[go: up one dir, main page]

KR102758432B1 - DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME - Google Patents

DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME Download PDF

Info

Publication number
KR102758432B1
KR102758432B1 KR1020210160551A KR20210160551A KR102758432B1 KR 102758432 B1 KR102758432 B1 KR 102758432B1 KR 1020210160551 A KR1020210160551 A KR 1020210160551A KR 20210160551 A KR20210160551 A KR 20210160551A KR 102758432 B1 KR102758432 B1 KR 102758432B1
Authority
KR
South Korea
Prior art keywords
denitrification catalyst
producing
zeolite
catalyst
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020210160551A
Other languages
Korean (ko)
Other versions
KR20230073794A (en
Inventor
김대성
전명표
울라 마흐붑
서민채
김정유
김종만
최지훈
Original Assignee
한국세라믹기술원
한국남동발전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원, 한국남동발전 주식회사 filed Critical 한국세라믹기술원
Priority to KR1020210160551A priority Critical patent/KR102758432B1/en
Publication of KR20230073794A publication Critical patent/KR20230073794A/en
Application granted granted Critical
Publication of KR102758432B1 publication Critical patent/KR102758432B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 암모니아 선택적 환원법에 의한 질소산화물 제거용 탈질촉매 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 주형물질 없이 제조된 결정성 제올라이트를 티타니아계 촉매에 담지하여 제조되는, 결정성 제올라이트가 담지된 티타니아계 탈질촉매 및 그의 제조 방법에 관한 것이다. 본 발명의 탈질촉매는 내알칼리성 탈질 특성이 향상됨으로써, 알칼리 금속의 피독 문제를 해결할 수 있다.The present invention relates to a denitrification catalyst for removing nitrogen oxides by a selective reduction of ammonia and a method for producing the same, and more particularly, to a titania-based denitrification catalyst supported on a crystalline zeolite, which is produced by supporting a crystalline zeolite produced without a template material on a titania-based catalyst, and a method for producing the same. The denitrification catalyst of the present invention can solve the problem of alkali metal poisoning by improving the alkaline resistance denitrification characteristics.

Description

결정성 제올라이트가 담지된 탈질촉매 및 그의 제조 방법{DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME}DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME

본 발명은 암모니아 선택적 환원법에 의한 질소산화물 제거용 탈질촉매 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 주형물질 없이 제조된 결정성 제올라이트를 티타니아계 촉매에 담지하여 제조되는, 결정성 제올라이트가 담지된 티타니아계 탈질촉매 및 그의 제조 방법에 관한 것이다. 본 발명의 탈질촉매는 내알칼리성이 향상됨으로써, 알칼리 금속의 피독 문제를 해결할 수 있다.The present invention relates to a denitrification catalyst for removing nitrogen oxides by a selective reduction of ammonia and a method for producing the same, and more particularly, to a titania-based denitrification catalyst supported on a crystalline zeolite, which is produced by supporting a crystalline zeolite produced without a template material on a titania-based catalyst, and a method for producing the same. The denitrification catalyst of the present invention can solve the problem of alkali metal poisoning by improving alkali resistance.

에너지 소비가 증가함에 따라, 화력발전소, 산업용 보일러, 폐기물 소각설비, 석유화학 플랜트 등을 통해 화석연료의 사용량이 증가하고, 이에 따라 화석연료의 연소에 의해 여러 가지 유해한 배출가스가 생성됨으로 인해 대기오염이 문제가 되고 있다. 이러한 연소 배출가스 중 대표적인 오염물질인 질소산화물(NOx)은 인체에 유해할 뿐 아니라 광화학 스모그 생성, 산성비 등의 환경오염의 주요 원인이 된다. As energy consumption increases, the use of fossil fuels increases through thermal power plants, industrial boilers, waste incinerators, petrochemical plants, etc., and as a result, various harmful exhaust gases are generated by the combustion of fossil fuels, which has become a problem of air pollution. Nitrogen oxides (NOx), a representative pollutant among these combustion exhaust gases, are not only harmful to the human body, but also a major cause of environmental pollution such as photochemical smog and acid rain.

이러한 질소산화물의 제거를 위한 종래 기술로서 선택적 촉매환원법(Selective Catalytic Reduction; SCR)이 가장 널리 사용되고 있다. 선택적 촉매환원법은 암모니아를 환원제로 사용하여, 이를 NOx와 혼합하여 촉매층을 통과시킴으로써 질소와 수증기 형태로 제거하는 탈질 방법으로서, 제올라이트는 NOx의 SCR을 위한 촉매로 사용된다.The most widely used conventional technology for removing these nitrogen oxides is the Selective Catalytic Reduction (SCR) method. The Selective Catalytic Reduction method is a denitrification method that uses ammonia as a reducing agent, mixes it with NOx, and passes it through a catalyst layer to remove it in the form of nitrogen and water vapor. Zeolite is used as a catalyst for the SCR of NOx.

그러나, NH3-SCR 촉매는 알칼리 금속으로 인한 촉매 활성의 감소 및 촉매 피독이 발생하는 문제가 있다.However, NH3 - SCR catalysts have problems with decreased catalytic activity and catalyst poisoning caused by alkali metals.

상기와 같은 문제점을 해소하기 위하여, 선택적 촉매환원법에 사용되는 촉매의 개선에 관한 여러 기술들이 개발되어 왔다. 그 중, 국내공개특허 제10-2019-0003863호에는 제올라이트를 NH4+ 이온 교환하여 촉매를 제조하는 기술을 개시하고 있고, 국내공개특허 제10-2003-0046881호에는 천연 제올라이트를 가열 및 산처리작업을 거쳐 촉매지지체 시료를 제조하는 기술을 개시하고 있고, 국내공개특허 제10-2018-7025353호에는 착화제를 필요로 하지 않는 Fe-AEI 제올라이트를 직접 합성하여 300oC 이상의 온도에서 높은 활성을 가지고 있는 촉매 제조 기술을 개시하고 있다.To solve the problems described above, various technologies have been developed for improving catalysts used in selective catalytic reduction methods. Among them, Korean Patent Publication No. 10-2019-0003863 discloses a technology for producing a catalyst by exchanging zeolite with NH4 + ions, Korean Patent Publication No. 10-2003-0046881 discloses a technology for producing a catalyst support sample by heating and acid treating natural zeolite, and Korean Patent Publication No. 10-2018-7025353 discloses a technology for producing a catalyst having high activity at a temperature of 300 o C or higher by directly synthesizing Fe-AEI zeolite that does not require a complexing agent.

그러나, 상기 특허들은 천연 제올라이트를 열처리, 산처리, 또는 이온교환하여 수득된 제올라이트를 사용한 촉매 제조 공정을 개시하고 있을 뿐, 주형물질 없이 제조된 결정성 제올라이트를 촉매에 담지함으로써, 탈질 효율을 개선하고 촉매 피독 문제를 해결할 수 있다는 기술사상에 대해서는 전혀 시사하고 있지 않다.However, the above patents only disclose a catalyst manufacturing process using zeolite obtained by heat treatment, acid treatment, or ion exchange of natural zeolite, and do not suggest at all the technical idea that by supporting a crystalline zeolite manufactured without a template material on a catalyst, denitrification efficiency can be improved and the catalyst poisoning problem can be solved.

[특허문헌 1] 국내공개특허 제10-2019-0003863호[Patent Document 1] Domestic Publication Patent No. 10-2019-0003863 [특허문헌 2] 국내공개특허 제10-2003-0046881호[Patent Document 2] Domestic Publication Patent No. 10-2003-0046881 [특허문헌 3] 국내공개특허 제10-2018-7025353호[Patent Document 3] Domestic Publication Patent No. 10-2018-7025353 [특허문헌 4] 국내등록특허 제10-0996794호[Patent Document 4] Domestic Registration Patent No. 10-0996794

본 발명은 탈질촉매, 특히 대형 연소기관에서 운영되는 NH3-SCR 탈질 공정에 적합하게 응용될 수 있는 탈질촉매를 제공하는 것을 목적으로 한다. 특히, 본 발명은 주형물질 없이 제조된 결정성 제올라이트를 포함함으로써 촉매 피독시에도 높은 탈질효율을 나타내는 내알칼리성 탈질촉매를 제공하는 것을 목적으로 한다.The present invention aims to provide a denitrification catalyst, particularly a denitrification catalyst that can be suitably applied to an NH 3 -SCR denitrification process operated in a large combustion engine. In particular, the present invention aims to provide an alkali-resistant denitrification catalyst that exhibits high denitrification efficiency even when the catalyst is poisoned by including a crystalline zeolite manufactured without a template material.

또한, 본 발명은 상기 내알칼리성 탈질촉매의 제조 방법을 제공하는 것을 목적으로 한다.In addition, the present invention aims to provide a method for producing the alkaline denitrification catalyst.

본 발명에 따른 탈질촉매는, 티타니아계 담체와, 상기 티타니아계 담체에 담지된 결정성 제올라이트 및 활성금속화합물을 포함하는 것을 특징으로 한다.The denitrification catalyst according to the present invention is characterized by including a titania-based carrier, a crystalline zeolite supported on the titania-based carrier, and an active metal compound.

본 발명의 탈질촉매에 있어서, 상기 결정성 제올라이트는 상기 탈질촉매의 전체 중량 대비 1.0~10.0중량%의 함량으로 포함될 수 있다.In the denitrification catalyst of the present invention, the crystalline zeolite may be included in an amount of 1.0 to 10.0 wt% relative to the total weight of the denitrification catalyst.

상기 결정성 제올라이트는 주형물질없이 제조된 제올라이트로서, ZSM-5, 베타 제올라이트, L 제올라이이트, 천연 제올라이트(Natural zeolite), 모더나이트(Mordenite), 및 금속이온으로 이온교환된 제올라이트 또는 금속산화물이 담지된 제올라이트로부터 선택되는 1종 이상일 수 있다.The above crystalline zeolite is a zeolite manufactured without a template material, and may be at least one selected from ZSM-5, beta zeolite, L zeolite, natural zeolite, mordenite, and a zeolite ion-exchanged with a metal ion or a zeolite supported with a metal oxide.

본 발명의 탈질촉매에 있어서, 상기 티타니아계 담체는 아나타제상 티타니아(TiO2) 담체일 수 있다. In the denitrification catalyst of the present invention, the titania-based support may be an anatase-phase titania (TiO 2 ) support.

본 발명의 탈질촉매에 있어서, 상기 활성금속화합물은 상기 탈질촉매의 전체 중량 대비 0.1~10.0중량%의 함량으로 포함될 수 있다.In the denitrification catalyst of the present invention, the active metal compound may be included in an amount of 0.1 to 10.0 wt% relative to the total weight of the denitrification catalyst.

상기 활성금속산화물은 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물로부터 선택되는 1종 이상일 수 있다. The above active metal oxide may be at least one selected from tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide, and vanadium oxide.

본 발명에 따른 탈질촉매의 제조 방법은, 다음의 단계들을 포함하는 것을 특징으로 한다:The method for manufacturing a denitrification catalyst according to the present invention is characterized by including the following steps:

1) 아나타제상 티타니아계 담체를 준비하는 단계;1) Step of preparing an anatase-phase titania carrier;

2) 주형물질 없이 결정성 제올라이트를 제조하는 단계;2) A step for producing crystalline zeolite without a template material;

3) 상기 1) 단계의 티타니아계 담체에 상기 2) 단계의 주형물질없이 제조된 결정성 제올라이트 및 활성금속화합물을 담지하는 단계;3) a step of supporting the crystalline zeolite and active metal compound produced without the template material of step 2) on the titania-based support of step 1);

4) 상기 3) 단계의 결과물을 소성하여, 결정성 제올라이트가 담지된 탈질촉매를 제조하는 단계.4) A step of producing a denitrification catalyst loaded with crystalline zeolite by calcining the result of step 3).

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 1) 단계는 티타늄 전구체 화합물과 증류수를 혼합 후 가수분해한 다음 고액분리, 수세 및 중화하는 것을 포함할 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, step 1) may include mixing a titanium precursor compound and distilled water, hydrolyzing the mixture, and then performing solid-liquid separation, washing, and neutralization.

상기 티타늄 전구체화합물은 TiOSO4, TiOCl2, TiCl4, 및 Ti{OCH(CH3)2}4로부터 선택되는 1종 이상일 수 있다.The above titanium precursor compound may be at least one selected from TiOSO 4 , TiOCl 2 , TiCl 4 , and Ti{OCH(CH 3 ) 2 } 4 .

상기 가수분해는 70~100℃에서 5~48시간 동안 수행될 수 있다.The above hydrolysis can be performed at 70 to 100°C for 5 to 48 hours.

상기 중화는 pH 7~8로 조정함으로써 수행될 수 있다.The above neutralization can be performed by adjusting the pH to 7 to 8.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 2) 단계에서 결정성 제올라이트는 유기 주형물질 없이 실리카 전구체 및 알루미나 전구체를 포함하는 혼합용액에 하이드록실 이온공급원을 혼합한 후 밀링 및 수열합성을 거쳐 제조될 수 있다.In the method for producing a denitrification catalyst of the present invention, in step 2), a crystalline zeolite can be produced by mixing a hydroxyl ion source into a mixed solution containing a silica precursor and an alumina precursor without an organic template material, and then performing milling and hydrothermal synthesis.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 3) 단계는 상기 티타니아계 담체의 슬러리에 상기 결정성 제올라이트 및 활성금속화합물을 첨가하고, 함침 처리하여 수행될 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, step 3) can be performed by adding the crystalline zeolite and the active metal compound to the slurry of the titania-based carrier and performing impregnation treatment.

상기 함침 처리는 회전감압증류기에서 150~200mmbar, 80∼100℃의 조건 하에 수행될 수 있다.The above impregnation treatment can be performed in a rotary vacuum distiller under conditions of 150 to 200 mmbar and 80 to 100°C.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 4) 단계에서의 소성은 400~600℃에서 1~10시간 수행될 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, the calcination in step 4) can be performed at 400 to 600°C for 1 to 10 hours.

본 발명에 따른 NH3-SCR(Selective Catalytic Reduction)용 탈질촉매는 화력발전소에서 알칼리 금속류, 플라이애쉬(Fly ash), 이물질 등으로 인한 촉매 피독을 개선함으로써 우드펠렛을 사용하는 화력발전소에서 높은 탈질성능을 보이는 이점이 있다.The NH 3 -SCR (Selective Catalytic Reduction) denitrification catalyst according to the present invention has the advantage of exhibiting high denitrification performance in a thermal power plant using wood pellets by improving catalyst poisoning caused by alkali metals, fly ash, foreign substances, etc. in a thermal power plant.

또한, 본 발명에 따른 탈질촉매의 제조방법에 의하면, 제올라이트를 전처리 하지 않고 주형물질 없이 제조된 결정성 제올라이트를 사용함으로써, 촉매 제조의 경제적 측면에서 유리할 뿐 아니라, 상기 결정성 제올라이트를 촉매에 담지함으로써, 내알칼리성이 향상되어 촉매 피독 성능이 개선된 탈질촉매를 제조할 수 있다. In addition, according to the method for manufacturing a denitrification catalyst according to the present invention, since crystalline zeolite manufactured without a template material and without pretreatment of zeolite is used, not only is it advantageous in terms of the economic aspect of catalyst manufacturing, but also, by supporting the crystalline zeolite on the catalyst, a denitrification catalyst with improved alkaline resistance and improved catalyst poisoning performance can be manufactured.

도 1은 본 발명의 일 실시예에 따른 탈질촉매의 제조공정의 순서도를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른, 모더나이트가 담지된 탈질촉매 및 모더나이트의 XRD(X-ray Diffractometer) 패턴을 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른, 모더나이트의 FE-SEM 이미지를 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른, ZSM-5(25)가 담지된 탈질촉매의 칼륨 피독 전후에 따른 탈질효율을 비교하여 나타낸 그래프이다.
도 5는 비교예 1에 따른, 결정성 제올라이트의 담지없이 제조된 탈질촉매의 칼륨 피독 전후에 따른 탈질효율을 비교하여 나타낸 그래프이다.
Figure 1 is a flow chart showing a manufacturing process of a denitrification catalyst according to one embodiment of the present invention.
FIG. 2 shows an XRD (X-ray Diffractometer) pattern of a denitrification catalyst and mordenite supported on mordenite according to one embodiment of the present invention.
FIG. 3 shows an FE-SEM image of mordenite according to one embodiment of the present invention.
Figure 4 is a graph comparing the denitrification efficiency of a denitrification catalyst loaded with ZSM-5 (25) before and after potassium poisoning according to one embodiment of the present invention.
Figure 5 is a graph comparing the denitrification efficiency of a denitrification catalyst manufactured without supporting a crystalline zeolite according to Comparative Example 1 before and after potassium poisoning.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention, and the method for achieving them, will become clear with reference to the embodiments described in detail below. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and the present embodiments are provided only to make the disclosure of the present invention complete and to fully inform those skilled in the art of the scope of the invention, and the present invention is defined only by the scope of the claims.

다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한, 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used with a meaning that can be commonly understood by a person of ordinary skill in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries shall not be ideally or excessively interpreted unless explicitly specifically defined.

이하, 본 발명에 따른 탈질촉매 및 그의 제조 방법에 대하여 상세히 설명한다. Hereinafter, the denitrification catalyst according to the present invention and its manufacturing method will be described in detail.

본 발명에 따른 탈질촉매는, 티타니아계 담체 및 상기 티타니아계 담체에 담지된 결정성 제올라이트 및 활성금속화합물을 포함하는 것을 특징으로 한다.The denitrification catalyst according to the present invention is characterized by including a titania-based carrier, a crystalline zeolite supported on the titania-based carrier, and an active metal compound.

본 발명의 탈질촉매에 있어서, 상기 결정성 제올라이트는 상기 탈질촉매의 전체 중량 대비 1.0~10.0중량%, 바람직하게는 2~8중량%의 함량으로 포함될 수 있는데, 상기 함량 범위 미만이면 제올라이트의 담지에 의한 효과가 미흡하고, 상기 함량 범위를 초과하면 필요 이상의 높은 제올라이트의 함량으로 인해 촉매 표면의 활성면적이 감소하여 탈질성능의 저하를 초래할 수도 있으며, 또한 저가 제올라이트의 제조기술임에도 불구하고 티타니아계 담체에 비해 상대적으로 비용이 상승하는 단점이 있으므로 바람직하지 않다.In the denitrification catalyst of the present invention, the crystalline zeolite may be included in an amount of 1.0 to 10.0 wt%, preferably 2 to 8 wt%, based on the total weight of the denitrification catalyst. If the amount is less than the above range, the effect of supporting the zeolite is insufficient, and if the amount is more than the above range, the active area of the catalyst surface may decrease due to the unnecessary high zeolite content, which may result in a decrease in the denitrification performance. In addition, although it is a manufacturing technology for low-cost zeolite, there is a disadvantage in that the cost is relatively high compared to titania-based supports, and therefore, it is not preferable.

상기 결정성 제올라이트는 ZSM-5, 베타 제올라이트, L 제올라이이트, 천연 제올라이트, 모더나이트 및 금속이온으로 이온교환된 제올라이트, 예로서 Fe-모더나이트, 또는 금속산화물이 담지된 제올라이트로부터 선택되는 1종 이상일 수 있다.The above crystalline zeolite is It may be at least one selected from ZSM-5, beta zeolite, L zeolite, natural zeolite, mordenite, and zeolite ion-exchanged with metal ions, such as Fe-mordenite, or zeolite supported with metal oxide.

본 발명의 탈질촉매에 있어서, 상기 티타니아계 담체는 아나타제상을 가지는 것이 바람직하다. 티타니아(TiO2)는 일반적으로 브루카이트(brookite), 루타일(rutile), 아나타제(anatase)의 3가지 결정구조를 가지는데, 아나타제상의 결정상을 갖는 티타니아는 황화합물과 쉽게 반응하지 않는 화학적 안정성을 갖고, 다른 상에 비해 촉매 활성이 더 우수하다. In the denitrification catalyst of the present invention, it is preferable that the titania-based support has an anatase phase. Titania (TiO 2 ) generally has three crystal structures: brookite, rutile, and anatase. Titania having an anatase crystal structure has chemical stability that does not easily react with sulfur compounds, and has superior catalytic activity compared to other phases.

본 발명의 탈질촉매에 있어서, 상기 활성금속화합물은 상기 탈질촉매의 전체 중량 대비 0.1~10.0중량%, 특히 1~3중량%의 함량으로 담지되는 것이 바람직한데, 담지량이 0.1중량% 미만인 경우는 활성금속화합물의 담지에 따른 효과가 미흡하고, 10.0중량%를 초과하면 촉매의 상용화를 위한 비용이 증가하게 되어 경제성이 저하되므로 바람직하지 않다. In the denitrification catalyst of the present invention, it is preferable that the active metal compound is supported in an amount of 0.1 to 10.0 wt%, particularly 1 to 3 wt%, based on the total weight of the denitrification catalyst. However, if the supported amount is less than 0.1 wt%, the effect of supporting the active metal compound is insufficient, and if it exceeds 10.0 wt%, the cost for commercializing the catalyst increases, which lowers economic feasibility, and is therefore not preferable.

상기 활성금속산화물은 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물로부터 선택되는 1종 이상일 수 있으나, 이들에 제한되지는 않으며, 특히 텅스텐산화물 및 바나듐산화물이 바람직하다. The above active metal oxide may be at least one selected from tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide, and vanadium oxide, but is not limited thereto, and tungsten oxide and vanadium oxide are particularly preferred.

본 발명에 따른 탈질촉매의 제조 방법은, 다음의 단계들을 포함할 수 있다.A method for manufacturing a denitrification catalyst according to the present invention may include the following steps.

1) 아나타제상 티타니아계 담체를 준비하는 단계;1) Step of preparing an anatase-phase titania carrier;

2) 주형물질 없이 결정성 제올라이트를 제조하는 단계;2) A step for producing crystalline zeolite without a template material;

3) 상기 1) 단계의 티타니아계 담체에 상기 2) 단계의 주형물질없이 제조된 결정성 제올라이트 및 활성금속화합물을 담지하는 단계;3) a step of supporting the crystalline zeolite and active metal compound produced without the template material of step 2) on the titania-based support of step 1);

4) 상기 3) 단계의 결과물을 소성하여, 결정성 제올라이트가 담지된 탈질촉매를 제조하는 단계.4) A step of producing a denitrification catalyst loaded with crystalline zeolite by calcining the result of step 3).

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 1) 단계는 티타늄 전구체 화합물과 증류수를 혼합 후 가수분해한 다음 고액분리, 수세 및 중화하는 것을 포함할 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, step 1) may include mixing a titanium precursor compound and distilled water, hydrolyzing the mixture, and then performing solid-liquid separation, washing, and neutralization.

상기 티타늄 전구체화합물은 티타닐설페이트(TiOSO4), 티타늄옥시클로라이드(TiOCl2), 티타늄테트라클로라이드(TiCl4), 티타늄이소프로폭사이드(Ti{OCH(CH3)2}4; TTIP) 등으로부터 선택되는 1종 이상일 수 있으나, 이들에 제한되는 것은 아니며, 특히 TiOSO4가 바람직하다. The above titanium precursor compound may be at least one selected from titanyl sulfate (TiOSO 4 ), titanium oxychloride (TiOCl 2 ), titanium tetrachloride (TiCl 4 ), titanium isopropoxide (Ti{OCH(CH 3 ) 2 } 4 ; TTIP), etc., but is not limited thereto, and TiOSO 4 is particularly preferred.

상기 가수분해는 효과적인 가수분해의 진행을 위하여 70~100℃에서 10~20시간, 바람직하게는 90~100℃에서 15~18시간 동안 수행될 수 있다.The above hydrolysis can be performed at 70 to 100°C for 10 to 20 hours, preferably at 90 to 100°C for 15 to 18 hours, for effective hydrolysis.

상기 중화는 암모니아수와 같은 염기성 화합물의 첨가에 의해 pH 7~8로 조정함으로써 수행될 수 있으며, 이와 같은 중화 처리는 이후에 활성금속화합물의 효과적인 담지를 위한 것이기도 하다.The above neutralization can be performed by adjusting the pH to 7 to 8 by adding a basic compound such as ammonia water, and this neutralization treatment is also for the effective loading of the active metal compound thereafter.

상기 활성금속화합물로는 텅스텐산화물, 망간산화물, 세륨산화물, 몰리브덴산화물 및 바나듐산화물 등으로부터 선택되는 1종 이상을 들 수 있으나, 이들에 제한되는 것은 아니다.The above active metal compound may include at least one selected from tungsten oxide, manganese oxide, cerium oxide, molybdenum oxide, and vanadium oxide, but is not limited thereto.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 2) 단계에서 결정성 제올라이트의 제조는, 유기 주형물질 없이 실리카 전구체 및 알루미나 전구체를 포함하는 혼합용액에 하이드록실 이온공급원을 혼합한 후 밀링 및 수열합성하는 것을 포함할 수 있다. 이러한 제조방법에 의하면 낮은 제조비용으로 결정성 제올라이트를 얻을 수 있다. 또한, 상기 결정성 제올라이트의 제조 시 금속산화물 또는 금속 이온을 첨가 또는 이온교환하는 것을 더 포함할 수 있다. 본 발명의 바람직한 일 구체예에 따르면, 상기 결정성 제올라이트는 국내등록특허 제10-0996794호에 기재된 방법에 따라 제조될 수 있으며, 상기 국내등록특허는 그 전체가 본 명세서에 참고문헌으로 통합된다.In the method for producing a denitrification catalyst of the present invention, the production of crystalline zeolite in step 2) may include mixing a hydroxyl ion source into a mixed solution including a silica precursor and an alumina precursor without an organic template material, followed by milling and hydrothermal synthesis. According to this production method, crystalline zeolite can be obtained at a low production cost. In addition, the production of the crystalline zeolite may further include adding or ion-exchanging a metal oxide or a metal ion. According to a preferred specific example of the present invention, the crystalline zeolite can be produced according to the method described in Korean Patent No. 10-0996794, which is incorporated herein by reference in its entirety.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 3) 단계는 상기 티타니아계 담체의 슬러리에 상기 결정성 제올라이트 및 활성금속화합물을 포함하는 슬러리를 첨가하고, 함침 처리하여 수행될 수 있다. In the method for manufacturing a denitrification catalyst of the present invention, step 3) can be performed by adding a slurry containing the crystalline zeolite and an active metal compound to a slurry of the titania-based carrier and performing an impregnation treatment.

상기 함침 처리는 효과적인 함침을 위하여 회전감압증류기에서 150~200mmbar, 바람직하게는 150~180mmbar, 가장 바람직하게는 170mmbar로, 80~100℃, 바람직하게는 90℃의 조건 하에 수행될 수 있다.The above impregnation treatment can be performed in a rotary vacuum distiller at 150 to 200 mmbar, preferably 150 to 180 mmbar, most preferably 170 mmbar, and at 80 to 100°C, preferably 90°C, for effective impregnation.

상기 3) 단계에서 담지된 활성금속화합물은 촉매의 활성온도와 산점의 확장, 소결 및 상전이 억제 등의 역할을 한다. The active metal compound loaded in step 3 above plays a role in increasing the activation temperature of the catalyst, expanding the acid site, and suppressing sintering and phase transition.

상기 3) 단계에서, 상기 결정성 제올라이트 및 활성금속화합물의 담지 순서에는 특별히 제한이 없다.In the above step 3), there is no particular limitation on the order of supporting the crystalline zeolite and the active metal compound.

본 발명의 탈질촉매의 제조 방법에 있어서, 상기 4) 단계에서의 소성은 400~600℃, 바람직하게는 450~550℃에서 1~10시간, 바람직하게는 3~4시간 수행될 수 있다.In the method for manufacturing a denitrification catalyst of the present invention, the calcination in step 4) can be performed at 400 to 600°C, preferably 450 to 550°C, for 1 to 10 hours, preferably 3 to 4 hours.

이하, 본 발명에 따른, 주형물질없이 제조된 결정성 제올라이트가 담지된 탈질촉매의 제조를 위한 실시예 및 무정형 탈질촉매의 제조를 위한 비교예를 통하여 본 발명을 더욱 상세히 설명하나, 본 발명은 하기 실시예들에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples for producing a denitrification catalyst supported on a crystalline zeolite produced without a template material according to the present invention and comparative examples for producing an amorphous denitrification catalyst. However, the present invention is not limited to the following examples.

실시예 1Example 1

도 1에 나타낸 탈질촉매의 제조 공정에 따라, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25)가 담지된 탈질촉매를 제조하였다. According to the manufacturing process of the denitrification catalyst shown in Fig. 1, a denitrification catalyst supported with ZSM-5 (25) as a crystalline zeolite manufactured without a template material was manufactured.

황산티타닐(TiOSO4) 분말을 증류수와 혼합한 후 100℃에서 16시간 동안 가수분해하여 100~150g/L의 아나타제 티타니아(TiO2) 슬러리(TiO2 졸)를 제조하였다. 상기 TiO2 졸에 대해 10중량%의 결정성 제올라이트(ZSM-5(25)), 텅스텐산화물(WO3)이 3중량%가 되도록 텅스텐 전구체((NH4)6W12O39·XH2O(Ammonium meta tungstate)) 및 바나듐산화물이 1중량%가 되도록 NH4VO3를 증류수 200ml에 용해시킨 후 C2H2O4 를 첨가한 용액을 2시간 교반하여 Zeolite/V2O5WO3/TiO2 소재를 제조하였다. 교반이 완료된 Zeolite/V2O5WO3/TiO2 슬러리는 감압증류하여 용매를 증발시켜 분말을 제조하고, 500℃에서 4시간 동안 소성하여, 결정성 제올라이트가 담지된 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다.Titanium sulfate (TiOSO 4 ) After the powder was mixed with distilled water, it was hydrolyzed at 100℃ for 16 hours to prepare an anatase titania (TiO 2 ) slurry (TiO 2 sol) having a density of 100 to 150 g/L. For the TiO 2 sol, 10 wt% of crystalline zeolite (ZSM-5(25)), 3 wt% of tungsten oxide (WO 3 ) as a tungsten precursor ((NH 4 ) 6 W 12 O 39·X H 2 O (Ammonium meta tungstate)) and 1 wt% of vanadium oxide were dissolved in 200 ml of distilled water, and then C 2 H 2 O 4 was added . The solution was stirred for 2 hours to prepare a Zeolite/V 2 O 5 WO 3 /TiO 2 material. The Zeolite/V 2 O 5 WO 3 /TiO 2 slurry, after stirring, was distilled under reduced pressure to evaporate the solvent to produce a powder, which was then calcined at 500°C for 4 hours to produce a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst loaded with crystalline zeolite.

본 실시예에서 제조된 ZSM-5가 담지된 탈질촉매의 칼륨 피독 전후에 따른 탈질촉매의 탈질효율을 비교한 그래프를 도 4에 나타내었다.A graph comparing the denitrification efficiency of the ZSM-5-loaded denitrification catalyst manufactured in this example before and after potassium poisoning is shown in Figure 4.

실시예 2Example 2

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 ZSM-5(1000)를 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared in the same manner as in Example 1, except that ZSM-5 (1000) was used instead of ZSM-5 ( 25 ) , which was a crystalline zeolite prepared without a template material, as a support .

실시예 3Example 3

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 10중량%의 ZSM-5(25) 대신에 3중량%의 모더나이트(20)을 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitration catalyst was prepared in the same manner as in Example 1, except that 3 wt% of mordenite (20) was used as a support instead of 10 wt% of ZSM - 5 ( 25 ) , which was prepared as a crystalline zeolite without a template material.

실시예 4 Example 4

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 모더나이트(20)을 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitration catalyst was prepared in the same manner as in Example 1, except that mordenite (20) was used instead of ZSM - 5 ( 25 ), which was a crystalline zeolite prepared without a template material, as a support .

본 실시예에서 사용된 모더나이트(20) 및 상기 모더나이트(20)가 담지된 탈질촉매의 XRD 패턴을 도 2에 나타내었고, 상기 모더나이트(20)의 FE-SEM 이미지를 도 3에 나타내었다.The XRD pattern of the mordenite (20) used in this example and the denitrification catalyst loaded with the mordenite (20) is shown in Fig. 2, and the FE-SEM image of the mordenite (20) is shown in Fig. 3.

실시예 5Example 5

모더나이트 분말을 FeCl2.4H2O수용액에 첨가한 후 60℃에서 24시간동안 교반하여 이온교환하였고, 이온교환이 종료된 용액을 증류수로 세척하였다. 상기 과정을 2회 진행하여 이온교환한 Fe-모더나이트(20)을 제조하였다.After adding mordenite powder to the FeCl 2 .4H 2 O aqueous solution, ion exchange was performed by stirring at 60°C for 24 hours, and the solution after ion exchange was washed with distilled water. The above process was performed twice to manufacture ion-exchanged Fe-mordenite (20).

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 상기에서 제조된 Fe-모더나이트(20)을 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared in the same manner as in Example 1, except that the Fe-mordenite (20) prepared above was used as a support instead of ZSM- 5 ( 25 ) , a crystalline zeolite prepared without a template material .

실시예 6Example 6

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 베타 제올라이트(13)를 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared in the same manner as in Example 1, except that beta zeolite (13) was used as a support instead of ZSM - 5 ( 25 ) , which is a crystalline zeolite prepared without a template material.

실시예 7Example 7

실시예 1의 촉매 제조 단계에서, 주형물질없이 제조된 결정성 제올라이트로서 ZSM-5(25) 대신에 천연 제올라이트(2.5)를 사용하여 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Zeolite/V2O5WO3/TiO2 탈질촉매를 제조하였다. In the catalyst preparation step of Example 1, a Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalyst was prepared in the same manner as in Example 1, except that natural zeolite (2.5) was used as a support instead of ZSM- 5 ( 25 ) , a crystalline zeolite prepared without a template material.

비교예 1Comparative Example 1

실시예 1에서, 주형물질없이 제조된 결정성 제올라이트인 ZSM-5(25)를 담지하지 않은 것을 제외하고는, 실시예 1과 동일하게 실시하여 분말 상태의 V2O5WO3/TiO2 탈질촉매를 제조하였다.In Example 1, a powdered V 2 O 5 WO 3 /TiO 2 denitrification catalyst was manufactured in the same manner as in Example 1, except that ZSM-5 (25), a crystalline zeolite manufactured without a template material, was not supported.

본 비교예에서 제조된탈질촉매의 칼륨 피독 전후에 따른 탈질촉매의 탈질효율을 비교한 그래프를 도 5에 나타내었다.A graph comparing the denitrification efficiency of the denitrification catalyst manufactured in this comparative example before and after potassium poisoning is shown in Figure 5.

비교예 2Comparative Example 2

실시예 1에서, 10중량%의 ZSM-5(25) 대신에 3중량%의 ZrO2를 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 다공판상체 MgO가 담지된 ZrO2/V2O5WO3/TiO2 탈질촉매를 제조하였다. In Example 1, a ZrO 2 /V 2 O 5 WO 3 /TiO 2 denitration catalyst loaded with porous plate-like MgO was manufactured in the same manner as in Example 1, except that 3 wt% of ZrO 2 was loaded instead of 10 wt % of ZSM- 5 (25).

비교예 3Comparative Example 3

실시예 1에서, 10중량%의 ZSM-5(25) 대신에 3중량%의 Al2O3를 담지한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Al2O3/V2O5WO3/TiO2 탈질촉매를 제조하였다. In Example 1, an Al 2 O 3 /V 2 O 5 WO 3 /TiO 2 denitration catalyst was manufactured in the same manner as in Example 1, except that 3 wt% of Al 2 O 3 was supported instead of 10 wt% of ZSM-5 (25).

[특성평가] [Characteristic evaluation]

1. 탈질촉매의 특성 평가1. Evaluation of the characteristics of the denitrification catalyst

상기 실시예 1 내지 7 및 비교예 1 내지 3에서 제조된 탈질촉매들의 탈질특성을 하기와 같이 평가하였다. The denitrification characteristics of the denitrification catalysts manufactured in Examples 1 to 7 and Comparative Examples 1 to 3 It was evaluated as follows.

밸런스가스로 N2가스를 사용하였고, NOx, NH3가스의 농도를 300ppm으로 고정하고, NOx와 NH3 반응 비율은 1:1로 하였다. 반응 가스 내 산소 농도는 5vol%로 주입하였고, 반응기내 가스 유량은 300cc/min로 유지하였다. NOx를 제거하기 위한 촉매고정층은 공간속도 60,000(hr-1)로 유지하였고, 공간속도에 맞게 촉매량을 조절하여 세라믹울을 사용하여 파우더 고정층을 형성하였다. 평가방법은 반응기상에 촉매를 장착한 후 N2, O2, NO, NH3 가스를 흘려주어 예상되는 농도가 일정해질 때까지 안정화하고. NOx 제거 효율은 25℃에서 500℃까지 5℃/min의 승온속도로 NOx 농도 변화를 관찰하였다. N2 gas was used as a balance gas, the concentrations of NOx and NH3 gases were fixed at 300 ppm, and the reaction ratio of NOx and NH3 was 1:1. The oxygen concentration in the reaction gas was injected at 5 vol%, and the gas flow rate in the reactor was maintained at 300 cc/min. The catalyst fixed layer for removing NOx was maintained at a space velocity of 60,000 (hr -1 ), and a powder fixed layer was formed using ceramic wool by adjusting the catalyst amount according to the space velocity. The evaluation method was to install the catalyst on the reactor, and then flow N2 , O2 , NO, and NH3 gases to stabilize until the expected concentration became constant. The NOx removal efficiency was observed by observing the change in NOx concentration at a heating rate of 5°C/min from 25°C to 500°C.

실시예 및 비교예에 따른 탈질촉매들의 탈질특성의 평가 결과를 하기 표 1에 나타내었다. The results of evaluating the denitrification characteristics of denitrification catalysts according to examples and comparative examples are shown in Table 1 below.

주): 1) 탈질전환율: 380℃에서의 탈질 효율을 의미함. Note): 1) Denitrification conversion rate: Refers to the denitrification efficiency at 380℃.

2) K1%, K2%: 촉매를 각각 칼륨(K) 1중량% 및 2중량%로 피독시켜, 25∼500℃까지 탈질 효율을 측정한 결과, 380℃에서의 탈질 효율을 의미함.2) K1%, K2%: The catalyst was poisoned with 1 wt% and 2 wt% of potassium (K), respectively, and the denitrification efficiency was measured from 25 to 500°C. This refers to the denitrification efficiency at 380°C.

상기 표 1에 나타난 바와 같이, 본 발명에 따른 실시예들에서 제조된 주형물질없이 제조된 결정성 제올라이트가 담지된 Zeolite/V2O5WO3/TiO2 탈질촉매는 비교예들에서 제조된 탈질촉매에 비하여, 탈질전환율이 높은 것을 알 수 있다. 또한, 본 발명에 따른 실시예들에서 제조된 주형물질없이 제조된 결정성 제올라이트가 담지된 Zeolite/V2O5WO3/TiO2 탈질촉매는 칼륨을 피독한 경우에 비교예들에 비해 탈질전환율이 현저히 높은 것을 확인할 수 있다.As shown in Table 1 above, it can be seen that the Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalysts supported on a crystalline zeolite manufactured without a template material in the examples according to the present invention have a higher denitrification conversion rate than the denitrification catalysts manufactured in the comparative examples. In addition, it can be seen that the Zeolite/V 2 O 5 WO 3 /TiO 2 denitrification catalysts supported on a crystalline zeolite manufactured without a template material in the examples according to the present invention have a significantly higher denitrification conversion rate than the comparative examples when potassium is poisoned.

상기의 결과로 확인된 바와 같이, 본 발명에 따른 탈질촉매는 내알칼리성 탈질촉매로서, 바이오매스 화력발전소에서 운영되는 NH3-SCR 탈질 공정에 있어 알칼리 금속에 의한 피독 내성이 우수함으로써 촉매활성점을 더 오래 유지할 수 있어 경제성을 향상시킬 수 있다.As confirmed by the above results, the denitrification catalyst according to the present invention is an alkaline-resistant denitrification catalyst, and thus has excellent resistance to poisoning by alkali metals in the NH 3 -SCR denitrification process operated in a biomass thermal power plant, thereby enabling the catalytic activity site to be maintained for a longer period of time, thereby improving economic efficiency.

Claims (14)

티타니아계 담체와, 상기 티타니아계 담체에 담지된 결정성 제올라이트 및 활성금속화합물을 포함하는 탈질촉매로서, 상기 결정성 제올라이트는 모더나이트, 베타제올라이트 및 천연제올라이트로부터 선택되고, 상기 활성금속화합물은 텅스텐산화물 및 바나듐산화물인 탈질촉매.A denitrification catalyst comprising a titania-based support, a crystalline zeolite supported on the titania-based support, and an active metal compound, wherein the crystalline zeolite is selected from mordenite, beta zeolite, and natural zeolite, and the active metal compound is tungsten oxide and vanadium oxide. 제1항에 있어서, 상기 결정성 제올라이트는 상기 탈질촉매의 전체 중량 대비 1.0~10.0중량%의 함량으로 포함되는 탈질촉매.In the first paragraph, the denitrification catalyst is comprised of the crystalline zeolite in an amount of 1.0 to 10.0 wt% relative to the total weight of the denitrification catalyst. 삭제delete 제1항에 있어서, 상기 티타니아계 담체는 아나타제상 티타니아(TiO2) 담체인 탈질촉매. In the first paragraph, the titania-based support is a denitrification catalyst which is an anatase-phase titania (TiO 2 ) support. 제1항에 있어서, 상기 활성금속화합물은 상기 탈질촉매의 전체 중량 대비 0.1~10.0중량%의 함량으로 포함되는 탈질촉매.In the first paragraph, a denitrification catalyst, wherein the active metal compound is contained in an amount of 0.1 to 10.0 wt% relative to the total weight of the denitrification catalyst. 삭제delete 다음의 단계들을 포함하는, 제1항 또는 제2항 또는 제4항 또는 제5항의 탈질촉매의 제조 방법:
1) 아나타제상 티타니아계 담체를 준비하는 단계;
2) 모더나이트, 베타제올라이트 및 천연제올라이트로부터 선택되는 결정성 제올라이트를 주형물질 없이 제조하는 단계;
3) 상기 1) 단계의 티타니아계 담체에 상기 2) 단계의 주형물질없이 제조된 결정성 제올라이트 및 활성금속화합물로서 텅스텐산화물 및 바나듐산화물을 담지하는 단계;
4) 상기 3) 단계의 결과물을 소성하여, 결정성 제올라이트가 담지된 탈질촉매를 제조하는 단계.
A method for producing a denitrification catalyst according to claim 1 or claim 2 or claim 4 or claim 5, comprising the following steps:
1) Step of preparing an anatase-phase titania carrier;
2) A step of producing a crystalline zeolite selected from mordenite, beta zeolite and natural zeolite without a template material;
3) A step of supporting the crystalline zeolite produced without the template material of step 2) and tungsten oxide and vanadium oxide as active metal compounds on the titania-based support of step 1);
4) A step of producing a denitrification catalyst loaded with crystalline zeolite by calcining the result of step 3).
제7항에 있어서, 상기 1) 단계는 티타늄 전구체 화합물과 증류수를 혼합 후 가수분해한 다음 고액분리, 수세 및 중화하는 것을 포함하는 탈질촉매의 제조 방법.In claim 7, step 1) is a method for producing a denitrification catalyst including mixing a titanium precursor compound and distilled water, hydrolyzing the mixture, and then performing solid-liquid separation, washing, and neutralization. 제8항에 있어서, 상기 티타늄 전구체 화합물은 TiOSO4, TiOCl2, TiCl4, 및 Ti{OCH(CH3)2}4로부터 선택되는 1종 이상인 탈질촉매의 제조 방법.A method for producing a denitrification catalyst in claim 8, wherein the titanium precursor compound is at least one selected from TiOSO 4 , TiOCl 2 , TiCl 4 , and Ti{OCH(CH 3 ) 2 } 4 . 제8항에 있어서, 상기 가수분해는 70~100℃에서 5~48시간 동안 수행되고, 상기 중화는 pH 7~8로 조정함으로써 수행되는 탈질촉매의 제조 방법.A method for producing a denitrification catalyst in claim 8, wherein the hydrolysis is performed at 70 to 100°C for 5 to 48 hours, and the neutralization is performed by adjusting the pH to 7 to 8. 제7항에 있어서, 상기 2) 단계에서 상기 결정성 제올라이트의 제조는 유기 주형물질 없이 실리카 전구체 및 알루미나 전구체를 포함하는 혼합용액에 하이드록실 이온공급원을 혼합한 후 밀링 및 수열합성하여 수행되는 탈질촉매의 제조 방법.In the 7th paragraph, the production of the crystalline zeolite in the step 2) is a method for producing a denitrification catalyst, which is performed by mixing a hydroxyl ion source into a mixed solution containing a silica precursor and an alumina precursor without an organic template material, and then milling and hydrothermal synthesis. 제7항에 있어서, 상기 3) 단계는 상기 티타니아계 담체의 슬러리에 상기 결정성 제올라이트 및 활성금속화합물을 첨가하고, 함침 처리하여 수행되는 탈질촉매의 제조 방법.In the 7th paragraph, the step 3) is a method for producing a denitrification catalyst, which is performed by adding the crystalline zeolite and the active metal compound to the slurry of the titania-based carrier and performing an impregnation treatment. 제12항에 있어서, 상기 함침 처리는 회전감압증류기에서 150~200mmbar, 80~100℃의 조건 하에 수행되는 탈질촉매의 제조 방법.A method for producing a denitrification catalyst in claim 12, wherein the impregnation treatment is performed under conditions of 150 to 200 mmbar and 80 to 100°C in a rotary vacuum distiller. 제7항에 있어서, 상기 4) 단계에서의 소성은 400~600℃에서 1~10시간 수행되는 탈질촉매의 제조 방법.A method for producing a denitrification catalyst in claim 7, wherein the calcination in step 4) is performed at 400 to 600°C for 1 to 10 hours.
KR1020210160551A 2021-11-19 2021-11-19 DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME Active KR102758432B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210160551A KR102758432B1 (en) 2021-11-19 2021-11-19 DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210160551A KR102758432B1 (en) 2021-11-19 2021-11-19 DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME

Publications (2)

Publication Number Publication Date
KR20230073794A KR20230073794A (en) 2023-05-26
KR102758432B1 true KR102758432B1 (en) 2025-01-21

Family

ID=86537427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210160551A Active KR102758432B1 (en) 2021-11-19 2021-11-19 DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME

Country Status (1)

Country Link
KR (1) KR102758432B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030046881A (en) 2001-12-07 2003-06-18 현대중공업 주식회사 Double hull construction of Oil or product carrier
KR100641694B1 (en) * 2005-01-28 2006-11-03 주식회사 나노 Titania manufacturing method for denitrification catalyst extrusion
EP3626329B1 (en) 2007-04-26 2021-10-27 Johnson Matthey Public Limited Company Exhaust system comprising copper/zsm-34 zeolite scr catalyst and method of converting nitrogen oxides
KR100996794B1 (en) 2008-05-15 2010-11-25 테크노세미켐 주식회사 Manufacturing methods of Crystalline zeolite
CN207635695U (en) 2016-08-03 2018-07-20 三菱电机株式会社 Refrigerator
US11549417B2 (en) * 2018-04-23 2023-01-10 Basf Corporation Selective catalytic reduction catalyst for the treatment of an exhaust gas of a diesel engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
강태훈, 물리적으로 혼합한 바나듐-텅스텐 티타니아 및 무기화합물 촉매 상에서 암모니아를 사용한 질소산화물 선택적 촉매 환원, 서울대학교 대학원 화학생물공학부, 공학박사 학위논문 (2021.08.)

Also Published As

Publication number Publication date
KR20230073794A (en) 2023-05-26

Similar Documents

Publication Publication Date Title
Cao et al. Influence of phosphorus on the NH3-SCR performance of CeO2-TiO2 catalyst for NOx removal from co-incineration flue gas of domestic waste and municipal sludge
US20090196813A1 (en) High temperature catalyst and process for selective catalytic reduction of nox in exhaust gases of fossil fuel combustion
GB2149680A (en) Catalysts for the purification of waste gases
CA2545332C (en) Exhaust gas catalyst
CN102658172A (en) SCR denitration catalyst as well as preparation method and application thereof
KR101629483B1 (en) Vanadium-based denitration catalyst and preparing method of the same
CN111530475B (en) Rare earth-based medium-low temperature denitration catalyst powder and preparation method thereof
CN109351358A (en) A kind of transition metal oxide composite catalyst and its preparation method and use
JP2023543697A (en) SCR catalyst composition and SCR catalyst article comprising the catalyst composition
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
GB2562611A (en) A catalyst for treating an exhaust gas, an exhaust system and a method
CN104437535B (en) A kind of environmentally friendly manganese cobalt aluminum composite oxide demercuration denitrating catalyst and preparation method thereof
JP5164821B2 (en) Nitrogen oxide selective catalytic reduction catalyst
CN104324728B (en) Mesoporous composite oxide catalyst for purifying tail gases and preparation method thereof
CN109012703A (en) A kind of new method preparing iron sulphur titanium group high temperature NH3-SCR denitrating catalyst
KR102758432B1 (en) DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME
CN102188979B (en) Smoke denitration catalyst by catalytic oxidation, and preparation method thereof
CN113244908A (en) Vanadium-based SCR catalyst and preparation method and application thereof
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
KR102665354B1 (en) DeNOx CATALYST LOADED WITH POROUS FLAKE MgO AND METHOD FOR PREPARATION OF THE SAME
CN110833827B (en) High nitrogen selectivity vanadium-based oxide catalyst and preparation method thereof
JPH11300213A (en) Denitration catalyst
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
KR102587282B1 (en) Denitrification catalyst supported with nanoplate-shaped vanadium oxide and method for producing the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20211119

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20230713

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20231222

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20240718

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20250117

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20250117

End annual number: 3

Start annual number: 1

PG1601 Publication of registration