이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 실시예를 첨부된 도면을 참조하여 설명하기로 한다. 동일한 구성 요소들은 동일한 참조번호를 이용하여 인용될 것이다. 유사한 구성 요소들은 유사한 참조번호들을 이용하여 인용될 것이다. 이하의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다.
도 1은 임의의 주파수 대역에 위치한 아날로그 RF 신호의 스펙트럼을 예시적으로 보여주는 도면이다.
도 1을 참조하면, 아날로그 RF 신호는 fc의 반송파 주파수와, B의 신호대역폭을 갖는 것으로 가정할 수 있으며, 아날로그 RF 신호의 스펙트럼은 양의 주파수 스펙트럼 성분과 음의 주파수 스펙트럼 성분으로 구성된다. 그리고, 도 1에서 RAR+(f)은 아날로그 RF 신호의 양의 주파수 스펙트럼 성분을 나타내고, RAR??(f)는 아날로그 RF 신호의 음의 주파수 스펙트럼 성분을 나타낸다.
도 2 및 도 3은 본 발명의 일 실시예에 따른 대역통과 샘플링 수신기(100_1, 100_2)의 전체 구성을 개략적으로 보여주는 도면이다.
도 2를 참조하면, 본 발명의 대역통과 샘플링 수신기(100_1)는 안테나(10), 대역통과 필터(20, BPF), 저잡음 증폭기(30, LNA), 아날로그-디지털 변환기(50, ADC), 복소 기저대역 신호 추출부(60), 디지털 상/하향변환기(digital up/down converter, 80), 및 디지털 신호처리기(digital signal processor, DSP)(90)를 포함할 수 있다.
안테나(10)는 무선으로 전송된 아날로그 RF 신호(ARF)를 수신하는 기능을 수행한다. 대역통과 필터(20)는 광대역 신호를 필터링 하는 광대역 대역통과 필터로 구성될 수 있다. 대역통과 필터(20)는, 통과 대역이 소정의 대역폭(B)으로 제한되도록 설계될 수 있으며, 신호 대역외 잡음을 제거한다. 예시적인 실시예에 있어서, 대역통과 필터(20)에 설정된 통과 대역 및 통과 대역폭(B)은 고정 값을 가질 수도 있고, 다른 값으로 조정될 수도 있다. 이를 위해, 대역통과 필터(20)는 가변 대역통과필터(tunable BPF)로 구성될 수 있다.
저잡음 증폭기(30)는 대역통과 필터(20)의 필터링 결과(ARB)가 소정의 이득(gain)만큼 증폭된 아날로그 RF 신호(AR12)를 발생한다.
아날로그-디지털 변환기(50)는 저잡음 증폭기(30)로부터 제공된 아날로그 RF 신호(AR12)를 디지털 기저대역 신호(DR12)로 변환한다. 예를 들면, 아날로그-디지털 변환기(50)는 저잡음 증폭기(30)로부터 제공된 아날로그 RF 신호(AR12)를 fS의 샘플율을 갖는 디지털 기저대역 신호(DR12)로 변환한다. 아날로그-디지털 변환기(50)를 통해 변환된 디지털 기저대역 신호(DR12)의 스펙트럼은 양의 주파수 대역으로부터 천이한 양의 스펙트럼 성분과 음의 주파수 대역으로부터 천이한 음의 스펙트럼 성분의 합으로 구성된다.
도 2에 도시된 바와 같이, 본 발명의 대역통과 샘플링 수신기(100_1)에는 단일의 아날로그-디지털 변환기(50)가 사용될 수 있다. 그리고, 복소 기저대역 신호를 추출하는 복소 기저대역 신호 추출부(60)의 구성이 모두 디지털 회로로 구성될 수 있다. 따라서, 기존의 대역통과 샘플링 수신기에 비해 하드웨어 복잡도가 줄어들게 된다. 여기서, 본 발명에 적용될 복소 기저대역 신호 추출부(60)의 상세 구성은 특정 형태에 국한되지 않고 다양하게 변경 및 변형 가능하다. 예를 들면, 본 발명에 따른 복소 기저대역 신호 추출부(60)의 상세 구성은, 아래에서 설명될 제 1 내지 제 6 실시예에 따른 복소 기저대역 신호 추출부(60_160_6)처럼 다양한 형태로 구성될 수 있다.
복소 기저대역 신호 추출부(60)는 아날로그-디지털 변환기(50)에 의해 변환된 디지털 기저대역 신호(DR12)로부터 샘플 지연이 있는 제 1 경로 신호(도 4의 DRA 참조)와 샘플 지연이 없는 제 2 경로 신호(도 4의 DRB 참조)를 발생한다. 그리고, 제 1 및 제 2 경로 신호(DRA, DRB)들 간의 상대적 샘플 지연차로부터 비롯된 위상차에 기반하여 설계된 디지털 필터를 통해 양의 주파수 대역으로부터 천이한 스펙트럼 성분 또는 음의 주파수 대역으로부터 천이한 스펙트럼 성분을 추출한다.
이와 같은 본 발명의 복소 기저대역 신호 추출부(60)의 구성에 따르면, 양의 주파수 스펙트럼 성분과 음의 주파수 스펙트럼 성분이 기저대역에서 앨리어징 되더라도, 앨리어징 영향을 제거하여 복소 기저대역 신호를 완벽하게 추출할 수 있게 된다. 즉, 단일의 아날로그-디지털 변환기(50)를 사용함에도 불구하고 양의 주파수 대역으로부터 천이한 양의 주파수 스펙트럼 성분을 갖는 복소 기저대역 신호 또는 음의 주파수 대역으로부터 천이한 음의 주파수 스펙트럼 성분을 갖는 복소 기저대역 신호를 완벽하게 추출할 수 있다. 따라서, 샘플율이 특정 샘플율로 제한되는 기존의 대역통과 샘플링 수신기에 비해, 보다 유연하게 샘플율을 선택할 수 있으며, 모든 주파수 대역 및 신호 대역폭에 대해서 수신이 가능해 진다.
복소 기저대역 신호 추출부(60)에서 추출된 복소 기저대역 신호의 중심 주파수는, 아날로그 RF 신호의 반송파 주파수(fc)와 샘플율(fs)에 의해 결정되며, 0 일수도 있고, 0이 아닐 수도 있다. 복소 기저대역 신호 추출부(60)에서 추출된 복소 기저대역 신호의 중심 주파수가 0이 아닐 경우에는, 디지털 상/하향변환기(80)를 통해 복소 기저대역 신호의 중심 주파수가 0으로 쉬프트될 수 있다. 만일 복소 기저대역 신호 추출부(60)에서 추출된 복소 기저대역 신호의 중심 주파수가 0일 경우에는, 복소 기저대역 신호의 중심 주파수를 0으로 쉬프트시키는 디지털 상/하향변환기(80)의 구성이 생략될 수 있다(도 18 내지 도 20 참조). 중심 주파수가 0인 복소 기저대역 신호에 대한 기저대역 신호처리(예를 들면, 복조 동작 등)는 디지털 신호처리기(90)를 통해 수행된다.
한편, 복소 기저대역 신호 추출부(60)에서 추출된 복소 기저대역 신호는, 양의 주파수 대역으로부터 천이한 양의 주파수 스펙트럼 성분을 갖는 복소 기저대역 신호(DR1)이거나, 또는 음의 주파수 대역으로부터 천이한 음의 주파수 스펙트럼 성분을 갖는 복소 기저대역 신호(DR1)에 해당될 수 있다. 본 발명에서는 설명의 편의를 위해, 복소 기저대역 신호 추출부(60)가 음의 주파수 대역으로부터 천이한 음의 주파수 스펙트럼 성분을 제거하고 양의 주파수 대역으로부터 천이한 양의 주파수 스펙트럼 성분을 갖는 복소 기저대역 신호(DR1)를 추출하는 것에 대해 예를 들어 설명될 것이다. 그러나, 이는 본 발명이 적용되는 일 예에 관한 것으로, 복소 기저대역 신호 추출부(60)에서 추출되는 복소 기저대역 신호의 구성은 특정 형태에 국한되지 않고, 다양하게 변경 및 변형 가능하다.
도 3을 참조하면, 본 발명의 대역통과 샘플링 수신기(100_2)는 도 2에 도시된 대역통과 샘플링 수신기(100_1)의 구성 외에, 트랙 앤 홀더(track and holder)(40)를 더 포함할 수 있다. 도 3에 도시된 대역통과 샘플링 수신기(100_2)는 트랙 앤 홀더(40)를 제외한 나머지 구성에 있어서 도 2에 도시된 대역통과 샘플링 수신기(100_1)와 실질적으로 동일하다. 따라서, 동일한 구성에 대해서는 동일한 참조 번호를 부가하였으며, 동일한 구성에 대한 중복되는 설명은 이하 생략하기로 한다.
도 3에 도시되어 있지는 않지만, 트랙 앤 홀더(40)는 아날로그 스위치와 샘플링 커패시터로 구성될 수 있다. 스위치가 닫힐 경우 트랙 앤 홀더(40)는 입력 신호를 추적하는 트랙 모드로서 동작하게 된다. 그리고, 스위치가 열릴 경우 트랙 앤 홀더(40)는 홀드 모드로서 동작하게 된다. 홀드 모드에서 트랙 앤 홀더(40)는, 마지막 순간 입력값(last instantaneous value of the input)을 샘플링 커패시터에 유지시킨다. 이와 같은 트랙 모드 및 홀드 모드에서의 트랙 앤 홀더(40)의 동작에 따르면, 아날로그-디지털 변환기(50)에서 처리될 아날로그-디지털 변환 대역을 높일 수 있게 된다.
도 2 및 도 3에서 설명된 대역통과 샘플링 수신기(100_1, 100_2)의 구성에 따르면, 본 발명의 대역통과 샘플링 수신기(100_1, 100_2)는 단일 아날로그-디지털 변환기(50)를 사용하여 임의의 대역에 위치한 아날로그 RF 신호를 디지털 기저대역 신호로 직접 하향변환 할 수 있다. 그리고, 본 발명의 대역통과 샘플링 수신기(100_1, 100_2)는 디지털 기저대역 신호(DR12)를 구성하는 양의 주파수 대역으로부터 천이한 양의 주파수 스펙트럼 성분과 음의 주파수 대역으로부터 천이한 음의 주파수 스펙트럼 성분이 기저대역에서 앨리어징되어 상호 간섭이 발생하더라도, 복소 기저대역 신호 추출부(60)를 통해 앨리어징을 제거할 수 있다. 따라서, 주파수 대역에 따라 수신기를 재설계할 필요 없이 복소 기저대역 신호(DR1)를 정확하게 추출할 수 있다. 또한, 본 발명의 대역통과 샘플링 수신기(100_1, 100_2)는 대부분의 회로 구성이 디지털 회로로 구성되기 때문에 수신기의 구조가 매우 간단하고 가격도 매우 저렴하다. 따라서, 수신기의 하드웨어 복잡도를 줄일 수 있고, 수신기의 사이즈와 제조 단가를 줄일 수 있다.
도 4는 본 발명의 제 1 실시예에 따른 복소 기저대역 신호 추출부(60_1)의 상세 구성을 예시적으로 보여주는 도면이다.
도 4를 참조하면, 복소 기저대역 신호 추출부(60_1)는 제 1 지연기(delay, 610), 제 1 및 제 2 다운 샘플러(611, 612), 제 1 및 제 2 디지털 필터(615, 616), 그리고 가산기(619)를 포함할 수 있다.
제 1 지연기(610)는 아날로그-디지털 변환기(50)로부터 출력된 디지털 기저대역 신호(DR12)를 D 샘플 지연 시킨다. 여기서 샘플 지연 값 D는 0보다 크고 다운 샘플율(N) 보다 작은 정수값을 갖는다. 제 1 지연기(610)를 통해 D 샘플 지연된 신호는, 제 1 다운 샘플러(611)를 통해 샘플율이 1/N 배가 되도록 다운 샘플링된다. 제 1 다운 샘플러(611) 출력 신호인 제 1 경로 신호(DRA)는 제 1 디지털 필터(615)로 제공된다.
아날로그-디지털 변환기(50)로부터 출력된 디지털 기저대역 신호(DR12)는 제 2 경로 신호(DRB)를 발생하기 위해 샘플 지연 없이 제 2 다운 샘플러(612) 입력으로 주어진다. 아날로그-디지털 변환기(50)로부터 출력된 디지털 기저대역 신호(DR12)는 제 2 다운 샘플러(612)를 통해 샘플율이 1/N 배가 되도록 다운 샘플링된다. 제 2 다운 샘플러(612)로부터 출력된 제 2 경로 신호(DRB)는, 제 2 디지털 필터(616)로 제공된다. 여기서, 제 1 및 제 2 다운 샘플러(611, 612)로부터 출력되는 신호의 샘플율(f'S)은 fS/N이 된다. 이와 같은 본 발명의 구성에 따르면, 제 1 및 제 2 다운 샘플러(611, 612)로부터 출력된 제 1 경로 신호(DRA)와 제 2 경로 신호(DRB) 사이에는 정수가 아닌 D/N의 상대적 샘플 지연 차이가 존재하게 된다.
도 5는 도 4에 도시된 제 1 다운 샘플러(611)로부터 출력된 제 1 경로 신호(DR
A)의 스펙트럼(
)을 예시적으로 보여주는 도면이다. 또한, 도 6은 도 4에 도시된 제 2 다운 샘플러(612)로부터 출력된 제 2 경로 신호(DR
B)의 스펙트럼(
)을 예시적으로 보여주는 도면이다.
도 5 및 도 6에 도시된 스펙트럼은, 제 1 나이퀴스트 존(1st Nyquist zone) 대역 내에서의 스펙트럼에 대응된다. 제 1 경로 신호(DRA) 및 제 2 경로 신호(DRB)가 가지고 있는 신호 특성은 다음과 같다.
제 1 경로 신호(DRA)는 아날로그-디지털 변환기(50)의 출력 신호를 D 샘플 지연시킨 후에 다운 샘플링한 신호이다. 반면에 제 2 경로 신호(DRB)는 아날로그-디지털 변환기(50)의 출력 신호를 샘플 지연을 시키지 않고 다운 샘플링만 수행한 결과 신호이다. 결과적으로, 제 1 경로 신호(DRA)는 제 2 경로 신호(DRB)를 D/fs(=D/Nfs')만큼 시간 지연시킨 신호라 할 수 있다. 따라서, 상대적 시간 지연으로 인한 제 1 경로 신호(DRA)의 스펙트럼은, 제 2 경로 신호(DRB)의 스펙트럼에 그룹 지연(group delay)의 영향을 포함시킨 것과 동일하게 된다.
제 1 경로 신호(DR
A)의 시간 지연으로 인한 그룹 지연의 영향은, 양의 주파수 대역으로부터 천이한 스펙트럼 성분에 대해서
으로 주어지고, 음의 주파수 대역으로부터 천이한 스펙트럼 성분에 대해서
으로 주어진다.
여기서, n은 신호의 주파수 대역 위치 인덱스로써, 0, 1, 2, 3, ...의 값을 갖게 되며, 신호의 반송파 주파수(fc)와 제 1 및 제 2 다운 컨버터(611, 612)의 출력에서의 샘플율 (f'S = fS/N)에 의해 다음과 같이 결정된다.
여기서, round()는 반올림을 의미한다.
이상과 같은 제 1 경로 신호(DRA) 및 제 2 경로 신호(DRB) 간의 상대적 지연시간차로 인한 상대적인 위상차(상대적인 그룹 지연의 영향)를 이용하여 제 1 및 제 2 디지털 필터(615, 616)를 설계함으로써, 양의 주파수 스펙트럼 성분과 음의 주파수 스펙트럼 성분간의 앨리어징이 발생되더라도 앨리어징을 제거하고 원하는 복소 기저대역 신호(DR1)를 완벽하게 추출할 수 있게 된다.
본 발명에 따르면 제 1 및 제 2 디지털 필터(615, 616)와 가산기(619)를 이용하여, 양의 주파수 대역으로부터 천이한 양의 주파수 스펙트럼 성분과 음의 주파수 대역으로부터 천이한 음의 주파수 스펙트럼 성분이 가산되어 있는 신호로부터 양의 주파수 스펙트럼 성분을 갖는 복소 기저대역 신호 또는 음의 주파수 스펙트럼 성분을 갖는 복소 기저대역 신호를 추출할 수 있다.
본 발명에 따른 제 1 및 제 2 디지털 필터(615, 616)의 설계 방식은 다음과 같다.
도 5 및 도 6을 참조하면, 제 1 및 제 2 다운 샘플러(611, 612) 출력에서 제 1 나이퀴스트 존 대역 내에서의 제 1 경로 신호(DR
A)의 스펙트럼(
)과 제 2 경로 신호(DR
B)의 스펙트럼 (
)은 각각 [수학식 2]와 [수학식 3]으로 표현될 수 있다.
여기서, R??(f) 및 R+(f)는 각각 아날로그 RF 신호의 음의 주파수 및 양의 주파수 스펙트럼 성분이 주파수 천이된 기저대역 복제(replica) 스펙트럼에 해당된다.
제 1 디지털 필터(615)를 통과한 제 1 경로 신호(DRA)의 스펙트럼과, 제 2 디지털 필터(616)를 통과한 제 2 경로 신호(DRB)의 스펙트럼은 각각 [수학식 4]와 [수학식5]로 표현할 수 있다.
제 1 디지털 필터(615)를 통과한 제 1 경로 신호(DRA)의 필터링 결과와, 제 2 디지털 필터(616)를 통과한 제 2 경로 신호(DRB)의 필터링 결과는 가산기(619)를 통해 더해질 수 있다. 다른 실시예에 있어서, 가산기(619)는 감산기로 대체되어, 제 1 디지털 필터(615)의 필터링 결과로부터 제 2 디지털 필터(616)의 필터링 결과를 감산하도록 구성될 수도 있다.
도 4에 도시된 가산기(619)의 출력 신호의 스펙트럼은 [수학식 6]으로 표현될 수 있다.
복소 기저대역 신호 추출부(60_1)가 음의 주파수 대역으로부터 천이한 스펙트럼 성분을 제거하고 양의 주파수 대역으로부터 천이한 스펙트럼 성분만을 얻기 위해서는, 제 1 및 제 2 디지털 필터(615, 616)가 아래의 [수학식 7]을 만족하도록 설계되어야 한다.
제 1 및 제 2 디지털 필터(615, 616)가 [수학식 7]을 만족하기 위해서는, [수학식 8]과 [수학식 9]로 주어진 연립방정식을 만족하여야 한다.
[수학식 8]과 [수학식 9]로 주어지는 연립방정식을 풀면, 제 1 디지털 필터(615)의 주파수 응답에 해당되는 HA(f)이 [수학식 10]으로 표현될 수 있고, 제 2 디지털 필터(616)의 주파수 응답에 해당되는 HB(f)이 [수학식 11]로 표현될 수 있다.
이렇게 얻어진 H
A(f)와 H
B(f)는
의 동작 속도를 갖는 디지털 필터 형태로 구현 될 수 있다. 또한, [수학식 10]과 [수학식 11]에서 알 수 있듯이,
(여기서, m=정수)을 만족하여야 하며,
을 만족하도록 f
s, D, N을 변경할 수 있다.
그리고, 수신된 신호의 RF 주파수 대역에 따라 디지털 필터의 계수는 재 계산될 수 있고, 계산된 필터 계수를 이용하여 디지털 필터를 재구성함으로써 모든 임의의 주파수 대역에 위치한 기저대역 신호를 수신할 수 있게 된다. 본 발명에 따른 디지털 필터의 재구성 방식은, 도 15를 참조하여 아래에서 상세히 설명될 것이다.
또한 [수학식 11]에서 알 수 있듯이, 제 2 디지털 필터(616)에 해당되는 H
B(f)는, 주파수의 함수가 아니라 상수이고 제 2 디지털 필터(616)의 동작 속도는
이기 때문에, 제 2 디지털 필터(616)의 임펄스 응답 h
B(t)는, t=0일 경우에 [수학식 12]로 주어지는 상수 C의 값을 갖게 되고, t0인 경우에는 0의 값을 갖게 된다. 따라서, 제 2 디지털 필터(616)는 샘플 지연기와 상수 C 만큼의 이득을 제공하는 이득기(gain adjustment logic)로 대체될 수 있다(도 12 내지 도 15 참조). 여기서 샘플 지연기의 샘플 지연 동작은, 제 1 다운 샘플러(611)가 다운샘플링 결과를 출력하는 시간으로부터 제 1 디지털필터(615)가 필터링 결과 신호를 출력할 때까지 소요되는 시간 만큼을 보상한 것에 해당된다. 제 2 디지털 필터(616)가 샘플 지연기와 이득기로 대체되는 경우, 회로 구성은 더욱 간단해질 것이다. 간단해진 회로 구성으로 인해, 수신기의 사이즈와 제조 단가가 줄어들게 될 것이다.
도 7은 도 4에 도시된 가산기(619)로부터 출력된 복소 기저대역 신호(DR1)의 주파수 응답(S(f))을 예시적으로 보여주는 도면이다.
도 4 및 도 7을 참조하면, 제 1 디지털 필터(615)를 통과한 제 1 경로 신호의 필터링 결과(SA)와 제 2 디지털 필터(616)를 통과한 제 2 경로 신호의 필터링 결과(SB)가 가산기(619)를 통해 더해짐으로 인해, 음의 주파수 대역으로부터 천이한 스펙트럼 성분(R-(f))이 제거되고, 양의 주파수 대역으로부터 천이한 스펙트럼 성분(R+(f))만 남게 된다. 따라서 앨리어징을 제거하고 원하는 복소 기저대역 신호(DR1)를 추출할 수 있다.
가산기(619)를 통해 출력된 복소 기저대역 신호(DR1)의 중심 주파수는, 도 7에 도시된 바와 같이 0의 값을 갖지 않을 수 있다. 예를 들면, 복소 기저대역 신호(DR1)의 중심 주파수는 0 보다 작을 수도 있고, 0 보다 클 수도 있다. 이 경우, 복소 기저대역 신호(DR1)의 중심 주파수는 디지털 상/하향변환기(80)에 의해 상향/하향 변환되어 0으로 조정될 수 있다. 디지털 상/하향변환기(80)에서 수행되는 디지털 상/하향변환 동작은 [수학식 13]으로 표현될 수 있다.
여기서, s(t)는 가산기(619)를 통해 출력된 복소 기저대역 신호(DR1)를 의미하고, fif는 가산기(619)로부터 출력된 복소 기저대역 신호(DR1)의 중간주파수를 의미하며, 이는 [수학식 14]와 같이 구할 수 있다.
[수학식 13]으로 표현된 디지털 상/하향변환기(80)의 디지털 상/하향변환 동작에 따르면, 가산기(619)를 통해 출력된 복소 기저대역 신호(DR1)의 중심 주파수는 0으로 조정될 수 있다. 디지털 상/하향변환기(80)로부터 출력된 복소 기저대역 신호(DR1')는, 디지털 신호처리기(90)로 입력된다. 디지털 신호처리기(90)는 입력된 복소 기저대역 신호(DR1')에 대해 기저대역 신호처리를 수행한다. 디지털 신호처리기(90)에서 수행되는 기저대역 신호처리에는 복조 동작 등이 포함될 수 있다.
만일, 가산기(619)를 통해 출력된 복소 기저대역 신호(DR1)의 중심 주파수가 0인 경우(즉, 아날로그 RF 신호의 중심 주파수가 샘플율의 정수배인 경우), 본 발명에 따른 대역통과 샘플링 수신기에서 디지털 상/하향변환기(80)의 구성은 생략될 수 있다(도 16 및 도 17 참조).
이상에서 설명된 본 발명의 복소 기저대역 신호 추출부(60_1)의 구성은, 특정 형태에 국한되지 않고 다양한 형태로 변경 및 변형 가능하다. 본 발명에 따른 복소 기저대역 신호 추출부(60_1)의 변형 예는 다음과 같다.
도 8은 도 3에 도시된 디지털 상/하향변환기(80)로부터 출력된 상향/하향 변환된 제 1 복소 기저대역 신호(DR1)의 주파수 응답(S'(f))을 예시적으로 보여주는 도면이다. 도 8을 참조하면, 가산기(619)로부터 출력된 제 1 복소 기저대역 신호(DR1)의 중간주파수는 디지털 상/하향변환기(80)를 통해 상향/하향 변환될 수 있다.
가산기(619)를 통해 출력된 복소 기저대역 신호(DR1)의 중심 주파수는 0 보다 작을 수도 있고, 0 보다 클 수도 있다. 하지만, 디지털 상/하향변환기(80)에서 수행되는 디지털 상/하향변환 동작에 따라 복소 기저대역 신호(DR1)는 제 1 복소 기저대역 신호(DR1)로 조정될 수 있다. 제 1 복소 기저대역 신호(DR1)의 주파수 응답(S'(f))에 따르면, 중심 주파수가 0 으로 조정되었음을 알 수 있다. 즉, 복소 기저대역 신호(DR1)의 중심 주파수는 디지털 상/하향변환기(80)에 의해 상향/하향 변환되어 0으로 조정될 수 있다.
도 9는 본 발명의 제 2 실시예에 따른 복소 기저대역 신호 추출부(60_2)의 상세 구성을 예시적으로 보여주는 도면이다.
도 9를 참조하면, 도 4의 제 1 다운 샘플러(611)는 제 1 데시메이터(decimator 1)(613)로 대체될 수 있고, 도 4의 제 2 다운 샘플러(612)는 제 2 데시메이터(decimator 2)(614)로 대체될 수 있다. 제 1 및 제 2 데시메이터(613, 614) 각각은 전치 디지털 필터(pre-digital filter)와 다운 샘플러로 구성될 수 있으며, 출력 신호의 샘플율이 입력 신호 대비 1/N (N은 1보다 큰 정수) 배가 되도록 조정할 수 있다. 이와 같은, 제 1 및 제 2 데시메이터(613, 614)의 전치 필터링 및 다운 샘플링 동작은, 결국 제 1 및 제 2 다운 샘플러(611, 612)의 다운 샘플링 동작에 대응될 수 있다.
도 9에 도시된 복소 기저대역 신호 추출부(60_2)에서 제 1 및 제 2 데시메이터(613, 614)를 제외한 나머지 구성은, 도 4에 도시된 복소 기저대역 신호 추출부(60_1)와 실질적으로 동일하다. 따라서, 동일한 구성에 대해서는 동일한 참조 번호를 부여하였으며, 동일한 구성에 대한 중복되는 설명은 이하 생략하기로 한다.
도 10 및 도 11은 본 발명의 제 3 및 제 4 실시예에 따른 복소 기저대역 신호 추출부(60_3, 60_4)의 상세 구성을 예시적으로 보여주는 도면이다.
도 10 및 도 11을 참조하면, 도 4의 제 2 디지털 필터(616)는 제 2 지연기(617)와 소정의 이득을 제공하는 이득기(gain adjustment logic, 618)로 대체될 수 있다. 제 2 지연기(617)는 제 2 경로 신호(DRB)를 Y 샘플 지연하도록 구성된다. 제 2 지연기의 샘플 지연 동작은, 제 1 다운 샘플러(611)가 다운샘플링 결과를 출력하는 시간으로부터 제 1 디지털필터(615)가 필터링 결과 신호를 출력할 때까지 소요되는 시간 만큼을 보상한 것에 해당된다. 이 경우, 제 1 디지털필터(615)가 필터링 결과 신호를 출력할 때까지 소요되는 시간은, 사실상 제 1 디지털 필터(615)의 필터링 동작에서 소요되는 시간에 해당될 수 있다. 따라서, 제 2 지연기의 샘플 지연 값 Y는, 복소 기저대역 신호 추출부(60_1)의 제 1 디지털 필터(615)의 필터링 동작에 소요되는 시간에 따라서 정해질 수 있다.
예를 들어, 복소 기저대역 신호 추출부(60_1)의 제 1 디지털 필터(615)가 길이가 L인 FIR 필터로 구현될 경우, FIR 필터링 동작에는
만큼의 시간 지연이 발생하게 되므로, 샘플 지연 값은
이 되도록 구성될 수 있다. 여기서,
은 X 보다 작은 정수 중 가장 큰 수를 의미한다. 이득기(618)는 제 2 지연기(617)의 샘플 지연 결과(DR
B_D)에 상수 C 만큼의 이득을 인가한다. 이득기(618)의 출력 신호(MR
B_D)는 가산기(619)로 제공된다. 제 1 디지털 필터(615)의 필터링 결과(S
A)와 이득기(618)의 출력 신호(MR
B_D)가 가산기(619)를 통해 더해짐으로 인해, 복소 기저대역 신호 추출부(60_3)의 출력에서 음의 주파수 대역으로부터 천이한 스펙트럼 성분(R
-(f))이 제거되고, 양의 주파수 대역으로부터 천이한 스펙트럼 성분(R
+(f))을 갖는 복소 기저대역 신호(DR
1)만 남게 된다.
제 2 지연기(617)와 이득기(618)의 연결 순서는 특정 형태에 국한되지 않고, 도 10 및 도 11에 도시된 바와 같이 연결 순서가 상호 교환될 수 있다.
복소 기저대역 신호 추출부(60_3, 60_4)가 제 2 디지털 필터(616) 대신에 제 2 지연기(617)와 이득기(618)를 구비하는 경우, 회로 구성은 더욱 간단해질 것이다. 간단해진 회로 구성으로 인해, 수신기의 사이즈와 제조 단가가 줄어들게 될 것이다.
도 10 및 도 11에 도시된 복소 기저대역 신호 추출부(60_3, 60_4)에서 제 2 지연기(617)와 이득기(618)를 제외한 나머지 구성은, 도 4에 도시된 복소 기저대역 신호 추출부(60_1)와 실질적으로 동일하다. 따라서, 동일한 구성에 대해서는 동일한 참조 번호를 부여하였으며, 동일한 구성에 대한 중복되는 설명은 이하 생략하기로 한다.
도 12 및 도 13은 본 발명의 제 5 및 제 6 실시예에 따른 복소 기저대역 신호 추출부(60_5, 60_6)의 상세 구성을 예시적으로 보여주는 도면이다.
도 12 및 도 13을 참조하면, 도 4의 제 1 다운 샘플러(611)는 제 1 데시메이터(613)로 대체될 수 있고, 도 4의 제 2 다운 샘플러(612)는 제 2 데시메이터(614)로 대체될 수 있다. 제 1 및 제 2 데시메이터(613, 614)는 각각 전치 디지털 필터와 다운샘플러로 구성 될 수 있으며, 출력 신호의 샘플율이 입력 신호 대비 1/N 배가 되도록 조정할 수 있다. 이와 같은, 제 1 및 제 2 데시메이터(613, 614)의 전치 필터링 및 다운 샘플링 동작은, 결국 제 1 및 제 2 다운 샘플러(611, 612)의 다운 샘플링 동작에 대응될 수 있다.
그리고, 도 4의 제 2 디지털 필터(616)는 제 2 지연기(617)와 상수 C 만큼의 이득을 제공하는 이득기(618)로 대체될 수 있다.
제 2 지연기(617)와 이득기(618)의 연결 순서는 특정 형태에 국한되지 않고, 도 12 및 도 13에 도시된 바와 같이 연결 순서가 상호 교환될 수 있다.
도 12 및 도 13에 도시된 복소 기저대역 신호 추출부(60_5, 60_6)에서, 제 1 및 제 2 데시메이터(613, 614), 제 2 지연기(617), 및 이득기(618)를 제외한 나머지 구성은, 도 4에 도시된 복소 기저대역 신호 추출부(60_1)와 실질적으로 동일하다. 따라서, 동일한 구성에 대해서는 동일한 참조 번호를 부여하였으며, 동일한 구성에 대한 중복되는 설명은 이하 생략하기로 한다.
지금까지 설명한 대역통과 샘플링 수신기의 실시예는 복소 기저대역 신호 추출부(60, 60_160_6)가 복소 기저대역 신호(DR1)를 추출하기 위해서 가산기(619)를 사용하는 경우에 대한 것이었다. 또 다른 실시예로써 복소 기저대역 신호 추출부(60, 60_160_6)가 복수 기저대역 신호(DR1)를 추출하기 위해서, 가산기(619)는 감산기로 대체될 수 있다. 감산기를 사용하는 또 다른 실시예에 따르면, 복소 기저대역 신호 추출부(60, 60_160_6)가 복소 기저대역 신호(DR1)를 추출하기 위해서는 제 1 디지털 필터(615) 및 제 2 디지털 필터(616)는 [수학식 15]를 만족하도록 설계될 수 있다.
이 실시예에 따른 제 1 디지털 필터(615) 및 제 2 디지털 필터(616)의 상세한 설계 방법은, [수학식 2] 내지 [수학식 12]으로 주어지는 필터 설계 방법과 동일하므로 자세한 설명은 생략하도록 한다.
또 다른 실시예로써 복소 기저대역 신호 추출부(60, 60_160_6)는 복소 기저대역 신호 추출부(60)가 양의 주파수 대역으로부터 천이한 양의 주파수 스펙트럼 성분을 제거하고 음의 주파수 대역으로부터 천이한 음의 주파수 스펙트럼 성분을 갖는 복소 기저대역 신호(DR1)를 추출할 수 있다. 이 실시예에 따르면, 복소 기저대역 신호 추출부(60, 60_160_6)가 복소 기저대역 신호(DR1)를 추출하기 위해서는 제 1 디지털 필터(615) 및 제 2 디지털 필터(616)는 [수학식 16] 또는 [수학식 17]을 만족하도록 설계될 수 있다.
여기서 [수학식 16]은 복소 기저대역 신호 추출부(60, 60_160_6)가 복소 기저대역 신호를 추출하기 위해 가산기(619)를 사용하는 경우에 대응되며, [수학식 17]은 복소 기저대역 신호를 추출하기 위해 감산기를 사용하는 경우에 대응된다.
이 실시예에 따른 제 1 디지털 필터(615) 및 제 2 디지털 필터(616)의 상세한 설계 방법은, [수학식 2] 내지 [수학식 12]으로 주어지는 필터 설계 방법과 동일하므로 자세한 설명은 생략하도록 한다.
도 14는 본 발명의 일 실시예에 따른 대역통과 샘플링 수신기의 복소 기저대역 신호 추출 방법을 예시적으로 보여주는 흐름도이다. 도 14에 도시된 복소 기저대역 신호 추출 방법은, 이상에서 설명된 복소 기저대역 신호 추출부(60, 60_160_6)를 포함하는 대역통과 샘플링 수신기(100, 100_1, 100_2)에 모두 적용될 수 있다.
도 14를 참조하면, 본 발명의 대역통과 샘플링 수신기(100, 100_1, 100_2)는 안테나(10)를 통해 아날로그 RF 신호(ARF)를 받아들인다(S1000 단계). 안테나(10)를 통해 수신된 아날로그 RF 신호(ARF)는, 대역통과 필터(20)와 저잡음 증폭기(30)를 통해 소정의 대역폭(B)과 소정의 반송파 주파수(fc)를 갖는 아날로그 RF 신호(AR12)로 변환될 수 있다. 아날로그 RF 신호(AR12)는 아날로그-디지털 변환기(50)를 통해 디지털 기저대역 신호(DR12)로 변환될 수 있다(S1100 단계). 디지털 기저대역 신호(DR12)는 양의 주파수 대역으로부터 천이한 스펙트럼 성분과 음의 주파수 대역으로부터 천이한 스펙트럼 성분의 합으로 구성될 수 있다.
복소 기저대역 신호 추출부(60, 60_160_6)는 아날로그-디지털 변환기(50)에 의해 변환된 디지털 기저대역 신호(DR12)로부터 샘플 지연이 있는 제 1 경로 신호(DRA)와 샘플 지연이 없는 제 2 경로 신호(DRB)를 발생한다(S1200 단계).
제 1 경로 신호(DRA)는 디지털 기저대역 신호(DR12)가 D 샘플 지연된 후 다운 샘플링 된 신호이고, 제 2 경로 신호(DRB)는 디지털 기저대역 신호(DR12)가 샘플 지연 없이 다운 샘플링 된 신호이다. 제 1 경로 신호(DRA)와 제 2 경로 신호(DRB)는 제 1 및 제 2 다운 샘플러(611, 612)를 통해 샘플율이 1/N 배가 되도록 다운 샘플링 된다. 제 1 및 제 2 다운 샘플러(611, 612)로부터 출력되는 다운 샘플링 결과의 샘플율(f's)은 fs/N이 된다. 예시적인 실시예에 있어서, 제 1 및 제 2 다운 샘플러(611, 612)는 제 1 및 제 2 데시메이터(613, 614)로 대체될 수 있다. 제 1 및 제 2 데시메이터(613, 614) 각각은 전치 디지털 필터(pre-digital filter)와 다운샘플러로 구성될 수 있으며, 출력 신호의 샘플율이 입력 신호 대비 1/N (N은 1보다 큰 정수) 배가 되도록 조정할 수 있다. 이와 같은, 제 1 및 제 2 데시메이터(613, 614)의 전치 필터링 및 다운 샘플링 동작은, 결국 제 1 및 제 2 다운 샘플러(611, 612)의 다운 샘플링 동작에 대응될 수 있다.
이어서, 복소 기저대역 신호 추출부(60, 60_160_6)는 제 1 경로 신호(DRA)와 제 2 경로 신호(DRB)간의 상대적 샘플 지연차로 기인된 상대적 위상차(즉, D/N의 샘플 지연 차이에 대응됨)를 이용하여 복소 기저대역 신호(DR1)를 추출한다(S1300 단계).
제 1 복소 기저대역 신호(DR1)의 추출에는 복소 기저대역 신호 추출부(61, 60_160_6)에 구비된 제 1 디지털 필터(615), 제 2 디지털 필터(616) (또는 제 2 지연기(617) 및 이득기(618)), 그리고 가산기(619)가 이용될 수 있다. 제 1 및 제 2 디지털 필터(615, 616)는 디지털 FIR(Finite Impulse Response) 필터 형태로 구현될 수 있으며, 제 2 디지털 필터(616)는 제 2 지연기(617)와 이득기(618)로 대체될 수 있다(도 10 내지 도 13 참조). 제 1 디지털 필터(615)의 필터링 결과(SA)와, 제 2 디지털 필터(616)의 필터링 결과(SB) (도 10 내지 도 13의 경우, 제 2 디지털 필터(616)의 필터링 결과(SB) 대신 이득기(618)의 출력)가 가산기(619)를 통해 더해짐으로 인해, 복소 기저대역 신호 추출부(61, 60_160_6)의 출력에서 음의 주파수 대역으로부터 천이한 스펙트럼 성분(R-(f))이 제거되고, 양의 주파수 대역으로부터 천이한 스펙트럼 성분(R+(f))을 갖는 복소 기저대역 신호(DR1)만 남게 된다.
S1300 단계에서 추출된 복소 기저대역 신호(DR1)는 디지털 상/하향변환기(80)를 통해 상향/하향 변환되어, 복소 기저대역 신호(DR1)의 중심 주파수가 0으로 쉬프트될 수 있다(S1400 단계). 그리고 나서, 디지털 상/하향변환기(80)의 출력 신호는 디지털 신호처리기(90)로 제공되어, 기저대역 신호처리(예를 들면, 복조 동작 등)가 수행된다(S1500 단계).
이상에서 설명된 본 발명의 대역통과 샘플링 수신기의 복소 기저대역 신호 추출 방법에 따르면, 양의 주파수 대역으로부터 천이한 스펙트럼 성분과 음의 주파수 대역으로부터 천이한 스펙트럼 성분이 기저대역에서 앨리어징 되더라도, 앨리어징을 제거하고 양의 스펙트럼 성분 또는 음의 스펙트럼 성분을 갖는 복소 기저대역 신호(DR1)를 완벽하게 추출할 수 있게 된다. 즉, 단일의 아날로그-디지털 변환기를 사용함에도 불구하고, 특정 샘플율로 샘플율이 제한되는 기존의 대역통과 샘플링 수신기에 비해, 보다 유연하게 샘플율을 선택할 수 있으며, 모든 주파수 대역 및 신호 대역폭에 대해서 수신이 가능해 진다.
또한, 본 발명의 복소 기저대역 신호 추출부(60, 60_160_6)에는 아날로그-디지털 변환기(50)가 1개만 사용될 수 있고, 복소 기저대역 신호를 추출하는 구성이 모두 디지털 회로로 구성될 수 있다. 그러므로, 기존의 대역통과 샘플링 수신기에 비해 하드웨어 복잡도가 줄어들게 된다.
도 15는 본 발명의 실시예에 따른 대역통과 샘플링 수신기에서 복소 기저대역 신호 추출을 위한 디지털 필터(615, 616)의 재구성 방법을 예시적으로 보여주는 흐름도이다. 도 15에 도시된 디지털 필터(615, 616)의 재구성 방법은, 이상에서 설명된 복소 기저대역 신호 추출부(60, 60_160_6) 및 이를 포함하는 대역통과 샘플링 수신기에 모두 적용될 수 있다.
본 발명에 따른 대역통과 샘플링 수신기는 특정 주파수 대역의 신호에만 국한되지 않고, 임의의 주파수 대역에 위치한 RF 신호를 수신할 수 있다. [수학식 7] 내지 [수학식 11]로 주어지는 제 1 및 제 2 디지털 필터(615, 616)의 필터의 함수는 아날로그 RF 신호의 주파수 대역(또는 반송파 주파수)에 따라 결정된다. 따라서, 본 발명에 따른 대역통과 샘플링 수신기가 임의의 주파수 대역 신호를 모두 수용할 수 있도록 디지털 필터(615, 616) 각각을 유연하게 재구성 할 수 있다.
또한, 제 1 및 제 2 디지털 필터(615, 616)의 필터 계수는 아날로그-디지털 변환기(50)의 샘플율(fS), 아날로그 RF 신호(AR12)의 주파수 대역 위치 인덱스(n, n=0, 1, 2, 3, ...), 제 1 지연기(610)의 샘플 지연 값(D), 그리고 제 1 다운 샘플러(611) 및 제 2 다운 샘플러(612)의 다운 샘플링율(N) 중 적어도 어느 하나가 변경됨에 따라 제 1 디지털 필터(615) 및 제 2 디지털 필터(616) 각각의 디지털 필터 계수가 재계산되고, 재계산된 제 1 디지털 필터(615) 및 제 2 디지털 필터(616) 각각의 디지털 필터 계수를 근거로 하여 제 1 디지털 필터(615) 및 제 2 디지털 필터(616) 각각이 유연하게 재구성될 수 있다.
도 15를 참조하면, 본 발명에 따른 제 1 및 제 2 디지털 필터(615, 616)의 재구성 방법은, 먼저 필터링 파라미터로서, 반송파 주파수(fc)와, 샘플율(fS), 제 1 지연기(610)의 샘플 지연 값(D), 및 제 1 및 제 2 다운 샘플러(611, 612)의 다운 샘플링율(N)을 설정할 수 있다(S2000 단계).
여기서, 반송파 주파수(fc)는 아날로그 RF 신호(AR12)의 반송파 주파수를 의미한다. 샘플율(fS)은 아날로그 RF 신호(AR12)가 아날로그-디지털 변환기(50)를 통해 디지털 기저대역 신호(DR12)로 변환될 때의 샘플율을 의미한다.
복소 기저대역 신호 추출부(60)는 아날로그-디지털 변환기(50)로부터 출력된 디지털 기저대역 신호(DR12)로부터 양의 주파수 대역으로부터 천이한 양의 주파수 스펙트럼 성분, 또는 음의 주파수 대역으로부터 천이한 음의 주파수 스펙트럼 성분을 갖는 복소 기저대역 신호(DR2)를 추출한다.
복소 기저대역 신호(DR1 또는 DR2)를 추출하기 위해, 복소 기저대역 신호 추출부(60)는 아날로그-디지털 변환기(50)로부터 출력된 디지털 기저대역 신호(DR12)로부터 샘플 지연이 있는 제 1 경로 신호(DRA)와 샘플 지연이 없는 제 2 경로 신호(DRB)를 발생한다.
구체적으로, 아날로그-디지털 변환기(50)로부터 출력된 디지털 기저대역 신호(DR12)는 복소 기저대역 신호 추출부(60)의 제 1 지연기(610)를 통해 D 샘플 지연되어, 지연 신호(DR12_D)로서 발생된다. 제 1 지연기(610)로부터 발생된 지연 신호(DR12_D)는 제 1 다운 샘플러(611)를 통해 샘플율이 1/N 배가 되도록 다운 샘플링되어 제 1 경로 신호(DRA)로서 발생된다. 제 1 다운 샘플러(611)로부터 발생된 제 1 경로 신호(DRA)는 제 1 디지털 필터(615)로 제공된다. 여기서, N은 1보다 큰 정수로 구성될 수 있고, 샘플 지연 D는 0보다 크고 하향 샘플율(N) 보다 작은 정수 값을 가질 수 있다.
제 1 지연기(610)를 거치지 않은 디지털 기저대역 신호(DR12)는 제 2 다운 샘플러(612)를 통해 샘플율이 1/N 배가 되도록 다운 샘플링되어 제 2 경로 신호(DRB)로서 발생된다. 제 2 경로 신호(DRB)는, 제 2 디지털 필터(616)와 제 2 신호 추출부(62)로 제공된다. 여기서, 제 1 경로 신호(DRA) 및 제 2 경로 신호(DRB)의 샘플율(f'S)은 fS/N이 된다. 이와 같은 본 발명의 구성에 따르면, 제 1 및 제 2 다운 샘플러(611, 612)로부터 출력된 제 1 경로 신호(DRA)와 제 2 경로 신호(DRB) 사이에 D/N의 상대적 샘플 지연 차이(즉, D/(N f'S)의 상대적 시간 지연 차이)가 존재하게 된다.
계속해서, 제 1 및 제 2 디지털 필터(615, 616)에 적용될 파라미터로서 n 값이 계산된다(S2100 단계).
여기서, n은 아날로그 RF 신호(AR12)의 주파수 대역 위치 인덱스로써, 0, 1, 2, 3, ...의 값을 갖는다. n의 값은 앞에서 설명된 [수학식 1]에 의거하여 계산될 수 있다.
파라미터들의 설정 및 계산이 수행되고 나면, 상기 파라미터들과 제 1 경로 신호(DRA) 및 제 2 경로 신호(DRB)간의 상대적인 그룹 지연의 영향을 이용하여 제 1 및 제 2 디지털 필터(615, 616) 계수가 계산된다(S2200 단계). 제 1 및 제 2 디지털 필터(615, 616) 계수는, 앞에서 설명된 [수학식 10] 및 [수학식 11]에 표시되어 있는 필터 함수를 이용하여 계산될 수 있다.
필터 계수가 계산되고 나면, 계산된 필터 계수를 이용하여 제 1 및 제 2 디지털 필터(615, 616)가 재구성된다(S2300 단계).
도 16 및 도 17은 본 발명의 다른 실시예에 따른 대역통과 샘플링 수신기(100_3, 100_4)의 전체 구성을 개략적으로 보여주는 도면이다. 도 16 및 도 17에는 복소 기저대역 신호 추출부(60)에서 추출된 복소 기저대역 신호의 중심 주파수가 0일 때의 구성이 도시되어 있다.
도 16에 도시된 대역통과 샘플링 수신기(100_3)는, 디지털 상/하향변환기(80)가 구비되지 않은 것을 제외한 나머지 구성에 있어서 도 2에 도시된 대역통과 샘플링 수신기(100_1)와 실질적으로 동일하다. 그리고, 도 17에 도시된 대역통과 샘플링 수신기(100_4) 역시 디지털 상/하향변환기(80)가 구비되지 않은 것을 제외한 나머지 구성에 있어서 도 3에 도시된 대역통과 샘플링 수신기(100_2)와 실질적으로 동일하다. 그리고, 도 16에 도시된 대역통과 샘플링 수신기(100_3)는 트랙 앤 홀더(40)를 구비하지 않는 것을 제외한 나머지 구성에 있어서 도 17에 도시된 대역통과 샘플링 수신기(100_4)와 실질적으로 동일하다. 또한, 도 16 및 도 17을 참조하면, 복소 기저대역 신호 추출부(60)의 상세 구성은 도 4와, 도 9 내지 도 13에 도시된 본 발명의 제 1 내지 제 6 실시예에 따른 복소 기저대역 신호 추출부(60_160_6)의 상세 구성과 동일하게 구성될 수 있다. 따라서, 동일한 구성에 대해서는 동일한 참조 번호를 부가하였으며, 동일한 구성에 대한 중복되는 설명은 이하 생략하기로 한다.
복소 기저대역 신호 추출부(60)가 중심 주파수가 0인 복소 기저대역 신호를 발생하는 경우, 복소 기저대역 신호의 중심 주파수를 0으로 쉬프트시키기 위한 디지털 상/하향변환기(도 2 및 도 3의 80 참조)가 대역통과 샘플링 수신기(100_3, 100_4)에 구비되지 않아도 된다. 디지털 상/하향변환기(80)를 구비하지 않을 경우, 대역통과 샘플링 수신기(100_3, 100_4)의 사이즈와 제조 단가는 더욱 줄어들게 될 것이다.
도 18은 본 발명의 다른 실시예에 따른 복소 기저대역 신호 추출 방법을 예시적으로 보여주는 흐름도이다. 도 18에 도시된 복소 기저대역 신호 추출 방법은, 이상에서 설명된 복소 기저대역 신호 추출부(60, 60_160_6)를 포함하는 본 발명의 다른 실시예에 따른 대역통과 샘플링 수신기(100_3, 100_4)에 모두 적용될 수 있다.
도 18에 도시된 복소 기저대역 신호 추출 방법은, 추출된 복소 기저대역 신호에 대해 상/하향변환을 수행하지 않는다는 것(도 14의 S1400가 생략되는 구성)을 제외한 나머지 구성에 있어서 도 14에 도시된 복소 기저대역 신호 추출 방법과 실질적으로 동일하다. 즉, 복소 기저대역 신호 추출부(60)가 중심 주파수가 0인 복소 기저대역 신호를 발생하는 경우, 복소 기저대역 신호의 중심 주파수를 0으로 쉬프트시키기 위한 디지털 상/하향변환기(도 2 및 도 3의 80 참조)가 대역통과 샘플링 수신기(100_3, 100_4)에 구비되지 않아도 된다.
따라서, 동일한 구성에 대해서는 동일한 참조 번호를 부가하였으며, 동일한 구성에 대한 중복되는 설명은 이하 생략하기로 한다.
도 19는 본 발명의 또 다른 실시예에 따른 복소 기저대역 신호 추출 방법을 예시적으로 보여주는 흐름도이다. 도 19에 도시된 복소 기저대역 신호 추출 방법은, 본 발명에서 설명된 복소 기저대역 신호 추출부(60, 60_160_6)를 포함하는 모든 대역통과 샘플링 수신기들(100_1100_4)에 선택적으로 적용될 수 있다.
도 19에 도시된 복소 기저대역 신호 추출 방법은, 추출된 복소 기저대역 신호의 중심 주파수가 0인지 여부에 따라서, 추출된 복소 기저대역 신호에 대한 상/하향변환을 선택적으로 수행할 수 있다. 도 19에 도시된 복소 기저대역 신호 추출 방법은, 추출된 복소 기저대역 신호의 중심 주파수가 0인지 여부를 판별하는 동작과(S1350 단계), S1350 단계에서의 판별 결과를 근거로 하여 복소 기저대역 신호에 대해 상/하향변환을 선택적으로 수행하는 동작(S1400, S1500 참조)을 제외한 나머지 구성에 있어서 도 14 및 도 18에 도시된 복소 기저대역 신호 추출 방법과 실질적으로 동일하다. 따라서, 동일한 구성에 대해서는 동일한 참조 번호를 부가하였으며, 동일한 구성에 대한 중복되는 설명은 이하 생략하기로 한다.
앞에서 설명한 바와 같이, 본 발명의 대역통과 샘플링 수신기(100_1100_4)는, 양의 주파수 대역 및 음의 주파수 대역으로부터 천이한 복소 신호들이 기저대역에서 앨리어징 되더라도, 앨리어징을 제거하고 원하는 복소 기저대역 신호 (DR1)를 정확하게 추출해낼 수 있는 복소 기저대역 신호 추출부(60, 60_160_6)를 포함한다.
이와 같은 복소 기저대역 신호 추출부(60, 60_160_6)의 구성에 따르면, 단일의 아날로그-디지털 변환기를 사용함에도 불구하고 복소 기저대역 신호의 추출에 특정 샘플율의 영향을 받지 않고 양의 주파수 대역 및/또는 음의 주파수 대역으로부터 천이한 복소 신호를 완벽하게 추출할 수 있게 된다. 따라서, 샘플율이 특정 형태의 샘플율로 제한되는 기존의 대역통과 샘플링 수신기에 비해, 보다 유연하게 샘플율을 선택할 수 있으며, 모든 주파수 대역 및 신호 대역폭에 대해서 수신이 가능해 진다. 또한, 기존의 대역통과 샘플링 수신기에 비해 하드웨어 복잡도가 줄어들게 되어, 수신기의 사이즈와 제조 단가가 줄어들게 된다.
이상에서와 같이 본 발명의 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.