KR100576194B1 - Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma - Google Patents
Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma Download PDFInfo
- Publication number
- KR100576194B1 KR100576194B1 KR1020040102291A KR20040102291A KR100576194B1 KR 100576194 B1 KR100576194 B1 KR 100576194B1 KR 1020040102291 A KR1020040102291 A KR 1020040102291A KR 20040102291 A KR20040102291 A KR 20040102291A KR 100576194 B1 KR100576194 B1 KR 100576194B1
- Authority
- KR
- South Korea
- Prior art keywords
- plasma
- sample
- pulse
- insulating film
- vacuum chamber
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- 150000002500 ions Chemical class 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000000137 annealing Methods 0.000 claims abstract description 12
- 239000007924 injection Substances 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 12
- 238000005468 ion implantation Methods 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000012300 argon atmosphere Substances 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 8
- 239000012212 insulator Substances 0.000 abstract description 3
- 230000001360 synchronised effect Effects 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 20
- 235000012431 wafers Nutrition 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 101100096038 Mus musculus Smox gene Proteins 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000005596 ionic collisions Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/515—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76243—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Formation Of Insulating Films (AREA)
- Physical Vapour Deposition (AREA)
- Element Separation (AREA)
Abstract
본 발명은 기존의 연속적인 플라즈마 대신에 대출력 펄스 RF 플라즈마를 이용하여 높은 수율을 가지는 Silicon-on-insulator(SOI)기판을 제조할 수 있도록 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치 및 제조방법에 관한 것이다. 시료를 진공조 내에 위치시키고, 진공조 내에 사용가스를 주입한다. 진공조 내에 RF 펄스를 공급하여 사용가스로부터 고밀도 플라즈마를 발생시킨다. 발생된 플라즈마 이온이 시료에 충돌하여 시료표면에 이온을 주입시키기에 충분한 이온 에너지를 가지고 시료를 향해 가속되도록 시료에 음(-)의 고전압 펄스를 가하여 이온을 주입한다. 이 때, RF 펄스발생과 음(-)의 고전압 펄스발생을 동기화시킨다. 그리고, 시료를 어닐링하여 절연막을 형성시킨다.The present invention provides a device and manufacturing an investment insulating film using a high-output pulsed RF plasma to manufacture a silicon-on-insulator (SOI) substrate having a high yield using a high-output pulsed RF plasma instead of the conventional continuous plasma It is about a method. The sample is placed in a vacuum chamber and a working gas is injected into the vacuum chamber. RF pulses are supplied into the vacuum chamber to generate a high density plasma from the used gas. A negative high voltage pulse is applied to the sample so that the generated plasma ions collide with the sample and accelerate toward the sample with sufficient ion energy to inject ions into the sample surface. At this time, RF pulse generation and negative high voltage pulse generation are synchronized. Then, the sample is annealed to form an insulating film.
RF 펄스, 플라즈마, 웨이퍼, 매몰 절연막, 어닐링RF pulse, plasma, wafer, investment insulating film, annealing
Description
도 1은 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치를 개략적으로 보인 구성도,1 is a schematic view showing a buried insulating film manufacturing apparatus using a high-output pulsed RF plasma according to the present invention,
도 2의 (a) 및 (b)는 각각 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치에서의 RF 출력전압 및 타겟에 인가된 전압의 파형도,2A and 2B are waveform diagrams of RF output voltages and voltages applied to a target in the investment insulating film manufacturing apparatus using the high-output pulsed RF plasma according to the present invention, respectively.
도 3은 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치에 의해 얻어진 SOI구조의 투과 전자현미경 단면사진.Figure 3 is a transmission electron microscope cross-sectional photograph of the SOI structure obtained by the buried insulating film manufacturing apparatus using a high power pulsed RF plasma according to the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
10: 진공조10: vacuum chamber
12: 진공펌퍼12: vacuum pump
14: 가스주입장치14: gas injection device
16: 안테나16: antenna
18: 펄스 RF전력장치18: pulsed RF power supply
20: 매칭네트워크20: matching network
22: 시료지지대22: sample support
24: 고전압 펄스발생장치24: high voltage pulse generator
26: 트리거 펄스 발생기26: trigger pulse generator
28: 플라즈마 측정장치28: plasma measuring device
30: 영구자석30: permanent magnet
w: 웨이퍼w: wafer
본 발명은 반도체 소자 제조에 관한 것으로, 더욱 상세하게는 실리콘 기판 상에 매몰 절연막을 형성시키기 위한 장치 및 방법에 관한 것이다.TECHNICAL FIELD The present invention relates to semiconductor device manufacturing, and more particularly, to an apparatus and a method for forming a buried insulating film on a silicon substrate.
반도체 기술의 발전에 따라 디바이스 성능 향상 및 저전력 소비와 같은 차세대 반도체 소자를 제작하기 위하여 공정 기술 개발뿐만 아니라 핵심 소재인 실리콘 웨이퍼의 개발이 중요한 과제로 대두되고 있다. 특히, 기존 웨이퍼의 한계를 극복할 대안으로 실리콘 단결정 구조 사이에 buried oxide(BOX)라고 불리는 SiO2층이 내재된 Silicon-on-insulator(SOI) 웨이퍼가 핵심 요소로 떠오르고 있다.With the development of semiconductor technology, not only the development of process technology but also the development of silicon wafer, which is a core material, has emerged as an important task for manufacturing next-generation semiconductor devices such as device performance improvement and low power consumption. In particular, a silicon-on-insulator (SOI) wafer with a SiO 2 layer called buried oxide (BOX) between silicon single crystal structures is emerging as an alternative to overcome the limitations of existing wafers.
이러한 SOI구조를 형성하기 위하여 이용되고 있는 종래의 방법으로는 두 개의 실리콘 웨이퍼에 산화막을 형성하여 접합시켜서 매몰 산화막을 형성하는 웨이퍼 접합방식과, 높은 에너지로 이온빔을 가속하여 실리콘 내부에 주입한 후 어닐링을 통한 매몰 산화막을 형성하는 사이목스(Separation by IMplanted OXygen, SIMOX)방 식을 들 수 있다. 그러나, 웨이퍼 접합방식은 접합공정이 번거롭고 많은 시간이 소요되는 단점이 있고, 사이목스방식은 이온빔을 높은 도즈(dose)로 주입하기 위한 이온빔 가속기의 낮은 빔 전류로 인해서 공정시간이 길어지며 장치가 복잡하고 비용이 많이 드는 단점이 있다.Conventional methods used to form such an SOI structure include a wafer bonding method in which an oxide film is formed on two silicon wafers to be bonded to form a buried oxide film, and an ion beam is accelerated and injected into the silicon with high energy. And the Separation by IMplanted OXygen (SIMOX) method of forming a buried oxide film through. However, the wafer bonding method is disadvantageous in that the bonding process is cumbersome and time consuming, and the smox method has a long process time and a complicated device due to the low beam current of the ion beam accelerator for injecting the ion beam at a high dose. There are disadvantages that are expensive.
미국특허번호 제4,764,394호와 대한민국특허 등록번호 제137704호에 개시된 플라즈마와 고전압 펄스를 이용하는 플라즈마 이온주입 기술이 SOI 기판제조에 응용될 수 있는데, 이러한 플라즈마 이온주입 기술은 플라즈마 소스로서 기존의 연속적인 플라즈마를 사용하므로 일반적으로 1% 미만의 듀티(duty) 사이클을 가지는 주기적인 펄스를 사용하는 플라즈마 이온주입 기술의 특성상 펄스와 펄스 사이에서는 플라즈마 부유 전위에 해당하는 에너지로 시료에 이온 충돌 현상이 발생하여 원하지 않는 물리적, 화학적 반응이 일어날 수 있는 문제점이 있다.Plasma ion implantation techniques using plasma and high voltage pulses disclosed in US Pat. No. 4,764,394 and Korean Patent Registration No. 137704 may be applied to the fabrication of SOI substrates. Due to the characteristics of plasma ion implantation technology that uses a periodic pulse having a duty cycle of less than 1%, an ion collision phenomenon occurs in the sample with energy corresponding to the plasma floating potential between pulses and pulses. There is a problem that does not occur physical and chemical reactions.
본 발명은 이러한 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 기존의 연속적인 플라즈마 대신에 대출력 펄스 RF 플라즈마를 이용하여 높은 수율을 가지는 SOI기판을 제조할 수 있도록 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치를 제공하는 것이다.The present invention is to solve the problems of the prior art, an object of the present invention is to use a high-output pulsed RF plasma instead of the conventional continuous plasma to produce a high-output pulsed RF having a high yield of the SOI substrate An apparatus for manufacturing an investment insulating film using plasma is provided.
본 발명의 다른 목적은 상기 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치를 사용하여 플라즈마 이온주입 후 고온의 어닐링 공정을 통하여 높은 수율을 가지는 SOI기판을 제조하기 위한 매몰 절연막 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing an investment insulating film for manufacturing an SOI substrate having a high yield through a high temperature annealing process after plasma ion implantation using the device for manufacturing an investment insulating film using the high-output pulsed RF plasma.
상기 목적을 달성하기 위한 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용 한 매몰 절연막 제조장치는 진공조; 진공조 내에 시료를 지지하기 위한 지지대; 음(-)의 고전압 펄스를 발생하여 시료를 인가하기 위한 고전압 펄스 발생장치; 진공조 내에 주입된 가스로부터 펄스 플라즈마를 형성하기 위한 안테나; 안테나와 연결되어 RF 펄스를 공급하기 위한 펄스 RF 전력장치; 그리고 고전압 펄스 발생장치와 펄스 RF 전력장치의 사이에 연결설치되는 트리거 펄스 발생기로 이루어진다.An investment insulating film manufacturing apparatus using a high output pulsed RF plasma according to the present invention for achieving the above object is a vacuum tank; A support for supporting a sample in the vacuum chamber; A high voltage pulse generator for applying a sample by generating a negative high voltage pulse; An antenna for forming a pulsed plasma from gas injected into the vacuum chamber; A pulsed RF power device connected to the antenna for supplying an RF pulse; And a trigger pulse generator connected between the high voltage pulse generator and the pulsed RF power device.
상기 다른 목적을 달성하기 위한 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법은 시료를 진공조 내에 위치시키는 단계; 진공조 내에 사용가스를 주입하는 단계; 진공조 내에 RF 펄스를 공급하여 사용가스로부터 고밀도 플라즈마를 발생시키는 단계; 발생된 플라즈마 이온이 시료에 충돌하여 시료표면에 이온을 주입시키기에 충분한 이온 에너지를 가지고 시료를 향해 가속되도록 시료에 음(-)의 고전압 펄스를 가하여 이온을 주입하는 단계; RF 펄스발생과 음(-)의 고전압 펄스발생을 동기화시키는 단계; 그리고 절연막이 형성되도록 시료를 어닐링하는 단계를 포함한다.In order to achieve the above object, a method of manufacturing an investment insulating film using a high power pulsed RF plasma according to the present invention includes placing a sample in a vacuum chamber; Injecting use gas into the vacuum chamber; Supplying an RF pulse into the vacuum chamber to generate a high density plasma from the used gas; Injecting ions by applying a negative high-voltage pulse to the sample such that the generated plasma ions collide with the sample and are accelerated toward the sample with sufficient ion energy to inject ions into the sample surface; Synchronizing the RF pulse generation with a negative high voltage pulse generation; And annealing the sample to form an insulating film.
이하에서는 첨부된 도면을 참조하여 본 발명에 대한 바람직한 실시예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.
도 1은 본 발명에 따른 대출력 펄스 RF(Radio Frequency) 플라즈마를 이용한 매몰 절연막 제조장치를 개략적으로 보인 구성도이다.1 is a block diagram schematically illustrating an apparatus for manufacturing an investment insulating film using a high output pulse RF (Radio Frequency) plasma according to the present invention.
도시된 바와 같이, 진공조(10)의 내부에는 시료인 웨이퍼(w)를 지지하기 위한 시료지지대(22)가 진공조(10)의 저면으로부터 연장설치되고, 가스주입장치(14) 로부터 진공조(10)의 내부로 주입되는 사용가스를 이용하여 펄스 플라즈마를 발생시키기 위한 안테나(16)가 웨이퍼(w)의 상측에 설치된다. 진공조(10)는 전기적으로 접지되어 있으며, 진공펌프(12)에 의해 진공도가 유지된다.As shown in the drawing, a
발생된 플라즈마 이온이 웨이퍼(w)에 충돌하여 웨이퍼(w) 표면에 이온을 주입시키기에 충분한 이온 에너지를 가지고 웨이퍼(w)를 향해 가속되도록 웨이퍼(w)에 음(-)의 고전압 펄스를 발생하여 인가시키기 위한 고전압 펄스 발생장치(24)가 시료지지대(22)에 연결되어 설치된다. 안테나(16)에는 RF 펄스를 공급하여 플라즈마가 발생되도록 하기 위한 펄스 RF 전력장치(18)가 연결되며, 안테나(16)와 펄스 RF 전력장치(18) 사이에는 이들을 전기적으로 매칭시켜 주기 위한 매칭네트워크(20)가 설치된다. 고전압 펄스 발생장치(24)와 펄스 RF 전력장치(18) 사이에는 이들을 동기화(synchronization)시킴으로써 동일한 시간에서 움직이도록 하기 위한 트리거 펄스 발생기(26)가 연결설치된다.The generated plasma ions impinge on the wafer w and generate a negative high voltage pulse on the wafer w so as to be accelerated toward the wafer w with sufficient ion energy to inject ions onto the surface of the wafer w. The high
진공조(10) 내에 발생된 플라즈마는 진공조(10)의 외면 둘레에 장착되는 복수의 영구자석(30)이 형성하는 자장에 의해 진공조(10) 내에 가두어지기 때문에 고밀도이며 균일하게 유지된다. 또한, 플라즈마의 온도 및 밀도는 플라즈마 측정장치(28), 예를 들어 랑뮤어 프로브에 의해 측정하여 적절하게 조절이 가능하다. 진공조(10) 내로 주입되는 플라즈마원 가스로는 산소, 질소 또는 암모니아 등이 사용될 수 있으며, 이에 한정되는 것은 아니다. 또한, 플라즈마를 발생시키기 위한 안테나(16)는 진공조(10)와의 사이에 소정의 절연체를 개재하여 진공조(10)의 외부에 장착될 수도 있다.Since the plasma generated in the
이하에서는 상기와 같이 구성된 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치를 이용한 제조방법에 대해 설명하기로 한다.Hereinafter, a manufacturing method using a buried insulation film manufacturing apparatus using a high output pulsed RF plasma according to the present invention configured as described above will be described.
본 발명에 따른 매몰 절연막 제조방법은 시료를 진공조 내에 위치시키는 단계; 진공조 내에 사용가스를 주입하는 단계; 진공조 내에 RF 펄스를 공급하여 사용가스로부터 고밀도 플라즈마를 발생시키는 단계; 발생된 플라즈마 이온이 시료에 충돌하여 시료표면에 이온을 주입시키기에 충분한 이온 에너지를 가지고 시료를 향해 가속되도록 시료에 음(-)의 고전압 펄스를 가하여 이온을 주입하는 단계; RF 펄스발생과 음(-)의 고전압 펄스발생을 동기화시키는 단계; 그리고 절연막이 형성되도록 시료를 어닐링하는 단계를 포함한다.The buried insulating film manufacturing method according to the present invention comprises the steps of placing a sample in a vacuum chamber; Injecting use gas into the vacuum chamber; Supplying an RF pulse into the vacuum chamber to generate a high density plasma from the used gas; Injecting ions by applying a negative high-voltage pulse to the sample such that the generated plasma ions collide with the sample and are accelerated toward the sample with sufficient ion energy to inject ions into the sample surface; Synchronizing the RF pulse generation with a negative high voltage pulse generation; And annealing the sample to form an insulating film.
이에 한정되는 것은 아니지만 하나의 실시예를 들어 상세히 설명하면, 도 2의 (a)로 나타낸 바와 같이, 펄스 RF 출력전압의 최대측정치는 대략 1.2㎸이며, 이를 RF 전력으로 나타낼 경우에는 대략 14㎾에 해당되고, 평균 RF 전력은 200W에 해당된다. 진공조(10)내의 압력은 산소 1mTorr로 하였으며, 펄스폭 600㎲, 펄스주파수 25㎐를 진공조(10) 내부의 안테나(16)에 인가하여 펄스 플라즈마를 발생시켰다. 이 때, 플라즈마 측정장치(28)를 이용하여 측정한 플라즈마의 밀도는 대략 2×1011/cm3이었으며, RF 전력을 증가시킬 경우 이온화율이 1% 이상이 되는 고밀도의 플라즈마를 발생시킬 수 있었다.Although not limited thereto, one embodiment will be described in detail. As shown in (a) of FIG. 2, the maximum measurement value of the pulsed RF output voltage is about 1.2 kW, and when it is expressed as RF power, it is about 14 kW. And the average RF power corresponds to 200W. The pressure in the
상기 실시예에 근거하여, SOI 기판제조를 위한 대출력 펄스 RF 전력장치(18)에서 발생되는 RF 펄스는 펄스폭 10㎲~1000㎲, 펄스주파수 10㎐~10㎑ 및 최대 펄스 전력 1㎾~100㎾의 값들을 사용할 수 있으며, RF 주파수는 13.56㎒를 사용하는데, 다른 주파수를 사용할 수도 있다.Based on the above embodiment, the RF pulses generated in the high power pulsed
도 2의 (b)에 나타낸 바와 같이, 타겟, 즉 웨이퍼(w)에 가해지는 음(-)의 고전압 펄스는 10㎸~100㎸, 펄스폭은 10㎲~500㎲, 펄스주파수 10㎐~10㎑의 값들을 사용한다. 이러한 고전압 펄스는 트리거 펄스 발생기(26)에 의해 펄스 플라즈마와 동기화된다.As shown in Fig. 2B, the negative high voltage pulse applied to the target, that is, the wafer w, is 10 Hz to 100 Hz, the pulse width is 10 Hz to 500 Hz, and the pulse frequency is 10 Hz to 10 Use values of ㎑ This high voltage pulse is synchronized with the pulsed plasma by the
상기와 같은 플라즈마 이온주입단계에 있어서, 예를 들어 산소 플라즈마는 대부분 O2 +이온으로 구성되어 있으며, O2 + 또는 O+ 이온이 90% 이상이 되도록 하는 것이 SOI기판 내부에 단층의 매몰 절연막을 형성하는데 바람직하다.In the plasma ion implantation step as described above, for example, the oxygen plasma is mostly composed of O 2 + ions, so that the O 2 + or O + ions are 90% or more. It is preferred to form.
플라즈마 이온주입단계시 이온주입으로 인하여 손상되는 격자의 회복을 위해서 이온주입시 웨이퍼(w)의 온도는 대략 550℃~650℃로 제어되어야 하는데, 본 발명에 따른 펄스 RF 플라즈마를 사용하면 1×1016/㎠~1×1018/㎠의 높은 도즈로 인해 별도의 웨이퍼 가열장치를 사용하지 않고도 격자의 손상을 회복시킬 수 있으며, 짧은 주입 시간으로 인해 웨이퍼 처리량을 증가시킬 수 있다.In order to recover the lattice damaged by ion implantation during the plasma implantation step, the temperature of the wafer (w) during ion implantation should be controlled to about 550 ° C. to 650 ° C., using a pulsed RF plasma according to the present invention. Due to the high dose of 16 /
플라즈마 이온주입단계 이후에, 주입된 이온의 절연막 형성을 위해 1200℃~1400℃의 고온에서 0.1%~5.0%의 산소가 첨가된 아르곤 분위기에서 어닐링을 실시하는 단계가 실행된다. 이 때, 어닐링 공정중 실리콘의 표면이 손상되는 것을 방지하기 위해 실리콘 산화막 또는 실리콘 질화막 등으로 이루어지는 보호막을 실리콘 표면에 형성하는 단계가 어닐링 단계 이전에 선행되는 것이 바람직하다.After the plasma ion implantation step, annealing is performed in an argon atmosphere in which 0.1% to 5.0% of oxygen is added at a high temperature of 1200 ° C to 1400 ° C to form an insulating film of the implanted ions. At this time, in order to prevent the surface of silicon from being damaged during the annealing process, it is preferable to form a protective film made of a silicon oxide film or a silicon nitride film on the silicon surface before the annealing step.
도 3은 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치 및 방법에 의해 얻어진 SOI구조의 투과 전자현미경 단면사진이다.3 is a transmission electron microscope cross-sectional photograph of the SOI structure obtained by the buried insulating film manufacturing apparatus and method using a large output pulsed RF plasma according to the present invention.
p형 실리콘 기판(40)에 펄스 RF 전력장치(18)를 통해 발생한 산소 플라즈마 이온을 65㎸로 주입시킨 후 200㎚의 실리콘 질화막(46)을 증착한 후 아르곤에 0.5% 산소가 첨가된 분위기에서 1350℃에서 30분동안 어닐링을 하였다. 도 3에서 보듯이 실리콘 기판(40)위에 매몰 산화막(42)과 상부 실리콘막(44)으로 이루어진 SOI 구조가 형성됨을 알 수 있으며, 주입 에너지, 이온양 및 열처리 조건 등에 의해서 매몰 산화막(42)과 상부 실리콘막(44)의 두께는 달라질 수 있다.After implanting oxygen plasma ions generated through the pulsed
본 발명은 상기한 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형이 가능할 것이다.The present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art without departing from the gist of the present invention as claimed in the claims.
이상에서 상세히 설명한 바와 같이, 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치 및 제조방법에 따르면, 이온주입이 이루어지는 동안만 플라즈마가 형성되므로 기존의 연속적인 플라즈마보다 낮은 평균 RF 전력을 인가하여도 매우 높은 플라즈마 밀도를 갖고 있어서 짧은 시간에서도 많은 이온양을 주입할 수 있으며, 고밀도에 따른 플라즈마 쉬스(sheath)가 매우 작아서 웨이퍼에 균일하게 이온주입을 할 수 있는 효과가 있다.As described above in detail, according to the buried insulating film manufacturing apparatus and manufacturing method using a large-output pulsed RF plasma according to the present invention, since the plasma is formed only during the ion implantation is applied to the average RF power lower than the conventional continuous plasma Even though it has a very high plasma density, a large amount of ions can be injected even in a short time, and the plasma sheath according to the high density is very small, and thus ion implantation can be uniformly applied to the wafer.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040102291A KR100576194B1 (en) | 2004-12-07 | 2004-12-07 | Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040102291A KR100576194B1 (en) | 2004-12-07 | 2004-12-07 | Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100576194B1 true KR100576194B1 (en) | 2006-05-03 |
Family
ID=37181055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040102291A KR100576194B1 (en) | 2004-12-07 | 2004-12-07 | Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100576194B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113293357A (en) * | 2021-05-25 | 2021-08-24 | 哈尔滨工业大学 | Method for depositing diamond-like coating on inner wall of pulse composite radio frequency enhanced hollow cathode long tube |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001044132A (en) | 2000-01-01 | 2001-02-16 | Semiconductor Energy Lab Co Ltd | Manufacture of semiconductor device |
KR100351489B1 (en) | 1994-07-25 | 2002-12-26 | 애질런트 테크놀로지스, 인크. | A method of forming a circuit and buried insulating layer in a semiconductor substrate |
US6806171B1 (en) | 2001-08-24 | 2004-10-19 | Silicon Wafer Technologies, Inc. | Method of producing a thin layer of crystalline material |
JP2005072584A (en) | 2003-08-20 | 2005-03-17 | Asm Japan Kk | Method for forming silicon-based insulating film having low dielectric constant and low film stress |
-
2004
- 2004-12-07 KR KR1020040102291A patent/KR100576194B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100351489B1 (en) | 1994-07-25 | 2002-12-26 | 애질런트 테크놀로지스, 인크. | A method of forming a circuit and buried insulating layer in a semiconductor substrate |
JP2001044132A (en) | 2000-01-01 | 2001-02-16 | Semiconductor Energy Lab Co Ltd | Manufacture of semiconductor device |
US6806171B1 (en) | 2001-08-24 | 2004-10-19 | Silicon Wafer Technologies, Inc. | Method of producing a thin layer of crystalline material |
JP2005072584A (en) | 2003-08-20 | 2005-03-17 | Asm Japan Kk | Method for forming silicon-based insulating film having low dielectric constant and low film stress |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113293357A (en) * | 2021-05-25 | 2021-08-24 | 哈尔滨工业大学 | Method for depositing diamond-like coating on inner wall of pulse composite radio frequency enhanced hollow cathode long tube |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6979630B2 (en) | Method and apparatus for transferring a thin layer of semiconductor material | |
KR100372385B1 (en) | Thin film fabrication method and thin film fabrication apparatus | |
KR101090918B1 (en) | Ion implanting apparatus and ion implanting method | |
TWI398907B (en) | Very low temperature chemical vapor deposition process with independently variable chemical vapor deposition layer, homomorphism, stress and composition | |
US5508227A (en) | Plasma ion implantation hydrogenation process utilizing voltage pulse applied to substrate | |
KR100351489B1 (en) | A method of forming a circuit and buried insulating layer in a semiconductor substrate | |
US5672541A (en) | Ultra-shallow junction semiconductor device fabrication | |
US7914692B2 (en) | Methods of generating plasma, of etching an organic material film, of generating minus ions, of oxidation and nitriding | |
US20120000421A1 (en) | Control apparatus for plasma immersion ion implantation of a dielectric substrate | |
JP2009545178A (en) | Method and system for continuous large area scan implantation process | |
JP2005530341A (en) | Plasma method and apparatus for processing a substrate | |
JP5424299B2 (en) | Ion implantation apparatus, ion implantation method, and semiconductor device | |
US20090170285A1 (en) | Method for manufacturing bonded wafer | |
US5883016A (en) | Apparatus and method for hydrogenating polysilicon thin film transistors by plasma immersion ion implantation | |
JP2000068227A (en) | Method for processing surface and device thereof | |
JP2010050188A (en) | Plasma doping device | |
JP4646763B2 (en) | Functional thin film forming method and functional thin film forming apparatus | |
KR100576194B1 (en) | Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma | |
KR101503000B1 (en) | A Method of fabricating strain-relaxed Si-Ge buffer layer and Si-Ge buffer layer fabricated thereby | |
JPH10135182A (en) | Method and device for removing resist | |
US20070069157A1 (en) | Methods and apparatus for plasma implantation with improved dopant profile | |
KR20130115097A (en) | Method for damage-free junction formation | |
US11205562B2 (en) | Hybrid electron beam and RF plasma system for controlled content of radicals and ions | |
JP3939383B2 (en) | Method for manufacturing semiconductor device | |
CN113846384A (en) | Method for surface amorphization of crystalline germanium material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20041207 |
|
PA0201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20060414 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20060426 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20060427 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20090331 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20100401 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20110411 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20120404 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20120404 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20130410 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20130410 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150527 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20150527 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20160426 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20160426 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20170426 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20170426 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20180426 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20180426 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20190527 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20190527 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20200527 Start annual number: 15 End annual number: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20210520 Start annual number: 16 End annual number: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20220426 Start annual number: 17 End annual number: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20230426 Start annual number: 18 End annual number: 18 |