また、特許第2825343号公報には、窒素酸化物をアンモニアと共に接触的に反応せしめて選択還元する触媒を製造する方法において、可溶性チタン化合物と可溶性ケイ素化合物および/またはシリカゾルとを出発原料として用い、水性媒体中で該原料をアンモニアによって中和せしめて共沈物を得、該共沈物スラリーをpHが8.5以上の範囲で20時間以上熟成せしめた後、これを洗浄し、乾燥し、次いで焼成して得られるチタンおよびケイ素からなる二元系複合酸化物を触媒(イ)成分とし、バナジウム酸化物を触媒(ロ)成分とし、タングステン酸化物を触媒(ハ)成分として用いてなり、その組成がそれぞれ(イ)成分は82〜97重量%、(ロ)成分は0.3〜3重量%および(ハ)成分は3〜15重量%の範囲、さらに(イ)成分の組成が原子百分率でチタン70〜90%、ケイ素30〜10%の範囲に調整されてなることを特徴とする窒素酸化物除去用触媒の製造方法が提案されている。
しかし、該発明の製造方法では、ハニカム形状など複雑な形状の触媒に成形する場合には、二元系複合酸化物が単純な粒度分布であるため、可塑性が低く、粒子間結合力が弱く、成形性が悪いという問題があった。また、成形性を向上させ、成形体強度を向上させるために大量の成形助剤や粘土を使用する必要があり、そのため、触媒性能が低下する問題もあった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、NOX、特にNOXおよびSOXを同時に含有する排ガスにアンモニアを加え、接触的に反応させるに際して、従来より提案されている窒素酸化物除去用触媒よりも更にNOX除去率が高くて、しかもSO3への転化率が低く、耐久性に優れた工業触媒として有用な窒素酸化物除去用触媒およびハニカム形状など複雑な形状の触媒でも成形性が良好な該触媒の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明の第1は、可溶性チタン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液、もしくは、可溶性チタン化合物、可溶性タングステン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液に、塩基性水溶液を添加・中和して得られる複合水酸化物(x成分)スラリーと、メタチタン酸スラリーと可溶性ケイ素化合物および/またはシリカゾルの混合水溶液、もしくはメタチタン酸スラリー、可溶性タングステン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液に塩基性水溶液を添加・中和して得られる複合水酸化物(y成分)スラリーとを用い、得られた複合酸化物(A成分)ならびにバナジウム、モリブデンおよびタングステンからなる群から選ばれた少なくとも一種の金属の酸化物(B成分)を含有する窒素酸化物除去用触媒に関する。
【0008】
該窒素酸化物除去用触媒では、前記複合酸化物(A成分)中に含まれるx成分由来の複合酸化物の量が5〜30重量%の範囲にあることが好ましい。
【0009】
また、前記複合酸化物(A成分)の組成が、酸化チタンとして75〜90重量%、酸化ケイ素として10〜20重量%、酸化タングステンとして0〜5重量%の範囲にあることが好ましい。
【0010】
前記複合酸化物(A成分)が酸化物基準で硫酸根をSO4として1〜10重量%含有することが好ましい。
【0011】
さらに、前記複合酸化物(A成分)を85〜99.9重量%、金属酸化物(B成分)を0.1〜15重量%の割合で含有することが好ましい。
【0012】
本発明の第2は、(1)可溶性チタン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液、もしくは可溶性チタン化合物、可溶性タングステン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液に、塩基性水溶液を添加・中和して複合水酸化物(x成分)のスラリーを得、(2)別途、メタチタン酸スラリーと可溶性ケイ素化合物および/またはシリカゾルの混合水溶液、もしくはメタチタン酸スラリー、可溶性タングステン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液に、塩基性水溶液を添加・中和して複合水酸化物(y成分)スラリーを得、(3)前述のx成分である複合水酸化物のスラリーとy成分である複合水酸化物のスラリーとを混合した後、洗浄、乾燥して得られた複合水酸化物(a成分)または複合酸化物(A成分)に、バナジウム、モリブデンおよびタングステンからなる群から選ばれた少なくとも一種の金属の酸化物の前駆物質(b成分)を担持し、乾燥、焼成することを特徴とする窒素酸化物除去用触媒の製造方法に関する。
【0013】
【発明の実施の形態】
以下、本発明の好適な実施形態について、詳細に説明する。
【0014】
本発明の窒素酸化物除去用触媒では、可溶性チタン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液、もしくは可溶性チタン化合物、可溶性タングステン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液に塩基性水溶液を添加・中和して得られた複合水酸化物(x成分)スラリーを使用する。該複合水酸化物(x成分)は、別の複合水酸化物(y成分)との混合状態で熱履歴を受けて複合酸化物(A成分)に転化する前駆物質である。該複合酸化物(A成分)は、酸化チタンおよび酸化ケイ素、または酸化チタン、酸化タングステンおよび酸化ケイ素の単なる混合物ではなく、いわゆる二元系複合酸化物(TiO2−SiO2)または三元系複合酸化物(TiO2−WO3−SiO2)を形成する。
【0015】
本発明でのメタチタン酸スラリーと可溶性ケイ素化合物および/またはシリカゾルの混合水溶液、もしくはメタチタン酸スラリー、可溶性タングステン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液に塩基性水溶液を添加・中和して得られる複合水酸化物(y成分)スラリーは、前記の複合水酸化物(x成分)との混合状態で熱履歴を受けて複合酸化物(A成分)に転化する前駆物質である。該複合酸化物(A成分)が、酸化チタンおよび酸化ケイ素、または酸化チタン、酸化タングステンおよび酸化ケイ素の単なる混合物ではなく、いわゆる二元系複合酸化物(TiO2−SiO2)または三元系複合酸化物(TiO2−WO3−SiO2)を形成することは前記と同じである。
【0016】
本発明でのA成分である複合酸化物は、前述のx成分である複合水酸化物のスラリーとy成分である複合水酸化物のスラリーとの混合物を熱処理して得られた触媒成分であるため、得られる触媒は、脱窒素活性が高くて、しかも SO2酸化活性が低く、耐久性に優れている。
【0017】
本発明の窒素酸化物除去用触媒では、前記複合酸化物(A成分)中に含まれるx成分由来の複合酸化物の量(x/A)が5〜30重量%の範囲にあることが好ましい。x/Aの値が5重量%よりも小さい場合は、脱窒素活性は高くなるがSO2酸化活性も高くなる傾向にあり、また、x/Aの値が30重量%よりも大きい場合は、触媒の成形性が悪くなる傾向にあり、また、SO2酸化活性は低くなるが脱窒素活性も低くなる傾向にある。好ましいx/Aの範囲は10〜20重量%である。
【0018】
また、前記複合酸化物(A成分)の組成は、酸化チタンとして75〜90重量%、酸化ケイ素として10〜20重量%、酸化タングステンとして0〜5重量%の範囲にあることが好ましい。酸化ケイ素の量が10重量%より少ない場合には低いSO2酸化活性が得られないことがあり、また、20重量%より多い場合には脱窒素活性が低くなり、また、成型性が悪くなることがある。また、酸化タングステンの量が5重量%より多くなると、タングステンは複合水酸化物を形成しない状態で存在することがあるので効果的でない。
【0019】
また、前記複合酸化物(A成分)は、酸化物基準で硫酸根をSO4として1〜10重量%含有することが好ましい。A成分中に硫酸根を含有させることにより脱硝活性が高くなる傾向を示し、1重量%より少ない場合にはその効果が少なく、10重量%より多く含有させてもその効果は変わらない。好ましい硫酸根の量は2〜8重量%の範囲である。
【0020】
本発明の窒素酸化物除去用触媒では、バナジウム、モリブデンおよびタングステンからなる群から選ばれた少なくとも一種の金属の酸化物(B成分)を含有するが、その他の金属酸化物を含有していてもよい。特に、酸化バナジウムおよび酸化タングステンは好適な金属酸化物である。
本発明の窒素酸化物除去用触媒は、前記複合酸化物(A成分)を85〜99.9重量%、前記金属酸化物(B成分)を0.1〜15重量%の割合で含有することが好ましい。B成分の割合が0.1重量%より少ない場合には、所望の脱窒素活性が得られないことがあり、また、15重量%より多い場合にはSO2酸化活性が高くなることがある。好ましくは、A成分が90〜99.5重量%、B成分が0.5〜10重量%の範囲割合である。
【0021】
次に、本発明の窒素酸化物除去用触媒の製造方法について述べる。
本発明の方法で使用される可溶性チタン化合物としては、塩化チタン、硫酸チタンなどの無機チタン化合物およびシュウ酸チタン、テトライソプロピルチタネートなどの有機チタン化合物が例示され、またケイ素源としては、シリカゾルのほか、可溶性ケイ素化合物として、四塩化ケイ素など無機ケイ素化合物およびエチルシリケイト、メチルシリケイトなどの有機ケイ素化合物が例示される。可溶性タングステン化合物としては、パラタングステン酸アンモン、メタタングステン酸アンモンなどが例示される。
【0022】
本発明の方法では、前述の可溶性チタン化合物と前述の可溶性ケイ素化合物および/またはシリカゾルとの混合水溶液、もしくは前述の可溶性チタン化合物と前述の可溶性タングステン化合物と前述の可溶性ケイ素化合物および/またはシリカゾルとの混合水溶液に塩基性水溶液を添加・中和して複合水酸化物(x成分)スラリーを調製するが、中和はpH9〜10.5の範囲で行うのが望ましく、さらに、pH9〜10.5の範囲で熟成することがとくに望ましい。本発明で使用される塩基性水溶液としては、アンモニア水、尿素水溶液、アミン水溶液など周知の塩基性水溶液が使用可能であるが、特にアンモニア水は好適である。
【0023】
本発明の方法では、前述のx成分である複合水酸化物のスラリーとは別に、メタチタン酸スラリーと可溶性ケイ素化合物および/またはシリカゾルの混合水溶液、もしくはメタチタン酸スラリー、可溶性タングステン化合物、可溶性ケイ素化合物および/またはシリカゾルの混合水溶液に塩基性水溶液を添加・中和して複合水酸化物(y成分)スラリーを調製するが、中和はpH9〜10.5の範囲で行うのが望ましく、さらに、pH9〜10.5の範囲で熟成することがとくに望ましい。この場合にも前述の塩基性水溶液が使用可能である。
【0024】
前述のx成分である複合水酸化物のスラリーとy成分である複合水酸化物のスラリーとを混合した後、洗浄、乾燥して得られた複合水酸化物(a成分)または複合酸化物(A成分)に、バナジウム、モリブデンおよびタングステンからなる群から選ばれた少なくとも一種の金属の酸化物の前駆物質(b成分)および粘土、可塑剤などを添加して混練捏和し、所望の形状に成型し、乾燥、300〜800℃で焼成することが好ましい。
【0025】
b成分である前駆物質には、バナジウム源としてはメタバナジン酸アンモン、硫酸バナジル、シュウ酸バナジル、五酸化バナジウムなど、モリブデン源としてはパラモリブデン酸アンモン、三酸化モリブデンなど、タングステン源としてはパラタングステン酸アンモン、酸化タングステンなどが例示される。
また、b成分の担持は、周知の担持方法が採用でき、例えば、前述の複合水酸化物(a成分)を所望の形状に成型し、乾燥、焼成して得た複合酸化物(A成分)に、B成分の前駆物質(b成分)あるいはB成分を含浸して調製することもできる。
【0026】
本発明の製造方法の概略を下記フローシートに示す。
【表1】
【0027】
本発明の窒素酸化物除去用触媒は、NOXを含有する排ガス、特にボイラ排ガスなどのようにNOX、SOXを含有するほか、重金属、ダストを含有する排ガスに、アンモニアなどの還元剤を添加して接触還元するNOX除去法に好適に使用される。また該触媒の使用条件は、通常の脱硝処理条件が採用され、具体的には、反応温度150〜600℃、空間速度1,000〜100,000hr−1の範囲などが例示される。
【0028】
【実施例】
以下に実施例を示し本発明を具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
【0029】
実施例1
チタン源として硫酸チタニル結晶〔TiO2濃度32重量%、テイカ(株)製〕4.22kgを取り、水16.88kgに溶解希釈した硫酸チタニル水溶液にシリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製〕0.75kgを15分間かけて添加混合し、これに、温度60℃以下を維持しながら3規定アンモニア水9.11kgを15分間かけて添加・中和してTiO2−SiO2複合水酸化物(x成分)スラリーを生成し、更にpH9.5〜10を維持し、温度60℃で1時間加温熟成した。
別途、メタチタン酸スラリー〔TiO2濃度30重量%、石原産業(株)製〕40.5kgに、シリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製〕6.75kgを10分間かけて添加混合した後、3規定アンモニア水2.43kgを添加・中和し、更にpH9.5〜10を維持し、温度60℃で5時間加温熟成してy成分である複合水酸化物のスラリーを調製した。
このy成分である複合水酸化物のスラリーに前述のx成分である複合水酸化物のスラリーを混合、攪拌した後、この混合物スラリーを脱水洗浄し、400℃以下の温度で5時間乾燥してTiO2−SiO2からなる2元系複合酸化物(A成分)を得た。なお、該2元系複合酸化物中のSO4含有量は4.7重量%であった。
次に、モノエタノールアミン0.3kgと水3.0kgを混合し、これにメタバナジン酸アンモニウム0.205kgを添加、加熱溶解した。この溶解液と前述の二元系複合酸化物(A成分)12.64kgをニーダーにより混練し、更に、粘土、ガラス繊維などの成形助剤を加えて混練捏和後、ハニカム状に押出成型したが、成形性は良好であった。ついで、成型物を110℃で乾燥した後、マッフル炉中において600℃で焼成し触媒Iを調製した。
【0030】
実施例2
チタン源として硫酸チタニル結晶〔TiO2濃度32重量%、テイカ(株)製〕12.7kgを取り、水50.8kgに溶解希釈した硫酸チタニル水溶液にシリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成(株)製〕2.25kgを15分間かけて添加混合し、これに、温度60℃以下を維持しながら3規定アンモニア水27.34kgを15分間かけて添加・中和してTiO2−SiO2複合水酸化物(x成分)スラリーを生成し、更にpH9.5〜10を維持し温度60℃で1時間加温熟成した。
別途、メタチタン酸スラリー〔TiO2濃度30重量%、石原産業(株)製〕31.5kgに、シリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製〕5.25kgを10分間かけて添加混合した後、3規定アンモニア水1.89kgを添加・中和し、更にpH9.5〜10を維持し、温度60℃で5時間加温熟成してy成分に相当する複合水酸化物のスラリーを調製した。
このy成分である複合水酸化物のスラリーに前述のx成分である複合水酸化物のスラリーを混合攪拌した後、この混合物スラリーを脱水洗浄し、400℃以下の温度で5時間乾燥してTiO2−SiO2からなる二元系複合酸化物(A成分)を得た。なお、該2元系複合酸化物中のSO4含有量は4.9重量%であった。
次に、モノエタノールアミン0.3kgと水3.0kgを混合し、これにメタバナジン酸アンモニウム0.205kgを添加、加熱溶解した。この溶解液と前述の二元系複合酸化物(A成分)12.64kgをニーダーにより混練し、更に、粘土、ガラス繊維などの成形助剤を加えて混練捏和後、ハニカム状に押出成型したが、成形性は良好であった。ついで、成型物を110℃で乾燥した後、マッフル炉中において600℃で焼成し触媒IIを調製した。
【0031】
実施例3
チタン源として硫酸チタニル結晶〔TiO2濃度32重量%、テイカ(株)製〕1.88kgを取り、水7.52kgに溶解希釈した硫酸チタニル水溶液にシリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製〕0.75kgを15分間かけて添加混合し、これに、温度60℃以下を維持しながら3規定アンモニア水4.05kgを15分間かけて添加・中和してTiO2−SiO2複合水酸化物(x成分)スラリーを生成し、更にpH9.5〜10を維持し、温度60℃で1時間加温熟成した。
別途、メタチタン酸スラリー〔TiO2濃度30重量%、石原産業(株)〕38.0kgに、シリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製〕14.2kgを10分間かけて添加混合した後、3規定アンモニア水2.28kgを添加・中和し、更にpH9.5〜10を維持し、温度60℃で5時間加温熟成してy成分である複合水酸化物のスラリーを調製した。
このy成分に相当する複合水酸化物のスラリーに前述のx成分である複合水酸化物のスラリーを混合攪拌した後、この混合物スラリーを脱水洗浄し、400℃以下の温度で5時間乾燥してTiO2−SiO2からなる二元系複合酸化物(A成分)を得た。なお、該2元系複合酸化物中のSO4含有量は4.9重量%であった。
次に、モノエタノールアミン0.3kgと水3.0kgを混合し、これにメタバナジン酸アンモニウム0.205kgを添加、加熱溶解した。この溶解液と前述の二元系複合酸化物(A成分)12.64kgをニーダーにより混練し、更に、粘土、ガラス繊維などの成形助剤を加えて混練捏和後、ハニカム状に押出成型したが、成形性は良好であった。ついで、成型物を110℃で乾燥した後、マッフル炉中において600℃で焼成し触媒IIIを調製した。
【0032】
実施例4
チタン源として硫酸チタニル結晶〔TiO2濃度32重量%、テイカ(株)製〕7.5kgをとり、水30.0kgに溶解希釈した硫酸チタニル水溶液にシリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)〕3.0kgを15分間かけて添加混合し、これに、温度60℃以下を維持しながら3規定アンモニア水16.2kgを15分間かけて添加・中和してTiO2−SiO2複合水酸化物(x成分)スラリーを生成し、更にpH9.5〜10を維持し、温度60℃で1時間加温熟成した。
別途、メタチタン酸スラリー〔TiO2濃度30重量%、石原産業(株)製〕32.0kgに、シリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製〕12.0kgを10分間かけて添加混合した後、3規定アンモニア水1.92kgを添加・中和し、更にpH9.5〜10を維持し、温度60℃で5時間加温熟成してy成分である複合水酸化物のスラリーを調製した。
このy成分である複合水酸化物のスラリーに前述のx成分である複合水酸化物のスラリーを混合、攪拌した後、この混合物スラリーを脱水洗浄し、400℃以下の温度で5時間乾燥してTiO2−SiO2からなる二元系複合酸化物(A成分)を得た。該2元系複合酸化物中のSO4含有量は4.9重量%であった。
次に、モノエタノールアミン0.3kgと水3.0kgを混合し、これにメタバナジン酸アンモニウム0.205kgを添加、加熱溶解した。この溶解液と前述の二元系複合酸化物(A成分)12.64kgをニーダーにより混練し、更に、粘土、ガラス繊維などの成形助剤を加えて混練捏和後、ハニカム状に押出成型したが、成形性は良好であった。ついで、成型物を110℃で乾燥した後、マッフル炉中において600℃で焼成し触媒IVを調製した。
【0033】
実施例5
チタン源として硫酸チタニル結晶〔TiO2濃度32重量%、テイカ(株)製〕7.5kgをとり、水30.0kgに溶解希釈した硫酸チタニル水溶液にシリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製〕2.1kgを15分間かけて添加混合し、更に、0.17kgパラタングステン酸アンモニウム結晶を添加し、これに、温度60℃以下を維持しながら3規定アンモニア水16.2kgを15分間かけて添加・中和してTiO2−SiO2−WO3複合水酸化物(x成分)スラリーを生成し、更にpH9.5〜10を維持し、温度60℃で1時間加温熟成した。
別途、メタチタン酸スラリー〔TiO2濃度30重量%、石原産業(株)製〕32.0kgに、シリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)〕12.0kgを10分間かけて添加混合した後、3規定アンモニア水1.92kgを添加・中和し、更にpH9.5〜10を維持し、温度60℃で5時間加温熟成してy成分である複合水酸化物のスラリーを調製した。
このy成分である複合水酸化物のスラリーに前述のx成分である複合水酸化物のスラリーを混合攪拌した後、この混合物スラリーを脱水洗浄し、400℃以下の温度で5時間乾燥してTiO2−SiO2−WO3からなる三元系複合酸化物(A成分)を得た。該2元系複合酸化物中のSO4含有量は4.9重量%であった。
次いで、モノエタノールアミン0.3kgと水3.0kgを混合し、これにメタバナジン酸アンモニウム0.205kgを添加、加熱溶解した。この溶解液と前述の三元系複合酸化物(A成分)12.64kgをニーダーにより混練し、更に、粘土、ガラス繊維などの成形助剤を加えて混練捏和後、ハニカム状に押出成型したが、成形性は良好であった。ついで、成型物を110℃で乾燥した後、マッフル炉中において600℃で焼成し触媒Vを調製した。
【0034】
実施例6
チタン源として硫酸チタニル結晶〔TiO2濃度32重量%、テイカ(株)〕7.5kgをとり、水30.0kgに溶解希釈した硫酸チタニル水溶液にシリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製)〕3.0kgを15分間かけて添加混合し、温度60℃以下を維持しながら3規定アンモニア水16.2kgを15分間かけて添加・中和してTiO2−SiO2複合水酸化物(x成分)スラリーを生成し、更にpH9.5〜10を維持し、温度60℃で1時間加温熟成した。
別途、メタチタン酸スラリー〔TiO2濃度30重量%、石原産業(株)製〕32.0kgに、シリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製〕11.25kgを10分間かけて添加混合し、更に、パラタングステン酸アンモニウム結晶0.17kgを添加した後、3規定アンモニア水1.92kgを添加・中和し、更にpH9.5〜10を維持し、温度60℃で5時間加温熟成してy成分である複合水酸化物のスラリーを調製した。
このy成分である複合水酸化物のスラリーに前述のx成分である複合水酸化物のスラリーを混合攪拌した後、この混合物スラリーを脱水洗浄し、400℃以下の温度で5時間乾燥してTiO2−SiO2−WO3からなる三元系複合酸化物(A成分)を得た。該2元系複合酸化物中のSO4含有量は4.9重量%であった。
次いで、モノエタノールアミン0.3kgと水3.0kgを混合し、これにメタバナジン酸アンモニウム0.205kgを添加、加熱溶解した。この溶解液と前述の三元系複合酸化物(A成分)12.64kgをニーダーにより混練し、更に、粘土、ガラス繊維などの成形助剤を加えて混練捏和後、ハニカム状に押出成型したが、成形性は良好であった。ついで、成型物を110℃で乾燥した後、マッフル炉中において600℃で焼成し触媒VIを調製した。
【0035】
比較例1
チタン源として硫酸チタニル結晶〔TiO2濃度32重量%、テイカ(株)製〕43.6kgをとり、水174.4kgに溶解希釈した硫酸チタニル水溶液にシリカゾル(SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製)5.25kgを15分間かけて添加混合し、これに、温度60℃以下を維持しながら3規定アンモニア水94.16kgを15分間かけて添加・中和してTiO2−SiO2複合水酸化物(x成分)スラリーを生成し、更にpH9.5〜10を維持し、温度60℃で1時間加温熟成した。
この得られたTiO2−SiO2複合水酸化物スラリーを脱水洗浄後、400℃以下の温度で5時間乾燥してTiO2−SiO2からなる二元系複合酸化物(x成分)を得た。該2元系複合酸化物中のSO4含有量は6.9重量%であった。
次に、モノエタノールアミン0.3kgと水3.0kgを混合し、これにメタバナジン酸アンモニウム0.205kgを添加、加熱溶解した。この溶解液と前述の二元系複合酸化物(X成分)12.64kgをニーダーによりて混練し、更に、粘土、ガラス繊維などの成形助剤を加えて混練捏和後、ハニカム状に押出成型したが、成形性が悪く、ハニカム状に押し出し成型するのが困難であった。しかしながら活性測定用試料分を何とか成型し、得られた成型物を110℃で乾燥した後、マッフル炉中において600℃で焼成し触媒VIIを調製した。
【0036】
比較例2
メタチタン酸スラリー〔TiO2濃度30重量%、石原産業(株)製〕40.0kgとシリカゾル〔SiO2濃度20重量%、商品名“カタロイドS−20L”触媒化成工業(株)製〕15.0kgを混合した後、3規定アンモニア水10.8kgを添加して該スラリーのpH9.5に調製して複合水酸化物(y成分)スラリーを得た。該複合水酸化物スラリーを温度60℃でpH9.5〜10を維持しながら1時間加温熟成後、この複合水酸化物スラリーを脱水洗浄し、400℃以下の温度で5時間乾燥してTiO2−SiO2からなる二元系複合酸化物(Y成分)を得た。該2元系複合酸化物中のSO4含有量は4.2重量%であった。
次に、モノエタノールアミン0.3kgと水3.0kgを混合し、これにメタバナジン酸アンモニウム0.205kgを添加、加熱溶解した。この溶解液と前述の二元系複合酸化物(Y成分)12.64kgをニーダーにより混練し、更に、粘土、ガラス繊維などの成形助剤を加えて混練捏和後、ハニカム状に押出成型した。ついで、成型物を110℃で乾燥した後、マッフル炉中において600℃で焼成し触媒VIIIを調製した。
【0037】
触媒使用例
実施例1〜6および比較例1〜3の触媒I〜VIIIについて脱硝性能を評価した。
脱硝性能試験は、各ハニカム触媒(セルピッチ7.4mm、壁厚1.0mm)から長さ300mmで3×3目に切り出したものを流通式反応器に充填し、下記条件で脱硝率を測定した。脱硝率は触媒接触前後のガス中の窒素酸化物NOXの濃度をケミルミ式窒素酸化物分析計により測定し、次式により求めたものである。
【数1】
脱硝率(容量%)={〔未接触ガス中のNOX(容量ppm)−接触ガス中のNOX(容量ppm)〕/未接触ガス中のNOX(容量ppm)}×100
<試験条件>
また、SOX酸化能試験は、ハニカム触媒から300mmの長さ3×3目に切り出したものを流通式反応器に充填し、下記条件でSO3転化率を測定した。
SO3転化率は触媒接触前後のガス中のSO2濃度を赤外線式SO2ガス濃度測定計により測定し、次式により求めた。
【数2】
SO3転化率(容量%)={〔未接触ガス中のSO2(容量ppm)−接触ガス中のSO2(容量ppm)〕/未接触ガス中のSO2(容量ppm)}×100
<試験条件>
評価結果を表2に示す。
【0038】
【表2】
(注)V2O5は外割で1.0重量%とした。
【0039】
【発明の効果】
表から明らかなように、本発明の触媒は高い脱硝率を維持しつつ極めて低いSO3転化率を示す優れた触媒であることが判る。なお、SO3転化率が0.20%以下の所では±0.01%の差はかなり大きい優位差である。この様な性能を持つ触媒は硫黄成分を多く含む燃料を使用するボイラー排ガスの処理用触媒として極めて有効である。また、本発明の触媒はハニカム状に成型した場合にも成形性が良好であるため、工業触媒としての生産性も高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for removing nitrogen oxides and a method for producing the same, and more specifically, it is contained in exhaust gas discharged from combustion furnaces of various factories such as heavy oil, coal-fired boilers, thermal power plants, and steelworks. Nitrogen oxide (hereinafter referred to as NO) X And a method for producing the same.
[0002]
[Prior art]
NO in exhaust gas X As a denitration catalyst that removes ammonia using a reducing agent such as ammonia, a honeycomb-shaped catalyst in which an active component such as tungsten oxide or vanadium oxide is generally supported on a titanium oxide carrier is industrially used. Industrially used denitration catalysts are dust and sulfur compounds (hereinafter referred to as SO) contained in exhaust gas. X It is necessary not only to have high denitration activity but also SO. 3 Oxidizing ability (SO 3 Various performances such as low conversion are required.
[0003]
Generally, SO contained in exhaust gas X Most of the SO 2 But this SO 2 Part of the catalyst is oxidized on the denitration catalyst and SO 3 And this SO 3 Is NH used as a reducing agent 3 In combination with the unreacted component of the product, acid ammonium sulfate is formed, and the equipment such as the heat exchanger in the downstream is blocked. 3 There were problems such as causing corrosion of the device itself. So SO 3 There has been a demand for a denitration catalyst having a low conversion rate to NO.
[0004]
The aforementioned SO 3 Japanese Patent Publication No. 4-17091 discloses a catalyst in which the conversion rate into titanium is suppressed by previously forming a ternary oxide of titanium, tungsten, and silicon, and then adding a vanadium compound to the oxide. A method for preparing a denitration catalyst has been proposed.
[0005]
Patent No. 2825343 uses a soluble titanium compound and a soluble silicon compound and / or silica sol as a starting material in a method for producing a catalyst for selective reduction by catalytically reacting nitrogen oxide with ammonia. The raw material is neutralized with ammonia in an aqueous medium to obtain a coprecipitate, and the coprecipitate slurry is aged at a pH in the range of 8.5 or more for 20 hours or more, and then washed and dried. Next, a binary composite oxide composed of titanium and silicon obtained by firing is used as a catalyst (b) component, vanadium oxide as a catalyst (b) component, and tungsten oxide as a catalyst (c) component, The composition is in the range of 82 to 97% by weight of component (a), 0.3 to 3% by weight of component (b) and 3 to 15% by weight of component (c), ) 70% to 90% titanium composition in atomic percentage of components, method for producing a nitrogen oxide removing catalyst, characterized by comprising been adjusted to a range of 30 to 10% silicon has been proposed.
However, in the production method of the present invention, when the catalyst is formed into a complex shape such as a honeycomb shape, the binary composite oxide has a simple particle size distribution, so the plasticity is low and the interparticle bonding force is weak. There was a problem of poor moldability. Moreover, in order to improve moldability and to improve the strength of the molded body, it is necessary to use a large amount of molding aids and clays, and there is also a problem that the catalyst performance is lowered.
[0006]
[Problems to be solved by the invention]
The purpose of the present invention is NO X , Especially NO X And SO X When adding ammonia to the exhaust gas simultaneously containing NO and reacting it in a catalytic manner, it is more NO than the conventionally proposed catalyst for removing nitrogen oxides. X High removal rate and SO 3 An object of the present invention is to provide a method for producing a catalyst having good moldability even with a catalyst having a complicated shape such as a catalyst for removing nitrogen oxides and a honeycomb shape, which is useful as an industrial catalyst having a low conversion rate and excellent in durability.
[0007]
[Means for Solving the Problems]
In the first aspect of the present invention, a basic aqueous solution is added to a mixed aqueous solution of a soluble titanium compound, a soluble silicon compound and / or silica sol, or a mixed aqueous solution of a soluble titanium compound, soluble tungsten compound, soluble silicon compound and / or silica sol. Mixed hydroxide (x component) slurry obtained by neutralization, mixed aqueous solution of metatitanic acid slurry and soluble silicon compound and / or silica sol, or mixing of metatitanic acid slurry, soluble tungsten compound, soluble silicon compound and / or silica sol A composite hydroxide (y component) slurry obtained by adding / neutralizing a basic aqueous solution to an aqueous solution and selected from the group consisting of the obtained composite oxide (A component) and vanadium, molybdenum and tungsten Oxidation of at least one metal (B component) relates to a catalyst for removing nitrogen oxides containing.
[0008]
In the nitrogen oxide removing catalyst, the amount of the composite oxide derived from the x component contained in the composite oxide (component A) is preferably in the range of 5 to 30% by weight.
[0009]
The composite oxide (component A) preferably has a composition in the range of 75 to 90% by weight as titanium oxide, 10 to 20% by weight as silicon oxide, and 0 to 5% by weight as tungsten oxide.
[0010]
The composite oxide (component A) converts sulfate radicals to SO on an oxide basis. 4 1 to 10% by weight is preferable.
[0011]
Furthermore, it is preferable to contain the composite oxide (component A) in a proportion of 85 to 99.9 wt% and a metal oxide (component B) in a proportion of 0.1 to 15 wt%.
[0012]
The second aspect of the present invention is that (1) a basic aqueous solution is added to a mixed aqueous solution of soluble titanium compound, soluble silicon compound and / or silica sol, or a mixed aqueous solution of soluble titanium compound, soluble tungsten compound, soluble silicon compound and / or silica sol. Addition and neutralization to obtain a composite hydroxide (component x) slurry, (2) Separately, a mixed aqueous solution of metatitanic acid slurry and soluble silicon compound and / or silica sol, or metatitanic acid slurry, soluble tungsten compound, soluble silicon A mixed aqueous solution of compound and / or silica sol is added / neutralized with a basic aqueous solution to obtain a composite hydroxide (y component) slurry, and (3) the composite hydroxide slurry and y component described above as x component After mixing with the composite hydroxide slurry, the composite obtained by washing and drying. At least one metal oxide precursor (b component) selected from the group consisting of vanadium, molybdenum and tungsten is supported on a hydroxide (a component) or a composite oxide (A component), dried and fired. The present invention relates to a method for producing a catalyst for removing nitrogen oxides.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0014]
In the catalyst for removing nitrogen oxides of the present invention, a basic aqueous solution is added to a mixed aqueous solution of soluble titanium compound, soluble silicon compound and / or silica sol, or a mixed aqueous solution of soluble titanium compound, soluble tungsten compound, soluble silicon compound and / or silica sol. A composite hydroxide (component x) slurry obtained by addition and neutralization is used. The composite hydroxide (component x) is a precursor that receives a thermal history in a mixed state with another composite hydroxide (component y) and converts to a composite oxide (component A). The composite oxide (component A) is not a mere mixture of titanium oxide and silicon oxide or titanium oxide, tungsten oxide and silicon oxide, but a so-called binary composite oxide (TiO 2). 2 -SiO 2 ) Or ternary complex oxide (TiO) 2 -WO 3 -SiO 2 ).
[0015]
It is obtained by adding and neutralizing a basic aqueous solution to the mixed aqueous solution of metatitanic acid slurry and soluble silicon compound and / or silica sol or mixed aqueous solution of metatitanic acid slurry, soluble tungsten compound, soluble silicon compound and / or silica sol in the present invention. The composite hydroxide (y component) slurry is a precursor that receives a thermal history in a mixed state with the composite hydroxide (x component) and converts to a composite oxide (component A). The composite oxide (component A) is not a mere mixture of titanium oxide and silicon oxide or titanium oxide, tungsten oxide and silicon oxide, but a so-called binary composite oxide (TiO 2). 2 -SiO 2 ) Or ternary complex oxide (TiO) 2 -WO 3 -SiO 2 ) Is the same as described above.
[0016]
The composite oxide as component A in the present invention is a catalyst component obtained by heat-treating the mixture of the composite hydroxide slurry as x component and the composite hydroxide slurry as y component. Therefore, the resulting catalyst has a high denitrification activity and is 2 Low oxidation activity and excellent durability.
[0017]
In the nitrogen oxide removing catalyst of the present invention, the amount (x / A) of the composite oxide derived from the x component contained in the composite oxide (component A) is preferably in the range of 5 to 30% by weight. . When the value of x / A is smaller than 5% by weight, the denitrification activity is increased, but SO 2 Oxidation activity tends to be high, and when the value of x / A is larger than 30% by weight, the moldability of the catalyst tends to deteriorate, and SO 2 Although the oxidation activity is low, the denitrification activity tends to be low. A preferable range of x / A is 10 to 20% by weight.
[0018]
Further, the composition of the composite oxide (component A) is preferably in the range of 75 to 90% by weight as titanium oxide, 10 to 20% by weight as silicon oxide, and 0 to 5% by weight as tungsten oxide. Low SO if the amount of silicon oxide is less than 10% by weight 2 Oxidation activity may not be obtained, and if it is more than 20% by weight, denitrification activity may be lowered and moldability may be deteriorated. On the other hand, if the amount of tungsten oxide exceeds 5% by weight, tungsten is not effective because it may exist in a state where no composite hydroxide is formed.
[0019]
In addition, the composite oxide (component A) converts sulfate radicals into SO on an oxide basis. 4 1 to 10% by weight is preferable. Denitration activity tends to be increased by containing sulfate radical in component A, and the effect is small when it is less than 1% by weight, and the effect is not changed even if it is contained more than 10% by weight. A preferred amount of sulfate radical is in the range of 2-8% by weight.
[0020]
The nitrogen oxide removing catalyst of the present invention contains at least one metal oxide (component B) selected from the group consisting of vanadium, molybdenum and tungsten, but may contain other metal oxides. Good. In particular, vanadium oxide and tungsten oxide are suitable metal oxides.
The catalyst for removing nitrogen oxides of the present invention contains 85 to 99.9% by weight of the composite oxide (component A) and 0.1 to 15% by weight of the metal oxide (component B). Is preferred. If the proportion of component B is less than 0.1% by weight, the desired denitrification activity may not be obtained, and if it exceeds 15% by weight, SO 2 Oxidation activity may increase. Preferably, the A component is in the range of 90 to 99.5% by weight and the B component is in the range of 0.5 to 10% by weight.
[0021]
Next, a method for producing the nitrogen oxide removing catalyst of the present invention will be described.
Examples of the soluble titanium compound used in the method of the present invention include inorganic titanium compounds such as titanium chloride and titanium sulfate, and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate. Examples of the soluble silicon compound include inorganic silicon compounds such as silicon tetrachloride and organic silicon compounds such as ethyl silicate and methyl silicate. Examples of the soluble tungsten compound include ammonium paratungstate and ammonium metatungstate.
[0022]
In the method of the present invention, a mixed aqueous solution of the aforementioned soluble titanium compound and the aforementioned soluble silicon compound and / or silica sol, or the aforementioned soluble titanium compound, the aforementioned soluble tungsten compound, and the aforementioned soluble silicon compound and / or silica sol. A basic aqueous solution is added to the mixed aqueous solution and neutralized to prepare a composite hydroxide (component x) slurry. Neutralization is desirably performed in the range of pH 9 to 10.5, and further, pH 9 to 10.5. It is particularly desirable to age within the range. As the basic aqueous solution used in the present invention, known basic aqueous solutions such as aqueous ammonia, aqueous urea solution, and aqueous amine solution can be used, but aqueous ammonia is particularly preferable.
[0023]
In the method of the present invention, a mixed aqueous solution of metatitanic acid slurry and soluble silicon compound and / or silica sol, or metatitanic acid slurry, soluble tungsten compound, soluble silicon compound and A basic aqueous solution is added / neutralized to a mixed aqueous solution of silica sol to prepare a composite hydroxide (y component) slurry. Neutralization is preferably performed in the range of pH 9 to 10.5, and pH 9 Aging in the range of ˜10.5 is particularly desirable. Also in this case, the aforementioned basic aqueous solution can be used.
[0024]
A composite hydroxide (a component) or a composite oxide obtained by mixing the slurry of the composite hydroxide that is the x component and the slurry of the composite hydroxide that is the y component, followed by washing and drying ( A component) is added to at least one metal oxide precursor selected from the group consisting of vanadium, molybdenum and tungsten (component b) and clay, plasticizer, etc., kneaded and kneaded to obtain a desired shape. It is preferable to mold, dry, and fire at 300 to 800 ° C.
[0025]
The precursors as component b include ammonium metavanadate, vanadyl sulfate, vanadyl oxalate, and vanadium pentoxide as vanadium sources, ammonium paramolybdate and molybdenum trioxide as molybdenum sources, and paratungstic acid as tungsten sources. Examples include ammon and tungsten oxide.
The component b can be supported by a well-known supporting method. For example, the composite oxide (component A) obtained by molding the composite hydroxide (component a) into a desired shape, drying, and firing. Further, it can be prepared by impregnating the precursor of the B component (b component) or the B component.
[0026]
The outline of the production method of the present invention is shown in the following flow sheet.
[Table 1]
[0027]
The catalyst for removing nitrogen oxides of the present invention is NO. X NO, such as exhaust gas containing NO, especially boiler exhaust gas X , SO X In addition to NO, NOx is reduced by catalytic reduction by adding a reducing agent such as ammonia to exhaust gas containing heavy metals and dust. X It is suitably used for the removal method. The catalyst is used under normal denitration conditions. Specifically, the reaction temperature is 150 to 600 ° C., the space velocity is 1,000 to 100,000 hours. -1 This range is exemplified.
[0028]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0029]
Example 1
Titanium sulfate crystals [TiO as titanium source 2 Silica sol [SiO2] was added to an aqueous solution of titanyl sulfate dissolved in 16.88 kg of water. 2 Concentration 20% by weight, trade name “Cataloid S-20L” manufactured by Catalyst Kasei Kogyo Co., Ltd.] 0.75 kg was added and mixed for 15 minutes, and 3N ammonia water 9. Add and neutralize 11kg over 15 minutes to TiO 2 -SiO 2 A composite hydroxide (component x) slurry was produced, and further maintained at pH 9.5 to 10 and aged by heating at 60 ° C. for 1 hour.
Separately, metatitanic acid slurry [TiO 2 Concentration of 30% by weight, manufactured by Ishihara Sangyo Co., Ltd.] 2 Concentration 20 wt%, trade name “Cataloid S-20L” manufactured by Catalyst Kasei Kogyo Co., Ltd.] 6.75 kg was added and mixed over 10 minutes, 2.43 kg of 3N ammonia water was added and neutralized, and pH 9 The slurry of composite hydroxide which is y component was prepared by heating and aging at a temperature of 60 ° C. for 5 hours.
The composite hydroxide slurry, which is the x component, is mixed and stirred with the composite hydroxide slurry, which is the y component, and then the mixture slurry is dehydrated and washed and dried at a temperature of 400 ° C. or less for 5 hours. TiO 2 -SiO 2 A binary composite oxide (component A) was obtained. The SO in the binary complex oxide 4 The content was 4.7% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, and 0.205 kg of ammonium metavanadate was added thereto and dissolved by heating. This solution and 12.64 kg of the binary composite oxide (component A) described above were kneaded by a kneader, and further kneaded and kneaded with a molding aid such as clay and glass fiber, and then extruded into a honeycomb shape. However, the moldability was good. Next, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare Catalyst I.
[0030]
Example 2
Titanium sulfate crystals [TiO as titanium source 2 Silica sol [SiO2] was dissolved in an aqueous solution of titanyl sulfate dissolved in 50.8 kg of water. 2 Concentration 20 wt%, trade name “Cataloid S-20L” manufactured by Catalytic Chemicals Co., Ltd.] 2.25 kg was added and mixed over 15 minutes, and 3N ammonia water 27.34 kg while maintaining the temperature below 60 ° C. Is added and neutralized over 15 minutes to obtain TiO 2 -SiO 2 A composite hydroxide (component x) slurry was produced, and further maintained at pH 9.5-10 and aged by heating at a temperature of 60 ° C. for 1 hour.
Separately, metatitanic acid slurry [TiO 2 Concentration 30% by weight, manufactured by Ishihara Sangyo Co., Ltd.] 31.5 kg, silica sol [SiO 2 Concentration 20 wt%, trade name “Cataloid S-20L” manufactured by Catalyst Kasei Kogyo Co., Ltd.] 5.25 kg was added and mixed over 10 minutes, then 1.89 kg of 3 N ammonia water was added and neutralized, and pH 9 The composite hydroxide slurry corresponding to the y component was prepared by heating and aging at a temperature of 60 ° C. for 5 hours.
The composite hydroxide slurry as the x component is mixed and stirred in the composite hydroxide slurry as the y component, and the mixture slurry is dehydrated and washed, and dried at a temperature of 400 ° C. or less for 5 hours. 2 -SiO 2 A binary composite oxide (component A) was obtained. The SO in the binary complex oxide 4 The content was 4.9% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, and 0.205 kg of ammonium metavanadate was added thereto and dissolved by heating. This solution and 12.64 kg of the binary composite oxide (component A) described above were kneaded by a kneader, and further kneaded and kneaded with a molding aid such as clay and glass fiber, and then extruded into a honeycomb shape. However, the moldability was good. Next, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare Catalyst II.
[0031]
Example 3
Titanium sulfate crystals [TiO as titanium source 2 Silica sol [SiO2] was dissolved in an aqueous solution of titanyl sulfate dissolved in 7.52 kg of water. 2 Concentration 20% by weight, trade name “Cataloid S-20L” manufactured by Catalyst Kasei Kogyo Co., Ltd.] 0.75 kg was added and mixed over 15 minutes. Add and neutralize 05kg over 15 minutes to TiO 2 -SiO 2 A composite hydroxide (component x) slurry was produced, and further maintained at pH 9.5 to 10 and aged by heating at 60 ° C. for 1 hour.
Separately, metatitanic acid slurry [TiO 2 Concentration 30% by weight, Ishihara Sangyo Co., Ltd.] 38.0 kg, silica sol [SiO 2 Concentration 20 wt%, trade name “Cataloid S-20L” manufactured by Catalyst Kasei Kogyo Co., Ltd.] 14.2 kg was added and mixed for 10 minutes, then 2.28 kg of 3N ammonia water was added and neutralized, and pH 9 The slurry of composite hydroxide which is y component was prepared by heating and aging at a temperature of 60 ° C. for 5 hours.
The composite hydroxide slurry corresponding to the y component is mixed and stirred in the composite hydroxide slurry corresponding to the y component, and the mixture slurry is dewatered and washed at a temperature of 400 ° C. or lower for 5 hours. TiO 2 -SiO 2 A binary composite oxide (component A) was obtained. The SO in the binary complex oxide 4 The content was 4.9% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, and 0.205 kg of ammonium metavanadate was added thereto and dissolved by heating. This solution and 12.64 kg of the binary composite oxide (component A) described above were kneaded by a kneader, and further kneaded and kneaded with a molding aid such as clay and glass fiber, and then extruded into a honeycomb shape. However, the moldability was good. Next, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare Catalyst III.
[0032]
Example 4
Titanium sulfate crystals [TiO as titanium source 2 The silica sol [SiO2] was dissolved in an aqueous solution of titanyl sulfate dissolved in 30.0 kg of water. 2 Concentration 20% by weight, trade name “Cataloid S-20L” Catalytic Chemical Industry Co., Ltd.] 3.0 kg was added and mixed over 15 minutes, and 3N ammonia water 16.2 kg while maintaining the temperature at 60 ° C. or lower. Is added and neutralized over 15 minutes to obtain TiO 2 -SiO 2 A composite hydroxide (component x) slurry was produced, and further maintained at pH 9.5 to 10 and aged by heating at 60 ° C. for 1 hour.
Separately, metatitanic acid slurry [TiO 2 Concentration 30% by weight, made by Ishihara Sangyo Co., Ltd.] 32.0 kg, silica sol [SiO 2 Concentration 20% by weight, trade name “Cataloid S-20L” manufactured by Catalyst Kasei Kogyo Co., Ltd.] After 12.0 kg was added and mixed for 10 minutes, 1.92 kg of 3N ammonia water was added and neutralized, and pH 9 The slurry of composite hydroxide which is y component was prepared by heating and aging at a temperature of 60 ° C. for 5 hours.
The composite hydroxide slurry, which is the x component, is mixed and stirred with the composite hydroxide slurry, which is the y component, and then the mixture slurry is dehydrated and washed and dried at a temperature of 400 ° C. or less for 5 hours. TiO 2 -SiO 2 A binary composite oxide (component A) was obtained. SO in the binary composite oxide 4 The content was 4.9% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, and 0.205 kg of ammonium metavanadate was added thereto and dissolved by heating. This solution and 12.64 kg of the binary composite oxide (component A) described above were kneaded by a kneader, and further kneaded and kneaded with a molding aid such as clay and glass fiber, and then extruded into a honeycomb shape. However, the moldability was good. Next, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare catalyst IV.
[0033]
Example 5
Titanium sulfate crystals [TiO as titanium source 2 The silica sol [SiO2] was dissolved in an aqueous solution of titanyl sulfate dissolved in 30.0 kg of water. 2 Concentration 20 wt%, trade name “Cataloid S-20L” manufactured by Catalyst Kasei Kogyo Co., Ltd.] 2.1 kg was added and mixed for 15 minutes, and 0.17 kg ammonium paratungstate crystal was further added. While maintaining the temperature below 60 ° C, 16.2 kg of 3N ammonia water was added and neutralized over 15 minutes to obtain TiO 2 -SiO 2 -WO 3 A composite hydroxide (component x) slurry was produced, and further maintained at pH 9.5 to 10 and aged by heating at 60 ° C. for 1 hour.
Separately, metatitanic acid slurry [TiO 2 Concentration 30% by weight, made by Ishihara Sangyo Co., Ltd.] 32.0 kg, silica sol [SiO 2 After adding and mixing 12.0 kg of concentration 20% by weight, trade name “Cataloid S-20L” Catalyst Kasei Kogyo Co., Ltd. over 10 minutes, 1.92 kg of 3N ammonia water was added and neutralized, and pH 9. 5 to 10 was maintained, and the mixture was heated and aged at 60 ° C. for 5 hours to prepare a composite hydroxide slurry as the y component.
The composite hydroxide slurry as the x component is mixed and stirred in the composite hydroxide slurry as the y component, and the mixture slurry is dehydrated and washed, and dried at a temperature of 400 ° C. or less for 5 hours. 2 -SiO 2 -WO 3 A ternary composite oxide (component A) was obtained. SO in the binary composite oxide 4 The content was 4.9% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, and 0.205 kg of ammonium metavanadate was added and dissolved by heating. This solution and 12.64 kg of the above-mentioned ternary composite oxide (component A) were kneaded with a kneader, and further kneaded and kneaded with a molding aid such as clay and glass fiber, and then extruded into a honeycomb shape. However, the moldability was good. Next, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare catalyst V.
[0034]
Example 6
Titanium sulfate crystals [TiO as titanium source 2 Silica sol [SiO2] was added to an aqueous solution of titanyl sulfate dissolved in 30.0 kg of water. 2 Concentration of 20% by weight, trade name “Cataloid S-20L” manufactured by Catalyst Chemical Industry Co., Ltd.)] 3.0 kg was added and mixed over 15 minutes, and 16.2 kg of 3N aqueous ammonia was maintained while maintaining the temperature at 60 ° C. or lower. Add / neutralize over 15 minutes to TiO 2 -SiO 2 A composite hydroxide (component x) slurry was produced, and further maintained at pH 9.5 to 10 and aged by heating at 60 ° C. for 1 hour.
Separately, metatitanic acid slurry [TiO 2 Concentration 30% by weight, made by Ishihara Sangyo Co., Ltd.] 32.0 kg, silica sol [SiO 2 Concentration 20 wt%, trade name “Cataloid S-20L” manufactured by Catalyst Kasei Kogyo Co., Ltd.] 11.25 kg was added and mixed over 10 minutes, and further 0.17 kg of ammonium paratungstate crystal was added and then 3N 1.92 kg of ammonia water was added and neutralized, and the pH was maintained at 9.5 to 10, and the mixture was heated and aged at 60 ° C. for 5 hours to prepare a composite hydroxide slurry as the y component.
The composite hydroxide slurry as the x component is mixed and stirred in the composite hydroxide slurry as the y component, and the mixture slurry is dehydrated and washed, and dried at a temperature of 400 ° C. or less for 5 hours. 2 -SiO 2 -WO 3 A ternary composite oxide (component A) was obtained. SO in the binary composite oxide 4 The content was 4.9% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, and 0.205 kg of ammonium metavanadate was added and dissolved by heating. This solution and 12.64 kg of the above-mentioned ternary composite oxide (component A) were kneaded with a kneader, and further kneaded and kneaded with a molding aid such as clay and glass fiber, and then extruded into a honeycomb shape. However, the moldability was good. Next, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare catalyst VI.
[0035]
Comparative Example 1
Titanium sulfate crystals [TiO as titanium source 2 Concentration 32% by weight, manufactured by Teika Co., Ltd.] 43.6 kg was taken, and silica sol (SiO2) was added to an aqueous solution of titanyl sulfate dissolved and diluted in 174.4 kg of water. 2 5.25 kg of a concentration of 20% by weight, trade name “Cataloid S-20L” manufactured by Catalytic Chemical Industry Co., Ltd.) was added and mixed for 15 minutes, and 3N ammonia water 94. Add and neutralize 16kg over 15 minutes to TiO 2 -SiO 2 A composite hydroxide (component x) slurry was produced, and further maintained at pH 9.5 to 10 and aged by heating at 60 ° C. for 1 hour.
This obtained TiO 2 -SiO 2 After dehydrating and washing the composite hydroxide slurry, the slurry is dried at a temperature of 400 ° C. or lower for 5 hours to obtain TiO 2. 2 -SiO 2 A binary complex oxide (component x) was obtained. SO in the binary composite oxide 4 The content was 6.9% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, and 0.205 kg of ammonium metavanadate was added thereto and dissolved by heating. This solution and the above-mentioned binary composite oxide (component X) 12.64 kg are kneaded by a kneader, and further added with molding aids such as clay and glass fiber, kneaded and then extruded into a honeycomb. However, the formability was poor and it was difficult to extrude into a honeycomb shape. However, the sample for activity measurement was somehow molded, and the obtained molding was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare catalyst VII.
[0036]
Comparative Example 2
Metatitanic acid slurry [TiO 2 Concentration 30% by weight, manufactured by Ishihara Sangyo Co., Ltd.] 40.0 kg and silica sol [SiO 2 Concentration 20 wt%, trade name “Cataloid S-20L” manufactured by Catalyst Kasei Kogyo Co., Ltd.] After mixing 15.0 kg, 10.8 kg of 3N ammonia water was added to adjust the pH of the slurry to 9.5. A composite hydroxide (y component) slurry was obtained. The composite hydroxide slurry was heated and aged for 1 hour while maintaining a pH of 9.5 to 10 at a temperature of 60 ° C., then the composite hydroxide slurry was dehydrated and washed, dried at a temperature of 400 ° C. or less for 5 hours, and TiO 2. 2 -SiO 2 A binary composite oxide (Y component) was obtained. SO in the binary composite oxide 4 The content was 4.2% by weight.
Next, 0.3 kg of monoethanolamine and 3.0 kg of water were mixed, and 0.205 kg of ammonium metavanadate was added thereto and dissolved by heating. This solution and 12.64 kg of the binary composite oxide (Y component) described above were kneaded with a kneader, and further kneaded and kneaded with a molding aid such as clay and glass fiber, and then extruded into a honeycomb shape. . Next, the molded product was dried at 110 ° C. and then calcined at 600 ° C. in a muffle furnace to prepare catalyst VIII.
[0037]
Examples of catalyst use
The denitration performance was evaluated for the catalysts I to VIII of Examples 1 to 6 and Comparative Examples 1 to 3.
In the denitration performance test, a honeycomb reactor (cell pitch 7.4 mm, wall thickness 1.0 mm) having a length of 300 mm cut into 3 × 3 cells was filled into a flow reactor and the denitration rate was measured under the following conditions. . Denitration rate is determined by NOx in the gas before and after contacting the catalyst. X Was measured with a chemirmi-type nitrogen oxide analyzer and determined by the following formula.
[Expression 1]
Denitration rate (volume%) = {[NO in non-contact gas X (Volume ppm)-NO in contact gas X (Volume ppm)] / NO in non-contact gas X (Volume ppm)} × 100
<Test conditions>
Also, SO X The oxidation ability test was performed by filling a flow reactor with a 300 mm long 3 × 3 cut from a honeycomb catalyst, and performing SO treatment under the following conditions. 3 Conversion was measured.
SO 3 The conversion rate is the SO in the gas before and after contact with the catalyst. 2 Concentration is infrared type SO 2 It measured with the gas concentration meter, and calculated | required by following Formula.
[Expression 2]
SO 3 Conversion (volume%) = {[SO in non-contact gas 2 (Volume ppm)-SO in contact gas 2 (Volume ppm)] / SO in non-contact gas 2 (Volume ppm)} × 100
<Test conditions>
The evaluation results are shown in Table 2.
[0038]
[Table 2]
(Note) V 2 O 5 Is 1.0% by weight on an external basis.
[0039]
【The invention's effect】
As is apparent from the table, the catalyst of the present invention has a very low SO ratio while maintaining a high denitration rate. 3 It can be seen that this is an excellent catalyst showing the conversion rate. In addition, SO 3 When the conversion rate is 0.20% or less, the difference of ± 0.01% is a significant difference. A catalyst having such performance is extremely effective as a catalyst for treating boiler exhaust gas using a fuel containing a large amount of sulfur component. Moreover, since the catalyst of the present invention has good moldability even when formed into a honeycomb shape, the productivity as an industrial catalyst is also high.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001296580A JP4798909B2 (en) | 2001-09-27 | 2001-09-27 | Nitrogen oxide removing catalyst and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001296580A JP4798909B2 (en) | 2001-09-27 | 2001-09-27 | Nitrogen oxide removing catalyst and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003093880A JP2003093880A (en) | 2003-04-02 |
JP4798909B2 true JP4798909B2 (en) | 2011-10-19 |
Family
ID=19117791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001296580A Expired - Lifetime JP4798909B2 (en) | 2001-09-27 | 2001-09-27 | Nitrogen oxide removing catalyst and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4798909B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4538198B2 (en) * | 2002-04-18 | 2010-09-08 | 日揮触媒化成株式会社 | Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder |
US7491676B2 (en) | 2004-10-19 | 2009-02-17 | Millennium Inorganic Chemicals | High activity titania supported metal oxide DeNOx catalysts |
US8148295B2 (en) | 2009-02-16 | 2012-04-03 | Millennium Inorganic Chemicals, Inc. | Catalyst promoters in vanadium-free mobile catalyst |
US7879759B2 (en) | 2009-02-16 | 2011-02-01 | Augustine Steve M | Mobile DeNOx catalyst |
US7968492B2 (en) | 2009-05-11 | 2011-06-28 | Millennium Inorganic Chemicals, Inc. | Layered catalyst to improve selectivity or activity of manganese containing vanadium-free mobile catalyst |
US8545796B2 (en) | 2009-07-31 | 2013-10-01 | Cristal Usa Inc. | Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof |
US8617502B2 (en) | 2011-02-07 | 2013-12-31 | Cristal Usa Inc. | Ce containing, V-free mobile denox catalyst |
BR112015003583B1 (en) | 2012-08-24 | 2021-03-23 | Tronox Llc | METHOD OF PRODUCTION OF CATALYST SUPPORT MATERIAL, CATALYST SUPPORT MATERIALS AND METHOD TO REDUCE NOX LEVEL IN GAS OR LIQUID CONTAINING NITROGEN OXIDE |
US9988468B2 (en) * | 2016-09-30 | 2018-06-05 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5935027A (en) * | 1982-08-19 | 1984-02-25 | Mitsubishi Heavy Ind Ltd | Preparation of calcined titanium oxide and catalyst |
JP2583912B2 (en) * | 1987-10-26 | 1997-02-19 | バブコツク日立株式会社 | Nitrogen oxide removal catalyst |
JPH0417091A (en) * | 1990-05-11 | 1992-01-21 | Hitachi Ltd | Automatic transaction machine capable of inputting booking comment |
JP3507906B2 (en) * | 1993-07-30 | 2004-03-15 | 株式会社日本触媒 | DeNOx catalyst |
JPH11342333A (en) * | 1998-05-29 | 1999-12-14 | Catalysts & Chem Ind Co Ltd | Shared of nox removal catalyst and its production |
JP3749078B2 (en) * | 2000-03-31 | 2006-02-22 | 株式会社日本触媒 | NOx removal catalyst and NOx removal method |
JP4798908B2 (en) * | 2001-09-27 | 2011-10-19 | 日揮触媒化成株式会社 | Nitrogen oxide removing catalyst and method for producing the same |
-
2001
- 2001-09-27 JP JP2001296580A patent/JP4798909B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003093880A (en) | 2003-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101798713B1 (en) | SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof | |
GB2149680A (en) | Catalysts for the purification of waste gases | |
JPH08196B2 (en) | Catalyst for reducing nitrogen oxide content in flue gas | |
JP2014512956A (en) | Raw material for DeNOx catalyst containing no vanadium or reduced in vanadium and method for producing the same | |
JPH0768172A (en) | Catalyst for catalyst production of nox and method thereof | |
JP2730987B2 (en) | Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst | |
JP4999388B2 (en) | Modified titanium oxide particles, method for producing the same, and exhaust gas treatment catalyst using the modified titanium oxide particles | |
JP4798909B2 (en) | Nitrogen oxide removing catalyst and method for producing the same | |
JPH0242536B2 (en) | ||
KR100456748B1 (en) | Catalyst for purification of exhaust gases, production process therefor, and process for purification of exhaust gases | |
JP4798908B2 (en) | Nitrogen oxide removing catalyst and method for producing the same | |
KR20170126837A (en) | SCR Catalyst for Nitrogen Oxide Removal and Manufacturing Method Thereof | |
JP4204692B2 (en) | Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst | |
JPH0256250A (en) | Catalyst for removing nitrogen oxide in exhaust gas | |
JP3815813B2 (en) | Nitric oxide oxidation catalyst in exhaust gas and method for removing nitrogen oxide in exhaust gas using the same | |
JP3749078B2 (en) | NOx removal catalyst and NOx removal method | |
JPS6312348A (en) | Catalyst for catalytic reduction of nitrogen oxide by ammonia | |
JPH07289897A (en) | Catalyst for decomposition of ammonia and decomposing method of ammonia using the same | |
JPH11267459A (en) | Reducing method of nitrogen oxide and so3 in exhaust gas | |
JPH11342333A (en) | Shared of nox removal catalyst and its production | |
KR20220089322A (en) | Urea hydrolysis catalyst, production method thereof, and selective catalytic reduction system comprising the urea hydrolysis catalyst | |
JPS59213442A (en) | Preparation method of denitrification catalyst | |
JP3838415B2 (en) | NOx removal catalyst and exhaust gas treatment method using the same | |
JP2001113170A (en) | Method for manufacturing for denitration catalyst | |
KR102758432B1 (en) | DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060731 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080701 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110802 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4798909 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |