KR100898580B1 - Device Separating Method of Semiconductor Device - Google Patents
Device Separating Method of Semiconductor Device Download PDFInfo
- Publication number
- KR100898580B1 KR100898580B1 KR1020020077594A KR20020077594A KR100898580B1 KR 100898580 B1 KR100898580 B1 KR 100898580B1 KR 1020020077594 A KR1020020077594 A KR 1020020077594A KR 20020077594 A KR20020077594 A KR 20020077594A KR 100898580 B1 KR100898580 B1 KR 100898580B1
- Authority
- KR
- South Korea
- Prior art keywords
- film
- trench
- hdp oxide
- sog film
- sog
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 238000002955 isolation Methods 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000005530 etching Methods 0.000 claims abstract description 18
- -1 polysiloxane Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 4
- 239000011800 void material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 241000293849 Cordylanthus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Element Separation (AREA)
Abstract
본 발명은 STI 기술에 의한 고집적 소자의 소자분리막 형성시 보이드 발생없이 트렌치를 용이하게 매립하여 소자의 신뢰성을 향상시킬 수 있는 반도체 소자의 소자분리막 형성방법을 제공하기 위한 것으로, 본 발명은 반도체기판을 소정 깊이만큼 식각하여 트렌치를 형성하는 단계; 상기 트렌치의 바닥에서 형성되는 두께가 상기 트렌치의 측벽에서 형성되는 두께보다 더 두껍게 하여 상기 트렌치 저부를 소정 부분 채우도록 상기 트렌치 및 마스크 패턴의 표면 상에 제1HDP산화막을 형성하는 단계; 상기 제1HDP산화막이 형성된 트렌치에 매립되도록 상기 제1HDP산화막 상부에 SOG막을 형성하는 단계; 상기 SOG막과 제1HDP산화막을 상기 마스크 패턴의 표면이 노출되도록 전면식각하여 상기 SOG막이 상기 제1HDP산화막이 형성된 트렌치 내부를 소정 부분만 채우도록 하는 단계; 상기 제1HDP산화막과 SOG막이 형성된 상기 트렌치 내부의 나머지 부분을 채우도록 상기 반도체기판의 전면 상에 제2HDP산화막을 형성하는 단계; 및 상기 마스크 패턴의 표면이 노출되도록 상기 제2HDP산화막을 전면식각하여 상기 SOG막이 상기 제1HDP산화막과 제2HDP산화막에 의해 둘러싸이는 소자분리막을 형성하는 단계를 포함한다. The present invention is to provide a method for forming a device isolation film of a semiconductor device that can improve the reliability of the device by easily filling the trench without generating voids when forming a device isolation film of the highly integrated device by the STI technology, the present invention provides a semiconductor substrate Etching to form a trench to form a trench; Forming a first HDP oxide film on a surface of the trench and a mask pattern such that a thickness formed at a bottom of the trench is thicker than a thickness formed at a sidewall of the trench to fill a portion of the trench bottom; Forming an SOG film on the first HDP oxide film so as to be buried in the trench in which the first HDP oxide film is formed; Etching the SOG film and the first HDP oxide film to expose the surface of the mask pattern so that the SOG film fills a predetermined portion of the trench in which the first HDP oxide film is formed; Forming a second HDP oxide film on an entire surface of the semiconductor substrate to fill the remaining portion of the trench in which the first HDP oxide film and the SOG film are formed; And etching the entire surface of the second HDP oxide layer so that the surface of the mask pattern is exposed to form an isolation layer in which the SOG layer is surrounded by the first HDP oxide layer and the second HDP oxide layer.
HDP-CVD, SOG막, STI, 보이드, 갭매립, 소자분리막HDP-CVD, SOG film, STI, void, gap filling, device isolation film
Description
도 1a 내지 도 1d는 본 발명의 실시예에 따른 반도체 소자의 소자분리막 형성방법을 설명하기 위한 단면도.1A to 1D are cross-sectional views illustrating a method of forming an isolation layer in a semiconductor device in accordance with an embodiment of the present invention.
※도면의 주요부분에 대한 부호의 설명※ Explanation of symbols for main parts of drawing
10 : 반도체 기판 11A : 패드 산화막10:
11B : 패드 질화막 11 : 마스크 패턴11B: Pad Nitride Film 11: Mask Pattern
12A, 12B : 제 1 및 제 2 HDP 산화막12A, 12B: First and Second HDP Oxides
13 : SOG막 100 : 소자분리막
13: SOG film 100: device isolation film
본 발명은 반도체 소자의 소자분리막 형성방법에 관한 것으로, 특히 STI(Sallow Trench Isolation) 기술을 적용한 반도체 소자의 소자분리막 형성방법에 관한 것이다. The present invention relates to a method of forming a device isolation film of a semiconductor device, and more particularly, to a method of forming a device isolation film of a semiconductor device using STI (Sallow Trench Isolation) technology.
일반적으로, 소자분리막은 질화막 패턴을 마스크로 하여 반도체 기판을 열산화시키는 로코스(Local Oxidation of Silicon; LOCOS) 공정을 주로 이용하여 형성하였으나, LOCOS 공정에 의한 소자분리 영역은 비교적 면적이 크고 경계면에 발생되는 버즈빅(bird's beak) 등의 문제로 인하여 고집적 소자에 적용하는데 한계가 있었다. 따라서, 최근에는 소자의 고집적화에 대응하기 위하여, 기판에 얕은 깊이의 트렌치를 형성하고, 이 트렌치에 산화막을 매립시키는 STI(Sallow Trench Isolation) 기술로 소자분리막을 형성하고 있다. 여기서, 산화막은 통상적으로 고밀도플라즈마(High Density Plasma;HDP)-화학기상증착(Chemical Vapor Deposition; CVD) 공정에 의해 형성한다. In general, the device isolation layer is mainly formed using a Local Oxidation of Silicon (LOCOS) process that thermally oxidizes a semiconductor substrate using a nitride pattern as a mask. However, the device isolation region is relatively large in area and is formed on the interface by the LOCOS process. Due to problems such as bird's beak generated, there was a limit to the application to the highly integrated device. Therefore, in recent years, in order to cope with high integration of devices, a device isolation film is formed by a shallow trench isolation (STI) technique in which a trench having a shallow depth is formed in a substrate and an oxide film is buried in the trench. Here, the oxide film is typically formed by a high density plasma (HDP) -chemical vapor deposition (CVD) process.
한편, HDP-CVD 공정은 트렌치 저부에서는 증착속도가 늦게 이루어지는 반면 기판 상부에서는 증착과 스퍼터링이 동시에 이루어져서 예컨대 삼각형상의 패턴을 형성하며, 이러한 HDP-CVD 공정을 일정 두께까지 수행하게 되면 삼각형상의 패턴은 거의 변화가 없고 트렌치 저부의 막이 점점 더 증가하여 트렌치를 매립하게 된다. 그러나, 기판 상부에서 스퍼터링된 원자나 분자들이 트렌치 상부의 에지측면으로 재증착(redeposition)되어 증착막의 프로파일이 보잉(bowing)을 가지게 되어 증착막 내부에 보이드(void)를 유발함으로써 소자의 신뢰성에 악영향을 미치게 된다. 또한, 이러한 현상은 어스펙트비(aspect ratio)가 큰 경우 더 심하게 발생되어 갭매립 특성을 저하시키기 때문에, 예컨대 100㎚ 이하의 고집적 소자에서 HDP-CVD 공정에 의한 산화막으로 소자분리막을 형성하는 데에는 많은 어려움이 있다.
On the other hand, in the HDP-CVD process, the deposition rate is slow at the bottom of the trench, but deposition and sputtering are simultaneously performed on the substrate to form a triangular pattern, and when the HDP-CVD process is performed to a certain thickness, the triangular pattern is almost There is no change and the film at the bottom of the trench increases more and more to fill the trench. However, atoms or molecules sputtered on the substrate are redeposited to the edge side of the trench, so that the deposition profile has bowing, causing voids in the deposition film, thereby adversely affecting the reliability of the device. Go crazy. In addition, since this phenomenon occurs more severely when the aspect ratio is large and degrades the gap filling characteristics, it is often difficult to form a device isolation film using an oxide film by an HDP-CVD process in a highly integrated device of 100 nm or less. There is difficulty.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 제안된 것으로, STI 기술에 의한 고집적 소자의 소자분리막 형성시 보이드 발생없이 트렌치를 용이하게 매립하여 소자의 신뢰성을 향상시킬 수 있는 반도체 소자의 소자분리막 형성방법을 제공하는데 그 목적이 있다.
The present invention has been proposed to solve the above problems of the prior art, a semiconductor device device that can easily improve the reliability of the device by filling the trench easily without voids when forming the device isolation film of the highly integrated device by the STI technology The purpose is to provide a method for forming a separator.
상기의 기술적 과제를 달성하기 위한 본 발명의 일 측면에 따르면, 상기의 본 발명의 목적은 반도체 기판 상에 상기 반도체기판의 일부를 노출시키는 마스크 패턴을 준비하는 단계; 상기 노출된 반도체기판을 소정 깊이만큼 식각하여 트렌치를 형성하는 단계; 상기 트렌치의 바닥에서 형성되는 두께가 상기 트렌치의 측벽에서 형성되는 두께보다 더 두껍게 하여 상기 트렌치 저부를 소정 부분 채우도록 상기 트렌치 및 마스크 패턴의 표면 상에 제1HDP산화막을 형성하는 단계; 상기 제1HDP산화막이 형성된 트렌치에 매립되도록 상기 제1HDP산화막 상부에 SOG막을 형성하는 단계; 상기 SOG막과 제1HDP산화막을 상기 마스크 패턴의 표면이 노출되도록 전면식각하여 상기 SOG막이 상기 제1HDP산화막이 형성된 트렌치 내부를 소정 부분만 채우도록 하는 단계; 상기 제1HDP산화막과 SOG막이 형성된 상기 트렌치 내부의 나머지 부분을 채우도록 상기 반도체기판의 전면 상에 제2HDP산화막을 형성하는 단계; 및 상기 마스크 패턴의 표면이 노출되도록 상기 제2HDP산화막을 전면식각하여 상기 SOG막이 상기 제1HDP산화막과 제2HDP산화막에 의해 둘러싸이는 소자분리막을 형성하는 단계를 포함하는 반도체 소자의 소자분리막 형성방법에 의해 달성될 수 있다.According to an aspect of the present invention for achieving the above technical problem, an object of the present invention comprises the steps of preparing a mask pattern for exposing a portion of the semiconductor substrate on a semiconductor substrate; Etching the exposed semiconductor substrate by a predetermined depth to form a trench; Forming a first HDP oxide film on a surface of the trench and a mask pattern such that a thickness formed at a bottom of the trench is thicker than a thickness formed at a sidewall of the trench to fill a portion of the trench bottom; Forming an SOG film on the first HDP oxide film so as to be buried in the trench in which the first HDP oxide film is formed; Etching the SOG film and the first HDP oxide film to expose the surface of the mask pattern so that the SOG film fills a predetermined portion of the trench in which the first HDP oxide film is formed; Forming a second HDP oxide film on an entire surface of the semiconductor substrate to fill the remaining portion of the trench in which the first HDP oxide film and the SOG film are formed; And etching the entire surface of the second HDP oxide layer to expose the surface of the mask pattern, thereby forming an isolation layer in which the SOG layer is surrounded by the first HDP oxide layer and the second HDP oxide layer. Can be achieved.
삭제delete
또한, SOG막을 형성하는 단계는 SOG막을 도포 및 베이킹하는 단계과 SOG막을 경화하는 단계로 이루어진다. 또한, SOG막은 HSQ 계열의 무기 SOG막이나 폴리실록산 계열의 유기 SOG막으로 형성할 수 있는데, 무기 SOG막의 경우에는 경화를 200 내지 1000℃의 온도에서 수행하고, 유기 SOG막의 경우에는 200 내지 600℃의 온도에서 수행한다.In addition, forming the SOG film includes applying and baking the SOG film and curing the SOG film. In addition, the SOG film may be formed of an inorganic SOG film of an HSQ series or an organic SOG film of a polysiloxane series. In the case of an inorganic SOG film, curing is performed at a temperature of 200 to 1000 ° C., and an organic SOG film of 200 to 600 ° C. Run at temperature.
또한, 트렌치는 2500Å의 깊이로 형성하고, 제 1 산화막은 트렌치 저부를 500Å 정도 채우도록 형성하며, SOG막의 전면식각은 에치백공정으로 기판 표면으로부터 500Å 하부에 SOG막이 존재하도록 수행한다.In addition, the trench is formed to a depth of 2500 kV, the first oxide film is formed to fill the trench bottom about 500 kV, and the entire etching of the SOG film is performed by etching back so that the SOG film exists below 500 kV from the surface of the substrate.
이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 보다 용이하게 실시할 수 있도록 하기 위하여 본 발명의 바람직한 실시예를 소개하기로 한다.Hereinafter, preferred embodiments of the present invention will be introduced in order to enable those skilled in the art to more easily carry out the present invention.
도 1a 내지 도 1d는 본 발명의 실시예에 따른 반도체 소자의 소자분리막 형성방법을 설명하기 위한 단면도이다.1A to 1D are cross-sectional views illustrating a method of forming an isolation layer in a semiconductor device according to an embodiment of the present invention.
도 1a를 참조하면, 반도체 기판(10) 상에 패드 산화막(11A)과 패드 질화막(11B)을 순차적으로 증착하고 패터닝하여 기판(10)의 일부를 노출시키는 마스크 패턴(11)을 형성한다. 그 다음, 마스크 패턴(11)을 식각 마스크로하여 노출된 기판(10)을 소정 깊이, 바람직하게 약 2500Å 깊이로 식각하여 트렌치를 형성한다. 그 후, 트렌치 저부를 소정 부분, 바람직하게 약 500Å 정도 채우도록 트렌치 및 마스크 패턴(11)의 표면 상에 HDP-CVD 방식으로 제 1 HDP 산화막(12A)을 형성한 다. 바람직하게, HDP-CVD 공정은 O2 및 SiH4 등의 반응성 개스와 Ar 및/또는 He 등의 비활성 개스를 이용하여 30mTorr 이하의 압력과 1500 내지 6000W의 플라즈마발생 전력(plasma generationp power) 및 500 내지 4000W의 플라즈마 내의 이온바이어스 전력(ion-bias power) 하에서 수행한다. 여기서, 반응성 개스와 비활성 개스의 총개스 유량은 100 내지 500sccm으로 조절하고, O2/SiH4의 비율은 1.2 내지 4.0 정도로 한다. 그 다음, 제 1 HDP 산화막(12A)이 형성된 트렌치에 매립되도록 제 1 HDP 산화막(12A) 상부에 갭매립 특성이 우수한 SOG(Spin-On-Glass)막(13)을 형성한다. 여기서, SOG막(13)의 형성은 SOG막을 도포 및 베이킹(baking)하는 공정과 SOG막을 경화(curing)하는 공정으로 이루어진다. 또한, SOG막(13)은 HSQ(Hydrogen Silsequioxane) 계열의 무기 SOG막이나 폴리실록산(polysiloxane) 계열의 유기 SOG막을 이용하여 형성하는데, 무기 SOG막의 경우에는 경화를 200 내지 1000℃의 온도에서 수행하고, 유기 SOG막의 경우에는 경화를 200 내지 600℃의 온도에서 수행한다.Referring to FIG. 1A, a
도 1b를 참조하면, SOG막(13) 및 제 1 HDP 산화막(12A)을 마스크 패턴(11)의 표면이 노출되도록 에치백(etch-back) 공정으로 전면식각하여 포켓(pocket) 형태로 SOG막(13)이 제 1 HDP 산화막(12A)이 형성된 트렌치 내부를 소정 부분 채우도록 한다. 바람직하게는, 기판 표면으로부터 약 500Å 하부에 SOG막(13)이 존재하도록 한다. 또한, 에치백 공정시 패드 질화막(11B)에 비해 제 1 HDP 산화막(12A)과 SOG막(13)이 우수한 식각선택비를 갖도록 하고, 제 1 HDP 산화막(12A)과 SOG막(13)에 대해서는 약 1 : 1 정도의 식각선택비를 갖도록 한다. 또한, 트렌치 상부의 제 1 HDP 산화막(12A) 측벽에 SOG막(13)이 잔존하는 것을 방지하기 위하여, 에치백 공정 후 세정공정을 수행할 수도 있다. 이때, 세정공정은 SOG막(13)과 제 1 HDP 산화막(12A)과의 식각비가 약 100 : 1 정도로 큰 식각용액을 이용하여 습식식각으로 수행한다.Referring to FIG. 1B, the
도 1c를 참조하면, 제 1 HDP 산화막(12A)이 형성된 트렌치 내부의 나머지 부분을 채우도록 기판 전면 상에 HDP-CVD 공정으로 제 2 HDP 산화막(12B)을 형성한다. 바람직하게, HDP-CVD 공정은 제 1 HDP 산화막(12A) 형성에서와 마찬가지로 O2 및 SiH4 등의 반응성 개스와 Ar 및/또는 He 등의 비활성 개스를 이용하여 30mTorr 이하의 압력과 1500 내지 6000W의 플라즈마발생 전력(plasma generationp power) 및 500 내지 4000W의 플라즈마 내의 이온바이어스 전력(ion-bias power) 하에서 수행한다. 여기서, 반응성 개스와 비활성 개스의 총개스 유량은 100 내지 500sccm으로 조절하고, O2/SiH4의 비율은 1.2 내지 4.0 정도로 한다. Referring to FIG. 1C, the second
도 1d를 참조하면, 화학기계연마(Chemical Mechanical Polishing; CMP) 공정으로 마스크 패턴(11)의 표면이 노출되도록 제 2 HDP 산화막(12B)을 전면식각하여 제 1 HDP 산화막(12A), SOG막(13) 및 제 2 HDP 산화막(12B)으로 이루어진 소자분리막(100)을 형성한다. 그 후, 마스크 패턴(11)을 제거하고 세정공정을 수행한다.Referring to FIG. 1D, the first
상기 실시예에 의하면, HDP 산화막과 갭매립 특성이 우수한 SOG막을 조합하여 보이드 발생없이 트렌치를 용이하게 매립할 수 있게 된다. 또한, 트렌치 내에 서 SOG막을 둘러싸는 포켓형태로 HDP 산화막을 형성함에 따라 SOG막의 비교적 열악한 절연특성을 보완할 수 있고, 이에 따라 안정적인 소자분리막 특성을 확보할 수 있게 됨으로써 소자의 신뢰성을 향상시킬 수 있다.According to the above embodiment, the trench can be easily buried without generating voids by combining the HDP oxide film and the SOG film having excellent gap filling properties. In addition, by forming the HDP oxide film in the form of a pocket surrounding the SOG film in the trench, it is possible to compensate for the relatively poor insulation characteristics of the SOG film, thereby ensuring stable device isolation film properties, thereby improving device reliability. .
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.
전술한 본 발명은 STI 기술에 의한 고집적 소자의 소자분리막 형성시 HDP 산화막과 SOG막을 조합하여 보이드 발생없이 트렌치를 용이하게 매립함으로써 소자의 신뢰성을 향상시킬 수 있다.The present invention described above can improve the reliability of the device by easily filling the trench without voids by combining the HDP oxide film and the SOG film when forming the device isolation film of the highly integrated device by the STI technology.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020077594A KR100898580B1 (en) | 2002-12-07 | 2002-12-07 | Device Separating Method of Semiconductor Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020077594A KR100898580B1 (en) | 2002-12-07 | 2002-12-07 | Device Separating Method of Semiconductor Device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040049739A KR20040049739A (en) | 2004-06-12 |
KR100898580B1 true KR100898580B1 (en) | 2009-05-20 |
Family
ID=37344110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020077594A Expired - Fee Related KR100898580B1 (en) | 2002-12-07 | 2002-12-07 | Device Separating Method of Semiconductor Device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100898580B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9721830B2 (en) | 2015-07-16 | 2017-08-01 | Samsung Electronics Co., Ltd. | Methods of manufacturing semiconductor devices including isolation layers |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7332409B2 (en) | 2004-06-11 | 2008-02-19 | Samsung Electronics Co., Ltd. | Methods of forming trench isolation layers using high density plasma chemical vapor deposition |
KR100816749B1 (en) * | 2006-07-12 | 2008-03-27 | 삼성전자주식회사 | Device isolation films, nonvolatile memory devices including the device isolation films, and device isolation films and methods of forming nonvolatile memory devices |
KR100880322B1 (en) * | 2006-09-29 | 2009-01-28 | 주식회사 하이닉스반도체 | Flash memory device and its manufacturing method |
KR101050454B1 (en) * | 2007-07-02 | 2011-07-19 | 주식회사 하이닉스반도체 | Device Separation Film of Semiconductor Device and Formation Method Thereof |
KR100920048B1 (en) * | 2007-12-20 | 2009-10-07 | 주식회사 하이닉스반도체 | Manufacturing method of semiconductor device |
KR100929640B1 (en) * | 2008-01-18 | 2009-12-03 | 주식회사 하이닉스반도체 | Manufacturing method of semiconductor device |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US8771536B2 (en) | 2011-08-01 | 2014-07-08 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
WO2013070436A1 (en) | 2011-11-08 | 2013-05-16 | Applied Materials, Inc. | Methods of reducing substrate dislocation during gapfill processing |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000114362A (en) * | 1998-10-02 | 2000-04-21 | Nec Corp | Manufacture of semiconductor device |
KR20010063731A (en) * | 1999-12-24 | 2001-07-09 | 박종섭 | Method of forming an isolation layer in a semiconductor device |
JP2002110780A (en) * | 2000-09-20 | 2002-04-12 | United Microelectron Corp | Manufacturing method of shallow trench isolation structure |
KR20020071169A (en) * | 2001-03-05 | 2002-09-12 | 삼성전자 주식회사 | Method of forming insulation layer in trench isolation type semiconductor device |
KR20020072657A (en) * | 2001-03-12 | 2002-09-18 | 삼성전자 주식회사 | Trench isolation type semiconductor device and method of forming trench type isolation layer |
US6479369B1 (en) * | 1999-11-08 | 2002-11-12 | Nec Corporation | Shallow trench isolation (STI) and method of forming the same |
-
2002
- 2002-12-07 KR KR1020020077594A patent/KR100898580B1/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000114362A (en) * | 1998-10-02 | 2000-04-21 | Nec Corp | Manufacture of semiconductor device |
US6479369B1 (en) * | 1999-11-08 | 2002-11-12 | Nec Corporation | Shallow trench isolation (STI) and method of forming the same |
KR20010063731A (en) * | 1999-12-24 | 2001-07-09 | 박종섭 | Method of forming an isolation layer in a semiconductor device |
JP2002110780A (en) * | 2000-09-20 | 2002-04-12 | United Microelectron Corp | Manufacturing method of shallow trench isolation structure |
KR20020071169A (en) * | 2001-03-05 | 2002-09-12 | 삼성전자 주식회사 | Method of forming insulation layer in trench isolation type semiconductor device |
KR20020072657A (en) * | 2001-03-12 | 2002-09-18 | 삼성전자 주식회사 | Trench isolation type semiconductor device and method of forming trench type isolation layer |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9721830B2 (en) | 2015-07-16 | 2017-08-01 | Samsung Electronics Co., Ltd. | Methods of manufacturing semiconductor devices including isolation layers |
Also Published As
Publication number | Publication date |
---|---|
KR20040049739A (en) | 2004-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100898580B1 (en) | Device Separating Method of Semiconductor Device | |
KR20010058498A (en) | Method of forming trench type isolation layer in semiconductor device | |
US5981402A (en) | Method of fabricating shallow trench isolation | |
KR100418475B1 (en) | Method For Shallow Trench Isolation Of Semiconductor Devices | |
KR20010030004A (en) | Manufacturing method of semiconductor device | |
KR100482740B1 (en) | Method of embedding oxide film in device isolation trench of semiconductor device | |
KR100874429B1 (en) | Gap filling method in semiconductor device manufacturing | |
KR20050067555A (en) | Method of manufacturing semiconductor device | |
KR100500942B1 (en) | Fabricating method for trench isoaltion layer using bottom anti reflection coating | |
KR100875670B1 (en) | Device Separating Method of Semiconductor Device | |
KR20060083249A (en) | Device Separating Method of Flash Memory Device | |
KR100568030B1 (en) | Shallow Trench Isolation Method for Semiconductor Devices | |
KR20080062560A (en) | Device Separating Method of Semiconductor Device | |
KR100619395B1 (en) | Semiconductor device manufacturing method | |
KR100637095B1 (en) | Manufacturing method of semiconductor device | |
KR100568849B1 (en) | Manufacturing method of semiconductor device | |
KR100900230B1 (en) | Device Separating Method of Semiconductor Device | |
KR20040059991A (en) | Method of forming isolating layer for semiconductor device | |
KR100842904B1 (en) | Device Separating Method of Semiconductor Device | |
KR20020085576A (en) | Method for forming a isolation layer of trench type | |
KR100480625B1 (en) | Method for forming trench isolation and semiconductor device comprising the same | |
KR100924544B1 (en) | Device Separating Method of Semiconductor Device | |
KR20030059482A (en) | Method of forming isolating layer for semiconductor device | |
KR100567747B1 (en) | Device Separating Method of Semiconductor Device | |
KR100567344B1 (en) | Device isolation film formation method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20021207 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20070921 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20021207 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20080530 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20081010 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20090408 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20090513 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20090514 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |