KR20090022698A - 기판 상에 실란층을 도포하는 방법 - Google Patents
기판 상에 실란층을 도포하는 방법 Download PDFInfo
- Publication number
- KR20090022698A KR20090022698A KR1020070088280A KR20070088280A KR20090022698A KR 20090022698 A KR20090022698 A KR 20090022698A KR 1020070088280 A KR1020070088280 A KR 1020070088280A KR 20070088280 A KR20070088280 A KR 20070088280A KR 20090022698 A KR20090022698 A KR 20090022698A
- Authority
- KR
- South Korea
- Prior art keywords
- substrate
- silane
- probe
- speed
- silane layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/52—Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
- B01L9/527—Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips for microfluidic devices, e.g. used for lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
바이오칩의 제조 방법이 제공된다. 바이오칩의 제조 방법은 기판 상 또는 내에 다수의 돌출부를 형성하되, 돌출부는 얼라인 키 및 프로브 셀 액티브 영역을 포함하고, 기판 상에 실란층을 스핀 코팅하고, 실란층이 코팅된 프로브 셀 액티브 영역 상에 프로브를 커플링하는 것을 포함한다.
기판, 스핀 코팅
Description
본 발명은 스핀 코팅을 이용한 바이오칩의 제조 방법에 관한 것이다.
최근 들어 게놈 프로젝트가 발전하면서 다양한 유기체의 게놈 뉴클레오타이드 서열이 밝혀짐에 따라 바이오칩에 대한 관심이 증가하고 있다. 바이오칩은 유전자 발현 분석(expression), 유전자형 분석(genotyping), SNP와 같은 돌연변이(mutation) 및 다형(polymorphism)의 검출, 단백질 및 펩티드 분석, 잠재적인 약의 스크리닝, 신약 개발과 제조 등에 널리 사용되고 있다.
이러한 바이오칩은 타겟 샘플을 검출하기 위한 다수의 프로브들을 포함하며, 상기 프로브들을 보다 효과적으로 기판 상에 형성하기 위하여 기판을 실란 용액 등으로 처리하였다. 그런데 기판 상에 실란 용액을 처리하는 과정에서 얼라인 키 등에 불필요한 실란 부산물이 형성될 수 있으며, 이는 바이오칩의 제조 과정에서 공정의 안정성을 악화시킬 수 있다.
본 발명이 해결하고자 하는 과제는, 안정성 있는 바이오칩의 제조 공정을 제공하는 것이다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위한 본 발명의 바이오칩의 제조 공정은 기판을 제공하고, 기판 상에 실란층을 스핀 코팅하고, 실란층 상에 프로브를 커플링하는 것을 포함한다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 따른 바이오칩의 제조 방법에 따르면, 얼라인 키의 측벽에 메니스커스형 실란층이 형성되지 않아서, 연속되는 바이오칩의 제조 과정에서 기판과 다른 장비들간에 미스얼라인(miss alliegn)을 방지할 수 있다. 또한 기판의 이면에 실란층이 형성되지 않아서, 스테퍼(stepper) 등과 같은 장비에서 기판 레벨링시 오작동을 방지할 수도 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
하나의 소자(elements)가 다른 소자와 "접속된(connected to)" 또는 "커플링된(coupled to)" 이라고 지칭되는 것은, 다른 소자와 직접 연결 또는 커플링된 경우 또는 중간에 다른 소자를 개재한 경우를 모두 포함한다. 반면, 하나의 소자가 다른 소자와 "직접 접속된(directly connected to)" 또는 "직접 커플링된(directly coupled to)"으로 지칭되는 것은 중간에 다른 소자를 개재하지 않은 것을 나타낸다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.
비록 제1, 제2 등이 다양한 소자, 구성요소 및/또는 섹션들을 서술하기 위해서 사용되나, 이들 소자, 구성요소 및/또는 섹션들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 소자, 구성요소 또는 섹션들을 다른 소자, 구성요소 또는 섹션들과 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 소자, 제1 구성요소 또는 제1 섹션은 본 발명의 기술적 사상 내에서 제2 소자, 제2 구성요소 또는 제2 섹션일 수도 있음은 물론이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
도 1은 본 발명의 실시예들에 따른 바이오칩의 제조 과정에서 기판 상에 형성된 돌출부를 설명하기 위한 도면이다.
도 1을 참조하면, 기판(10) 상에, 분리 영역(260)에 의해 분리되는 다수의 돌출부(200)들을 형성한다.
기판(10)은 가요성(flexible) 또는 강성(rigid) 기판일 수 있다. 적용되는 가요성 기판의 예로는 나일론, 니트로셀룰로오스 등의 멤브레인 또는 플라스틱 필름 등을 들 수 있다. 강성 기판으로는 실리콘 기판, 소다 석회 유리로 이루어진 투명 유리 기판 등이 예시될 수 있다. 실리콘 기판 또는 투명 유리 기판의 경우에는 혼성화 과정 동안 비특이적 결합이 거의 일어나지 않는다. 또, 실리콘 기판 또는 투명 유리 기판은 반도체 소자의 제조 공정 또는 LCD 패널의 제조 공정 등에서 이미 안정적으로 확립되어 적용되고 있는 다양한 박막의 제조 공정 및 사진 식각 공정 등이 그대로 적용될 수 있는 장점이 있다.
분리 영역(260)에 의해 분리되는 다수의 돌출부(200)는 얼라인 키(250)와 프로브 셀 액티브 영역(210)을 포함한다. 여기서 프로브 셀 액티브 영역(210)은 프로브와 커플링하여 프로브 셀을 형성할 수 있는 영역(도 5 참조)이다.
프로브 셀은 타겟 샘플과 혼성화(hybridation)하여 타겟 샘플을 검 출(detecting)할 수 있는 다수의 프로브들이 배열(array)된 셀을 포함하는 의미로 정의된다. 예컨대 프로브는 항체, 효소, 올리고머 프로브 등일 수 있다.
올리고머는 공유 결합된 두개 이상의 모노머(monomer)로 이루어진 폴리머(polymer)로서, 분자량이 대략 1,000 이하의 것을 지칭할 수 있으나, 상기 수치에 한정되는 것은 아니다. 올리고머는 약 2 내지 500개의 모노머, 바람직하게는 5 내지 30개의 모노머를 포함할 수 있다. 모노머는 프로브 어레이에 고정된 프로브의 종류에 따라 뉴클레오사이드, 뉴클레오타이드, 아미노산, 펩티드 등이 될 수 있다.
뉴클레오사이드 및 뉴클레오타이드는 공지의 퓨린 및 피리미딘 염기를 포함할 뿐만 아니라, 메틸화된 퓨린 또는 피리미딘, 아실화된 퓨린 또는 피리미딘 등을 포함할 수 있다. 또, 뉴클레오 사이드 및 뉴클레오타이드는 종래의 리보스 및 디옥시리보스 당을 포함할 뿐만 아니라, 하나 이상의 하이드록실기가 할로겐 원자 또는 지방족으로 치환되거나 에테르, 아민 등의 작용기가 결합한 변형된 당을 포함할 수 있다.
아미노산은 자연에서 발견되는 아미노산의 L-, D-, 및 비키랄(nonchiral)형 아미노산뿐만 아니라, 변형 아미노선(modified amino acid), 또는 아미노산 유사체(analog) 등일 수 있다. 펩티드는 아미노산의 카르복실기와 다른 아미노산의 아미노기 사이의 아미드 결합에 의해 생성된 화합물을 지칭한다.
따라서, 올리고머 프로브는 두 개 이상의 뉴클레오사이드, 뉴클레오타이드, 아미노산, 펩티드 등으로 이루어질 수 있다.
얼라인 키(250)는 연속되는 바이오칩의 제조 공정 및 바이오칩을 이용한 검 출 공정 등에서 얼라인 기준(reference)이 될 수 있다. 예를 들어, 사진 공정(photolithography)에서 마스크, 노광 장치 등과 기판을 얼라인 시키거나, 기판을 절단하여 개개의 바이오칩으로 분리시키는 다이싱 공정에서 기판을 얼라인 시킬 수 있다. 또한 절단된 낱개의 칩을 패키징하는 단계뿐만 아니라 혼성화 이후에 스캐닝 공정과 같은 검출(detecting) 공정 등에서도 얼라인 기준으로 이용될 수 있다.
분리 영역(260)의 표면은 이하에서 후술하는 실란층(도 2의 300 참조) 또는 프로브(도 5의 450 참조)와 커플링할 수 있는 작용기를 포함하지 않을 수 있다. 본 발명의 일 실시예에서 분리 영역(260)의 표면은 기판(10)의 표면일 수 있다. 예컨대 실리콘 기판 또는 투명한 유리 기판일 경우, 분리 영역(260)의 표면은 실리콘 기판 또는 투명한 유리 기판의 표면일 수 있다.
도면에는 도시하지 않았지만, 본 발명의 다른 실시예에서는 돌출부(200)들 사이에 블록킹 막을 더 형성할 수도 있다. 블록킹 막은 실란층 및 프로브와 커플링할 수 있는 작용기를 포함하지 않으며, 예컨대 플루오르 실란막, 실리사이드막, 플리실리콘막 또는 Si, SiGe 에피택셜막일 수 있다. 이 경우 분리 영역의 표면은 블록킹 막의 표면일 수 있다.
본 발명의 일 실시예에서 돌출부(200)는 기판(10) 상에 형성된 막의 패턴으로 형성할 수 있다.
기판(10) 상에 형성된 막의 패턴은 예를 들어, 돌출부 형성용 막을 기판(10) 상에 형성하고, 돌출부 형성용 막을 패턴닝하는 방법으로 형성될 수 있다.
예를 들어, 돌출부 형성용 막은 PE-TEOS(Plasma Enhenced TetraEthylOrthoSilicate)막, HDP(High Density Plasma) 산화막 또는 P-SiH4 산화막, 열산화막 등의 실리콘 산화막, 하프늄 실리케이트, 지르코늄 실리케이트 등의 실리케이트, 실리콘 질화막, 실리콘 산질화막, 하프늄산질화막, 지르코늄산질화막 등의 금속 산질화막, 티타늄 산화막, 탄탈륨 산화막, 알루미늄 산화막, 하프늄 산화막, 지르코늄 산화막, ITO 등의 금속 산화막, 폴리이미드, 폴리아민, 금, 은, 구리, 팔라듐 등의 금속, 또는 폴리스티렌, 폴리아크릴산, 폴리비닐 등의 폴리머 등으로 형성할 수 있다.
돌출부 형성용 막은 반도체 제조 공정 또는 LCD 제조 공정에서 안정적으로 적용되고 있는 증착 방법, 예컨대, CVD(Chemical Vapor Deposition), SACVD(Sub-Atmospheric CVD), LPCVD(Low Pressure CVD), PECVD(Plasma Enhanced CVD), 스퍼터링(sputtering) 등의 방법을 적용하여 기판(10) 상에 형성할 수 있다.
돌출부 형성용 막을 패터닝하는 것은 포토레지스트 패턴을 돌출부 형성용 막 상에 형성하고, 포토레지스트 패턴을 식각마스크로 사용하여 돌출부 형성용 막을 식각하고, 포토레지스트 패턴을 제거하는 것을 포함할 수 있다. 포토레지스트 패턴을 형성하는 것은 돌출부 형성용 막 상에 포토레지스층을 형성하고, 마스크를 사용하여 노광, 현상하는 것으로 진행될 수 있다.
또한 도면에는 도시하지 않았으나, 본 발명의 다른 실시예에서 돌출부를 기판 내에 (LOCal Oxidation of Silicon)산화막으로 형성할 수도 있다. 예를 들어, LOCOS산화막은 기판 상에 상화방지 패턴을 형성하고, 산화방지 패턴에 의해 노출된 패턴을 산화하는 방법으로 형성될 수 있다. 산화방지 패턴은 예컨대, 질화막일 수도 있으며, 산화막 및 질화막의 적층된 형태일 수도 있다.
도 2는 본 발명의 실시예들에 따른 바이오칩의 제조 과정에서 기판 상에 스핀 코팅된 실란층을 설명하기 위한 도면이다. 도 3a 및 도 3b는 본 발명의 실시예들에 따른 바이오칩의 제조 과정에서 기판을 회전시키는 속도를 설명하는 도면들이다.
도 2를 참조하면, 기판(10) 상에 실란층(300)을 스핀 코팅한다. 실란층(300)을 기판(10) 상에 형성하는 것은 기판(10) 상에 실란 용액을 도포하고, 실란 용액이 도포된 기판을 회전시키고, 실란 용액을 고화시키는 것을 포함할 수 있다.
우선 돌출부(200)가 형성된 기판(10) 상에 실란 용액을 도포할 수 있다. 실란 용액은 프로브와 커플링할 수 있는 작용기를 포함하며, 예컨대 하이도록시 실란, 아미노 실란 등일 수 있다. 더욱 구체적으로, 실란 용액은 N-(3-(트리에톡시실릴)-프로필)-4-하이드록시부티르아미드(N-(3-(triethoxysilyl)-propyl)-4-hydroxybutyramide), N,N-비스(하이드록시에틸)아미노프로필-트리에톡시실란(N,N-bis(hydroxyethyl) aminopropyl-triethoxysilane), 아세톡시프로필-트리에톡시실란(acetoxypropyl-triethoxysilane), 3-글리시독실 프로필트리메톡시실란(3-Glycidoxy propyltrimethoxysilane) 등일 수 있다.
작용기란 유기 합성 공정의 시발점(starting point)으로 사용될 수 있는 기를 포함하는 의미로 정의된다. 즉 미리 합성된(synthetic) 올리고머 프로브와 같은 프로브 또는 인-시츄(in-situ) 합성을 위한 모노머, 예컨대 뉴클레오사이드, 뉴클 레오타이드, 아미노산, 펩티드 등의 모노머가 커플링될 수 있는 기, 예컨대 공유 또는 비공유 결합할 수 있는 기를 지칭하며 커플링될 수 있는 한 특정한 제한이 없다. 작용기로는 하이드록실기, 알데히드기, 카르복실기, 아미노기, 아미드기, 티올기, 할로기 또는 술포네이트기 등을 예로 들 수 있다.
실란 용액이 도포된 기판(10)을 제1 속도로 회전시킨 후, 연이어 제2 속도로 회전시킬 수 있다. 여기서 기판(10)을 제1 속도로 회전시켜서, 기판(10) 상에 도포된 실란 용액을 고르게 코팅할 수 있다. 또한 기판(10)을 제2 속도로 회전시켜서, 실란층이 기판(10) 상에 소정의 두께로 형성될 수 있도록 여분의 실란 용액을 제거하고, 나아가 용매(solvent)를 제거할 수 있다. 여분의 실란 용액을 효과적으로 제거하기 위하여 제2 속도는 제1 속도보다 더 빠를 수 있으며, 제1 속도 및 제2 속도는 예컨대, 각각 500rpm, 2,000 rpm일 수 있다.
도 3a를 참고하면, 본 발명의 일 실시예에서는 불연속적으로 변화는 속도로 기판(10)을 회전시켜 실란 용액을 코팅할 수 있다. 예컨대 제1 속도(V1)로 기판을 소정의 시간 동안 회전시킨 후, 연이어 제2 속도(V2)로 기판을 소정의 시간 동안 회전시킬 수 있다. 여기서 불연속적으로 변하는 제1 속도(V1) 및 제2 속도(V2)에 있어, 제2 속도(V2)가 제1 속도(V1)보다 더 빠를 수 있다.
도 3b를 참고하면, 본 발명의 다른 실시예에서, 연속적으로 변화는 속도로 기판을 회전시켜 실란액을 코팅할 수도 있다. 예컨대, 선형적으로 변화하는 속도로 기판을 회전시켜 실란액을 코팅할 수도 있다. 여기서 소정의 시간에서 제2 속도(V2)는 제1 속도(V1)보다 더 빠를 수 있다.
실란 용액을 고화시키는 것은 예컨대 베이크(bake) 장치 내에서 이루어질 수 있다. 기판(10)의 크기 내지 기판(10) 상에 도포된 실란 용액의 양에 따라 베이크(bake) 시간 내지 온도는 변할 수 있으며, 예컨대 120 ℃에서 약 40분정도 실란층(300)이 도포된 기판(10)을 베이크할 수도 있다.
도 4는 실란층의 코팅 방법에 따른 차이를 설명하기 위한 개략도이다.
코팅 방법에 따라 실란층이 어떻게 형성되는지를 도 4를 참고하여 보다 상세히 설명한다.
도 4를 참고하면, 실란층(300)을 딥 코팅(dip coating)에 의하여 형성하는 경우, 메니스커스(meniscus)에 기인하여 실란층(300)이 돌출부(200)의 측벽(side wall)에 메니스커스형으로 형성될 수 있다. 또한 딥 코팅은 실란 용액에 기판(10) 담그는 과정을 포함하므로, 돌출부(200)가 형성된 기판(10)의 이면(異面, 10_b)에 실란 용액이 부분적으로 결합된 영역(300_b)이 존재할 수도 있다. 구체적으로, 예컨데 기판(10)이 실리콘 기판일 경우, 기판(10)의 이면(10_b)에 자연 산화막(native oxide)이 존재할 수 있으므로, 실란 용액이 부분적으로 결합된 영역(330_b)이 존재할 수 있다.
반면, 스핀 코팅(spin coating)에 의한 경우 기판(10)의 회전에 의하여, 실란층(300)이 돌출부(200)의 측벽에 메니스커스형으로 형성되지 않는다. 또한 돌출부(200)가 형성된 기판(10) 상에만 실란 용액이 도포되므로, 기판(10)의 이면(10_b)에는 불필요한 실란층이 형성되지 않을 수 있다. 나아가 회전에 의하여 실란 용액을 코팅하는바, 일정한 두께를 가진 실란층을 형성할 수도 있다.
따라서, 프로브 셀 액티브 영역(210)의 측벽에 매니스커스형 실란층이 형성되지 않으므로, 원하지 않는 프로브가 기판(10) 상에 형성되지 않게 바이오칩을 제조할 수 있다. 또한 얼라인 키(250) 등에 메니스커스형 실란층 등이 형성되지 않으므로, 예컨대 사진 공정 등과 같은 연속되는 바이오칩의 제조 공정에서 마스크, 노광 장치 등과 기판을 정확히 얼라인 시킬 수 있다. 게다가 기판(10)의 이면(10_b)에 불필요한 실란층(300_b)이 형성되어 있지 않으므로, 예컨대 스테퍼(stepper) 등에서 오작동 없이 기판 레벨링(leveling)을 수행할 수 있다.
도 5는 본 발명의 실시예들에 따른 바이오칩의 제조 과정에서 프로브가 커플링되어 완성된 바이오칩을 설명하기 위한 도면이다.
도 5를 참조하면, 프로브 셀 액티브 영역(210) 상에 프로브(450)를 커플링시킨다. 프로브 셀 액티브 영역(210)은 프로브(450)와 직접 커플링될 수도 있으나, 링커(410)를 개재하여 커플링될 수도 있다.
링커(410)는 프로브 셀 액티브 영역(210)과 프로브(450)와의 커플링을 용이하게 하는 제1 링커와 프로브(450)와 타겟 샘플과의 자유로운 상호 작용이 가능하도록 하는 제2 링커를 포함할 수 있다. 여기서 제1 링커의 길이가 타겟 샘플과의 자유로운 상호작용이 가능할 정도로 충분히 길다면, 제2 링커는 개재되지 않을 수도 있다.
링커(410)와 프로브(450)를 커플링시키는 것은, 미리 합성된 올리고머 프로브등의 프로브를 커플링시키는 것일 수도 있으며, 프로브용 모노머의 인-시츄(in-situ) 합성에 의한 커플링일 수도 있다.
도 6은 본 발명의 또 다른 실시예에 따른 바이오칩의 제조 과정에서 기판 상에 형성된 실란층을 설명하기 위한 도면이다.
도 6을 참조하면, 앞에서 언급한 스핀 코팅에 의하여 기판(10) 상에 실란층(300)을 형성할 수 있다. 도 4를 참조하여 설명하였듯이, 본 발명의 또 다른 실시예에 따른 바이오칩의 제조 공정에서는 기판(10)의 이면에 불필요한 실란층이 형성되지 않아서, 예컨데 스테퍼 등에서 오작동 없이 기판 레벨링을 할 수 있으므로 안정적인 바이오칩의 제조 공정을 수행할 수 있다.
도 7은 본 발명의 또 다른 실시예에 따른 바이오칩의 제조 과정에서 프로브가 커플링되어 완성된 바이오칩을 설명하기 위한 도면이다.
도 7을 참조하면, 부분적으로 활성화된 실란층 영역(AR)에 프로브(450)을 커플링시킨다. 활성화된 실란층 영역(AR)에 커플링된 프로브는, 예컨데 실란층(도 6의 300 참조) 전체를 비활성화시키고, 비활성화된 실란층(300a)을 부분적으로 활성화시켜 활성화된 실란층 영역(AR)과 비활성화된 실란층 영역(NAR)을 형성하고, 활성화된 실란층 영역(AR)에 프로브(450)를 커플링시키는 방법으로 형성될 수 있다. 여기서 비활성화는 실란층(도 6의 300 참조)에 프로브(450) 내지 링커(410)가 커플링할 수 없는 상태를 포함하는 의미로 정의된다.
실란층(도 6의 300 참조)은 보호기를 커플링시켜 비활성화시킬 수 있다. 보호기는 커플링되어 있는 위치가 화학 반응에 참여하는 것을 차단하는 기를 포함하는 의미로 정의되며, 탈보호는 보호기가 커플링 위치로부터 분리되어 상기 위치가 화학 반응에 참여할 수 있도록 하는 것을 포함하는 의미로 정의된다. 즉, 보호기는 산분해성(acidlable) 또는 광분해성(photolabile)일 수 있으므로, 산 또는 광에 의하여 작용기는 탈보호될 수 있다. 예컨대 광분해성 보호기는 o-니트로벤질 유도체 또는 벤질설포닐과 같은 니트로 방향쪽 화합물을 포함하는 다양한 포지티브 광 분해성기 중에서 선택할 수 있으며, 구체적으로 6-니트로베라트릴록시카보닐(NVOC), 2-니트로 벤질록시카보닐(NBOC), α,α-메틸-디메톡시벤질록시카보닐(DDZ) 등을 포함할 수 있다.
비활성화된 실란층(300a)에 예컨데 마스크를 통하여 부분적으로 광을 조사하여, 활성화된 실란층 영역(AR)과 비활성화된 실란층 영역(NAR)을 형성할 수 있다. 구체적으로 비활성화된 실란층(300a)에 광을 부분적으로 조사하여, 보호기를 탈보호시켜서 활성화된 실란층 영역(AR)을 형성할 수 있다. 기능적 관점에서 활성화된 실란층 영역(AR)은 도 2의 실란층이 도포된 프로브 셀 액티브 영역과 실질적으로 동일하고, 비활성화된 실란층 영역(NAR)은 도 2의 분리 영역과 실질적으로 동일하다.
활성화된 실란층 영역(AR)에 프로브(450)를 커플링시키는 것은, 활성화된 실란층 영역(AR)을 프로브(450)와 직접적으로 커플링시킬 수도 있으며, 링커(41)을 개재하여 커플링시킬 수도 있다. 링커(410)와 프로브(450)를 커플링시키는 것은, 미리 합성된 올리고머 프로브등의 프로브를 커플링시키는 것일 수도 있으며, 프로브용 모노머의 인-시츄(in-situ) 합성에 의한 커플링일 수도 있다.
본 발명에 관한 보다 상세한 내용은 다음의 구체적인 실험예 및 비교예를 통하여 설명하며, 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 설명을 생략한다.
<실험예>
8인치 실리콘 기판 상에 열산화막(thermal oxide)를 1,000Å 두께로 형성하고, 상기 기판 위에 포토레지스트막을 1.2㎛ 두께로 형성하였다. 1.0㎛ 피치의 바둑판 형태의(checkerboard type) 마스크를 사용하여 365nm 파장의 투영 노광 장비에서 포토레지스트막을 노광한 후, 2.38% 테트라메틸암모늄 하이드록사이드(TetraMethylAmmonium Hydroxide) 수용액으로 현상하여 바둑판 형태의 가로 세로 교차되는 직선 영역을 노출시키는 포토레지스트 패턴을 형성하였다. 포토레지스트 패턴을 식각 마스크로 사용하여 열산화막을 식각하여 프로브 셀 어레이 영역 및 얼라인 키를 포함하는 돌출부를 패터닝하였다.
상기 실리콘 기판에 10~20 ml의 실란 용액을 도포하고, 실란 용액이 실리콘 기판 상에 도포된 상태에서 5초 정도 정지 상태를 유지하였다. 그리고 상기 기판을 500rpm으로 15초 정도 회전시킨 후, 연속적으로 회전 속도를 2,000 rpm으로 올려서 다시 15초 정도 기판을 회전시켰다. 회전을 멈추고 상온에서 약 13분 정도 기판을 안정화시킨 후에, 베이크 장비로 옮겨서 120℃에서 40분간 고화를 진행하였다. 이어서, 초순수(deionized water)로 기판을 세척을 한 후에, 스핀 드라이시켰다.
<비교예>
상술한 실험예와 다른 조건은 동일하나, 상기의 스핀 코팅 대신 딥 코팅에 의하여 실란 용액을 돌출부가 형성된 기판 상에 코팅하였다.
<실험예와 비교예의 비교>
도 8a 및 도 8b는 각각 비교예 및 실험예에 따라 형성된 프로브가 커플링되기 전 바이오칩의 SEM 상면도이다.
도 8a 및 도 8b를 비교하여 실란층이 형성된 얼라인 키를 살펴보면, 스핀 코팅에 의한 실험예에서의 얼라인 키(A')가 딥 코팅에 의한 비교예에서의 얼라인 키(A)보다 더 선명하게 형성되어 있는 것을 알 수 있다. 또한 딥 코팅에 의한 비교예에서는 실란 용액이 고르게 형성되지 않은 영역(B)이 존재하는 것을 확인할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
도 1은 본 발명의 실시예들에 따른 바이오칩의 제조 과정에서 기판 상에 형성된 돌출부를 설명하기 위한 도면이다.
도 2는 본 발명의 실시예들에 따른 바이오칩의 제조 과정에서 기판 상에 스핀 코팅된 실란층을 설명하기 위한 도면이다.
도 3a 및 도 3b는 본 발명의 실시예들에 따른 바이오칩의 제조 과정에서 기판을 회전시키는 속도를 설명하는 도면들이다.
도 4는 실란층의 코팅 방법에 따른 차이를 설명하기 위한 개략도이다.
도 5는 본 발명의 실시예들에 따른 바이오칩의 제조 과정에서 프로브가 커플링되어 완성된 바이오칩을 설명하기 위한 도면이다.
도 7은 본 발명의 또 다른 실시예에 따른 바이오칩의 제조 과정에서 프로브가 커플링되어 완성된 바이오칩을 설명하기 위한 도면이다.
도 8a 및 도 8b는 각각 비교예 및 실험예에 따라 형성된 프로브가 커플링되기 전 바이오칩의 SEM 상면도이다.
(도면의 주요부분에 대한 부호의 설명)
10: 기판 200: 돌출부
210: 프로브 셀 액티브 영역
250: 얼라인 키 260: 분리 영역
300: 실란층 410: 링커
450: 프로브
Claims (9)
- 기판을 제공하고,상기 기판 상에 실란층을 스핀 코팅하고,상기 실란층 상에 프로브를 커플링하는 것을 포함하는 바이오칩의 제조 방법.
- 제 1항에 있어서,상기 스핀 코팅하는 것은, 기판 상에 실란 용액을 도포하고, 상기 실란 용액이 도포된 상기 기판을 제1 속도로 회전시킨 후, 제2 속도로 회전시키고, 상기 실란 용액을 고화시키는 것을 포함하는 바이오칩의 제조 방법.
- 제 2항에 있어서,상기 제1 속도는 500 rpm이며, 상기 제2 속도는 2,000 rpm인 바이오칩의 제조 방법.
- 제 3항에 있어서,상기 제1 속도 및 제2 속도로 상기 기판을 각각 15초간 회전시키는 바이오칩의 제조 방법.
- 제 2항에 있어서,상기 실란 용액을 고화시키는 것은 120 ℃에서 40분간 베이크하는 것을 포함하는 바이오칩의 제조 방법.
- 제 1항에 있어서,상기 기판 상에 분리 영역에 의해 분리되는 다수의 돌출부를 더 형성하되, 상기 돌출부는 얼라인 키 및 다수의 프로브 셀 액티브 영역을 포함하는 바이오칩의 제조 방법.
- 제 6항에 있어서,상기 분리 영역의 표면은 상기 실란층 또는 상기 프로브와 결합할 수 있는 작용기를 포함하고 있지 않은 바이오칩의 제조 방법.
- 제 6항에 있어서,상기 프로브를 커플링하는 것은, 상기 다수의 프로브 셀 액티브 영역 상에 상기 프로브를 커플링하는 것을 포함하는 바이오칩의 제조 방법.
- 제 1항에 있어서,상기 실란층은 하이드록실기, 알데히드기, 카르복실기, 아미노기, 아미드기, 티올기, 할로기 또는 술포네이트기를 포함하는 바이오칩의 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070088280A KR20090022698A (ko) | 2007-08-31 | 2007-08-31 | 기판 상에 실란층을 도포하는 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070088280A KR20090022698A (ko) | 2007-08-31 | 2007-08-31 | 기판 상에 실란층을 도포하는 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20090022698A true KR20090022698A (ko) | 2009-03-04 |
Family
ID=40692534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070088280A Withdrawn KR20090022698A (ko) | 2007-08-31 | 2007-08-31 | 기판 상에 실란층을 도포하는 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20090022698A (ko) |
-
2007
- 2007-08-31 KR KR1020070088280A patent/KR20090022698A/ko not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3066535C (en) | Flow cells with hydrogel coating | |
US7794799B1 (en) | Process for producing array plate for biomolecules having hydrophilic and hydrophobic regions | |
WO2016126882A1 (en) | Methods and devices for de novo oligonucleic acid assembly | |
KR100745990B1 (ko) | 마이크로 어레이의 제조 방법 | |
CN117460836A (zh) | 流通池和方法 | |
US20070259365A1 (en) | Multifunctional Oligomer Probe Array and Method of Manufacturing the Same | |
US7994097B2 (en) | Microarray, substrate for microarray and methods of fabricating the same | |
US20120208723A1 (en) | Oligomer probe array with improved signal-to-noise ratio and detection sensitivity and method of manufacturing the same | |
US8871423B2 (en) | Photoresist composition for fabricating probe array, method of fabricating probe array using the photoresist composition, composition for photosensitive type developed bottom anti-reflective coating, fabricating method of patterns using the same and fabricating method of semiconductor device using the same | |
KR100801079B1 (ko) | 올리고머 프로브 어레이 및 이의 제조 방법 | |
US8546130B2 (en) | Oligomer probe array with improved signal-to-noise ratio fabrication method thereof | |
KR20090029053A (ko) | 패턴을 따라 기판을 절단하는 방법 및 이에 의해 제조된 칩 | |
KR20090022698A (ko) | 기판 상에 실란층을 도포하는 방법 | |
US20240060127A1 (en) | Methods and systems for light-controlled surface patterning using photomasks | |
KR100791335B1 (ko) | 마이크로 어레이 및 이의 제조 방법 | |
KR100891098B1 (ko) | 바이오칩 및 그 제조 방법 | |
KR100891097B1 (ko) | 바이오칩 및 그 제조 방법 | |
CN101294216B (zh) | 衬底结构、低聚物探针阵列及其制造方法 | |
US20080051298A1 (en) | Microarrays including probe cells formed within substrates and methods of making the same | |
US20240207846A1 (en) | Flow cells | |
US20110244397A1 (en) | Methods of Fabricating a Microarray | |
KR101387633B1 (ko) | 양면 고정형 프로브 어레이, 바이오칩 및 이들의 제조 방법 | |
US20080113876A1 (en) | Probe array and associated methods | |
TW202335738A (zh) | 流體槽及其製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20070831 |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination | ||
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |