[go: up one dir, main page]

KR20120035854A - 그래핀 배선 및 그 제조 방법 - Google Patents

그래핀 배선 및 그 제조 방법 Download PDF

Info

Publication number
KR20120035854A
KR20120035854A KR1020110092988A KR20110092988A KR20120035854A KR 20120035854 A KR20120035854 A KR 20120035854A KR 1020110092988 A KR1020110092988 A KR 1020110092988A KR 20110092988 A KR20110092988 A KR 20110092988A KR 20120035854 A KR20120035854 A KR 20120035854A
Authority
KR
South Korea
Prior art keywords
graphene
wiring
catalyst
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020110092988A
Other languages
English (en)
Inventor
다쯔로 사이또
마꼬또 와다
아끼히로 가지따
Original Assignee
가부시끼가이샤 도시바
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼가이샤 도시바 filed Critical 가부시끼가이샤 도시바
Publication of KR20120035854A publication Critical patent/KR20120035854A/ko
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76844Bottomless liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76847Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned within the main fill metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

일 실시예에 따르면, 그래핀 배선은 제1 절연막, 제1 촉매막, 및 제1 그래핀층을 포함한다. 제1 절연막은 배선 트렌치를 포함한다. 제1 촉매막은 배선 트렌치의 양측면의 제1 절연막 상에 형성된다. 제1 그래핀층은 배선 트렌치의 양측면의 상기 제1 촉매막 상에 형성되고, 상기 양측면에 대하여 수직 방향으로 적층된 그래핀 시트들을 포함한다.

Description

그래핀 배선 및 그 제조 방법{GRAPHENE INTERCONNECTION AND METHOD OF MANUFACTURING THE SAME}
본 명세서에 설명된 실시예들은 일반적으로 그래핀 배선 및 그 제조 방법에 관한 것이다.
최근, 저저항 재료로서 탄소계 재료를 배선에 응용하는 방법이 전 세계적으로 광범위하게 연구되고 있다. 저저항을 가질 것으로 기대되는 전형적인 탄소계 재료는 탄소 나노튜브(carbon nanotube(CNT))이다. CNT는 다양한 나노구조들 간의 차이에 따라 다양한 양자 효과를 달성하고, 절연체, 반도체, 또는 도체로 형성될 수 있다. 특히, CNT가 도체로서 형성되는 경우, 양자 전도(quantum conduction)(밸리스틱 전도(Ballistic conduction))가 기대된다. 이것은, CNT를 기존의 금속 재료(예를 들면, Cu 배선)를 대체하는 초저저항 재료(ultra-low-resistance material)로서 이용가능하게 한다. 또한, CNT는 밸리스틱 길이가 길기 때문에, 장거리 배선의 전기 전도에 유리할 것으로 기대될 수 있다.
안타깝게, CNT를 가로 방향(면내 방향)으로 균일하게 성장시키는 것은 매우 어렵다. 따라서, CNT는 면내 방향에 있어서 배선 재료로서 간단히 이용될 수 없다. 또한, CNT는 구부리기가 어렵다. 이것은, 예를 들면, CNT를 이용해서 배선 굽힘 구조를 형성하는 것을 불가능하게 하여, 패턴의 레이아웃에 큰 제한을 준다.
한편, CNT와 유사한 양자 전도 특성을 갖는 재료로서 그래핀을 배선 재료에 응용하는 방법이 광범위하게 연구되고 있다. 그래핀은 그래파이트를 극도로 얇게 해서 얻은 신규한 탄소 재료이다. 그래서, CNT와 유사하게, 그래핀은 양자 전도로 인해 금속 배선을 대체할 LSI 저저항 배선으로서 이용될 것으로 기대된다. 또한, 그래핀은 매우 긴 밸리스틱 길이를 가지기 때문에, 장거리 배선의 전기 전도에 유리하다. 또한, 그래핀 구조 자체는 매우 얇은 막(단일층의 막)이기 때문에, 이 막은 화학 기상 증착(chemical vapor deposition (CVD))에 의해 증착될 수 있다. 즉, 그래핀은 디바이스들의 가로 배선 형성 처리에 잘 정합한다.
그래핀 배선의 저항은 그래핀 시트당 양자 저항, 및 적층된 그래핀 시트의 매수에 의해 결정된다. 즉, 적층된 그래핀 시트의 매수가 작으면, 저항은 증가하고, 적층된 그래핀 시트의 매수가 크면, 저항은 감소한다. 그러나, 적층된 그래핀 시트의 매수가 너무 커지면, 그래핀 시트들 간의 상호 작용이 증가하고, 캐리어들의 이동도가 저하하고, 저항이 증가한다.
또한, 그래핀 시트들 간의 결합이 그래핀 시트의 면내의 결합과는 다르기 때문에, 그래핀 시트들 간의 전기 전도는 그래핀 시트의 면내의 전기 전도와는 상이할 수 있다. 즉, 그래핀 시트들 간의 전기 전도가 그래핀 시트의 면내의 전기 전도보다 큰 저항을 가질 수 있다.
전술한 바와 같이, 그래핀 배선에 있어서 저항을 더 감소시키는 것이 요구되고 있다.
본 발명의 실시예들은 그래핀 배선의 전기적 특성을 향상시킨다.
일반적으로, 일 실시예에 따르면, 그래핀 배선은 제1 절연막, 제1 촉매막, 및 제1 그래핀층을 포함한다. 제1 절연막은 배선 트렌치를 포함한다. 제1 촉매막은 배선 트렌치의 양측면의 제1 절연막 상에 형성된다. 제1 그래핀층은 배선 트렌치의 양측면의 제1 촉매막 상에 형성되고, 상기 양측면에 대하여 수직 방향으로 적층된 그래핀 시트들을 포함한다.
본 발명의 실시예들은 그래핀 배선의 전기적 특성을 향상시킬 수 있다.
도 1a 및 도 1b는 제1 실시예에 따른 그래핀 배선의 구조를 도시하는 단면도이다.
도 2a 내지 도 6b는 제1 실시예에 따른 그래핀 배선의 제조 단계들을 도시하는 단면도이다.
도 7a 내지 도 8b는 제1 실시예에 따른 그래핀 배선의 변형예에 있어서의 제조 단계들을 도시하는 단면도이다.
도 9는 제2 실시예에 따른 그래핀 배선의 구조를 도시하는 단면도이다.
도 10은 제2 실시예에 따른 그래핀 배선의 제조 단계를 도시하는 단면도이다.
도 11은 제3 실시예에 따른 그래핀 배선의 구조를 도시하는 단면도이다.
도 12는 제3 실시예에 따른 그래핀 배선의 제조 단계를 도시하는 단면도이다.
도 13은 제4 실시예에 따른 그래핀 배선의 구조를 도시하는 단면도이다.
도 14a 및 도 14b는 제4 실시예에 따른 그래핀 배선의 제조 단계를 도시하는 단면도이다.
이하, 첨부 도면을 참조하여 실시예들을 설명한다. 도면에 있어서, 동일한 부분들에는 동일한 참조 번호들을 병기한다.
<제1 실시예>
이하, 도 1a 내지 도 6a, 및 도 6b를 참조하여, 제1 실시예에 따른 그래핀 배선에 관하여 설명한다. 제1 실시예는 배선으로서 복수의 그래핀 시트들을 배선 트렌치의 측면들에 수직 방향으로 적층한 예이다.
[구조]
도 1a는 그래핀 배선의 단면도이고, 도 1b는 도 1a의 파선부의 확대도이다. 도 1b에 있어서 캡막(21)(후술함)은 도시가 생략된다는 것을 유의한다.
도 1a에 도시된 바와 같이, 배선 구조의 예로서, 트랜지스터 또는 캐패시터 등의 반도체 소자(도시 생략)가 형성된 기판(10) 상에 제1 콘택트층(100), 배선층(200), 및 제2 콘택트층(300)이 형성된다.
제1 콘택트층(100)은 기판(10) 상에 형성된다. 제1 콘택트층(100)은 제1 콘택트층 절연막(11) 및 제1 콘택트 플러그(12)를 포함한다.
제1 콘택트층 절연막(11)은, 예를 들면, 테트라에톡시실레인(tetraethoxysilane)(TEOS)을 이용하여 기판(10) 상에 형성된다. 제1 콘택트 플러그(12)는 제1 콘택트층 절연막(11) 내에 형성되어, 기판(10)에 형성된 반도체 소자와 배선층(200)(후술함)을 전기적으로 접속한다. 제1 콘택트 플러그(12)의 도전 재료는, 예를 들면, W, Cu 또는 Al 등과 같은 금속이다.
또한, 제1 콘택트 플러그(12)의 도전 재료 금속의 확산을 방지하기 위해, 제1 콘택트 플러그(12)와 제1 콘택트층 절연막(11)과 기판(10) 사이에 배리어 메탈(도시 생략)이 형성될 수 있다. 배리어 메탈은, 예를 들면, Ta, Ti, Ru, Mn, 또는 Co, 또는 이 금속들 중 임의의 것의 질화물이다. 또한, 스토퍼막(도시 생략)이, 예를 들면, 배선층 절연막(13)에 대하여 가공 선택비의 높은 SiCN 등과 같은 재료를 이용하여, 콘택트층(100) 상에 형성된다. 배선층 절연막(13)(후술함)과 제1 콘택트층 절연막(11) 간의 가공 선택비가 충분하게 높을 경우, 스토퍼막은 형성될 필요가 없다는 것을 유의한다.
배선층(200)은 제1 콘택트층(100) 상에 형성된다. 배선층(200)은 배선층 절연막(13) 및 배선(20)을 포함한다.
배선층 절연막(13)은, 예를 들면, SiOC를 이용하여 제1 콘택트층(100) 상에 형성된다. 제1 콘택트 플러그들(12)의 부분들이 개방되도록, 복수의 배선 트렌치(30)가 배선층 절연막(13)에 형성된다. 또한, 배선층 절연막(13)은 유전율을 감소시키기 위해 포어들(pores)(미소한 공동들)을 포함하는 막일 수 있다.
배선(20)은 배선층 절연막(13)에 형성된 각각의 배선 트렌치(30)를 따라 형성된다. 배선(20)에 대한 상세한 내용은 후술한다.
보호막으로서 캡막(21)이 배선층 절연막(13) 상에 형성된다. 캡막(21)은 예를 들면, SiN이나 SiCN이고, 제2 콘택트 플러그(23)(후술함)가 형성될 영역들에 홀들을 갖는다. 캡막(21)은 배선층(200)을 형성하는 재료의 외부에의 확산을 방지하고, 배선층(200)을 형성하는 재료의 산화를 방지한다. 그러나, 그래핀층(후술함) 자체가 안정한 재료이며 산화 내성도 높기 때문에, 캡막(21)을 항상 형성할 필요는 없다. 또한, 캡막(21)은 제2 콘택트층(300)의 에칭 가공을 위한 제어층으로서도 기능할 수 있다.
제2 콘택트층(300)은 배선층(200) 상에 형성된다. 제2 콘택트층(300)은 제1 콘택트층(100)과 동일한 구조를 갖고, 제2 콘택트층 절연막(22) 및 제2 콘택트 플러그(23)를 포함한다.
제2 콘택트층 절연막(22)은, 예를 들면, TEOS를 이용하여, 배선층(200) 상의 캡막(21) 상에 형성된다. 제2 콘택트 플러그(23)는 제2 콘택트층 절연막(22)에 형성되어, 배선층(200)과, 제2 콘택트층(300) 상에 형성되는 배선층(도시 생략)을 전기적으로 접속한다.
이하, 본 실시예에 따른 배선(20)에 관하여 설명한다. 본 실시예에 따른 배선(20)은 각각의 배선 트렌치(30)에 형성되고, 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)을 포함한다. 도 1a에 있어서, 배선(20)은 도면에 수직한 방향으로 연장되고, 그 방향으로 전류가 흐른다는 것을 유의한다.
제1 촉매 하부막(14)은 각각의 배선 트렌치(30)의 양측면에 형성된다. 더 구체적으로, 제1 촉매 하부막(14)은 각각의 배선 트렌치(30)의 양측면의 배선층 절연막(13) 상에 형성된다. 또한, 각각의 제1 촉매 하부막(14)의 단부(도 1a에 있어서의 하부)는, 배선 트렌치(30)의 저면으로서의 제1 콘택트 플러그(12)와 접촉될 수 있다. 제1 촉매 하부막(14)은 양측면의 배선층 절연막(13) 위에만 형성된다. 또한, 각각의 제1 촉매 하부막(14)은 제1 그래핀층(16)(후술함)의 형성을 용이하게 하기 위한 보조막으로서 기능한다. 또한, 제1 촉매 하부막(14)은 배선층 절연막(13)에의 제1 촉매막(15)(후술함)의 확산을 방지한다. 즉, 제1 촉매 하부막(14)은 보조 촉매 작용 및 확산 장벽 특성을 갖는 막이다.
제1 촉매 하부막(14)은, 예를 들면, TaN, TiN, RuN, WN, Ta, Ti, Ru, 또는 W 를 포함하는 막, 또는 이 재료들 중 임의의 것의 산화물의 막이다. 제1 촉매 하부막(14)으로서, 이 재료들의 막들을 적층하는 것도 가능하다. 특히, 제1 그래핀층(16)의 균일한 성장을 촉진하기 위해서, 제1 촉매 하부막(14)은 TaN막과 TiN막으로 된 다층막인 것이 바람직하다. 제1 촉매 하부막(14)은 막 두께가, 예를 들면, 1nm 정도이며, 제1 그래핀층(16)을 균일하게 성장시키기 위해서 연속적인 막인 것이 바람직하다. 또한, 양측면의 제1 촉매 하부막(14)의 막 두께는 같은 것이 바람직하다. 제1 그래핀층(16)의 형성을 용이하게 하기 위해서 제1 촉매 하부막(14)을 성막하는 것이 바람직하지만, 제1 그래핀층(16)이 제1 촉매 하부막(14) 없이 성장될 수 있기 때문에, 항상 성막할 필요는 없다.
제1 촉매막(15)은 제1 촉매 하부막(14)과 마찬가지로 각각의 배선 트렌치(30)의 양측면에 형성된다. 더 구체적으로, 제1 촉매막(15)은 각각의 배선 트렌치(30)의 양측면의 제1 촉매 하부막(14) 상에 형성된다. 또한, 각각의 제1 촉매막(15)의 단부(도 1a에 있어서의 하부)는, 배선 트렌치(30)의 저면으로서의 제1 콘택트 플러그(12)와 접촉될 수 있다. 제1 촉매막(15)은 제1 그래핀층(16)을 성장시키기 위한 주 촉매이다.
제1 촉매막(15)은, 예를 들면, Co, Ni, Fe, Ru, 또는 Cu 등의 금속을 포함하는 막, 또는 이 금속들 중 적어도 하나를 포함하는 합금의 막, 또는 이 금속들 중 임의의 것의, 예를 들면, 탄화물 등의 막인 것이 바람직하다. 제1 촉매막(15)이 미립자들(불연속적인 막)로 분산되면, 제1 그래핀층(16)이 잘 성장할 수 없거나, 또는 불연속적으로 형성될 수 있다. 그 때문에, 제1 촉매막(15)은 연속적인 막인 것이 바람직하다. 이를 위해, 제1 촉매막(15)의 막 두께는 적어도 0.5nm이어야 하고, 예를 들면, 1nm 정도이다.
제1 그래핀층(16)은, 각각의 배선 트렌치(30)의 양측면의 제1 촉매막(15) 상에 형성된다. 각각의 제1 그래핀층(16)은, 도면에 수직인 방향으로 연속적으로 형성되어, 전자의 수송 경로(전류 경로)가 그 방향을 따라 형성된다. 또한, 제1 그래핀층(16)은, 후술하는 바와 같이, 제1 촉매막(15)을 촉매로서 이용하여 성장하는 100매 정도까지의 그래핀 시트를 포함하고, 양자 전도 특성을 갖는다. 그래핀은 그래파이트의 단층 막이며, 탄소 원자들이 육각형 격자 형태로 배열된 구조를 갖는다. 하기의 설명에 있어서, 그래파이트의 단층 막인 그래핀을 그래핀 시트라고 칭한다. 배선(20)은 도 1a의 지면에 수직한 방향으로 연장된다.
그래핀 시트 내에서의 전자의 평균 자유 행로는 100nm 내지 1㎛ 정도이며, 현재 많은 LSI 디바이스에서 이용되고 있는 저저항 금속인 Cu 내에서의 전자의 평균 자유 행로(40nm 정도)보다 훨씬 길다. 따라서, 그래핀 시트를 저저항 재료로서 배선(20)의 도전층에 사용할 수 있다.
도 1b에 도시된 바와 같이, 제1 그래핀층(16)은, 배선 트렌치(30)의 측면의 제1 촉매막(15) 상에, 측면에 대해 수직 방향으로 적층된 복수의 그래핀 시트(16a 내지 16e)를 포함한다. 즉, 복수의 그래핀 시트(16a 내지 16e)의 표면들은 배선 트렌치(30)의 측면에 대하여 평행하고, 저면에 대하여 수직하게 형성된다. 그러므로, 복수의 그래핀 시트(16a 내지 16e)의 표면들의 하단부들이 제1 콘택트 플러그(12)에 직접 접속되고, 상단부들이 제2 콘택트 플러그(23)에 직접 접속된다. 이에 따라, 제1 콘택트 플러그(12)와 접촉하는 하단부를 갖는 모든 그래핀 시트가 전기 전도에 관여할 수 있다. 제1 그래핀층(16)이 10매의 그래핀 시트를 포함할 경우, 제1 그래핀층(16)의 막 두께는 3.4nm 정도라는 것을 유의한다.
제2 촉매 하부막(17)은 각각의 배선 트렌치(30)의 양측면에 형성된다. 더 구체적으로, 제2 촉매 하부막(17)은 각각의 배선 트렌치(30)의 양측면의 제1 그래핀층(16) 상에 형성된다. 각각의 제2 촉매 하부막(17)의 단부(도 1a에 있어서의 하부)는 배선 트렌치(30)의 저면으로서의 제1 콘택트 플러그(12)에 접촉될 수 있다. 제2 촉매 하부막(17)은 제2 그래핀층(19)(후술함)의 형성을 용이하게 하기 위한 보조막으로서 기능한다.
제2 촉매 하부막(17)은, 제1 촉매 하부막(14)과 동일한 특성 및 구조를 갖는다. 즉, 제2 촉매 하부막(17)은, 예를 들면, TaN, TiN, RuN, WN, Ta, Ti, Ru, 또는 W를 포함하는 막, 또는 이 재료들 중 임의의 것의 산화물의 막이다. 또한, 제2 촉매 하부막(17)으로서, 이 재료들의 막들을 적층하는 것도 가능하다. 특히, 제2 그래핀층(19)의 균일한 성장을 촉진하기 위해서, 제2 촉매 하부막(17)은 TaN막과 TiN막의 다층막인 것이 바람직하다. 제2 촉매 하부막(17)은 막 두께가, 예를 들면, 1nm 정도이며, 제2 그래핀층(19)을 균일하게 성장시키기 위해서 연속적인 막인 것이 바람직하다. 제2 촉매 하부막(17)은 제2 그래핀층(19)의 형성을 용이하게 하기 위해서 성막하는 것이 바람직하지만, 제2 그래핀층(19)이 제2 촉매 하부막(17) 없이도 성장될 수 있기 때문에, 항상 성막할 필요는 없다는 것을 유의한다.
제2 촉매막(18)은 각각의 배선 트렌치(30)의 양측면에 형성된다. 더 구체적으로, 제2 촉매막(18)은, 제2 촉매 하부막(17)과 마찬가지로, 각각의 배선 트렌치(30)의 양측면의 제2 촉매 하부막(17) 상에 형성된다. 또한, 각각의 제2 촉매막(18)의 단부(도 1a에 있어서의 하부)는, 배선 트렌치(30)의 저면으로서의 제1 콘택트 플러그(12)에 접촉될 수 있다. 제2 촉매막(18)은 제2 그래핀층(19)을 성장시키기 위한 주 촉매이다.
제2 촉매막(18)은 제1 촉매막(15)과 동일한 특성 및 구조를 갖는다. 즉, 제2 촉매막(18)은, 예를 들면, Co, Ni, Fe, Ru, 또는 Cu 등의 금속의 막, 또는 이 금속들 중 적어도 하나를 포함하는 합금의 막, 또는 이 금속들 중 임의의 것의, 예를 들면, 탄화물의 막인 것이 바람직하다. 제2 촉매막(18)이 미립자들(불연속적인 막)로 분산되면, 제2 그래핀층(19)이 잘 성장할 수 없거나, 또는 불연속적으로 형성될 수 있다. 이 때문에, 제2 촉매막(18)은 연속적인 막인 것이 바람직하다. 이를 위해, 제2 촉매막(18)의 막 두께는 적어도 0.5nm이어야 하고, 예를 들면, 1nm 정도이다.
제2 그래핀층(19)은 각각의 배선 트렌치(30)의 양측면의 제2 촉매막(18) 상에 형성된다. 제2 그래핀층(19)은 제1 그래핀층(16)과 동일한 특성 및 구조를 갖는다. 즉, 제2 그래핀층(19)은 도면에 수직인 방향으로 연속적으로 형성되고, 전자의 수송 경로는 이 방향을 따라 형성된다. 또한, 제2 그래핀층(19)은 제2 촉매막(18)을 촉매로서 이용하여 성장하는 100매 정도까지의 그래핀 시트를 포함하고, 양자 전도 특성을 갖는다.
제2 그래핀층(19)은 배선 트렌치(30)의 중앙부에 형성된다. 즉, 제2 그래핀층(19)은, 양측면의 제2 촉매막(18)으로부터 그래핀 시트들이 성장해서 배선 트렌치(30)를 충전하고, 중앙부에서 일체화되는 구조를 갖는다. 더 구체적으로, 제2 그래핀층(19)은, 각각의 측면의 제2 촉매막(18)으로부터 적층된, 예를 들면, 5매 정도씩의 그래핀 시트를 포함하며, 즉, 총 10매 정도 적층된 그래핀 시트를 포함한다.
도 1a는 배선(20)이 3개의 그래핀층(2개의 제1 그래핀층(16) 및 1개의 제2 그래핀층(19))을 포함하는 구조를 도시하지만, 배선(20)이 4개 이상의 그래핀층을 포함할 수 있다는 것을 유의한다. 또한, 도 1a의 파선 부분에 의해 나타낸 바와 같이, 배선 트렌치(30)의 중앙부가 그래핀층으로 충전될 필요는 없고, 나중에 형성되는 캡막(21) 또는 제2 콘택트층 절연막(22)으로 충전될 수 있다는 것을 유의한다.
또한, 도 1a는 1개의 배선층을 포함하는 구조를 도시하지만, 2개 이상의 배선층이 형성될 수 있다. 즉, 복수의 그래핀층을 포함하는 배선층(200)과 마찬가지의 배선층이 제2 콘택트층(300) 상에 형성될 수 있다.
[제조 방법]
도 2a 내지 도 6b는 제1 실시예에 따른 그래핀 배선의 제조 단계들의 단면도이다.
우선, 도 2a에 도시된 바와 같이, 반도체 소자(도시 생략)가 형성된 기판(10) 상에 제1 콘택트층(100)이 형성된다. 더 구체적으로, 기판(10) 상에, 예를 들면, 화학 기상 증착(CVD)에 의해 제1 콘택트층 절연막(11)이 형성되고, 제1 콘택트층 절연막(11)에, 예를 들면, 리소그래피(lithography)에 의해 컨택트 홀들(도시 생략)이 형성된다. 이 컨택트 홀들 내에, 예를 들면, CVD에 의해 제1 콘택트 플러그(12)가 매립된다. 이 단계에서, 제1 콘택트 플러그(12)의 도전 재료인 금속의 확산을 방지하기 위해, 각각의 컨택트 홀의 표면에 배리어 메탈(도시 생략)이 형성될 수 있다.
그 다음에, 제1 콘택트층(100) 상에, 예를 들면, CVD에 의해 스토퍼막(도시 생략)이 형성된다. 이 스토퍼막은, 배선층 절연막(13)의 반응성 이온 에칭(reactive ion etching(RIE))에 의한 가공의 깊이를 균일하게 한다. 또한, 배선층 절연막(13)과 제1 콘택트층(100) 간의 가공 선택비가 충분히 높을 경우, 스토퍼막이 없이도, 배선층 절연막(13)의 가공의 깊이를 충분하게 제어할 수 있다는 것을 유의한다.
이어서, 도 2b에 도시된 바와 같이, 제1 콘택트층(100) 상에, 예를 들면, CVD에 의해 배선층 절연막(13)이 형성된다. 배선층 절연막(13) 상에, RIE 단계 및 화학적 기계적 연마(chemical mechanical polishing(CMP)) 단계에 있어서의 손상에 대한 보호막으로서 기능하는 캡막(도시 생략)이 형성될 수 있다. 배선층 절연막(13)이 RIE에 의한 손상에 강한 내성이 있는 막, 예를 들면, TEOS, 또는 포어들(미세한 공동들)을 포함하지 않는 SiOC 중 하나로 구성될 경우, 캡막은 형성될 필요가 없다.
도 3a에 도시된 바와 같이, 배선층 절연막(13)은 레지스트(도시 생략)로 도포되어, 리소그래피 단계가 행해진다. 그 후, 배선층 절연막(13)에 RIE에 의해 배선 트렌치들(30)이 형성됨으로써, 싱글-다마신 배선 구조(single-damascene interconnection structure)가 형성된다.
도 3b에 도시된 바와 같이, 예를 들면, CVD 또는 물리적 기상 증착(physical vapor deposition(PVD))에 의해 전체 표면 상에 제1 촉매 하부막(14)이 형성된다. 즉, 제1 촉매 하부막(14)은 각각의 배선 트렌치(30)의 저면으로서의 제1 콘택트층(100) 상에, 각각의 배선 트렌치(30)의 양측면의 배선층 절연막(13) 상에, 그리고 배선 트렌치(30) 밖의 상면(배선 트렌치(30) 이외의 평탄부)의 배선층 절연막(13) 상에 형성된다. 제1 촉매 하부막(14)은 항상 형성될 필요는 없다는 것을 유의한다.
도 4a에 도시된 바와 같이, 병진성(이방성)이 높은 RIE에 의해 에치 백(etch back)이 행해진다. 이에 따라, 각각의 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면 상의 제1 촉매 하부막(14)이 에치 백된다. 즉, 제1 촉매 하부막(14)은 각각의 배선 트렌치(30)의 양측면에만 잔존하고, 각각의 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면으로부터 제거된다.
도 4b에 도시된 바와 같이, 예를 들면, CVD, PVD, 또는 분사에 의해 전체 표면에 제1 촉매막(15)이 형성된다. 즉, 제1 촉매막(15)은 각각의 배선 트렌치(30)의 저면으로서의 제1 콘택트층(100) 상에, 각각의 배선 트렌치(30)의 측면의 제1 촉매 하부막(14) 상에, 그리고 배선 트렌치(30) 밖의 상면의 배선층 절연막(13) 상에 형성된다. 제1 촉매막(15)은 연속적인 막으로서 형성되는 것이 바람직하다.
도 5a에 도시된 바와 같이, 병진성(이방성)이 높은 RIE에 의해 에치 백이 행해진다. 이에 따라, 각각의 배선 트렌치(30)의 저면, 및 배선 트렌치(30) 밖의 상면 상의 제1 촉매막(15)이 에치 백된다. 즉, 제1 촉매막(15)은 각각의 배선 트렌치(30)의 양측면에만 잔존하고, 각각의 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면으로부터 제거된다.
제1 촉매 하부막(14) 및 제1 촉매막(15)을 형성한 후, 병진성(이방성)이 높은 RIE에 의해 에치 백이 행해질 수 있어서, 이에 의해 각각의 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면으로부터 제1 촉매 하부막(14) 및 제1 촉매막(15)을 동시에 제거할 수 있다는 것을 유의한다.
도 5b에 도시된 바와 같이, 각각의 배선 트렌치(30)의 양측면의 제1 촉매막(15) 상에 100매 정도까지의 그래핀 시트를 각각 포함하는 제1 그래핀층(16)이 형성된다. 제1 촉매막(15)이 각각의 배선 트렌치(30)의 양측면에만 형성되기 때문에, 제1 그래핀층(16)은 배선 트렌치(30)의 양측면으로부터 수직 방향으로 성장한다. 즉, 제1 그래핀층(16)은 각각, 양측면으로부터 수직 방향으로 적층된 복수(100매 정도까지)의 그래핀 시트를 포함하고, 이 그래핀 시트들의 표면들은 배선 트렌치(30)의 측면에 대하여 평행하고, 저면에 대하여 수직하다. 또한, 복수의 그래핀 시트의 표면들의 하단부들은 제1 콘택트 플러그(12)에 직접 접속된다.
제1 그래핀층(16)은, 예를 들면, CVD에 의해 형성된다. CVD의 탄소원으로서, 메탄 또는 아세틸렌 등의 탄화 수소계 가스 또는 이 가스들을 포함하는 혼합 가스를 이용하고, 캐리어 가스로서 수소나 희 가스(rare gas)를 이용한다.
이 성분 가스들을 이용하여 동일한 조건에서 CVD에 의해 그래핀 시트들을 성장시킬 수 있고, 다단계 처리에 의해 성장시킬 수도 있다. 이하, 다단계 처리에 의한 그래핀 시트들의 성장에 관하여 설명한다.
우선, 제1 그래핀층(16)을 형성하기 전에, 제1 촉매막(15)의 미립자로의 응집을 억제하기 위해서, 제1 촉매막(15)에 대하여 플라스마 처리가 행해진다. 이렇게 하여, 제1 촉매막(15)의 미립자 형성을 방지하고, 제1 촉매막(15) 표면의 연속성을 유지함으로써, 제1 그래핀층(16)의 균일한 성장을 촉진시킬 수 있다. 방전 가스로서 수소 또는 희 가스를 이용하는 것이 바람직하지만, 수소와 희 가스 중 어느 하나 또는 둘 다를 포함한 혼합 가스를 이용하는 것도 가능하다. 효과를 증대시키기 위해 처리 온도는 가능한 한 저온인 것이 바람직하고, 실온인 것이 바람직하다. 플라즈마는 비교적 강한 것이 바람직하고, 높은 파워의 리모트 플라즈마나 플라즈마에 노출시키는 것이 더 효과를 증대시킨다.
그 다음에, 제1 촉매막(15)은, 방전 가스로서 메탄 등의 탄화 수소계 가스, 또는 탄화 수소를 포함하는 혼합 가스를 이용하여, 탄화된다. 처리 온도는, 최종 단계(후술함)의 그래핀 시트들의 형성 온도보다 낮은 온도이어야 하고, 또한, 그래핀 시트들이 형성될 수 있는 온도이어야 한다. 처리 온도는, 예를 들면, 150 내지 600℃ 정도인 것이 바람직하다. 또한, 처리 시간은 짧아도 된다. 이 처리도 비교적 강한 플라즈마를 이용하여 행해지는 것이 바람직하다.
이어서, 탄화층 양질화 및 촉매 활성화를 위해, 제1 촉매막(15)에 대하여 플라스마 처리가 행해진다. 방전 가스로서 희 가스를 이용하는 것이 바람직하다. 처리 온도는, 이전 단계의 처리 온도와 다음 단계의 처리 온도 사이의 중간 온도일 수 있지만, 이것으로 제한되지 않는다. 이 처리에는 비교적 약한 플라즈마가 이용될 수 있기 때문에, 리모트 플라즈마를 이용하여 이 처리가 행해지는 것이 바람직하다.
최후에, 방전 가스로서 탄화 수소계 가스 또는 탄화 수소의 혼합 가스를 이용하여, 그래핀 시트들이 형성된다. 처리 온도의 상한은 1,000℃ 정도이고, 그 하한은 200℃ 정도이다. 처리 온도가 200℃ 미만이면, 필요한 성장 속도를 얻을 수 없고, 그래핀 시트의 성장이 거의 일어나지 않는다. 온도가 200℃ 이상에서, 그래핀 시트의 성장이 일어나고, 균일한 제1 그래핀층(16)이 형성된다. 이를 위해, 처리 온도는 특히 350℃ 정도인 것이 바람직하다. 전술한 그래핀 시트의 형성의 처리 온도는, 일반적인 LSI 디바이스에 있어서의 배선 형성 단계의 온도와 같거나 또는 그 이하이다. 따라서, 전술한 그래핀 시트의 형성은, 반도체 프로세스와의 친화성이 높다.
이 처리에서는, 이온 및 전자를 제거하고, 래디컬(radicals)만을 기판에 공급하는 것이 중요하다. 따라서, 대단히 약한 리모트 플라즈마를 이용하는 것이 바람직하다. 또한, 이온 및 전자를 제거하기 위해서, 기판에 전극을 제공하여 전압을 인가하는 것도 효과적이다. 이 인가 전압은 0 내지 ±100V 정도인 것이 바람직하다.
전술한 다단계 처리에 의해 행해지는 그래핀 시트의 형성 단계는, 동일한 조건에서 CVD에 의해 행해지는 그래핀 시트의 형성 단계에 비해, 형성 온도의 저온화 및 고품질(균일한 성장)을 실현할 수 있다. 처리 온도의 상한은 LSI 디바이스에 따라 다르지만, 가능한 한 저온인 것이 바람직하다. 즉, 그래핀 시트의 형성 온도의 저온화에 의해, LSI 디바이스 전체의 특성이 향상될 수 있다. 또한, 그래핀 시트의 고품질(균일한 성장)에 의해 전기 전도가 용이해지고, 저저항 배선을 실현할 수 있다.
그 다음에, 도 6a에 도시된 바와 같이, 도 3b 내지 도 5b에 도시된 단계들이 반복된다.
더 구체적으로, 우선, 예를 들면, CVD 또는 PVD에 의해 전체 표면에 제2 촉매 하부막(17)이 형성된다. 즉, 제2 촉매 하부막(17)은 각각의 배선 트렌치(30)의 저면으로서의 제1 콘택트층(100) 상에, 각각의 배선 트렌치(30)의 양측면의 제1 그래핀층(16) 상에, 그리고 배선 트렌치(30) 밖의 상면에 형성된다. 그 후, 병진성(이방성)이 높은 RIE에 의해 에치 백이 행해진다. 이에 따라, 각각의 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면의 제2 촉매 하부막(17)이 에치 백된다. 즉, 제2 촉매 하부막(17)은 각각의 배선 트렌치(30)의 양측면에만 잔존하고, 각각의 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면으로부터 제거된다.
그 다음에, 예를 들면, CVD, PVD, 또는 분사에 의해 전체 표면에 제2 촉매막(18)이 형성된다. 즉, 제2 촉매막(18)은 각각의 배선 트렌치(30)의 저면으로서의 제1 콘택트층(100) 상에, 각각의 배선 트렌치(30)의 양측면의 제2 촉매 하부막(17) 상에, 그리고 배선 트렌치(30) 밖의 상면에 형성된다. 그 후, 병진성(이방성)이 높은 RIE에 의해 에치 백이 행해진다. 이에 따라, 각각의 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면의 제2 촉매막(18)이 에치 백된다. 즉, 제2 촉매막(18)은 각각의 배선 트렌치(30)의 양측면에만 잔존하고, 각각의 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면으로부터 제거된다.
이어서, 각각의 배선 트렌치(30)의 양측면의 제2 촉매막(18) 상에 100매 정도까지의 그래핀 시트를 포함하는 제2 그래핀층(19)이 형성된다. 제2 그래핀층(19)은 제1 그래핀층(16)과 마찬가지의 방법에 의해 형성된다. 제2 촉매막(18)이 각각의 배선 트렌치(30)의 양측면에만 형성되기 때문에, 제2 그래핀층(19)은 배선 트렌치(30)의 양측면으로부터 수직 방향으로 성장한다. 즉, 제2 그래핀층(19)은 양측면에 수직 방향으로 적층된 복수(100매 정도까지)의 그래핀 시트를 포함하고, 이 그래핀 시트들의 표면들은 배선 트렌치(30)의 측면에 대하여 평행하고, 저면에 대하여 수직하다. 또한, 복수의 그래핀 시트의 표면들의 하단부들이 제1 콘택트 플러그(12)에 직접 접속된다.
제2 그래핀층(19)은, 양측면의 제2 촉매막(18)으로부터 그래핀 시트들이 성장해서 배선 트렌치(30)를 충전하고, 중앙부에서 일체화되는 구조를 갖는다.
이에 따라, 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)을 각각 포함하는 배선들(20)을 포함하는 배선층(200)이 형성된다.
그 다음에, 도 6b에 도시된 바와 같이, 배선층(200)을 형성하는 재료의 외부로의 확산을 방지하고, 배선층(200)을 형성하는 재료의 산화를 방지하기 위한 캡막(21)이 배선층 상에 형성된다. 또한, 캡막(21)은 제2 콘택트층(300)의 에칭 가공을 위한 제어층으로서도 기능한다. 캡막(21)은 항상 형성될 필요는 없다는 것을 유의한다.
이어서, 도 1a에 도시된 바와 같이, 배선층(200) 상에 제2 콘택트층(300)이 형성된다. 더 구체적으로, 배선층(200) 상에, 예를 들면, CVD에 의해 제2 콘택트층 절연막(22)이 형성되고, 제2 콘택트층 절연막(22)에, 예를 들면, 리소그래피에 의해 컨택트 홀들(도시 생략)이 형성된다. 이 단계에서, 컨택트 홀들이 형성되는 영역들의 캡막(21)에도 홀들이 형성된다. 각각의 컨택트 홀에, 예를 들면, CVD에 의해 제2 콘택트 플러그(23)가 매립된다. 제2 콘택트 플러그(23)의 도전 재료 금속의 확산을 방지하기 위해, 컨택트 홀의 표면에 배리어 메탈(도시 생략)이 형성될 수도 있다.
이에 따라, 본 실시예에 따른 그래핀 배선이 형성된다.
전술한 제1 실시예에 있어서, 배선(20)은 복수의 그래핀층(2개의 제1 그래핀층(16) 및 1개의 제2 그래핀층(19))을 포함하고, 각각의 그래핀층은, 배선 트렌치(30)의 양측면에 수직 방향으로 적층되고, 그 표면들의 단부들이 콘택트 플러그(제1 콘택트 플러그(12) 및 제2 콘택트 플러그(23))에 직접 접속되는 복수의 그래핀 시트를 포함한다. 이에 따라, 표면들의 단부들이 콘택트 플러그들에 직접 접속되는 모든 그래핀 시트들이 전기 전도에 관여할 수 있고, 저저항 배선 구조를 실현할 수 있다.
또한, 각각의 그래핀층은 100매 정도까지의 그래핀 시트를 포함한다. 이것은, 그래핀 시트가 너무 많이 적층될 때 생기는 그래핀 시트들 간의 상호 작용에 의해 유발되는 고저항의 문제를 해결할 수 있게 한다. 즉, 모든 그래핀층들이 양자 전도 특성을 가질 수 있다. 따라서, 양자 전도 특성을 갖는 복수의 그래핀층에 의해 각각의 배선 트렌치(30)를 충전함으로써, 그래핀 시트들 간의 상호 작용에 의해 유발되는 고저항의 문제없이, 전기 전도의 경로들로서 기능하는 그래핀 시트들의 절대 매수(적층된 시트들의 매수)를 늘릴 수 있고, 보다 저저항의 배선 구조를 실현할 수 있다.
[변형예]
이하, 도 7a 내지 도 8b를 참조하여, 제1 실시예에 따른 그래핀 배선의 변형예에 관하여 설명한다.
도 7a 내지 도 8b는 제1 실시예에 따른 그래핀 배선의 변형예에 있어서의 제조 단계들의 단면도이다.
우선, 도 6a에 도시된 단계까지의 제조 단계들이 행해진다. 즉, 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)을 각각 포함하는 배선들(20)을 포함하는 배선층(200)이 형성된다.
도 7a에 도시된 바와 같이, 제1 그래핀층(16) 또는 제2 그래핀층(19)을 형성할 때, 배선 트렌치(30) 밖의 상면의 배선층 절연막(13) 상에 그래핀 부산물(70)이 형성된다. 그래핀 부산물(70)은, 예를 들면, 아모퍼스(amorphous) 카본 등의 탄소계 화합물이다. 이 때문에, 그래핀 부산물(70)은 도전성이 있고, 배선들 간에 있어서의 누설 전류를 유발할 수 있다.
그러나, 도 7b에 도시된 이 변형예에서는, 배선 트렌치(30) 밖의 상면의 배선층 절연막(13) 상에 형성된 그래핀 부산물(70)을 제거한다. 이것은, 그래핀 부산물(70)에 의해 배선들 간에 유발되는 누설 전류를 억제할 수 있게 한다.
그래핀 부산물(70)의 제거는, 예를 들면, CMP 또는 RIE에 의해 행해지고, RIE에 의해 행해지는 것이 보다 바람직하다. 이것은, RIE에 의해 제1 그래핀층(16) 및 제2 그래핀층(19)의 상단부에 손상이 주어질 경우, 제1 그래핀층(16) 및 제2 그래핀층(19)에 다양한 밴드 갭들이 주어지고, 이것은 제2 콘택트 플러그(23)와의 콘택트 마진을 증가시키기 때문이다. 즉, 콘택트 재료로서, 다양한 일 함수(work functions)를 갖는 재료들을 이용할 수 있다.
그래핀 부산물(70)을 완전히 제거할 필요는 없고, 그래핀 부산물(70)을 부분적으로 제거함으로써 배선들 간에 있어서의 그래핀 부산물을 불연속하게 하기만 해도 된다는 것을 유의한다. 또한, 그래핀 부산물이 누설 전류의 원인이 아닐 경우에는, 그래핀 부산물(70)은 제거될 필요가 없다.
또한, 도 8a에 도시된 바와 같이, RIE에 의해 배선층 절연막(13)을 과잉으로 제거하는 것도 가능하다. 이에 따라, 배선층 절연막(13)의 상면으로부터 배선(20)의 상단부가 돌출된다. 즉, 배선층 절연막(13)의 상면이 배선(20)의 상단부보다도 낮아짐으로써, 배선층 절연막(13)과 배선(20) 사이에 리세스(recess)(80)가 형성된다. 리세스(80)는, 배선층 절연막(13) 상에 희생층(도시 생략)을 형성하고, 이 희생층을 제거함으로써 형성될 수도 있다. 이렇게 하여, 배선층 절연막(13)의 상면을 과잉으로 제거함으로써, 그래핀 부산물(70)을 완전하게 제거할 수 있다.
그 후, 도 8b에 도시된 바와 같이, 캡막(21)이 전체 표면에 형성된다. 리세스(80)가 형성되기 때문에, 배선들(20)의 돌출된 상단부들을 덮도록 캡막(21)이 형성된다. 즉, 인접하는 배선들(20)의 상단부들 사이의 영역 A는 동일한 절연막(캡막(21))으로 충전된다.
보통, 배선(20)의 상단부는 배선층 절연막(13)의 상면과 같은 높이로 만들어진다. 즉, 배선(20)의 상단부에는 절연막의 계면(예를 들면, 배선층 절연막(13)과 캡막(21) 간의 계면)이 존재하고, 이 계면을 따라 배선들 간에서 누설 전류가 발생한다. 그러나, 본 실시예에서, 인접하는 배선들(20)의 상단부들 사이의 영역 A에는 절연막의 계면(예를 들면, 배선층 절연막(13)과 캡막(21) 간의 계면)이 존재하지 않고, 동일한 절연막(캡막(21))으로 충전된다. 이것은, 누설 전류를 억제할 수 있게 한다.
<제2 실시예>
이하, 도 9 및 도 10을 참조하여, 제2 실시예에 따른 그래핀 배선에 관하여 설명한다. 제1 실시예에서는, 주로 소자 영역에 그래핀 배선이 적용된다. 이에 대하여, 제2 실시예는 주변 회로 영역에 그래핀 배선이 적용되는 예이다. 제2 실시예에 있어서, 제1 실시예와 동일한 특징에 관해서는 설명을 생략하고, 차이점에 관하여 설명한다는 것을 유의한다.
[구조]
도 9는 제2 실시예에 따른 그래핀 배선의 단면도이다.
도 9에 도시된 바와 같이, 제2 실시예는 주변 회로 영역에 있어서의 배선(20)이 금속층(91)을 포함한다는 점에서, 제1 실시예와 차이가 있다.
더 구체적으로, 주변 회로 영역에 있어서의 배선(20)은 소자 영역에 있어서의 배선 트렌치(30)보다 넓은 배선 트렌치(90)에 형성되고, 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 제2 그래핀층(19), 및 금속층(91)을 포함한다. 소자 영역에 있어서의 배선(20)은 제1 실시예와 동일한 구조이기 때문에, 반복적인 설명을 생략한다는 것을 유의한다.
주변 회로 영역에 있어서, 제1 촉매 하부막(14)은 배선 트렌치(90)의 양측면의 배선층 절연막(13) 상에만 형성된다. 제1 촉매막(15)은 배선 트렌치(90)의 양측면의 제1 촉매 하부막(14) 상에만 형성된다. 제1 그래핀층(16)은 배선 트렌치(90)의 양측면의 제1 촉매막(15) 상에 형성되고, 각각 제1 촉매막(15)을 촉매로서 이용하여 성장하는 100매 정도까지의 그래핀 시트를 포함한다. 제2 촉매 하부막(17)은 배선 트렌치(90)의 양측면의 제1 그래핀층(16) 상에만 형성된다. 제2 촉매막(18)은 배선 트렌치(90)의 양측면의 제2 촉매 하부막(17) 상에만 형성된다. 제2 그래핀층(19)은 배선 트렌치(90)의 양측면의 제2 촉매막(18) 상에 형성되고, 각각 제2 촉매막(18)을 촉매로서 이용하여 성장하는 100매 정도까지의 그래핀 시트를 포함한다.
주변 회로 영역에 있어서의 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)은 각각, 소자 영역에 있어서의 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)과 동등한 막 두께를 갖는다.
금속층(91)은 배선 트렌치(90)의 양측면의 제2 그래핀층(19) 상에, 그리고 배선 트렌치(90)의 중앙부에 형성된다. 즉, 금속층(91)은 배선 트렌치(90)의 중앙부에 매립된다. 금속층(91)은, 예를 들면, W, Cu, 또는 Al과 같은 금속이다.
도 9에 있어서, 제1 콘택트 플러그(12) 및 제2 콘택트 플러그(23)는 각각, 금속층(91)의 하단부 및 상단부에 접속된다. 그러나, 제1 콘택트 플러그(12) 및 제2 콘택트 플러그(23)는 각각 제1 그래핀층(16) 및 제2 그래핀층(19)의 하단부 및 상단부에 접속될 수도 있다.
[제조 방법]
도 10은 제2 실시예에 따른 그래핀 배선의 제조 단계의 단면도이다.
우선, 제1 실시예에 있어서의 도 6a에 도시된 단계까지의 제조 단계들이 행해진다. 즉, 소자 영역에 있어서, 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)을 포함하는 배선(20)을 포함하는 배선층(200)이 형성된다. 이 단계에서, 주변 회로 영역에 있어서도 배선층(200)이 동시에 형성된다.
그러나, 도 10에 도시된 바와 같이, 주변 회로 영역에 있어서의 배선 트렌치(90)의 폭은 소자 영역에 있어서의 배선 트렌치(30)의 폭보다 크다. 이 때문에, 제2 그래핀층(19)을 형성하는 단계까지 배선 트렌치(90)의 중앙부에 아무것도 매립되지 않는다.
그러나, 도 9에 도시된 본 실시예에서는, 배선 트렌치(90)의 양측면의 제2 그래핀층(19) 상에, 그리고 배선 트렌치(90)의 중앙부에 금속층(91)이 충전된다. 금속층(91)은, 예를 들면, PVD 또는 CVD에 의해 형성된다.
그 후, 예를 들면, 주변 회로 영역 및 소자 영역의 배선 트렌치(90) 밖의 상면에 잉여로 형성된 금속층(91)이 제거되어, 배선 트렌치(90) 내에만 금속층(91)이 잔존한다.
나머지 단계들은 제1 실시예와 동일하기 때문에, 중복적인 설명을 생략한다.
전술한 제2 실시예는 제1 실시예와 동일한 효과를 달성할 수 있다.
또한, 제2 실시예에서는, 소자 영역에 있어서의 배선층(200)과 동시에 주변 회로 영역에 있어서의 배선층(200)을 형성한다. 그 후, 주변 회로 영역에 있어서의 배선 트렌치(90)의 중앙부에 금속층(91)을 충전한다. 전술한 바와 같이, 주변 회로 영역에서의 배선(20)의 폭이 소자 영역에서의 배선의 폭에 비해 충분히 크기 때문에, 그래핀층으로 배선 트렌치(90)를 충전하지 않고도, 일반적인 금속 재료로 저저항 배선을 형성할 수 있다. 즉, 주변 회로 영역에 있어서의 넓은 배선 트렌치(90)는 어떠한 그래핀층으로 충전될 필요가 없고, 처리 도중에 금속층(91)으로 충전되기만 하면 된다. 이것은 처리를 용이하게 하고, 처리 시간을 단축시킨다.
<제3 실시예>
이하, 도 11 및 도 12를 참조하여, 제3 실시예에 따른 그래핀 배선에 관하여 설명한다. 제3 실시예는 제2 실시예의 변형예이며, 주변 회로 영역에 있어서의 배선 트렌치의 중앙부를 절연막으로 충전하는 예이다. 제3 실시예에 있어서, 전술한 각 실시예들과 동일한 특징에 관해서는 설명을 생략하고, 차이점에 관하여 설명한다는 것을 유의한다.
[구조]
도 11은 제3 실시예에 따른 그래핀 배선의 단면도이다.
도 11에 도시된 바와 같이, 제3 실시예에 있어서, 주변 회로 영역에 있어서의 배선(20)은 배선 트렌치(110)의 일측면에 형성된 복수의 그래핀층을 포함한다는 점에서, 제2 실시예와 차이가 있다.
더 구체적으로, 주변 회로 영역에 있어서의 배선(20)은 소자 영역에 있어서의 배선 트렌치(30)보다 넓은 배선 트렌치(110)에 형성되고, 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)을 포함한다. 소자 영역에 있어서의 배선(20)은 제1 실시예와 동일한 구조이기 때문에, 중복적인 설명을 생략한다는 것을 유의한다.
주변 회로 영역에 있어서, 제1 촉매 하부막(14)은, 배선 트렌치(110)의 일측면의 배선층 절연막(13) 상에만 형성된다. 제1 촉매막(15)은, 배선 트렌치(110)의 일측면의 제1 촉매 하부막(14) 상에만 형성된다. 제1 그래핀층(16)은 배선 트렌치(110)의 일측면의 제1 촉매막(15) 상에 형성되고, 제1 촉매막(15)을 촉매로서 이용하여 성장하는 100매 정도까지의 그래핀 시트를 포함한다. 제2 촉매 하부막(17)은 배선 트렌치(110)의 일측면의 제1 그래핀층(16) 상에만 형성된다. 제2 촉매막(18)은 배선 트렌치(110)의 일측면의 제2 촉매 하부막(17) 상에만 형성된다. 제2 그래핀층(19)은 배선 트렌치(110)의 일측면의 제2 촉매막(18) 상에 형성되고, 제2 촉매막(18)을 촉매로서 이용하여 성장하는 100매 정도까지의 그래핀 시트를 포함한다.
배선 트렌치(110)의 일측면에 형성된 배선(20)(그래핀층들)의 하단부 및 상단부는 각각 제1 콘택트 플러그(12) 및 제2 콘택트 플러그(23)에 접속된다.
한편, 배선 트렌치(110)의 타측면에 더미 배선(20')이 형성된다. 더미 배선(20')은, 배선 트렌치(110)의 일측면에 형성된 배선(20)과 동일한 구조(미러 대칭 구조)를 갖는다. 즉, 더미 배선(20')은 배선 트렌치(110)의 타측면의 배선층 절연막(13) 상에 순차적으로 형성된 제1 촉매 하부막(14'), 제1 촉매막(15'), 제1 그래핀층(16'), 제2 촉매 하부막(17'), 제2 촉매막(18'), 및 제2 그래핀층(19')을 포함한다.
배선(20)과 더미 배선(20') 사이에, 즉, 배선 트렌치(110)의 중앙부에 제2 콘택트층 절연막(22) 및 캡막(21)이 충전된다.
[제조 방법]
도 12는 제3 실시예에 따른 그래핀 배선의 제조 단계의 단면도이다.
우선, 제1 실시예에 있어서의 도 6a의 단계까지의 제조 단계들이 행해진다. 즉, 소자 영역에 있어서, 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)을 포함하는 배선(20)을 포함하는 배선층(200)이 형성된다.
이 단계에서, 주변 회로 영역에 있어서도 배선층(200)이 동시에 형성된다. 즉, 주변 회로 영역에 있어서 배선(20) 및 더미 배선(20')이 형성된다. 주변 회로 영역에 있어서, 제1 콘택트 플러그(12)가 배선 트렌치(110)의 일단부(일측면)에서 노출되도록, 배선 트렌치(110)가 형성된다. 이에 따라, 배선 트렌치(110)의 일측면에 형성된 배선(20)(그래핀층들)의 하단부가 제1 콘택트 플러그(12)에 직접 접속된다.
그러나, 도 12에 도시된 바와 같이, 주변 회로 영역에 있어서의 배선 트렌치(110)의 폭은 소자 영역에 있어서의 배선 트렌치(30)의 폭보다 크다. 이 때문에, 제2 그래핀층(19)(제2 그래핀층(19'))을 형성하는 단계 전에 배선 트렌치(110)의 중앙부에는 아무것도 매립되지 않는다.
그러나, 도 11에 도시된 본 실시예에서는, 캡막(21) 및 제2 콘택트층 절연막(22)이 전체 표면에 형성되어, 배선(20)과 더미 배선(20') 사이에, 즉 배선 트렌치(110)의 중앙부에 충전된다.
나머지 제조 단계들은 제1 실시예와 동일하기 때문에 반복적인 설명을 생략한다.
전술한 제3 실시예는 제2 실시예와 동일한 효과를 달성할 수 있다.
또한, 제3 실시예는, 금속층(91)을 충전하지 않고도, 캡막(21) 및 제2 콘택트층 절연막(22)을 형성함으로써 배선 트렌치(110)가 충전된다는 점에서, 제2 실시예와 차이가 있다. 이것은 처리를 용이하게 하고, 처리 시간을 단축시킨다.
또한, 주변 회로 영역에 있어서, 배선(20)뿐만 아니라 배선(20)과 동일한 구조를 갖는 더미 배선(20')도 형성된다. 배선(20)과 동일한 구조를 갖는 더미 배선(20')을 그 부근에 형성하기 때문에, 나중에 행해지는 CMP의 CMP 레이트의 밸런스를 맞추기가 용이해지고, CMP의 평탄성이 향상된다.
<제4 실시예>
이하, 도 13, 도 14a, 및 도 14b를 참조하여 제4 실시예에 따른 그래핀 배선에 관하여 설명한다. 제4 실시예는, 배선(20)이 상단부 및 하단부에 요철을 갖는 예이다. 제4 실시예에 있어서, 전술한 제1 실시예와 동일한 특징에 관해서는 설명을 생략하고, 차이점에 관하여 설명한다는 것을 유의한다.
[구조]
도 13은 제4 실시예에 따른 그래핀 배선의 단면도이다.
도 13에 도시된 바와 같이, 제4 실시예는 배선(20)의 상단부 및 하단부가 둥글고 단차가 있다는 점에서, 제1 실시예와 차이가 있다.
더 구체적으로, 배선(20)의 상단부 및 하단부는 둥글고 단차가 있기 때문에, 배선 트렌치(30)의 측면들으로부터 중앙부를 향해서 낮아진다. 둥근 형태는 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)의 각각의 상단부 및 하단부에 있어서의 전체 표면에서 발생한다. 또한, 단차는 제1 촉매 하부막(14)과 제1 촉매막(15) 간의 계면, 제1 그래핀층(16)과 제2 촉매 하부막(17) 간의 계면, 및 제2 촉매 하부막(17)과 제2 촉매막(18) 간의 계면에서 형성된다. 이 단차들은, 후술하는 제조 단계에 있어서, 제1 촉매 하부막(14), 제1 촉매막(15), 제2 촉매 하부막(17), 및 제2 촉매막(18)을 가공할 때 RIE의 제어에 의해 형성된다.
[제조 방법]
도 14a 및 도 14b는 제4 실시예에 따른 그래핀 배선의 제조 단계들의 단면도이다.
우선, 제1 실시예에 있어서의 도 3b에 도시된 단계까지의 제조 단계들이 행해진다. 즉, 예를 들면, CVD 또는 PVD에 의해 전체 표면에 제1 촉매 하부막(14)이 형성된다.
그 다음에, 도 14a에 도시된 바와 같이, 병진성(이방성)이 높은 RIE에 의해 에치 백이 행해진다. 이에 따라, 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면의 제1 촉매 하부막(14)이 에치 백된다. 즉, 제1 촉매 하부막(14)은 각각의 배선 트렌치(30)의 양측면에만 잔존하고, 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면으로부터 제거된다.
이 단계에서, RIE에 의한 에치 백이 과잉으로 행해진다. 이에 따라, 각각의 배선 트렌치(30)의 저면이 에치 백된다. 특히, 배선 트렌치(30)의 저면의 중앙부가 과잉으로 에치 백되기 때문에, 저면이 둥글게 되고 측면들로부터 중앙부를 향해서 낮아진다. 즉, 제1 콘택트 플러그(12)의 상면이 측면들로부터 중앙부를 향해서 낮아지는 둥근 형태를 갖게 된다.
그 후, 예를 들면, CVD, PVD, 또는 분사에 의해 전체 표면에 제1 촉매막(15)이 형성되고, 병진성(이방성)이 높은 RIE에 의해 에치 백된다. 이에 따라, 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면의 제1 촉매막(15)이 에치 백된다. 즉, 제1 촉매막(15)은 각각의 배선 트렌치(30)의 양측면에만 잔존하고, 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면으로부터 제거된다.
이 단계에 있어서, 제1 촉매 하부막(14)의 경우와 마찬가지 방식으로, RIE에 의한 에치 백이 과잉으로 행해져서, 각각의 배선 트렌치(30)의 저면이 한층 더 에치 백된다. 이에 따라, 배선 트렌치(30)의 저면이 한층 더 둥글게 되고 측면들로부터 중앙부를 향해서 낮아진다.
그 다음에, 도 14b에 도시된 바와 같이, 각각의 배선 트렌치(30)의 양측면의 제1 촉매막(15) 상에 각각 100매 정도까지의 그래핀 시트를 포함하는 제1 그래핀층(16)이 형성된다. 복수의 그래핀 시트의 표면들의 하단부들이 제1 콘택트 플러그(12)에 직접 접속되도록, 제1 그래핀층(16)이 형성된다.
그 후, 도 13에 도시된 바와 같이 전술한 단계들이 반복해서 행해진다.
더 구체적으로, 우선, 예를 들면, CVD 또는 PVD에 의해 전체 표면에 제2 촉매 하부막(17)이 형성되고, 병진성(이방성)이 높은 RIE에 의해 에치 백이 행해진다. 또한, 예를 들면, CVD, PVD, 또는 분사에 의해 전체 표면에 제2 촉매막(18)이 형성되고, 병진성(이방성)이 높은 RIE에 의해 에치 백이 행해진다. 전술한 바와 같이, 각각의 에치 백 처리는, 적당하게 과잉으로 행해지는 것이 바람직하다. 에치 백 처리를 과잉으로 행함으로써, 제1 콘택트 플러그(12)의 상면이 둥글어지고 단차가 생긴다.
제1 촉매 하부막(14) 및 제1 촉매막(15)을 형성한 후, 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면으로부터 제1 촉매 하부막(14) 및 제1 촉매막(15)을 동시에 제거할 수도 있다. 마찬가지로, 제2 촉매 하부막(17) 및 제2 촉매막(18)을 형성한 후, 배선 트렌치(30)의 저면 및 배선 트렌치(30) 밖의 상면으로부터 제2 촉매 하부막(17) 및 제2 촉매막(18)을 동시에 제거할 수도 있다.
이어서, 각각의 배선 트렌치(30)의 양측면의 제2 촉매막(18) 상에 100매 정도까지의 그래핀 시트를 포함하는 제2 그래핀층(19)이 형성된다. 복수의 그래핀 시트의 표면들의 하단부들이, 상면에 둥글고 단차가 있는 형상을 갖는 제1 콘택트 플러그(12)에 직접 접속되도록, 제2 그래핀층(19)이 형성된다.
이에 따라, 제1 촉매 하부막(14), 제1 촉매막(15), 제1 그래핀층(16), 제2 촉매 하부막(17), 제2 촉매막(18), 및 제2 그래핀층(19)을 각각 포함하는 배선들(20)을 포함하는 배선층(200)이 형성된다. 배선(20)은 하단부뿐만 아니라 상단부에도 둥글고 단차가 있는 형상을 갖는다.
그 후, 배선층(200) 상에 제2 콘택트층(300)이 형성된다. 이 단계에서, 각각의 제2 콘택트 플러그(23)의 밑면이, 상단부에 둥글고 단차가 있는 형상을 갖는 배선(20)에 직접 접속되도록, 제2 콘택트층(300)이 형성된다.
전술한 제4 실시예는 제1 실시예와 동일한 효과를 달성할 수 있다.
또한, 제4 실시예에서는 배선(20)의 하단부 및 상단부가 둥글다. 이것은, 배선(20)에 있어서의 제1 촉매 하부막(14), 제1 촉매막(15), 제2 촉매 하부막(17), 및 제2 촉매막(18)을 제1 콘택트 플러그(12) 및 제2 콘택트 플러그(23)와 접촉시키는 접촉 면적을 증대시킬 수 있으므로, 콘택트 저항을 감소시킬 수 있다.
제1 그래핀층(16) 및 제2 그래핀층(19)에 있어서, 복수의 그래핀 시트의 표면들의 단부들은 같은 높이로 형성되지 않을 수 있다. 이 경우, 제1 콘택트 플러그(12) 및 제2 콘택트 플러그(23)에 직접 접속되지 않는 그래핀 시트가 존재한다.
그러나, 본 실시예에서는, 배선(20)의 하단부 및 상단부가 둥글거나 단차가 있다. 이것은, 제1 콘택트 플러그(12) 및 제2 콘택트 플러그(23)에 직접 접속되지 않을 그래핀 시트도 그들에 직접 접속될 가능성을 증가시킨다. 따라서, 제1 콘택트 플러그(12) 및 제2 콘택트 플러그(23)에 직접 접속되는 그래핀 시트의 매수가 많아지고, 저저항의 배선 구조를 실현할 수 있다.
특정 실시예들이 설명되었지만, 이 실시예들은 단지 예를 들기 위해서 제시된 것이고, 본 발명의 범위를 제한하려는 것은 아니다. 실로, 본 명세서에 기술된 신규한 방법 및 시스템은 다양한 다른 형태들로 실시될 수 있고, 또한 본 명세서에 기술된 방법들 및 시스템들의 형태에 있어서 본 발명의 사상을 벗어나지 않고 각종 생략, 대체, 및 변경이 이루어질 수 있다. 첨부된 청구항들 및 그 등가물들은 그러한 형태들 및 변형들을 본 발명의 범위 및 사상 내에 들어오는 것으로서 포괄하고자 한다.
[관련 출원의 상호 참조]
본 출원은 2010년 10월 5일자로 출원된 일본 특허 출원 제2010-225776호의 우선권을 주장하며 그에 기초하고, 그 전체 내용이 본 명세서에 참조로 포괄된다.
12: 제1 콘택트 플러그
13: 배선층 절연막
15: 제1 촉매막
16: 제1 그래핀층
16a 내지 16e: 그래핀 시트
18: 제2 촉매막
19: 제2 그래핀층
23: 제2 콘택트 플러그
30: 배선 트렌치

Claims (20)

  1. 그래핀 배선으로서,
    배선 트렌치를 포함하는 제1 절연막,
    상기 배선 트렌치의 양측면의 상기 제1 절연막 상에 형성된 제1 촉매막, 및
    상기 배선 트렌치의 양측면의 상기 제1 촉매막 상에 형성되고, 상기 양측면에 대하여 수직 방향으로 적층된 그래핀 시트들을 포함하는 제1 그래핀층을 포함하는, 그래핀 배선.
  2. 제1항에 있어서,
    상기 배선 트렌치의 양측면의 상기 제1 그래핀층 상에 형성된 제2 촉매막, 및
    상기 배선 트렌치의 양측면의 상기 제2 촉매막 상에 형성되고, 상기 양측면에 대하여 수직 방향으로 적층된 복수의 그래핀 시트를 포함하는 제2 그래핀층을 더 포함하는, 그래핀 배선.
  3. 제1항에 있어서,
    상기 제1 그래핀층에 전기적으로 접속되는 콘택트 플러그를 더 포함하고,
    상기 그래핀 시트들의 단부들은 상기 콘택트 플러그와 직접 접촉되는, 그래핀 배선.
  4. 제3항에 있어서, 상기 제1 촉매막의 단부는 상기 콘택트 플러그와 직접 접촉되는, 그래핀 배선.
  5. 제3항에 있어서, 상기 배선 트렌치의 양측면의 상기 제1 절연막과 상기 제1 촉매막 사이에 형성된 제1 촉매 하부막을 더 포함하고, 상기 제1 촉매 하부막의 단부는 상기 콘택트 플러그와 직접 접촉되는, 그래핀 배선.
  6. 제1항에 있어서, 상기 제1 그래핀층은 상기 양측면에 대하여 수직 방향으로 적층된 100매 정도까지의 그래핀 시트를 포함하는, 그래핀 배선.
  7. 제1항에 있어서, 상기 제1 촉매막은 연속적인 막을 포함하는, 그래핀 배선.
  8. 제6항에 있어서, 상기 제1 촉매막의 막 두께는 0.5nm 이상인, 그래핀 배선.
  9. 제1항에 있어서, 상기 제1 촉매막 및 상기 제1 그래핀층의 상단부들은 상기 배선 트렌치로부터 돌출되는, 그래핀 배선.
  10. 제9항에 있어서, 상기 제1 절연막 상에 형성되고, 상기 제1 촉매막 및 상기 제1 그래핀층의 상단부들보다 낮은 하면, 및 상기 제1 촉매막 및 상기 제1 그래핀층의 상단부들보다 높은 상면을 갖는 캡막을 더 포함하는, 그래핀 배선.
  11. 제1항에 있어서, 상기 배선 트렌치의 양측면의 상기 제1 그래핀층 상에 형성되고, 상기 배선 트렌치의 중앙부를 충전하는 제2 절연막을 더 포함하는, 그래핀 배선.
  12. 제1항에 있어서, 상기 제1 촉매막 및 상기 제1 그래핀층의 상단부들 및 하단부들은 둥글고 단차가 있는, 그래핀 배선.
  13. 그래핀 배선으로서,
    배선 트렌치를 포함하는 절연막, 및
    상기 배선 트렌치의 양측면의 상기 절연막 상에 형성되고, 상기 양측면에 대하여 수직 방향으로 적층된 복수의 그래핀 시트를 포함하고, 상기 배선 트렌치를 충전하는 그래핀층들을 포함하고,
    상기 그래핀층들은,
    상기 배선 트렌치의 양측면의 상기 절연막 상의 제1 촉매막 상에 형성된 제1 그래핀층, 및
    상기 배선 트렌치의 양측면의 상기 제1 그래핀층 상의 제2 촉매막 상에 형성된 제2 그래핀층을 포함하는, 그래핀 배선.
  14. 제13항에 있어서,
    상기 제1 그래핀층 및 상기 제2 그래핀층에 전기적으로 접속된 콘택트 플러그를 더 포함하고,
    상기 그래핀 시트들의 단부들은 상기 콘택트 플러그에 직접 접촉되는, 그래핀 배선.
  15. 제13항에 있어서, 상기 제1 촉매막 및 상기 제2 촉매막의 단부들은 상기 콘택트 플러그에 직접 접촉되는, 그래핀 배선.
  16. 제14항에 있어서,
    상기 배선 트렌치의 양측면의 상기 제1 절연막과 상기 제1 촉매막 사이에 형성된 제1 촉매 하부막, 및
    상기 배선 트렌치의 양측면의 상기 제1 그래핀층과 상기 제2 촉매막 사이에 형성된 제2 촉매 하부막을 더 포함하고,
    상기 제1 촉매 하부막 및 상기 제2 촉매 하부막의 단부들은 상기 콘택트 플러그에 직접 접촉되는, 그래핀 배선.
  17. 제13항에 있어서, 상기 제1 그래핀층 및 상기 제2 그래핀층 각각은 상기 양측면에 대하여 수직 방향으로 적층된 100매 정도까지의 그래핀 시트를 포함하는, 그래핀 배선.
  18. 제13항에 있어서, 상기 제1 촉매막 및 상기 제2 촉매막 각각은 연속적인 막을 포함하는, 그래핀 배선.
  19. 제13항에 있어서, 상기 제1 촉매막, 상기 제1 그래핀층, 상기 제2 촉매막, 및 상기 제2 그래핀층의 상단부들은 상기 배선 트렌치로부터 돌출되는, 그래핀 배선.
  20. 그래핀 배선 제조 방법으로서,
    절연막에 배선 트렌치를 형성하는 단계,
    상기 배선 트렌치의 양측면의 상기 절연막 상에 제1 촉매막을 형성하는 단계, 및
    상기 배선 트렌치의 양측면의 상기 제1 촉매막 상에, 상기 양측면에 대하여 수직 방향으로 적층된 그래핀 시트들을 포함하는 제1 그래핀층을 형성하는 단계를 포함하는, 그래핀 배선 제조 방법.
KR1020110092988A 2010-10-05 2011-09-15 그래핀 배선 및 그 제조 방법 Ceased KR20120035854A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2010-225776 2010-10-05
JP2010225776A JP2012080005A (ja) 2010-10-05 2010-10-05 グラフェン配線およびその製造方法

Publications (1)

Publication Number Publication Date
KR20120035854A true KR20120035854A (ko) 2012-04-16

Family

ID=45889028

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110092988A Ceased KR20120035854A (ko) 2010-10-05 2011-09-15 그래핀 배선 및 그 제조 방법

Country Status (4)

Country Link
US (1) US9117885B2 (ko)
JP (1) JP2012080005A (ko)
KR (1) KR20120035854A (ko)
TW (1) TWI517182B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150110290A (ko) * 2014-03-21 2015-10-02 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 인터커넥트 구조 및 그 제조방법

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8946903B2 (en) * 2010-07-09 2015-02-03 Micron Technology, Inc. Electrically conductive laminate structure containing graphene region
JP5637795B2 (ja) 2010-10-05 2014-12-10 株式会社東芝 装置
US8482126B2 (en) 2011-09-02 2013-07-09 Kabushiki Kaisha Toshiba Semiconductor device
JP5591784B2 (ja) 2011-11-25 2014-09-17 株式会社東芝 配線及び半導体装置
US8519450B1 (en) * 2012-08-17 2013-08-27 International Business Machines Corporation Graphene-based non-volatile memory
CN103632922A (zh) * 2012-08-20 2014-03-12 中国科学院微电子研究所 一种半导体结构及其制造方法
JP5755618B2 (ja) 2012-09-06 2015-07-29 株式会社東芝 半導体装置
US8952258B2 (en) 2012-09-21 2015-02-10 International Business Machines Corporation Implementing graphene interconnect for high conductivity applications
US9293412B2 (en) 2012-12-17 2016-03-22 International Business Machines Corporation Graphene and metal interconnects with reduced contact resistance
US9202743B2 (en) * 2012-12-17 2015-12-01 International Business Machines Corporation Graphene and metal interconnects
US9437425B2 (en) * 2013-01-11 2016-09-06 Solan, LLC Methods for integrating lead and graphene growth and devices formed therefrom
JP5813678B2 (ja) 2013-02-15 2015-11-17 株式会社東芝 半導体装置
JP5583236B1 (ja) * 2013-03-19 2014-09-03 株式会社東芝 グラフェン配線
KR101455834B1 (ko) * 2013-04-01 2014-11-03 채경남 그래핀의 피에조 저항 특성을 이용한 스마트 복합재
US9431346B2 (en) 2013-04-30 2016-08-30 GlobalFoundries, Inc. Graphene-metal E-fuse
US9257391B2 (en) 2013-04-30 2016-02-09 GlobalFoundries, Inc. Hybrid graphene-metal interconnect structures
JP2015050305A (ja) 2013-08-30 2015-03-16 株式会社東芝 半導体装置及びその製造方法
JP6244770B2 (ja) * 2013-09-20 2017-12-13 富士通株式会社 カーボン導電構造及びその製造方法
JP6129772B2 (ja) 2014-03-14 2017-05-17 株式会社東芝 半導体装置及び半導体装置の製造方法
US9570430B2 (en) * 2014-05-13 2017-02-14 GlobalFoundries, Inc. Articles including bonded metal structures and methods of preparing the same
US9337149B2 (en) 2014-07-29 2016-05-10 Samsung Electronics Co, Ltd. Semiconductor devices and methods of fabricating the same
KR102371295B1 (ko) * 2015-02-16 2022-03-07 삼성전자주식회사 확산 방지층을 포함하는 층 구조물 및 그 제조방법
US10899620B2 (en) 2015-03-18 2021-01-26 Fujitsu Limited Carbon conductive structure and method of manufacturing the same
US9412654B1 (en) * 2015-04-27 2016-08-09 International Business Machines Corporation Graphene sacrificial deposition layer on beol copper liner-seed for mitigating queue-time issues between liner and plating step
JP2017050419A (ja) * 2015-09-02 2017-03-09 株式会社東芝 半導体装置とその製造方法
JP6077076B1 (ja) * 2015-09-11 2017-02-08 株式会社東芝 グラフェン配線構造及びグラフェン配線構造の作製方法
US9640430B2 (en) 2015-09-17 2017-05-02 Nxp Usa, Inc. Semiconductor device with graphene encapsulated metal and method therefor
KR101795783B1 (ko) * 2016-06-10 2017-12-01 광주과학기술원 금속-그래핀 이종 접합 금속 배선, 이의 형성방법 및 이를 포함하는 반도체 소자
CN107564888B (zh) * 2016-07-01 2020-09-15 中芯国际集成电路制造(上海)有限公司 互连结构及其制造方法
CN112040576A (zh) * 2020-08-07 2020-12-04 河南墨特石墨烯科技有限公司 一种石墨烯电发热丝及其生产工艺
US11640940B2 (en) * 2021-05-07 2023-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of forming interconnection structure including conductive graphene layers
US11948837B2 (en) * 2021-08-30 2024-04-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure having vertical conductive graphene and method for forming the same
US20230066891A1 (en) * 2021-08-30 2023-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure having verticle conductive graphene and method for forming the same
US20230090280A1 (en) * 2021-09-23 2023-03-23 Applied Materials, Inc. Selective graphene deposition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120730A (ja) 2004-10-19 2006-05-11 Fujitsu Ltd 層間配線に多層カーボンナノチューブを用いる配線構造及びその製造方法
JP4364253B2 (ja) 2007-04-05 2009-11-11 株式会社東芝 配線、電子装置及び電子装置の製造方法
JP2009070911A (ja) 2007-09-11 2009-04-02 Fujitsu Ltd 配線構造体、半導体装置および配線構造体の製造方法
WO2009126846A1 (en) 2008-04-11 2009-10-15 Sandisk 3D, Llc Damascene integration methods for graphitic films in three-dimensional memories and memories formed therefrom
JP5395542B2 (ja) * 2009-07-13 2014-01-22 株式会社東芝 半導体装置
JP5439120B2 (ja) 2009-11-02 2014-03-12 株式会社東芝 半導体装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150110290A (ko) * 2014-03-21 2015-10-02 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 인터커넥트 구조 및 그 제조방법
US9318439B2 (en) 2014-03-21 2016-04-19 Taiwan Semiconductor Manufacturing Company Ltd. Interconnect structure and manufacturing method thereof

Also Published As

Publication number Publication date
TW201230063A (en) 2012-07-16
US9117885B2 (en) 2015-08-25
US20120080662A1 (en) 2012-04-05
TWI517182B (zh) 2016-01-11
JP2012080005A (ja) 2012-04-19

Similar Documents

Publication Publication Date Title
KR20120035854A (ko) 그래핀 배선 및 그 제조 방법
KR101304146B1 (ko) 그라핀 배선 및 그 제조 방법
US8169085B2 (en) Semiconductor device and method of fabricating the same
JP5395542B2 (ja) 半導体装置
US8487449B2 (en) Carbon nanotube interconnection and manufacturing method thereof
KR101298789B1 (ko) 반도체 장치
US9576907B2 (en) Wiring structure and method of manufacturing the same
JP5755618B2 (ja) 半導体装置
JP2011204769A (ja) 半導体装置及びその製造方法
JP2016058521A (ja) 半導体装置およびその製造方法
JP2015050305A (ja) 半導体装置及びその製造方法
US9076795B1 (en) Semiconductor device and method of manufacturing the same
US9076794B2 (en) Semiconductor device using carbon nanotube, and manufacturing method thereof
US9484206B2 (en) Semiconductor device including catalyst layer and graphene layer thereon and method for manufacturing the same
JP6244770B2 (ja) カーボン導電構造及びその製造方法
JP5921475B2 (ja) 半導体装置及びその製造方法
US20170263562A1 (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20110915

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20121112

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20130221

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20121112

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I