[go: up one dir, main page]

KR101972556B1 - 코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법 - Google Patents

코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법 Download PDF

Info

Publication number
KR101972556B1
KR101972556B1 KR1020137008829A KR20137008829A KR101972556B1 KR 101972556 B1 KR101972556 B1 KR 101972556B1 KR 1020137008829 A KR1020137008829 A KR 1020137008829A KR 20137008829 A KR20137008829 A KR 20137008829A KR 101972556 B1 KR101972556 B1 KR 101972556B1
Authority
KR
South Korea
Prior art keywords
gene
seq
dna
derived
ubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020137008829A
Other languages
English (en)
Other versions
KR20140012026A (ko
Inventor
히데아키 유카와
마사유키 이누이
Original Assignee
그린 케미칼즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 그린 케미칼즈 가부시키가이샤 filed Critical 그린 케미칼즈 가부시키가이샤
Publication of KR20140012026A publication Critical patent/KR20140012026A/ko
Application granted granted Critical
Publication of KR101972556B1 publication Critical patent/KR101972556B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

코리스메이트-피루베이트 리아제(Chorismate-pyruvate lyase) 활성을 가지는 효소를 코딩하는 유전자, 및 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 활성을 가지는 효소를 코딩하는 유전자가, 숙주의 코리네형 세균에 도입된, 페놀 생산능을 가지는 형질 전환체. 이 형질 전환체를, 환원 조건 하에서, 당류를 함유하는 반응액 중 반응시키는 공정과, 반응액 중의 페놀을 회수하는 공정을 포함하는 페놀의 제조 방법.

Description

코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법{CORYNEFORM BACTERIUM TRANSFORMANT AND METHOD FOR PRODUCING PHENOL USING SAME}
본 발명은, 페놀 생산 기술에 관한 것이다. 보다 상세하게는, 페놀 생산 기능을 부여하기 위해 특정한 유전자 조작이 행해진 코리네박테리움 글루타미쿰의 형질 전환체, 및 이 형질 전환체를 사용한 효율적인 페놀의 제조 기술에 관한 것이다.
지구 온난화, 및 화석 자원 고갈 문제를 배경으로 하여, 재생 가능 자원을 원료으로 한 화학 제품의 제조는, 바이오 연료 제조와 더불어, 신산업 바이오 리파이너리(refinery)로서 저탄소 사회 실현의 중요한 방책인 것으로 인식되어 큰 주목을 끌고 있다.
그러나, 재생 가능 자원을 원료로 한 바이오 페놀 생산은, 락트산이나 에탄올의 생산과 비교하여, 원료로 되는 당류로부터 대사 반응까지의 단계수가 대단히 많으므로 생산성이 낮고, 또한 생산물인 페놀에 의해 균의 증식이 저해되거나 페놀에 의한 세포 독성이 있는 등의 이유로 인해, 지금까지 공업적 생산이 불가능한 것으로 여겨지고 있었다.
페놀의 중요한 용도로서, 페놀 수지를 예로 들 수 있다. 페놀 수지는, 페놀과 알데히드류와의 부가 축합 반응에 의해 생성되며, 플라스틱 중에서도 가장 오래된 역사를 가지는 수지이며, 그 우수한 내열성, 내구성 등의 장점에 의해, 현재에도 자동차용 금속 대체 재료, 반도체 봉지(封止) 재료, 회로 기판 등 다양한 용도에 사용되고 있다. 또한, 지금까지 페놀 수지는, 원료의 페놀과 알데히드류의 반응성이 극히 높고, 얻어지는 고분자가 복잡한 3차원 메쉬 구조가 되기 때문에, 폴리머의 정밀 구조 설계나 나노 소재(nanomaterial)로 전개하기 곤란하여, 고부가 가치 용도로 이용하기 어려웠다. 그러나, 최근, 고분자의 물성 이론이나 시뮬레이션의 급속한 발전에 의해, 네트워크 구조를 정밀화하여 페놀 수지로부터 고기능성 재료의 제조이 가능해지고 있다. 이와 같은 배경 하에서 일본에서의 페놀 수지 생산량도 해마다 증가하고 있다.
페놀의 현재의 공업적 생산법(큐멘법)은, 석유 유래의 벤젠과 프로필렌을 원료로 하고, 다량의 용제류 및 다량의 열에너지를 필요로 하는, 전형적인 화학 공업의 고에너지 소비형 프로세스이다. 따라서, 지구 환경 보전이나 온실 효과 가스 삭감의 관점에서, 이산화탄소 배출이 적은 에너지 절약형이며, 재생 가능 자원으로부터 제조할 수 있고, 저폐기물 배출의 환경 조화형 프로세스의 개발, 즉 바이오 페놀 제조 기술 확립이 급선무가 되고 있다.
지금까지 자연계에 있어서 페놀 생산균에 대해서는 보고되어 있지 않다.
또한, 유전자 재조합균에 의한 페놀 생산 기술로서, 실용적으로 충분한 페놀 생산성을 얻을 수 있는 기술도 알려져 있지 않다.
본 발명은, 당류를 원료로 하여 효율적으로 페놀을 제조할 수 있는 미생물, 및 당류를 원료로 하여 효율적으로 페놀을 제조할 수 있는 방법을 제공하는 것을 과제로 한다.
상기 과제를 해결하기 위해 본 발명자들은 연구를 거듭하여 이하의 지견을 얻었다.
(i) 코리네형 세균에 코리스메이트-피루베이트 리아제 유전자, 및 4-하이드록시벤조에이트 데카르복실라아제 유전자를 도입한 형질 전환체는, 효율적으로 페놀을 생산할 수 있다.
(ii) 이 형질 전환체에 있어서, 숙주의 코리네형 세균의 염색체 상에 존재하는 4-하이드록시벤조에이트 하이드록실라아제 유전자가 파괴 또는 결손되어 있을 때는, 한층 효율적으로 페놀을 생산할 수 있다.
(iii) 이 형질 전환체에 있어서, 3-데옥시-D-아라비노헵툴로소네이트 7-포스페이트(DAHP) 신타아제 유전자가, 형질 전환 전의 숙주의 유전자 발현 레벨에 비해 고발현하고 있을 때는, 한층 효율적으로 페놀을 생산할 수 있다.
(iv) 이 형질 전환체는, 환원 조건 하의 반응액 중 실질적으로 증식하지 않는 상태에서 반응시키는 경우, 페놀 생산 효율이 특히 높다.
본 발명은 상기 지견에 따라 완성된 것이며, 이하의 형질 전환체 및 페놀의 제조 방법을 제공한다.
항 1.
코리스메이트-피루베이트 리아제(Chorismate-pyruvate lyase) 활성을 가지는 효소를 코딩하는 유전자, 및 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 활성을 가지는 효소를 코딩하는 유전자가, 숙주의 코리네형 세균에 도입된, 페놀 생산능을 가지는 형질 전환체.
항 2.
코리스메이트-피루베이트 리아제 활성을 가지는 효소를 코딩하는 유전자가, 에쉐리키아 콜라이(Escherichia coli) 유래의 유전자, 슈도모나스 푸티다(Pseudomonas putida) 유래의 유전자, 아시네토박터 바우마니(Acinetobacter baumannii) 유래의 유전자, 아조토박터 비넬란디(Azotobacter vinelandii) 유래의 유전자, 크로모할로박터 살렉시겐스(Chromohalobacter salexigens) 유래의 유전자, 시트로박터 코세리(Citrobacter koseri), 시트로박터 용게이(Citrobacter youngae)와 같은 시트로박터속세균 유래의 유전자, 엔테로박터 클로아케(Enterobacter cloacae) 유래의 유전자, 마리노박터 아쿠에어올레이(Marinobacter aquaeolei) 유래의 유전자, 마리노모나스 메디테라니아(Marinomonas mediterranea) 유래의 유전자, 판토에아 아나나티스(Pantoea ananatis) 유래의 유전자, 슈도알테로모나스 할로플랑크티스(Pseudoalteromonas haloplanktis) 유래의 유전자, 랄스토니아 유트로파(Ralstonia eutropha) 유래의 유전자, 슈와넬라 푸트레파시엔스(Shewanella putrefaciens) 유래의 유전자, 또는 티오바실러스 데니트리피칸스(Thiobacillus denitrificans)인 항 1에 기재된 형질 전환체.
항 3.
4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 효소를 코딩하는 유전자가, 바실러스 서브틸리스(Bacillus subtilis) 유래의 유전자, 바실러스 아트로파에우스 유래의 유전자, 바실러스 서브틸리스 아종 스피지제니 유래의 유전자, 시트로박터 코세리 유래의 유전자, 엔테로박터 아에로게네스 유래의 유전자, 엔테로박터 클로아케 유래의 유전자, 엔테로박터 호마에체이 유래의 유전자, 엔테로박터 사카자키 유래의 유전자, 에쉐리키아 콜라이 유래의 유전자, 에쉐리키아 퍼구소니 유래의 유전자, 파에니바실러스 폴리믹사 유래의 유전자, 또는 판토에아 아나나티스 유래의 유전자인 항 1에 기재된 형질 전환체.
항 4.
코리스메이트-피루베이트 리아제 활성을 가지는 효소를 코딩하는 유전자가 하기 (a) 또는 (b)의 DNA인 항 1에 기재된 형질 전환체.
(a) 서열 번호 31, 서열 번호 34, 서열 번호 81, 서열 번호 82, 서열 번호 83, 서열 번호 84, 서열 번호 85, 서열 번호 86, 서열 번호 87, 서열 번호 88, 서열 번호 89, 서열 번호 90, 서열 번호 91, 서열 번호 92, 또는 서열 번호 93의 염기 서열로 이루어지는 DNA
(b) (a) 중 어느 하나의 염기 서열과 상보적인 염기 서열로 이루어지는 DNA와 엄격한 조건 하에서 혼성화하고, 또한 코리스메이트-피루베이트 리아제 활성을 가지는 폴리펩티드를 코딩하는 DNA
항 5.
4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 효소를 코딩하는 유전자가 하기 (c) 또는 (d)의 DNA인 항 1에 기재된 형질 전환체.
(c) 서열 번호 37, 서열 번호 44, 서열 번호 47, 서열 번호 50, 서열 번호 53, 서열 번호 56, 서열 번호 59, 서열 번호 62, 서열 번호 65, 서열 번호 68, 서열 번호 71, 또는 서열 번호 74의 염기 서열로 이루어지는 DNA
(d) (c) 중 어느 하나의 염기 서열과 상보적인(complementary) 염기 서열로 이루어지는 DNA와 엄격한 조건 하에서 혼성화하고, 또한 코리스메이트-피루베이트 리아제 활성을 가지는 폴리펩티드를 코딩하는 DNA
항 6.
숙주의 코리네형 세균이, 그 염색체 상에 존재하는 4-하이드록시벤조에이트 하이드록실라아제(4-hydroxybenzoate hydroxylase) 활성을 가지는 효소를 코딩하는 유전자가 파괴되거나, 또는 결손된 것인, 항 1∼5 중 어느 하나에 기재된 형질 전환체.
항 7.
숙주의 코리네형 세균이, 그 염색체 상에 존재하는 페놀 2-모노옥시게나아제(phenol 2-monooxygenase) 활성을 가지는 효소를 코딩하는 유전자가 파괴되거나, 또는 결손된 것인, 항 1∼6 중 어느 하나에 기재된 형질 전환체.
항 8.
숙주의 코리네형 세균 내에서 DAHP 신타아제(3-deoxy-D-arabino-heptulosonate 7-phosphate(DAHP) synthase) 활성을 가지는 효소를 코딩하는 유전자가 고발현하고 있는 항 1∼7 중 어느 하나에 기재된 형질 전환체.
항 9.
숙주의 코리네형 세균이 코리네박테리움 글루타미쿰인 항 1∼8 중 어느 하나에 기재된 형질 전환체.
항 10.
숙주의 코리네형 세균이, 코리네박테리움 글루미쿰 R(FERM P-18976), ATCC13032, 또는 ATCC13869인 항 1∼5 중 어느 하나에 기재된 형질 전환체.
항 11.
숙주의 코리네형 세균이, 코리네박테리움 글루미쿰 R(FERM P-18976), ATCC13032, 또는 ATCC13869의 염색체 상에 존재하는 4-하이드록시벤조에이트 하이드록실라아제 활성을 가지는 효소를 코딩하는 유전자가 파괴되거나, 또는 결손된 것인, 항 1∼5 중 어느 하나에 기재된 형질 전환체.
항 12.
숙주의 코리네형 세균이, 코리네박테리움 글루미쿰 R(FERM P-18976), ATCC13032, 또는 ATCC13869의 염색체 상에 존재하는 페놀 2-모노옥시게나아제 활성을 가지는 효소를 코딩하는 유전자가 파괴되거나, 또는 결손된 것인, 항 1∼5 중 어느 하나에 기재된 형질 전환체.
항 13.
숙주의 코리네형 세균이, 코리네박테리움 글루미쿰 R(FERM P-18976), ATCC13032, 또는 ATCC13869에 있어서, DAHP 신타아제 활성을 가지는 효소를 코딩하는 유전자가 고발현하고 있는 것인 항 1∼5 중 어느 하나에 기재된 형질 전환체.
항 14.코리네박테리움 글루타미쿰 PHE18(수탁 번호:NITE BP-995), PHE11, PHE12, PHE13, PHE14, PHE15, PHE16, PHE17, PHE19-1, PHE19-2, PHE19-3, PHE19-4, PHE19-5, PHE19-6, PHE19-7, PHE19-8, PHE19-9, PHE19-10, PHE19-11, PHE19-12, PHE20-1, PHE20-2, PHE20-3, PHE20-4, PHE20-5, PHE20-6, PHE20-7, PHE20-8, PHE20-9, PHE20-10, PHE20-11, PHE20-12, PHE20-13, 또는 PHE20-14의 형질 전환체.
항 15.
항 1∼14 중 어느 하나에 기재된 형질 전환체를, 환원 조건 하에서, 당류를 함유하는 반응액 중 반응시키는 공정과, 반응액 중의 페놀을 회수하는 공정을 포함하는 페놀의 제조 방법.
항 16.
반응 공정에 있어서, 형질 전환체가 실질적으로 증식하지 않는 항 15에 기재된 페놀의 제조 방법.
항 17.
환원 조건 하의 반응액의 산화 환원 전위가-200∼-500 mV(밀리볼트)인 항 15 또는 16에 기재된 페놀의 제조 방법.
항 18.
당류가 글루코오스, 프룩토오스, 만노오스, 크실로오스, 아라비노스, 갈락토오스, 수크로오스, 말토오스, 락토오스, 셀로비오스, 크실로비오스, 트레할로오스, 및 만니톨으로 이루어지는 군으로부터 선택되는 것인 항 15∼17 중 어느 하나에 기재된 페놀의 제조 방법.
본 발명의 형질 전환체를 사용함으로써, 당류로부터 페놀을 고효율로 제조할 수 있다.
일반적으로 미생물은 페놀과 같은 용제의 세포 독성에 의해 생육이 저해되므로, 미생물을 사용하여 페놀을 제조하는 것은 곤란했지만, 본 발명 방법에 의하면, 미생물을 사용하여, 실용적으로 충분히 양호한 효율로 페놀을 제조할 수 있다.
도 1은 실시예에서 사용한 각종 플라스미드의 구축 도면이다.
도 2는 실시예에서 사용한 각종 플라스미드의 구축 도면이다.
도 3은 실시예에서 사용한 각종 플라스미드의 구축 도면이다.
도 4는 각종 미생물의 호기 조건 하에 있어서의 증식에 미치는 페놀의 영향을 나타낸 도면이다.
도 5는 코리네박테리움의 환원 조건 하에 있어서의 당 소비에 미치는 페놀의 영향을 나타낸 도면이다.
이하에서, 본 발명을 상세하게 설명한다.
(I) 페놀 생산능을 가지는 형질 전환체
본 발명의 페놀 생산능을 가지는 형질 전환체는, 코리스메이트-피루베이트 리아제(Chorismate-pyruvate lyase) 활성을 가지는 효소를 코딩하는 유전자, 및 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 활성을 가지는 효소를 코딩하는 유전자가, 숙주의 코리네형 세균에 도입된 형질 전환체이다.
숙주
코리네형 세균이란, 버지즈·매뉴얼·디터미네이티브·박테리올로지[Bergey's Manual of Determinative Bacteriology, Vol. 8, 599(1974)]에 정의되어 있는 일군의 미생물이며, 통상의 호기적 조건에서 증식하는 것이라면 특별히 한정되는 것은 아니다. 구체예로서, 코리네박테리움속균, 브레비박테리움속균, 아스로박터속균, 마이코박테리움속균, 마이크로코커스속균 등을 들 수 있다. 코리네형 세균 중에서는 코리네박테리움속균이 바람직하다.
코리네박테리움속균으로서는, 코리네박테리움 글루타미쿰, 코리네박테리움 에피시엔스(Corynebacterium efficiens), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 할로톨레란스(Corynebacterium halotolerance), 코리네박테리움 알카놀리티쿰(Corynebacterium alkanolyticum) 등을 예로 들 수 있다.
그 중에서도, 안전하면서, 또한 페놀 생산성이 높은 점에서, 코리네박테리움 글루타미쿰이 바람직하다. 바람직한 균주로서, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) R주(FERM P-18976), ATCC13032주, ATCC13869주, ATCC13058주, ATCC13059주, ATCC13060주, ATCC13232주, ATCC13286주, ATCC13287주, ATCC13655주, ATCC13745주, ATCC13746주, ATCC13761주, ATCC14020주, ATCC31831주, MJ-233(FERM BP-1497), MJ-233AB-41(FERM BP-1498) 등을 예로 들 수 있다. 그 중에서도, R주(FERM P-18976), ATCC13032주, ATCC13869주가 바람직하다.
그리고, 분자 생물학적 분류에 의해, 브레비박테리움 플라붐(Brevibacterium flavum), 브레비박테리움 락토퍼멘툼(Brevibacterium lactofermentum), 브레비박테리움 디바리카툼(Brevibacterium divaricatum), 코리네박테리움 릴리움(Corynebacterium lilium) 등의 코리네형 세균도 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)으로 균명이 통일되어 있다[Liebl, W. et al., Transfer of Brevibacterium divaricatum DSM 20297T, "Brevibacterium flavum" DSM 20411, "Brevibacterium lactofermentum" DSM 20412 and DSM 1412, and Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol. 41:255-260.(1991), 코마가타 카즈오 외, 코리네포룸 세균의 분류, 발효와 공업, 45:944-963 (1987)].
구분류의 브레비박테리움 락토퍼멘툼 ATCC13869주, 브레비박테리움 플라붐의 MJ-233주(FERM BP-1497), MJ-233AB-41주(FERM BP-1498) 등도 바람직한 코리네박테리움 글루타미쿰이다.
브레비박테리움속균으로서는, 브레비박테리움 암모니아게네스(Brevibacterium ammoniagenes)(예를 들면, ATCC6872주) 등을 예로 들 수 있다.
아스로박터속균으로서는, 아스로박터 글로비포미스(Arthrobacter globiformis)(예를 들면, ATCC8010주, ATCC4336주, ATCC21056주, ATCC31250주, ATCC31738주, ATCC35698주) 등을 예로 들 수 있다.
마이코박테리움속균으로서는, 마이코박테리움 보비스(Mycobacterium bovis)(예를 들면, ATCC19210주, ATCC27289주) 등을 예로 들 수 있다.
마이크로코커스속균으로서는, 마이크로코커스 프로이덴라이히(Micrococcus freudenreichii)(예를 들면, No. 239주(FERM P-13221)), 마이크로코커스 루테우스(Micrococcus leuteus)(예를 들면, No. 240주(FERM P-13222)), 마이크로코커스 우레아에(Micrococcus ureae)(예를 들면, IAM1010주), 마이크로코커스 로제우스(Micrococcus roseus)(예를 들면, IFO3764주) 등을 예로 들 수 있다.
또한, 코리네형 세균은, 야생주 외에, 그 변이주나 인위적인 유전자 재조합체라도 된다. 예를 들면, 락테이트(락트산) 데히드로게나아제(lactate dehydrogenase:LDH), 포스포에놀피루베이트 카르복실라아제(phosphoenolpyrvate carboxylase), 말레이트 데히드로게나아제(malate dehydrogenase) 등의 유전자의 파괴주가 있다. 이와 같은 유전자 파괴주를 숙주로서 사용함으로써, 페놀의 생산성을 향상시키거나, 부산물의 생성을 억제할 수 있다.
그 중에서도, 락테이트 데히드로게나아제 유전자의 파괴주가 바람직하다. 이 유전자 파괴주는, 락트산 데히드로게나아제 유전자가 파괴되어 있는 것에 의해, 피루브산으로부터 락트산으로의 대사 경로가 차단되어 있다. 그 중에서도, 코리네박테리움 글루타미쿰의, 특히 R(FERM P-18976)주의 락테이트 데히드로게나아제 유전자의 파괴주가 바람직하다.
이와 같은 유전자 파괴주는, 유전자 공학적 방법에 의해 통상적인 방법에 따라 제조할 수 있다. 예를 들면, WO2005/010182 A1에, 락트산 데히드로게나아제 파괴주, 및 그 제조 방법에 대하여 기재되어 있다.
코리스메이트 - 피루베이트 리아제 효소 유전자( ubiC )
코리스메이트-피루베이트 리아제는, 코리스메이트로부터 피루브산을 이탈시켜 4-하이드록시벤조에이트를 생성하는 반응을 촉매하는 효소이다.
코리스메이트-피루베이트 리아제 활성을 가지는 효소를 코딩하는 유전자의 유래는 특별히 한정되지 않지만, 에쉐리키아 콜라이(Escherichia coli) 유래의 유전자, 슈도모나스 푸티다(Pseudomonas putida) 유래의 유전자, 아시네토박터 바우마니(Acinetobacter baumannii) 유래의 유전자, 아조토박터 비넬란디(Azotobacter vinelandii) 유래의 유전자, 크로모할로박터 살렉시겐스(Chromohalobacter salexigens) 유래의 유전자, 시트로박터 코세리(Citrobacter koseri), 시트로박터 용게이(Citrobacter youngae)와 같은 시트로박터속 세균 유래의 유전자, 엔테로박터 클로아케(Enterobacter cloacae) 유래의 유전자, 마리노박터 아쿠에어올레이(Marinobacter aquaeolei) 유래의 유전자, 마리노모나스 메디테라니아(Marinomonas mediterranea) 유래의 유전자, 판토에아 아나나티스(Pantoea ananatis) 유래의 유전자, 슈도알테로모나스 할로플랑크티스(Pseudoalteromonas haloplanktis) 유래의 유전자, 랄스토니아 유트로파(Ralstonia eutropha) 유래의 유전자, 슈와넬라 푸트레파시엔스(Shewanella putrefaciens) 유래의 유전자, 및 티오바실러스 데니트리피칸스(Thiobacillus denitrificans) 유래의 유전자가 바람직하며, 슈도모나스 푸티다 유래의 유전자가 보다 바람직하다.
에쉐리키아 콜라이 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 31의 염기 서열로 이루어지는 DNA를 예로 들 수 있고, 슈도모나스 푸티다 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 34의 염기 서열로 이루어지는 DNA를 예로 들 수 있으며, 아시네토박터 바우마니 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 81의 염기 서열로 이루어지는 DNA를 예로 들 수 있고, 아조토박터 비넬란디 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 82의 염기 서열로 이루어지는 DNA를 예로 들 수 있으며, 크로모할로박터 살렉시겐스 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 83의 염기 서열로 이루어지는 DNA를 예로 들 수 있고, 시트로박터 코세리 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 84의 염기 서열로 이루어지는 DNA를 예로 들 수 있으며, 시트로박터 용게이 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 85의 염기 서열로 이루어지는 DNA를 예로 들 수 있고, 엔테로박터 클로아케 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 86의 염기 서열로 이루어지는 DNA를 예로 들 수 있으며, 마리노박터 아쿠에어올레이 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 87의 염기 서열로 이루어지는 DNA를 예로 들 수 있고, 마리노모나스 메디테라니아 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 88의 염기 서열로 이루어지는 DNA를 예로 들 수 있으며, 판토에아 아나나티스 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 89의 염기 서열로 이루어지는 DNA를 예로 들 수 있고, 슈도알테로모나스 할로플랑크티스 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 90의 염기 서열로 이루어지는 DNA를 예로 들 수 있으며, 랄스토니아 유트로파 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 91의 염기 서열로 이루어지는 DNA를 예로 들 수 있고, 슈와넬라 푸트레파시엔스 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 92의 염기 서열로 이루어지는 DNA를 예로 들 수 있으며, 및 티오바실러스 데니트리피칸스 유래의 코리스메이트-피루베이트 리아제 효소 유전자로서는, 서열 번호 93의 염기 서열로 이루어지는 DNA를 예로 들 수 있다.
또한, 본 발명에서는, 서열 번호 31, 서열 번호 34, 서열 번호 81, 서열 번호 82, 서열 번호 83, 서열 번호 84, 서열 번호 85, 서열 번호 86, 서열 번호 87, 서열 번호 88, 서열 번호 89, 서열 번호 90, 서열 번호 91, 서열 번호 92, 또는 서열 번호 93의 염기 서열과 상보적인 염기 서열로 이루어지는 DNA와 엄격한 조건 하에서 혼성화하고, 또한 코리스메이트-피루베이트 리아제 활성을 가지는 폴리펩티드를 코딩하는 DNA도 사용할 수 있다.
본 발명에 있어서 「엄격한 조건」은, 일반적인 조건, 예를 들면, Molecular Cloning, A Laboratory Manual, Second Edition, 1989, Vol2, p11.45에 기재된 조건을 가리킨다. 구체적으로는, 완전 하이브리드의 융해 온도(Tm)보다 5∼10 ℃ 낮은 온도에서 혼성화가 일어나는 경우를 지칭한다.
코리스메이트-피루베이트 리아제 활성은, 「Journal of Bacteriology, 174, 5309-5316, 1992 “Materials and Methods”」에 기재된 방법으로 측정할 수 있다. 간단하게 설명하면, 시험용액에 피험 효소를 첨가하고, 50 mM 트리스 HCl pH 7.5, 5 mM EDTA, 10 mM β-머캅토에탄올, 60μM 코리스민산과 효소를 포함하는 반응액을 조제하고, 240 nm에 있어서의 흡광도의 기울기(처음 속도)를 측정한다. 코리스민산을 첨가하지 않는 계에 대해도 마찬가지로 반응을 행하여, 백그라운드값으로 한다. 양 측정값의 차이를 코리스메이트-피루베이트 리아제 활성으로 한다.
또한, 본 발명에서는, 서열 번호 31, 서열 번호 34, 서열 번호 81, 서열 번호 82, 서열 번호 83, 서열 번호 84, 서열 번호 85, 서열 번호 86, 서열 번호 87, 서열 번호 88, 서열 번호 89, 서열 번호 90, 서열 번호 91, 서열 번호 92, 또는 서열 번호 93의 염기 서열과 동일성이 90% 이상, 바람직하게는 95% 이상, 보다 바람직하게는 98% 이상의 염기 서열로 이루어지고, 또한 코리스메이트-피루베이트 리아제 활성을 가지는 폴리펩티드를 코딩하는 DNA도 사용할 수 있다.
본 발명에 있어서, 염기 서열의 동일성은, GENETYX ver.8(GENETYX 가부시키가이샤 제네틱스 제조)에 의해 산출하고 값이다.
서열 번호 31, 서열 번호 34, 서열 번호 81, 서열 번호 82, 서열 번호 83, 서열 번호 84, 서열 번호 85, 서열 번호 86, 서열 번호 87, 서열 번호 88, 서열 번호 89, 서열 번호 90, 서열 번호 91, 서열 번호 92, 또는 서열 번호 93의 염기 서열로 이루어지는 DNA의 유사체는, 예를 들면, 이들 염기 서열에 기초하여, 통상적인 방법에 따라 설계한 프라이머 또는 프로브를 사용한 PCR 또는 혼성화에 의해, 타 생물종의 DNA 라이브러리로부터 선택할 수 있고, 이로써, 높은 확률로 코리스메이트-피루베이트 리아제 활성을 가지는 폴리펩티드를 코딩하는 DNA를 얻을 수 있다.
4- 하이드록시벤조에이트 데카르복실라아제 효소 유전자( bsdBCD 또는 dca )
4-하이드록시벤조에이트 데카르복실라아제는, 4-하이드록시벤조에이트의 탈탄산에 의한 페놀의 생성 반응을 촉매하는 효소이다.
4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 효소를 코딩하는 유전자의 유래는 특별히 한정되지 않지만, 바실러스 서브틸리스(Bacillus subtilis), 바실러스 메가테리움(Bacillus megaterium), 바실러스 리케니포미스(Bacillus licheniformis), 바실러스 아트로파에우스(Bacillus atrophaeus), 바실러스 서브틸리스 아종 스피지제니(Bacillus subtilis subsp. spizizenii)와 같은 바실러스속 세균 유래의 유전자, 시트로박터 코세리(Citrobacter koseri) 유래 유전자, 엔테로박터 아에로게네스(Enterobacter aerogenes), 엔테로박터 클로아케(Enterobacter cloacae), 엔테로박터 호마에체이(Enterobacter hormaechei), 엔테로박터 사카자키(Enterobacter sakazakii)와 같은 엔테로박터속 세균 유래의 유전자, 에쉐리키아 콜라이(Escherichia coli), 에쉐리키아 퍼구소니(Escherichia fergusonii)와 같은 에쉐리키아속 세균 유래 유전자, 파에니바실러스 폴리믹사(Paenibacillus polymyxa) 유래 유전자, 판토에아 아나나티스(Pantoea ananatis) 유래 유전자 등을 예로 들 수 있다. 그 중에서도, 바실러스속 세균(특히, 바실러스 서브틸리스) 유래의 유전자, 엔테로박터속 세균(특히, 엔테로박터 클로아케) 유래의 유전자, 에쉐리키아속 세균(특히, 에쉐리키아 콜라이) 유래의 유전자가 바람직하다.
그리고, 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 효소를 코딩하는 유전자는, 유래에 따라 상이한 각종 약칭이 사용되고 있다. 예를 들면, 바실러스 서브틸리스 유래의 4-하이드록시벤조에이트 데카르복실라아제 유전자는 bsdBCD로 약칭되고 있다. 본 명세서에서는, 4-하이드록시벤조에이트 데카르복실라아제 유전자를, 유래를 불문하고 「dca」로 약칭하는 경우가 있다.
바실러스 서브틸리스 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 37의 염기 서열로 이루어지는 DNA를, 바실러스 아트로파에우스 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 44의 염기 서열로 이루어지는 DNA를, 바실러스 서브틸리스 아종 스피지제니 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 47의 염기 서열로 이루어지는 DNA를, 시트로박터 코세리 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 50의 염기 서열로 이루어지는 DNA를, 엔테로박터 아에로게네스 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 53의 염기 서열로 이루어지는 DNA를, 엔테로박터 클로아케 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 56의 염기 서열로 이루어지는 DNA를, 엔테로박터 호마에체이 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 59의 염기 서열로 이루어지는 DNA를, 엔테로박터 사카자키 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 62의 염기 서열로 이루어지는 DNA를, 에쉐리키아 콜라이 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 65의 염기 서열로 이루어지는 DNA를, 에쉐리키아 퍼구소니 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 68의 염기 서열로 이루어지는 DNA를, 파에니바실러스 폴리믹사(Paenibacillus polymyxa) 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 71의 염기 서열로 이루어지는 DNA를, 판토에아 아나나티스(Pantoea ananatis) 유래의 4-하이드록시벤조에이트 데카르복실라아제 효소 유전자로서는, 서열 번호 74의 염기 서열로 이루어지는 DNA를 예로 들 수 있다.
또한, 본 발명에서는, 서열 번호 37, 서열 번호 44, 서열 번호 47, 서열 번호 50, 서열 번호 53, 서열 번호 56, 서열 번호 59, 서열 번호 62, 서열 번호 65, 서열 번호 68, 서열 번호 71, 또는 서열 번호 74의 염기 서열과 상보적인 염기 서열로 이루어지는 DNA와 엄격한 조건 하에서 혼성화하고, 또한 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 폴리펩티드를 코딩하는 DNA도 사용할 수 있다.
4-하이드록시벤조에이트 데카르복실라아제 활성은, 「Genomics, 86, 342-351, 2005 “Materials and Methods”」에 기재된 방법으로 측정할 수 있다. 간단하게 설명하면, 시험 용액에 피험 효소를 첨가하고, 100 mM MES, pH 6.0, 1 mM DTT, 5 mM 4-하이드록시벤조에이트와 효소를 포함하는 반응액을 조제하고, 270 nm에 있어서의 흡광도의 기울기(처음 속도)를 측정한다. 4-하이드록시벤조에이트를 첨가하지 않는 계에 대해서도 마찬가지로 반응을 행하여, 백그라운드값으로 한다. 양 측정값의 차이를 4-하이드록시벤조에이트 데카르복실라아제 활성으로 한다.
또한, 본 발명에서는, 서열 번호 37, 서열 번호 44, 서열 번호 47, 서열 번호 50, 서열 번호 53, 서열 번호 56, 서열 번호 59, 서열 번호 62, 서열 번호 65, 서열 번호 68, 서열 번호 71, 또는 서열 번호 74의 염기 서열과 동일성이 90% 이상, 바람직하게는 95% 이상, 보다 바람직하게는 98% 이상의 염기 서열로 이루어지고, 또한 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 폴리펩티드를 코딩하는 DNA도 사용할 수 있다.
서열 번호 37, 서열 번호 44, 서열 번호 47, 서열 번호 50, 서열 번호 53, 서열 번호 56, 서열 번호 59, 서열 번호 62, 서열 번호 65, 서열 번호 68, 서열 번호 71, 또는 서열 번호 74의 염기 서열로 이루어지는 DNA의 유사체는, 전술한 방법으로 취득할 수 있다.
형질 전환을 위한 벡터의 구축
PCR로 증폭한 코리스메이트-피루베이트 리아제 효소를 코딩하는 DNA, 및 4-하이드록시벤조에이트 데카르복실라아제 효소를 코딩하는 DNA는, 각각, 숙주에서 증폭할 수 있는 적절한 벡터에 클로닝하면 된다.
플라스미드 벡터로서는, 코리네형 세균 내에서 자율 증식(autonomous replication) 기능을 담당하는 유전자를 포함하는 것이면 된다. 그 구체예로서는, 브레비박테리움 락토퍼멘툼(Brevibacterium lactofermentum) 2256 유래의 pAM330{[일본 특허출원 공개번호 소58-67699], [Miwa, K. et al., Cryptic plasmids in glutamic acid-producing bacteria. Agric. Biol. Chem. 48:2901-2903(1984)] 및 [Yamaguchi, R. et al., Determination of the complete nucleotide sequence of the Brevibacterium lactofermentum plasmid pAM330 and the analysis of its genetic information. Nucleic Acids Symp. Ser. 16: 265-267(1985)]}, 코리네박테리움 글루타미쿰 ATCC13058 유래의 pHM1519[Miwa, K. et al., Cryptic plasmids in glutamic acid-producing bacteria. Agric. Biol. Chem. 48:2901-2903(1984)] 및 pCRY30[Kurusu, Y. et al., Identification of plasmid partition function in coryneform bacteria. Appl. Environ. Microbiol. 57:759-764(1991)], 코리네박테리움 글루타미쿰 T250 유래의 pCG4{[일본 특허출원 공개번호 소57-183799], [Katsumata, R. et al., Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J. Bacteriol.,159:306-311(1984)]}, pAG1, pAG3, pAG14, pAG50[일본 특허출원 공개번호 소62-166890], pEK0, pEC5, pEKEx1[Eikmanns, B.J. et al., A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene, 102:93-98(1991)] 등을 들 수 있다.
바람직한 프로모터로서는, 코리네박테리움 글루타미쿰 R 유래의 글리세르알데히드 3-포스페이트데히드로게나아제 A 유전자(gapA)의 프로모터 PgapA, 말레이트데히드로게나아제 유전자(mdh)의 프로모터 Pmdh, 락테이트데히드로게나아제 A 유전자(ldhA)의 프로모터 PldhA 등을 예로 들 수 있으며, 그 중에서도, PgapA가 바람직하다.
바람직한 터미네이터로서는, 대장균 rRNA 오페론의 rrnB T1T2 터미네이터, 대장균의 trpA 터미네이터, 브레비박테리움 락토퍼멘툼(Brevibacterium lactofermentum)의 trp 터미네이터 등을 예로 들 수 있고, 그 중에서도, rrnB T1T2 터미네이터가 바람직하다.
형질 전환
형질 전환 방법은, 공지의 방법을 제한없이 사용할 수 있다. 이와 같은 공지의 방법으로서, 예를 들면, 염화 칼슘/염화 루비듐법, 인산 칼슘법, DEAE-덱스트란 개재 트랜스펙션, 전기 천공법 등이 있다. 그 중에서도, 코리네형 세균에는, 전기 펄스법이 매우 적합하고, 전기 펄스법은, 공지의 방법{[Kurusu, Y. et al., Electroporation-transformation system for Coryneform bacteria by auxotrophic complementation. Agric. Biol. Chem. 54:443-447(1990)] 및 [Vertes A.A. et al., Presence of mrr-and mcr-like restriction systems in Coryneform bacteria. Res. Microbiol. 144:181-185(1993)]}에 의해 행할 수 있다.
형질 전환체는, 미생물의 배양에 통상적으로 사용되는 배지를 사용하여 배양하면 된다. 이 배지로서는, 통상, 탄소원, 질소원, 무기염류 및 그 외의 영양 물질 등을 함유하는 천연 배지 또는 합성 배지 등을 사용할 수 있다.
탄소원으로서는, 글루코오스, 프룩토오스, 수크로오스, 만노오스, 말토오스, 만니톨, 크실로오스, 아라비노스, 갈락토오스, 전분, 당밀, 소르비톨, 글리세린 등의 당질 또는 당 알코올;아세트산, 시트르산, 락트산, 푸마르산, 말레산 또는 글루콘산 등의 유기산;에탄올, 프로판올 등의 알코올 등을 예로 들 수 있다. 또한, 원하는 바에 따라 노말 파라핀 등의 탄화수소 등도 사용할 수 있다. 탄소원은, 1종을 단독으로 사용할 수도 있고, 또는 2종 이상을 혼합하여 사용할 수도 있다. 배지 중의 이들 탄소원의 농도는, 통상, 약 0.1∼10(w/v%)로 하면 된다.
질소원으로서는, 염화 암모늄, 황산 암모늄, 질산 암모늄, 아세트산 암모늄 등의 무기 또는 유기 암모늄 화합물, 요소, 암모니아수, 질산 나트륨, 질산 칼륨 등을 예로 들 수 있다. 또한, 콘스팁리커(corn steep liquor), 고기 엑기스, 펩톤, NZ-아민, 단백질 가수분해물, 아미노산 등의 질소 함유 유기 화합물 등도 사용할 수 있다. 질소원은, 1종을 단독으로 사용할 수도 있고, 또 2종 이상을 혼합하여 사용할 수도 있다. 배지 중의 질소원 농도는, 사용하는 질소 화합물에 따라 상이하지만, 통상, 약 0.1∼10(w/v%)로 하면 된다.
무기염류로서는, 예를 들면, 인산 제1 칼륨, 인산 제2칼륨, 황산 마그네슘, 염화 나트륨, 질산 제1 철, 황산 망간, 황산 아연, 황산 코발트, 또는 탄산칼슘 등이 있다. 이들 무기염은, 1종을 단독으로 사용할 수도 있고, 또한 2종 이상을 혼합하여 사용할 수도 있다. 배지 중의 무기염류 농도는, 사용하는 무기염에 따라 상이하지만, 통상, 약 0.01∼1(w/v%)로 하면 된다.
영양 물질로서는, 예를 들면, 고기 엑기스, 펩톤, 폴리 펩톤, 효모 엑기스, 건조 효모, 콘스팁리커, 탈지 분유, 탈지 대두 염산 가수분해물, 또는 동식물 또는 미생물 균체의 엑기스나 이들의 분해물 등이 있다. 영양 물질의 배지 농도는, 사용하는 영양 물질에 따라 상이하지만, 통상, 약 0.1∼10(w/v%)로 하면 된다. 또한, 필요에 따라 비타민류를 첨가할 수도 있다. 비타민류로서는, 예를 들면, 비오틴, 티아민(비타민 B1), 피리독신(비타민 B6), 판토텐산, 이노시톨, 니코틴산 등이 있다.
배지의 pH는 약 5∼8이 바람직하다.
바람직한 미생물 배양 배지로서는, A 배지[Inui, M. et al., Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7:182-196 (2004)], BT 배지[Omumasaba, C.A. et al., Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol. 8: 91-103(2004)] 등을 예로 들 수 있다.
배양 온도는 약 15∼45 ℃로 하면 되고, 배양 시간은 약 1∼7 일간으로 하면 된다.
숙주 염색체 유전자의 파괴 또는 결실
숙주의 코리네형 세균은, 그 염색체 상에 존재하는 4-하이드록시벤조에이트 하이드록실라아제 활성을 가지는 효소를 코딩하는 유전자(pobA)가, 파괴되거나, 또는 결실되어 있는 것이 바람직하고, 이로써, 한층 양호한 효율로 페놀을 제조할 수 있다.
또한, 숙주의 코리네형 세균은, 그 염색체 상에 존재하는 페놀 2-모노옥시게나아제 활성을 가지는 효소를 코딩하는 유전자(poxF)가 파괴되거나, 또는 결실되어 있는 것이 바람직하고, 이로써, 한층 양호한 효율로 페놀을 제조할 수 있다.
pobA 및 poxF의 양쪽이 파괴되거나, 또는 결실되어 있는 것이 특히 바람직하다. 유전자의 부분 서열을 결실시켜, 정상적으로 기능하는 효소 단백질을 생산하지 않도록 변형한 결실형 유전자를 제조하고, 상기 유전자를 포함하는 DNA로 세균을 형질 전환하여, 결실형 유전자와 염색체 상의 유전자 사이에 상동 재조합이 일어나게 함으로써, 염색체 상의 유전자를 결실형 또는 파괴형의 유전자로 치환할 수 있다. 결실형 또는 파괴형의 유전자에 의해 코딩되는 효소 단백질은, 생성되더라도, 야생형 효소 단백질과는 상이한 입체 구조를 가지고, 기능이 저하 또는 소실되어 있다. 이와 같은 상동 재조합을 이용한 유전자 치환에 의한 유전자 결실 또는 파괴는 이미 확립되어 있으며, 온도 감수성 복제 기점을 포함하는 플라스미드, 접합 전달 가능한 플라스미드를 사용하는 방법, 숙주 내에서 복제 기점을 가지지 않는 자살 벡터(suicide vector)를 이용하는 방법 등이 있다(미국 특허 제6303383호, 일본 특허출원 공개번호 평05-007491호).
구체적으로는, 실시예 1의 항목에 기재된 방법에 의해, 4-하이드록시벤조에이트 하이드록실라아제 효소 유전자(pobA)가 파괴되거나 또는 결실된 코리네형 세균을 얻을 수 있다. 또한, 마찬가지의 방법으로 페놀 2-모노옥시게나아제 유전자(poxF)가 파괴되거나 또는 결실된 코리네형 세균을 얻을 수 있다.
대사 유전자의 고발현
본 발명의 형질 전환체는, DAHP 신타아제(3-deoxy-D-arabino-heptulosonate 7-phosphate(DAHP) synthase) 유전자(aroG)가, 숙주의 본래의 레벨, 즉 야생형 숙주의 레벨보다 고발현하고 있는 것이 바람직하다. 이 고발현은, 형질 전환에 의한 유전자 도입, 또는 숙주 염색체 상의 유전자의 카피수를 높임으로써 달성된다.
형질 전환에 대하여 설명하면, 도입하는 DAHP 신타아제 유전자는, 숙주의 유전자와 같거나 또는 실질적으로 같은 DAHP 신타아제 유전자일 수도 있고, 그 외의 DAHP 신타아제 유전자일 수도 있다. 숙주의 유전자와 같거나 또는 실질적으로 같은, DAHP 신타아제 유전자를 도입하는 것이 바람직하다.
예를 들면, 코리네박테리움 글루타미쿰 유래의 DAHP 신타아제 유전자로서는, 서열 번호 28의 염기 서열로 이루어지는 DNA를 예로 들 수 있다.
그 외의 코리네형 세균의 DHAP 신타제 유전자로서는, 코리네박테리움 에피시엔스(Corynebacterium efficiens) 유래의 유전자(서열 번호 120, 일본 DNA 데이터 뱅크:CE2073), 마이코박테리움 스메그마티스(Mycobacterium smegmatis) 유래의 유전자(서열 번호 121, 일본 DNA 데이터 뱅크:MSMEG_4244), 로도코쿠스 오파쿠스(Rhodococcus opacus) 유래의 유전자(서열 번호 122, 일본 DNA 데이터 뱅크:ROP_08400) 등이 있다.
또한, DAHP 신타아제 유전자에 대하여 「실질적으로 같은 유전자」로서는, 상기 유전자가 코딩하는 폴리펩티드의 아미노산 서열과 90% 이상, 바람직하게는 95% 이상, 보다 바람직하게는 98% 이상의 동일성을 가지는 폴리펩티드로서, DAHP 신타아제 활성을 가지는 폴리펩티드를 코딩하는 DNA를 예로 들 수 있다. 또한, DAHP 신타아제 유전자에 대하여 「실질적으로 같은 유전자」로서는, 상기 유전자와 90% 이상, 바람직하게는 95% 이상, 보다 바람직하게는 98% 이상의 동일성을 가지는 DNA로서, DAHP 신타아제 활성을 가지는 폴리펩티드를 코딩하는 DNA를 예로 들 수 있다.
DAHP 신타아제 활성의 유무는, 포스포에놀피루브산과 에리트로스-4-인산을 기질로서 반응시켜, 생긴 3-deoxy-D-arabino-heptulosonate 7-phosphate(DAHP)를, 티오바비투르산을 사용한 발색법에 의해 정량(定量)[Appl.Environ.Microbiol., 74:5497-5503(2008).]함으로써 검출할 수 있다.
숙주 염색체 상의 DAHP 신타아제 유전자의 카피수를 높이는 방법에 대하여 말하면, 이 유전자를 코리네박테리움 글루타미쿰의 염색체 DNA 상에 다(多)카피 도입하면 된다. 미생물의 염색체 DNA 상에 유전자를 다카피로 도입하기 위해서는, 염색체 DNA 상에 다카피 존재하는 서열을 표적으로 이용하여, 상동 재조합법[Experimentsin Molecular Genetics, Cold Spring Harbor Lab.(1972)]에 의해 행할 수 있다. 염색체 DNA 상에 다카피 존재하는 서열로서는, 반복 DNA, 전이 인자의 단부에 존재하는 역반복(inverted repeat)을 이용할 수 있다. 또한, 일본 특허출원 공개번호 평2-109985호 공보에 개시되어 있는 바와 같이, 목적 유전자를 가동성 유전 인자와 함께 전이시켜 염색체 DNA 상에 다카피 도입할 수도 있다. 또한, Mu 퍼지를 사용하는 방법(일본 특허출원 공개번호 평2-109985호)으로 숙주 염색체에 목적 유전자를 내장시킬 수도 있다.
또한, 코리네형 세균의 염색체 상의 DAHP 신타아제 유전자의 프로모터 등의 발현 조절 서열을 보다 강력한 것으로 치환하는 것에 의해서도, 이들 유전자의 발현을 높일 수 있다. 예를 들면, tac 프로모터, lac 프로모터, trc 프로모터, trp 프로모터 등이 강력한 프로모터로서 알려져 있다. 또한, 국제 공개 WO00/18935에 개시되어 있는 바와 같이, 유전자의 프로모터 영역에 수 염기의 염기 치환을 도입하여, 보다 강력한 것으로 변이시킬 수도 있다. 프로모터의 강도의 평가법 및 강력한 프로모터의 예는, Goldstein et. al.의 논문(Prokaryotic promoters in biotechnology. Biotechnol. Annu. Rev., 1995, 1, 105-128) 등에 기재되어 있다. 발현 조절 서열의 치환은, 예를 들면, 온도 감수성 플라스미드를 사용한 유전자 치환과 동일한 방법으로 행할 수 있다.
또한, 리보솜 결합 부위(RBS)와 개시 코돈 사이의 스페이서, 특히 개시 코돈의 바로 상류의 서열에 있어서의 수개의 뉴클레오티드의 치환이 mRNA의 번역 효율에 크게 영향을 미치는 것으로 알려져 있고, 이들을 변이시킴으로써, 번역량을 향상시킬 수도 있다.
전술한 바와 같은 유전자 치환을 행하는 방법으로서는, 예를 들면, 온도 감수성 복제 기점을 포함하는 플라스미드, 접합 전달 가능한 플라스미드를 사용하는 방법, 숙주 내에서 복제 기점을 가지지 않는 자살 벡터를 이용하는 방법 등이 있다(미국 특허 제6303383호 명세서, 또는 일본 특허출원 공개번호 평05-007491호 공보).
( II ) 페놀의 제조 방법
전술한 본 발명의 형질 전환체를, 당류를 함유하는 반응액 중 반응시키는 공정과, 반응액 중의 페놀을 회수하는 공정을 포함하는 방법에 의해 페놀을 제조할 수 있다.
미생물의 증식
반응에 앞서, 형질 전환체를 호기 조건 하에서, 온도 약 25∼38 ℃에서, 약 12∼48 시간 배양하여 증식시키는 것이 바람직하다.
반응에 앞서, 형질 전환체의 호기적 배양에 사용하는 배지는, 탄소원, 질소원, 무기염류 및 그 외의 영양 물질 등을 함유하는 천연 배지 또는 합성 배지를 사용할 수 있다.
탄소원으로서 당류(글루코오스, 프룩토오스, 만노오스, 크실로오스, 아라비노스, 갈락토오스와 같은 단당;수크로오스, 말토오스, 락토오스, 셀로비오스, 크실로비오스, 트레할로오스와 같은 이당;전분과 같은 다당;당밀 등), 만니톨, 소르비톨, 크실리톨, 글리세린과 같은 당 알코올;아세트산, 시트르산, 락트산, 푸마르산, 말레산, 글루콘산과 같은 유기산;에탄올, 프로판올과 같은 알코올;노말 파라핀과 같은 탄화수소 등도 사용할 수 있다.
탄소원은, 1종을 단독으로 사용할 수도 있고, 또는 2종 이상을 혼합하여 사용할 수도 있다.
질소원으로서는, 염화 암모늄, 황산 암모늄, 질산 암모늄, 아세트산 암모늄과 같은 무기 또는 유기 암모늄 화합물, 요소, 암모니아수, 질산 나트륨, 질산 칼륨 등을 사용할 수 있다. 또한, 콘스팁리커, 고기 엑기스, 펩톤, NZ-아민, 단백질 가수분해물, 아미노산 등의 질소 함유 유기 화합물 등도 사용할 수 있다. 질소원은, 1종을 단독으로 사용할 수도 있고, 또는 2종 이상을 혼합하여 사용할 수도 있다. 질소원의 배지 중의 농도는, 사용하는 질소 화합물에 따라 상이하지만, 통상, 약 0.1∼10(w/v%)로 하면 된다.
무기염류로서는, 인산 제1 칼륨, 인산 제2칼륨, 황산 마그네슘, 염화 나트륨, 질산 제1 철, 황산 망간, 황산 아연, 황산 코발트, 탄산칼슘 등을 들 수 있다. 무기염은, 1종을 단독으로 사용할 수도 있고, 또는 2종 이상을 혼합하여 사용할 수도 있다. 무기염류의 배지 중의 농도는, 사용하는 무기염에 따라 상이하지만, 통상, 약 0.01∼1(w/v%)로 하면 된다.
영양 물질로서는, 고기 엑기스, 펩톤, 폴리 펩톤, 효모 엑기스, 건조 효모, 콘스팁리커, 탈지분유, 탈지 대두 염산 가수분해물, 동식물 또는 미생물 균체의 엑기스나 이들 분해물 등을 들 수 있다. 영양 물질의 배지 중의 농도는, 사용하는 영양 물질에 따라 상이하지만, 통상 약 0.1∼10(w/v%)로 하면 된다.
또한, 필요에 따라 비타민류를 첨가할 수도 있다. 비타민류로서는, 비오틴, 티아민(비타민 B1), 피리독신(비타민 B6), 판토텐산, 이노시톨, 니코틴산 등을 예로 들 수 있다.
배지의 pH는 약 6∼8이 바람직하다.
구체적인 바람직한 코리네형 세균용 배지로서는, A 배지[Inui, M. et al., Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7:182-196(2004)], BT 배지[Omumasaba, C.A. et al., Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol. 8:91-103(2004)] 등을 예로 들 수 있다. 이들 배지에 있어서, 당류 농도를 전술한 범위로 하여 이용하면 된다.
반응액
반응액으로서는, 탄소원, 질소원, 무기염류 및 그 외의 영양 물질 등을 함유하는 천연 배지 또는 합성 배지를 사용할 수 있다.
탄소원으로서는 당류를 사용한다. 당류로서는, 글루코오스, 프룩토오스, 만노오스, 크실로오스, 아라비노스, 갈락토오스와 같은 단당;수크로오스, 말토오스, 락토오스, 셀로비오스, 크실로비오스, 트레할로오스와 같은 이당;전분과 같은 다당;당밀 등을 예로 들 수 있다. 그 중에서도, 단당이 바람직하고, 글루코오스가 보다 바람직하다.
탄소원으로서, 당류 외에, 만니톨, 소르비톨, 크실리톨, 글리세린과 같은 당 알코올;아세트산, 시트르산, 락트산, 푸마르산, 말레산, 글루콘산과 같은 유기산;에탄올, 프로판올과 같은 알코올;노말 파라핀과 같은 탄화수소 등도 사용할 수 있다.
탄소원은, 1종을 단독으로 사용할 수도 있고, 또는 2종 이상을 혼합하여 사용할 수도 있다.
반응액 중의 당류의 농도는, 약 1∼20(w/v%)가 바람직하고, 약 2∼10(w/v%)가 보다 바람직하고, 약 2∼5(w/v%)가 더욱 바람직하다. 또한, 당류를 포함하는 전체 탄소원의 반응액 중의 농도는, 통상, 약 2∼5(w/v%)로 하면 된다.
질소원으로서는, 염화 암모늄, 황산 암모늄, 질산 암모늄, 아세트산 암모늄과 같은 무기 또는 유기 암모늄 화합물, 요소, 암모니아수, 질산 나트륨, 질산 칼륨 등을 사용할 수 있다. 또한, 콘스팁리커, 고기 엑기스, 펩톤, NZ-아민, 단백질 가수분해물, 아미노산 등의 질소 함유 유기 화합물 등도 사용할 수 있다. 질소원은, 1종을 단독으로 사용할 수도 있고, 또는 2종 이상을 혼합하여 사용할 수도 있다. 질소원의 반응액 중의 농도는, 사용하는 질소 화합물에 따라 상이하지만, 통상, 약 0.1∼10(w/v%)로 하면 된다.
무기염류로서는, 인산 제1 칼륨, 인산 제2칼륨, 황산 마그네슘, 염화 나트륨, 질산 제1 철, 황산 망간, 황산 아연, 황산 코발트, 탄산칼슘 등을 예로 들 수 있다. 무기염은, 1종을 단독으로 사용할 수도 있고, 또는 2종 이상을 혼합하여 사용할 수도 있다. 무기염류의 반응액 중의 농도는, 사용하는 무기염에 따라 상이하지만, 통상, 약 0.01∼1(w/v%)로 하면 된다.
영양 물질로서는, 고기 엑기스, 펩톤, 폴리 펩톤, 효모 엑기스, 건조 효모, 콘스팁리커, 탈지분유, 탈지 대두 염산 가수분해물, 동식물 또는 미생물 균체의 엑기스나 이들의 분해물 등을 예로 들 수 있다. 영양 물질의 반응액 중의 농도는, 사용하는 영양 물질에 따라 상이하지만, 통상 약 0.1∼10(w/v%)로 하면 된다.
또한, 필요에 따라 비타민류를 첨가할 수도 있다. 비타민류로서는, 비오틴, 티아민(비타민 B1), 피리독신(비타민 B6), 판토텐산, 이노시톨, 니코틴산 등을 예로 들 수 있다.
배지의 pH는 약 6∼8이 바람직하다.
구체적인 바람직한 코리네형 세균용 배지로서는, 전술한 A 배지, BT 배지 등을 예로 들 수 있다. 이들 배지에 있어서, 당류 농도를 상기 범위로 하여 이용하면 된다.
반응 조건
반응 온도, 즉 반응 중의 형질 전환체의 생존 온도는, 약 20∼50 ℃가 바람직하고, 약 25∼40 ℃가 보다 바람직하다. 전술한 온도 범위에서, 양호한 효율로 페놀을 제조할 수 있다.
또한, 반응 시간은, 약 1∼7 일간이 바람직하고, 약 1∼3 일간이 보다 바람직하다.
배치식(batch type), 유가식(fed-batch type), 연속식(continuous type)의 어느 방식으로 행해도 된다. 그 중에서도, 배치식이 바람직하다.
<환원 조건>
반응은, 호기적 조건에서 행해도 되고, 환원 조건에서 행해도 되지만, 환원 조건에서 행하는 것이 바람직하다. 환원 조건에서는, 코리네형 세균은 실질적으로 증식하지 않고, 한층 효율적으로 페놀을 생산시킬 수 있다.
환원 조건은, 반응액의 산화 환원 전위로 규정된다. 반응액의 산화 환원 전위는, 약-200 mV∼-500 mV가 바람직하고, 약-250 mV∼-500 mV가 보다 바람직하다.
반응액의 환원 상태는 레사주린(resazurin) 지시약(환원 상태이면, 청색으로부터 무색으로 탈색함)으로 간편하게 추정할 수 있고, 산화 환원 전위차계(예를 들면, BROADLEYJAMES사 제조, ORP Electrodes)를 사용하여 정확하게 측정할 수 있다.
환원 조건에 있는 반응액의 조정 방법은, 공지의 방법을 제한없이 사용할 수 있다. 예를 들면, 반응액의 액체 매체로서, 증류수 등을 대신하여 반응액용 수용액을 사용해도 되고, 반응액용 수용액의 조정 방법은, 예를 들면, 황산 환원 미생물 등의 절대 혐기성 미생물용의 배양액 조정 방법(Pfennig, N et. al.,(1981):The dissimilatory sulfate-reducing bacteria, In The Prokaryotes, A Handbook on Habitats, Isolation and Identification of Bacteria, Ed. By Starr, M.P. et al., p.926-940, Berlin, Springer Verlag.)이나 「농예화학 실험서 제3권, 쿄토 대학 농학부 농예화학 교실편, 1990년 제26쇄, 산업 도서 가부시키가이샤 출판」등을 참고하여, 원하는 환원 조건 하의 수용액을 얻을 수 있다.
구체적으로는, 증류수 등을 가열 처리나 감압 처리하여 용해 가스를 제거함으로써, 환원 조건의 반응액용 수용액을 얻을 수 있다. 이 경우에, 약 10 mmHg 이하, 바람직하게는 약 5 mmHg 이하, 보다 바람직하게는 약 3 mmHg 이하의 감압 하에서, 약 1∼60 분 정도, 바람직하게는 약 5∼40 분 정도, 증류수 등을 처리함으로써, 용해 가스, 특히 용해 산소를 제거하여 환원 조건 하의 반응액용 수용액을 제조할 수 있다.
또한, 적절한 환원제(예를 들면, 티오글리콜산, 아스코르브산, 시스테인 염산염, 머캅토아세트산, 티올아세트산, 글루타티온, 황화 소다 등)를 첨가하여 환원 조건의 반응액용 수용액을 조정할 수도 있다. 이들 방법을 적절하게 조합하는 것도 유효한 환원 조건의 반응액용 수용액의 조정 방법이다.
반응중에도 반응액을 환원 조건으로 유지하는 것이 바람직하다. 반응 도중에 환원 조건을 유지하기 위하여, 반응계 외부로부터의 산소의 혼입을 가능한 한 방지하는 것이 바람직하고, 구체적으로는, 반응계를 질소 가스 등의 불활성 가스나 탄산 가스 등으로 봉입(封入)하는 방법을 예로 들 수 있다. 산소 혼입을 보다 효과적으로 방지하는 방법으로서는, 반응 도중에 본 발명의 호기성 세균의 균체 내의 대사 기능을 효율적으로 기능시키기 위하여, 반응계의 pH 유지 조정액의 첨가나 각종 영양소 용해액을 적절하게 첨가할 필요도 있지만, 이와 같은 경우에는 첨가 용액으로부터 산소를 사전에 제거하여 두는 것이 유효하다.
페놀의 회수
상기한 바와 같이 하여 배양함으로써, 반응액 중에 페놀이 생산된다. 반응액을 회수함으로써 페놀을 회수할 수 있지만, 또한 공지의 방법으로 페놀을 반응액으로부터 분리할 수도 있다. 이와 같은 공지의 방법으로서, 증류법, 막투과법, 유기용매 추출법 등을 예로 들 수 있다.
[실시예]
실시예 1 페놀 생산 유전자의 클로닝과 발현
(1) 미생물로부터의 염색체 DNA 의 추출
코리네박테리움 글루타미쿰(Corynebacterium glutamicum) R(FERM P-18976)로부터의 염색체 DNA 추출은, A 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml, yeast extract 2g, vitamin assay casamino acid 7g을 증류수 1L에 용해시킨 것]에, 탄소원으로서 최종 농도 4%가 되도록 50%(w/v) 글루코오스 용액을 첨가하고, 백금이(platinum loop)를 사용하여 식균한 후, 지수 증식기까지 33℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
에쉐리키아 콜라이(Escherichia coli K-12 MG1655)로부터의 염색체 DNA 추출은, LB 배지[tryptone 10g, yeast extract 5g, NaCl 5g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 37℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
슈도모나스 푸티다(Pseudomonas putida KT2440) ATCC 47054로부터의 염색체 DNA 추출은, LB 배지[tryptone 10g, yeast extract 5g, NaCl 5g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 37℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
아시네토박터 바우마니(Acinetobacter baumannii) JCM 6841로부터의 염색체 DNA 추출은, JCM Medium No.12 배지[peptone 5g, beef extract 3g, NaCl 5g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 37℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
아조토박터 비넬란디(Azotobacter vinelandii) ATCC 9104로부터의 염색체 DNA 추출은, NBRC Medium No.805 배지[yeast extract 1g, Mannitol 5g, K2HPO4 0.7g, KH2PO4 0.1g, MgSO4·7H2O 0.2g, NaCl 1g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 30℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
크로모할로박터 살렉시겐스(Chromohalobacter salexigens) ATCC BAA-138로부터의 염색체 DNA 추출은, Nutrient broth with NaCl 배지[Nutrient Broth(Becton, Dickinson and Company 제조, Catalog No. 234000) 8g, NaCl 100g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 37℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
시트로박터 용게이(Citrobacter youngae) ATCC 29220으로부터의 염색체 DNA 추출은, Nutrient broth 배지[Nutrient Broth(Becton, Dickinson and Company 제조, Catalog No. 234000) 8g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 37℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
마리노박터 아쿠에어올레이(Marinobacter aquaeolei) ATCC 700491의 염색체 DNA(Catalog No. 700491 D-5)는 ATCC(American Type Culture Collection)로부터 입수했다.
마리노모나스 메디테라니아(Marinomonas mediterranea) NBRC 103028으로부터의 염색체 DNA 추출은, NBRC Medium No.340 배지[Bacto Marine Broth 2216(Becton, Dickinson and Company 제조, Catalog No. 279110) 37.4g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 25℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
슈도알테로모나스 할로플랑크티스(Pseudoalteromonas haloplanktis) NBRC 102225로부터의 염색체 DNA 추출은, NBRC Medium No.340 배지[Bacto Marine Broth 2216(Becton, Dickinson and Company 제조, Catalog No. 279110) 37.4g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 25℃로 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
랄스토니아 유트로파(Ralstonia eutropha) IAM 12368로부터의 염색체 DNA 추출은, Nutrient broth 배지[Nutrient Broth(Becton, Dickinson and Company 제조, Catalog No. 234000) 8g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 26℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
슈와넬라 푸트레파시엔스(Shewanella putrefaciens) JCM 20190으로부터의 염색체 DNA 추출은, Nutrient broth 배지[Nutrient Broth(Becton, Dickinson and Company 제조, Catalog No. 234000) 8g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 25℃로 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
티오바실러스 데니트리피칸스(Thiobacillus denitrificans) ATCC 25259 JCM 20190으로부터의 염색체 DNA 추출은, JCM Medium No.91 배지[KNO3 5g, NaHCO3 0.5g을 S6 medium(KH2PO4 1.8g, Na2HPO4 1.2g, (NH4)2SO4 0.1g, MgSO4·7H2O 0.1g, FeCl3·6H2O 30mg, MnSO4·xH2O 30mg, CaCl2·2H2O 40mg, 10% Na2S2O3 solution 100ml를 증류수 900ml에 용해시킨 것) 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 30℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
바실러스 서브틸리스(Bacillus subtilis) NBRC 14144로부터의 염색체 DNA 추출은, NBRC Medium No.802 배지[polypeptone 10g, yeast extract 2g, MgSO4·7H2O 1g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 37℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
바실러스 아트로파에우스(Bacillus atrophaeus) JCM 9070으로부터의 염색체 DNA 추출은, JCM Medium No.22 배지[peptone 10g, beef extract 10g, NaCl 5g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 30℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
바실러스 서브틸리스 아종 스피지제니(Bacillus subtilis subsp. spizizenii) NBRC 101239로부터의 염색체 DNA 추출은, NBRC Medium No.802 배지[polypeptone 10g, yeast extract 2g, MgSO4·7H2O 1g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 37℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
시트로박터 코세리(Citrobacter koseri) ATCC BAA-895의 염색체 DNA(Catalog No. BAA-895 D-5)는 ATCC(American Type Culture Collection)로부터 입수했다.
엔테로박터 아에로게네스(Enterobacter aerogenes) NBRC 13534로부터의 염색체 DNA 추출은, NBRC Medium No.802 배지[polypeptone 10g, yeast extract 2g, MgSO4·7H2O 1g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 37℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
엔테로박터 클로아케(Enterobacter cloacae) NBRC 13535로부터의 염색체 DNA 추출은, NBRC Medium No.802 배지[polypeptone 10g, yeast extract 2g, MgSO4·7H2O 1g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 37℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
엔테로박터 호마에체이(Enterobacter hormaechei) ATCC 49162로부터의 염색체 DNA 추출은, Tryptic Soy Broth 배지[Tryptic Soy Broth(Becton, Dickinson and Company 제조, Catalog No. 211825) 30g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 30℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
엔테로박터 사카자키(Enterobacter sakazakii) ATCC BAA-894의 염색체 DNA(Catalog No. BAA-894 D-5)는 ATCC(American Type Culture Collection)로부터 입수했다.
에쉐리키아 콜라이(Escherichia coli) W NBRC 13500으로부터의 염색체 DNA 추출은, NBRC Medium No.802 배지[polypeptone 10g, yeast extract 2g, MgSO4·7H2O 1g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 30℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
에쉐리키아 퍼구소니(Escherichia fergusonii) NBRC 102419로부터의 염색체 DNA 추출은, NBRC Medium No.802 배지[polypeptone 10g, yeast extract 2g, MgSO4·7H2O 1g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 30℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
파에니바실러스 폴리믹사(Paenibacillus polymyxa) NBRC 15309로부터의 염색체 DNA 추출은, NBRC Medium No.802 배지[polypeptone 10g, yeast extract 2g, MgSO4·7H2O 1g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 30℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
판토에아 아나나티스(Pantoea ananatis) LMG 20103으로부터의 염색체 DNA 추출은, BCCM/LMG BacteriCulture Medium No.1 배지[beef extract 1g, yeast extract 2g, peptone 5g, NaCl 5g을 증류수 1L에 용해시킨 것]에, 백금이를 사용하여 식균한 후, 지수 증식기까지 30℃에서 진탕 배양하고, 균체를 집균한 후, DNA 게놈 추출 키트(상품명:GenomicPrep Cells and Tissue DNA Isolation Kit, 아마샴사 제조)를 사용하여, 취급 설명서에 따라, 집균한 균체로부터 염색체 DNA를 회수했다.
(2) 클로닝 벡터의 구축
클로닝 벡터 pCRB22 의 구축
코리네박테리움 카제이 JCM12072 유래의 플라스미드 pCASE1의 DNA 복제 기점(이후, pCASE1-ori라고 함) 서열, 및 클로닝 벡터 pHSG298(다카라 바이오 가부시키가이샤 제조)을 각각 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, pCASE1-ori 서열, 클로닝 벡터 pHSG298을 각각 클론화할 수 있도록, 서열 번호 1(pCASE1-ori 서열), 서열 번호 2(클로닝 벡터-pHSG298)를 바탕으로, 각각 하기 한쌍의 프라이머를 합성하여, 사용하였다.
pCASE1-ori 서열 증폭용 프라이머
(a-1);5'-AT AGATCT AGAACGTCCGTAGGAGC-3' (서열 번호 3)
(b-1);5'-AT AGATCT GACTTGGTTACGATGGAC-3' (서열 번호 4)
그리고, 프라이머 (a-1) 및 (b-1)에는, BglII 제한 효소 부위가 부가되어 있다.
클로닝 벡터 pHSG298 증폭용 프라이머
(a-2);5'-AT AGATCT AGGTTTCCCGACTGGAAAG-3' (서열 번호 5)
(b-2);5'-AT AGATCT CGTGCCAGCTGCATTAATGA-3' (서열 번호 6)
그리고, 프라이머 (a-2) 및 (b-2)에는, BglII 제한 효소 부위가 부가되어 있다.
주형 DNA는, Japan. Collection of Microorganisms(JCM)로부터 입수한 코리네박테리움 카제이 JCM12072로부터 추출한 전체 DNA 및 클로닝 벡터 pHSG298(다카라 바이오 가부시키가이샤 제조)을 사용하였다.
실제 PCR은, 서멀 사이클러(thermal cycler) GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00001
이상을 혼합하여, 이 50㎕의 반응액을 PCR에 제공하였다.
*) pCASE1-ori 서열을 증폭하는 경우에는 프라이머 (a-1)과 (b-1)을 조합하여 행하였고, 클로닝 벡터 pHSG298을 증폭하는 경우에는 프라이머 (a-2)와 (b-2)를 조합하여 행하였다.
Figure 112013029903034-pct00002
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하고, pCASE1-ori 서열의 경우 약 1.4-kb의 DNA 단편을, 클로닝 벡터 pHSG298의 경우, 약 2.7-kb의 DNA 단편을 검출할 수 있었다.
상기 PCR에 의해 증폭한 코리네박테리움 카제이주 유래의 플라스미드 pCASE1-ori 서열을 포함하는 약 1.4-kb의 DNA 단편 10㎕ 및 클로닝 벡터 pHSG298을 포함하는 약 2.7-kb의 DNA 단편 10㎕를 각각 제한 효소 BglII로 절단하고, 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 후, 양 측을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 A액으로 하였다.
얻어진 라이게이션 A액을, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 카나마이신 50μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소 BglII로 각각 절단하여, 삽입 단편을 확인하였다. 그 결과, 클로닝 벡터 pHSG298 약 2.7-kb의 DNA 단편뿐만 아니라, pCASE-ori 서열의 약 1.4-kb의 DNA 단편이 확인되었다.
pCASE1-ori 서열을 포함하는 클로닝 벡터를 pCRB22로 명명했다.
클로닝 벡터 pCRB11 의 구축
코리네박테리움 글루타미쿰 내에서 복제 가능한 플라스미드 pCG1[일본 특허출원 공개번호 소 57-134500] 유래의 DNA 복제 기점(이후, pCG1-ori라고 함) 서열, 및 클로닝 벡터 pHSG398(다카라 바이오 가부시키가이샤 제조)을 각각 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, pCG1-ori 서열, 클로닝 벡터 pHSG398을 각각 클론화할 수 있도록, 서열 번호 7(pCG1-ori 서열), 서열 번호 8(클로닝 벡터 pHSG398)을 바탕으로, 각각 하기 한쌍의 프라이머를 합성하여, 사용하였다.
pCG1-ori 서열 증폭용 프라이머
(a-3);5'-AT AGATCT AGCATGGTCGTCACAGAG-3' (서열 번호 9)
(b-3);5'-AT AGATCT GGAACCGTTATCTGCCTATG-3' (서열 번호 10)
그리고, 프라이머 (a-3) 및 (b-3)에는, BglII 제한 효소 부위가 부가되어 있다.
클로닝 벡터 pHSG398 증폭용 프라이머
(a-4);5'-AT AGATCT GTCGAACGGAAGATCACTTC-3' (서열 번호 11)
(b-4);5'-AT AGATCT AGTTCCACTGAGCGTCAG-3' (서열 번호 12)
그리고, 프라이머 (a-4) 및 (b-4)에는, BglII 제한 효소 부위가 부가되어 있다.
주형 DNA는, pCG1[일본 특허출원 공개번호 소 57-134500] 및 클로닝 벡터 pHSG398(다카라 바이오 가부시키가이샤 제조)을 사용하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00003
이상을 혼합하여, 이 50㎕의 반응액을 PCR에 제공하였다.
*) pCG1-ori 서열을 증폭하는 경우에는 프라이머 (a-3)과 (b-3)을 조합하여 행하였고, 클로닝 벡터 pHSG398을 증폭하는 경우에는 프라이머 (a-4)와 (b-4)를 조합하여 행하였다.
Figure 112013029903034-pct00004
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하고, pCG1-ori 서열의 경우 약 1.9-kb의 DNA 단편을, 클로닝 벡터 pHSG398의 경우, 약 2.2-kb의 DNA 단편을 검출할 수 있었다.
상기 PCR에 의해 증폭한 플라스미드 pCG1 유래 pCG1-ori 유전자를 포함하는 약 1.9-kb의 DNA 단편 10㎕ 및 클로닝 벡터 pHSG398을 포함하는 약 2.2-kb의 DNA 단편 10㎕를 각각 제한 효소 BglII로 절단하고, 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 후, 양 측을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 B액으로 하였다.
얻어진 라이게이션 B액을, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 클로람페니콜 50μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소 BglII로 각각 절단하여, 삽입 단편을 확인하였다. 그 결과, 클로닝 벡터 pHSG398 약 2.2-kb의 DNA 단편뿐만 아니라, pCG1-ori 서열의 약 1.9-kb의 DNA 단편이 확인되었다.
pCG1-ori 서열을 포함하는 클로닝 벡터를 pCRB11로 명명했다.
클로닝 벡터 pCRB15 의 구축
클로닝 벡터 pCRB11를 포함하는 DNA 단편 및 pSELECT-zeo-mcs(인비트로젠 가부시키가이샤 제조) 유래의 제오신 내성 유전자를 각각 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, 클로닝 벡터 pCRB11 및 제오신 내성 유전자를 각각 클론화할 수 있도록, 서열 번호 13(pCRB11) 및 서열 번호 14(제오신 내성 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를 합성하여, 사용하였다.
클로닝 벡터 pCRB11 서열 증폭용 프라이머
(a-5);5'-AT GATATC CGAAGTGATCTTCCGTTCGA-3' (서열 번호 15)
(b-5);5'-AT GATATC AAGGCAGTTATTGGTGCCCT-3' (서열 번호 16)
그리고, 프라이머 (a-5) 및 (b-5)에는, EcoRV 제한 효소 부위가 부가되어 있다.
제오신 내성 유전자 증폭용 프라이머
(a-6);5'-AT GATATC TAGCTTATCCTCAGTCCTGC-3' (서열 번호 17)
(b-6);5'-AT GATATC CCATCCACGCTGTTTTGACA-3' (서열 번호 18)
그리고, 프라이머 (a-6) 및 (b-6)에는, EcoRV 제한 효소 부위가 부가되어 있다.
주형 DNA는, 클로닝 벡터 pCRB11 및 pSELECT-zeo-mcs(인비트로젠 가부시키가이샤 제조)를 사용하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00005
이상을 혼합하여, 이 50㎕의 반응액을 PCR에 제공하였다.
*) 클로닝 벡터 pCRB11 서열을 증폭하는 경우에는 프라이머 (a-5)와 (b-5)를 조합하여 행하였고, 제오신 내성 유전자를 증폭하는 경우에는 제오신 내성 유전자를 증폭하는 경우에는 프라이머 (a-6)과 (b-6)을 조합하여 행하였다.
Figure 112013029903034-pct00006
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하고, 클로닝 벡터 pCRB11 서열의 경우 약 3.3-kb의 DNA 단편을 검출할 수 있었고, 제오신 내성 유전자의 경우 약 0.5-kb의 DNA 단편을 검출할 수 있었다.
상기 PCR에 의해 증폭한 클로닝 벡터 pCRB11을 포함하는 약 3.3-kb의 DNA 단편 10㎕ 및 pSELECT-zeo-mcs 플라스미드 유래 제오신 내성 유전자를 포함하는 약 0.5-kb의 DNA 단편 10㎕를 각각 제한 효소 EcoRV로 절단하고, 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 후, 양 측을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 C액으로 하였다.
얻어진 라이게이션 C액을, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 제오신 25μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소 EcoRV로 각각 절단하여, 삽입 단편을 확인하였다. 그 결과, 클로닝 벡터 pCRB11 유래 약 3.3-kb의 DNA 단편뿐만 아니라, 제오신 내성 유전자의 경우, 약 0.5-kb의 DNA 단편이 확인되었다.
제오신 내성 유전자를 포함하는 클로닝 벡터를 pCRB15로 명명했다.
클로닝 벡터 pCRB207 의 구축
코리네박테리움 글루타미쿰 R 유래의 글리세르알데히드 3인산 데히드로게나아제(glyceraldehyde-3-phosphate dehydrogenase)를 코딩하는 gapA 유전자의 프로모터 서열(이후, PgapA라고 함)을 포함하는 DNA 단편, 및 클로닝 벡터 pKK223-3(파마시아사 제조) 유래 rrnBT1T2 양방향 터미네이터 서열(이후, 터미네이터 서열이라고 함)을 포함하는 DNA 단편을 이하의 방법에 의해 증폭했다.
PCR을 행할 때, PgapA 서열 및 터미네이터 서열을 각각 클론화할 수 있도록, 서열 번호 19(PgapA 서열), 서열 번호 20(터미네이터 서열)을 바탕으로, 각각 하기 한쌍의 프라이머를 합성하여, 사용하였다.
PgapA 서열 증폭용 프라이머
(a-7);5'-CTCT GTCGAC CCGAAGATCTGAAGATTCCTG-3' (서열 번호 21)
(b-7);5'-CTCT GTCGAC GGATCC CCATGG TGTGTCTCCTCTAAAGATTGTAGG-3'
(서열 번호 22)
그리고, 프라이머 (a-7)에는, SalI 제한 효소 부위가 부가되어 있고, 프라이머 (b-7)에는, SalI, BamHI 및 NcoI 제한 효소 부위가 부가되어 있다.
터미네이터 서열 증폭용 프라이머
(a-8);5'-CTCT GCATGC CCATGG CTGTTTTGGCGGATGAGAGA-3'
(서열 번호 23)
(b-8);5'-CTCT GCATGC TCATGA AAGAGTTTGTAGAAACGCAAAAAGG-3
(서열 번호 24)
그리고, 프라이머 (a-8)에는, SphI 및 NcoI 제한 효소 부위가 부가되어 있고, 프라이머 (b-8)에는, SphI 및 BspHI 제한 효소 부위가 부가되어 있다.
주형 DNA는, 코리네박테리움 글루타미쿰 R(FERM P-18976)로부터 추출한 염색체 DNA 및 pKK223-3 플라스미드(파마시아사 제조)를 사용하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00007
이상을 혼합하여, 이 50㎕의 반응액을 PCR에 제공하였다.
*) PgapA 서열을 증폭하는 경우에는 프라이머 (a-7)과 (b-7)을 조합하여 행하였고, 터미네이터 서열을 증폭하는 경우에는 프라이머 (a-8)과 (b-8)을 조합하여 행하였다.
Figure 112013029903034-pct00008
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하고, PgapA 서열의 경우 약 0.6-kb의 DNA 단편을, 터미네이터 서열의 경우, 약 0.4-kb의 DNA 단편을 검출할 수 있었다.
상기 PCR에 의해 증폭한 코리네박테리움 글루타미쿰 R 유래 PgapA 서열을 포함하는 약 0.6-kb의 DNA 단편 10㎕와 클로닝 벡터 pCRB22 약 4.1-kb를 각각 제한 효소 SalI로 절단하고, 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 후, 양 측을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 D액으로 하였다.
얻어진 라이게이션 D액을, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 카나마이신 50μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소 SalI로 각각 절단하여, 삽입 단편을 확인하였다. 그 결과, 클로닝 벡터 pCRB22 약 4.1-kb의 DNA 단편뿐만 아니라, PgapA 서열)의 약 0.6-kb의 DNA 단편이 확인되었다.
PgapA 서열을 포함하는 클로닝 벡터를 pCRB206으로 명명했다.
상기 PCR에 의해 증폭한 pKK223-3 플라스미드 유래 터미네이터 서열을 포함하는 약 0.4-kb의 DNA 단편 10㎕를 제한 효소 NcoI 및 BspHI로 절단하고, 전술한 클로닝 벡터 pCRB2062㎕를 제한 효소 NcoI로 절단하고, 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 후, 양 측을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 E액으로 하였다.
얻어진 라이게이션 E액을, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 카나마이신 50μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소로 절단하여, 삽입 단편을 확인하였다. 그 결과, 클로닝 벡터 pCRB206 약 4.7-kb의 DNA 단편뿐만 아니라, 터미네이터 서열의 약 0.4-kb의 DNA 단편이 확인되었다.
rrnBT1T2 터미네이터 서열을 포함하는 클로닝 벡터를 pCRB207로 명명했다.
클로닝 벡터 pCRB209 의 구축
코리네박테리움 글루타미쿰 R 유래의 gapA(glyceraldehyde 3-phosphate dehydrogenase A) 유전자의 프로모터(이후, PgapA라고 함) 서열을 포함하는 DNA 단편을 이하의 방법에 의해 증폭했다.
PCR을 행할 때, pCRB207 서열을 클론화할 수 있도록, 서열 번호 25(pCRB207)를 바탕으로, 각각 하기 한쌍의 프라이머를 합성하여, 사용하였다.
pCRB207 서열 증폭용 프라이머
(a-9);5'-CTCT CATATG CTGTTTTGGCGGATGAGAG-3' (서열 번호 26)
(b-9);5'-CTCT CATATG GTGTCTCCTCTAAAGATTGTAGG-3' (서열 번호 27)
그리고, 프라이머 (a-9) 및 (b-9)에는 NdeI 제한 효소 부위가 부가되어 있다.
주형 DNA는, gapA 프로모터 및 rrnBT1T2 터미네이터 서열을 함유하는 클로닝 벡터 pCRB207를 사용하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(타카라주조 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00009
이상을 혼합하여, 이 50㎕의 반응액을 PCR에 제공하였다.
*) pCRB207 서열을 증폭하는 경우에는 프라이머 (a-9)와 (b-9)를 조합하여 행하였다.
Figure 112013029903034-pct00010
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하고, 클로닝 벡터 pCRB207 서열을 포함하는 약 5.1-kb의 DNA 단편을 검출할 수 있었다.
상기 PCR에 의해 증폭한 pCRB207 유래 유전자를 포함하는 약 5.1-kb의 DNA 단편 10㎕를 제한 효소 NdeI로 절단하고, 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 후, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(타카라주조 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 F액으로 하였다.
얻어진 라이게이션 F액을, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 카나마이신 50μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
이 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소 NdeI로 절단하고, 제한 효소 사이트의 삽입을 확인하였다.
PgapA 서열 및 rrnBT1T2 터미네이터 서열을 포함하는 클로닝 벡터를 pCRB209로 명명했다.
(3) 페놀 생산 유전자의 클로닝
(3-1) DAHP 신타아제 유전자( aroG )
코리네박테리움 글루타미쿰 유래의 페놀 생산 유전자의 클로닝
코리네박테리움 글루타미쿰 유래의 DAHP 신타아제를 코딩하는 aroG 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, aroG 유전자를 클론화할 수 있도록, 서열 번호 28(코리네박테리움 글루타미쿰 aroG 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
aroG 유전자 증폭용 프라이머
(a-10);5'-CTCT CATATG AATAGGGGTGTGAGTTGG-3' (서열 번호 29)
(b-10);5'-CTCT CATATG TTAATTACGCAGCATTTCTGCAACG-3' (서열 번호 30)
그리고, 프라이머 (a-10) 및 (b-10)에는, NdeI 제한 효소 부위가 부가되어 있다.
(3-2) 코리스메이트 - 피루베이트 리아제 유전자( ubiC )
에쉐리키아 콜라이 유래의 페놀 생산 유전자의 클로닝
에쉐리키아 콜라이 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 31(에쉐리키아 콜라이 ubiC 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-11);5'-CTCT CATATG TCACACCCCGCGTTAA-3' (서열 번호 32)
(b-11);5'-CTCT CATATG TTAGTACAACGGTGACGCC-3' (서열 번호 33)
그리고, 프라이머 (a-11) 및 (b-11)에는, NdeI 제한 효소 부위가 부가되어 있다.
슈도모나스 푸티다 유래의 페놀 생산 유전자의 클로닝
슈도모나스 푸티다 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 34(슈도모나스 푸티다 ubiC 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-12);5'-CTCT CATATG TCGTACGAATCCCCG-3' (서열 번호 35)
(b-12);5'-CTCT CATATG TCAGCGGTTTTCCTCCTTG-3' (서열 번호 36)
그리고, 프라이머 (a-12) 및 (b-12)에는, NdeI 제한 효소 부위가 부가되어 있다.
아시네토박터 바우마니 유래의 페놀 생산 유전자의 클로닝
아시네토박터 바우마니 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 81(아시네토박터 바우마니 ubiC 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-29);5'-CTCT CATATG CGTAAACGACAACCAGTAC-3' (서열 번호 94)
(b-29);5'-CTCT CATATG TCATAGTAATTCCTTGTCGTGCTG-3' (서열 번호 95)
그리고, 프라이머 (a-29) 및 (b-29)에는, NdeI 제한 효소 부위가 부가되어 있다.
아조토박터 비넬란디 유래의 페놀 생산 유전자의 클로닝
아조토박터 비넬란디 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 82(아조토박터 비넬란디 ubiC 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-30);5'-CTCT CATATG ACCGCTGCTCCCG-3' (서열 번호 96)
(b-30);5'-CTCT CATATG TTATAGGGTGTCCGGGTC-3' (서열 번호 97)
그리고, 프라이머 (a-30) 및 (b-30)에는, NdeI 제한 효소 부위가 부가되어 있다.
크로모할로박터 살렉시겐스 유래의 페놀 생산 유전자의 클로닝
크로모할로박터 살렉시겐스 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 83(크로모할로박터 살렉시겐스 ubiC 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-31);5'-CTCT CATATG TCTCCTGACCGCTTC-3' (서열 번호 98)
(b-31);5'-CTCT CATATG TTAGCGCGATGGCAGCG-3' (서열 번호 99)
그리고, 프라이머 (a-31) 및 (b-31)에는, NdeI 제한 효소 부위가 부가되어 있다.
시트로박터 코세리 유래의 페놀 생산 유전자의 클로닝
시트로박터 코세리 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 84(시트로박터 코세리 ubiC 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-32);5'-CTCT CATATG TCACACCCTGCGTTAAC-3' (서열 번호 100)
(b-32);5'-CTCT CATATG TTAATACAACGGTGATGCGGG-3' (서열 번호 101)
그리고, 프라이머 (a-32) 및 (b-32)에는, NdeI 제한 효소 부위가 부가되어 있다.
시트로박터 용게이 유래의 페놀 생산 유전자의 클로닝
시트로박터 용게이 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 85(시트로박터 용게이 ubiC 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-33);5'-CTCT CATATG CCACACCCTGCGTTAA-3' (서열 번호 102)
(b-33);5'-CTCT CATATG TCAGTACAACGGCGATGCA-3' (서열 번호 103)
그리고, 프라이머 (a-33) 및 (b-33)에는, NdeI 제한 효소 부위가 부가되어 있다.
엔테로박터 클로아케 유래의 페놀 생산 유전자의 클로닝
엔테로박터 클로아케 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 86(엔테로박터 클로아케 ubiC 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-34);5'-CTCT CATATG TCACACCCTGCGCTAA-3' (서열 번호 104)
(b-34);5'-CTCT CATATG TCAGTACAACGGCGATGC-3' (서열 번호 105)
그리고, 프라이머 (a-34) 및 (b-34)에는, NdeI 제한 효소 부위가 부가되어 있다.
마리노박터 아쿠에어올레이 유래의 페놀 생산 유전자의 클로닝
마리노박터 아쿠에어올레이 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 87(마리노박터 아쿠에어올레이 ubiC 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-35);5'-CTCT CATATG CCGTTAAAGGACTGTGAC-3' (서열 번호 106)
(b-35);5'-CTCT CATATG TTAACCCCGGTTGGGC-3' (서열 번호 107)
그리고, 프라이머 (a-35) 및 (b-35)에는, NdeI 제한 효소 부위가 부가되어 있다.
마리노모나스 메디테라니아 유래의 페놀 생산 유전자의 클로닝
마리노모나스 메디테라니아 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 88(마리노모나스 메디테라니아 ubiC 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-36);5'-CTCT CATATG ACGTTACTCAATAAAAACGCTG-3' (서열 번호 108)
(b-36);5'-CTCT CATATG CTACAGCTGGCCTATGGTA-3' (서열 번호 109)
그리고, 프라이머 (a-36) 및 (b-36)에는, NdeI 제한 효소 부위가 부가되어 있다.
판토에아 아나나티스 유래의 페놀 생산 유전자의 클로닝
판토에아 아나나티스 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 89(판토에아 아나나티스 ubiC 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-37);5'-CTCT CATATG ACGCAAGACCCGCT-3' (서열 번호 110)
(b-37);5'-CTCT CATATG TTAACCTTGATCACGATAGAGCG-3'
(서열 번호 111)
그리고, 프라이머 (a-37) 및 (b-37)에는, NdeI 제한 효소 부위가 부가되어 있다.
슈도알테로모나스 할로플랑크티스 유래의 페놀 생산 유전자의 클로닝
슈도알테로모나스 할로플랑크티스 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 90(슈도알테로모나스 할로플랑크티스 ubiC 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-38);5'-CTCT CATATG ATTACTTTCCCTGTTTCATTATCTGC-3'
(서열 번호 112)
(b-38);5'-CTCT CATATG TCATGAGTACAAATACGCTCCTG-3'
(서열 번호 113)
그리고, 프라이머 (a-38) 및 (b-38)에는, NdeI 제한 효소 부위가 부가되어 있다.
랄스토니아 유트로파 유래의 페놀 생산 유전자의 클로닝
랄스토니아 유트로파 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 91(랄스토니아 유트로파 ubiC 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-39);5'-CTCT CATATG AGCGCGCAGTCCG-3' (서열 번호 114)
(b-39);5'-CTCT CATATG TCATCTCGTGGTCTCTTTCTTG-3' (서열 번호 115)
그리고, 프라이머 (a-39) 및 (b-39)에는, NdeI 제한 효소 부위가 부가되어 있다.
슈와넬라 푸트레파시엔스 유래의 페놀 생산 유전자의 클로닝
슈와넬라 푸트레파시엔스 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 92(슈와넬라 푸트레파시엔스 ubiC 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-40);5'-CTCT CATATG AATGTGACTAGCTTAAGCTTCC-3' (서열 번호 116)
(b-40);5'-CTCT CATATG TCACTGGCAAATTGCTCGC-3' (서열 번호 117)
그리고, 프라이머 (a-40) 및 (b-40)에는, NdeI 제한 효소 부위가 부가되어 있다.
티오바실러스 데니트리피칸스 유래의 페놀 생산 유전자의 클로닝
티오바실러스 데니트리피칸스 유래의 코리스메이트-피루베이트 리아제 활성을 가지는 유전자를 코딩하는 ubiC 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, ubiC 유전자를 클론화할 수 있도록, 서열 번호 93(티오바실러스 데니트리피칸스 ubiC 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
ubiC 유전자 증폭용 프라이머
(a-41);5'-CTCT CATATG ATCGCCACGCGCG-3' (서열 번호 118)
(b-41);5'-CTCT CATATG TCATGGCGTTAATAGGGCG-3' (서열 번호 119)
그리고, 프라이머 (a-41) 및 (b-41)에는, NdeI 제한 효소 부위가 부가되어 있다.
(3-3) 4- 하이드록시벤조에이트 데카르복실라아제 유전자( bsdBCD / dca )
바실러스 서브틸리스 유래의 페놀 생산 유전자의 클로닝
바실러스 서브틸리스 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 bsdBCD 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, bsdBCD 유전자를 클론화할 수 있도록, 서열 번호 37(바실러스 서브틸리스 bsdBCD 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
bsdBCD 유전자 증폭용 프라이머
(a-13);5'-CTCT CATATG AAAGCAGAATTCAAGCGTAAAG-3' (서열 번호 38)
(b-13);5'-CTCT CATATG GATCAAGCCTTTCGTTCCG-3' (서열 번호 39)
그리고, 프라이머 (a-13) 및 (b-13)에는, NdeI 제한 효소 부위가 부가되어 있다.
바실러스 아트로파에우스 유래의 페놀 생산 유전자의 클로닝
바실러스 아트로파에우스 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 44(바실러스 아트로파에우스 dca 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-16);5'-CTCT CATATG AAACTCGTTGTCGGGATG-3' (서열 번호 45)
(b-16);5'-CTCT CATATG TCAGGCCTTTCTTTCC-3' (서열 번호 46)
그리고, 프라이머 (a-16) 및 (b-16)에는, NdeI 제한 효소 부위가 부가되어 있다.
바실러스 서브틸리스 아종 스피지제니 유래의 페놀 생산 유전자의 클로닝
바실러스 서브틸리스 아종 스피지제니 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 47(바실러스 서브틸리스 아종 스피지제니 dca 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-17);5'-CTCT CATATG AAAGCAGAATTCAAGCGTAAAG-3' (서열 번호 48)
(b-17);5'-CTCT CATATG TCAAGCCTTTCGTTCCGG-3' (서열 번호 49)
그리고, 프라이머 (a-17) 및 (b-17)에는, NdeI 제한 효소 부위가 부가되어 있다.
시트로박터 코세리 유래의 페놀 생산 유전자의 클로닝
시트로박터 코세리 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 50(시트로박터 코세리 dca 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-18);5'-CTCT CATATG AGACTGATTGTGGGGATG-3' (서열 번호 51)
(b-18);5'-CTCT CATATG TTAACGCTTATCTTCCGCCAG-3' (서열 번호 52)
그리고, 프라이머 (a-18) 및 (b-18)에는, NdeI 제한 효소 부위가 부가되어 있다.
엔테로박터 아에로게네스 유래의 페놀 생산 유전자의 클로닝
엔테로박터 아에로게네스 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 53(엔테로박터 아에로게네스 dca 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-19);5'-CTCT CATATG AAACTGATTATTGGGATGACCG-3' (서열 번호 54)
(b-19);5'-CTCT CATATG TTAACGCTTATCTGCCGCC-3' (서열 번호 55)
그리고, 프라이머 (a-19) 및 (b-19)에는, NdeI 제한 효소 부위가 부가되어 있다.
엔테로박터 클로아케 유래의 페놀 생산 유전자의 클로닝
엔테로박터 클로아케 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 56(엔테로박터 클로아케 dca 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-20);5'-CTCT CATATG AGATTGATCGTGGGAATGAC-3' (서열 번호 57)
(b-20);5'-CTCT CATATG TTACAGCAATGGCGGAATGG-3' (서열 번호 58)
그리고, 프라이머 (a-20) 및 (b-20)에는, NdeI 제한 효소 부위가 부가되어 있다.
엔테로박터 호마에체이 유래의 페놀 생산 유전자의 클로닝
엔테로박터 호마에체이 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 59(엔테로박터 호마에체이 dca 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-21);5'-CTCT CATATG AGATTGATTGTGGGAATGAC-3' (서열 번호 60)
(b-21);5'-CTCT CATATG GAGTCTGGTTTAGTTCTCTGC-3' (서열 번호 61)
그리고, 프라이머 (a-21) 및 (b-21)에는, NdeI 제한 효소 부위가 부가되어 있다.
엔테로박터 사카자키 유래의 페놀 생산 유전자의 클로닝
엔테로박터 사카자키 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 62(엔테로박터 사카자키 dca 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-22);5'-CTCT CATATG AGGCTAATTGTCGGAATGAC-3' (서열 번호 63)
(b-22);5'-CTCT CATATG TTAACGCTTACCATCCGCC-3' (서열 번호 64)
그리고, 프라이머 (a-22) 및 (b-22)에는, NdeI 제한 효소 부위가 부가되어 있다.
에쉐리키아 콜라이 유래의 페놀 생산 유전자의 클로닝
에쉐리키아 콜라이 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 65(에쉐리키아 콜라이 dca 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-23);5'-CTCT CATATG AAACTGATCGTCGGGATG-3' (서열 번호 66)
(b-23);5'-CTCT CATATG TTAGCGCTTACCTTCCGC-3' (서열 번호 67)
그리고, 프라이머 (a-23) 및 (b-23)에는, NdeI 제한 효소 부위가 부가되어 있다.
에쉐리키아 퍼구소니 유래의 페놀 생산 유전자의 클로닝
에쉐리키아 퍼구소니 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 68(에쉐리키아 퍼구소니 dca 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-24);5'-CTCT CATATG AGACTGATCGTCGGGAT-3' (서열 번호 69)
(b-24);5'-CTCT CATATG TTAGCGCTTATCTGCCGC-3' (서열 번호 70)
그리고, 프라이머 (a-24) 및 (b-24)에는, NdeI 제한 효소 부위가 부가되어 있다.
파에니바실러스 폴리믹사 유래의 페놀 생산 유전자의 클로닝
파에니바실러스 폴리믹사 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 71(파에니바실러스 폴리믹사 dca 유전자)을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-25);5'-CTCT CATATG AAGAAAATCATTGTAGGAATATCGG-3' (서열 번호 72)
(b-25);5'-CTCT CATATG CTATATCCGCTCTGGAATAGG-3' (서열 번호 73)
그리고, 프라이머 (a-25) 및 (b-25)에는, NdeI 제한 효소 부위가 부가되어 있다.
판토에아 아나나티스 유래의 페놀 생산 유전자의 클로닝
판토에아 아나나티스 유래의 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 유전자를 코딩하는 dca 유전자를 포함하는 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때, dca 유전자를 클론화할 수 있도록, 서열 번호 74(판토에아 아나나티스 dca 유전자)를 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
dca 유전자 증폭용 프라이머
(a-26);5'-CTCT CATATG AGTAGATTACTGTTAATTTCATTCGTAC-3
(서열 번호 75)
(b-26);5'-CTCT CATATG TTACTTAGCTAACAGAGGAGGG-3'
(서열 번호 76)
그리고, 프라이머 (a-26) 및 (b-26)에는, NdeI 제한 효소 부위가 부가되어 있다.
(3-4) 조건
주형 DNA는, 코리네박테리움 글루타미쿰은, 코리네박테리움 글루타미쿰 R로부터 추출한 염색체 DNA를 사용하였다.
에쉐리키아 콜라이는, 에쉐리키아 콜라이 K12 MG1655로부터 추출한 염색체 DNA를 사용하였다.
슈도모나스 푸티다는, American Type Culture Collection(ATCC)으로부터 입수한 슈도모나스 푸티다 ATCC 47054로부터 추출한 염색체 DNA를 사용하였다.
아시네토박터 바우마니는, Japan Collection of Microorganisms(JCM)로부터 입수한 아시네토박터 바우마니 JCM 6841로부터 추출한 염색체 DNA를 사용하였다.
아조토박터 비넬란디는, American Type Culture Collection(ATCC)으로부터 입수한 아조토박터 비넬란디 ATCC 9104로부터 추출한 염색체 DNA를 사용하였다.
크로모할로박터 살렉시겐스는, American Type Culture Collection(ATCC)으로부터 입수한 크로모할로박터 살렉시겐스 ATCC BAA-138로부터 추출한 염색체 DNA를 사용하였다.
시트로박터 용게이는, American Type Culture Collection(ATCC)으로부터 입수한 시트로박터 용게이 ATCC 29220으로부터 추출한 염색체 DNA를 사용하였다.
마리노박터 아쿠에어올레이 American Type Culture Collection(ATCC)으로부터 입수한 마리노박터 아쿠에어올레이 염색체 DNA(catalog No. 700491 D-5)를 사용하였다.
마리노모나스 메디테라니아는, NITE(National Institute of Technology and Evaluation) Biological Resource Center(NBRC)로부터 입수한 마리노모나스 메디테라니아 NBRC 103028로부터 추출한 염색체 DNA를 사용하였다.
슈도알테로모나스 할로플랑크티스는, NITE(National Institute of Technology and Evaluation) Biological Resource Center(NBRC)로부터 입수한 슈도알테로모나스 할로플랑크티스 NBRC 102225로부터 추출한 염색체 DNA를 사용하였다.
랄스토니아 유트로파는, Institute of Applied Microbiology Culture Collection(IAM)으로부터 입수한 랄스토니아 유트로파(Ralstonia eutropha) IAM12368의 염색체 DNA를 사용하였다.
슈와넬라 푸트레파시엔스는, Japan Collection of Microorganisms(JCM)로부터 입수한 슈와넬라 푸트레파시엔스 JCM 20190으로부터 추출한 염색체 DNA를 사용하였다.
티오바실러스 데니트리피칸스는, American Type Culture Collection(ATCC)으로부터 입수한 티오바실러스 데니트리피칸스 ATCC 25259로부터 추출한 염색체 DNA를 사용하였다.
바실러스 서브틸리스는, NITE(National Institute of Technology and Evaluation) Biological Resource Center(NBRC)로부터 입수한 바실러스 서브틸리스 NBRC 14144로부터 추출한 염색체 DNA를 사용하였다.
바실러스 아트로파에우스는, Japan Collection of Microorganisms(JCM)로부터 입수한 바실러스 아트로파에우스 JCM 9070으로부터 추출한 염색체 DNA를 사용하였다.
바실러스 서브틸리스 아종 스피지제니는, NITE(National Institute of Technology and Evaluation) Biological Resource Center(NBRC)로부터 입수한 바실러스 서브틸리스 아종 스피지제니 NBRC 101239로부터 추출한 염색체 DNA를 사용하였다.
시트로박터 코세리는, American Type Culture Collection(ATCC)으로부터 입수한 시트로박터 코세리 염색체 DNA(catalog No. BAA-895 D-5)를 사용하였다.
엔테로박터 아에로게네스는, NITE(National Institute of Technology and Evaluation) Biological Resource Center(NBRC)로부터 입수한 엔테로박터 아에로게네스 NBRC 13534로부터 추출한 염색체 DNA를 사용하였다.
엔테로박터 클로아케는, NITE(National Institute of Technology and Evaluation) Biological Resource Center(NBRC)로부터 입수한 엔테로박터 클로아케 NBRC 13535로부터 추출한 염색체 DNA를 사용하였다.
엔테로박터 호마에체이는, American Type Culture Collection(ATCC)으로부터 입수한 엔테로박터 호마에체이 ATCC 49162로부터 추출한 염색체 DNA를 사용하였다.
엔테로박터 사카자키는, American Type Culture Collection(ATCC)으로부터 입수한 엔테로박터 사카자키 염색체 DNA(catalog No. BAA-894 D-5)를 사용하였다.
에쉐리키아 콜라이 W는, NITE(National Institute of Technology and Evaluation) Biological Resource Center(NBRC)로부터 입수한 에쉐리키아 콜라이 NBRC 13500으로부터 추출한 염색체 DNA를 사용하였다.
에쉐리키아 퍼구소니는, NITE(National Institute of Technology and Evaluation) Biological Resource Center(NBRC)로부터 입수한 에쉐리키아 퍼구소니 NBRC 102419로부터 추출한 염색체 DNA를 사용하였다.
파에니바실러스 폴리믹사는, NITE(National Institute of Technology and Evaluation) Biological Resource Center(NBRC)로부터 입수한 파에니바실러스 폴리믹사 NBRC 15309로부터 추출한 염색체 DNA를 사용하였다.
판토에아 아나나티스는, BCCM/LMG(Belgian Coordinated Collections of Microorganisms / Laboratory for Microbiology, University of Gent)로부터 입수한 판토에아 아나나티스 LMG 20103으로부터 추출한 염색체 DNA를 사용하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00011
이상을 혼합하여, 이 50㎕의 반응액을 PCR에 제공하였다.
*) 코리네박테리움 글루타미쿰 aroG 유전자를 증폭하는 경우에는 프라이머 (a-10)과 (b-10)을 조합하여, 에쉐리키아 콜라이 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-11)과 (b-11)을 조합하여, 슈도모나스 푸티다 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-12)와 (b-12)를 조합하여, 아시네토박터 바우마니 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-29)와 (b-29)를 조합하여, 아조토박터 비넬란디 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-30)과 (b-30)을 조합하여, 크로모할로박터 살렉시겐스 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-31)과 (b-31)을 조합하여, 시트로박터 코세리 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-32)와 (b-32)을 조합하여, 시트로박터 용게이 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-33)과 (b-33)을 조합하여, 엔테로박터 클로아케 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-34)와 (b-34)를 조합하여, 마리노박터 아쿠에어올레이 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-35)와 (b-35)를 조합하여, 마리노모나스 메디테라니아 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-36)과 (b-36)을 조합하여, 판토에아 아나나티스 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-37)과 (b-37)을 조합하여, 슈도알테로모나스 할로플랑크티스 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-38)과 (b-38)을 조합하여, 랄스토니아 유트로파 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-39)와 (b-39)를 조합하여, 슈와넬라 푸트레파시엔스 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-40)과 (b-40)을 조합하여, 티오바실러스 데니트리피칸스 ubiC 유전자를 증폭하는 경우에는 프라이머 (a-41)과 (b-41)을 조합하여, 바실러스 서브틸리스 bsdBCD 유전자를 증폭하는 경우에는 프라이머 (a-13)과 (b-13)을 조합하여, 바실러스 아트로파에우스 dca 유전자를 증폭하는 경우에는 프라이머 (a-16)과 (b-16)을 조합하여, 바실러스 서브틸리스 아종 스피지제니 dca 유전자를 증폭하는 경우에는 프라이머 (a-17)과 (b-17)을 조합하여, 시트로박터 코세리 dca 유전자를 증폭하는 경우에는 프라이머 (a-18)과 (b-18)을 조합하여, 엔테로박터 아에로게네스 dca 유전자를 증폭하는 경우에는 프라이머 (a-19)와 (b-19)를 조합하여, 엔테로박터 클로아케 dca 유전자를 증폭하는 경우에는 프라이머 (a-20)과 (b-20)을 조합하여, 엔테로박터 호마에체이 dca 유전자를 증폭하는 경우에는 프라이머 (a-21)과 (b-21)을 조합하여 엔테로박터 사카자키 dca 유전자를 증폭하는 경우에는 프라이머 (a-22)와 (b-22)를 조합하여 에쉐리키아 콜라이 W dca 유전자를 증폭하는 경우에는 프라이머 (a-23)과 (b-23)을 조합하여, 에쉐리키아 퍼구소니 dca 유전자를 증폭하는 경우에는 프라이머 (a-24)와 (b-24)를 조합하여, 파에니바실러스 폴리믹사 dca 유전자를 증폭하는 경우에는 프라이머 (a-25)와 (b-25)를 조합하여, 판토에아 아나나티스 dca 유전자를 증폭하는 경우에는 프라이머 (a-26)과 (b-26)을 조합하여 행하였다.
Figure 112013029903034-pct00012
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하고, 코리네박테리움 글루타미쿰 aroG 유전자의 경우 약 1.4-kb의 DNA 단편을, 에쉐리키아 콜라이 ubiC 유전자의 경우 약 0.5-kb의 DNA 단편을, 슈도모나스 푸티다 ubiC 유전자의 경우 약 0.6-kb의 DNA 단편을, 아시네토박터 바우마니 ubiC 유전자의 경우 약 0.5-kb의 DNA 단편을, 아조토박터 비넬란디 ubiC 유전자의 경우 약 0.6-kb의 DNA 단편을, 크로모할로박터 살렉시겐스 ubiC 유전자의 경우 약 0.6-kb의 DNA 단편을, 시트로박터 코세리 ubiC 유전자의 경우 약 0.5-kb의 DNA 단편을, 시트로박터 용게이 ubiC 유전자의 경우 약 0.5-kb의 DNA 단편을, 엔테로박터 클로아케 ubiC 유전자의 경우 약 0.5-kb의 DNA 단편을, 마리노박터 아쿠에어올레이 ubiC 유전자의 경우 약 0.6-kb의 DNA 단편을, 마리노모나스 메디테라니아 ubiC 유전자의 경우 약 0.5-kb의 DNA 단편을, 판토에아 아나나티스 ubiC 유전자의 경우 약 0.5-kb의 DNA 단편을, 슈도알테로모나스 할로플랑크티스 ubiC 유전자의 경우 약 0.5-kb의 DNA 단편을, 랄스토니아 유트로파 ubiC 유전자의 경우 약 0.7-kb의 DNA 단편을, 슈와넬라 푸트레파시엔스 ubiC 유전자의 경우 약 0.6-kb의 DNA 단편을, 티오바실러스 데니트리피칸스 ubiC 유전자의 경우 약 0.6-kb의 DNA 단편을, 바실러스 서브틸리스 bsdBCD 유전자의 경우 약 2.3-kb의 DNA 단편을, 바실러스 아트로파에우스 bsdBCD 유전자의 경우 약 2.3-kb의 DNA 단편을, 바실러스 서브틸리스 아종 스피지제니 dca 유전자의 경우 약 2.3-kb의 DNA 단편을, 시트로박터 코세리 dca 유전자의 경우 약 2.3-kb의 DNA 단편을, 엔테로박터 아에로게네스 dca 유전자의 경우 약 2.3-kb의 DNA 단편을, 엔테로박터 클로아케 dca 유전자의 경우 약 2.3-kb의 DNA 단편을, 엔테로박터 호마에체이 dca 유전자의 경우 약 2.4-kb의 DNA 단편을, 엔테로박터 사카자키 dca 유전자의 경우 약 2.3-kb의 DNA 단편을, 에쉐리키아 콜라이 W dca 유전자의 경우 약 2.3-kb의 DNA 단편을, 에쉐리키아 퍼구소니 dca 유전자의 경우 약 2.3-kb의 DNA 단편을, 파에니바실러스 폴리믹사 dca 유전자의 경우 약 2.3-kb의 DNA 단편을, 판토에아 아나나티스 dca 유전자의 경우 약 2.3-kb의 DNA 단편을 검출할 수 있었다.
(4) 페놀 생산 유전자 발현 플라스미드의 구축
페놀 생산 유전자의 pCRB209 로의 클로닝
상기 항 (3)에 나타낸 PCR에 의해 증폭한 코리네박테리움 글루타미쿰주 유래 aroG 유전자를 포함하는 약 1.4-kb의 DNA 단편, 에쉐리키아 콜라이주 유래 ubiC 유전자를 포함하는 약 0.5-kb의 DNA 단편, 슈도모나스 푸티다주 유래 ubiC 유전자를 포함하는 약 0.6-kb의 DNA 단편, 아시네토박터 바우마니주 유래 ubiC 유전자를 포함하는 약 0.5-kb의 DNA 단편, 아조토박터 비넬란디주 유래 ubiC 유전자를 포함하는 약 0.6-kb의 DNA 단편, 크로모할로박터 살렉시겐스주 유래 ubiC 유전자를 포함하는 약 0.6-kb의 DNA 단편, 시트로박터 코세리주 유래 ubiC 유전자를 포함하는 약 0.5-kb의 DNA 단편, 시트로박터 용게이주 유래 ubiC 유전자를 포함하는 약 0.5-kb의 DNA 단편, 엔테로박터 클로아케주 유래 ubiC 유전자를 포함하는 약 0.5-kb의 DNA 단편, 마리노박터 아쿠에어올레이주 유래 ubiC 유전자를 포함하는 약 0.6-kb의 DNA 단편, 마리노모나스 메디테라니아주 유래 ubiC 유전자를 포함하는 약 0.5-kb의 DNA 단편, 판토에아 아나나티스주 유래 ubiC 유전자를 포함하는 약 0.5-kb의 DNA 단편, 슈도알테로모나스 할로플랑크티스주 유래 ubiC 유전자를 포함하는 약 0.5-kb의 DNA 단편, 랄스토니아 유트로파주 유래 ubiC 유전자를 포함하는 약 0.7-kb의 DNA 단편, 슈와넬라 푸트레파시엔스주 유래 ubiC 유전자를 포함하는 약 0.6-kb의 DNA 단편, 티오바실러스 데니트리피칸스주 유래 ubiC 유전자를 포함하는 약 0.6-kb의 DNA 단편, 바실러스 서브틸리스주 유래 bsdBCD 유전자를 포함하는 약 2.3-kb의 DNA 단편, 바실러스 아트로파에우스주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편, 바실러스 서브틸리스 아종 스피지제니주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편, 시트로박터 코세리주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편, 엔테로박터 아에로게네스주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편, 엔테로박터 클로아케주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편, 엔테로박터 호마에체이주 유래 dca 유전자를 포함하는 약 2.4-kb의 DNA 단편, 엔테로박터 사카자키주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편, 에쉐리키아 콜라이 W주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편, 에쉐리키아 퍼구소니주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편, 파에니바실러스 폴리믹사주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편, 판토에아 아나나티스주 유래 dca 유전자를 포함하는 약 2.3-kb의 DNA 단편의 각각 10㎕ 및 PgapA 프로모터를 함유하는 클로닝 벡터 pCRB209 2㎕를 각각 제한 효소 NdeI로 절단하고, 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 후, 양 측을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 G액, H액, I액, AA액, AB액, AC액, AD액, AE액, AF액, AG액, AH액, AI액, AJ액, AK액, AL액, AM액, J액, O액, P액, Q액, R액, S액, T액, U액, V액, W액, X액, 및 Y액으로 하였다.
얻어진 28종의 라이게이션 G액, H액, I액, AA액, AB액, AC액, AD액, AE액, AF액, AG액, AH액, AI액, AJ액, AK액, AL액, AM액, J액, O액, P액, Q액, R액, S액, T액, U액, V액, W액, X액, 및 Y액 각각을, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 카나마이신 50μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
각각 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소로 각각 절단하여, 삽입 단편을 확인하였다. 그 결과, 플라스미드 pCRB209 약 5.1-kb의 DNA 단편뿐만 아니라, 코리네박테리움 글루타미쿰주 유래 aroG 유전자(라이게이션 G액)의 경우, 길이 약 1.4-kb의 삽입 단편이, 에쉐리키아 콜라이주 유래 ubiC 유전자(라이게이션 H액)의 경우, 길이 약 0.5-kb의 삽입 단편이, 슈도모나스 푸티다주 유래 ubiC 유전자(라이게이션 I액)의 경우, 길이 약 0.6-kb의 삽입 단편이, 아시네토박터 바우마니주 유래 ubiC 유전자(라이게이션 AA액)의 경우, 길이 약 0.5-kb가, 아조토박터 비넬란디주 유래 ubiC 유전자(라이게이션 AB액)의 경우, 길이 약 0.6-kb가, 크로모할로박터 살렉시겐스주 유래 ubiC 유전자(라이게이션 AC액)의 경우, 길이 약 0.6-kb가, 시트로박터 코세리주 유래 ubiC 유전자(라이게이션 AD액)의 경우, 길이 약 0.5-kb가, 시트로박터 용게이주 유래 ubiC 유전자(라이게이션 AE액)의 경우, 길이 약 0.5-kb가, 엔테로박터 클로아케주 유래 ubiC 유전자(라이게이션 AF액)의 경우, 길이 약 0.5-kb가, 마리노박터 아쿠에어올레이주 유래 ubiC 유전자(라이게이션 AG액)의 경우, 길이 약 0.6-kb가, 마리노모나스 메디테라니아주 유래 ubiC 유전자(라이게이션 AH액)의 경우, 길이 약 0.5-kb가, 판토에아 아나나티스주 유래 ubiC 유전자(라이게이션 AI액)의 경우, 길이 약 0.5-kb가, 슈도알테로모나스 할로플랑크티스주 유래 ubiC 유전자(라이게이션 AJ액)의 경우, 길이 약 0.5-kb가, 랄스토니아 유트로파주 유래 ubiC 유전자(라이게이션 AK액)의 경우, 길이 약 0.7-kb가, 슈와넬라 푸트레파시엔스주 유래 ubiC 유전자(라이게이션 AL액)의 경우, 길이 약 0.6-kb가, 티오바실러스 데니트리피칸스주 유래 ubiC 유전자(라이게이션 AM액)의 경우, 길이 약 0.6-kb가, 바실러스 서브틸리스주 유래 bsdBCD 유전자(라이게이션 J액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 바실러스 아트로파에우스주 유래 dca 유전자(라이게이션 O액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 바실러스 서브틸리스 아종 스피지제니주 유래 dca 유전자(라이게이션 P액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 시트로박터 코세리주 유래 dca 유전자(라이게이션 Q액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 엔테로박터 아에로게네스주 유래 dca 유전자(라이게이션 R액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 엔테로박터 클로아케주 유래 dca 유전자(라이게이션 S액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 엔테로박터 호마에체이주 유래 dca 유전자(라이게이션 T액)의 경우, 길이 약 2.4-kb의 삽입 단편이, 엔테로박터 사카자키주 유래 dca 유전자(라이게이션 U액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 에쉐리키아 콜라이 W주 유래 dca 유전자(라이게이션 V액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 에쉐리키아 퍼구소니주 유래 dca 유전자(라이게이션 W액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 파에니바실러스 폴리믹사주 유래 dca 유전자(라이게이션 X액)의 경우, 길이 약 2.3-kb의 삽입 단편이, 판토에아 아나나티스주 유래 dca 유전자(라이게이션 Y액)의 경우, 길이 약 2.3-kb가 확인되었다.
코리네박테리움 글루타미쿰주 유래 aroG 유전자를 포함하는 플라스미드를 pCRB209-aroG/CG, 에쉐리키아 콜라이주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/EC, 슈도모나스 푸티다주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/PP, 아시네토박터 바우마니주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/ACB, 아조토박터 비넬란디주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/AVN, 크로모할로박터 살렉시겐스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/CSA, 시트로박터 코세리주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/CKO, 시트로박터 용게이주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/CIT, 엔테로박터 클로아케주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/ECL, 마리노박터 아쿠에어올레이주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/MAQ, 마리노모나스 메디테라니아주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/MME, 판토에아 아나나티스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/PAM, 슈도알테로모나스 할로플랑크티스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/PHA, 랄스토니아 유트로파주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/REH, 슈와넬라 푸트레파시엔스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/SPC, 티오바실러스 데니트리피칸스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB209-ubiC/TBD, 바실러스 서브틸리스주 유래 bsdBCD 유전자를 포함하는 플라스미드를 pCRB209-bsdBCD/BS, 바실러스 아트로파에우스주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/BAE, 바실러스 서브틸리스 아종 스피지제니주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/BSS, 시트로박터 코세리주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/CKO, 엔테로박터 아에로게네스주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/EAE, 엔테로박터 클로아케주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/ECL, 엔테로박터 호마에체이주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/EHO, 엔테로박터 사카자키주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/ESA, 에쉐리키아 콜라이 W주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/ECK, 에쉐리키아 퍼구소니주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/EFE, 파에니바실러스 폴리믹사주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/PPY, 판토에아 아나나티스주 유래 dca 유전자를 포함하는 플라스미드를 pCRB209-dca/PAM으로 각각 명명했다.
코리네박테리움 글루타미쿰주 유래 aroG 유전자를 포함하는 플라스미드 pCRB209-aroG/CG, 에쉐리키아 콜라이주 유래 ubiC 유전자를 포함하는 플라스미드 pCRB209-ubiC/EC, 슈도모나스 푸티다주 유래 ubiC 유전자를 포함하는 플라스미드 pCRB209-ubiC/PP, 바실러스 서브틸리스주 유래 bsdBCD 유전자를 포함하는 플라스미드 pCRB209-bsdBCD/BS의 구축을 도 1에 나타낸다.
페놀 생산 유전자의 pCRB1 로의 클로닝
전술한 플라스미드 pCRB209-ubiC/EC, pCRB209-ubiC/PP, pCRB209-ubiC/ACB, pCRB209-ubiC/AVN, pCRB209-ubiC/CSA, pCRB209-ubiC/CKO, pCRB209-ubiC/CIT, pCRB209-ubiC/ECL, pCRB209-ubiC/MAQ, pCRB209-ubiC/MME, pCRB209-ubiC/PAM, pCRB209-ubiC/PHA 및 pCRB209-ubiC/SPC를 제한 효소 SalI로 절단하고, 아가로스 전기 영동 후, 아가로스겔로부터 QIAquick Gel Extraction Kit(가부시키가이샤 키아겐사 제조)에 의해 회수한 gapA 프로모터와 에쉐리키아 콜라이주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.5-kb의 DNA 단편, gapA 프로모터와 슈도모나스 푸티다주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.6-kb의 DNA 단편, gapA 프로모터와 아시네토박터 바우마니주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.5-kb의 DNA 단편, gapA 프로모터와 아조토박터 비넬란디주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.6-kb의 DNA 단편, gapA 프로모터와 크로모할로박터 살렉시겐스주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.6-kb의 DNA 단편, gapA 프로모터와 시트로박터 코세리주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.5-kb의 DNA 단편, gapA 프로모터와 시트로박터 용게이주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.5-kb의 DNA 단편, gapA 프로모터와 엔테로박터 클로아케주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.5-kb의 DNA 단편, gapA 프로모터와 마리노박터 아쿠에어올레이주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.6-kb의 DNA 단편, gapA 프로모터와 마리노모나스 메디테라니아주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.5-kb의 DNA 단편, gapA 프로모터와 판토에아 아나나티스주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.5-kb의 DNA 단편, gapA 프로모터와 슈도알테로모나스 할로플랑크티스주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.5-kb의 DNA 단편, gapA 프로모터와 슈와넬라 푸트레파시엔스주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.6-kb의 DNA 단편과 SalI로 절단한 클로닝 벡터 pCRB1[Nakata, K. et al., Vectors for the genetics engineering of corynebacteria; in Saha, B.C.(ed.): Fermentation Biotechnology, ACS Symposium Series 862. Washington, American Chemical Society: 175-191(2003)] 약 4.1-kb를 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 DNA 단편을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 K액, L액, AN액, AO액, AP액, AQ액, AR액, AS액, AT액, AU액, AV액, AW액 및 AX액으로 하였다.
또한, 마찬가지로, 전술한 플라스미드 pCRB209-ubiC/REH 및 pCRB209-ubiC/TBD를 제한 효소 BamHI로 절단하고, 아가로스 전기 영동 후, 아가로스겔로부터 QIAquick Gel Extraction Kit(가부시키가이샤 키아겐사 제조)에 의해 회수한 gapA 프로모터와 랄스토니아 유트로파주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.7-kb의 DNA 단편, gapA 프로모터와 티오바실러스 데니트리피칸스주 유래 ubiC 유전자와 터미네이터 서열을 연결한 약 1.6-kb의 DNA 단편과 BamHI로 절단한 클로닝 벡터 pCRB1 [Nakata, K. et al., Vectors for the genetics engineering of corynebacteria; in Saha, B.C.(ed.): Fermentation Biotechnology, ACS Symposium Series 862. Washington, American Chemical Society: 175-191(2003)] 약 4.1-kb를 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 DNA 단편을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 AY액 및 AZ액으로 하였다.
얻어진 라이게이션 K액, L액, AN액, AO액, AP액, AQ액, AR액, AS액, AT액, AU액, AV액, AW액, AX액, AY액 및 AZ액을 사용하고, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 클로람페니콜 50μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
이 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소 SalI 또는 BamHI로 절단하여, 삽입 단편을 확인하였다. 그 결과, 플라스미드 pCRB1 약 4.1-kb의 DNA 단편뿐만 아니라, 에쉐리키아 콜라이주 유래 ubiC 유전자(라이게이션 K액)의 경우, 길이 약 1.5-kb의 삽입 단편, 슈도모나스 푸티다주 유래 ubiC 유전자(라이게이션 L액)의 경우, 길이 약 1.6-kb의 삽입 단편, 아시네토박터 바우마니주 유래 ubiC 유전자(라이게이션 AN액)의 경우, 길이 약 1.5-kb의 삽입 단편, 아조토박터 비넬란디주 유래 ubiC 유전자(라이게이션 AO액)의 경우, 길이 약 1.6-kb의 삽입 단편, 크로모할로박터 살렉시겐스주 유래 ubiC 유전자(라이게이션 AP액)의 경우, 길이 약 1.6-kb의 삽입 단편, 시트로박터 코세리주 유래 ubiC 유전자(라이게이션 AQ액)의 경우, 길이 약 1.5-kb의 삽입 단편, 시트로박터 용게이주 유래 ubiC 유전자(라이게이션 AR액)의 경우, 길이 약 1.5-kb의 삽입 단편, 엔테로박터 클로아케주 유래 ubiC 유전자(라이게이션 AS액)의 경우, 길이 약 1.5-kb의 삽입 단편, 마리노박터 아쿠에어올레이주 유래 ubiC 유전자(라이게이션 AT액)의 경우, 길이 약 1.6-kb의 삽입 단편, 마리노모나스 메디테라니아주 유래 ubiC 유전자(라이게이션 AU액)의 경우, 길이 약 1.5-kb의 삽입 단편, 판토에아 아나나티스주 유래 ubiC 유전자(라이게이션 AV액)의 경우, 길이 약 1.5-kb의 삽입 단편, 슈도알테로모나스 할로플랑크티스주 유래 ubiC 유전자(라이게이션 AW액)의 경우, 길이 약 1.5-kb의 삽입 단편, 랄스토니아 유트로파주 유래 ubiC 유전자(라이게이션 AY액)의 경우, 길이 약 1.7-kb의 삽입 단편, 슈와넬라 푸트레파시엔스주 유래 ubiC 유전자(라이게이션 AX액)의 경우, 길이 약 1.6-kb의 삽입 단편, 티오바실러스 데니트리피칸스주 유래 ubiC 유전자(라이게이션 AZ액)의 경우, 길이 약 1.6-kb의 삽입 단편이 확인되었다.
에쉐리키아 콜라이주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/EC, 슈도모나스 푸티다주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/PP로 각각 명명했다(도 2). 아시네토박터 바우마니주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/ACB, 아조토박터 비넬란디주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/AVN, 크로모할로박터 살렉시겐스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/CSA, 시트로박터 코세리주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/CKO, 시트로박터 용게이주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/CIT, 엔테로박터 클로아케주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/ ECL, 마리노박터 아쿠에어올레이주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/MAQ, 마리노모나스 메디테라니아주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/MME, 판토에아 아나나티스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/PAM, 슈도알테로모나스 할로플랑크티스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/PHA, 랄스토니아 유트로파주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/REH, 슈와넬라 푸트레파시엔스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/SPC, 티오바실러스 데니트리피칸스주 유래 ubiC 유전자를 포함하는 플라스미드를 pCRB1-ubiC/TBD로 각각 명명했다.
페놀 생산 유전자의 pCRB15 로의 클로닝
전술한 플라스미드 pCRB209-aroG/CG를 제한 효소 BamHI로 절단하고, 아가로스 전기 영동 후, 아가로스겔로부터 QIAquick Gel Extraction Kit(가부시키가이샤 키아겐사 제조)에 의해 회수한 gapA 프로모터와 코리네박테리움 글루타미쿰주 유래 aroG 유전자 및 터미네이터 서열을 연결한 약 2.4-kb의 DNA 단편과 BamHI로 절단한 전술한 플라스미드 pCRB15 약 3.8-kb를 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 DNA 단편을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 M액으로 하였다.
얻어진 라이게이션 M액을 사용하고, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 제오신 25μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
이 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소 BamHI로 절단하여, 삽입 단편을 확인하였다. 그 결과, 플라스미드 pCRB15 약 3.8-kb의 DNA 단편뿐만 아니라, 코리네박테리움 글루타미쿰주 유래 aroG 유전자(라이게이션 M액)의 경우, 길이 약 2.4-kb의 삽입 단편이 확인되었다.
코리네박테리움 글루타미쿰주 유래 aroG 유전자를 포함하는 플라스미드를 pCRB15-aroG/CG로 명명했다(도 3).
(5) 코리네박테리움 글루타미쿰의 염색체 유전자 파괴용 플라스미드의 구축
코리네박테리움 글루타미쿰주 pobA 유전자 파괴용 플라스미드의 구축
코리네박테리움 글루타미쿰주의 염색체 상 pobA 유전자의 마커리스(markerless)파괴용 플라스미드를 구축하기 위해 필요한 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때 코리네박테리움 글루타미쿰 R의 서열을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
pobA-1 영역 증폭용 프라이머
(a-14);5'-CTCT TCTAGA GAAACGATCAAGTGCACCAG-3' (서열 번호 40)
(b-14);5'-GACACGAGCGTTTATACCTCTAATTGCCACTGGTACGTGG-3'
(서열 번호 41)
그리고, 프라이머 (a-14)에는, XbaI 제한 효소 부위가 부가되어 있다.
pobA-2 영역 증폭용 프라이머
(a-15);5'-GAGGTATAAACGCTCGTGTC-3' (서열 번호 42)
(b-15);5'-CTCT GAGCTC GAGAACACGAACCATACGAG-3 (서열 번호 43)
그리고, 프라이머 (b-15)에는, SacI 제한 효소 부위가 부가되어 있다.
주형 DNA는, 코리네박테리움 글루타미쿰 R로부터 추출한 염색체 DNA를 사용하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00013
이상을 혼합하고, 이 50㎕의 반응액을 PCR에 제공하였다.
*) pobA-1 영역을 증폭하는 경우에는 프라이머 (a-14)와 (b-14)를 조합하여, pobA-2 영역을 증폭하는 경우에는 프라이머 (a-15)와 (b-15)를 조합하여 행하였다.
Figure 112013029903034-pct00014
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하고, 코리네박테리움 글루타미쿰코리 pobA-1 영역의 경우 약 1.0-kb의 DNA 단편을, pobA-2 영역의 경우 약 1.0-kb의 DNA 단편을 검출할 수 있었다.
다음으로, 상기 PCR에 의해 증폭한 pobA-1 영역 단편과 pobA-2 영역 단편을 1㎕씩 혼합하고, PCR에 의해 2종의 단편의 결합 반응을 행하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00015
이상을 혼합하고, 이 50㎕의 반응액을 PCR에 제공하였다.
*) pobA-1 영역 단편과 pobA-2 영역 단편으로 행하였다.
Figure 112013029903034-pct00016
이상을 1 사이클로 하여, 30 사이클 행하였다.
또한, 얻어진 pobA-1 및 pobA-2의 결합 단편을 주형으로 하여, PCR에 의해 pobA 결실 단편의 증폭을 행하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00017
이상을 혼합하고, 이 50㎕의 반응액을 PCR에 제공하였다.
*) pobA 결실 단편을 증폭하는 경우에는 프라이머 (a-14)와 (b-15)를 조합하여 행하였다.
Figure 112013029903034-pct00018
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하여, pobA 결실 단편 약 2.0을 검출할 수 있었다.
상기 PCR에 의해 증폭한 코리네박테리움 글루타미쿰 R 유래 pobA 결실 서열 약 2.0 DNA 단편 10㎕와 약 4.4-kb의 마커리스 염색체 유전자 도입용 플라스미드 pCRA725[J. Mol. Microbiol. Biotechnol., Vol. 8,243-254(2004), (일본 특허출원 공개번호 2006-124440] 2㎕를 각각 제한 효소 XbaI 및 SacI로 절단하고, 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 후, 양 측을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 N액으로 하였다.
얻어진 라이게이션 N액을, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 카나마이신 50μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소 XbaI 및 SacI로 각각 절단하여, 삽입 단편을 확인하였다. 그 결과, 플라스미드 pCRA725 약 4.4-kb의 DNA 단편뿐만 아니라, 코리네박테리움 글루타미쿰주 유래 pobA 결실 유전자(라이게이션 N액)의 경우, 길이 약 2.0-kb의 삽입 단편이 확인되었다.
코리네박테리움 글루타미쿰주 유래 pobA 결실 유전자를 포함하는 플라스미드를 pCRA725-pobA/CG로 명명했다.
코리네박테리움 글루타미쿰주 poxF 유전자 파괴용 플라스미드의 구축
코리네박테리움 글루타미쿰주의 염색체 상 poxF 유전자의 마커리스 파괴용 플라스미드를 구축하기 위해 필요한 DNA 단편을 이하의 PCR법에 의해 증폭했다.
PCR을 행할 때 코리네박테리움 글루타미쿰 R의 서열을 바탕으로, 각각 하기 한쌍의 프라이머를, 어플라이드·바이오시스템즈(Applied Biosystems)사에서 제조한 「394 DNA/RNA 합성기(synthesizer)」를 사용하여 합성하여, 사용하였다.
poxF-1 영역 증폭용 프라이머
(a-27);5'-CTCT TCTAGA TACGTCCTAAACACCCGAC-3' (서열 번호 77)
(b-27);5'-GACCAACCATTGCTGACTTGCGTATCCATAGTCAGGCTTC-3'
(서열 번호 78)
그리고, 프라이머 (a-27)에는, XbaI 제한 효소 부위가 부가되어 있다.
poxF-2 영역 증폭용 프라이머
(a-28);5'-CAAGTCAGCAATGGTTGGTC-3' (서열 번호 79)
(b-28);5'-CTCT TCTAGA TGATCAGTACCAAGGGTGAG-3' (서열 번호 80)
그리고, 프라이머 (b-28)에는, XbaI 제한 효소 부위가 부가되어 있다.
주형 DNA는, 코리네박테리움 글루타미쿰 R로부터 추출한 염색체 DNA를 사용하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00019
이상을 혼합하고, 이 50㎕의 반응액을 PCR에 제공하였다.
*) poxF-1 영역을 증폭하는 경우에는 프라이머 (a-27)과 (b-27)을 조합하여, poxF-2 영역을 증폭하는 경우에는 프라이머 (a-28)과 (b-28)을 조합하여 행하였다.
Figure 112013029903034-pct00020
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하고, 코리네박테리움 글루타미쿰 poxF-1 영역의 경우 약 0.8-kb의 DNA 단편을, poxF-2 영역의 경우 약 0.8-kb의 DNA 단편을 검출할 수 있었다.
다음으로, 상기 PCR에 의해 증폭한 poxF-1 영역 단편과 poxF-2 영역 단편을 1㎕씩 혼합하고, PCR에 의해 2종의 단편의 결합 반응을 행하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00021
이상을 혼합하고, 이 50㎕의 반응액을 PCR에 제공하였다.
*) poxF-1 영역 단편과 poxF-2 영역 단편으로 행하였다.
Figure 112013029903034-pct00022
이상을 1 사이클로 하여, 30 사이클 행하였다.
또한, 얻어진 poxF-1 및 poxF-2의 결합 단편을 주형으로 하고, PCR에 의해 poxF 결실 단편의 증폭을 행하였다.
실제 PCR은, 서멀 사이클러 GeneAmp PCR System 9700(어플라이드·바이오시스템즈사 제조)을 사용하고, 반응 시약으로서 TaKaRa LA Taq(다카라 바이오 가부시키가이샤 제조)를 사용하여 하기의 조건에서 행하였다.
Figure 112013029903034-pct00023
이상을 혼합하고, 이 50㎕의 반응액을 PCR에 제공하였다.
*) poxF 결실 단편을 증폭하는 경우에는 프라이머 (a-27)과 (b-28)을 조합하여 행하였다.
Figure 112013029903034-pct00024
이상을 1 사이클로 하여, 30 사이클 행하였다.
상기에서 생성된 반응액 10㎕를 0.8% 아가로스겔에 의해 전기 영동을 행하여, poxF 결실 단편 약 1.6-kb를 검출할 수 있었다.
상기 PCR에 의해 증폭한 코리네박테리움 글루타미쿰 R 유래 poxF 결실 서열 약 1.7-kb의 DNA 단편 10㎕와 약 4.4-kb의 마커리스 염색체 유전자 도입용 플라스미드 pCRA725[J. Mol. Microbiol. Biotechnol., Vol. 8, 243-254(2004), (일본 특허출원 공개번호2006-124440] 2㎕를 각각 제한 효소 XbaI로 절단하고, 70℃에서 10분 처리시킴으로써 제한 효소를 실활시킨 후, 양 측을 혼합하고, 여기에 T4 DNA 리가아제 10×완충액 1㎕, T4 DNA 리가아제(다카라 바이오 가부시키가이샤 제조) 1 unit의 각 성분을 첨가하고, 멸균 증류수로 10㎕로 만들고, 15℃에서 3시간 반응시켜, 결합시켰다. 이것을 라이게이션 Z액으로 하였다.
얻어진 라이게이션 Z액을, 염화 칼슘법[Journal of Molecular Biology, 53, 159(1970)]에 의해 에쉐리키아 콜라이 JM109를 형질 전환하고, 카나마이신 50μg/ml를 포함하는 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포했다.
배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소 XbaI로 각각 절단하여, 삽입 단편을 확인하였다. 그 결과, 플라스미드 pCRA725 약 4.4-kb의 DNA 단편뿐만 아니라, 코리네박테리움 글루타미쿰주 유래 pheA 결실 유전자(라이게이션 Z액)의 경우, 길이 약 1.7-kb의 삽입 단편이 확인되었다.
코리네박테리움 글루타미쿰주 유래 poxF 결실 유전자를 포함하는 플라스미드를 pCRA725-poxF/CG로 명명했다.
(6) 4- 하이드록시벤조에이트 분해와 관련된 유전자 파괴주의 구축
마커리스 염색체 유전자 도입용 벡터 pCRA725는, 코리네박테리움 글루타미쿰 R 내에서 복제 불가능한 플라스미드이다. pCRA725-pobA/CG를 사용하여, 전기 펄스법[Agric. Biol. Chem., Vol. 54, 443-447(1990) 및 Res. Microbiol., Vol. 144,181-185(1993)]에 의해, 코리네박테리움 글루타미쿰 R을 형질 전환하고, 카나마이신 50μg/ml를 포함하는 A 한천 배지[A 액체 배지, 및 1.5% 한천]에 도포했다. 상기 배지에서 얻어진 단일 교차주를, 10%(W/V) 수크로오스 함유 BT 한천 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml를 증류수 1L에 용해, 및 1.5% 한천]에 도포했다.
플라스미드 pCRA725-pobA/CG가 염색체 상의 상동 영역과의 단일 교차주인 경우, pCRA725-pobA/CG상의 카나마이신 내성 유전자의 발현에 의한 카나마이신 내성과 바실러스 서브틸리스(Bacillus subtilis)의 sacR-sacB 유전자의 발현에 의한 수크로오스 함유 배지에서의 치사성을 나타내는 데 비해, 이중 교차주의 경우, pCRA725-pobA/CG 상의 카나마이신 내성 유전자의 탈락에 의한 카나마이신 감수성과 sacR-sacB 유전자의 탈락에 의한 수크로오스 함유 배지에서의 생육성을 나타낸다. 따라서, 마커리스 염색체 유전자 파괴주는, 카나마이신 감수성 및 수크로오스 함유 배지 생육성을 나타낸다.
이에, 카나마이신 감수성 및 수크로오스 함유 배지 생육성을 나타낸 주를 선택하였다. 이 코리네박테리움 글루타미쿰 R주 pobA 유전자 마커리스 파괴주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ΔpobA로 명명했다.
코리네박테리움 글루타미쿰주 pobA , poxF 유전자 파괴주의 구축
마커리스 염색체 유전자 도입용 벡터 pCRA725는, 코리네박테리움 글루타미쿰 R 내에서 복제 불가능한 플라스미드이다. pCRA725-poxF/CG를 사용하여, 전기 펄스법[Agric. Biol. Chem., Vol. 54, 443-447(1990) 및 Res. Microbiol., Vol. 144,181-185(1993)]에 의해, 코리네박테리움 글루타미쿰 ΔpobA주를 형질 전환하고, 카나마이신 50μg/ml를 포함하는 A 한천 배지[A 액체 배지, 및 1.5% 한천]에 도포했다. 상기 배지에서 얻어진 단일 교차주를, 10%(W/V) 수크로오스 함유 BT 한천 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml를 증류수 1L에 용해, 및 1.5% 한천]에 도포했다.
플라스미드 pCRA725-poxF/CG가 염색체 상의 상동 영역과의 단일 교차주인 경우, pCRA725-poxF/CG상의 카나마이신 내성 유전자의 발현에 의한 카나마이신 내성과 바실러스 서브틸리스(Bacillus subtilis)의 sacR-sacB 유전자의 발현에 의한 수크로오스 함유 배지에서의 치사성을 나타내는 데 비해, 이중 교차주의 경우, pCRA725-poxF/CG상의 카나마이신 내성 유전자의 탈락에 의한 카나마이신 감수성과 sacR-sacB 유전자의 탈락에 의한 수크로오스 함유 배지에서의 생육성을 나타낸다. 따라서, 마커리스 염색체 유전자 파괴주는, 카나마이신 감수성 및 수크로오스 함유 배지 생육성을 나타낸다.
이에, 카나마이신 감수성 및 수크로오스 함유 배지 생육성을 나타낸 주를 선택하였다. 이 코리네박테리움 글루타미쿰 ΔpobA주 poxF 유전자 마커리스 파괴주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) ΔpobAΔpoxF로 명명했다.
(7) 페놀 생산 유전자 도입주의 구축
(7-1) 코리네박테리움 글루타미쿰 야생주 , 및 Δ pobA 주의 형질 전환
전술한 플라스미드 pCRB1-ubiC/EC 및 pCRB209-bsdBCD/BS를 사용하여, 전기 펄스법[Agric. Biol. Chem., Vol. 54, 443-447(1990) 및 Res. Microbiol., Vol. 144,181-185(1993)]에 의해, 코리네박테리움 글루타미쿰 R주 및 코리네박테리움 글루타미쿰 ΔpobA주를 형질 전환하고, 클로람페니콜 5μg/ml 및 카나마이신 50μg/ml를 포함하는 A 한천 배지에 도포했다. 그리고, 이들 2종류의 플라스미드는, 코리네박테리움 글루타미쿰 내에서 공존 가능한 플라스미드이다.
이 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소로 절단하여, 삽입 단편을 확인하였다. 그 결과, 상기에서 제조된 플라스미드 pCRB1-ubiC/EC 및 pCRB209-bsdBCD/BS의 도입이 확인되었다. R주에 도입한 주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PHE11, ΔpobA주에 도입한 주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PHE13으로 명명했다.
전술한 플라스미드 pCRB1-ubiC/EC, pCRB209-bsdBCD/BS 및 pCRB15-aroG/CG를 사용하여, 전기 펄스법[Agric. Biol. Chem., Vol. 54, 443-447(1990) 및 Res. Microbiol., Vol. 144,181-185(1993)]에 의해, 코리네박테리움 글루타미쿰 R주 및 코리네박테리움 글루타미쿰 ΔpobA주를 형질 전환하고, 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 한천 배지에 도포했다. 그리고, 이들 3종류의 플라스미드는, 코리네박테리움 글루타미쿰 내에서 공존 가능한 플라스미드이다.
이 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소로 절단하여, 삽입 단편을 확인하였다. 그 결과, 상기에서 제조된 플라스미드 pCRB1-ubiC/EC, pCRB209-bsdBCD/BS 및 pCRB15-aroG/CG의 도입이 확인되었다. R주에 도입한 주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PHE12, ΔpobA주에 도입한 주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PHE14로 명명했다.
전술한 플라스미드 pCRB1-ubiC/PP 및 pCRB209-bsdBCD/BS를 사용하여, 전기 펄스법[Agric. Biol. Chem., Vol. 54, 443-447(1990) 및 Res. Microbiol., Vol. 144,181-185(1993)]에 의해, 코리네박테리움 글루타미쿰 R주 및 코리네박테리움 글루타미쿰 ΔpobA주를 형질 전환하고, 클로람페니콜 5μg/ml 및 카나마이신 50μg/ml를 포함하는 A 한천 배지에 도포했다. 그리고, 이들 2종류의 플라스미드는, 코리네박테리움 글루타미쿰 내에서 공존 가능한 플라스미드이다.
이 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소로 절단하여, 삽입 단편을 확인하였다. 그 결과, 상기에서 제조된 플라스미드 pCRB1-ubiC/PP 및 pCRB209-bsdBCD/BS의 도입이 확인되었다. R주에 도입한 주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PHE15, ΔpobA주에 도입한 주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PHE17로 명명했다.
전술한 플라스미드 pCRB1-ubiC/PP, pCRB209-bsdBCD/BS 및 pCRB15-aroG/CG를 사용하여, 전기 펄스법[Agric. Biol. Chem., Vol. 54, 443-447(1990) 및 Res. Microbiol., Vol. 144,181-185(1993)]에 의해, 코리네박테리움 글루타미쿰 R주 및 코리네박테리움 글루타미쿰 ΔpobA주를 형질 전환하고, 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 한천 배지에 도포했다. 그리고, 이들 3종류의 플라스미드는, 코리네박테리움 글루타미쿰 내에서 공존 가능한 플라스미드이다.
이 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소로 절단하여, 삽입 단편을 확인하였다. 그 결과, 상기에서 제조된 플라스미드 pCRB1-ubiC/PP, pCRB209-bsdBCD/BS 및 pCRB15-aroG/CG의 도입이 확인되었다. R주에 도입한 주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PHE16, ΔpobA주에 도입한 주를 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PHE18로 명명했다.
(7-2) 코리네박테리움 글루타미쿰 Δ pobA Δ poxF 주의 형질 전환
전술한 플라스미드 pCRB1-ubiC/PP, pCRB209-bsdBCD/BS, pCRB209-dca/BAE, pCRB209-dca/BSS, pCRB209-dca/CKO, pCRB209-dca/EAE, pCRB209-dca/ECL, pCRB209-dca/EHO, pCRB209-dca/ESA, pCRB209-dca/ECK, pCRB209-dca/EFE, pCRB209-dca/PPY, pCRB209-dca/PAM 및 pCRB15-aroG/CG를 각각 사용하여, 전기 펄스법[Agric. Biol. Chem., Vol. 54, 443-447(1990) 및 Res. Microbiol., Vol. 144,181-185(1993)]에 의해, 코리네박테리움 글루타미쿰 ΔpobAΔpoxF주를 형질 전환하고, 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 한천 배지에 도포했다. 그리고, 이들 3종류의 플라스미드(pCRB1, pCRB209 및 pCRB15)는, 코리네박테리움 글루타미쿰 내에서 공존 가능한 플라스미드이다.
이 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소로 절단하여, 삽입 단편을 확인하였다. 그 결과, 상기에서 제조된 플라스미드 pCRB1-ubiC/PP, pCRB209-bsdBCD/BS, pCRB209-dca/BAE, pCRB209-dca/BSS, pCRB209-dca/CKO, pCRB209-dca/EAE, pCRB209-dca/ECL, pCRB209-dca/EHO, pCRB209-dca/ESA, pCRB209-dca/ECK, pCRB209-dca/EFE, pCRB209-dca/PPY, pCRB209-dca/PAM 및 pCRB15-aroG/CG의 도입이 확인되었다.
ΔpobAΔpoxF주에 있어서 pCRB1-ubiC/PP, pCRB209-bsdBCD/BS 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-1, pCRB1-ubiC/PP, pCRB209-dca/BAE 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-2, pCRB1-ubiC/PP, pCRB209-dca/BSS 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-3, pCRB1-ubiC/PP, pCRB209-dca/CKO 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-4, pCRB1-ubiC/PP, pCRB209-dca/EAE 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-5, pCRB1-ubiC/PP, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-6, pCRB1-ubiC/PP, pCRB209-dca/EHO 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-7, pCRB1-ubiC/PP, pCRB209-dca/ESA 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-8, pCRB1-ubiC/PP, pCRB209-dca/ECK 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-9, pCRB1-ubiC/PP, pCRB209-dca/EFE 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-10, pCRB1-ubiC/PP, pCRB209-dca/PPY 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-11, pCRB1-ubiC/PP, pCRB209-dca/PAM 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE19-12로 명명했다.
전술한 플라스미드 pCRB1-ubiC/EC, pCRB1-ubiC/ACB, pCRB1-ubiC/AVN, pCRB1-ubiC/CSA, pCRB1-ubiC/CKO, pCRB1-ubiC/CIT, pCRB1-ubiC/ECL, pCRB1-ubiC/MAQ, pCRB1-ubiC/MME, pCRB1-ubiC/PAM, pCRB1-ubiC/PHA, pCRB1-ubiC/REH, pCRB1-ubiC/SPC, pCRB1-ubiC/TBD, pCRB209-dca/ECL 및 pCRB15-aroG/CG를 사용하여, 전기 펄스법[Agric. Biol. Chem., Vol. 54, 443-447(1990) 및 Res. Microbiol., Vol. 144,181-185(1993)]에 의해, 코리네박테리움 글루타미쿰 ΔpobAΔpoxF주를 형질 전환하고, 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 한천 배지에 도포했다. 그리고, 이들 3종류의 플라스미드(pCRB1, pCRB209 및 pCRB15)는, 코리네박테리움 글루타미쿰 내에서 공존 가능한 플라스미드이다.
이 배지 상의 생육주를 통상적인 방법에 의해 액체 배양하고, 배양액으로부터 플라스미드 DNA를 추출하고, 상기 플라스미드를 제한 효소로 절단하여, 삽입 단편을 확인하였다. 그 결과, 상기에서 제조된 플라스미드 pCRB1-ubiC/EC, pCRB1-ubiC/ACB, pCRB1-ubiC/AVN, pCRB1-ubiC/CSA, pCRB1-ubiC/CKO, pCRB1-ubiC/CIT, pCRB1-ubiC/ECL, pCRB1-ubiC/MAQ, pCRB1-ubiC/MME, pCRB1-ubiC/PAM, pCRB1-ubiC/PHA, pCRB1-ubiC/REH, pCRB1-ubiC/SPC, pCRB1-ubiC/TBD, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인되었다.
ΔpobAΔpoxF주에 있어서 pCRB1-ubiC/EC, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-1, pCRB1-ubiC/ACB, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-2, pCRB1-ubiC/AVN, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-3, pCRB1-ubiC/CSA, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-4, pCRB1-ubiC/CKO, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-5, pCRB1-ubiC/CIT, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-6, pCRB1-ubiC/ECL, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-7, pCRB1-ubiC/MAQ, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-8, pCRB1-ubiC/MME, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-9, pCRB1-ubiC/PAM, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-10, pCRB1-ubiC/PHA, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-11, pCRB1-ubiC/REH, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-12, pCRB1-ubiC/SPC, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-13, pCRB1-ubiC/TBD, pCRB209-dca/ECL 및 pCRB15-aroG/CG의 도입이 확인된 주를 코리네박테리움 글루타미쿰 PHE20-14로 명명했다.
전술한 유전자 재조합의 개요를, 이하의 표 1에 정리하여 나타내었다.
코리네박테리움 글루타미쿰(Corynebacterium glutamicum) PHE18은, 일본국 지바현 키사라즈시 카즈사카마타리 2-5-8(우편 번호 292-0818)의 독립 행정법인 제품 평가 기술 기반 기구 특허 생물 기탁 센터에 기탁했다(수탁일:2010년 10월 21일, 수탁 번호:NITE BP-995).
[표 1]
Figure 112013029903034-pct00025
<유전자 기원 약어>
BS;바실러스 서브틸리스
EC;에쉐리키아 콜라이
PP;슈도모나스 푸티다
CG;코리네박테리움 글루타미쿰
BAE;바실러스 아트로파에우스
BSS;바실러스 서브틸리스 아종 스피지제니
CKO;시트로박터 코세리
EAE;엔테로박터 아에로게네스
ECL;엔테로박터 클로아케
EHO;엔테로박터 호마에체이
ESA;엔테로박터 사카자키
ECK;에쉐리키아 콜라이 W
EFE;에쉐리키아 퍼구소니
PPY;파에니바실러스 폴리믹사
PAM;판토에아 아나나티스
ACB;아시네토박터 바우마니
AVN;아조토박터 비넬란디
CSA;크로모할로박터 살렉시겐스
CIT;시트로박터 용게이
MAQ;마리노박터 아쿠에어올레이
MME;마리노모나스 메디테라니아
PHA;슈도알테로모나스 할로플랑크티스
REH;랄스토니아 유트로파
SPC;슈와넬라 푸트레파시엔스
TBD;티오바실러스 데니트리피칸스
<유전자명>
ubiC; 코리스메이트-피루베이트 리아제(Chorismate-pyruvate lyase) 유전자
bsdBCD; 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 유전자
aroG; DAHP 신타아제(3-deoxy-D-arabino-heptulosonate 7-phosphate(DAHP) synthase) 유전자
pobA; 4-하이드록시벤조에이트 하이드록실라아제(4-hydroxybenzoate hydroxylase) 유전자
dca; 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 유전자
poxF; 페놀 2-모노옥시게나아제(phenol 2-monooxygenase) 유전자
실시예 2 코리네박테리움 글루타미쿰페놀 생산 유전자 도입주 및 부산물 경로 파괴주의 페놀 생성 실험
실시예 1에 있어서 제조한 코리네박테리움 글루타미쿰페놀 유전자 도입주 PHE11-PH18에 대하여, 페놀의 생산 비교를 행하였다.
각각의 코리네박테리움 글루타미쿰페놀 유전자 도입주(PHE11-PH18)를, 표 2에 기재된 항생 물질을 포함하는 A 한천 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml, yeast extract 2g, vitamin assay casamino acid 7g, glucose 40g, 한천 15g을 증류수 1L에 현탁시킨 것]에 도포하고, 28℃, 20시간 암소(暗所)에 정치(靜置)했다.
상기 플레이트에서 생육한 코리네박테리움 글루타미쿰페놀 유전자 도입주를, 표 2에 기재된 각 항생 물질을 포함하는 A 액체 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml, yeast extract 2g, vitamin assay casamino acid 7g, glucose 40g을 증류수 1L에 용해시킨 것] 10ml가 들어간 시험관에 일백금이 식균하고, 28℃에서 15시간, 호기적으로 진탕 배양을 행하였다.
상기 조건에서 생육한 코리네박테리움 글루타미쿰페놀 생산 유전자 도입주를, 각 항생 물질을 포함하는 A 액체 배지 10ml에 식균하고, 33℃에서 24시간, 호기적으로 진탕 배양을 행하였다.
페놀의 정량은, 24시간 후에 샘플링한 반응액을 원심분리(4℃, 15,000×g, 10분)하여, 얻어진 상청액을 액체 크로마토그래피로 분석함으로써 행하였다.
그리고, 야생주 코리네박테리움 글루타미쿰에 대해도 마찬가지의 방법으로 페놀 생산을 시도했지만, 페놀 생성은 검출되지 않았다.
각 균주에 의한 페놀 생산량을 이하의 표 2에 나타내었다.
[표 2]
Figure 112013029903034-pct00026
<유전자 기원 약어>
BS;바실러스 서브틸리스
EC;에쉐리키아 콜라이
PP;슈도모나스 푸티다
CG;코리네박테리움 글루타미쿰
<배지 첨가 항생 물질>
A; 클로람페니콜 5μg/ml
B; 카나마이신 50μg/ml
C; 제오신 25μg/ml
<유전자명>
ubiC; 코리스메이트-피루베이트 리아제(Chorismate-pyruvate lyase) 유전자
bsdBCD; 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 유전자
aroG; DAHP 신타아제(3-deoxy-D-arabino-heptulosonate 7-phosphate(DAHP) synthase) 유전자
pobA; 4-하이드록시벤조에이트 하이드록실라아제(4-hydroxybenzoate hydroxylase) 유전자
표 2에 나타낸 바와 같이, 코리네박테리움 글루타미쿰 PHE11은, 0.4 mM의 페놀을, PHE12는, 0.9 mM의 페놀을, PHE13은, 0.8 mM의 페놀을, PHE14는, 1.8 mM의 페놀을, PHE15는, 1.1 mM의 페놀을, PHE16은, 3.5 mM의 페놀을, PHE17은, 1.6 mM의 페놀을, PHE18은, 6.3 mM의 페놀을 배양액 중에서 생산하였다.
전술한 결과로부터, 이하의 사항을 도출할 수 있다.
(1) ubiC 유전자와 bsdBCD 유전자를 코리네박테리움 글루타미쿰에 도입함으로써, 처음으로 실용적인 글루코오스로부터 페놀 생성이 가능하게 되었다.
(2) ubiC 유전자로서 에쉐리키아 콜라이 유래 유전자를 사용하는 것보다, 슈도모나스 푸티다 유래 유전자를 사용하는 것이, 페놀 생산성이 높았다.
(3) ubiC 유전자와 bsdBCD 유전자를 도입하고, 또한 aroG 유전자를 도입함으로써 페놀 생성량이 증대하였다.
(4) pobA 유전자를 파괴함으로써, 페놀 생산성이 한층 향상되였다.
실시예 3 코리네박테리움 글루타미쿰페놀 생산 유전자 도입주 및 부산물 경로 파괴주의 페놀 생성 실험
실시예 1에서 제조한 코리네박테리움 글루타미쿰페놀 유전자 도입주 PHE19-1∼PHE19-12에 대하여, 페놀의 생산 비교를 행하였다.
각각의 코리네박테리움 글루타미쿰페놀 유전자 도입주(PHE19-1∼PHE19-12)를, 항생 물질 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 한천 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml, yeast extract 2g, vitamin assay casamino acid 7g, glucose 40g, 한천 15g을 증류수 1L에 현탁시킨 것]에 도포하고, 28℃에서, 20시간 암소에 정치했다.
상기 플레이트에서 생육한 코리네박테리움 글루타미쿰페놀 유전자 도입주를, 항생 물질 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 액체 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml, yeast extract 2g, vitamin assay casamino acid 7g, glucose 40g을 증류수 1L에 용해시킨 것] 10ml가 들어간 시험관에 일백금이 식균하고, 28℃에서 15시간, 호기적으로 진탕 배양을 행하였다.
상기 조건에서 생육한 코리네박테리움 글루타미쿰페놀 생산 유전자 도입주를, 항생 물질 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 액체 배지 10ml에 식균하고, 33℃에서 24시간, 호기적으로 진탕 배양을 행하였다.
페놀의 정량은, 24시간 후에 샘플링한 반응액을 원심분리(4℃, 15,000×g, 10분)하여, 얻어진 상청액을 액체 크로마토그래피로 분석함으로써 행하였다.
각 균주에 의한 페놀 생산량을 이하의 표 3에 나타내었다.
[표 3]
Figure 112013029903034-pct00027
<유전자 기원 약어>
BS;바실러스 서브틸리스
EC;에쉐리키아 콜라이
PP;슈도모나스 푸티다
CG;코리네박테리움 글루타미쿰
BAE;바실러스 아트로파에우스
BSS;바실러스 서브틸리스 아종 스피지제니
CKO;시트로박터 코세리
EAE;엔테로박터 아에로게네스
ECL;엔테로박터 클로아케
EHO;엔테로박터 호마에체이
ESA;엔테로박터 사카자키
ECK;에쉐리키아 콜라이 W
EFE;에쉐리키아 퍼구소니
PPY;파에니바실러스 폴리믹사
PAM;판토에아 아나나티스
<유전자명>
ubiC; 코리스메이트-피루베이트 리아제(Chorismate-pyruvate lyase) 유전자
bsdBCD; 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 유전자
aroG; DAHP 신타아제(3-deoxy-D-arabino-heptulosonate 7-phosphate(DAHP) synthase) 유전자
pobA; 4-하이드록시벤조에이트 하이드록실라아제(4-hydroxybenzoate hydroxylase) 유전자
dca; 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 유전자
poxF; 페놀 2-모노옥시게나아제(phenol 2-monooxygenase) 유전자
표 3의 결과와, 표 2의 PHE18의 페놀 생산성 결과를 비교함으로써, pobA 유전자를 파괴하는 것에 더하여, poxF 유전자의 파괴를 중첩하면 생산성이 향상되는 것을 알았다.
또한, 바실러스 서브틸리스 유래의 bsdBCD 유전자 대신, 바실러스 아트로파에우스 유래의 dca 유전자, 또는 바실러스 서브틸리스 아종 스피지제니 유래의 dca 유전자, 또는 시트로박터 코세리 유래의 dca 유전자, 또는 엔테로박터 아에로게네스 유래의 dca 유전자, 또는 엔테로박터 클로아케 유래의 dca 유전자, 또는 엔테로박터 호마에체이 유래의 dca 유전자, 또는 엔테로박터 사카자키 유래의 dca 유전자, 또는 에쉐리키아 콜라이 유래의 dca 유전자, 또는 에쉐리키아 퍼구소니 유래의 dca 유전자, 또는 파에니바실러스 폴리믹사 유래의 dca 유전자, 또는 판토에아 아나나티스 유래의 dca 유전자를, ubiC 유전자 및 aroG 유전자와 함께 코리네박테리움 글루타미쿰 ΔpobAΔpoxF주에 도입해도, 동등한 또는 그 이상의 페놀 생산성이 관찰되었다.
실시예 4 코리네박테리움 글루타미쿰페놀 생산 유전자 도입주 및 부산물 경로 파괴주의 페놀 생성 실험
실시예 1에서 제조한 코리네박테리움 글루타미쿰페놀 유전자 도입주 PHE19-6및 PHE20-1∼PHE20-14에 대하여, 페놀의 생산 비교를 행하였다.
각각의 코리네박테리움 글루타미쿰페놀 유전자 도입주(PHE19-6 및 PHE20-1∼PHE20-14)를, 항생 물질 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 한천 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml, yeast extract 2g, vitamin assay casamino acid 7g, glucose 40g, 한천 15g을 증류수 1L에 현탁시킨 것]에 도포하고, 28℃에서, 20시간 암소에 정치했다.
상기 플레이트에서 생육한 코리네박테리움 글루타미쿰페놀 유전자 도입주를, 항생 물질 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 액체 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml, yeast extract 2g, vitamin assay casamino acid 7g, glucose 40g을 증류수 1L에 용해시킨 것] 10ml가 들어간 시험관에 일백금이 식균하고, 28℃에서 15시간, 호기적으로 진탕 배양을 행하였다.
상기 조건에서 생육한 코리네박테리움 글루타미쿰페놀 생산 유전자 도입주를, 항생 물질 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 포함하는 A 액체 배지 10ml에 식균하고, 33℃에서 24시간, 호기적으로 진탕 배양을 행하였다.
페놀의 정량은, 24시간 후에 샘플링한 반응액을 원심분리(4℃, 15,000×g, 10분)하여, 얻어진 상청액을 액체 크로마토그래피로 분석함으로써 행하였다.
각 균주에 의한 페놀 생산량을 이하의 표 4에 나타내었다.
[표 4]
Figure 112013029903034-pct00028
<유전자 기원 약어>
PP;슈도모나스 푸티다
ECL;엔테로박터 클로아케
CG;코리네박테리움 글루타미쿰
EC;에쉐리키아 콜라이
ACB;아시네토박터 바우마니
AVN;아조토박터 비넬란디
CSA;크로모할로박터 살렉시겐스
CKO;시트로박터 코세리
CIT;시트로박터 용게이
MAQ;마리노박터 아쿠에어올레이
MME;마리노모나스 메디테라니아
PAM;판토에아 아나나티스
PHA;슈도알테로모나스 할로플랑크티스
REH;랄스토니아 유트로파
SPC;슈와넬라 푸트레파시엔스
TBD;티오바실러스 데니트리피칸스
<유전자명>ubiC; 코리스메이트-피루베이트 리아제(Chorismate-pyruvate lyase) 유전자
aroG; DAHP 신타아제(3-deoxy-D-arabino-heptulosonate 7-phosphate(DAHP) synthase) 유전자
pobA; 4-하이드록시벤조에이트 하이드록실라아제(4-hydroxybenzoate hydroxylase) 유전자
dca; 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 유전자
poxF; 페놀 2-모노옥시게나아제(phenol 2-monooxygenase) 유전자
표 4의 결과로부터, 슈도모나스 푸티다 유래의 ubiC 유전자 대신, 에쉐리키아 콜라이 유래의 ubiC 유전자, 아시네토박터 바우마니 유래의 ubiC 유전자, 아조토박터 비넬란디 유래의 ubiC 유전자, 크로모할로박터 살렉시겐스 유래의 ubiC 유전자, 시트로박터 코세리 유래의 ubiC 유전자, 시트로박터 용게이 유래의 ubiC 유전자, 마리노박터 아쿠에어올레이 유래의 ubiC 유전자, 마리노모나스 메디테라니아 유래의 ubiC 유전자, 판토에아 아나나티스 유래의 ubiC 유전자, 슈도알테로모나스 할로플랑크티스 유래의 ubiC 유전자, 랄스토니아 유트로파 유래의 ubiC 유전자, 슈와넬라 푸트레파시엔스 유래의 ubiC 유전자, 또는 티오바실러스 데니트리피칸스 유래의 ubiC 유전자를, dca 유전자 및 aroG 유전자와 함께 코리네박테리움 글루타미쿰 ΔpobAΔpoxF주에 도입해도, 의미가 있는 페놀 생산성이 관찰되었다.
실시예 5 코리네박테리움 글루타미쿰 PHE18 을 사용한 환원 조건 하에서의 페놀 생성 실험
실시예 1에서 제조한 코리네박테리움 글루타미쿰 PHE18 페놀 생성주를, 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 함유한 A 한천 배지에 도포하고, 28℃에서, 20시간 암소에 정치했다.
상기 플레이트에서 생육한 코리네박테리움 글루타미쿰 PHE18 페놀 생성주를, 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 함유한 A 액체 배지 10ml가 들어간 시험관에 일백금이 식균하고, 28℃에서 10시간, 호기적으로 진탕 배양을 행하였다.
상기 조건에서 생육한 코리네박테리움 글루타미쿰 PHE18 페놀 생성주를, 클로람페니콜 5μg/ml, 카나마이신 50μg/ml 및 제오신 25μg/ml를 함유한 A 액체 배지 500ml가 들어간 용량 2L의 삼각 플라스크에 식균하고, 33℃에서 15시간, 호기적으로 진탕 배양을 행하였다.
이와 같이 하여 배양 증식된 각각의 균체는, 원심분리(4℃, 5,000×g, 15분)에 의해 균체를 회수했다. 얻어진 균체를, 최종 농도 OD610=60이 되도록 BT(-요소) 액체 배지[0.7% 황산 암모늄, 0.05% 인산 이수소칼륨, 0.05% 인산 수소 2칼륨, 0.05% 황산 마그네슘·7수화물, 0.0006% 황산 철·7수화물, 0.00042% 황산 망간 수화물, 0.00002% 비오틴, 0.00002% 티아민 염산염]에 현탁시켰다. 이 각각의 균체 현탁액 60ml를 용량 100ml의 유리병(medium bottle)에 넣어 환원 조건 하(산화 환원 전위;-450 mV)에서, 글루코오스를 처음 5%, 12시간 후에 5%를 더 첨가하고, 33℃에서 교반하면서 반응시켰다. 이 때, 반응액의 pH가 7.0을 하회하지 않도록 2.5 N의 암모니아수를 사용하여 pH 컨트롤러(에이블가부시키가이샤 제조, 모델명:DT-1023)로 컨트롤하면서 반응시켰다.
샘플링한 반응액을 원심분리(4℃, 15,000×g, 10분)하여, 얻어진 상청액을 사용하여 페놀의 정량을 행하였다.
그 결과, 코리네박테리움 글루타미쿰 PHE18 페놀 생성주는, 환원 조건 하의 반응에 있어서, 24시간 후에 9.2 mM의 페놀을 생성하였다.
본 발명의 형질 전환체가, 환원 조건 하에서 한층 양호한 효율로 페놀을 생성하는 것을 알 수 있다.
실시예 6 페놀 생산용 숙주로서의 적성 시험
(1) 페놀에 의한 호기 증식에 대한 영향
코리네박테리움 글루타미쿰, 에쉐리키아 콜라이 및 슈도모나스 푸티다에 대하여, 호기 배양에 있어서의 페놀의 생육 저해 시험을 행하였다. 그리고, 본 시험에 사용한 슈도모나스 푸티다 S12는, 용매 내성균으로서 보고되어 있으며, 지금까지 유일하게 페놀 생산의 숙주로서 이용된 기술에 대하여 개시하고 있다.
코리네박테리움 글루타미쿰 R을 A 한천 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml, yeast extract 2g, vitamin assay casamino acid 7g, glucose 40g, 한천 15g을 증류수 1L에 현탁시킨 것]에 도포하고, 33℃에서, 15시간 암소에 정치했다.
상기 플레이트에서 생육한 코리네박테리움 글루타미쿰 R을, A 액체 배지[(NH2)2CO 2g, (NH4)2SO4 7g, KH2PO4 0.5g, K2HPO4 0.5g, MgSO4.7H2O 0.5g, 0.06%(w/v) Fe2SO4.7H2O + 0.042%(w/v) MnSO4.2H2O 1ml, 0.02%(w/v) biotin solution 1ml, 0.01%(w/v) thiamin solution 2ml, yeast extract 2g, vitamin assay casamino acid 7g, glucose 40g을 증류수 1L에 용해시킨 것] 10ml가 들어간 시험관에 일백금이 식균하고, 33℃에서 13시간, 호기적으로 진탕 배양을 행하였다.
상기 조건에서 생육한 코리네박테리움 글루타미쿰 R을, A 액체 배지 100ml에 초기 균체 농도 OD610=0.05로 되도록 식균하고, 동시에 페놀이 최종 농도 0, 0.16, 0.2, 0.24, 0.32 mM로 되도록 첨가하고, 33℃에서 호기적으로 진탕 배양을 행하였다. 균체의 생육은 OD610의 흡광도를 측정함으로써 행하였다.
에쉐리키아 콜라이 JM109를 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포하고, 37℃에서, 15시간 암소에 정치했다.
상기 플레이트에서 생육한 에쉐리키아 콜라이 JM109를, LB 액체 배지[1% 폴리 펩톤, 0.5% 효모 엑기스 및 0.5% 염화 나트륨] 10ml가 들어간 시험관에 일백금이 식균하고, 37℃에서 13시간, 호기적으로 진탕 배양을 행하였다.
상기 조건에서 생육한 에쉐리키아 콜라이 JM109를 LB 액체 배지 100ml에 초기 균체 농도 OD610=0.05가 되도록 식균하고, 동시에 페놀 농도가 최종 농도 0, 0.16, 0.20 mM로 되도록 첨가하고, 37℃에서 호기적으로 진탕 배양을 행하였다. 균체의 생육은 OD610의 흡광도를 측정함으로써 행하였다.
슈도모나스 푸티다 F1 및 S12를 LB 한천 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨, 및 1.5% 한천]에 도포하고, 30℃에서, 15시간 암소에 정치했다.
상기 플레이트에서 생육한 슈도모나스 푸티다 F1 및 S12를, LB(+글루코오스) 액체 배지[1% 폴리 펩톤, 0.5% 효모 엑기스, 0.5% 염화 나트륨 및 0.4% 글루코오스] 10ml가 들어간 시험관에 일백금이 식균하고, 30℃에서 13시간, 호기적으로 진탕 배양을 행하였다.
상기 조건에서 생육한 슈도모나스 푸티다 F1 및 S12주를 LB(+글루코오스) 액체 배지 100ml에 초기 균체 농도 OD610=0.05가 되도록 식균하고, 동시에 페놀 농도가 최종 농도 0, 0.10, 0.20 mM가 되도록 첨가하고, 30℃에서 호기적으로 진탕 배양을 행하였다. 균체의 생육은 OD610의 흡광도를 측정함으로써 행하였다. 배지 중에 대한 페놀 첨가에 의한 호기 증식에 미치는 영향을 해석한 결과를 도 4에 나타낸다.
에쉐리키아 콜라이는, 0.16% 페놀 존재 하에서 현저하게 증식 저해를 받고, 0.20% 페놀에서는 완전하게 증식이 저해되었다.
슈도모나스 푸티다 F1 및 용제 내성균으로서 보고되고 있는 슈도모나스 푸티다 S12는, 거의 동일한 경향을 나타내고, 0.10% 페놀 존재 하에서 현저하게 증식 저해를 받았고, 0.20% 페놀에서는 완전하게 증식이 저해되었다.
이에 비해, 코리네박테리움 글루타미쿰은, 에쉐리키아 콜라이가 현저한 증식 저해를 받은 0.16%의 페놀 존재 하에서도 증식에 대한 영향은 거의 없으며, 에쉐리키아 콜라이나 슈도모나스 푸티다에서는 완전하게 증식이 저해된 0.20%의 페놀 존재 하에서도 양호한 생육을 나타낸다. 또한, 0.24%의 페놀 존재 하에서 증식이 가능하였다.
이와 같이, 코리네박테리움 글루타미쿰은 에쉐리키아 콜라이 및 슈도모나스 푸티다와 비교하여, 페놀에 대하여 높은 내성을 가지고, 페놀 생산의 숙주로서 높은 적성을 가지는 것을 나타낸다.
(2) 페놀에 의한 환원 조건 하에서의 당 대사에 대한 영향
코리네박테리움 글루타미쿰 R을, A 한천 배지에 도포하고, 33℃에서, 20시간 암소에 정치했다.
상기 플레이트에서 생육한 코리네박테리움 글루타미쿰 R을 A 액체 배지 10ml가 들어간 시험관에 일백금이 식균하고, 33℃에서 15시간, 호기적으로 진탕 배양을 행하였다.
상기 조건에서 생육한 코리네박테리움 글루타미쿰 R을 A 액체 배지 500ml가 들어간 용량 2L의 삼각 플라스크에 식균하고, 33℃에서 15시간, 호기적으로 진탕 배양을 행하였다.
이와 같이 하여 배양 증식한 균체는, 원심분리(4℃, 5,000×g, 15분)에 의해 회수했다. 얻어진 균체를, 10 w/v%가 되도록 BT(-요소) 액체 배지[0.7% 황산 암모늄, 0.05% 인산 이수소칼륨, 0.05% 인산 수소 2칼륨, 0.05% 황산 마그네슘·7수화물, 0.0006% 황산 철·7수화물, 0.00042% 황산 망간 수화물, 0.00002% 비오틴, 0.00002% 티아민 염산염]에 현탁시켰다. 이 각각의 균체 현탁액 60ml를 용량 100ml의 유리병에 넣어 환원 조건 하(산화 환원 전위;-450 mV)에서, 글루코오스를8%, 페놀 농도를 0, 0.24, 0.38, 0.46 mM가 되도록 첨가하고, 33℃로 유지한 수욕 중에서 교반하면서 반응시켰다. 이 때, 반응액의 pH가 7.0을 하회하지 않도록 2.5 N의 암모니아수를 사용하여 pH 컨트롤러(에이블가부시키가이샤 제조, 모델명:DT-1023)로 컨트롤하면서 반응시켰다.
코리네박테리움 글루타미쿰 R의 환원 조건 하에서 당 대사에 미치는 페놀의 영향을 검토한 결과를 도 5에 나타낸다.
환원 조건 하에서는, 호기 배양에 있어서 증식 저해가 확인된 0.24% 페놀 존재 하에서도, 페놀에 의한 영향은 전혀 관찰되지 않아, 페놀 미첨가와 동등한 당 소비를 나타낸다.
또한, 0.38%의 페놀 존재 하에서도 당 소비가 확인되었으며, 0.46%의 페놀 존재 하에서도 근소한 당 소비를 나타낸다.
이와 같이, 호기 배양과 비교하여, 환원 조건에서는 페놀에 대하여 높은 내성을 나타내고, 환원 조건 하에서의 코리네박테리움 글루타미쿰을 숙주로 한 페놀 생산이, 호기 조건 하에서의 생산에 비해 우위인 것을 나타내고 있다.
[산업상 이용가능성]
본 발명 방법에 의하면, 미생물을 사용하여 실용적인 효율로 페놀을 제조할 수 있다.
독립 행정 법인 제품 평가 기술 기반 기구 특허 미생물 기탁 센터 NITEBP-995 20101021
SEQUENCE LISTING <110> Green Phenol Technology Research Association <120> Transformant of coryneform group of bacteria and method of producing phenol using thereof <130> C01F3970 <150> JP2010-252357 <151> 2010-11-10 <160> 122 <170> PatentIn version 3.1 <210> 1 <211> 1195 <212> DNA <213> Corynebacterium casei <400> 1 atgaaaaccg accgtgcacg ctcgtgtgag aaagtcagct acatgagacc aactacccgc 60 cctgagggac gctttgagca gctgtggctg ccgctgtggc cattggcaag cgatgacctc 120 cgtgagggca tttaccgcac ctcacggaag aacgcgctgg ataagcgcta cgtcgaagcc 180 aatcccgacg cgctctctaa cctcctggtc gttgacatcg accaggagga cgcgcttttg 240 cgctctttgt gggacaggga ggactggaga cctaacgcgg tggttgaaaa ccccttaaac 300 gggcacgcac acgctgtctg ggcgctcgcg gagccattta cccgcaccga atacgccaaa 360 cgcaagcctt tggcctatgc cgcggctgtc accgaaggcc tacggcgctc tgtcgatggc 420 gatagcggat actccgggct gatcaccaaa aaccccgagc acactgcatg ggatagtcac 480 tggatcaccg ataagctgta tacgctcgat gagctgcgct tttggctcga agaaaccggc 540 tttatgccgc ctgcgtcctg gaggaaaacg cggcggttct cgccagttgg tctaggtcgt 600 aattgcgcac tctttgaaag cgcacgtacg tgggcatatc gggaggtcag aaagcatttt 660 ggagacgctg acggcctagg ccgcgcaatc caaaccaccg cgcaagcact taaccaagag 720 ctgtttgatg aaccactacc tgtggccgaa gttgactgta ttgccaggtc aatccataaa 780 tggatcatca ccaagtcacg catgtggaca gacggcgccg ccgtctacga cgccacattc 840 accgcaatgc aatccgcacg cgggaagaaa ggctggcaac gaagcgctga ggtgcgtcgt 900 gaggctggac atactctttg gaggaacatt ggctaaggtt tatgcacgtt atccacgcaa 960 cggaaaaaca gcccgcgagc tggcagaacg tgccggtatg tcggtgagaa cagctcaacg 1020 atggacttcc gaaccgcgtg aagtgttcat taaacgtgcc aacgagaagc gtgctcgcgt 1080 ccaggagctg cgcgccaaag gtctgtccat gcgcgctatc gcggcagaga ttggttgctc 1140 ggtgggcacg gttcaccgct acgtcaaaga agttgaagag aagaaaaccg cgtaa 1195 <210> 2 <211> 2675 <212> DNA <213> Artificial sequence <220> <223> pHSG298 <400> 2 gaggtctgcc tcgtgaagaa ggtgttgctg actcatacca ggcctgaatc gccccatcat 60 ccagccagaa agtgagggag ccacggttga tgagagcttt gttgtaggtg gaccagttgg 120 tgattttgaa cttttgcttt gccacggaac ggtctgcgtt gtcgggaaga tgcgtgatct 180 gatccttcaa ctcagcaaaa gttcgattta ttcaacaaag ccacgttgtg tctcaaaatc 240 tctgatgtta cattgcacaa gataaaaata tatcatcatg aacaataaaa ctgtctgctt 300 acataaacag taatacaagg ggtgttatga gccatattca acgggaaacg tcttgctcga 360 agccgcgatt aaattccaac atggatgctg atttatatgg gtataaatgg gctcgcgata 420 atgtcgggca atcaggtgcg acaatctatc gattgtatgg gaagcccgat gcgccagagt 480 tgtttctgaa acatggcaaa ggtagcgttg ccaatgatgt tacagatgag atggtcagac 540 taaactggct gacggaattt atgcctcttc cgaccatcaa gcattttatc cgtactcctg 600 atgatgcatg gttactcacc actgcgatcc ccgggaaaac agcattccag gtattagaag 660 aatatcctga ttcaggtgaa aatattgttg atgcgctggc agtgttcctg cgccggttgc 720 attcgattcc tgtttgtaat tgtcctttta acagcgatcg cgtatttcgt ctcgctcagg 780 cgcaatcacg aatgaataac ggtttggttg atgcgagtga ttttgatgac gagcgtaatg 840 gctggcctgt tgaacaagtc tggaaagaaa tgcataagct tttgccattc tcaccggatt 900 cagtcgtcac tcatggtgat ttctcacttg ataaccttat ttttgacgag gggaaattaa 960 taggttgtat tgatgttgga cgagtcggaa tcgcagaccg ataccaggat cttgccatcc 1020 tatggaactg cctcggtgag ttttctcctt cattacagaa acggcttttt caaaaatatg 1080 gtattgataa tcctgatatg aataaattgc agtttcattt gatgctcgat gagtttttct 1140 aatcagaatt ggttaattgg ttgtaacact ggcagagcat tacgctgact tgacgggacg 1200 gcggctttgt tgaataaatc gcattcgcca ttcaggctgc gcaactgttg ggaagggcga 1260 tcggtgcggg cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga 1320 ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgcc 1380 aagcttgcat gcctgcaggt cgactctaga ggatccccgg gtaccgagct cgaattcgta 1440 atcatgtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata 1500 cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta 1560 attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 1620 tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg gcgaactttt gctgagttga 1680 aggatcagat cacgcatctt cccgacaacg cagaccgttc cgtggcaaag caaaagttca 1740 aaatcagtaa ccgtcagtgc cgataagttc aaagttaaac ctggtgttga taccaacatt 1800 gaaacgctga tcgaaaacgc gctgaaaaac gctgctgaat gtgcgagctt cttccgcttc 1860 ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg cgagcggtat cagctcactc 1920 aaaggcggta atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc 1980 aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag 2040 gctccgcccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc 2100 gacaggacta taaagatacc aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt 2160 tccgaccctg ccgcttaccg gatacctgtc cgcctttctc ccttcgggaa gcgtggcgct 2220 ttctcaatgc tcacgctgta ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg 2280 ctgtgtgcac gaaccccccg ttcagcccga ccgctgcgcc ttatccggta actatcgtct 2340 tgagtccaac ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat 2400 tagcagagcg aggtatgtag gcggtgctac agagttcttg aagtggtggc ctaactacgg 2460 ctacactaga aggacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa 2520 aagagttggt agctcttgat ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt 2580 ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc 2640 tacggggtct gacgctcagt ggaacgatcc gtcga 2675 <210> 3 <211> 25 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 3 atagatctag aacgtccgta ggagc 25 <210> 4 <211> 26 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 4 atagatctga cttggttacg atggac 26 <210> 5 <211> 27 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 5 atagatctag gtttcccgac tggaaag 27 <210> 6 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 6 atagatctcg tgccagctgc attaatga 28 <210> 7 <211> 1885 <212> DNA <213> Unknown <220> <223> pCG1-ori <400> 7 agcatggtcg tcacagagct ggaagcggca gcgagaatta tccgcgatcg tggcgcggtg 60 cccgcaggca tgacaaacat cgtaaatgcc gcgtttcgtg tggccgtggc cgcccaggac 120 gtgtcagcgc cgccaccacc tgcaccgaat cggcagcagc gtcgcgcgtc gaaaaagcgc 180 acaggcggca agaagcgata agctgcacga atacctgaaa aatgttgaac gccccgtgag 240 cggtaactca cagggcgtcg gctaaccccc agtccaaacc tgggagaaag cgctcaaaaa 300 tgactctagc ggattcacga gacattgaca caccggcctg gaaattttcc gctgatctgt 360 tcgacaccca tcccgagctc gcgctgcgat cacgtggctg gacgagcgaa gaccgccgcg 420 aattcctcgc tcacctgggc agagaaaatt tccagggcag caagacccgc gacttcgcca 480 gcgcttggat caaagacccg gacacgggag aaacacagcc gaagttatac cgagttggtt 540 caaaatcgct tgcccggtgc cagtatgttg ctctgacgca cgcgcagcac gcagccgtgc 600 ttgtcctgga cattgatgtg ccgagccacc aggccggcgg gaaaatcgag cacgtaaacc 660 ccgaggtcta cgcgattttg gagcgctggg cacgcctgga aaaagcgcca gcttggatcg 720 gcgtgaatcc actgagcggg aaatgccagc tcatctggct cattgatccg gtgtatgccg 780 cagcaggcat gagcagcccg aatatgcgcc tgctggctgc aacgaccgag gaaatgaccc 840 gcgttttcgg cgctgaccag gctttttcac ataggctgag ccggtggcca ctgcacgtct 900 ccgacgatcc caccgcgtac cgctggcatg cccagcacaa tcgcgtggat cgcctagctg 960 atcttatgga ggttgctcgc atgatctcag gcacagaaaa acctaaaaaa cgctatgagc 1020 aggagttttc tagcggacgg gcacgtatcg aagcggcaag aaaagccact gcggaagcaa 1080 aagcacttgc cacgcttgaa gcaagcctgc cgagcgccgc tgaagcgtct ggagagctga 1140 tcgacggcgt ccgtgtcctc tggactgctc cagggcgtgc cgcccgtgat gagacggctt 1200 ttcgccacgc tttgactgtg ggataccagt taaaagcggc tggtgagcgc ctaaaagaca 1260 ccaagatcat cgacgcctac gagcgtgcct acaccgtcgc tcaggcggtc ggagcagacg 1320 gccgtgagcc tgatctgccg ccgatgcgtg accgccagac gatggcgcga cgtgtgcgcg 1380 gctacgtcgc taaaggccag ccagtcgtcc ctgctcgtca gacagagacg cagagcagcc 1440 gagggcgaaa agctctggcc actatgggaa gacgtggcgg taaaaaggcc gcagaacgct 1500 ggaaagaccc aaacagtgag tacgcccgag cacagcgaga aaaactagct aagtccagtc 1560 aacgacaagc taggaaagct aaaggaaatc gcttgaccat tgcaggttgg tttatgactg 1620 ttgagggaga gactggctcg tggccgacaa tcaatgaagc tatgtctgaa tttagcgtgt 1680 cacgtcagac cgtgaataga gcacttaagt ctgcgggcat tgaacttcca cgaggacgcc 1740 gtaaagcttc ccagtaaatg tgccatctcg taggcagaaa acggttcccc ccgtaggggt 1800 ctctctcttg gcctcctttc taggtcgggc tgattgctct tgaagctctc taggggggct 1860 cacaccatag gcagataacg gttcc 1885 <210> 8 <211> 2227 <212> DNA <213> Unknown <220> <223> pHSG398 <400> 8 acggaagatc acttcgcaga ataaataaat cctggtgtcc ctgttgatac cgggaagccc 60 tgggccaact tttggcgaaa atgagacgtt gatcggcacg taagaggttc caactttcac 120 cataatgaaa taagatcact accgggcgta ttttttgagt tatcgagatt ttcaggagct 180 aaggaagcta aaatggagaa aaaaatcact ggatatacca ccgttgatat atcccaatgg 240 catcgtaaag aacattttga ggcatttcag tcagttgctc aatgtaccta taaccagacc 300 gttcagctgg atattacggc ctttttaaag accgtaaaga aaaataagca caagttttat 360 ccggccttta ttcacattct tgcccgcctg atgaatgctc atccggaatt tcgtatggca 420 atgaaagacg gtgagctggt gatatgggat agtgttcacc cttgttacac cgttttccat 480 gagcaaactg aaacgttttc atcgctctgg agtgaatacc acgacgattt ccggcagttt 540 ctacacatat attcgcaaga tgtggcgtgt tacggtgaaa acctggccta tttccctaaa 600 gggtttattg agaatatgtt tttcgtctca gccaatccct gggtgagttt caccagtttt 660 gatttaaacg tggccaatat ggacaacttc ttcgcccccg ttttcaccat gggcaaatat 720 tatacgcaag gcgacaaggt gctgatgccg ctggcgattc aggttcatca tgccgtctgt 780 gatggcttcc atgtcggcag aatgcttaat gaattacaac agtactgcga tgagtggcag 840 ggcggggcgt aattttttta aggcagttat tggtgccctt aaacgcctgg tgctacgcct 900 gaataagtga taataagcgg atgaatggca gaaattcagc ttggcccagt gccaagctcc 960 aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag 1020 gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca 1080 ttaggcaccc caggctttac actttatgct tccggctcgt atgttgtgtg gaattgtgag 1140 cggataacaa tttcacacag gaaacagcta tgaccatgat tacgaattcg agctcggtac 1200 ccggggatcc tctagagtcg acctgcaggc atgcaagctt ggcactggcc gtcgttttac 1260 aacgtcgtga ctgggaaaac cctggcgtta cccaacttaa tcgccttgca gcacatcccc 1320 ctttcgccag ctggcgtaat agcgaagagg cccgcaccga tcgcccttcc caacagttgc 1380 gcagcctgaa tggcgaatga gcttcttccg cttcctcgct cactgactcg ctgcgctcgg 1440 tcgttcggct gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg ttatccacag 1500 aatcagggga taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc 1560 gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca 1620 aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt 1680 ttccccctgg aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc 1740 tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca atgctcacgc tgtaggtatc 1800 tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc 1860 ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact 1920 tatcgccact ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg 1980 ctacagagtt cttgaagtgg tggcctaact acggctacac tagaaggaca gtatttggta 2040 tctgcgctct gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca 2100 aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa 2160 aaaaaggatc tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaact 2220 ccgtcga 2227 <210> 9 <211> 26 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 9 atagatctag catggtcgtc acagag 26 <210> 10 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 10 atagatctgg aaccgttatc tgcctatg 28 <210> 11 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 11 atagatctgt cgaacggaag atcacttc 28 <210> 12 <211> 26 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 12 atagatctag ttccactgag cgtcag 26 <210> 13 <211> 4125 <212> DNA <213> Unknown <220> <223> pCRB11 <400> 13 ctgtcgaacg gaagatcact tcgcagaata aataaatcct ggtgtccctg ttgataccgg 60 gaagccctgg gccaactttt ggcgaaaatg agacgttgat cggcacgtaa gaggttccaa 120 ctttcaccat aatgaaataa gatcactacc gggcgtattt tttgagttat cgagattttc 180 aggagctaag gaagctaaaa tggagaaaaa aatcactgga tataccaccg ttgatatatc 240 ccaatggcat cgtaaagaac attttgaggc atttcagtca gttgctcaat gtacctataa 300 ccagaccgtt cagctggata ttacggcctt tttaaagacc gtaaagaaaa ataagcacaa 360 gttttatccg gcctttattc acattcttgc ccgcctgatg aatgctcatc cggaatttcg 420 tatggcaatg aaagacggtg agctggtgat atgggatagt gttcaccctt gttacaccgt 480 tttccatgag caaactgaaa cgttttcatc gctctggagt gaataccacg acgatttccg 540 gcagtttcta cacatatatt cgcaagatgt ggcgtgttac ggtgaaaacc tggcctattt 600 ccctaaaggg tttattgaga atatgttttt cgtctcagcc aatccctggg tgagtttcac 660 cagttttgat ttaaacgtgg ccaatatgga caacttcttc gcccccgttt tcaccatggg 720 caaatattat acgcaaggcg acaaggtgct gatgccgctg gcgattcagg ttcatcatgc 780 cgtttgtgat ggcttccatg tcggcagaat gcttaatgaa ttacaacagt actgcgatga 840 gtggcagggc ggggcgtaat ttttttaagg cagttattgg tgcccttaaa cgcctggttg 900 ctacgcctga ataagtgata ataagcggat gaatggcaga aattcagctt ggcccagtgc 960 caagctccaa tacgcaaacc gcctctcccc gcgcgttggc cgattcatta atgcagctgg 1020 cacgacaggt ttcccgactg gaaagcgggc agtgagcgca acgcaattaa tgtgagttag 1080 ctcactcatt aggcacccca ggctttacac tttatgcttc cggctcgtat gttgtgtgga 1140 attgtgagcg gataacaatt tcacacagga aacagctatg accatgatta cgaattcgag 1200 ctcggtaccc ggggatcctc tagagtcgac ctgcaggcat gcaagcttgg cactggccgt 1260 cgttttacaa cgtcgtgact gggaaaaccc tggcgttacc caacttaatc gccttgcagc 1320 acatccccct ttcgccagct ggcgtaatag cgaagaggcc cgcaccgatc gcccttccca 1380 acagttgcgc agcctgaatg gcgaatgagc ttcttccgct tcctcgctca ctgactcgct 1440 gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt 1500 atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc 1560 caggaaccgt aaaaaggccg cgttgctggc gtttttccat aggctccgcc cccctgacga 1620 gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata 1680 ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac 1740 cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg 1800 taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc 1860 cgttcagccc gaccgctgcg ccttatccgg taactatcgt cttgagtcca acccggtaag 1920 acacgactta tcgccactgg cagcagccac tggtaacagg attagcagag cgaggtatgt 1980 aggcggtgct acagagttct tgaagtggtg gcctaactac ggctacacta gaagaacagt 2040 atttggtatc tgcgctctgc tgaagccagt taccttcgga aaaagagttg gtagctcttg 2100 atccggcaaa caaaccaccg ctggtagcgg tggttttttt gtttgcaagc agcagattac 2160 gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt ctgacgctca 2220 gtggaactag atctagcatg gtcgtcacag agctggaagc ggcagcgaga attatccgcg 2280 atcgtggcgc ggtgcccgca ggcatgacaa acatcgtaaa tgccgcgttt cgtgtggccg 2340 tggccgccca ggacgtgtca gcgccgccac cacctgcacc gaatcggcag cagcgtcgcg 2400 cgtcgaaaaa gcgcacaggc ggcaagaagc gataagctgc acgaatacct gaaaaatgtt 2460 gaacgccccg tgagcggtaa ctcacagggc gtcggctaac ccccagtcca aacctgggag 2520 aaagcgctca aaaatgactc tagcggattc acgagacatt gacacaccgg cctggaaatt 2580 ttccgctgat ctgttcgaca cccatcccga gctcgcgctg cgatcacgtg gctggacgag 2640 cgaagaccgc cgcgaattcc tcgctcacct gggcagagaa aatttccagg gcagcaagac 2700 ccgcgacttc gccagcgctt ggatcaaaga cccggacacg ggagaaacac agccgaagtt 2760 ataccgagtt ggttcaaaat cgcttgcccg gtgccagtat gttgctctga cgcacgcgca 2820 gcacgcagcc gtgcttgtcc tggacattga tgtgccgagc caccaggccg gcgggaaaat 2880 cgagcacgta aaccccgagg tctacgcgat tttggagcgc tgggcacgcc tggaaaaagc 2940 gccagcttgg atcggcgtga atccactgag cgggaaatgc cagctcatct ggctcattga 3000 tccggtgtat gccgcagcag gcatgagcag cccgaatatg cgcctgctgg ctgcaacgac 3060 cgaggaaatg acccgcgttt tcggcgctga ccaggctttt tcacataggc tgagccggtg 3120 gccactgcac gtctccgacg atcccaccgc gtaccgctgg catgcccagc acaatcgcgt 3180 ggatcgccta gctgatctta tggaggttgc tcgcatgatc tcaggcacag aaaaacctaa 3240 aaaacgctat gagcaggagt tttctagcgg acgggcacgt atcgaagcgg caagaaaagc 3300 cactgcggaa gcaaaagcac ttgccacgct tgaagcaagc ctgccgagcg ccgctgaagc 3360 gtctggagag ctgatcgacg gcgtccgtgt cctctggact gctccagggc gtgccgcccg 3420 tgatgagacg gcttttcgcc acgctttgac tgtgggatac cagttaaaag cggctggtga 3480 gcgcctaaaa gacaccaaga tcatcgacgc ctacgagcgt gcctacaccg tcgctcaggc 3540 ggtcggagca gacggccgtg agcctgatct gccgccgatg cgtgaccgcc agacgatggc 3600 gcgacgtgtg cgcggctacg tcgctaaagg ccagccagtc gtccctgctc gtcagacaga 3660 gacgcagagc agccgagggc gaaaagctct ggccactatg ggaagacgtg gcggtaaaaa 3720 ggccgcagaa cgctggaaag acccaaacag tgagtacgcc cgagcacagc gagaaaaact 3780 agctaagtcc agtcaacgac aagctaggaa agctaaagga aatcgcttga ccattgcagg 3840 ttggtttatg actgttgagg gagagactgg ctcgtggccg acaatcaatg aagctatgtc 3900 tgaatttagc gtgtcacgtc agaccgtgaa tagagcactt aagtctgcgg gcattgaact 3960 tccacgagga cgccgtaaag cttcccagta aatgtgccat ctcgtaggca gaaaacggtt 4020 ccccccgtag gggtctctct cttggcctcc tttctaggtc gggctgattg ctcttgaagc 4080 tctctagggg ggctcacacc ataggcagat aacggttcca gatct 4125 <210> 14 <211> 465 <212> DNA <213> Zeocin resistance gene <400> 14 tagcttatcc tcagtcctgc tcctctgcca caaagtgcac gcagttgccg gccgggtcgc 60 gcagggcgaa ctcccgcccc cacggctgct cgccgatctc ggtcatggcc ggcccggagg 120 cgtcccggaa gttcgtggac acgacctccg accactcggc gtacagctcg tccaggccgc 180 gcacccacac ccaggccagg gtgttgtccg gcaccacctg gtcctggacc gcgctgatga 240 acagggtcac gtcgtcccgg accacaccgg cgaagtcgtc ctccacgaag tcccgggaga 300 acccgagccg gtcggtccag aactcgaccg ctccggcgac gtcgcgcgcg gtgagcaccg 360 gaacggcact ggtcaacttg gccatgatgg ccctcctata gtgagtcgta ttatactatg 420 ccgatatact atgccgatga ttaattgtca aaacagcgtg gatgg 465 <210> 15 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 15 atgatatccg aagtgatctt ccgttcga 28 <210> 16 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 16 atgatatcaa ggcagttatt ggtgccct 28 <210> 17 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 17 atgatatcta gcttatcctc agtcctgc 28 <210> 18 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 18 atgatatccc atccacgctg ttttgaca 28 <210> 19 <211> 551 <212> DNA <213> Corynebacterium glutamicum <400> 19 ccgaagatct gaagattcct gatacaaatt ctgttgtgac ggaagatttg ttggaagaaa 60 tctagtcgct cgtctcataa aaacgaccga gcctattggg attaccattg aagccagtgt 120 gagttgcatc acactggctt caaatctgag actttacttt gtggattcac gggggtgtag 180 tgcaattcat aattagcccc attcggggga gcagatcgcg gcgcgaacga tttcaggttc 240 gttccctgca aaaactattt agcgcaagtg ttggaaatgc ccccgtctgg ggtcaatgtc 300 tatttttgaa tgtgtttgta tgattttgaa tccgctgcaa aatctttgtt tccccgctaa 360 agttggggac aggttgacac ggagttgact cgacgaatta tccaatgtga gtaggtttgg 420 tgcgtgagtt ggaaaatttc gccatactcg cccttgggtt ctgtcagctc aagaattctt 480 gagtgaccga tgctctgatt gacctaactg cttgacacat tgcatttcct acaatcttta 540 gaggagacac a 551 <210> 20 <211> 425 <212> DNA <213> Unkown <220> <223> rrnBT1T2 terminator <400> 20 ctgttttggc ggatgagaga agattttcag cctgatacag attaaatcag aacgcagaag 60 cggtctgata aaacagaatt tgcctggcgg cagtagcgcg gtggtcccac ctgaccccat 120 gccgaactca gaagtgaaac gccgtagcgc cgatggtagt gtggggtctc cccatgcgag 180 agtagggaac tgccaggcat caaataaaac gaaaggctca gtcgaaagac tgggcctttc 240 gttttatctg ttgtttgtcg gtgaacgctc tcctgagtag gacaaatccg ccgggagcgg 300 atttgaacgt tgcgaagcaa cggcccggag ggtggcgggc aggacgcccg ccataaactg 360 ccaggcatca aattaagcag aaggccatcc tgacggatgg cctttttgcg tttctacaaa 420 ctctt 425 <210> 21 <211> 31 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 21 ctctgtcgac ccgaagatct gaagattcct g 31 <210> 22 <211> 46 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 22 ctctgtcgac ggatccccat ggtgtgtctc ctctaaagat tgtagg 46 <210> 23 <211> 36 <212> DNA <213> PCR primer <400> 23 ctctgcatgc ccatggctgt tttggcggat gagaga 36 <210> 24 <211> 41 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 24 ctctgcatgc tcatgaaaga gtttgtagaa acgcaaaaag g 41 <210> 25 <211> 5118 <212> DNA <213> Unkown <220> <223> pCRB207 <400> 25 agatctaggt ttcccgactg gaaagcgggc agtgagcgca acgcaattaa tgtgagttag 60 ctcactcatt aggcacccca ggctttacac tttatgcttc cggctcgtat gttgtgtgga 120 attgtgagcg gataacaatt tcacacagga aacagctatg accatgatta cgaattcgag 180 ctcggtaccc ggggatcctc tagagtcgac ccgaagatct gaagattcct gatacaaatt 240 ctgttgtgac ggaagatttg ttggaagaaa tctagtcgct cgtctcataa aaacgaccga 300 gcctattggg attaccattg aagccagtgt gagttgcatc acactggctt caaatctgag 360 actttacttt gtggattcac gggggtgtag tgcaattcat aattagcccc attcggggga 420 gcagatcgcg gcgcgaacga tttcaggttc gttccctgca aaaactattt agcgcaagtg 480 ttggaaatgc ccccgtctgg ggtcaatgtc tatttttgaa tgtgtttgta tgattttgaa 540 tccgctgcaa aatctttgtt tccccgctaa agttggggac aggttgacac ggagttgact 600 cgacgaatta tccaatgtga gtaggtttgg tgcgtgagtt ggaaaatttc gccatactcg 660 cccttgggtt ctgtcagctc aagaattctt gagtgaccga tgctctgatt gacctaactg 720 cttgacacat tgcatttcct acaatcttta gaggagacac accatggctg ttttggcgga 780 tgagagaaga ttttcagcct gatacagatt aaatcagaac gcagaagcgg tctgataaaa 840 cagaatttgc ctggcggcag tagcgcggtg gtcccacctg accccatgcc gaactcagaa 900 gtgaaacgcc gtagcgccga tggtagtgtg gggtctcccc atgcgagagt agggaactgc 960 caggcatcaa ataaaacgaa aggctcagtc gaaagactgg gcctttcgtt ttatctgttg 1020 tttgtcggtg aacgctctcc tgagtaggac aaatccgccg ggagcggatt tgaacgttgc 1080 gaagcaacgg cccggagggt ggcgggcagg acgcccgcca taaactgcca ggcatcaaat 1140 taagcagaag gccatcctga cggatggcct ttttgcgttt ctacaaactc tttcatgggg 1200 atccgtcgac ctgcaggcat gcaagcttgg cactggccgt cgttttacaa cgtcgtgact 1260 gggaaaaccc tggcgttacc caacttaatc gccttgcagc acatccccct ttcgccagct 1320 ggcgtaatag cgaagaggcc cgcaccgatc gcccttccca acagttgcgc agcctgaatg 1380 gcgaatgcga tttattcaac aaagccgccg tcccgtcaag tcagcgtaat gctctgccag 1440 tgttacaacc aattaaccaa ttctgattag aaaaactcat cgagcatcaa atgaaactgc 1500 aatttattca tatcaggatt atcaatacca tatttttgaa aaagccgttt ctgtaatgaa 1560 ggagaaaact caccgaggca gttccatagg atggcaagat cctggtatcg gtctgcgatt 1620 ccgactcgtc caacatcaat acaacctatt aatttcccct cgtcaaaaat aaggttatca 1680 agtgagaaat caccatgagt gacgactgaa tccggtgaga atggcaaaag cttatgcatt 1740 tctttccaga cttgttcaac aggccagcca ttacgctcgt catcaaaatc actcgcatca 1800 accaaaccgt tattcattcg tgattgcgcc tgagcgagac gaaatacgcg atcgctgtta 1860 aaaggacaat tacaaacagg aatcgaatgc aaccggcgca ggaacactgc cagcgcatca 1920 acaatatttt cacctgaatc aggatattct tctaatacct ggaatgctgt tttcccgggg 1980 atcgcagtgg tgagtaacca tgcatcatca ggagtacgga taaaatgctt gatggtcgga 2040 agaggcataa attccgtcag ccagtttagt ctgaccatct catctgtaac atcattggca 2100 acgctacctt tgccatgttt cagaaacaac tctggcgcat cgggcttccc atacaatcga 2160 tagattgtcg cacctgattg cccgacatta tcgcgagccc atttataccc atataaatca 2220 gcatccatgt tggaatttaa tcgcggcttc gagcaagacg tttcccgttg aatatggctc 2280 ataacacccc ttgtattact gtttatgtaa gcagacagtt ttattgttca tgatgatata 2340 tttttatctt gtgcaatgta acatcagaga ttttgagaca caacgtggct ttgttgaata 2400 aatcgaactt ttgctgagtt gaaggatcag atcacgcatc ttcccgacaa cgcagaccgt 2460 tccgtggcaa agcaaaagtt caaaatcacc aactggtcca cctacaacaa agctctcatc 2520 aaccgtggct ccctcacttt ctggctggat gatggggcga ttcaggcctg gtatgagtca 2580 gcaacacctt cttcacgagg cagacctctc gacggagttc cactgagcgt cagaccccgt 2640 agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct gctgcttgca 2700 aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc taccaactct 2760 ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc ttctagtgta 2820 gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc tcgctctgct 2880 aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg ggttggactc 2940 aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt cgtgcacaca 3000 gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg agctatgaga 3060 aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg 3120 aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt atagtcctgt 3180 cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag gggggcggag 3240 cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt gctggccttt 3300 tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta ttaccgcctt 3360 tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt cagtgagcga 3420 ggaagcggaa gaagctcgca cattcagcag cgtttttcag cgcgttttcg atcaacgttt 3480 caatgttggt atcaacacca ggtttaactt tgaacttatc ggcactgacg gttactgatt 3540 ttgaactttt gctttgccac ggaacggtct gcgttgtcgg gaagatgcgt gatctgatcc 3600 ttcaactcag caaaagttcg ccaatacgca aaccgcctct ccccgcgcgt tggccgattc 3660 attaatgcag ctggcacgag atctgacttg gttacgatgg actttgaaca cgccgagggt 3720 gactaaaccg ctggatttac gcggttttct tctcttcaac ttctttgacg tagcggtgaa 3780 ccgtgcccac cgagcaacca atctctgccg cgatagcgcg catggacaga cctttggcgc 3840 gcagctcctg gacgcgagca cgcttctcgt tggcacgttt aatgaacact tcacgcggtt 3900 cggaagtcca tcgttgagct gttctcaccg acataccggc acgttctgcc agctcgcggg 3960 ctgtttttcc gttgcgtgga taacgtgcat aaaccttagc caatgttcct ccaaagagta 4020 tgtccagcct cacgacgcac ctcagcgctt cgttgccagc ctttcttccc gcgtgcggat 4080 tgcattgcgg tgaatgtggc gtcgtagacg gcggcgccgt ctgtccacat gcgtgacttg 4140 gtgatgatcc atttatggat tgacctggca atacagtcaa cttcggccac aggtagtggt 4200 tcatcaaaca gctcttggtt aagtgcttgc gcggtggttt ggattgcgcg gcctaggccg 4260 tcagcgtctc caaaatgctt tctgacctcc cgatatgccc acgtacgtgc gctttcaaag 4320 agtgcgcaat tacgacctag accaactggc gagaaccgcc gcgttttcct ccaggacgca 4380 ggcggcataa agccggtttc ttcgagccaa aagcgcagct catcgagcgt atacagctta 4440 tcggtgatcc agtgactatc ccatgcagtg tgctcggggt ttttggtgat cagcccggag 4500 tatccgctat cgccatcgac agagcgccgt aggccttcgg tgacagccgc ggcataggcc 4560 aaaggcttgc gtttggcgta ttcggtgcgg gtaaatggct ccgcgagcgc ccagacagcg 4620 tgtgcgtgcc cgtttaaggg gttttcaacc accgcgttag gtctccagtc ctccctgtcc 4680 cacaaagagc gcaaaagcgc gtcctcctgg tcgatgtcaa cgaccaggag gttagagagc 4740 gcgtcgggat tggcttcgac gtagcgctta tccagcgcgt tcttccgtga ggtgcggtaa 4800 atgccctcac ggaggtcatc gcttgccaat ggccacagcg gcagccacag ctgctcaaag 4860 cgtccctcag ggcgggtagt tggtctcatg tagctgactt tctcacacga gcgtgcacgg 4920 tcggttttca ttcataatac gacatttaac caagtcagat gtttccccgg tttccggggg 4980 ttcccctgaa gaacccttcc agtgcgagcg aagcgagctc ctttggccgg cgcccctcag 5040 gtagccctct aaggctccca gggctccgcc cctccctgag gttggctcaa gcctcctggt 5100 ggctcctacg gacgttct 5118 <210> 26 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 26 ctctcatatg ctgttttggc ggatgagag 29 <210> 27 <211> 33 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 27 ctctcatatg gtgtctcctc taaagattgt agg 33 <210> 28 <211> 1401 <212> DNA <213> Corynebacterium glutamicum <400> 28 atgaataggg gtgtgagttg gacagttgat atccctaaag aagttctccc tgatttgcca 60 ccattgccag aaggcatgca gcagcagttc gaggacacca tttcccgtga cgctaagcag 120 caacctacgt gggatcgtgc acaggcagaa aacgtgcgca agatccttga gtcggttcct 180 ccaatcgttg ttgcccctga ggtacttgag ctgaagcaga agcttgctga tgttgctaac 240 ggtaaggcct tcctcttgca gggtggtgac tgtgcggaaa ctttcgagtc aaacaccgag 300 ccgcacattc gcgccaacgt aaagactctg ctgcagatgg cagttgtttt gacctacggt 360 gcatccactc ccgtgatcaa gatggctcgt attgctggtc agtacgcaaa gcctcgctct 420 tctgatttgg atggaaatgg tctgccaaac taccgtggcg atatcgtcaa cggtgtggag 480 gcaacccctg aggctcgtcg ccacgatcct gcccgcatga tccgtgctta cgctaacgct 540 tctgctgcga tgaacttggt gcgcgcgctc accagctctg gcaccgctga tctttaccgt 600 ctcagcgagt ggaaccgcga gttcgttgcg aactccccag ctggtgcacg ctacgaggct 660 cttgctcgtg agatcgactc cggtctgcgc ttcatggaag catgtggcgt gtccgatgag 720 tccctgcgcg ctgcagatat ttactgctcc cacgaggcac ttctcgtgga ttacgagcgc 780 tccatgctgc gtcttgcaac cgatgaggaa ggcaacgagg aactttacga tctttcagct 840 caccagctgt ggatcggcga gcgcacccgc ggtatggatg atttccatgt gaacttcgca 900 tccatgatct ctaacccaat cggcatcaag attggtcctg gtatcacccc tgaagaggct 960 gttgcatacg ctgacaagct cgatccgaac ttcgagcctg gccgtttgac catcgttgct 1020 cgcatgggcc acgacaaggt tcgctccgta cttcctggtg ttatccaggc tgttgaggca 1080 tccggacaca aggttatttg gcagtccgat ccgatgcacg gcaatacctt caccgcatcc 1140 aatggctaca agacccgtca cttcgacaag gttatcgatg aggtccaggg cttcttcgag 1200 gtccaccgcg cattgggcac ccacccaggc ggaatccaca ttgagttcac tggtgaagat 1260 gtcaccgagt gcctcggtgg cgctgaagac atcaccgatg ttgatctgcc aggccgctac 1320 gagtccgcat gcgatcctcg cctgaacact cagcagtctt tggagttggc tttcctcgtt 1380 gcagaaatgc tgcgtaatta a 1401 <210> 29 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 29 ctctcatatg aataggggtg tgagttgg 28 <210> 30 <211> 35 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 30 ctctcatatg ttaattacgc agcatttctg caacg 35 <210> 31 <211> 498 <212> DNA <213> Escherichia coli <400> 31 atgtcacacc ccgcgttaac gcaactgcgt gcgctgcgct attgtaaaga gatccctgcc 60 ctggatccgc aactgctcga ctggctgttg ctggaggatt ccatgacaaa acgttttgaa 120 cagcagggaa aaacggtaag cgtgacgatg atccgcgaag ggtttgtcga gcagaatgaa 180 atccccgaag aactgccgct gctgccgaaa gagtctcgtt actggttacg tgaaattttg 240 ttatgtgccg atggtgaacc gtggcttgcc ggtcgtaccg tcgttcctgt gtcaacgtta 300 agcgggccgg agctggcgtt acaaaaattg ggtaaaacgc cgttaggacg ctatctgttc 360 acatcatcga cattaacccg ggactttatt gagataggcc gtgatgccgg gctgtggggg 420 cgacgttccc gcctgcgatt aagcggtaaa ccgctgttgc taacagaact gtttttaccg 480 gcgtcaccgt tgtactaa 498 <210> 32 <211> 26 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 32 ctctcatatg tcacaccccg cgttaa 26 <210> 33 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 33 ctctcatatg ttagtacaac ggtgacgcc 29 <210> 34 <211> 558 <212> DNA <213> Pseudomonas putida <400> 34 gtgtcgtacg aatccccgca agcagccgct gtcgcgtggc tgccgtattc acagctggcg 60 accgacatcg accagcccac ccttgactgg ctgttcgacg agggctcgct gacccgccgc 120 ctgacccgtc tgtccattga tcacttttcc gtcaccccgt tgttcgaggg ctggcagccg 180 ctgcgcgatg acgaatgcca ggcgctgggc atcgctgccg gcgccgaagg ctgggtgcgc 240 gaagtgtatc tgcgcggcca tggccaacct tgggtattcg cccgcagcgt ggccagccgc 300 agcgccctgg aacgtggtgg cctggacctg gaaaccttgg gcagccgctc gctgggcgag 360 ctgctgttct gcgaccaggc gttcatccgt catccactcg aagtgtgcac ttatccacag 420 gcctggctgc cgtccgaagc tgcacatgcg gcgctttggg gccgccgctc gcgcttcgag 480 cgcaacggcc tggacctgct ggtggcagaa gtgttcctgc cggcattgtg gcaagcggcc 540 aaggaggaaa accgctga 558 <210> 35 <211> 25 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 35 ctctcatatg tcgtacgaat ccccg 25 <210> 36 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 36 ctctcatatg tcagcggttt tcctccttg 29 <210> 37 <211> 2285 <212> DNA <213> Bacillus subtilis <400> 37 atgaaagcag aattcaagcg taaaggaggg ggcaaagtga aactcgttgt cggaatgaca 60 ggggcaacag gggccatttt cggggtcagg ctgctgcagt ggctgaaggc cgccggagtg 120 gaaacccatc tcgttgtgtc tccttgggca aacgtcacga tcaaacacga aacaggctat 180 acgttacaag aagtagaaca actggccaca tacacttact cacataagga tcaggcggca 240 gccatttcaa gcgggtcgtt tgataccgat ggaatgattg ttgcgccgtg cagcatgaaa 300 tctctcgcaa gcattcgcac aggaatggcg gataatctgc tgacacgtgc ggcggatgtc 360 atgctcaagg agagaaaaaa actcgtcctc ttaacgagag agacgccttt gaaccaaatt 420 catctcgaaa atatgctagc gcttacgaaa atgggcacca tcattcttcc tccgatgccg 480 gcattttata atcggccgag aagcttagag gaaatggttg accatattgt ttttagaacg 540 ttggaccaat tcggcattcg gcttcctgaa gcgaagcgct ggaatgggat tgaaaaacaa 600 aaaggaggag cttgatcatg gcttatcaag atttcagaga atttctcgct gcccttgaaa 660 aagaaggaca gctgcttaca gtgaatgaag aggtaaagcc ggaaccggat ttaggggcct 720 ccgcacgggc agccagcaat cttggcgata aaagccctgc gctcttattt aacaacattt 780 acggctatca taacgcgcga attgcgatga atgtcatcgg ctcttggcca aaccatgcca 840 tgatgctggg catgccgaaa gacacaccgg taaaagaaca gttttttgaa ttcgcaaagc 900 gttatgacca gtttccgatg ccggtcaaac gtgaggaaac agcgccattt catgaaaatg 960 aaatcacaga agatatcaat ttgttcgata tactgcctct tttcagaatt aaccagggtg 1020 atggaggcta ctatttagac aaagcatgtg tcatttcccg tgatcttgag gaccctgaca 1080 acttcggcaa acaaaatgtc ggcatttaca gaatgcaagt caaaggaaaa gaccgccttg 1140 gcattcagcc tgtcccgcag cacgatattg caatccatct gcgccaagct gaagaacgcg 1200 gcatcaacct tccggtcact attgcgctcg gctgtgagcc ggtcattaca acggcggcat 1260 cgactccgct tctctatgat caatcagaat acgaaatggc aggtgcgatt caaggcgaac 1320 catatcgcat cgtcaaatca aagctgtctg atcttgatgt tccgtggggc gctgaagtgg 1380 tgcttgaagg tgagattatt gccggagagc gcgaatatga agggccgttc ggtgaattca 1440 caggccatta ttccggcgga cgcagcatgc cgattatcaa aattaaacgc gtctatcaca 1500 gaaacaatcc gatctttgaa catttatact taggcatgcc ttggacagaa tgcgattaca 1560 tgatcggcat taacacatgc gtgccgcttt atcagcagtt aaaagaagcg tatccgaacg 1620 aaattgtggc agtgaacgcc atgtacacac acggtttaat cgcgattgtt tccacaaaaa 1680 cccgctatgg cggatttgcg aaagcggtcg gcatgcgcgc actcacaacg ccgcacggac 1740 tcggctactg caaaatggtc atagtcgttg atgaggatgt cgatccattc aaccttccgc 1800 aggtcatgtg ggcgctttcg accaaaatgc atccgaaaca tgatgcggtc atcattccgg 1860 acttatctgt cctgccgctt gatccgggat ccaatccatc aggaatcact cacaaaatga 1920 ttctcgacgc cactacaccg gttgcgccgg aaacaagagg ccattattca cagccgcttg 1980 attctccgct aacaacgaaa gaatgggaac aaaaactaat ggacttaatg aataaataag 2040 gaaaggatgt tcgaaatgca tacatgtcct cgatgcgact caaaaaaggg agaagtcatg 2100 agcaaatcgc ctgtagaagg cgcatgggaa gtttatcagt gccaaacatg cttttttaca 2160 tggagatcct gtgaaccgga aagcattaca aatcccgaaa aatacaatcc agcgtttaaa 2220 attgatccaa aggaaacaga aacagcaatt gaagttccgg cggtgccgga acgaaaggct 2280 tgatc 2285 <210> 38 <211> 32 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 38 ctctcatatg aaagcagaat tcaagcgtaa ag 32 <210> 39 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 39 ctctcatatg gatcaagcct ttcgttccg 29 <210> 40 <211> 30 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 40 ctcttctaga gaaacgatca agtgcaccag 30 <210> 41 <211> 40 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 41 gacacgagcg tttatacctc taattgccac tggtacgtgg 40 <210> 42 <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 42 gaggtataaa cgctcgtgtc 20 <210> 43 <211> 30 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 43 ctctgagctc gagaacacga accatacgag 30 <210> 44 <211> 2249 <212> DNA <213> Bacillus atrophaeus <400> 44 atgaaactcg ttgtcgggat gaccggagct acaggggcta ttttcggagt caggctttta 60 gaatggctga aggccgcagg agcggaaact caccttgtcg tttctccttg ggctcatgtc 120 acaatcaaac atgaaacagg ttatagctta aaagaagttg aagagcttgc ctcatatacg 180 tactctcata aggatcaggc ggctgccatt tcaagcgggt cttttcaaac ggacggcatg 240 atcgtcgccc cgtgcagtat gaagtcgctc gcaagcattc gcacggggat ggcggacaat 300 ctgctgaccc gggctgcaga tgtcatgctg aaagagagaa aaaagcttgt cctgctgacg 360 agagaaacgc cgcttaacca gattcattta gagaatatgc tcgcattaac aaagatggga 420 accattattc ttccgccaat gccggctttt tataatcagc cggcaagtct ggatgaaatg 480 gtggaccata ttgtattcag aacgctggat caattcggca ttcgccttcc tgaggcaaaa 540 cgctggaatg gaattgaaaa agaaaaagga ggagcttgat catggcttat caagatttca 600 gagaatttct cgctgccctg gaaaaagagg gacagctatt aaaagtggat gaagaggtga 660 agccggagcc ggatttagga gccgcagccc gcgcagccaa caacctcggt gataaaagcc 720 cggctctttt atttaacaat atttacggct acaacaatgc acaaatcgcg atgaatgtca 780 tcggttcttg gccgaaccac gcgatgatgc ttggcttgcc gaaagataca ccggttaaag 840 agcagttttt tgaatttgcg aagcgatatg aacagtttcc gatgccggtc aaacgcgaag 900 aaactgcgcc atttcatgaa aatgaaatca cagaggacat caacctattc gatatattgc 960 ctcttttcag aattaaccag ggtgacggcg gctattattt agataaagcg tgtgtcattt 1020 cccgtgatct ggatgaccct gacaacttcg gcaagcagaa cgtcggaatt taccgcatgc 1080 aggtaaaagg gaaagaccgc ctcggcattc agccagttcc gcagcatgac atcgcgattc 1140 atcttcgcca agcagaagaa cgcggcatca atcttccggt caccatcgcg cttggctgtg 1200 agcctgtcat tacgaccgcg gcgtcaactc cgctcctata tgaccaatcg gaatatgaaa 1260 tggcgggagc gatccagggc gaaccgtata gaatcgtcaa atcaaagctg tctgaccttg 1320 atattccttg gggcgcagaa gtcgtgcttg aaggagaaat cattgccgga gaacgggaat 1380 atgaaggacc gttcggcgaa tttaccggcc attattcagg cggacgcagc atgccgatta 1440 tcaaaatcaa acgcgtatct catagaaatc atccggtatt tgaacattta tatctcggca 1500 tgccttggac agagtgcgat tacatgatcg gcattaatac atgcgtgccg ctttatcagc 1560 agctgaaaga agcatatccg agtgaaattg tcgctgtgaa cgcaatgtac acacatggct 1620 taatcgccat tgtatctaca aaaacccgtt acggaggatt tgcaaaagct gtcggaatga 1680 gagccctgac tacaccgcac ggactcggct actgtaagat ggtgatcgtc gtggatgaag 1740 atgttgatcc gttcaacctc ccgcaagtca tgtgggcgct ttcaacaaag atgcatccga 1800 agcatgatgt cgtaactatt cctgatttat ccgtgctgcc gcttgatccg ggatcagacc 1860 catccggcat tactcataaa atgattctcg atgccacaac gcctgttgcg ccggaaacaa 1920 gaggccatta ttcacagccg cttgactctc ctttaacaac aaaagaatgg gaacaaaaac 1980 taatggactt gatgaataaa taagagaaag gatgatccga catgcataca tgtcctcgat 2040 gtgattcaaa aaagggagaa atcatgagca aatcgcctgt agaaggcgct tgggaagtct 2100 accaatgcca aacatgtttc ttcacatgga gatcatgtga accggaaagc attacaaacc 2160 cgaaacaata caatccatca tttaagatcg atccgaagga aacagaaaca gctgttgaag 2220 tgccggctgt tccggaaaga aaggcctga 2249 <210> 45 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 45 ctctcatatg aaactcgttg tcgggatg 28 <210> 46 <211> 26 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 46 ctctcatatg tcaggccttt ctttcc 26 <210> 47 <211> 2283 <212> DNA <213> Bacillus subtilis subsp.spizizenii <400> 47 atgaaagcag aattcaagcg taaaggaggg ggcaaagtga aactcgttgt cggaatgaca 60 ggggcaacag gggctatttt cggggtcagg ctgctggagt ggctgaaggc ggccgaagta 120 gaaacccatc tcgtcgtgtc tccttgggct aacgtcacga tcaaacacga aacaggctat 180 accttaaaag aagtagaaca acttgccaca tacacgtatt cgcataagga ccaggcggca 240 gccatttcaa gcgggtcgtt tgataccgat ggcatgattg ttgcgccatg cagcatgaaa 300 tctctcgcaa gcattcgcac cgggatggcg gataatctgc tgacgcgtgc ggcggatgtc 360 atgctcaagg agagaaaaaa actcgtcctc ttaacgagag agacgccttt gaaccagatt 420 catctcgaaa atatgctagc gcttacgaaa atgggtacca tcattcttcc tccgatgccg 480 gcattttata atcagccgag cagcttagag gaaatggttg accatattgt attcagaacg 540 ttggaccaat tcggcattcg ccttcctgaa gcgaaacgct ggaatgggat tgaaaaacaa 600 aaaggaggag cttgatcatg gcttatcaag atttcagaga atttctcgct gcccttgaaa 660 aagaaggaca gctgctaaca gtgaatgaag aggtaaagcc ggagccggat ataggggctg 720 cagcacgcgc agccagcaat cttggcgata aaagccccgc gctcttattt aataacattt 780 atggctatca caacgcgcaa attgcgatga atgtgatcgg ctcctggccg aaccatgcaa 840 tgatgctggg catgccgaaa gacacgccgg tgaaagaaca gttttttgaa tttgcgaaac 900 gttatgacca gtttccgatg ccagtcaaac gtgaggaatc agcgccgttt catgaaaatg 960 aaatcacaga agatatcaat ttgttcgata tactgcctct tttcagaatt aaccaaggag 1020 acggcggtta ctatctagac aaagcatgtg tcatttcccg cgatcttgaa gatcctgaga 1080 atttcggcaa acaaaacgtc gggatttaca gaatgcaggt caaaggaaaa gaccgccttg 1140 gcattcagcc tgtgccgcag cacgatattg cgatccatct gcgtcaagct gaagaacgcg 1200 gcatcaatct tccggtcacc attgcgctcg gctgtgagcc ggtcataaca acggcggcat 1260 cgactccgct tctttatgat caatcagaat acgaaatggc aggcgcaatt caaggtgaac 1320 catatcgcat cgtgaaatct aagctgtctg atcttgatgt tccatggggc gctgaagtag 1380 tgcttgaagg tgaaatcatt gccggagagc gtgaatatga aggcccgttc ggtgagttca 1440 caggccatta ttccggcgga cgcagcatgc cgattattaa aattaaacga gtgtatcata 1500 gaaacaatcc gatttttgaa catttatact taggcatgcc ttggacagaa tgcgattaca 1560 tgattggcat taacacttgt gtgccgcttt atcagcagtt aaaagaagcg tatccgaatg 1620 aaattgtggc tgtgaacgcc atgtacacac acggtttgat cgcgattgtt tccacaaaaa 1680 cacgctatgg cggatttgcg aaagcagtcg gcatgcgcgc gctcacaaca ccgcacggac 1740 tcggctactg caaaatggtc attgtcgttg acgaggatgt cgatccattc aatctgccgc 1800 aggtcatgtg ggcgctttcg accaaaatgc atccgaagca cgatgcggtc atcattccag 1860 acttatctgt cctgccgctt gacccgggat ctaatccatc aggaatcact cacaaaatga 1920 ttcttgacgc cactacaccg gttgcgccgg aaacaagagg ccattattca cagccgcttg 1980 attcaccatt aacaacgaaa gaatgggaac aaaaactaat ggacttaatg aataaataag 2040 aaaaggatga tcgaaatgca tatatgtcct cgttgcgatt cgaaaaaggg agaagtcatg 2100 agcaaatcgc ctgtagaagg cgcatgggaa gtttatcagt gtcaaacatg ttttttcaca 2160 tggagatcct gtgagccgga aagtattaca aatccggcga aatacaatcc agcgtttaaa 2220 attgatccga aggaaacaga aacagcaatt gaagttccgg ctgtgccgga acgaaaggct 2280 tga 2283 <210> 48 <211> 32 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 48 ctctcatatg aaagcagaat tcaagcgtaa ag 32 <210> 49 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 49 ctctcatatg tcaagccttt cgttccgg 28 <210> 50 <211> 2268 <212> DNA <213> Citrobacter koseri <400> 50 atgagactga ttgtggggat gaccggcgca acgggggcgc cgctaggcat tgcgctgcta 60 caggcgctgc ggcaaatgcc gacagtagaa acacacctgg taatgtctaa gtgggccaaa 120 acgaccattg agctggaaac gccttacagt gcgcgagatg ttgccggact ggctgattac 180 tgccataacc cggcggatca ggcggcgacg atctcttccg gctcatttcg caccgacggc 240 atgatcatta tgccttgcag tatgaaaacg ctggcgggga ttcgcgcagg atatgccgag 300 gggttagttg gccgtgccgc cgatgtggtg ctgaaagaag ggcgcaaact ggtgctggtg 360 ccgcgtgaaa tgccgctcag cacgatccat ctggaaaaca tgctcgccct ttcccgcatg 420 ggggtcgcga tggtgccgcc catgcctgct ttctacaacc atccgcaaac tattgatgat 480 attacgcagc atattgtggc gcgtgtgctg gatcagtttg gtctggagca tccgcgtgcc 540 cggcgctggc aggggttgca gcaggcgcag aatttttcac aggagaatga ataatggcat 600 ttgatgactt acgcagcttt ttgcaggcgc tcgacgagca ggggcaactg ctgaaaatca 660 gtgaagaagt gaatgcagag ccggatctgg ctgctgcggc taacgcaacc gggcgcattg 720 gcgacggcgc gcctgcgctg tggttcgata atatccgtgg cttcacggat gcgcgcgtgg 780 cgatgaacac cattggttcc tggcagaacc atgccatctc tttaggcttg ccgcctaatg 840 cgccagtaaa aaagcaaatt gatgaattta tccgccgctg ggacacgttc cccgtcgccc 900 ccgagcgccg agccaacccg gcgtgggcgg aaaacaccgt tgatggcgag gcgatcaacc 960 tgtttgatat tctgccgctg tttcgcctca acgatggcga tggcggcttc tatctggata 1020 aagcctgtgt cgtctcccgc gatccgctcg acccggatca cttcggcaag cagaatgtgg 1080 gtatctaccg gatggaagtg aaaggcaagc gcaagctggg cctgcaaccg gtgccaatgc 1140 acgatatcgc gctgcatctg cataaggcgg aagagcgtgg cgaagatctg ccgattgcta 1200 ttacgctcgg taacgatccg atcatcactc tgatgggcgc cacgccgctg aaatacgatc 1260 agtctgagta tgaaatggcg ggcgcgctgc gcgaaagccc atacccgatc gccaccgcgc 1320 cgctgaccgg ctttgatgtg ccgtggggtt cagaagtgat ccttgaaggg gtgatcgaaa 1380 gccgtaagcg tgaaattgaa gggccgtttg gcgagtttac cggccactat tctggtgggc 1440 gcaatatgac ggtggtgcgc atcgacaaag tgtcttatcg cactaaaccg atttttgaat 1500 cactctatct ggggatgccg tggactgaaa tcgactacct gatggggcca gcgacctgtg 1560 tgccgctgta tcagcagttg aaagcggaat tcccggaagt gcaggcggtt aacgccatgt 1620 atacccacgg tctgctggcg attatctcga ccaaaaaacg ctacggcgga tttgcccgcg 1680 cgatcggcct gcgggcaatg accacgccgc acggtctggg ctatgtgaag atggtgatta 1740 tggttgatga ggatgtcgat ccgttcaacc tgccgcaggt gatgtgggcg ctgtcgtcga 1800 aggtcaaccc ggcaggcgat ctggtgcagc tgccgaacat gtcggtgctg gaactggacc 1860 caggctcaag cccggcgggg atcactgaca aactgatcat cgacgccaca acgccggttg 1920 cgccggataa tcgcggccac tacagccagc cggtatgtga tttaccggaa accaaagcct 1980 gggctgaaaa gctgactgcc atgctggcca accgtaaata aggagtagca gatgatttgt 2040 ccacgttgtg ctgatgaaca tattgaattg atggcgacct ctccggtcaa agggatctgg 2100 acggtgtatc agtgccagca ttgtctgtac acctggcgtg ataccgagcc gctacgccgt 2160 accagccgtg aacattatcc gcaagcgttt cgcatgacgc agaaagatat tgatcaagcg 2220 ccgatggtgc cgggcattcc accgctgctg gcggaagata agcgttaa 2268 <210> 51 <211> 28 <212> DNA <213> PCR primer <400> 51 ctctcatatg agactgattg tggggatg 28 <210> 52 <211> 31 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 52 ctctcatatg ttaacgctta tcttccgcca g 31 <210> 53 <211> 2268 <212> DNA <213> Enterobacter aerogens <400> 53 atgaaactga ttattgggat gaccggggcg accggcgcgc cgttaggcgt cgcgctgtta 60 caggcgctga atgaaatgcc ggatgtggaa acgcatctgg tcatgtcgaa atgggcaaaa 120 accaccattg agctggaaac gccctatagc gctcgtgatg tcgccgcgct ggcggacttc 180 tgccatagcc ctgcggatca ggccgcgacc atctcatcag gatcgtttcg taccgacggc 240 atgattgtta tcccctgcag catgaaaacg ctggcgggta ttcgcgctgg ctatgcggaa 300 gggttagtcg gccgcgcggc ggacgtggtg ctgaaagagg ggcgcaagct ggttctggtg 360 ccgcgtgaaa tgccgctgag caccattcat ctggagaaca tgctggcgct gtcgcgcatg 420 ggcgtggcga tggtgccgcc catgcctgcc tattacaacc acccggaaac ggtagaggat 480 atcaccaacc atatcgtgac ccgggtgctg gatcagtttg gtctcgaata tcacaaagcg 540 cgccgctgga acggcctgcg cgcggtcgag aatttatcac aggagaatta atcatggctt 600 ttgatgattt acgcagcttt ttgcaggcgc ttgatgagca ggggcaactg ctaaaaatta 660 gcgaagaggt gaatgccgag ccggatctcg ccgctgccgc taacgccaca gggcgcatcg 720 gtgacggcgc gccagcgttg tggtttgata acattcgcgg ctttaccgac gcccgtgtcg 780 ccatgaacac catcggttcc tggcaaaacc acgcgatttc gctggggctg ccgccaaaca 840 cgccggtgaa aaagcagatt gatgaattta ttcgccgctg ggataaattc ccggtaacgc 900 cggagcgtcg cgctaatcca gcgtgggcgg aaaacaccgt tgatggcgac gatatcaacc 960 tgttcgatat tctgccgctg ttccgcctga acgatggcga cggtggtttc tatctcgaca 1020 aagcctgtgt ggtttcgcgc gatccgcttg acccggacca ctttggcaaa cagaacgtcg 1080 gtatttaccg gatggaagtg aaaggcaagc gcaagctggg cctgcagccg gtaccgatgc 1140 acgatatcgc gctgcatctg cataaagcgg aagagcgcgg tgaggatctg cccattgcca 1200 tcaccctggg taacgacccg attattaccc tgatgggcgc gacgccgctg aaatatgacc 1260 agtcagaata tgagatggcg ggcgcgctgc gcgaaagccc gtatcccatc gccaccgcgc 1320 cgctgaccgg ctttgacgtt ccctggggct cagaggtgat ccttgaaggg gtgattgaag 1380 ggcgcaagcg tgaaatcgaa gggccgttcg gcgagttcac cggccactac tcaggcggcc 1440 gcaatatgac ggtggtgcgt atcgataaag tctcttatcg cacaaaaccg atttttgaat 1500 cgttgtatct cggaatgccg tggaccgaaa tcgactatct gatgggcccg gcgacctgcg 1560 tgccgctgta ccagcagctg aaggcggagt tcccggaggt gcaggcggtc aatgccatgt 1620 acacccatgg tctgctggcg attatctcca ccaaaaaacg ctacggcggt tttgcccgcg 1680 cggtgggatt acgggcaatg actaccccgc acggcctcgg ttacgtgaaa atggtgatca 1740 tggtcgatga agatgtcgat ccgttcaacc tgccgcaggt gatgtgggcg ctctcctcga 1800 aggtcaaccc ggcgggcgac ctggtacagt tgccgaacat gtcggtgctg gagcttgacc 1860 ctggttccag tccggcgggg atcaccgaca aactgattat cgacgccacc accccggttg 1920 cgcctgacct tcgcggtcac tacagccagc cggttcagga tttaccggaa accaaagcct 1980 gggctgaaaa actgaccgcc atgttggcca accgtaaata aggagaagaa gatgatttgt 2040 ccacgttgcg ctgatgagca gattgaagtg atggcgacgt cgccggtaaa aggggtgtgg 2100 atcgtttacc agtgccagca ctgcctctat acctggcgta ataccgaacc gctgcgtcgt 2160 accagccgcg aacattatcc ggaagcgttc cgcatgacgc agaaagatat tgatgaggcg 2220 ccgcaggtgc cgcatattcc accgctgttg gcggcagata agcgttaa 2268 <210> 54 <211> 32 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 54 ctctcatatg aaactgatta ttgggatgac cg 32 <210> 55 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 55 ctctcatatg ttaacgctta tctgccgcc 29 <210> 56 <211> 2252 <212> DNA <213> Enterobacter cloacae <400> 56 atgagattga tcgtgggaat gacgggagca acaggtgctc cgctgggtgt ggctttactg 60 caggcgttac gtgacatgcc agaggttgaa acccatctgg tgatgtcgaa atgggcgaaa 120 accaccattg agctggaaac gccttatacc gcgcaggatg tcgccgccct ggcagatgtc 180 gttcacagtc ctgccgatca ggctgccacc atctcctccg gctcgtttcg taccgacggc 240 atgatcgtca ttccctgcag catgaaaacg ctggcgggta tccgcgcggg ctatgccgaa 300 gggctggtgg gccgtgcggc agacgtggtg ctgaaagagg ggcgcaagct ggtgctggtc 360 ccgcgtgaaa cgccgctcag caccattcat ctggagaaca tgctcgcgct ttcccgcatg 420 ggggtggcga tggtgccgcc catgcctgcg tattacaacc acccgcaaac cgccgatgat 480 atcacccagc atatcgtgac ccgcgtactc gaccagtttg gtctggagca caaaaaggcg 540 cgtcgctgga acggcctgca ggcggcgaaa catttttcac aggagaataa cgatggcatt 600 tgatgatttg agaagcttcc tgcaggcgct agatgagcaa gggcaactgc tgaaaattga 660 agaagaggtc aatgcggagc cggatctggc ggcggccgct aacgcgacgg gacgtatcgg 720 tgatggtgcg cctgcgctgt ggttcgataa cattcgcggg tttaccgatg ccagggtggt 780 gatgaacacc atcggctcct ggcagaacca cgccatttcg atggggctgc cggcgaatac 840 cccggtcaaa aagcagatcg atgagtttat tcgccgctgg gataaattcc cggtcgcacc 900 ggagcgccgg gccaaccccg catgggcgca gaatacggtg gacggtgagg agattaacct 960 gttcgacatc ctgccgctgt ttcgcctgaa cgacggggac ggcggttttt atctcgacaa 1020 agcgtgcgtt gtctcgcgcg atccgctcga cccggaccat ttcggcaagc agaacgtcgg 1080 tatttaccgc atggaagtga agggcaaacg taagctcggc ctgcagccgg tgccgatgca 1140 tgatatcgcc ctgcatctgc ataaagccga agagcgtggt gaagacctgc cgattgcgat 1200 tacgttgggc aacgatccga tcatcaccct gatgggcgca acgccgctga aatacgatca 1260 gtccgagtat gaaatggccg gggcgctgcg tgaaagcccg tacccgattg cgaccgcgcc 1320 gttgaccggc ttcgatgtgc cgtgggggtc tgaagtgatc ctggaagggg tgattgaagg 1380 ccgtaaacgt gaaattgaag ggccgttcgg tgagtttacc gggcactatt cgggcggacg 1440 caatatgacg gtggtccgta ttgataaagt ctcgtaccgc accaaaccga ttttcgaatc 1500 cctctatctc gggatgccct ggaccgagat cgactacctg atggggccag ccacctgtgt 1560 gccgctttac cagcaactga aagcggagtt ccctgaagtg caggcggtga acgcgatgta 1620 tacccacggt ctgctggcga tcatctccac caaaaaacgc tacggtggtt ttgcccgcgc 1680 ggtcggttta cgcgccatga ccacgccgca tggcctgggc tatgtgaaga tggtgattat 1740 ggtggatgaa gatgtcgatc cgttcaacct gccgcaggtg atgtgggcgc tgtcatcaaa 1800 agtgaacccg gcaggggatc tggtgcagct gccgaacatg tcggttcttg agcttgatcc 1860 tgggtccagc ccggcaggca tcaccgacaa gctgattatt gatgccacca cgcctgttgc 1920 gccggataac cgcggtcact acagccagcc ggtgcaggat ttacctgaaa ccaaagcctg 1980 ggctgaaaag ctgactgcga tgctggcagc acgccaataa ggaggaaaag atgatttgtc 2040 cacgttgtgc cgatgagcaa attgaggtga tggccacatc accggtgaaa gggatctgga 2100 cggtttatca gtgccagcat tgcctgtata cctggcgcga tactgagccg ctgcgtcgta 2160 ccagccgcga acattaccct gaagcgttcc gcatgacgca gaaggatatt gatgaggcgc 2220 cgcaggtacc gaccattccg ccattgctgt aa 2252 <210> 57 <211> 30 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 57 ctctcatatg agattgatcg tgggaatgac 30 <210> 58 <211> 30 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 58 ctctcatatg ttacagcaat ggcggaatgg 30 <210> 59 <211> 2358 <212> DNA <213> Enterobacter hormaechei <400> 59 atgagattga ttgtgggaat gacgggcgcg acgggtgcgc cattaggcgt ggcgttgttg 60 caggcgctgc gggaaatgcc ggaggtggaa acgcacctgg tgatgacgaa gtgggcaaaa 120 accacgattg agctggaaac gcccttcact gcgcatgacg ttgctgcact ggcggatgtc 180 gtccacagtc cggccgatca ggctgccacc atctcctccg gctcgtttcg caccgacggc 240 atgatcgtca tcccgtgcag catgaaaacg ctggcgggga tccgcgcggg ctacgccgaa 300 gggctggtag ggcgtgcggc agacgtggtg ctgaaagagg gacgcaagct ggtgctggtt 360 ccccgcgaga cgccgctcag caccattcat cttgagaaca tgcttgccct ttcccgcatg 420 ggcgtggcga tggtgccgcc tatgcctgcg tactacaacc acccgcaaac cgccgatgac 480 attacccagc atatcgtgac ccgcgttctc gaccagtttg gtctggagca taaaaaagcc 540 cgacgctggg aaggtttgca ggcagcgaaa catttttcac aggagaataa agatggcatt 600 tgatgatttg agaagcttct tgcaggcgct cgatgagcaa gggcagctgc tgaaaattga 660 ggaagaggta aacgcggagc cggatttagc ggcggccgcc aacgctaccg ggcgcattgg 720 cgatggcgcg cctgcgctgt ggttcgataa tattcgcggc ttcaccgatg cccgagtggt 780 gatgaacacc atcggctcgt ggcaaaacca cgccatttcg atggggctgc cagcgaatac 840 ttcggtgaaa aaacagatcg acgagtttat tcgtcgctgg gacaaattcc ccgtcacgcc 900 agagcgtcgt gccaatcctg cctgggcgca gaacacggtg gacggagaag atatcaacct 960 gttcgacatt ttgccgctgt tccgcctgaa cgacggtgac gggggctttt atctcgataa 1020 agcgtgcgtt gtctcccgcg atccgctcga ccccgaccac ttcggcaagc agaacgtcgg 1080 catttaccgt atggaagtga agggcaagcg taagctcggc ctgcaaccgg tgccgatgca 1140 tgatattgcg ctgcatctgc ataaggcaga agagcgtggc gaagacctgc ccattgccat 1200 tacgctgggt aacgatccga tcatcaccct gatgggcgcc acgccgctga aatacgatca 1260 atccgagtat gagatggctg gcgcgctacg cgaaagcccg tatccgattg cgacggctcc 1320 gctgaccggt tttgatgtgc cgtgggggtc ggaagtgatc ctggaagggg tgattgaagg 1380 ccggaaacgt gaaattgaag gaccattcgg tgagtttacc ggacactact ctggcgggcg 1440 caacatgacc gttgtgcgca ttgataaagt ctcttaccgc accaaaccca ttttcgaatc 1500 tctctacctg gggatgcctt ggaccgagat tgattatctg atgggacccg ccacctgcgt 1560 gccgctctat cagcaactga aggcggaatt cccggaagtg caggcggtaa acgccatgta 1620 cacccacggt ctgctggcaa ttatctccac taaaaagcgt tacggcggtt ttgcccgtgc 1680 ggtcgggcta cgcgccatga ccacaccgca cggtctgggt tacgtgaaga tggtgattat 1740 ggtggatgaa gatgtcgatc cgtttaacct gccgcaggtc atgtgggcgc tttcatcgaa 1800 ggttaatccg gcgggcgatc tggtgcagct tccgaatatg tctgtgctgg aacttgaccc 1860 tggctccagc ccggcgggga tcaccgacaa gctgatcatt gatgccacca cccctgttgc 1920 cccggacaac cgtggtcact acagccagcc ggtacaggac ctccctgaaa ccaaagcctg 1980 ggccgaaaaa ctgaccgcga tgctggcagc acgtcaataa ggaggaaaaa atgatttgtc 2040 cacgttgtgc cgatgaacat attgaagtaa tggcaacatc accggtgaaa ggtgtctgga 2100 cggtatatca gtgccagcac tgtctgtata cctggcgcga taccgaaccg ctacgccgta 2160 ccagccgcga gcattacccg gaagccttcc gcatgacgca gaaggatatt gatgaggcgc 2220 cgcaggtgcc aacaatcccg ccgctgctgt aaaaaaagcc cggtggcggc tgcgcttacc 2280 gggcctacgg gttttgtagg ccgggtaagg cgaagccgcc acccggcaaa aaagaccgca 2340 gagaactaaa ccagactc 2358 <210> 60 <211> 30 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 60 ctctcatatg agattgattg tgggaatgac 30 <210> 61 <211> 31 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 61 ctctcatatg gagtctggtt tagttctctg c 31 <210> 62 <211> 2284 <212> DNA <213> Enterobacter sakazakii <400> 62 atgaggctaa ttgtcggaat gacgggcgca accggcgcgc cgcttggggt cgcgctgttg 60 caggcgctga aagcgatgcc tgaggtggaa acccatctgg tgatgtcaaa gtgggcgaaa 120 accacgatcg aactggaaac gccgttctcc tggcaggatg tcgcggggct ggcagatgtg 180 gtgcacagcc cggcggatca ggccgcgacg atctcctcag gatcgtttcg caccgacggc 240 atggtgatca ttccgtgcag catgaaaacc ctggcgggca tccgcgcggg ctacgccgac 300 gggctggtgg gccgcgccgc tgatgtggtg ctgaaagaga accgtaaact ggtgctggtg 360 ccgcgcgaaa caccgcttag caccattcat ctggaaaacc tgctggcgct ctcgaagatg 420 ggcgtggcca tcgtgccgcc catgcccgcc tggtacaacc atcccgcgac gatcgacgac 480 atcatcaacc atatcgtcgc gcgcgtgctc gatcagttcg ggctcgatgc ccgcaacgcc 540 cgccgctggc aggggctaaa tcctgcgaaa acagccgaca cccattcatc acgaggagga 600 aacacgcatg gcgtttgacg atctgcgcag ctttttgcag gcgcttgaag agcaggggca 660 actgctgagg atcagcgaag aggtgcaggc ggagccggat atcgcggcgg ccgccaacgc 720 gaccggacgc atcggcgaag gcgcgcccgc gctctggttt gacaatatcc gcggctttac 780 tgacgcgcgg gtggcgatga acaccattgg ttcatggccg aaccacgcga tctcgctcgg 840 tctgccgcct gccacaccgg taaagcagca gatagaagaa tttattcgcc gctgggatac 900 cttcccggtc gcgccggaac gccgcgataa tccgccatgg gcggaaaaca gcgtcgacgg 960 cgacgacatt aacctgttcg acattctgcc gctgtttcgc ttaaacgacg gcgacggcgg 1020 gttctacctt gataaagcgt gtgtggtctc gcgcgatccg ctcgatcccg aacacttcgg 1080 caagcagaat gtcggcatct accggatgga agtgaaaggc aagcgcaagc tcgggctgca 1140 accggtgccg atgcatgaca tcgcgctgca tctgcataag gccgaagagc gtggcgagga 1200 tttgccggtt gcgattacgc ttggcaacga tccgatcatc acgctgatgg gcgccacgcc 1260 gctgaaatac gatcagtcgg aatatgaaat ggcgggcgcg ctgcgcgaaa gcccgtaccc 1320 gatagccacc gcgccgctga ccggtttcga cgtgccgtgg gggtcggaag tgatccttga 1380 aggggtgatt gaaggacgca agcgcgagat agaagggccg ttcggcgagt ttaccgggca 1440 ctactccggc gggcgtaaca tgaccgtggt gcgtatcgat aaagtctctt atcgcaccaa 1500 accgattttc gaatcgctct atctcggcat gccgtggacc gaaatcgact acctgattgg 1560 cccggcgacc tgcgtgccgc tttaccagca gcttaaagcg gagttcccgg aagtgcaggc 1620 ggtgaacgcg atgtataccc acgggctgct cgcgattatc tccaccaaga aacgctacgg 1680 cggtttcgcc cgcgcggtgg gcctgcgtgc gatgaccacg ccgcacgggc ttggctacgt 1740 gaagatggtg attatggtgg atgaggatgt cgatccgttc gatctgccgc aggtgatgtg 1800 ggcgctgtcg tcaaaagtga acccggcggg cgatctggtg cagttgccga atatgtcggt 1860 gctggagctt gatcctggct caagcccggc ggggattacc gacaagctga ttatcgacgc 1920 cactacgccg gttgcgccgg ataaccgcgg gcattacagc cagccggtga aagacctgcc 1980 ggaaaccccg cagtgggtag agaagctgac cgccatgctg gctaaccgta aaaaataagg 2040 agacgagatg atttgtccac gttgtgccga tgaaaccatc gaaatcatgg cgacgtcgcc 2100 ggtgaaaggc gtctggacgg tgtatcagtg ccagcattgt ttgtacacct ggcgcgacac 2160 cgagccgctg cgccgtacca gccgcgagca ttaccccgag gcgttccgga tgacgcaggc 2220 cgatatcgat aacgcgccgg aagtgccaac ggtgccgccg ctgctggcgg atggtaagcg 2280 ttaa 2284 <210> 63 <211> 30 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 63 ctctcatatg aggctaattg tcggaatgac 30 <210> 64 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 64 ctctcatatg ttaacgctta ccatccgcc 29 <210> 65 <211> 2268 <212> DNA <213> Escherichia coli <400> 65 atgaaactga tcgtcgggat gacaggggct accggtgcgc ctcttggtgt ggcattactg 60 caagcgctgc gggagatgcc gaatgtcgag actcatctgg tgatgtcgaa gtgggcgaaa 120 accaccattg aactggaaac gccttacagc gctcgcgatg ttgctgccct cgcagacttc 180 agccataacc cggcggatca ggcggcgatc atctcatccg gttcttttcg taccgacggc 240 atgatcgtta ttccgtgcag tatgaaaacg ctcgccggta tccgcgctgg ttacgccgat 300 ggcctggtag ggcgcgcggc ggacgtcgtg ctcaaagaag gccgcaaact ggtgctggtg 360 ccgcgtgaaa tgccgcttag caccatccat ctcgaaaata tgctcgcact ttcacgcatg 420 ggcgtggcga tggtgccgcc gatgcctgcc ttttataacc atcccgaaac ggtagatgac 480 attgtccacc atgtggtagc ccgcgtgctg gatcaatttg gcctcgaaca tccccacgcc 540 aggcgctggc aaggattgcc gcaggcccgg aatttttctc aggagaatga ataatggcat 600 ttgatgattt acgcagcttt ttacaggcgc ttgatgacca cggccagtta ctgaaaatca 660 gcgaagaagt gaacgccgag ccggatctgg cagcagcagc taacgccacc gggcgtatcg 720 gcgacggcgc gcccgcgctg tggtttgata atattcgcgg ctttaccgat gcccgcgtgg 780 cgatgaacac catcggttcc tggcagaacc acgcgatttc cctcggcctg ccgccaaatg 840 ccccggttaa aaagcagatt gatgagttta tccgccgctg ggataacttc ccgattgccc 900 cggagcgccg cgccaatcca gcctgggcgc agaacaccgt tgatggcgac gagatcaacc 960 tgttcgatat cctgccgctg tttcgtttaa acgatggcga tggcggtttc tatctcgaca 1020 aagcgtgcgt ggtttcccgc gatccgctcg acccggataa cttcggcaag cagaacgtcg 1080 gcatctaccg catggaagtg aagggcaagc gtaagctcgg cctgcaaccg gtgccgatgc 1140 acgatatcgc cctgcatctg cataaagcag aagagcgcgg tgaagatctg ccgattgcga 1200 tcacgctcgg taacgatccg atcatcacgc tgatgggggc cacgccgctg aaatatgatc 1260 agtccgagta cgaaatggca ggcgcgctgc gtgaaagccc gtacccgatc gccaccgccc 1320 cgttgaccgg ttttgatgtg ccgtggggtt cagaagtgat cctcgaaggg gtcatcgaaa 1380 gccgtaaacg cgaaatcgaa gggccgttcg gtgagtttac cgggcactac tccggcgggc 1440 gtaacatgac cgtggtgcgc atcgataaag tctcttaccg caccaggccg attttcgaat 1500 cgctgtacct cggtatgccg tggaccgaaa tcgactacct gatggggcca gccacctgcg 1560 tgccgctgta tcagcagctg aaagccgagt tccctgaagt gcaggcggta aacgccatgt 1620 acacccatgg cctgctggcg attatctcca ccaaaaaacg ctacggcggc tttgcccgcg 1680 cggtgggcct gcgcgcaatg accacgccgc atggtctggg ctacgtgaag atggtgatta 1740 tggtcgatga agacgttgac ccgttcaacc tgccgcaggt gatgtgggcg ctctcctcga 1800 aagtgaaccc ggcaggggat ttggtgcagt tgccgaatat gtccgtgctg gaactcgatc 1860 caggctcaag ccctgcgggg atcaccgaca agctgattat cgacgccact acgcctgtcg 1920 ccccggacaa ccgtggtcac tacagccaac cggtggtgga tttaccggaa accaaagcct 1980 gggctgaaaa actgaccgct atgctggctg cacgtaaata aggagaagaa gatgatttgt 2040 ccacgttgtg ccgatgaaca gattgaagtg atggcgaaat cgccggtgaa agatgtctgg 2100 acggtatatc agtgccagca ttgcctttat acctggcgcg ataccgaacc gctgcgccgt 2160 accagccgcg aacattatcc cgaagcgttc cgcatgacgc agaaagatat tgatgacgcg 2220 ccaatggtgc cgagcatccc gccgctgctg gtggaaggta agcgctaa 2268 <210> 66 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 66 ctctcatatg aaactgatcg tcgggatg 28 <210> 67 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 67 ctctcatatg ttagcgctta ccttccgc 28 <210> 68 <211> 2268 <212> DNA <213> Escherichia fergusonii <400> 68 atgagactga tcgtcgggat gacaggggcc accggagcgc ctcttggtgt ggcattactg 60 caagcgctgc gggagatgcc gaatgtcgag actcatctgg tgatgtcgaa gtgggcgaaa 120 accaccattg aactggaaac gccttacaac gcccgcgatg ttgctgccct cgcagacttc 180 tgccataacc cggcggatca ggccgcaacc atctcctcag gttcctttcg taccgacggt 240 atgatcgtta ttccgtgcag tatgaaaacg ctcgccggta tccgcgctgg ttacgccgat 300 ggcctggtag ggcgcgcggc ggacgtcgtg ctcaaagaag gccgcaaact ggtgctggtg 360 ccgcgtgaaa tgccgcttag caccatccat ctcgaaaata tgctcgcact ttcgcgcatg 420 ggcgtggcga tggtgccgcc gatgcctgcc ttttataacc atcccgaaac ggtagatgac 480 attgtccacc acgtggtagc ccgcgtgctg gatcaatttg gcctcgaaca tcctcacgcc 540 aggcgctggc aaggattgcc gcaggcccgg aatttttccc aggagaatga ataatggcat 600 ttgatgattt acgcagcttt ttacaggcgc ttgatgacta cggtcagtta ctgaaaatca 660 gtgaagaagt gaacgccgag ccggatctgg cagccgctgc caacgccacc gggcgtatcg 720 gcgacggtgc accggcgctg tggtttgaca atattcgcgg ctttaccgat gcccgcgtgg 780 caatgaacac catcggctcc tggcagaacc acgcgatttc cctcggcctg ccgccaaaca 840 ccccggttaa aaaacagatt gatgagttta tccgccgctg ggataacttt cccattgccc 900 cggagcgccg tgcgaatccg gtctgggcgc agaacaccgt cgatggcgac gagattaatt 960 tgttcgatat tctgccgctg tttcgtttaa acgatggcga tggcggtttc tatctcgaca 1020 aagcgtgcgt ggtttcccgc gatccgctcg acccggataa tttcggcaag cagaatgtcg 1080 gcatctaccg catggaagtg aagggcaagc gtaagctcgg cctgcaaccg gtgccgatgc 1140 acgatatcgc cctgcatctg cataaagcag aagagcgcgg tgaagatctg ccgattgcga 1200 tcacgctcgg taacgatccg atcatcaccc tgatgggggc caccccgctg aaatacgatc 1260 aatcagagta cgaaatggct ggcgcactac gcgaaagccc gtacccgatc gccaccgccc 1320 cgctgaccgg ttttgatgtg ccgtggggct cagaagtgat cctcgaaggc gttatcgaaa 1380 gccgtaaacg cgagattgaa gggccgttcg gtgaatttac cggccactac tccggcgggc 1440 gcaacatgac cgtagtgcgc atcgataaag tctcttaccg caccaaaccg atttttgaat 1500 cgctctatct cggtatgccg tggaccgaaa tcgactacct gatggggcca gccacctgtg 1560 tgccgctgta tcagcaactg aaagccgagt tcccggaagt gcaggcggtg aacgccatgt 1620 acacccacgg cctgctggcg attatctcca ccaaaaaacg ctacggcggc tttgcccgcg 1680 cggtgggcct gcgtgcgatg accacgccgc acggtctggg ctacgtgaag atggtgatta 1740 tggtcgatga agacgttgat ccgttcaacc tgccgcaggt gatgtgggcg ctttcgtcga 1800 aagtgaaccc ggcaggggat ctggtgcagt tgccgaatat gtcagtactg gaactcgacc 1860 ctggctcaag cccggcgggg atcaccgata agctgattat cgacgccact acgcctgtcg 1920 ccccggacaa ccgtggtcac tacagccagc cggtggtgga cttaccggaa accaaagcct 1980 gggctgaaaa actgaccgct atgctggccg cacgtaaata aggagaacaa gatgatttgt 2040 ccacgttgtg ccgatgaaca gattgaagtg atggcgaaat cgccggtgaa agatgtctgg 2100 acggtctacc agtgccagca ttgcctttat acctggcgcg atactgaacc gctacgccgc 2160 accagccgcg aacattaccc gcaagcgttc cgtatgactc aaaaagatat tgatgacgcg 2220 ccaatggtgc cgagcattcc gccgctgctg gcggcagata agcgctaa 2268 <210> 69 <211> 27 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 69 ctctcatatg agactgatcg tcgggat 27 <210> 70 <211> 28 <212> DNA <213> PCR primer <400> 70 ctctcatatg ttagcgctta tctgccgc 28 <210> 71 <211> 2304 <212> DNA <213> PAenibacillus polymyxa <400> 71 atgaagaaaa tcattgtagg aatatcggga gcgacagggt caatctttgg tatccgtata 60 ttgcaaaaat tacgggaggc tggagtccaa agccatctgg tgctatcccc gtgggctatt 120 gccaacattc cctatgagac aggctacacg gtgaaggatg tgaaggcaat ggcggatgca 180 gtctactcgt ataaggatca ggccgcacgt atttctagcg gctccttccg ggtagatggt 240 atggtcgtcg ctccttgcag tatgaagact cttgcctcta ttcgtatcgg tatggcggac 300 aacctgctta cccgatcagc ggatgtgata ctgaaggagc gaaagaagct gctgctcatg 360 accagagaaa caccattaag cagtatccat ctggaaaata tgctggagct gtcacgtatg 420 ggcgtgatga tcctgccgcc gatgcctgcc ttttataatc atcctgcaag tatcgaggaa 480 ttagtggatc atattgtttt tcgcgcattg gatcagttcg gtattgtcac aaccgcagcc 540 aaacgctggg atgggatgaa gcagaatgac tccaggctgc accagaattg agaaatcgaa 600 agacgaagga gaatgaatga tggcttataa agactttcgc gattttctac acaccttgga 660 aaaggaggga caattactca cgatcagcga tgaggtaaag ccggagccgg acctcgcagc 720 agctaacaga gcattaaaca atcttggaga taagacgcct gctctctttt tcaacaacat 780 ctatggatat acggatgctc gtattgcaat gaatgtgatg ggctcctggc ccaatcatgc 840 cctcatgatg ggaatgccca aaaatacgcc gctcaaggag cagttttttg aatttgccag 900 acgctatgaa caatttccgg tgcccgtgaa gcgggaagaa gccgctcctt ttcatgaagt 960 cgaaattacg gagaatatta atttgtttga tattttgccg ttgtttcgtt tgaatcaggg 1020 ggacggaggg ttttatttgg ataaagcaat tctaatttca cgcgatctgg atgacccgga 1080 cacctacggt aagcaaaatg tcggcttata ccggatgcag gtgaaaggca agaaccgttt 1140 gggcatccag cctgtaccac agcatgatat tgcgatccat atccgtcagg ctgaggagcg 1200 tggcgaaaat ctgaaggtgg ctattgccct cggatgtgag cctgtgatta caacggctgc 1260 ttctacgcca ctgctgtacg atcaatccga atatgagatg gcgggcgcca ttcagggcga 1320 gccttatcgt gtggtcaaag cgaaggatgc agatctggat ctgccttggg gagccgaggt 1380 cattttggaa ggcgaagtgt tagcaggtga acgtgagtat gaaggtccat tcggtgaatt 1440 cacaggtcac tattccggcg gtcgcgcgat gccagtcatt cagattaatc gtgtatatca 1500 ccgcaaacag cctatctttg agcatctgta catcgggatg ccttggacgg aaacggatta 1560 tatgatcggt gtgaatacaa gtgtaccgtt gtttcagcag cttaaggatg cttttcctaa 1620 tgaaatcgta gctgttaatg ccatgtatac gcatgggctg gtcgctatta tttccacgaa 1680 aacccggtat ggcggctttg cgaaggctgt gggaatgcgt gcgttaacga ctccgcatgg 1740 attggggtat tgcaagctgg tgattgtggt ggacgaggag gtcgatccgt tcaatctgcc 1800 gcaagtcatg tgggctttat ccaccaagct tcatccaaag catgatgctg tcattgttcc 1860 tggcttgtct attttaccgc ttgaccccgg ctctgatccg gcaggtatga cgcacaaaat 1920 gatactggat gcgacgacac ctgtagcacc ggatattaga ggccattact cgcagccgct 1980 cgattccccg ctgggtgtag cggaatggga gaaaaagttg agccaaatgc ttcgctaaat 2040 atttttaaaa acaaagaaaa tttaaaggag tgctgacaga tgcatatttg tccccgttgt 2100 gagtccaatc gttcagaagt cgtttcccat tcgccggtta aaggtgcctg ggaggttttg 2160 ttgtgccctg tatgcctgtt cacatggcga acctcagaac cggatagcat tactgatcca 2220 gcaaagtata aatcggcgtt caaggtaaac ccccaagata ttccggatgc tgctcatgtt 2280 cctcctattc cagagcggat atag 2304 <210> 72 <211> 35 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 72 ctctcatatg aagaaaatca ttgtaggaat atcgg 35 <210> 73 <211> 31 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 73 ctctcatatg ctatatccgc tctggaatag g 31 <210> 74 <211> 2318 <212> DNA <213> Pantoea ananatis <400> 74 atgagtagat tactgttaat ttcattcgta cacgaacgtt atttgcaagg aagtcagatg 60 agaattgtaa tcggtatgac gggagcaaca ggtgcccctt taggggtggc tctgctcagc 120 attttgcagg aaatcaaaga ggttgaaact catctgattt tgagcaagtg ggctaaaacc 180 acaattgaac tcgaaacgcc tttttcatcg cgtgaggtga tgagcatggc tgatgttgtg 240 tatggcccgt ccgaccaggc cgctactctc tcgtcaggtt cttttcacac cgatgggatg 300 gtcattattc cttgcagtat gaaaacctta gcgggaattc gcatgggata cgcggaaggc 360 cttattggac gggctgctga tgtcgtcatt aaagaaggca gaaaacttgt gctggtcccc 420 agagagacgc ctctcagcac cattcacctg gaaaatatgc tagccctttc ccgtcttggc 480 gtatccatgg ttccgcccat gcccgctttt tataaccacc ccgcagtaat tgatgatgtg 540 atcgatcatg tcgtttctcg tgttctcgac cagtttggga ttgcctcgcc aaaggcaaat 600 cgctggaaag gcctgaacaa ttctaagaaa tccctgagta tggagagtaa ataatggctt 660 ttgatgacct acgtagcttc cttaaggctc tggacgagca ggggcagctt cttgagattg 720 atgaagaggt tttacccgaa cctgatattg ccgcggccgc taatgctaca ggccgaattg 780 gtgaaggtgc accggcaatc tcattcaaaa aaataaaggg gttcaatcat gctcatgttg 840 tgatgaacac tattggttcc tggcaaaacc atgcaatttc actgggcctc ccaatgaata 900 ccccagtgaa acagcagata gatgaattca ttcgtcgctg ggacactttt cctgtggcac 960 cagagcggcg cgacaatgcg ccctggtcag aaaataccgt tgattgtgaa gagatcaatc 1020 tcttcgacat ccttcccctg ttccgcctga acgacggcga cggcggtttc tatcttgata 1080 aggcctgcgt agtatcacgt gacccgcttg atccagaaca tttcggtaag caaaacgtcg 1140 gcatttaccg gatggaggtg aaaggtaaac gtaaactcgg gctccagccc gtgccgatgc 1200 atgacattgc acttcatctc cataaggccg aagaacgcgg cgacgatctg ccagtggcta 1260 ttacgctggg caatgacccc attattacat tgatgggcgc cacgccgctg aaatacgacc 1320 agtcagaata tgagatggca ggtgcgctgc gtgaaagccc gtaccccatc gcctccgcgc 1380 ctctgaccgg ctttgatgtg ccgtggggat cggaagtcat tcttgaaggc gtgatagaag 1440 ggcgcaaacg tgagattgaa ggaccgtttg gcgaattcac cggccattat tccggcggtc 1500 gcaatatgac cgttgtgcgg attgataagg tctcctaccg cactaagcca atattcgagt 1560 cattgtatct gggaatgccc tggaccgaaa ttgattatct gatgggcccg gcaacctgtg 1620 tccctttgta tcaacagctg aaagcggatt tccctgaggt gcaggctgta aatgcaatgt 1680 atacacacgg attactggcc attatttcta caaagaaacg ttatggtgga tttgcccgtg 1740 ctgtaggcgt acgggcgatg acaaccccgc atggtctggg ctacgtcaag atggtgatca 1800 tggtcgatga ggatgtcgat ccctttaacc tgcctcaggt gatgtgggcg ctgtcttcaa 1860 aggtcaatcc gcaaggcgat ctcgttcaac tgccaaacat gtccgtactg gaactggacc 1920 cgggttccag ccctgcggga atcacggata aacttgtgat cgatgcgacg actcccgtgg 1980 caccggatac ccgcggccac tacagtcagc cggtaaaaga cctgccagaa acttcaatct 2040 gggttgagaa gttaacgtcc ctgttatcaa atcgcggtta aggagaaagt atgatttgtc 2100 cacgttgtgc tgatgaacac attgaaatca tggcaacatc cccagttgag gggatatgga 2160 cggtgcatca gtgtcagcat tgcctgtaca catggcgcaa tacagagcca gcccgaagaa 2220 cggagcggga acattatcct gaagccttcc ggatgactca acgtgatatt gataatgcgc 2280 cggaagtccc gtctgtccct cctctgttag ctaagtaa 2318 <210> 75 <211> 38 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 75 ctctcatatg agtagattac tgttaatttc attcgtac 38 <210> 76 <211> 32 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 76 ctctcatatg ttacttagct aacagaggag gg 32 <210> 77 <211> 29 <212> DNA <213> PCR primer <400> 77 ctcttctaga tacgtcctaa acacccgac 29 <210> 78 <211> 40 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 78 gaccaaccat tgctgacttg cgtatccata gtcaggcttc 40 <210> 79 <211> 20 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 79 caagtcagca atggttggtc 20 <210> 80 <211> 30 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 80 ctcttctaga tgatcagtac caagggtgag 30 <210> 81 <211> 510 <212> DNA <213> Acinetobacter baumannii <400> 81 atgcgtaaac gacaaccagt acttaagcag gaaaagactt taaatcctga attgaaaaca 60 tggttgtatg cgtctggttc tctgacacaa caactcactg agctgggtgg ggggaagttc 120 agcgtaaagc ctttcaaaga acatttccag cgtttaactt ttgccgacag tcaatggatg 180 aacatgcccc atactcacac ttcttgggta agggaaacct atttatatgg cagtgatgta 240 gagccttggg tgaaagcaaa aagtattttt ccaattcaaa gtttacaaaa aaaagcccgt 300 atatttcagc atattggttc taagccgata ggtctttttt tatttcaaag aacaacacca 360 ctttgtgatc gccgggttat tcgtttacct gaaggctgga cgcgacaaag ttgctatact 420 tggcatggat gtaaatttat tgttcaagaa acattcttac cggcttttga agctttttta 480 tatcagcagc acgacaagga attactatga 510 <210> 82 <211> 552 <212> DNA <213> Azotobacter vinelandii <400> 82 gtgaccgctg ctcccgcttt ccaatggctc ggcgccgacc aactgcatcc cgcccccccg 60 gccgtcctgg ccgactggct gttcgacagc ggctcgctga cccgccggct gaccgccctt 120 tccgccggcc gtttcgccgt gacgccgctg gccgaaggct ggcaggtgct gcgcgacgac 180 gaatgcaccg ccctcgacgt ggtgccgggc agcaccggct gggtacgcga ggtctacctg 240 ctcggcgccg agcggccctg ggtgttcgcc cgcagcgtgg cggcccgcga ggctctggcg 300 ggtttctccg gcgtactcgc cgaactcggc cggcggcccc tcggcgaact gctgttcagc 360 gacccagcct tcgcccgcgg cccgctgcag gccacgcact atccgccgga ctggctgccg 420 gccgggatac gctgccccgg actctgggga cggcgctccc gtttccaccg ggaaaccctg 480 agcgtgctgg tggcggaagt cttcctgccg gagctctggc gctaccaggg aatcgacccg 540 gacaccctat aa 552 <210> 83 <211> 552 <212> DNA <213> Chromobacter salexigens <400> 83 atgtctcctg accgcttccc aggctggccg cactggctgc ccatcgccgc gcagcgtcct 60 cgaatgagcc ccgactggtg gccctgggtg gcctctcgcg attcactgac cgcgcgcttg 120 cgcatcgcca gcccccgtcc attctcggtg cgtctgctca cccagggcgt gaccaggcca 180 cgcctcgacg aagcccaggc actggggctg ccgcaccgca cgcacgtctg gcaccgggaa 240 gtcctgttgc ggctgggcaa tgcctcctgg gttgcggccc gttccgtggc accgctggag 300 ggactgtccg gcgcacggct atgcacgctg ggagagcgtt cgctgggcag ttggctattt 360 cggcaaccta acctcgagcg cggccccatc gaagcgatcc gtgcgccggc catgacgggg 420 ctggacgcct ggcgaggcga cgccggcccc tgggggcggc gctcgctcct gcgcgtgggc 480 agaaccagga ttctcgtcca ggaattcttt ctcgccgcga tggccgctga cctctcgctg 540 ccatcgcgct aa 552 <210> 84 <211> 498 <212> DNA <213> Citrobacter koseri <400> 84 atgtcacacc ctgcgttaac gcaactgcgt gcgctgcgct attttaaaga gattcctgcg 60 ctggattccc ggttgctcga ctggttactt ctggaagatt ccatgaccaa acgttttgag 120 caagaaggga aacgggtaag cgtgacattg cttcgggaag cgtttgttgg tccacatgaa 180 gtggctgaag aggtggcgct gctaccggtc gaatcccgct actggttacg tgaaattttg 240 ttatgtgcag acggcgaacc ctggcttgcc gggcgtaccg tcgtgcctga atcaacgttg 300 tgcggccctg agctggcctt acaaaatctg ggaaaaacgc cgttagggcg ctacctgttt 360 acatcatcaa cgttgacccg agattttatt gagattggtc gtgatgccgc actgtggggg 420 cgtcgttccc gcctgcgtct gagcggtaag ccgctgatgc ttaccgagct gtttttgccc 480 gcatcaccgt tgtattaa 498 <210> 85 <211> 498 <212> DNA <213> Citrobacter youngae <400> 85 atgccacacc ctgcgttaac gcaactgcgt gcgctgcgtt attttgatga gatcccggcg 60 ctggacccgc agctgctcga ctggttgtta ctggaagatt cgatgaccaa acgttttgag 120 cagcagggaa aacaagtcac cgttacgttg attcgcgaag cgttcgttgg gcaaaatgag 180 gtggctgaag aactgatgct gctgcctaaa gaatcccgct actggttacg cgaaatcctg 240 ttatgcgcgg atggtgagcc ctggcttgcc gggcgtaccg tggtgcctga atcaaccctg 300 tgcggccctg aactggcctt acaaaatctg gggaaaaccc cgctcggacg ctacctgttt 360 acgtcatcga cattgacccg agattttatt gagattggcc gcgatgcagc gctgtggggg 420 cgacgttccc gcctgcggct gagcggtaag ccattgatgc ttaccgagct ttttctacct 480 gcatcgccgt tgtactga 498 <210> 86 <211> 498 <212> DNA <213> Enterobacter cloacae <400> 86 atgtcacacc ctgcgctaac gcaactgcgt tcgctgcgct atttcgacca aatacctgcg 60 cttgacccgc agcagcttga ctggttgctg ctggaagatt ccatgactaa acgttttgag 120 caacagggca agacggttac ggtgacgatg attcaggaag ggtttgtcac ctccgctgac 180 attgccagtg agctgccgct gttaccaaaa gaagaacgct actggttgcg tgaaattctg 240 ctctgcgcgg atggtgagcc gtggctcgcc ggacgaaccg tggtgcctga atccaccctt 300 tccgggcctg agctggcact gcaacggctg ggaaacaccc cgctcgggcg gtaccttttc 360 acctcgtctg aacttacccg ggattttatt gaaattggac gcgatgccga actgtgggga 420 cgtcgttccc gtcttcgcct gagcggtaaa ccgttaatac tgacggagct ttttttaccg 480 gcatcgccgt tgtactga 498 <210> 87 <211> 567 <212> DNA <213> Marinobacter aquaeolei <400> 87 atgccgttaa aggactgtga ccagcccccc gagctgagca tacctcccac gttctggtac 60 cggtcgctgg tggcggccgg cctttactgt cctgaggttc atggcccggc ccgctactgg 120 ctaacagtag agggatcgtt tacccgggcc ctgcagcaaa aatgtcagga acgctttcac 180 gttgagattc tcagggaggg tttttcgacc ccaacccctg aagaggcaaa gcgcctgaac 240 ctggcaccac gccagctcgc ctgggtacgg gaagttcgcc tttgcggtga cggccgccct 300 tgggtgctgg cccggacagt gatcccacag acctgtctgc atggccatgg ccgccgcctg 360 cgcaatcttg gcaacaagcc cctgggcgcc tatctgttca gcagcccgga gtggcagcgg 420 gggcctctgg aaacaggtct ctgtaaagcc cgtagcaacg gtcaccctcg tcttgcccgc 480 agatccctgt tccaccgggg ttcctgcgct cttctggtgg gggaatatct tctaccccgg 540 ttataccagt cgcccaaccg gggttaa 567 <210> 88 <211> 540 <212> DNA <213> Marinomonas mediterranea <400> 88 atgacgttac tcaataaaaa cgctgcccga caatttgact acgaatggca cgcactaagc 60 tgcgtcaatc gacaacagat tcccagtaac attcttcctt gggtgagtac gccagactcg 120 ttgacggcaa agctgcaaca agcagggtca tttaaggtgg aggtcattag cgattacatt 180 ggcttaccaa cacagagaga gcgtaaccga ctcaacttac acgctcgtga gcaagcgaga 240 atccgtaccg tgttacttta ctgcaaccac cacgttgtta tttatggtcg ctcaattatt 300 cctttacgct cgttacgagg ccattggcgc tgtctgtcta agctcgcaga taagccactt 360 ggtggctacc ttttcaagaa taagcaactt tcacgcagtc ctatcgaagt tactcagctt 420 cccgctggat taatgcaaaa cacggaagag agtttatggg caaggcggtc tattttctat 480 ggctatggtc cgggtatctt ggttaatgaa gcattttacc ctaccatagg ccagctgtag 540 <210> 89 <211> 513 <212> DNA <213> Pantoea ananatis <400> 89 atgacgcaag acccgctccg ttcgttacgt tcacttaact ggctggcgct ggacgatgcc 60 gcattgacgc aaccgcttcg tgactggcta atggaagagg attccatgac gcgacgcttt 120 gaacagcatt gccagaaggt cagggtggaa cctgtacgtg aggactttat ctccgccgat 180 gaactcggcg atgaaggggc attactccct gccgatcagc gtttctggct gcgagaagtc 240 attctctacg gggatgagga accttggctg gcagggcgca cgctggtgcc agaaagtacc 300 ctcaacggcc cggaagcgat gttacagcaa ctcggtacgc gcccgctggg gcgttatctg 360 ttctcgtcat caacgctgac ccgcgatttc attgagcctg gccgcgttga tgcgctctgg 420 ggacgccgct cgcgcctgcg actgtcaggg aaaccgctgc tgttaacgga actgttttta 480 ccggcttcgc cgctctatcg tgatcaaggt taa 513 <210> 90 <211> 546 <212> DNA <213> Pseudoalteromonas haloplanktis <400> 90 gtgattactt tccctgtttc attatctgcc gattggcaat gtgcctcact gtttagtgat 60 ttatcgagtg cagagcaaga gtggttattt gaaccgcatt cattaacagc caaattaaaa 120 agtcgctcac agtgttttag tgtaaaagta cttagtgagc aagagtttga gcttagtgca 180 gagcaacaac aattattagg ctgtacgcaa actactgcgc ttaaccgtga ggtactttta 240 ctttgcgaca ataaaccggt tgtatatgcg caaagctggt tgccagcaag tgttaacgcc 300 gcaaataata aattacataa tatgggggag cgaccattag gcgatgtgat ttttcaagat 360 ccacaattaa cccgcacaga tatagaaatt gcgcgcttta atacccagca ttcattacaa 420 cagcttgttg cacaattaaa gttaccatcg caaagtttac ttggccgtcg cagtctattt 480 tcgcttaaag actataaatt tttagtgtgt gaagtgtttt taccaggagc gtatttgtac 540 tcatga 546 <210> 91 <211> 663 <212> DNA <213> Ralstonia eutropha <400> 91 atgagcgcgc agtccgcgcg ccgctgcagc tggagcccgc acctggcctt tgatgcagcc 60 atcacgccca acctgcggcg ctgggtgacc ggtgacgacg gctcgctgac cgcgcgcctg 120 gtggcagcat cggagcgctt tcgcgtggcg cgcctgctgc agcgcccgca gcgcccgctc 180 gccgatgaat ggcaggtgct gggccagcac gaccgcaccc ccgcgctgac gcgcgaggtg 240 ctgctgatct gcgacgatat tcccgccata tttgcccata ctgtggtgcg ccagcgccat 300 gcgcgccgcg actggccgtt cctgcgcggg ctgggcgagc gcccgctggg cggccggctg 360 tttgtcgacc cggcggtggc gcgcgagccg ttccagtttg cgcggctgct gccgcaccat 420 ccgctgcgcc aggccttgca gcgtgtgctg ccggccatgg cgccactgcc catgctgccg 480 gcgcggcgct cggtgttccg gcgcggcgac ggcgtcatgc tcgtgacaga agtgttcctg 540 ccggacctgc tgtcgcggcc atccccgggg accgaggcga ttccgtatcc caggtatttg 600 cggactacag accgaagccc ctctacacac actaccgaaa ccaagaaaga gaccacgaga 660 tga 663 <210> 92 <211> 561 <212> DNA <213> Shewanella putrefaciens <400> 92 atgaatgtga ctagcttaag cttcccctat ggtgaatcta ttcaatggtt ttgtgctgat 60 cgtaccgata aacttccccc gtcaccgcta aaagagtggt tactcgcccc aggcagcctg 120 acaaaaaaac tcaaaacctg ctgcaatcag tttgaagtca aagtcctcgg tgaaggccaa 180 ctcgccccct tcaaagatga atatcctcag caaggctctg tttgggttcg tgaagtattg 240 ctatgccttg ataatgttcc ttgggtgttt gccagaacct taatcccact ctctttgctg 300 tctgaacgag aagcggattt tctcggtttg ggttctcgtc cccttggcga attactcttt 360 agccaagata actttatccc cggcagaata gaagtcgcca gctttgatac aggtagtcgt 420 cttgcacact tagctgcaag tttagatcaa agggttgaac atctcctgtg gggacgccgt 480 cgctattttc accacggcca ggatgagatg atcgtcagtg aaatattttt acctgcggcc 540 gagcgagcaa tttgccagtg a 561 <210> 93 <211> 564 <212> DNA <213> Thiobacillus denitrificans <400> 93 gtgatcgcca cgcgcgacga cgtttgccgg caggccggtc tgcagtatgg ctggctgccc 60 catgccttcc aggcgccgcg gacgctgcgc ggctggctgt ccgatcgcgg ttcgctcacc 120 cagcgcctgc ggtcccgtta ccgtgatttc cgcgtgcttc cggtgctgcg cggcgtcgcg 180 gcgccttttc ccgacgaaag cggcgcgctc ggcctcgcgc gcgatgcaag cgcctacgtg 240 cgcgacgtcc tgctcctcgg cgatggcaag gcccgcgttt tcgcgcacag cgtgctgccg 300 cgcgcggcct tgcgcggcgg atggaacggc atcgcccggc tcggcacgag accgctcggc 360 gaagcactgt ttcgcacccc ccgtgtccgc cgtctggcca tgacgatgcg ccgggtcgac 420 gcgcggcacc cgctttattg cgccgcgcgc cgccatgccg aggtcgccga gcgcgcactg 480 tgggcgcggc gctcggtatt ttgcctggac ggccacccac tgctggtcag tgaagtcttt 540 ttgcccgccc tattaacgcc atga 564 <210> 94 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 94 ctctcatatg cgtaaacgac aaccagtac 29 <210> 95 <211> 34 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 95 ctctcatatg tcatagtaat tccttgtcgt gctg 34 <210> 96 <211> 23 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 96 ctctcatatg accgctgctc ccg 23 <210> 97 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 97 ctctcatatg ttatagggtg tccgggtc 28 <210> 98 <211> 25 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 98 ctctcatatg tctcctgacc gcttc 25 <210> 99 <211> 27 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 99 ctctcatatg ttagcgcgat ggcagcg 27 <210> 100 <211> 27 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 100 ctctcatatg tcacaccctg cgttaac 27 <210> 101 <211> 31 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 101 ctctcatatg ttaatacaac ggtgatgcgg g 31 <210> 102 <211> 26 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 102 ctctcatatg ccacaccctg cgttaa 26 <210> 103 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 103 ctctcatatg tcagtacaac ggcgatgca 29 <210> 104 <211> 26 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 104 ctctcatatg tcacaccctg cgctaa 26 <210> 105 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 105 ctctcatatg tcagtacaac ggcgatgc 28 <210> 106 <211> 28 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 106 ctctcatatg ccgttaaagg actgtgac 28 <210> 107 <211> 26 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 107 ctctcatatg ttaaccccgg ttgggc 26 <210> 108 <211> 32 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 108 ctctcatatg acgttactca ataaaaacgc tg 32 <210> 109 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 109 ctctcatatg ctacagctgg cctatggta 29 <210> 110 <211> 24 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 110 ctctcatatg acgcaagacc cgct 24 <210> 111 <211> 33 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 111 ctctcatatg ttaaccttga tcacgataga gcg 33 <210> 112 <211> 36 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 112 ctctcatatg attactttcc ctgtttcatt atctgc 36 <210> 113 <211> 33 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 113 ctctcatatg tcatgagtac aaatacgctc ctg 33 <210> 114 <211> 23 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 114 ctctcatatg agcgcgcagt ccg 23 <210> 115 <211> 32 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 116 ctctcatatg tcatctcgtg gtctctttct tg 32 <210> 116 <211> 32 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 116 ctctcatatg aatgtgacta gcttaagctt cc 32 <210> 117 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 117 ctctcatatg tcactggcaa attgctcgc 29 <210> 118 <211> 23 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 118 ctctcatatg atcgccacgc gcg 23 <210> 119 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer <400> 119 ctctcatatg tcatggcgtt aatagggcg 29 <210> 120 <211> 1443 <212> DNA <213> Corynebacterium efficiens <400> 120 gtgcagcaca ctccttttca tgtaaaaggt ctcaggcgtg ctatgaatag gggtgtgagt 60 tggacagttg atatccccaa ggaagttctc ccggatctgc cgcccctgcc cgagggcatg 120 aacgagcagt tccaggacac catcgcccgt gacgccaagc agcagcccac ctgggaccgt 180 gcccaggccg acaacgtgcg ccgtatcctc gaatcggttc ctccgatcgt ggtggcccct 240 gaggtcatcg agctgaagaa gaagctcgca gatgtggcca acggcaaggc attcctgctc 300 cagggtggtg actgcgccga gaccttcgag tccaataccg agccccatat ccgggccaat 360 atcaagactc tcctccagat ggccgtggtg ctcacctatg gtgcctccac acccgtcatc 420 aagatggccc gtatcgccgg ccagtacgcc aagccacggt ccgccgatct ggatgccaac 480 ggtctgccaa actaccgcgg tgacatcgtc aacggtgtgg aagccacacc ggaggcacgc 540 cggcatgacc ccgcgcgcat gatccgcgcc tacgccaact cctccgccgc catgaacctg 600 gtgcgtgccc tgaccagctc cgggaccgcc aacctctacc gcctcagtga ctggaaccgc 660 gagttcgtcg ccaactcccc cgccggtgcg cgctatgagg cgctcgcccg agagatcgac 720 tccggtctgc gcttcatgga ggcctgtggc gtgtccgatg aatccctgcg caccgcggag 780 atctactgct cccacgaggc tctcctcgtg gattatgagc gctccatgct gcgcctgggt 840 gaggatgaaa acggtgagca ggccctctat gatctctctg cacaccagct gtggatcggt 900 gagcgcaccc gtggcatgga tgatttccac gtcaatttcg ccgccatgat cgccaacccg 960 gtgggcatca agatcggccc gggcatcaca cccgaggaag ccgtggccta tgccgataaa 1020 ctggacccca acttcgaacc gggtcgcctc accatggttg cccgcatggg tcatgacaag 1080 gtccgttccg tgctccccgg tgtcatccag gctgtggagg cttccggtca caaggtcatc 1140 tggcagtccg accccatgca cggcaacacc ttcaccgcct ccaatggtta caagacccgt 1200 cacttcgaca aggtcatcga tgaggtgcag ggattcttcg aggtccaccg cgcactgggc 1260 acccacccgg gtggtatcca cattgaattc accggtgagg atgtcaccga atgccttggc 1320 ggtgcagagg acatcaccga cgtggatctg ccgggccgtt atgagtccgc ctgcgacccc 1380 cgtctgaaca cccagcagtc ccttgaactg tccttcctcg tggcggagat gctgcgtaat 1440 tag 1443 <210> 121 <211> 1395 <212> DNA <213> Corynebacterium smegmatis <400> 121 gtgaactgga ccgtcgacat ccccatcgac cagctaccgc ctttgccgcc gctgtccgac 60 gagcttcggc aacggctgga ttcggcactg gccaagccgg ctgtccagca gcccagctgg 120 gaccccgatg ccgccaaggc catgcgcacg gtcctggaga gcgtgccgcc ggtcaccgtg 180 ccgtcggaga tcgagaagct caagggtctg ctcgccgacg tcgcgcaggg caaggcgttc 240 ctgctgcagg gcggtgactg cgccgagacc ttcgtcgaca acaccgaacc gcacatccgc 300 gccaacatcc gcacgctgct gcagatggcg gtggtgctga cctacggcgc gagcatgccg 360 gtggtgaagg ttgcccgcat cgccgggcag tacgccaagc cgcggtcctc cgacgtcgac 420 gcgctggggc tcaagtccta ccgcggcgac atgatcaacg gtttcgcccc cgatgccgcg 480 gcccgcgaac atgatccgtc gcgtctggtg cgcgcgtacg ccaacgcgag cgcggcgatg 540 aacctgatgc gtgcgctgac ctcgtcgggg ctggcgtcgc tgcatctggt gcacgagtgg 600 aaccgcgaat tcgtccgcac gtcgcccgcc ggagcgcgtt acgaggcgct ggccggtgag 660 atcgaccgcg gcctgaactt catgtcggcc tgcggtgtcg ccgaccgcaa cctgcagacc 720 gccgagatct tcgcgagcca cgaggccctg gtgctcgact acgagcgcgc gatgctgcgc 780 ctgtccaacc cggccgagac cgacggtgcg gccaagctgt acgaccagtc ggcgcactac 840 ctgtggatcg gtgagcgcac acggcaactc gacggcgcgc acgtcgcgtt cgccgaggtg 900 atcgccaacc cgatcggcgt caagctcggt ccgaccacca cgccggaact cgccgtcgag 960 tacgtcgagc gccttgaccc gaacaacgaa ccgggccggc tgacgctcgt gacccgcatg 1020 ggcaacaaca aggtgcgcga cctgctgccg ccgatcatcg agaaggtgca ggccaccgga 1080 catcaggtga tctggcagtg cgacccgatg cacggcaaca cccatgagtc gtccacgggg 1140 tacaagacca ggcacttcga ccgcatcgtc gacgaggtgc agggcttttt cgaggtgcac 1200 cacgcgctgg gcacgcatcc cggcggcatc cacgtcgaga tcaccggcga aaacgtcacc 1260 gaatgtctcg gtggggcaca ggacatttcg gattccgacc tggccggccg ctacgagacc 1320 gcgtgcgatc cgcgcctcaa cacccagcag agcctggaac tcgcgttctt ggtcgcggag 1380 atgctccgcg attag 1395 <210> 122 <211> 1386 <212> DNA <213> Rhodococcus opacus <400> 122 gtgaactgga ctgtcgacgt gccgatcgac cgcttgcccg aactcccgcc gctgcccacc 60 gagatgcgtg agcgcctcga cgcagcgctg gccaagcccg ctgcccagca gccgcaatgg 120 cccgaaggtc aggccgccgc gatgcggacc gtcctcgaga gcgtgccccc catcacggtg 180 gccagcgagg tcgtggccct gcaggagaag ctcgcccagg tcgcgcgcgg cgaggcgttc 240 ctcctccagg gcggtgactg cgccgagacg ttcgcggaca acaccgagcc gcacatcaag 300 ggcaacatcc gcaccctgct gcagatggcc gtcgtcctga cgtacggcgc gagcctgccc 360 gtcgtcaagg tcgcgcgcat cgccggtcag tacgcgaagc cgcggtcgtc caacgtcgac 420 gccctgggcc tgcagtccta ccgcggcgac atgatcaact ccctcgtcgc ggacgaggcc 480 gtgcgcgccc acgacccgtc gcggctcgtg cgggcgtacg cgaacgccag cgccgcgatg 540 aacctggtcc gcgcactcac cggcgcgggc atggccgacc tgcacaaggt gcacgactgg 600 aaccgcgaat tcgtgtcgtc gtcgccggcc ggggcccggt acgaggcgct cgccgcggag 660 atcgaccgcg ggctgcagtt catgaacgcc tgcggtgtca ccgatcccag cctgcatcac 720 gcccagatct tcgccagcca cgaggcgctc gtcctcgact acgagcgcgc gatgctgcgc 780 ctcgacaacg acgacgacca cgccaagctg tacgacctgt ccgcccactt cctgtggatc 840 ggcgaccgca cccgtcagct cgacggagcg cacatcgcgt tcgccgaact cgtgtcgaac 900 ccgatcggcc tgaagatcgg accgagcacc accccggaga tggcggtcga atacgtcgaa 960 cgcctcgacc ccaccaacaa gccgggccgg ctcacgctga tctcgcgcat gggcaacaac 1020 aaggtgcgcg acctgctgcc gcccatcatc gagaaggtgc aggccaccgg tcaccaggtg 1080 atctggcagt gcgacccgat gcacggcaac acgcacgagg cgtccaccgg ctacaagacc 1140 cgccacttcg accgcatcgt cgacgaggtc cagggattct tcgaggtcca caatggtctc 1200 ggcacctacc cgggcggcat ccacgtcgaa ctcaccggtg agaacgtcac cgaatgcctc 1260 ggcggcgcgc aggacatctc cgacctcgac ctgtccggtc gctacgagac ggcgtgcgac 1320 ccccgcctca acacccagca gtcgctggaa ctggcgttcc tcgtcgcgga gatgctgcgc 1380 ggctga 1386

Claims (18)

  1. 코리스메이트-피루베이트 리아제(Chorismate-pyruvate lyase) 활성을 가지는 효소를 코딩하는 유전자, 및 4-하이드록시벤조에이트 데카르복실라아제(4-hydroxybenzoate decarboxylase) 활성을 가지는 효소를 코딩하는 유전자가, 숙주의 코리네형 세균에 도입된, 페놀 생산능을 가지는 형질 전환체로서,
    상기 코리스메이트-피루베이트 리아제 활성을 가지는 효소를 코딩하는 유전자가, 에쉐리키아 콜라이(Escherichia coli) 유래의 유전자, 슈도모나스 푸티다(Pseudomonas putida)유래의 유전자, 아시네토박터 바우마니(Acinetobacter baumannii) 유래의 유전자, 아조토박터 비넬란디(Azotobacter vinelandii) 유래의 유전자, 크로모할로박터 살렉시겐스(Chromohalobacter salexigens) 유래의 유전자, 시트로박터 코세리(Citrobacter koseri), 시트로박터 용게이(Citrobacter youngae)와 같은 시트로박터속 세균 유래의 유전자, 엔테로박터 클로아케(Enterobacter cloacae) 유래의 유전자, 마리노박터 아쿠에어올레이(Marinobacter aquaeolei) 유래의 유전자, 마리노모나스 메디테라니아(Marinomonas mediterranea) 유래의 유전자, 판토에아 아나나티스(Pantoea ananatis) 유래의 유전자, 슈도알테로모나스 할로플랑크티스(Pseudoalteromonas haloplanktis) 유래의 유전자, 랄스토니아 유트로파(Ralstonia eutropha)유래의 유전자, 슈와넬라 푸트레파시엔스(Shewanella putrefaciens) 유래의 유전자, 또는 티오바실러스 데니트리피칸스(Thiobacillus denitrificans) 유래의 유전자이고,
    상기 4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 효소를 코딩하는 유전자가, 바실러스 서브틸리스(Bacillus subtilis)유래의 유전자, 바실러스 아트로파에우스 유래의 유전자, 바실러스 서브틸리스 아종 스피지제니 유래의 유전자, 시트로박터 코세리 유래의 유전자, 엔테로박터 아에로게네스 유래의 유전자, 엔테로박터 클로아케 유래의 유전자, 엔테로박터 호마에체이 유래의 유전자, 엔테로박터 사카자키 유래의 유전자, 에쉐리키아 콜라이 유래의 유전자, 에쉐리키아 퍼구소니 유래의 유전자, 파에니바실러스 폴리믹사 유래의 유전자, 또는 판토에아 아나나티스 유래의 유전자이고,
    상기 숙주의 코리네형 세균이, 그 염색체 상에 존재하는 페놀 2-모노옥시게나아제(phenol 2-monooxygenase) 활성을 가지는 효소를 코딩하는 유전자가 파괴되거나, 또는 결손된 것인, 형질 전환체.
  2. 제1항에 있어서,
    코리스메이트-피루베이트 리아제 활성을 가지는 효소를 코딩하는 유전자가 하기 (a) 또는 (b)의 DNA인, 형질 전환체:
    (a) 서열 번호 31, 서열 번호 34, 서열 번호 81, 서열 번호 82, 서열 번호 83, 서열 번호 84, 서열 번호 85, 서열 번호 86, 서열 번호 87, 서열 번호 88, 서열 번호 89, 서열 번호 90, 서열 번호 91, 서열 번호 92, 또는 서열 번호 93의 염기 서열로 이루어지는 DNA,
    (b) 상기 (a) 중 어느 하나의 염기 서열과 상보적인(complementary) 염기 서열로 이루어지는 DNA와 혼성화하고, 또한 코리스메이트-피루베이트 리아제 활성을 가지는 폴리펩티드를 코딩하는 DNA:
  3. 제1항에 있어서,
    4-하이드록시벤조에이트 데카르복실라아제 활성을 가지는 효소를 코딩하는 유전자가 하기 (c) 또는 (d)의 DNA인, 형질 전환체:
    (c) 서열 번호 37, 서열 번호 44, 서열 번호 47, 서열 번호 50, 서열 번호 53, 서열 번호 56, 서열 번호 59, 서열 번호 62, 서열 번호 65, 서열 번호 68, 서열 번호 71, 또는 서열 번호 74의 염기 서열로 이루어지는 DNA,
    (d) 상기 (c) 중 어느 하나의 염기 서열과 상보적인 염기 서열로 이루어지는 DNA와 혼성화하고, 또한 코리스메이트-피루베이트 리아제 활성을 가지는 폴리펩티드를 코딩하는 DNA.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    숙주의 코리네형 세균이, 그 염색체 상에 존재하는 4-하이드록시벤조에이트 하이드록실라아제(4-hydroxybenzoate hydroxylase) 활성을 가지는 효소를 코딩하는 유전자가 파괴되거나, 또는 결손된 것인, 형질 전환체.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    숙주의 코리네형 세균 내에서 DAHP 신타아제(3-deoxy-D-arabino-heptulosonate 7-phosphate(DAHP) synthase) 활성을 가지는 효소를 코딩하는 유전자가 고발현하고 있는, 형질 전환체.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,
    숙주의 코리네형 세균이 코리네박테리움 글루타미쿰인, 형질 전환체.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,
    숙주의 코리네형 세균이, 코리네박테리움 글루미쿰 R(FERM P-18976), ATCC13032, 또는 ATCC13869인, 형질 전환체.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,
    숙주의 코리네형 세균이, 코리네박테리움 글루미쿰 R(FERM P-18976), ATCC13032, 또는 ATCC13869의 염색체 상에 존재하는 4-하이드록시벤조에이트 하이드록실라아제 활성을 가지는 효소를 코딩하는 유전자가 파괴되거나, 또는 결손된 것인, 형질 전환체.
  9. 제1항 내지 제3항 중 어느 한 항에 있어서,
    숙주의 코리네형 세균이, 코리네박테리움 글루미쿰 R(FERM P-18976), ATCC13032, 또는 ATCC13869의 염색체 상에 존재하는 페놀 2-모노옥시게나아제 활성을 가지는 효소를 코딩하는 유전자가 파괴되거나, 또는 결손된 것인, 형질 전환체.
  10. 제1항 내지 제3항 중 어느 한 항에 있어서,
    숙주의 코리네형 세균이, 코리네박테리움 글루미쿰 R(FERM P-18976), ATCC13032, 또는 ATCC13869에 있어서, DAHP 신타아제 활성을 가지는 효소를 코딩하는 유전자가 고발현하고 있는 것인, 형질 전환체.
  11. 코리네박테리움 글루타미쿰 PHE18(수탁 번호:NITE BP-995), PHE13, PHE14, PHE17, PHE19-1, PHE19-2, PHE19-3, PHE19-4, PHE19-5, PHE19-6, PHE19-7, PHE19-8, PHE19-9, PHE19-10, PHE19-11, PHE19-12, PHE20-1, PHE20-2, PHE20-3, PHE20-4, PHE20-5, PHE20-6, PHE20-7, PHE20-8, PHE20-9, PHE20-10, PHE20-11, PHE20-12, PHE20-13, 또는 PHE20-14 형질 전환체.
  12. 제1항 내지 제3항 및 제11항 중 어느 한 항에 기재된 형질 전환체를, 환원 조건 하에서, 당류를 함유하는 반응액 중 반응시키는 반응 공정과, 반응액 중의 페놀을 회수하는 회수 공정을 포함하는 페놀의 제조 방법.
  13. 제12항에 있어서,
    상기 반응 공정에 있어서, 상기 형질 전환체가 증식하지 않는, 페놀의 제조 방법.
  14. 제12항에 있어서,
    환원 조건 하의 반응액의 산화 환원 전위가 -200∼mV(밀리볼트)인, 페놀의 제조 방법.
  15. 제12항에 있어서,
    상기 당류가, 글루코오스, 프룩토오스, 만노오스, 크실로오스, 아라비노스, 갈락토오스, 수크로오스, 말토오스, 락토오스, 셀로비오스, 크실로비오스, 트레할로오스, 및 만니톨로 이루어지는 군으로부터 선택되는, 페놀의 제조 방법.
  16. 삭제
  17. 삭제
  18. 삭제
KR1020137008829A 2010-11-10 2011-11-09 코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법 Active KR101972556B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010252357 2010-11-10
JPJP-P-2010-252357 2010-11-10
PCT/JP2011/075827 WO2012063862A1 (ja) 2010-11-10 2011-11-09 コリネ型細菌形質転換体及びそれを用いるフェノールの製造方法

Publications (2)

Publication Number Publication Date
KR20140012026A KR20140012026A (ko) 2014-01-29
KR101972556B1 true KR101972556B1 (ko) 2019-04-25

Family

ID=46051002

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137008829A Active KR101972556B1 (ko) 2010-11-10 2011-11-09 코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법

Country Status (6)

Country Link
US (1) US9404115B2 (ko)
EP (1) EP2639295B1 (ko)
JP (1) JP5996434B6 (ko)
KR (1) KR101972556B1 (ko)
CN (1) CN103221533B (ko)
WO (1) WO2012063862A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302860A1 (en) 2010-12-28 2013-11-14 Sumitomo Rubber Industries, Ltd. Coryneform Bacterium Transformant and Process for Producing Aniline Using The Same
EP2920302A1 (en) 2012-11-13 2015-09-23 Bayer Technology Services GmbH Method for producing phenol from renewable resources by fermentation
US10076670B2 (en) 2014-01-02 2018-09-18 Koninklijke Philips N.V. Consistency monitoring for ECG shock advisory decisions
US10017791B2 (en) 2014-04-08 2018-07-10 Green Chemicals Co., Ltd. Coryneform bacterium transformant and process for producing 4-hydroxybenzoic acid or salt thereof using the same
US10221409B2 (en) 2014-05-14 2019-03-05 Green Chemicals Co., Ltd. Highly active mutant enzyme for producing 4-hydroxybenzoic acid or salt thereof
CN104152375B (zh) * 2014-07-18 2016-08-24 齐齐哈尔大学 一株脱氨除臭菌株qdn01及其在生物除臭中的应用
CN104651291B (zh) * 2015-02-10 2018-06-01 中国科学院天津工业生物技术研究所 一株生产苯酚的重组菌株及其应用
JP7018256B2 (ja) * 2016-05-20 2022-02-10 株式会社神鋼環境ソリューション リグノフェノールの製造方法、及び、リグノフェノールの製造装置
JP7317810B2 (ja) * 2018-05-01 2023-07-31 公益財団法人地球環境産業技術研究機構 コリネ型細菌の形質転換体およびそれを用いる有用化合物の製造方法
CN111154701B (zh) * 2020-02-24 2022-03-04 荣成市泓派海洋生物科技有限公司 一种产褐藻胶裂解酶和纤维素酶的菌株及其在发酵海带中的应用
FR3116819B1 (fr) 2020-12-01 2023-11-17 Rhodia Operations Procédé de préparation de frambinone
WO2024257791A1 (ja) * 2023-06-12 2024-12-19 グリーンケミカルズ株式会社 芳香族化合物組成物およびポリマー

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050914A (ja) * 2004-08-10 2006-02-23 Gifu Univ 新規な4−ヒドロキシ安息香酸脱炭酸酵素、その酵素をコードするポリヌクレオチド、その製造方法、およびこれを利用した芳香族化合物の製造方法
US20060228712A1 (en) 1999-12-16 2006-10-12 Kyowa Hakko Kogyo Co., Ltd. Novel polynucleotides
JP4451393B2 (ja) 2003-07-29 2010-04-14 財団法人地球環境産業技術研究機構 コリネ型細菌形質転換体及びそれを用いるジカルボン酸の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134500A (en) 1981-02-12 1982-08-19 Kyowa Hakko Kogyo Co Ltd Plasmid pcg1
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5867699A (ja) 1981-10-16 1983-04-22 Ajinomoto Co Inc プラスミド
JPS62166890A (ja) 1986-01-20 1987-07-23 Asahi Chem Ind Co Ltd イソクエン酸デヒドロゲナ−ゼ産生遺伝子を含むdna断片
FR2627508B1 (fr) 1988-02-22 1990-10-05 Eurolysine Procede pour l'integration d'un gene choisi sur le chromosome d'une bacterie et bacterie obtenue par ledit procede
JPH07108228B2 (ja) 1990-10-15 1995-11-22 味の素株式会社 温度感受性プラスミド
DE4423022C1 (de) 1994-06-30 1995-05-24 Lutz Prof Dr Heide Transgene Pflanzen mit erhöhtem Gehalt an Sekundärstoffen
US6210937B1 (en) * 1997-04-22 2001-04-03 Bechtel Bwxt Idaho, Llc Development of genetically engineered bacteria for production of selected aromatic compounds
HU225541B1 (en) 1998-09-25 2007-03-28 Ajinomoto Kk Process for producing l-amino acids by fermentation and amino acid-producing bacterium strains
US6030819A (en) * 1998-09-28 2000-02-29 General Electric Company Genetically engineered microorganisms and method for producing 4-hydroxybenzoic acid
JP2000262288A (ja) 1999-03-16 2000-09-26 Ajinomoto Co Inc コリネ型細菌の温度感受性プラスミド
US7056742B2 (en) 2003-06-16 2006-06-06 E. I. Du Pont De Nemours And Company High Level production of arbutin in green plants
JP3860189B2 (ja) 2004-10-27 2006-12-20 株式会社興人 非結晶性ポリエステル樹脂の製造方法
CN100412199C (zh) * 2006-04-29 2008-08-20 北京未名凯拓作物设计中心有限公司 一种提高植物中水杨酸含量的方法及其专用载体
KR101905605B1 (ko) * 2010-11-10 2018-10-08 그린 케미칼즈 가부시키가이샤 코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228712A1 (en) 1999-12-16 2006-10-12 Kyowa Hakko Kogyo Co., Ltd. Novel polynucleotides
JP4451393B2 (ja) 2003-07-29 2010-04-14 財団法人地球環境産業技術研究機構 コリネ型細菌形質転換体及びそれを用いるジカルボン酸の製造方法
JP2006050914A (ja) * 2004-08-10 2006-02-23 Gifu Univ 新規な4−ヒドロキシ安息香酸脱炭酸酵素、その酵素をコードするポリヌクレオチド、その製造方法、およびこれを利用した芳香族化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Bacteriology, Vol. 190, No. 8, pp. 2822-2830 (온라인 공개일: 2007.11.09.)

Also Published As

Publication number Publication date
US9404115B2 (en) 2016-08-02
EP2639295A1 (en) 2013-09-18
JP5996434B6 (ja) 2018-06-27
EP2639295A4 (en) 2014-04-23
US20130273624A1 (en) 2013-10-17
CN103221533A (zh) 2013-07-24
CN103221533B (zh) 2017-08-22
KR20140012026A (ko) 2014-01-29
JPWO2012063862A1 (ja) 2014-05-19
WO2012063862A1 (ja) 2012-05-18
JP5996434B2 (ja) 2016-09-21
EP2639295B1 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
KR101972556B1 (ko) 코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법
KR101842518B1 (ko) 코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법
KR101905605B1 (ko) 코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법
KR101155461B1 (ko) 다중 프로모터 및 유전자 발현을 위한 그의 용도
CN101255419B (zh) P ef-tu表达单元
CN110283840B (zh) 陆地棉基因组的精确高效编辑方法
Aagaard et al. General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid
AU2023282248A1 (en) Induced expression in plants
KR101914464B1 (ko) 코리네형 세균 형질 전환체 및 그것을 사용하는 페놀의 제조 방법
KR102056250B1 (ko) 재조합 세포, 및 이소프렌의 생산 방법
KR20120094137A (ko) 카다베린의 생산을 위한 방법 및 재조합 미생물
KR100785946B1 (ko) 식물 형질전환 벡터
CN104169416A (zh) 脂肪酸的酶促ω氧化和ω胺化
KR20160079090A (ko) 유전자 표적화를 위한 범용 공여자 시스템
KR20070004580A (ko) Psod 발현 유니트
KR20060136401A (ko) P ef-tu 발현 유니트
CN113621642A (zh) 一种用于农作物杂交育种制种的遗传智能化育制种系统及其应用
CN107002070A (zh) 共表达质粒
KR20070026355A (ko) 발효에 의해서 정밀화학 약품을 제조하는 방법
CN101223279A (zh) 产生甲硫氨酸的重组微生物
CN114958881B (zh) 一种大豆基因GmPP2C89及一种过表达载体与应用
BRPI0215958B1 (pt) métodos para produção de metionina
CN117043331A (zh) 诱导型嵌合体
CN115885045A (zh) 质粒拷贝数调节和整合
CN113122516B (zh) 一种植物epsps突变体及其在植物中的应用

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20130405

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20160923

Comment text: Request for Examination of Application

AMND Amendment
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180108

Patent event code: PE09021S01D

AMND Amendment
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180720

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20190118

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20180720

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 20180108

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

AMND Amendment
PX0901 Re-examination

Patent event code: PX09011S01I

Patent event date: 20190118

Comment text: Decision to Refuse Application

Patent event code: PX09012R01I

Patent event date: 20180912

Comment text: Amendment to Specification, etc.

Patent event code: PX09012R01I

Patent event date: 20180308

Comment text: Amendment to Specification, etc.

Patent event code: PX09012R01I

Patent event date: 20161101

Comment text: Amendment to Specification, etc.

PX0701 Decision of registration after re-examination

Patent event date: 20190313

Comment text: Decision to Grant Registration

Patent event code: PX07013S01D

Patent event date: 20190215

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

Patent event date: 20190118

Comment text: Decision to Refuse Application

Patent event code: PX07011S01I

Patent event date: 20180912

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

Patent event date: 20180308

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

Patent event date: 20161101

Comment text: Amendment to Specification, etc.

Patent event code: PX07012R01I

X701 Decision to grant (after re-examination)
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20190419

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20190419

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20220216

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20240307

Start annual number: 6

End annual number: 6