KR102758432B1 - DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME - Google Patents
DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME Download PDFInfo
- Publication number
- KR102758432B1 KR102758432B1 KR1020210160551A KR20210160551A KR102758432B1 KR 102758432 B1 KR102758432 B1 KR 102758432B1 KR 1020210160551 A KR1020210160551 A KR 1020210160551A KR 20210160551 A KR20210160551 A KR 20210160551A KR 102758432 B1 KR102758432 B1 KR 102758432B1
- Authority
- KR
- South Korea
- Prior art keywords
- denitrification catalyst
- producing
- zeolite
- catalyst
- denitrification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 114
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 239000010457 zeolite Substances 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title description 19
- 238000002360 preparation method Methods 0.000 title description 7
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 86
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 27
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 20
- 150000002736 metal compounds Chemical class 0.000 claims description 18
- 229910052680 mordenite Inorganic materials 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 13
- 239000010936 titanium Substances 0.000 claims description 9
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 7
- 238000005470 impregnation Methods 0.000 claims description 7
- 238000006386 neutralization reaction Methods 0.000 claims description 7
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 6
- 230000007062 hydrolysis Effects 0.000 claims description 4
- 238000006460 hydrolysis reaction Methods 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 230000003301 hydrolyzing effect Effects 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 238000003801 milling Methods 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 abstract description 28
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052783 alkali metal Inorganic materials 0.000 abstract description 5
- 150000001340 alkali metals Chemical class 0.000 abstract description 5
- 229910021529 ammonia Inorganic materials 0.000 abstract description 3
- 206010027439 Metal poisoning Diseases 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 10
- 231100000572 poisoning Toxicity 0.000 description 9
- 230000000607 poisoning effect Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 6
- 229910052700 potassium Inorganic materials 0.000 description 6
- 239000011591 potassium Substances 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 238000010531 catalytic reduction reaction Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000349 field-emission scanning electron micrograph Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- -1 ammonia water Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- XFVGXQSSXWIWIO-UHFFFAOYSA-N chloro hypochlorite;titanium Chemical compound [Ti].ClOCl XFVGXQSSXWIWIO-UHFFFAOYSA-N 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/085—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/20—Vanadium, niobium or tantalum
- B01J23/22—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
본 발명은 암모니아 선택적 환원법에 의한 질소산화물 제거용 탈질촉매 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 주형물질 없이 제조된 결정성 제올라이트를 티타니아계 촉매에 담지하여 제조되는, 결정성 제올라이트가 담지된 티타니아계 탈질촉매 및 그의 제조 방법에 관한 것이다. 본 발명의 탈질촉매는 내알칼리성 탈질 특성이 향상됨으로써, 알칼리 금속의 피독 문제를 해결할 수 있다.The present invention relates to a denitrification catalyst for removing nitrogen oxides by a selective reduction of ammonia and a method for producing the same, and more particularly, to a titania-based denitrification catalyst supported on a crystalline zeolite, which is produced by supporting a crystalline zeolite produced without a template material on a titania-based catalyst, and a method for producing the same. The denitrification catalyst of the present invention can solve the problem of alkali metal poisoning by improving the alkaline resistance denitrification characteristics.
Description
본 발명은 암모니아 선택적 환원법에 의한 질소산화물 제거용 탈질촉매 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 주형물질 없이 제조된 결정성 제올라이트를 티타니아계 촉매에 담지하여 제조되는, 결정성 제올라이트가 담지된 티타니아계 탈질촉매 및 그의 제조 방법에 관한 것이다. 본 발명의 탈질촉매는 내알칼리성이 향상됨으로써, 알칼리 금속의 피독 문제를 해결할 수 있다.The present invention relates to a denitrification catalyst for removing nitrogen oxides by a selective reduction of ammonia and a method for producing the same, and more particularly, to a titania-based denitrification catalyst supported on a crystalline zeolite, which is produced by supporting a crystalline zeolite produced without a template material on a titania-based catalyst, and a method for producing the same. The denitrification catalyst of the present invention can solve the problem of alkali metal poisoning by improving alkali resistance.
에너지 소비가 증가함에 따라, 화력발전소, 산업용 보일러, 폐기물 소각설비, 석유화학 플랜트 등을 통해 화석연료의 사용량이 증가하고, 이에 따라 화석연료의 연소에 의해 여러 가지 유해한 배출가스가 생성됨으로 인해 대기오염이 문제가 되고 있다. 이러한 연소 배출가스 중 대표적인 오염물질인 질소산화물(NOx)은 인체에 유해할 뿐 아니라 광화학 스모그 생성, 산성비 등의 환경오염의 주요 원인이 된다. As energy consumption increases, the use of fossil fuels increases through thermal power plants, industrial boilers, waste incinerators, petrochemical plants, etc., and as a result, various harmful exhaust gases are generated by the combustion of fossil fuels, which has become a problem of air pollution. Nitrogen oxides (NOx), a representative pollutant among these combustion exhaust gases, are not only harmful to the human body, but also a major cause of environmental pollution such as photochemical smog and acid rain.
이러한 질소산화물의 제거를 위한 종래 기술로서 선택적 촉매환원법(Selective Catalytic Reduction; SCR)이 가장 널리 사용되고 있다. 선택적 촉매환원법은 암모니아를 환원제로 사용하여, 이를 NOx와 혼합하여 촉매층을 통과시킴으로써 질소와 수증기 형태로 제거하는 탈질 방법으로서, 제올라이트는 NOx의 SCR을 위한 촉매로 사용된다.The most widely used conventional technology for removing these nitrogen oxides is the Selective Catalytic Reduction (SCR) method. The Selective Catalytic Reduction method is a denitrification method that uses ammonia as a reducing agent, mixes it with NOx, and passes it through a catalyst layer to remove it in the form of nitrogen and water vapor. Zeolite is used as a catalyst for the SCR of NOx.
그러나, NH3-SCR 촉매는 알칼리 금속으로 인한 촉매 활성의 감소 및 촉매 피독이 발생하는 문제가 있다.However, NH3 - SCR catalysts have problems with decreased catalytic activity and catalyst poisoning caused by alkali metals.
상기와 같은 문제점을 해소하기 위하여, 선택적 촉매환원법에 사용되는 촉매의 개선에 관한 여러 기술들이 개발되어 왔다. 그 중, 국내공개특허 제10-2019-0003863호에는 제올라이트를 NH4+ 이온 교환하여 촉매를 제조하는 기술을 개시하고 있고, 국내공개특허 제10-2003-0046881호에는 천연 제올라이트를 가열 및 산처리작업을 거쳐 촉매지지체 시료를 제조하는 기술을 개시하고 있고, 국내공개특허 제10-2018-7025353호에는 착화제를 필요로 하지 않는 Fe-AEI 제올라이트를 직접 합성하여 300oC 이상의 온도에서 높은 활성을 가지고 있는 촉매 제조 기술을 개시하고 있다.To solve the problems described above, various technologies have been developed for improving catalysts used in selective catalytic reduction methods. Among them, Korean Patent Publication No. 10-2019-0003863 discloses a technology for producing a catalyst by exchanging zeolite with NH4 + ions, Korean Patent Publication No. 10-2003-0046881 discloses a technology for producing a catalyst support sample by heating and acid treating natural zeolite, and Korean Patent Publication No. 10-2018-7025353 discloses a technology for producing a catalyst having high activity at a temperature of 300 o C or higher by directly synthesizing Fe-AEI zeolite that does not require a complexing agent.
그러나, 상기 특허들은 천연 제올라이트를 열처리, 산처리, 또는 이온교환하여 수득된 제올라이트를 사용한 촉매 제조 공정을 개시하고 있을 뿐, 주형물질 없이 제조된 결정성 제올라이트를 촉매에 담지함으로써, 탈질 효율을 개선하고 촉매 피독 문제를 해결할 수 있다는 기술사상에 대해서는 전혀 시사하고 있지 않다.However, the above patents only disclose a catalyst manufacturing process using zeolite obtained by heat treatment, acid treatment, or ion exchange of natural zeolite, and do not suggest at all the technical idea that by supporting a crystalline zeolite manufactured without a template material on a catalyst, denitrification efficiency can be improved and the catalyst poisoning problem can be solved.
본 발명은 탈질촉매, 특히 대형 연소기관에서 운영되는 NH3-SCR 탈질 공정에 적합하게 응용될 수 있는 탈질촉매를 제공하는 것을 목적으로 한다. 특히, 본 발명은 주형물질 없이 제조된 결정성 제올라이트를 포함함으로써 촉매 피독시에도 높은 탈질효율을 나타내는 내알칼리성 탈질촉매를 제공하는 것을 목적으로 한다.The present invention aims to provide a denitrification catalyst, particularly a denitrification catalyst that can be suitably applied to an NH 3 -SCR denitrification process operated in a large combustion engine. In particular, the present invention aims to provide an alkali-resistant denitrification catalyst that exhibits high denitrification efficiency even when the catalyst is poisoned by including a crystalline zeolite manufactured without a template material.
또한, 본 발명은 상기 내알칼리성 탈질촉매의 제조 방법을 제공하는 것을 목적으로 한다.In addition, the present invention aims to provide a method for producing the alkaline denitrification catalyst.
본 발명에 따른 탈질촉매는, 티타니아계 담체와, 상기 티타니아계 담체에 담지된 결정성 제올라이트 및 활성금속화합물을 포함하는 것을 특징으로 한다.The denitrification catalyst according to the present invention is characterized by including a titania-based carrier, a crystalline zeolite supported on the titania-based carrier, and an active metal compound.
본 발명의 탈질촉매에 있어서, 상기 결정성 제올라이트는 상기 탈질촉매의 전체 중량 대비 1.0~10.0중량%의 함량으로 포함될 수 있다.In the denitrification catalyst of the present invention, the crystalline zeolite may be included in an amount of 1.0 to 10.0 wt% relative to the total weight of the denitrification catalyst.
상기 결정성 제올라이트는 주형물질없이 제조된 제올라이트로서, ZSM-5, 베타 제올라이트, L 제올라이이트, 천연 제올라이트(Natural zeolite), 모더나이트(Mordenite), 및 금속이온으로 이온교환된 제올라이트 또는 금속산화물이 담지된 제올라이트로부터 선택되는 1종 이상일 수 있다.The above crystalline zeolite is a zeolite manufactured without a template material, and may be at least one selected from ZSM-5, beta zeolite, L zeolite, natural zeolite, mordenite, and a zeolite ion-exchanged with a metal ion or a zeolite supported with a metal oxide.
본 발명의 탈질촉매에 있어서, 상기 티타니아계 담체는 아나타제상 티타니아(TiO2) 담체일 수 있다. In the denitrification catalyst of the present invention, the titania-based support may be an anatase-phase titania (TiO 2 ) support.
본 발명의 탈질촉매에 있어서, 상기 활성금속화합물은 상기 탈질촉매의 전체 중량 대비 0.1~10.0중량%의 함량으로 포함될 수 있다.In the denitrification catalyst of the present invention, the active metal compound may be included in an amount of 0.1 to 10.0 wt% relative to the total weight of the denitrification catalyst.
상기 활성금속산화물은 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물로부터 선택되는 1종 이상일 수 있다. The above active metal oxide may be at least one selected from tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide, and vanadium oxide.
본 발명에 따른 탈질촉매의 제조 방법은, 다음의 단계들을 포함하는 것을 특징으로 한다:The method for manufacturing a denitrification catalyst according to the present invention is characterized by including the following steps:
1) 아나타제상 티타니아계 담체를 준비하는 단계;1) Step of preparing an anatase-phase titania carrier;
2) 주형물질 없이 결정성 제올라이트를 제조하는 단계;2) A step for producing crystalline zeolite without a template material;
3) 상기 1) 단계의 티타니아계 담체에 상기 2) 단계의 주형물질없이 제조된 결정성 제올라이트 및 활성금속화합물을 담지하는 단계;3) a step of supporting the crystalline zeolite and active metal compound produced without the template material of step 2) on the titania-based support of step 1);
4) 상기 3) 단계의 결과물을 소성하여, 결정성 제올라이트가 담지된 탈질촉매를 제조하는 단계.4) A step of producing a denitrification catalyst loaded with crystalline zeolite by calcining the result of step 3).
본 발명의 탈질촉매의 제조 방법에 있어서, 상기 1) 단계는 티타늄 전구체 화합물과 증류수를 혼합 후 가수분해한 다음 고액분리, 수세 및 중화하는 것을 포함할 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, step 1) may include mixing a titanium precursor compound and distilled water, hydrolyzing the mixture, and then performing solid-liquid separation, washing, and neutralization.
상기 티타늄 전구체화합물은 TiOSO4, TiOCl2, TiCl4, 및 Ti{OCH(CH3)2}4로부터 선택되는 1종 이상일 수 있다.The above titanium precursor compound may be at least one selected from TiOSO 4 , TiOCl 2 , TiCl 4 , and Ti{OCH(CH 3 ) 2 } 4 .
상기 가수분해는 70~100℃에서 5~48시간 동안 수행될 수 있다.The above hydrolysis can be performed at 70 to 100°C for 5 to 48 hours.
상기 중화는 pH 7~8로 조정함으로써 수행될 수 있다.The above neutralization can be performed by adjusting the pH to 7 to 8.
본 발명의 탈질촉매의 제조 방법에 있어서, 상기 2) 단계에서 결정성 제올라이트는 유기 주형물질 없이 실리카 전구체 및 알루미나 전구체를 포함하는 혼합용액에 하이드록실 이온공급원을 혼합한 후 밀링 및 수열합성을 거쳐 제조될 수 있다.In the method for producing a denitrification catalyst of the present invention, in step 2), a crystalline zeolite can be produced by mixing a hydroxyl ion source into a mixed solution containing a silica precursor and an alumina precursor without an organic template material, and then performing milling and hydrothermal synthesis.
본 발명의 탈질촉매의 제조 방법에 있어서, 상기 3) 단계는 상기 티타니아계 담체의 슬러리에 상기 결정성 제올라이트 및 활성금속화합물을 첨가하고, 함침 처리하여 수행될 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, step 3) can be performed by adding the crystalline zeolite and the active metal compound to the slurry of the titania-based carrier and performing impregnation treatment.
상기 함침 처리는 회전감압증류기에서 150~200mmbar, 80∼100℃의 조건 하에 수행될 수 있다.The above impregnation treatment can be performed in a rotary vacuum distiller under conditions of 150 to 200 mmbar and 80 to 100°C.
본 발명의 탈질촉매의 제조 방법에 있어서, 상기 4) 단계에서의 소성은 400~600℃에서 1~10시간 수행될 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, the calcination in step 4) can be performed at 400 to 600°C for 1 to 10 hours.
본 발명에 따른 NH3-SCR(Selective Catalytic Reduction)용 탈질촉매는 화력발전소에서 알칼리 금속류, 플라이애쉬(Fly ash), 이물질 등으로 인한 촉매 피독을 개선함으로써 우드펠렛을 사용하는 화력발전소에서 높은 탈질성능을 보이는 이점이 있다.The NH 3 -SCR (Selective Catalytic Reduction) denitrification catalyst according to the present invention has the advantage of exhibiting high denitrification performance in a thermal power plant using wood pellets by improving catalyst poisoning caused by alkali metals, fly ash, foreign substances, etc. in a thermal power plant.
또한, 본 발명에 따른 탈질촉매의 제조방법에 의하면, 제올라이트를 전처리 하지 않고 주형물질 없이 제조된 결정성 제올라이트를 사용함으로써, 촉매 제조의 경제적 측면에서 유리할 뿐 아니라, 상기 결정성 제올라이트를 촉매에 담지함으로써, 내알칼리성이 향상되어 촉매 피독 성능이 개선된 탈질촉매를 제조할 수 있다. In addition, according to the method for manufacturing a denitrification catalyst according to the present invention, since crystalline zeolite manufactured without a template material and without pretreatment of zeolite is used, not only is it advantageous in terms of the economic aspect of catalyst manufacturing, but also, by supporting the crystalline zeolite on the catalyst, a denitrification catalyst with improved alkaline resistance and improved catalyst poisoning performance can be manufactured.
도 1은 본 발명의 일 실시예에 따른 탈질촉매의 제조공정의 순서도를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른, 모더나이트가 담지된 탈질촉매 및 모더나이트의 XRD(X-ray Diffractometer) 패턴을 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른, 모더나이트의 FE-SEM 이미지를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른, ZSM-5(25)가 담지된 탈질촉매의 칼륨 피독 전후에 따른 탈질효율을 비교하여 나타낸 그래프이다.
도 5는 비교예 1에 따른, 결정성 제올라이트의 담지없이 제조된 탈질촉매의 칼륨 피독 전후에 따른 탈질효율을 비교하여 나타낸 그래프이다.Figure 1 is a flow chart showing a manufacturing process of a denitrification catalyst according to one embodiment of the present invention.
FIG. 2 shows an XRD (X-ray Diffractometer) pattern of a denitrification catalyst and mordenite supported on mordenite according to one embodiment of the present invention.
FIG. 3 shows an FE-SEM image of mordenite according to one embodiment of the present invention.
Figure 4 is a graph comparing the denitrification efficiency of a denitrification catalyst loaded with ZSM-5 (25) before and after potassium poisoning according to one embodiment of the present invention.
Figure 5 is a graph comparing the denitrification efficiency of a denitrification catalyst manufactured without supporting a crystalline zeolite according to Comparative Example 1 before and after potassium poisoning.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention, and the method for achieving them, will become clear with reference to the embodiments described in detail below. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and the present embodiments are provided only to make the disclosure of the present invention complete and to fully inform those skilled in the art of the scope of the invention, and the present invention is defined only by the scope of the claims.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한, 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used with a meaning that can be commonly understood by a person of ordinary skill in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries shall not be ideally or excessively interpreted unless explicitly specifically defined.
이하, 본 발명에 따른 탈질촉매 및 그의 제조 방법에 대하여 상세히 설명한다. Hereinafter, the denitrification catalyst according to the present invention and its manufacturing method will be described in detail.
본 발명에 따른 탈질촉매는, 티타니아계 담체 및 상기 티타니아계 담체에 담지된 결정성 제올라이트 및 활성금속화합물을 포함하는 것을 특징으로 한다.The denitrification catalyst according to the present invention is characterized by including a titania-based carrier, a crystalline zeolite supported on the titania-based carrier, and an active metal compound.
본 발명의 탈질촉매에 있어서, 상기 결정성 제올라이트는 상기 탈질촉매의 전체 중량 대비 1.0~10.0중량%, 바람직하게는 2~8중량%의 함량으로 포함될 수 있는데, 상기 함량 범위 미만이면 제올라이트의 담지에 의한 효과가 미흡하고, 상기 함량 범위를 초과하면 필요 이상의 높은 제올라이트의 함량으로 인해 촉매 표면의 활성면적이 감소하여 탈질성능의 저하를 초래할 수도 있으며, 또한 저가 제올라이트의 제조기술임에도 불구하고 티타니아계 담체에 비해 상대적으로 비용이 상승하는 단점이 있으므로 바람직하지 않다.In the denitrification catalyst of the present invention, the crystalline zeolite may be included in an amount of 1.0 to 10.0 wt%, preferably 2 to 8 wt%, based on the total weight of the denitrification catalyst. If the amount is less than the above range, the effect of supporting the zeolite is insufficient, and if the amount is more than the above range, the active area of the catalyst surface may decrease due to the unnecessary high zeolite content, which may result in a decrease in the denitrification performance. In addition, although it is a manufacturing technology for low-cost zeolite, there is a disadvantage in that the cost is relatively high compared to titania-based supports, and therefore, it is not preferable.
상기 결정성 제올라이트는 ZSM-5, 베타 제올라이트, L 제올라이이트, 천연 제올라이트, 모더나이트 및 금속이온으로 이온교환된 제올라이트, 예로서 Fe-모더나이트, 또는 금속산화물이 담지된 제올라이트로부터 선택되는 1종 이상일 수 있다.The above crystalline zeolite is It may be at least one selected from ZSM-5, beta zeolite, L zeolite, natural zeolite, mordenite, and zeolite ion-exchanged with metal ions, such as Fe-mordenite, or zeolite supported with metal oxide.
본 발명의 탈질촉매에 있어서, 상기 티타니아계 담체는 아나타제상을 가지는 것이 바람직하다. 티타니아(TiO2)는 일반적으로 브루카이트(brookite), 루타일(rutile), 아나타제(anatase)의 3가지 결정구조를 가지는데, 아나타제상의 결정상을 갖는 티타니아는 황화합물과 쉽게 반응하지 않는 화학적 안정성을 갖고, 다른 상에 비해 촉매 활성이 더 우수하다. In the denitrification catalyst of the present invention, it is preferable that the titania-based support has an anatase phase. Titania (TiO 2 ) generally has three crystal structures: brookite, rutile, and anatase. Titania having an anatase crystal structure has chemical stability that does not easily react with sulfur compounds, and has superior catalytic activity compared to other phases.
본 발명의 탈질촉매에 있어서, 상기 활성금속화합물은 상기 탈질촉매의 전체 중량 대비 0.1~10.0중량%, 특히 1~3중량%의 함량으로 담지되는 것이 바람직한데, 담지량이 0.1중량% 미만인 경우는 활성금속화합물의 담지에 따른 효과가 미흡하고, 10.0중량%를 초과하면 촉매의 상용화를 위한 비용이 증가하게 되어 경제성이 저하되므로 바람직하지 않다. In the denitrification catalyst of the present invention, it is preferable that the active metal compound is supported in an amount of 0.1 to 10.0 wt%, particularly 1 to 3 wt%, based on the total weight of the denitrification catalyst. However, if the supported amount is less than 0.1 wt%, the effect of supporting the active metal compound is insufficient, and if it exceeds 10.0 wt%, the cost for commercializing the catalyst increases, which lowers economic feasibility, and is therefore not preferable.
상기 활성금속산화물은 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물로부터 선택되는 1종 이상일 수 있으나, 이들에 제한되지는 않으며, 특히 텅스텐산화물 및 바나듐산화물이 바람직하다. The above active metal oxide may be at least one selected from tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide, and vanadium oxide, but is not limited thereto, and tungsten oxide and vanadium oxide are particularly preferred.
본 발명에 따른 탈질촉매의 제조 방법은, 다음의 단계들을 포함할 수 있다.A method for manufacturing a denitrification catalyst according to the present invention may include the following steps.
1) 아나타제상 티타니아계 담체를 준비하는 단계;1) Step of preparing an anatase-phase titania carrier;
2) 주형물질 없이 결정성 제올라이트를 제조하는 단계;2) A step for producing crystalline zeolite without a template material;
3) 상기 1) 단계의 티타니아계 담체에 상기 2) 단계의 주형물질없이 제조된 결정성 제올라이트 및 활성금속화합물을 담지하는 단계;3) a step of supporting the crystalline zeolite and active metal compound produced without the template material of step 2) on the titania-based support of step 1);
4) 상기 3) 단계의 결과물을 소성하여, 결정성 제올라이트가 담지된 탈질촉매를 제조하는 단계.4) A step of producing a denitrification catalyst loaded with crystalline zeolite by calcining the result of step 3).
본 발명의 탈질촉매의 제조 방법에 있어서, 상기 1) 단계는 티타늄 전구체 화합물과 증류수를 혼합 후 가수분해한 다음 고액분리, 수세 및 중화하는 것을 포함할 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, step 1) may include mixing a titanium precursor compound and distilled water, hydrolyzing the mixture, and then performing solid-liquid separation, washing, and neutralization.
상기 티타늄 전구체화합물은 티타닐설페이트(TiOSO4), 티타늄옥시클로라이드(TiOCl2), 티타늄테트라클로라이드(TiCl4), 티타늄이소프로폭사이드(Ti{OCH(CH3)2}4; TTIP) 등으로부터 선택되는 1종 이상일 수 있으나, 이들에 제한되는 것은 아니며, 특히 TiOSO4가 바람직하다. The above titanium precursor compound may be at least one selected from titanyl sulfate (TiOSO 4 ), titanium oxychloride (TiOCl 2 ), titanium tetrachloride (TiCl 4 ), titanium isopropoxide (Ti{OCH(CH 3 ) 2 } 4 ; TTIP), etc., but is not limited thereto, and TiOSO 4 is particularly preferred.
상기 가수분해는 효과적인 가수분해의 진행을 위하여 70~100℃에서 10~20시간, 바람직하게는 90~100℃에서 15~18시간 동안 수행될 수 있다.The above hydrolysis can be performed at 70 to 100°C for 10 to 20 hours, preferably at 90 to 100°C for 15 to 18 hours, for effective hydrolysis.
상기 중화는 암모니아수와 같은 염기성 화합물의 첨가에 의해 pH 7~8로 조정함으로써 수행될 수 있으며, 이와 같은 중화 처리는 이후에 활성금속화합물의 효과적인 담지를 위한 것이기도 하다.The above neutralization can be performed by adjusting the pH to 7 to 8 by adding a basic compound such as ammonia water, and this neutralization treatment is also for the effective loading of the active metal compound thereafter.
상기 활성금속화합물로는 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물 등으로부터 선택되는 1종 이상을 들 수 있으나, 이들에 제한되는 것은 아니다.The above active metal compound may include at least one selected from tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide, and vanadium oxide, but is not limited thereto.
본 발명의 탈질촉매의 제조 방법에 있어서, 상기 2) 단계에서 결정성 제올라이트의 제조는, 유기 주형물질 없이 실리카 전구체 및 알루미나 전구체를 포함하는 혼합용액에 하이드록실 이온공급원을 혼합한 후 밀링 및 수열합성하는 것을 포함할 수 있다. 이러한 제조방법에 의하면 낮은 제조비용으로 결정성 제올라이트를 얻을 수 있다. 또한, 상기 결정성 제올라이트의 제조 시 금속산화물 또는 금속 이온을 첨가 또는 이온교환하는 것을 더 포함할 수 있다. 본 발명의 바람직한 일 구체예에 따르면, 상기 결정성 제올라이트는 국내등록특허 제10-0996794호에 기재된 방법에 따라 제조될 수 있으며, 상기 국내등록특허는 그 전체가 본 명세서에 참고문헌으로 통합된다.In the method for producing a denitrification catalyst of the present invention, the production of crystalline zeolite in step 2) may include mixing a hydroxyl ion source into a mixed solution including a silica precursor and an alumina precursor without an organic template material, followed by milling and hydrothermal synthesis. According to this production method, crystalline zeolite can be obtained at a low production cost. In addition, the production of the crystalline zeolite may further include adding or ion-exchanging a metal oxide or a metal ion. According to a preferred specific example of the present invention, the crystalline zeolite can be produced according to the method described in Korean Patent No. 10-0996794, which is incorporated herein by reference in its entirety.
본 발명의 탈질촉매의 제조 방법에 있어서, 상기 3) 단계는 상기 티타니아계 담체의 슬러리에 상기 결정성 제올라이트 및 활성금속화합물을 포함하는 슬러리를 첨가하고, 함침 처리하여 수행될 수 있다. In the method for manufacturing a denitrification catalyst of the present invention, step 3) can be performed by adding a slurry containing the crystalline zeolite and an active metal compound to a slurry of the titania-based carrier and performing an impregnation treatment.
상기 함침 처리는 효과적인 함침을 위하여 회전감압증류기에서 150~200mmbar, 바람직하게는 150~180mmbar, 가장 바람직하게는 170mmbar로, 80~100℃, 바람직하게는 90℃의 조건 하에 수행될 수 있다.The above impregnation treatment can be performed in a rotary vacuum distiller at 150 to 200 mmbar, preferably 150 to 180 mmbar, most preferably 170 mmbar, and at 80 to 100°C, preferably 90°C, for effective impregnation.
상기 3) 단계에서 담지된 활성금속화합물은 촉매의 활성온도와 산점의 확장, 소결 및 상전이 억제 등의 역할을 한다. The active metal compound loaded in step 3 above plays a role in increasing the activation temperature of the catalyst, expanding the acid site, and suppressing sintering and phase transition.
상기 3) 단계에서, 상기 결정성 제올라이트 및 활성금속화합물의 담지 순서에는 특별히 제한이 없다.In the above step 3), there is no particular limitation on the order of supporting the crystalline zeolite and the active metal compound.
본 발명의 탈질촉매의 제조 방법에 있어서, 상기 4) 단계에서의 소성은 400~600℃, 바람직하게는 450~550℃에서 1~10시간, 바람직하게는 3~4시간 수행될 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, the calcination in step 4) can be performed at 400 to 600°C, preferably 450 to 550°C, for 1 to 10 hours, preferably 3 to 4 hours.
이하, 본 발명에 따른, 주형물질없이 제조된 결정성 제올라이트가 담지된 탈질촉매의 제조를 위한 실시예 및 무정형 탈질촉매의 제조를 위한 비교예를 통하여 본 발명을 더욱 상세히 설명하나, 본 발명은 하기 실시예들에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples for producing a denitrification catalyst supported on a crystalline zeolite produced without a template material according to the present invention and comparative examples for producing an amorphous denitrification catalyst. However, the present invention is not limited to the following examples.
실시예 1Example 1
도 1에 나타낸 탈질촉매의 제조 공정에 따라, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25)가 담지된 탈질촉매를 제조하였다. According to the manufacturing process of the denitrification catalyst shown in Fig. 1, a denitrification catalyst supported with ZSM-5 (25) as a crystalline zeolite manufactured without a template material was manufactured.
황산티타닐(TiOSO4) 분말을 증류수와 혼합한 후 100℃에서 16시간 동안 가수분해하여 100~150g/L의 아나타제 티타니아(TiO2) 슬러리(TiO2 졸)를 제조하였다. 상기 TiO2 졸에 대해 10중량%의 결정성 제올라이트(ZSM-5(25)), 텅스텐산화물(WO3)이 3중량%가 되도록 텅스텐 전구체((NH4)6W12O39·XH2O(Ammonium meta tungstate)) 및 바나듐산화물이 1중량%가 되도록 NH4VO3를 증류수 200ml에 용해시킨 후 C2H2O4 를 첨가한 용액을 2시간 교반하여 Zeolite/V2O5WO3/TiO2 소재를 제조하였다. 교반이 완료된 Zeolite/V2O5WO3/TiO2 슬러리는 감압증류하여 용매를 증발시켜 분말을 제조하고, 500℃에서 4시간 동안 소성하여, 결정성 제올라이트가 담지된 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다.Titanium sulfate (TiOSO 4 ) After the powder was mixed with distilled water, it was hydrolyzed at 100℃ for 16 hours to prepare an anatase titania (TiO 2 ) slurry (TiO 2 sol) having a density of 100 to 150 g/L. For the TiO 2 sol, 10 wt% of crystalline zeolite (ZSM-5(25)), 3 wt% of tungsten oxide (WO 3 ) as a tungsten precursor ((NH 4 ) 6 W 12 O 39·X H 2 O (Ammonium meta tungstate)) and 1 wt% of vanadium oxide were dissolved in 200 ml of distilled water, and then C 2 H 2 O 4 was added . The solution was stirred for 2 hours to prepare a Zeolite/V 2 O 5 WO 3 /TiO 2 material. The Zeolite/V 2 O 5 WO 3 /TiO 2 slurry, after stirring, was distilled under reduced pressure to evaporate the solvent to produce a powder, which was then calcined at 500°C for 4 hours to produce a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst loaded with crystalline zeolite.
본 실시예에서 제조된 ZSM-5가 담지된 탈질촉매의 칼륨 피독 전후에 따른 탈질촉매의 탈질효율을 비교한 그래프를 도 4에 나타내었다.A graph comparing the denitrification efficiency of the ZSM-5-loaded denitrification catalyst manufactured in this example before and after potassium poisoning is shown in Figure 4.
실시예 2Example 2
실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 ZSM-5(1000)를 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared in the same manner as in Example 1, except that ZSM-5 (1000) was used instead of ZSM-5 ( 25 ) , which was a crystalline zeolite prepared without a template material, as a support .
실시예 3Example 3
실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 10중량%의 ZSM-5(25) 대신에 3중량%의 모더나이트(20)을 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitration catalyst was prepared in the same manner as in Example 1, except that 3 wt% of mordenite (20) was used as a support instead of 10 wt% of ZSM - 5 ( 25 ) , which was prepared as a crystalline zeolite without a template material.
실시예 4 Example 4
실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 모더나이트(20)을 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitration catalyst was prepared in the same manner as in Example 1, except that mordenite (20) was used instead of ZSM - 5 ( 25 ), which was a crystalline zeolite prepared without a template material, as a support .
본 실시예에서 사용된 모더나이트(20) 및 상기 모더나이트(20)가 담지된 탈질촉매의 XRD 패턴을 도 2에 나타내었고, 상기 모더나이트(20)의 FE-SEM 이미지를 도 3에 나타내었다.The XRD pattern of the mordenite (20) used in this example and the denitrification catalyst loaded with the mordenite (20) is shown in Fig. 2, and the FE-SEM image of the mordenite (20) is shown in Fig. 3.
실시예 5Example 5
모더나이트 분말을 FeCl2.4H2O수용액에 첨가한 후 60℃에서 24시간동안 교반하여 이온교환하였고, 이온교환이 종료된 용액을 증류수로 세척하였다. 상기 과정을 2회 진행하여 이온교환한 Fe-모더나이트(20)을 제조하였다.After adding mordenite powder to the FeCl 2 .4H 2 O aqueous solution, ion exchange was performed by stirring at 60°C for 24 hours, and the solution after ion exchange was washed with distilled water. The above process was performed twice to manufacture ion-exchanged Fe-mordenite (20).
실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 상기에서 제조된 Fe-모더나이트(20)을 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared in the same manner as in Example 1, except that the Fe-mordenite (20) prepared above was used as a support instead of ZSM- 5 ( 25 ) , a crystalline zeolite prepared without a template material .
실시예 6Example 6
실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 베타 제올라이트(13)를 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared in the same manner as in Example 1, except that beta zeolite (13) was used as a support instead of ZSM - 5 ( 25 ) , which is a crystalline zeolite prepared without a template material.
실시예 7Example 7
실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 천연 제올라이트(2.5)를 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared in the same manner as in Example 1, except that natural zeolite (2.5) was used as a support instead of ZSM- 5 ( 25 ) , a crystalline zeolite prepared without a template material.
비교예 1Comparative Example 1
실시예 1에서, 주형물질없이 제조된 결정성 제올라이트인 ZSM-5(25)를 담지하지 않은 것을 제외하고는, 실시예 1과 동일하게 실시하여 분말 상태의 V2O5WO3/TiO2 탈질촉매를 제조하였다.In Example 1, a powdered V 2 O 5 WO 3 /TiO 2 denitrification catalyst was manufactured in the same manner as in Example 1, except that ZSM-5 (25), a crystalline zeolite manufactured without a template material, was not supported.
본 비교예에서 제조된탈질촉매의 칼륨 피독 전후에 따른 탈질촉매의 탈질효율을 비교한 그래프를 도 5에 나타내었다.A graph comparing the denitrification efficiency of the denitrification catalyst manufactured in this comparative example before and after potassium poisoning is shown in Figure 5.
비교예 2Comparative Example 2
실시예 1에서, 10중량%의 ZSM-5(25) 대신에 3중량%의 ZrO2를 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 다공판상체 MgO가 담지된 ZrO2/V2O5WO3/TiO2 탈질촉매를 제조하였다. In Example 1, a ZrO 2 /V 2 O 5 WO 3 /TiO 2 denitration catalyst loaded with porous plate-like MgO was manufactured in the same manner as in Example 1, except that 3 wt% of ZrO 2 was loaded instead of 10 wt % of ZSM- 5 (25).
비교예 3Comparative Example 3
실시예 1에서, 10중량%의 ZSM-5(25) 대신에 3중량%의 Al2O3를 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Al2O3/V2O5WO3/TiO2 탈질촉매를 제조하였다. In Example 1, an Al 2 O 3 /V 2 O 5 WO 3 /TiO 2 denitration catalyst was manufactured in the same manner as in Example 1, except that 3 wt% of Al 2 O 3 was supported instead of 10 wt% of ZSM-5 (25).
[특성평가] [Characteristic evaluation]
1. 탈질촉매의 특성 평가1. Evaluation of the characteristics of the denitrification catalyst
상기 실시예 1 내지 7 및 비교예 1 내지 3에서 제조된 탈질촉매들의 탈질특성을 하기와 같이 평가하였다. The denitrification characteristics of the denitrification catalysts manufactured in Examples 1 to 7 and Comparative Examples 1 to 3 It was evaluated as follows.
밸런스가스로 N2가스를 사용하였고, NOx, NH3가스의 농도를 300ppm으로 고정하고, NOx와 NH3 반응 비율은 1:1로 하였다. 반응 가스 내 산소 농도는 5vol%로 주입하였고, 반응기내 가스 유량은 300cc/min로 유지하였다. NOx를 제거하기 위한 촉매고정층은 공간속도 60,000(hr-1)로 유지하였고, 공간속도에 맞게 촉매량을 조절하여 세라믹울을 사용하여 파우더 고정층을 형성하였다. 평가방법은 반응기상에 촉매를 장착한 후 N2, O2, NO, NH3 가스를 흘려주어 예상되는 농도가 일정해질 때까지 안정화하고. NOx 제거 효율은 25℃에서 500℃까지 5℃/min의 승온속도로 NOx 농도 변화를 관찰하였다. N2 gas was used as a balance gas, the concentrations of NOx and NH3 gases were fixed at 300 ppm, and the reaction ratio of NOx and NH3 was 1:1. The oxygen concentration in the reaction gas was injected at 5 vol%, and the gas flow rate in the reactor was maintained at 300 cc/min. The catalyst fixed layer for removing NOx was maintained at a space velocity of 60,000 (hr -1 ), and a powder fixed layer was formed using ceramic wool by adjusting the catalyst amount according to the space velocity. The evaluation method was to install the catalyst on the reactor, and then flow N2 , O2 , NO, and NH3 gases to stabilize until the expected concentration became constant. The NOx removal efficiency was observed by observing the change in NOx concentration at a heating rate of 5°C/min from 25°C to 500°C.
실시예 및 비교예에 따른 탈질촉매들의 탈질특성의 평가 결과를 하기 표 1에 나타내었다. The results of evaluating the denitrification characteristics of denitrification catalysts according to examples and comparative examples are shown in Table 1 below.
주): 1) 탈질전환율: 380℃에서의 탈질 효율을 의미함. Note): 1) Denitrification conversion rate: Refers to the denitrification efficiency at 380℃.
2) K1%, K2%: 촉매를 각각 칼륨(K) 1중량% 및 2중량%로 피독시켜, 25∼500℃까지 탈질 효율을 측정한 결과, 380℃에서의 탈질 효율을 의미함.2) K1%, K2%: The catalyst was poisoned with 1 wt% and 2 wt% of potassium (K), respectively, and the denitrification efficiency was measured from 25 to 500°C. This refers to the denitrification efficiency at 380°C.
상기 표 1에 나타난 바와 같이, 본 발명에 따른 실시예들에서 제조된 주형물질없이 제조된 결정성 제올라이트가 담지된 Zeolite/V2O5WO3/TiO2 탈질촉매는 비교예들에서 제조된 탈질촉매에 비하여, 탈질전환율이 높은 것을 알 수 있다. 또한, 본 발명에 따른 실시예들에서 제조된 주형물질없이 제조된 결정성 제올라이트가 담지된 Zeolite/V2O5WO3/TiO2 탈질촉매는 칼륨을 피독한 경우에 비교예들에 비해 탈질전환율이 현저히 높은 것을 확인할 수 있다.As shown in Table 1 above, it can be seen that the Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalysts supported on a crystalline zeolite manufactured without a template material in the examples according to the present invention have a higher denitrification conversion rate than the denitrification catalysts manufactured in the comparative examples. In addition, it can be seen that the Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalysts supported on a crystalline zeolite manufactured without a template material in the examples according to the present invention have a significantly higher denitrification conversion rate than the comparative examples when potassium is poisoned.
상기의 결과로 확인된 바와 같이, 본 발명에 따른 탈질촉매는 내알칼리성 탈질촉매로서, 바이오매스 화력발전소에서 운영되는 NH3-SCR 탈질 공정에 있어 알칼리 금속에 의한 피독 내성이 우수함으로써 촉매활성점을 더 오래 유지할 수 있어 경제성을 향상시킬 수 있다.As confirmed by the above results, the denitrification catalyst according to the present invention is an alkaline-resistant denitrification catalyst, and thus has excellent resistance to poisoning by alkali metals in the NH 3 -SCR denitrification process operated in a biomass thermal power plant, thereby enabling the catalytic activity site to be maintained for a longer period of time, thereby improving economic efficiency.
Claims (14)
1) 아나타제상 티타니아계 담체를 준비하는 단계;
2) 모더나이트, 베타제올라이트 및 천연제올라이트로부터 선택되는 결정성 제올라이트를 주형물질 없이 제조하는 단계;
3) 상기 1) 단계의 티타니아계 담체에 상기 2) 단계의 주형물질없이 제조된 결정성 제올라이트 및 활성금속화합물로서 텅스텐산화물 및 바나듐산화물을 담지하는 단계;
4) 상기 3) 단계의 결과물을 소성하여, 결정성 제올라이트가 담지된 탈질촉매를 제조하는 단계.A method for producing a denitrification catalyst according to claim 1 or claim 2 or claim 4 or claim 5, comprising the following steps:
1) Step of preparing an anatase-phase titania carrier;
2) A step of producing a crystalline zeolite selected from mordenite, beta zeolite and natural zeolite without a template material;
3) A step of supporting the crystalline zeolite produced without the template material of step 2) and tungsten oxide and vanadium oxide as active metal compounds on the titania-based support of step 1);
4) A step of producing a denitrification catalyst loaded with crystalline zeolite by calcining the result of step 3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210160551A KR102758432B1 (en) | 2021-11-19 | 2021-11-19 | DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210160551A KR102758432B1 (en) | 2021-11-19 | 2021-11-19 | DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230073794A KR20230073794A (en) | 2023-05-26 |
KR102758432B1 true KR102758432B1 (en) | 2025-01-21 |
Family
ID=86537427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210160551A Active KR102758432B1 (en) | 2021-11-19 | 2021-11-19 | DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102758432B1 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030046881A (en) | 2001-12-07 | 2003-06-18 | 현대중공업 주식회사 | Double hull construction of Oil or product carrier |
KR100641694B1 (en) * | 2005-01-28 | 2006-11-03 | 주식회사 나노 | Titania manufacturing method for denitrification catalyst extrusion |
EP3626329B1 (en) | 2007-04-26 | 2021-10-27 | Johnson Matthey Public Limited Company | Exhaust system comprising copper/zsm-34 zeolite scr catalyst and method of converting nitrogen oxides |
KR100996794B1 (en) | 2008-05-15 | 2010-11-25 | 테크노세미켐 주식회사 | Manufacturing methods of Crystalline zeolite |
CN207635695U (en) | 2016-08-03 | 2018-07-20 | 三菱电机株式会社 | Refrigerator |
US11549417B2 (en) * | 2018-04-23 | 2023-01-10 | Basf Corporation | Selective catalytic reduction catalyst for the treatment of an exhaust gas of a diesel engine |
-
2021
- 2021-11-19 KR KR1020210160551A patent/KR102758432B1/en active Active
Non-Patent Citations (1)
Title |
---|
강태훈, 물리적으로 혼합한 바나듐-텅스텐 티타니아 및 무기화합물 촉매 상에서 암모니아를 사용한 질소산화물 선택적 촉매 환원, 서울대학교 대학원 화학생물공학부, 공학박사 학위논문 (2021.08.) |
Also Published As
Publication number | Publication date |
---|---|
KR20230073794A (en) | 2023-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cao et al. | Influence of phosphorus on the NH3-SCR performance of CeO2-TiO2 catalyst for NOx removal from co-incineration flue gas of domestic waste and municipal sludge | |
US20090196813A1 (en) | High temperature catalyst and process for selective catalytic reduction of nox in exhaust gases of fossil fuel combustion | |
GB2149680A (en) | Catalysts for the purification of waste gases | |
CA2545332C (en) | Exhaust gas catalyst | |
CN102658172A (en) | SCR denitration catalyst as well as preparation method and application thereof | |
KR101629483B1 (en) | Vanadium-based denitration catalyst and preparing method of the same | |
CN111530475B (en) | Rare earth-based medium-low temperature denitration catalyst powder and preparation method thereof | |
CN109351358A (en) | A kind of transition metal oxide composite catalyst and its preparation method and use | |
JP2023543697A (en) | SCR catalyst composition and SCR catalyst article comprising the catalyst composition | |
WO1994021373A1 (en) | Nitrogen oxide decomposing catalyst and denitration method using the same | |
GB2562611A (en) | A catalyst for treating an exhaust gas, an exhaust system and a method | |
CN104437535B (en) | A kind of environmentally friendly manganese cobalt aluminum composite oxide demercuration denitrating catalyst and preparation method thereof | |
JP5164821B2 (en) | Nitrogen oxide selective catalytic reduction catalyst | |
CN104324728B (en) | Mesoporous composite oxide catalyst for purifying tail gases and preparation method thereof | |
CN109012703A (en) | A kind of new method preparing iron sulphur titanium group high temperature NH3-SCR denitrating catalyst | |
KR102758432B1 (en) | DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME | |
CN102188979B (en) | Smoke denitration catalyst by catalytic oxidation, and preparation method thereof | |
CN113244908A (en) | Vanadium-based SCR catalyst and preparation method and application thereof | |
JP4798909B2 (en) | Nitrogen oxide removing catalyst and method for producing the same | |
JP4798908B2 (en) | Nitrogen oxide removing catalyst and method for producing the same | |
KR102665354B1 (en) | DeNOx CATALYST LOADED WITH POROUS FLAKE MgO AND METHOD FOR PREPARATION OF THE SAME | |
CN110833827B (en) | High nitrogen selectivity vanadium-based oxide catalyst and preparation method thereof | |
JPH11300213A (en) | Denitration catalyst | |
JPH09155190A (en) | Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst | |
KR102587282B1 (en) | Denitrification catalyst supported with nanoplate-shaped vanadium oxide and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20211119 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230713 Patent event code: PE09021S01D |
|
E90F | Notification of reason for final refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20231222 Patent event code: PE09021S02D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20240718 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20250117 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20250117 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |