[go: up one dir, main page]

KR100576194B1 - Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma - Google Patents

Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma Download PDF

Info

Publication number
KR100576194B1
KR100576194B1 KR1020040102291A KR20040102291A KR100576194B1 KR 100576194 B1 KR100576194 B1 KR 100576194B1 KR 1020040102291 A KR1020040102291 A KR 1020040102291A KR 20040102291 A KR20040102291 A KR 20040102291A KR 100576194 B1 KR100576194 B1 KR 100576194B1
Authority
KR
South Korea
Prior art keywords
plasma
sample
pulse
insulating film
vacuum chamber
Prior art date
Application number
KR1020040102291A
Other languages
Korean (ko)
Inventor
한승희
이연희
김영우
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020040102291A priority Critical patent/KR100576194B1/en
Application granted granted Critical
Publication of KR100576194B1 publication Critical patent/KR100576194B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76243Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Vapour Deposition (AREA)
  • Element Separation (AREA)

Abstract

본 발명은 기존의 연속적인 플라즈마 대신에 대출력 펄스 RF 플라즈마를 이용하여 높은 수율을 가지는 Silicon-on-insulator(SOI)기판을 제조할 수 있도록 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치 및 제조방법에 관한 것이다. 시료를 진공조 내에 위치시키고, 진공조 내에 사용가스를 주입한다. 진공조 내에 RF 펄스를 공급하여 사용가스로부터 고밀도 플라즈마를 발생시킨다. 발생된 플라즈마 이온이 시료에 충돌하여 시료표면에 이온을 주입시키기에 충분한 이온 에너지를 가지고 시료를 향해 가속되도록 시료에 음(-)의 고전압 펄스를 가하여 이온을 주입한다. 이 때, RF 펄스발생과 음(-)의 고전압 펄스발생을 동기화시킨다. 그리고, 시료를 어닐링하여 절연막을 형성시킨다.The present invention provides a device and manufacturing an investment insulating film using a high-output pulsed RF plasma to manufacture a silicon-on-insulator (SOI) substrate having a high yield using a high-output pulsed RF plasma instead of the conventional continuous plasma It is about a method. The sample is placed in a vacuum chamber and a working gas is injected into the vacuum chamber. RF pulses are supplied into the vacuum chamber to generate a high density plasma from the used gas. A negative high voltage pulse is applied to the sample so that the generated plasma ions collide with the sample and accelerate toward the sample with sufficient ion energy to inject ions into the sample surface. At this time, RF pulse generation and negative high voltage pulse generation are synchronized. Then, the sample is annealed to form an insulating film.

RF 펄스, 플라즈마, 웨이퍼, 매몰 절연막, 어닐링RF pulse, plasma, wafer, investment insulating film, annealing

Description

대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치 및 제조방법{DEVICE AND METHOD OF FABRICATING BURIED INSULATOR LAYER USING HIGH-POWER PULSED RF PLASMA}Equipment and manufacturing method for investment insulating film using high output pulse RF plasma {DEVICE AND METHOD OF FABRICATING BURIED INSULATOR LAYER USING HIGH-POWER PULSED RF PLASMA}

도 1은 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치를 개략적으로 보인 구성도,1 is a schematic view showing a buried insulating film manufacturing apparatus using a high-output pulsed RF plasma according to the present invention,

도 2의 (a) 및 (b)는 각각 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치에서의 RF 출력전압 및 타겟에 인가된 전압의 파형도,2A and 2B are waveform diagrams of RF output voltages and voltages applied to a target in the investment insulating film manufacturing apparatus using the high-output pulsed RF plasma according to the present invention, respectively.

도 3은 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치에 의해 얻어진 SOI구조의 투과 전자현미경 단면사진.Figure 3 is a transmission electron microscope cross-sectional photograph of the SOI structure obtained by the buried insulating film manufacturing apparatus using a high power pulsed RF plasma according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 진공조10: vacuum chamber

12: 진공펌퍼12: vacuum pump

14: 가스주입장치14: gas injection device

16: 안테나16: antenna

18: 펄스 RF전력장치18: pulsed RF power supply

20: 매칭네트워크20: matching network

22: 시료지지대22: sample support

24: 고전압 펄스발생장치24: high voltage pulse generator

26: 트리거 펄스 발생기26: trigger pulse generator

28: 플라즈마 측정장치28: plasma measuring device

30: 영구자석30: permanent magnet

w: 웨이퍼w: wafer

본 발명은 반도체 소자 제조에 관한 것으로, 더욱 상세하게는 실리콘 기판 상에 매몰 절연막을 형성시키기 위한 장치 및 방법에 관한 것이다.TECHNICAL FIELD The present invention relates to semiconductor device manufacturing, and more particularly, to an apparatus and a method for forming a buried insulating film on a silicon substrate.

반도체 기술의 발전에 따라 디바이스 성능 향상 및 저전력 소비와 같은 차세대 반도체 소자를 제작하기 위하여 공정 기술 개발뿐만 아니라 핵심 소재인 실리콘 웨이퍼의 개발이 중요한 과제로 대두되고 있다. 특히, 기존 웨이퍼의 한계를 극복할 대안으로 실리콘 단결정 구조 사이에 buried oxide(BOX)라고 불리는 SiO2층이 내재된 Silicon-on-insulator(SOI) 웨이퍼가 핵심 요소로 떠오르고 있다.With the development of semiconductor technology, not only the development of process technology but also the development of silicon wafer, which is a core material, has emerged as an important task for manufacturing next-generation semiconductor devices such as device performance improvement and low power consumption. In particular, a silicon-on-insulator (SOI) wafer with a SiO 2 layer called buried oxide (BOX) between silicon single crystal structures is emerging as an alternative to overcome the limitations of existing wafers.

이러한 SOI구조를 형성하기 위하여 이용되고 있는 종래의 방법으로는 두 개의 실리콘 웨이퍼에 산화막을 형성하여 접합시켜서 매몰 산화막을 형성하는 웨이퍼 접합방식과, 높은 에너지로 이온빔을 가속하여 실리콘 내부에 주입한 후 어닐링을 통한 매몰 산화막을 형성하는 사이목스(Separation by IMplanted OXygen, SIMOX)방 식을 들 수 있다. 그러나, 웨이퍼 접합방식은 접합공정이 번거롭고 많은 시간이 소요되는 단점이 있고, 사이목스방식은 이온빔을 높은 도즈(dose)로 주입하기 위한 이온빔 가속기의 낮은 빔 전류로 인해서 공정시간이 길어지며 장치가 복잡하고 비용이 많이 드는 단점이 있다.Conventional methods used to form such an SOI structure include a wafer bonding method in which an oxide film is formed on two silicon wafers to be bonded to form a buried oxide film, and an ion beam is accelerated and injected into the silicon with high energy. And the Separation by IMplanted OXygen (SIMOX) method of forming a buried oxide film through. However, the wafer bonding method is disadvantageous in that the bonding process is cumbersome and time consuming, and the smox method has a long process time and a complicated device due to the low beam current of the ion beam accelerator for injecting the ion beam at a high dose. There are disadvantages that are expensive.

미국특허번호 제4,764,394호와 대한민국특허 등록번호 제137704호에 개시된 플라즈마와 고전압 펄스를 이용하는 플라즈마 이온주입 기술이 SOI 기판제조에 응용될 수 있는데, 이러한 플라즈마 이온주입 기술은 플라즈마 소스로서 기존의 연속적인 플라즈마를 사용하므로 일반적으로 1% 미만의 듀티(duty) 사이클을 가지는 주기적인 펄스를 사용하는 플라즈마 이온주입 기술의 특성상 펄스와 펄스 사이에서는 플라즈마 부유 전위에 해당하는 에너지로 시료에 이온 충돌 현상이 발생하여 원하지 않는 물리적, 화학적 반응이 일어날 수 있는 문제점이 있다.Plasma ion implantation techniques using plasma and high voltage pulses disclosed in US Pat. No. 4,764,394 and Korean Patent Registration No. 137704 may be applied to the fabrication of SOI substrates. Due to the characteristics of plasma ion implantation technology that uses a periodic pulse having a duty cycle of less than 1%, an ion collision phenomenon occurs in the sample with energy corresponding to the plasma floating potential between pulses and pulses. There is a problem that does not occur physical and chemical reactions.

본 발명은 이러한 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 기존의 연속적인 플라즈마 대신에 대출력 펄스 RF 플라즈마를 이용하여 높은 수율을 가지는 SOI기판을 제조할 수 있도록 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치를 제공하는 것이다.The present invention is to solve the problems of the prior art, an object of the present invention is to use a high-output pulsed RF plasma instead of the conventional continuous plasma to produce a high-output pulsed RF having a high yield of the SOI substrate An apparatus for manufacturing an investment insulating film using plasma is provided.

본 발명의 다른 목적은 상기 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치를 사용하여 플라즈마 이온주입 후 고온의 어닐링 공정을 통하여 높은 수율을 가지는 SOI기판을 제조하기 위한 매몰 절연막 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing an investment insulating film for manufacturing an SOI substrate having a high yield through a high temperature annealing process after plasma ion implantation using the device for manufacturing an investment insulating film using the high-output pulsed RF plasma.

상기 목적을 달성하기 위한 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용 한 매몰 절연막 제조장치는 진공조; 진공조 내에 시료를 지지하기 위한 지지대; 음(-)의 고전압 펄스를 발생하여 시료를 인가하기 위한 고전압 펄스 발생장치; 진공조 내에 주입된 가스로부터 펄스 플라즈마를 형성하기 위한 안테나; 안테나와 연결되어 RF 펄스를 공급하기 위한 펄스 RF 전력장치; 그리고 고전압 펄스 발생장치와 펄스 RF 전력장치의 사이에 연결설치되는 트리거 펄스 발생기로 이루어진다.An investment insulating film manufacturing apparatus using a high output pulsed RF plasma according to the present invention for achieving the above object is a vacuum tank; A support for supporting a sample in the vacuum chamber; A high voltage pulse generator for applying a sample by generating a negative high voltage pulse; An antenna for forming a pulsed plasma from gas injected into the vacuum chamber; A pulsed RF power device connected to the antenna for supplying an RF pulse; And a trigger pulse generator connected between the high voltage pulse generator and the pulsed RF power device.

상기 다른 목적을 달성하기 위한 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법은 시료를 진공조 내에 위치시키는 단계; 진공조 내에 사용가스를 주입하는 단계; 진공조 내에 RF 펄스를 공급하여 사용가스로부터 고밀도 플라즈마를 발생시키는 단계; 발생된 플라즈마 이온이 시료에 충돌하여 시료표면에 이온을 주입시키기에 충분한 이온 에너지를 가지고 시료를 향해 가속되도록 시료에 음(-)의 고전압 펄스를 가하여 이온을 주입하는 단계; RF 펄스발생과 음(-)의 고전압 펄스발생을 동기화시키는 단계; 그리고 절연막이 형성되도록 시료를 어닐링하는 단계를 포함한다.In order to achieve the above object, a method of manufacturing an investment insulating film using a high power pulsed RF plasma according to the present invention includes placing a sample in a vacuum chamber; Injecting use gas into the vacuum chamber; Supplying an RF pulse into the vacuum chamber to generate a high density plasma from the used gas; Injecting ions by applying a negative high-voltage pulse to the sample such that the generated plasma ions collide with the sample and are accelerated toward the sample with sufficient ion energy to inject ions into the sample surface; Synchronizing the RF pulse generation with a negative high voltage pulse generation; And annealing the sample to form an insulating film.

이하에서는 첨부된 도면을 참조하여 본 발명에 대한 바람직한 실시예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 1은 본 발명에 따른 대출력 펄스 RF(Radio Frequency) 플라즈마를 이용한 매몰 절연막 제조장치를 개략적으로 보인 구성도이다.1 is a block diagram schematically illustrating an apparatus for manufacturing an investment insulating film using a high output pulse RF (Radio Frequency) plasma according to the present invention.

도시된 바와 같이, 진공조(10)의 내부에는 시료인 웨이퍼(w)를 지지하기 위한 시료지지대(22)가 진공조(10)의 저면으로부터 연장설치되고, 가스주입장치(14) 로부터 진공조(10)의 내부로 주입되는 사용가스를 이용하여 펄스 플라즈마를 발생시키기 위한 안테나(16)가 웨이퍼(w)의 상측에 설치된다. 진공조(10)는 전기적으로 접지되어 있으며, 진공펌프(12)에 의해 진공도가 유지된다.As shown in the drawing, a sample support 22 for supporting a wafer w as a sample extends from the bottom surface of the vacuum chamber 10 inside the vacuum chamber 10, and the vacuum chamber 10 is provided from the gas injection device 14. An antenna 16 for generating pulsed plasma by using the used gas injected into the inside of 10 is provided above the wafer w. The vacuum chamber 10 is electrically grounded and the degree of vacuum is maintained by the vacuum pump 12.

발생된 플라즈마 이온이 웨이퍼(w)에 충돌하여 웨이퍼(w) 표면에 이온을 주입시키기에 충분한 이온 에너지를 가지고 웨이퍼(w)를 향해 가속되도록 웨이퍼(w)에 음(-)의 고전압 펄스를 발생하여 인가시키기 위한 고전압 펄스 발생장치(24)가 시료지지대(22)에 연결되어 설치된다. 안테나(16)에는 RF 펄스를 공급하여 플라즈마가 발생되도록 하기 위한 펄스 RF 전력장치(18)가 연결되며, 안테나(16)와 펄스 RF 전력장치(18) 사이에는 이들을 전기적으로 매칭시켜 주기 위한 매칭네트워크(20)가 설치된다. 고전압 펄스 발생장치(24)와 펄스 RF 전력장치(18) 사이에는 이들을 동기화(synchronization)시킴으로써 동일한 시간에서 움직이도록 하기 위한 트리거 펄스 발생기(26)가 연결설치된다.The generated plasma ions impinge on the wafer w and generate a negative high voltage pulse on the wafer w so as to be accelerated toward the wafer w with sufficient ion energy to inject ions onto the surface of the wafer w. The high voltage pulse generator 24 is applied to the sample support 22 for installation. The antenna 16 is connected to a pulsed RF power device 18 for supplying an RF pulse to generate a plasma, and a matching network for electrically matching them between the antenna 16 and the pulsed RF power device 18. 20 is installed. A trigger pulse generator 26 is connected between the high voltage pulse generator 24 and the pulsed RF power device 18 to move at the same time by synchronizing them.

진공조(10) 내에 발생된 플라즈마는 진공조(10)의 외면 둘레에 장착되는 복수의 영구자석(30)이 형성하는 자장에 의해 진공조(10) 내에 가두어지기 때문에 고밀도이며 균일하게 유지된다. 또한, 플라즈마의 온도 및 밀도는 플라즈마 측정장치(28), 예를 들어 랑뮤어 프로브에 의해 측정하여 적절하게 조절이 가능하다. 진공조(10) 내로 주입되는 플라즈마원 가스로는 산소, 질소 또는 암모니아 등이 사용될 수 있으며, 이에 한정되는 것은 아니다. 또한, 플라즈마를 발생시키기 위한 안테나(16)는 진공조(10)와의 사이에 소정의 절연체를 개재하여 진공조(10)의 외부에 장착될 수도 있다.Since the plasma generated in the vacuum chamber 10 is confined in the vacuum chamber 10 by a magnetic field formed by a plurality of permanent magnets 30 mounted around the outer surface of the vacuum chamber 10, the plasma is maintained at a high density and uniformity. In addition, the temperature and density of the plasma can be appropriately adjusted by measuring by the plasma measuring apparatus 28, for example, a Langmuir probe. As the plasma source gas injected into the vacuum chamber 10, oxygen, nitrogen, or ammonia may be used, but is not limited thereto. In addition, the antenna 16 for generating plasma may be mounted outside the vacuum chamber 10 via a predetermined insulator between the vacuum chamber 10.

이하에서는 상기와 같이 구성된 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치를 이용한 제조방법에 대해 설명하기로 한다.Hereinafter, a manufacturing method using a buried insulation film manufacturing apparatus using a high output pulsed RF plasma according to the present invention configured as described above will be described.

본 발명에 따른 매몰 절연막 제조방법은 시료를 진공조 내에 위치시키는 단계; 진공조 내에 사용가스를 주입하는 단계; 진공조 내에 RF 펄스를 공급하여 사용가스로부터 고밀도 플라즈마를 발생시키는 단계; 발생된 플라즈마 이온이 시료에 충돌하여 시료표면에 이온을 주입시키기에 충분한 이온 에너지를 가지고 시료를 향해 가속되도록 시료에 음(-)의 고전압 펄스를 가하여 이온을 주입하는 단계; RF 펄스발생과 음(-)의 고전압 펄스발생을 동기화시키는 단계; 그리고 절연막이 형성되도록 시료를 어닐링하는 단계를 포함한다.The buried insulating film manufacturing method according to the present invention comprises the steps of placing a sample in a vacuum chamber; Injecting use gas into the vacuum chamber; Supplying an RF pulse into the vacuum chamber to generate a high density plasma from the used gas; Injecting ions by applying a negative high-voltage pulse to the sample such that the generated plasma ions collide with the sample and are accelerated toward the sample with sufficient ion energy to inject ions into the sample surface; Synchronizing the RF pulse generation with a negative high voltage pulse generation; And annealing the sample to form an insulating film.

이에 한정되는 것은 아니지만 하나의 실시예를 들어 상세히 설명하면, 도 2의 (a)로 나타낸 바와 같이, 펄스 RF 출력전압의 최대측정치는 대략 1.2㎸이며, 이를 RF 전력으로 나타낼 경우에는 대략 14㎾에 해당되고, 평균 RF 전력은 200W에 해당된다. 진공조(10)내의 압력은 산소 1mTorr로 하였으며, 펄스폭 600㎲, 펄스주파수 25㎐를 진공조(10) 내부의 안테나(16)에 인가하여 펄스 플라즈마를 발생시켰다. 이 때, 플라즈마 측정장치(28)를 이용하여 측정한 플라즈마의 밀도는 대략 2×1011/cm3이었으며, RF 전력을 증가시킬 경우 이온화율이 1% 이상이 되는 고밀도의 플라즈마를 발생시킬 수 있었다.Although not limited thereto, one embodiment will be described in detail. As shown in (a) of FIG. 2, the maximum measurement value of the pulsed RF output voltage is about 1.2 kW, and when it is expressed as RF power, it is about 14 kW. And the average RF power corresponds to 200W. The pressure in the vacuum chamber 10 was 1 mTorr of oxygen. A pulse width of 600 Hz and a pulse frequency of 25 Hz were applied to the antenna 16 inside the vacuum chamber 10 to generate a pulsed plasma. At this time, the density of the plasma measured using the plasma measuring apparatus 28 was approximately 2 × 10 11 / cm 3 , and when the RF power was increased, a high density plasma having an ionization rate of 1% or more could be generated. .

상기 실시예에 근거하여, SOI 기판제조를 위한 대출력 펄스 RF 전력장치(18)에서 발생되는 RF 펄스는 펄스폭 10㎲~1000㎲, 펄스주파수 10㎐~10㎑ 및 최대 펄스 전력 1㎾~100㎾의 값들을 사용할 수 있으며, RF 주파수는 13.56㎒를 사용하는데, 다른 주파수를 사용할 수도 있다.Based on the above embodiment, the RF pulses generated in the high power pulsed RF power device 18 for manufacturing the SOI substrate are pulse widths of 10 kHz to 1000 kHz, pulse frequencies of 10 kHz to 10 kHz and maximum pulse powers of 1 kHz to 100. The values of 수 may be used, and the RF frequency uses 13.56 MHz, but other frequencies may be used.

도 2의 (b)에 나타낸 바와 같이, 타겟, 즉 웨이퍼(w)에 가해지는 음(-)의 고전압 펄스는 10㎸~100㎸, 펄스폭은 10㎲~500㎲, 펄스주파수 10㎐~10㎑의 값들을 사용한다. 이러한 고전압 펄스는 트리거 펄스 발생기(26)에 의해 펄스 플라즈마와 동기화된다.As shown in Fig. 2B, the negative high voltage pulse applied to the target, that is, the wafer w, is 10 Hz to 100 Hz, the pulse width is 10 Hz to 500 Hz, and the pulse frequency is 10 Hz to 10 Use values of ㎑ This high voltage pulse is synchronized with the pulsed plasma by the trigger pulse generator 26.

상기와 같은 플라즈마 이온주입단계에 있어서, 예를 들어 산소 플라즈마는 대부분 O2 +이온으로 구성되어 있으며, O2 + 또는 O+ 이온이 90% 이상이 되도록 하는 것이 SOI기판 내부에 단층의 매몰 절연막을 형성하는데 바람직하다.In the plasma ion implantation step as described above, for example, the oxygen plasma is mostly composed of O 2 + ions, so that the O 2 + or O + ions are 90% or more. It is preferred to form.

플라즈마 이온주입단계시 이온주입으로 인하여 손상되는 격자의 회복을 위해서 이온주입시 웨이퍼(w)의 온도는 대략 550℃~650℃로 제어되어야 하는데, 본 발명에 따른 펄스 RF 플라즈마를 사용하면 1×1016/㎠~1×1018/㎠의 높은 도즈로 인해 별도의 웨이퍼 가열장치를 사용하지 않고도 격자의 손상을 회복시킬 수 있으며, 짧은 주입 시간으로 인해 웨이퍼 처리량을 증가시킬 수 있다.In order to recover the lattice damaged by ion implantation during the plasma implantation step, the temperature of the wafer (w) during ion implantation should be controlled to about 550 ° C. to 650 ° C., using a pulsed RF plasma according to the present invention. Due to the high dose of 16 / cm 2 to 1 × 10 18 / cm 2, the damage of the lattice can be repaired without the use of a separate wafer heater, and the wafer throughput can be increased due to the short injection time.

플라즈마 이온주입단계 이후에, 주입된 이온의 절연막 형성을 위해 1200℃~1400℃의 고온에서 0.1%~5.0%의 산소가 첨가된 아르곤 분위기에서 어닐링을 실시하는 단계가 실행된다. 이 때, 어닐링 공정중 실리콘의 표면이 손상되는 것을 방지하기 위해 실리콘 산화막 또는 실리콘 질화막 등으로 이루어지는 보호막을 실리콘 표면에 형성하는 단계가 어닐링 단계 이전에 선행되는 것이 바람직하다.After the plasma ion implantation step, annealing is performed in an argon atmosphere in which 0.1% to 5.0% of oxygen is added at a high temperature of 1200 ° C to 1400 ° C to form an insulating film of the implanted ions. At this time, in order to prevent the surface of silicon from being damaged during the annealing process, it is preferable to form a protective film made of a silicon oxide film or a silicon nitride film on the silicon surface before the annealing step.

도 3은 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치 및 방법에 의해 얻어진 SOI구조의 투과 전자현미경 단면사진이다.3 is a transmission electron microscope cross-sectional photograph of the SOI structure obtained by the buried insulating film manufacturing apparatus and method using a large output pulsed RF plasma according to the present invention.

p형 실리콘 기판(40)에 펄스 RF 전력장치(18)를 통해 발생한 산소 플라즈마 이온을 65㎸로 주입시킨 후 200㎚의 실리콘 질화막(46)을 증착한 후 아르곤에 0.5% 산소가 첨가된 분위기에서 1350℃에서 30분동안 어닐링을 하였다. 도 3에서 보듯이 실리콘 기판(40)위에 매몰 산화막(42)과 상부 실리콘막(44)으로 이루어진 SOI 구조가 형성됨을 알 수 있으며, 주입 에너지, 이온양 및 열처리 조건 등에 의해서 매몰 산화막(42)과 상부 실리콘막(44)의 두께는 달라질 수 있다.After implanting oxygen plasma ions generated through the pulsed RF power device 18 into the p-type silicon substrate 40 at 65 kHz, depositing a 200 nm silicon nitride film 46 and then adding 0.5% oxygen to argon. Annealing was conducted at 1350 ° C. for 30 minutes. As shown in FIG. 3, the SOI structure including the buried oxide film 42 and the upper silicon film 44 is formed on the silicon substrate 40. The buried oxide film 42 may be formed by implantation energy, ion amount, and heat treatment conditions. The thickness of the upper silicon film 44 may vary.

본 발명은 상기한 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형이 가능할 것이다.The present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art without departing from the gist of the present invention as claimed in the claims.

이상에서 상세히 설명한 바와 같이, 본 발명에 따른 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치 및 제조방법에 따르면, 이온주입이 이루어지는 동안만 플라즈마가 형성되므로 기존의 연속적인 플라즈마보다 낮은 평균 RF 전력을 인가하여도 매우 높은 플라즈마 밀도를 갖고 있어서 짧은 시간에서도 많은 이온양을 주입할 수 있으며, 고밀도에 따른 플라즈마 쉬스(sheath)가 매우 작아서 웨이퍼에 균일하게 이온주입을 할 수 있는 효과가 있다.As described above in detail, according to the buried insulating film manufacturing apparatus and manufacturing method using a large-output pulsed RF plasma according to the present invention, since the plasma is formed only during the ion implantation is applied to the average RF power lower than the conventional continuous plasma Even though it has a very high plasma density, a large amount of ions can be injected even in a short time, and the plasma sheath according to the high density is very small, and thus ion implantation can be uniformly applied to the wafer.

Claims (9)

진공조;Vacuum chamber; 상기 진공조 내에 시료를 지지하기 위한 지지대;A support for supporting a sample in the vacuum chamber; 음(-)의 고전압 펄스를 발생하여 상기 시료를 인가하기 위한 고전압 펄스 발생장치;A high voltage pulse generator for generating a negative high voltage pulse to apply the sample; 상기 진공조 내에 주입된 가스로부터 펄스 플라즈마를 형성하기 위한 안테나;An antenna for forming a pulsed plasma from gas injected into the vacuum chamber; 상기 안테나와 연결되어 RF(Radio Frequency) 펄스를 공급하기 위한 펄스 RF 전력장치; 그리고A pulsed RF power device connected to the antenna for supplying a radio frequency (RF) pulse; And 상기 고전압 펄스 발생장치와 상기 펄스 RF 전력장치의 사이에 연결설치되는 트리거 펄스 발생기로 이루어지는 것을 특징으로 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조장치.An investment insulating film manufacturing apparatus using a high power pulsed RF plasma, characterized in that consisting of a trigger pulse generator is connected between the high voltage pulse generator and the pulsed RF power device. 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법에 있어서,In the manufacturing method of the investment insulating film using a high output pulse RF plasma, 시료를 진공조 내에 위치시키는 단계;Placing the sample in a vacuum chamber; 상기 진공조 내에 사용가스를 주입하는 단계;Injecting use gas into the vacuum chamber; 상기 진공조 내에 RF 펄스를 공급하여 상기 사용가스로부터 고밀도 플라즈마를 발생시키는 단계;Supplying an RF pulse into the vacuum chamber to generate a high density plasma from the use gas; 발생된 플라즈마 이온이 시료에 충돌하여 시료표면에 이온을 주입시키기에 충분한 이온 에너지를 가지고 시료를 향해 가속되도록 시료에 음(-)의 고전압 펄스를 가하여 이온을 주입하는 단계;Injecting ions by applying a negative high-voltage pulse to the sample such that the generated plasma ions collide with the sample and are accelerated toward the sample with sufficient ion energy to inject ions into the sample surface; RF 펄스발생과 음(-)의 고전압 펄스발생을 동기화시키는 단계; 그리고Synchronizing the RF pulse generation with a negative high voltage pulse generation; And 절연막이 형성되도록 시료를 어닐링하는 단계를 포함하는 것을 특징으로 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법.An annealing method for manufacturing an investment insulating film using a high-output pulsed RF plasma, characterized in that it comprises the step of annealing the sample to form an insulating film. 제 2항에 있어서, 상기 RF 펄스는 펄스폭 10㎲~1000㎲, 펄스주파수 10㎐~10㎑, 최대 펄스전력 1㎾~100㎾인 것을 특징으로 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법.The method of claim 2, wherein the RF pulse has a pulse width of 10 Hz to 1000 Hz, a pulse frequency of 10 Hz to 10 Hz, and a maximum pulse power of 1 Hz to 100 Hz. . 제 2항에 있어서, 음(-)의 고전압 펄스는 10㎸~100㎸, 펄스폭 10㎲~500㎲, 펄스주파수 10㎐~10㎑를 갖는 것을 특징으로 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법.The buried insulating film using the high output pulsed RF plasma according to claim 2, wherein the negative high voltage pulse has a frequency of 10 Hz to 100 Hz, a pulse width of 10 Hz to 500 Hz, and a pulse frequency of 10 Hz to 10 Hz. Manufacturing method. 제 2항에 있어서, 상기 이온을 주입하는 단계에서 시료의 온도를 550℃~650℃으로 유지하면서 1×1016/㎠~1×1018/㎠의 도즈로 이온주입하는 것을 특징으로 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법.The method of claim 2, wherein in the step of implanting the ion while maintaining the temperature of the sample at 550 ℃ ~ 650 ℃ ion implantation with a dose of 1 × 10 16 / ㎠ ~ 1 × 10 18 / ㎠ Method of manufacturing an investment insulating film using a pulsed RF plasma. 제 2항에 있어서, 상기 어닐링하는 단계는 0.1%~5.0%의 산소가 첨가된 아르 곤 분위기에서 1200℃~1400℃의 온도에서 수행되는 것을 특징으로 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법.The method of claim 2, wherein the annealing is performed at a temperature of 1200 ° C. to 1400 ° C. in an argon atmosphere in which 0.1% to 5.0% of oxygen is added. . 제 2항에 있어서, 상기 어닐링하는 단계 이전에 시료의 표면에 보호막을 형성하는 단계를 더 포함하는 것을 특징으로 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법.The method of claim 2, further comprising forming a protective film on the surface of the sample before the annealing. 제 7항에 있어서, 상기 보호막은 실리콘 산화막인 것을 특징으로 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법.The method of claim 7, wherein the protective film is a silicon oxide film. 제 7항에 있어서, 상기 보호막은 실리콘 질화막인 것을 특징으로 하는 대출력 펄스 RF 플라즈마를 이용한 매몰 절연막 제조방법.The method of claim 7, wherein the protective film is a silicon nitride film.
KR1020040102291A 2004-12-07 2004-12-07 Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma KR100576194B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040102291A KR100576194B1 (en) 2004-12-07 2004-12-07 Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040102291A KR100576194B1 (en) 2004-12-07 2004-12-07 Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma

Publications (1)

Publication Number Publication Date
KR100576194B1 true KR100576194B1 (en) 2006-05-03

Family

ID=37181055

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040102291A KR100576194B1 (en) 2004-12-07 2004-12-07 Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma

Country Status (1)

Country Link
KR (1) KR100576194B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293357A (en) * 2021-05-25 2021-08-24 哈尔滨工业大学 Method for depositing diamond-like coating on inner wall of pulse composite radio frequency enhanced hollow cathode long tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044132A (en) 2000-01-01 2001-02-16 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
KR100351489B1 (en) 1994-07-25 2002-12-26 애질런트 테크놀로지스, 인크. A method of forming a circuit and buried insulating layer in a semiconductor substrate
US6806171B1 (en) 2001-08-24 2004-10-19 Silicon Wafer Technologies, Inc. Method of producing a thin layer of crystalline material
JP2005072584A (en) 2003-08-20 2005-03-17 Asm Japan Kk Method for forming silicon-based insulating film having low dielectric constant and low film stress

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351489B1 (en) 1994-07-25 2002-12-26 애질런트 테크놀로지스, 인크. A method of forming a circuit and buried insulating layer in a semiconductor substrate
JP2001044132A (en) 2000-01-01 2001-02-16 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
US6806171B1 (en) 2001-08-24 2004-10-19 Silicon Wafer Technologies, Inc. Method of producing a thin layer of crystalline material
JP2005072584A (en) 2003-08-20 2005-03-17 Asm Japan Kk Method for forming silicon-based insulating film having low dielectric constant and low film stress

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113293357A (en) * 2021-05-25 2021-08-24 哈尔滨工业大学 Method for depositing diamond-like coating on inner wall of pulse composite radio frequency enhanced hollow cathode long tube

Similar Documents

Publication Publication Date Title
US6979630B2 (en) Method and apparatus for transferring a thin layer of semiconductor material
KR100372385B1 (en) Thin film fabrication method and thin film fabrication apparatus
KR101090918B1 (en) Ion implanting apparatus and ion implanting method
TWI398907B (en) Very low temperature chemical vapor deposition process with independently variable chemical vapor deposition layer, homomorphism, stress and composition
US5508227A (en) Plasma ion implantation hydrogenation process utilizing voltage pulse applied to substrate
KR100351489B1 (en) A method of forming a circuit and buried insulating layer in a semiconductor substrate
US5672541A (en) Ultra-shallow junction semiconductor device fabrication
US7914692B2 (en) Methods of generating plasma, of etching an organic material film, of generating minus ions, of oxidation and nitriding
US20120000421A1 (en) Control apparatus for plasma immersion ion implantation of a dielectric substrate
JP2009545178A (en) Method and system for continuous large area scan implantation process
JP2005530341A (en) Plasma method and apparatus for processing a substrate
JP5424299B2 (en) Ion implantation apparatus, ion implantation method, and semiconductor device
US20090170285A1 (en) Method for manufacturing bonded wafer
US5883016A (en) Apparatus and method for hydrogenating polysilicon thin film transistors by plasma immersion ion implantation
JP2000068227A (en) Method for processing surface and device thereof
JP2010050188A (en) Plasma doping device
JP4646763B2 (en) Functional thin film forming method and functional thin film forming apparatus
KR100576194B1 (en) Buried insulating film manufacturing apparatus and manufacturing method using large output pulse RF plasma
KR101503000B1 (en) A Method of fabricating strain-relaxed Si-Ge buffer layer and Si-Ge buffer layer fabricated thereby
JPH10135182A (en) Method and device for removing resist
US20070069157A1 (en) Methods and apparatus for plasma implantation with improved dopant profile
KR20130115097A (en) Method for damage-free junction formation
US11205562B2 (en) Hybrid electron beam and RF plasma system for controlled content of radicals and ions
JP3939383B2 (en) Method for manufacturing semiconductor device
CN113846384A (en) Method for surface amorphization of crystalline germanium material

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20041207

PA0201 Request for examination
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20060414

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20060426

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20060427

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20090331

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20100401

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20110411

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20120404

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20120404

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20130410

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20150527

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20150527

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20160426

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20160426

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20170426

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20170426

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20180426

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20180426

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20190527

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20190527

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20200527

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20210520

Start annual number: 16

End annual number: 16

PR1001 Payment of annual fee

Payment date: 20220426

Start annual number: 17

End annual number: 17

PR1001 Payment of annual fee

Payment date: 20230426

Start annual number: 18

End annual number: 18