[go: up one dir, main page]

KR100562020B1 - Carbon dioxide immobilized adsorbent and its manufacturing method - Google Patents

Carbon dioxide immobilized adsorbent and its manufacturing method Download PDF

Info

Publication number
KR100562020B1
KR100562020B1 KR1020030065121A KR20030065121A KR100562020B1 KR 100562020 B1 KR100562020 B1 KR 100562020B1 KR 1020030065121 A KR1020030065121 A KR 1020030065121A KR 20030065121 A KR20030065121 A KR 20030065121A KR 100562020 B1 KR100562020 B1 KR 100562020B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
activated carbon
adsorbent
rpm
carbon
Prior art date
Application number
KR1020030065121A
Other languages
Korean (ko)
Other versions
KR20050028624A (en
Inventor
강덕원
지준화
이두호
이재의
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020030065121A priority Critical patent/KR100562020B1/en
Publication of KR20050028624A publication Critical patent/KR20050028624A/en
Application granted granted Critical
Publication of KR100562020B1 publication Critical patent/KR100562020B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 이산화탄소를 효과적으로 흡착시켜, 분리 제거하기 위한 흡착제와 그의 제조방법에 관한 것이며, 기존에 이를 위한 목적으로 사용되는 활성탄 및 제올라이트 등과 같은 무기흡착제가 가지고 있는 소수성 표면이나 세공의 구조로 야기되는 여러 가지 한계를 극복하기 위해, 활성탄의 표면을 산성용액으로 개질하여 친수성을 갖게 하는 관능기를 표면에 부착하고, 여기에 역시 친수성 흡착제인 LiOH를 첨착시켜 첨착의 안정성과 첨착량의 증가를 꾀하였으며, 또한 기존의 수용액를 이용하는 첨착 방법을 지양하고, 담지체의 소수성 여하에 영향이 적은, 분말 형태로 처리된 흡착제와 담지체를 기계적으로 혼합하는 방법을 채택하여, 흡착제의 첨착 효율을 향상시켰다. The present invention relates to an adsorbent for effectively adsorbing and separating carbon dioxide and to a method of preparing the same, and to a variety of hydrophobic surfaces or pores caused by inorganic adsorbents such as activated carbon and zeolite, which are used for this purpose. In order to overcome these limitations, the surface of the activated carbon was modified with an acid solution to attach a functional group to make it hydrophilic, and LiOH, which is also a hydrophilic adsorbent, was attached to the surface to increase the stability and the amount of deposition. Avoiding the deposition method using the existing aqueous solution, and the method of mechanically mixing the adsorbent and the carrier in the form of powder, which has little influence on the hydrophobicity of the carrier, was adopted to improve the adhesion efficiency of the adsorbent.

이산화탄소, 흡착제, 활성탄, 수산화리튬Carbon dioxide, adsorbent, activated carbon, lithium hydroxide

Description

이산화탄소 고정화 흡착제와 그의 제조방법{Adsorbent for carbon dioxide fixation and method for preparing the same}Adsorbent for carbon dioxide fixation and method for preparing the same

도 1은 종래 기술에 의한 이산화탄소 고정화 흡착제의 제조 공정도이다.1 is a manufacturing process chart of a carbon dioxide immobilized adsorbent according to the prior art.

도 2는 본 발명에 의한 제 1이산화탄소 고정화 흡착제의 제조 공정도이다.2 is a manufacturing process chart of the first carbon dioxide immobilized adsorbent according to the present invention.

도 3은 본 발명에 의한 제 2이산화탄소 고정화 흡착제의 제조 공정도이다.3 is a manufacturing process chart of the second carbon dioxide immobilized adsorbent according to the present invention.

도 4는 본 발명에 의한 제 3이산화탄소 고정화 흡착제의 제조 공정도이다.4 is a manufacturing process chart of the third carbon dioxide immobilized adsorbent according to the present invention.

도 5는 본 발명에 의한 제 1이산화탄소 고정화 흡착제의 이산화탄소 흡착성능 결과를 나타낸 그래프이다.5 is a graph showing the results of carbon dioxide adsorption performance of the first carbon dioxide immobilized adsorbent according to the present invention.

도 6은 본 발명에 의한 제 2이산화탄소 고정화 흡착제의 이산화탄소 흡착성능결과를 나타낸 그래프이다.6 is a graph showing the carbon dioxide adsorption performance of the second carbon dioxide immobilized adsorbent according to the present invention.

본 발명은 화력발전소, 원자력발전소 등과 같은 고정원 및 자동차와 같은 이동원에서 배출되는 이산화탄소 및 방사성 이산화탄소를 흡착, 고정화하기 위한 이산화탄소 고정화 흡착제와 그의 제조방법에 관한 것이다. 보다 상세하게는 수산화리튬을 수용액으로 하여 이를 활성탄에 첨착시켜 제조한 이산화탄소 고정화 흡착제 또는 수산화리튬 분말과 활성탄을 기계적 혼합을 통해 제조한 이산화탄소 고정화 흡착제와 그의 제조방법에 관한 것이다.The present invention relates to a carbon dioxide immobilized adsorbent for adsorbing and immobilizing carbon dioxide and radioactive carbon dioxide discharged from a fixed source such as a thermal power plant, a nuclear power plant, and a mobile source such as an automobile, and a method of manufacturing the same. More specifically, the present invention relates to a carbon dioxide immobilized adsorbent prepared by attaching lithium hydroxide as an aqueous solution to an activated carbon, or a carbon dioxide immobilized adsorbent prepared by mechanically mixing lithium hydroxide powder and activated carbon, and a method of manufacturing the same.

온실가스 중의 하나인 이산화탄소는 지구 온난화 현상의 요인 중 가장 많은 비율인 55%를 차지하고 있다. 이와 같은 이산화탄소는 화력발전소 및 원자력 발전소 그리고 제철소, 시멘트공장, 석유화학공장 등에서 주로 배출된다. 특히 원자력 발전소의 경우 방사성 동위원소(C-14)를 포함하는 이산화탄소가 발생하는데, 이 C-14는 최대에너지가 156keV인 β선을 방출하는 핵종이며 반감기는 5,730년에 달한다. 대기 중의 C-14 방사능은 주로 탄화수소나 이산화탄소 형태로 존재하는 C-14에 기인하며, 특히 방사성 이산화탄소는 동식물에 의한 호흡이나 탄소동화작용을 통해 생물체내에 고정되고, 먹이사슬의 경로를 거쳐 인체 내에 축적될 수 있어 다른 방사성 화합물보다 각별한 관리와 감시가 필요하다. 이와 같은 이유로 C-14를 포함한 이산화탄소의 배출량을 감소시키기 위한 흡착, 분리, 회수, 공정 등과 같은 다양한 기술이 개발되어 왔다. 이 중에서 흡착법은 에너지 소비가 적고 흡착제를 회수하여 다시 사용할 수 있기 때문에 경제적인 저감기술로 평가되고 있다. Carbon dioxide, one of the greenhouse gases, accounts for 55%, the largest proportion of global warming. Such carbon dioxide is mainly emitted from thermal power plants, nuclear power plants, and steel mills, cement plants, and petrochemical plants. Particularly in nuclear power plants, carbon dioxide, which contains radioactive isotopes (C-14), is produced. The C-14 is a nuclide that emits β-rays with a maximum energy of 156 keV, with a half-life of 5,730 years. C-14 radioactivity in the atmosphere is mainly due to C-14 in the form of hydrocarbons or carbon dioxide, and in particular, radioactive carbon dioxide is fixed in living organisms through respiration or carbon assimilation by plants and animals, and accumulates in the human body through the food chain pathway. This requires more care and monitoring than other radioactive compounds. For this reason, various techniques have been developed, such as adsorption, separation, recovery, and processes to reduce carbon dioxide emissions, including C-14. Among these, the adsorption method is evaluated as an economical reduction technique because it uses less energy and can recover and use the adsorbent.

이산화탄소를 흡착법을 이용하여 분리, 회수하기 위해 활성탄 및 제올라이트 등과 같은 무기 흡착제가 주로 사용되어 왔다. 활성탄은 다공성 탄소질 흡착제로서 결정질의 다환 방향족 분자 집합체와 비정질 탄화수소로 이루어져 거대 세공부터 미세 세공이 공존하는 세공 구조를 지니고 있다. 활성탄은 야자각 등과 같은 식물성 원료나 갈탄 등과 같은 석탄계 원료를 출발 물질로 하고 있다. 활성탄의 이산화탄소에 대한 흡착 성능을 증가시키기 위해 이산화탄소에 선택성이 우수한 것으로 알려진 칼슘 등과 같은 알카리 금속을 이온화하여 이를 활성탄에 첨착시켜 이를 흡착제로 적용하고자하는 연구가 진행되고 있다. Inorganic adsorbents such as activated carbon and zeolite have been mainly used to separate and recover carbon dioxide by adsorption. Activated carbon is a porous carbonaceous adsorbent composed of crystalline polycyclic aromatic molecular aggregates and amorphous hydrocarbons and has a pore structure in which coarse to fine pores coexist. Activated carbon is based on vegetable raw materials such as coconut shell and coal-based raw materials such as lignite. In order to increase the adsorption performance of activated carbon to carbon dioxide, research is being conducted to ionize an alkali metal such as calcium, which is known to have excellent selectivity to carbon dioxide, and to attach it to activated carbon to apply it as an adsorbent.

알칼리금속인 리튬은 보통 수산화리튬 분말로 존재하며 대기중에 노출되면 대기중에 있는 이산화탄소가 일부 분말에 흡착, 고정화될 정도로 이산화탄소의 흡착, 고정화에 선택성이 매우 우수하다. 그러나 수산화리튬 분말이 비산하여 인체에 축적되면 두뇌, 호흡기 및 신경계통에 심각한 영향을 끼친다. 따라서 수산화리튬 분말의 대기중으로의 비산 방지뿐만 아니라 수산화리튬 분말의 분산도를 넓혀 보다 많은 양의 이산화탄소를 흡착, 고정화하기 위해서는 수산화리튬 분말을 흡착제에 첨착 또는 고정화하여 사용하여야 한다. Lithium, an alkali metal, is usually present as lithium hydroxide powder, and when exposed to the atmosphere, the selectivity is very good for adsorption and immobilization of carbon dioxide such that carbon dioxide in the atmosphere is adsorbed and immobilized on some powders. However, when lithium hydroxide powder scatters and accumulates in the human body, it severely affects the brain, respiratory system, and nervous system. Therefore, in order to adsorb and immobilize a larger amount of carbon dioxide by increasing the dispersion degree of the lithium hydroxide powder as well as preventing the scattering of the lithium hydroxide powder into the atmosphere, the lithium hydroxide powder should be used by adhering or immobilizing the lithium hydroxide powder.

첨부도면 중 도 1은 종래의 기술에 의한 이산화탄소 고정화 흡착제의 제조 공정도이다. 수산화리튬과 물이 일정 비율로 혼합된 수용액에 활성탄을 투입하고 이를 교반기를 이용하여 충분히 교반한 후, 용액을 건조기에서 증발 건조하여 이산화탄소 고정화 흡착제를 제조하고 있다. 대한민국 공개특허 제2000-53782호와 대한민국 공개특허 제1996-71539호에서는 도 1과 같은 방법으로 소수성인 활성탄에 수산화리튬을 첨착시키는 방법을 제안하고 있다. 그러나, 소수성 흡착제인 활성탄에서 수산화리튬의 첨착량 또는 담지량이 증가하게 되면 활성탄 세공 내에서 수산화리튬의 결정이 성장하면서 활성탄의 세공을 막아버린다. 이로 인해 이산화탄소의 흡착, 고정화에는 단지 세공 외부로 노출된 부위만 사용되어 다량의 수산화리튬을 사용하였음에도 불구하고 이산화탄소의 흡착량은 전혀 증가하지 않는 문제가 있다. 1 is a manufacturing process diagram of a carbon dioxide immobilized adsorbent according to the prior art. Activated carbon was added to an aqueous solution in which lithium hydroxide and water were mixed at a predetermined ratio and sufficiently stirred by using a stirrer, and the solution was evaporated to dryness in a dryer to prepare a carbon dioxide immobilized adsorbent. Korean Patent Laid-Open Publication No. 2000-53782 and Korean Patent Laid-Open Publication No. 1996-71539 propose a method of attaching lithium hydroxide to hydrophobic activated carbon in the same manner as in FIG. 1. However, when the amount of deposition or loading of lithium hydroxide in the activated carbon, which is a hydrophobic adsorbent, increases, crystals of lithium hydroxide grow in the activated carbon pores, thereby blocking the pores of activated carbon. Therefore, there is a problem that the adsorption amount of carbon dioxide does not increase at all even though only portions exposed to the outside of the pores are used for adsorption and immobilization of carbon dioxide.

본 발명은 이러한 종래의 문제점을 해결하기 위한 것으로 활성탄의 질산, 초산, 황산 등과 같은 산성 물질을 이용하여 활성탄의 표면에 OH, COOH 등과 같은 관능기를 부여하여 수산화리튬의 첨착량을 증가하여 이산화탄소의 흡착량을 증진시킬 수 있는 이산화탄소 고정화 흡착제와 그의 제조방법을 제공하는데 그 목적이 있다. The present invention is to solve such a conventional problem by using an acidic material such as nitric acid, acetic acid, sulfuric acid of activated carbon to give a functional group such as OH, COOH on the surface of the activated carbon to increase the amount of lithium hydroxide adsorbed carbon dioxide adsorption It is an object of the present invention to provide a carbon dioxide immobilized adsorbent and a method for producing the same that can increase the amount.

또한, 본 발명은 소수성 활성탄의 세공 내에 수산화리튬을 수용액 상태로 첨착하지 않고 분말 형태로 기계적 혼합 방법을 이용하여 첨착하여 세공이 막히는 현상을 방지할 수 있는 이산화탄소 고정화 흡착제와 그의 제조방법을 제공하는데 그 목적이 있다. In addition, the present invention provides a carbon dioxide immobilized adsorbent that can prevent the clogging of the pores by applying a mechanical mixing method in the form of powder without impregnating lithium hydroxide in the aqueous solution in the pores of hydrophobic activated carbon, and its manufacturing method There is a purpose.

첨부도면 중 도 2는 본 발명에 의한 제 1이산화탄소 고정화 흡착제의 제조 공정도를 나타낸 것이다. 본 발명에 의한 제 1이산화탄소 고정화 흡착제는 크게 활성탄의 표면 개질 단계, 수용액 상태의 수산화리튬의 표면 개질 활성탄으로 첨착 단계로 나뉘어 진다. 상기 활성탄의 표면 개질 단계에서, 표면 개질제로는 0.01N에서 2N의 질산(HNO3), 초산(HCOOH), 황산(H2SO4), 인산(H3PO4), 옥살산[(COOH)₂2H2O], 과산화수소(H2O2), 염산(HCl) 등의 산성 물질을 사용한다. 활성탄의 표면 개질은 감압증발기에서 표면개질제에 활성탄을 넣고 30℃에서 130℃ 사이에서 10 rpm(분당회전속도)에서 500 rpm으로 교반하거나 또는 상압 상태의 회분식장치에 활성탄을 넣고 30℃에서 130℃ 사이에서 10 rpm에서 500 rpm으로 회전시키면서 상기 농도의 표면 개질제를 스프레이로 분사하는 방식으로 수행한다.Figure 2 of the accompanying drawings shows a manufacturing process chart of the first carbon dioxide immobilized adsorbent according to the present invention. The first carbon dioxide immobilized adsorbent according to the present invention is divided into a surface modification step of activated carbon and an impregnation step with surface modification activated carbon of lithium hydroxide in an aqueous solution state. In the surface modification step of the activated carbon, as a surface modifier, the nitric acid (HNO 3 ), acetic acid (HCOOH), sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), oxalic acid [(COOH) ₂2H Acidic materials such as 2 O], hydrogen peroxide (H 2 O 2 ), and hydrochloric acid (HCl). The surface modification of activated carbon is carried out by adding activated carbon to the surface modifier in a reduced pressure evaporator, stirring at 30 rpm to 130 ℃ at 10 rpm (rpm) at 500 rpm or by placing the activated carbon in a batch batch apparatus at atmospheric pressure and then operating at 30 to 130 캜. Spraying the surface modifier of this concentration while rotating from 10 rpm to 500 rpm.

표면 개질제로 처리한 활성탄은 80℃에서 130℃ 사이의 온도에서 1시간에서 10시간 동안 건조 증발시킨다. 그리고 감압증발기에 표면 개질 활성탄의 무게 대비 0.1%에서 90%에 해당하는 수산화리튬이 녹아 있는 수용액에 상기 활성탄을 넣고 30℃에서 130℃ 사이에서 10 rpm에서 500 rpm으로 교반하거나 또는 상압 상태의 회분식장치에 표면 개질 활성탄을 넣고 30℃에서 130℃ 사이에서 10 rpm에서 500 rpm으로 회전시키면서 상기 수산화리튬 수용액을 스프레이로 분사하는 방식으로 수산화리튬의 첨착을 수행한다. 수산화리튬이 첨착된 표면 개질 활성탄의 건조는 건조기에서 80℃에서 130℃ 사이의 온도에서 1시간에서 10시간 동안 건조 증발시키는 방법으로 이산화탄소 고정화 흡착제를 제조한다. Activated carbon treated with the surface modifier is dry evaporated for 1 to 10 hours at a temperature between 80 ° C and 130 ° C. Then, the activated carbon is put in an aqueous solution in which lithium hydroxide is dissolved in 0.1% to 90% of the weight of the surface-modified activated carbon in a reduced pressure evaporator, and stirred at 10 rpm to 500 rpm between 30 ° C. and 130 ° C. The surface-modified activated carbon was added thereto, and lithium hydroxide was added by spraying the lithium hydroxide aqueous solution with a spray while rotating at 30 rpm to 130 ° C. at 10 rpm to 500 rpm. Drying of surface-modified activated carbon impregnated with lithium hydroxide is carried out by drying evaporation at a temperature between 80 ° C. and 130 ° C. for 1 hour to 10 hours to prepare a carbon dioxide immobilized adsorbent.

도 3은 본 발명에 의한 제 2이산화탄소 고정화 흡착제의 제조 공정도를 나타낸 것이다. 본 발명에 의한 제 2이산화탄소 고정화 흡착제는 0.1 나노미터에서 10마이크로미터의 크기에 해당하는 수산화리튬 분말을 활성탄 무게 대비 0.1%에서 90%의 양으로 하여 표면 개질이 않된 활성탄과 함께 상압 회분식 장치에 넣고 30℃에서 130℃ 사이의 온도에서 10 rpm에서 500 rpm으로 교반하는 기계적 혼합을 통해 제조한다. 이 과정에서 수산화리튬 분말은 대부분 활성탄의 세공 내에 미세한 입자 상태로 들어가 첨착된다. Figure 3 shows a manufacturing process chart of the second carbon dioxide immobilized adsorbent according to the present invention. The second carbon dioxide immobilized adsorbent according to the present invention is a lithium hydroxide powder corresponding to a size of 0.1 nanometer to 10 micrometers in an amount of 0.1% to 90% of the weight of activated carbon and placed in an atmospheric pressure batch device together with activated carbon without surface modification. Prepared via mechanical mixing, stirring at 10 rpm to 500 rpm at a temperature between 30 ° C. and 130 ° C. In this process, lithium hydroxide powder mostly enters fine particles in pores of activated carbon and is impregnated.

도 4는 본 발명에 의한 제 3이산화탄소 고정화 흡착제의 제조 공정도를 나타낸 것이다. 본 발명에 의한 제 3이산화탄소 고정화 흡착제는 0.1 나노미터에서 10마이크로미터의 크기에 해당하는 수산화리튬 분말을 활성탄 무게 대비 0.1%에서 90%의 양으로 하여 도 2에서와 같이 표면이 개질된 표면 개질 활성탄과 함께 상압 회분식 장치에 넣고 30℃에서 130℃ 사이의 온도에서 10 rpm에서 500 rpm으로 교반하는 기계적 혼합을 통해 제조한다. 수산화리튬 분말은 표면이 개질되지 않은 소수성 활성탄에 비해 세공 크기가 증가하고 표면의 관능기 부여로 인해 보다 많은 량의 수산화리튬의 분말이 상기 활성탄의 세공 내에 첨착된다. Figure 4 shows the manufacturing process of the third carbon dioxide immobilized adsorbent according to the present invention. The third carbon dioxide immobilized adsorbent according to the present invention is lithium hydroxide powder corresponding to the size of 0.1 nanometer to 10 micrometer in the amount of 0.1% to 90% of the weight of activated carbon, the surface-modified activated carbon as shown in FIG. It is prepared through mechanical mixing with stirring in an atmospheric pressure batch apparatus with stirring at 10 rpm to 500 rpm at a temperature between 30 ℃ to 130 ℃. Lithium hydroxide powder has a larger pore size compared to hydrophobic activated carbon with no surface modification and a larger amount of lithium hydroxide powder is impregnated in the pores of the activated carbon due to functionalization of the surface.

도 2, 도 3, 도4에서 제조한 본 발명의 이산화탄소 고정화 흡착제에서, 이산화탄소는 다음의 반응식과 같이 수산화리튬과 반응하여 탄산리튬으로 고정화된다. In the carbon dioxide immobilized adsorbent of the present invention prepared in FIGS. 2, 3, and 4, carbon dioxide is fixed with lithium carbonate by reacting with lithium hydroxide as in the following reaction formula.

2LiOH + CO2 → Li2CO3 + H2O (1)2LiOH + CO 2 → Li 2 CO 3 + H 2 O (1)

본 발명에 의한 이산화탄소 고정화 흡착제에서, 이산화탄소 고정화 물질로 사용한 수산화리튬(LiOH)외에도 칼슘(Ca), 바륨(Ba), 칼륨(K) 등의 복합 화합물인 수산화바륨(Ba(OH)2), 수산화칼슘(Ca(OH2)), 수산화칼륨(KOH)이 이산화탄소의 고정화물질로의 적용이 가능하다. 또한 질산(HNO3), 초산(HCOOH), 황산(H2SO4), 인산(H3PO4), 옥살산[(COOH)₂2H2O], 염산(HCl), 과산화수소(H2O 2) 등과 같은 산성 물질을 이용한 표면 개질은 무기 복합체인 제올라이트, 실리카, 알루미나 등에도 적용이 가능하다. In the carbon dioxide immobilized adsorbent according to the present invention, in addition to lithium hydroxide (LiOH) used as a carbon dioxide immobilization material, barium hydroxide (Ba (OH) 2 ), calcium hydroxide, which is a complex compound such as calcium (Ca), barium (Ba), potassium (K), and the like (Ca (OH 2 )), potassium hydroxide (KOH) is applicable to the immobilization material of carbon dioxide. Also nitric acid (HNO 3 ), acetic acid (HCOOH), sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), oxalic acid [(COOH) ₂2H 2 O], hydrochloric acid (HCl), hydrogen peroxide (H 2 O 2 ) Surface modification using an acidic material such as is applicable to the inorganic composite zeolite, silica, alumina and the like.

본 발명에 의해 제조한 이산화탄소 고정화 흡착제의 이산화탄소 흡착 성능을 실시 예를 통해 보다 상세히 설명하기로 한다. 본 발명의 모든 실시예에서 수행된 이산화탄소 흡착실험은 다음과 같은 방법으로 수행되었다. 즉, 흡착제를 충전할 수 있는 흡착관으로는 석영으로 된 U자형 마이크로 반응기를 사용하였고 29.75% CO2(He 기준)와 He(99.999%)의 혼합 기체를 유량조절기를 이용하여 원하는 농도로 맞추어 상온(23℃ 내지 24℃) 및 상압 조건에서 흡착제의 성능평가를 실시하였다. 흡착 성능은 가스크로마토그래프(영린600D, 충전칼럼 chromosorb-104)를 이용하여 흡착관 입구 또는 출구에서의 이산화탄소 농도를 측정하는 방법으로 평가하였다. The carbon dioxide adsorption performance of the carbon dioxide immobilized adsorbent prepared by the present invention will be described in more detail with reference to the following examples. Carbon dioxide adsorption experiments performed in all embodiments of the present invention was carried out in the following manner. That is, a U-shaped micro reactor made of quartz was used as an adsorption tube to fill the adsorbent, and the mixture gas of 29.75% CO 2 (He basis) and He (99.999%) was adjusted to a desired concentration using a flow controller at room temperature. (23 ° C. to 24 ° C.) and performance evaluation of the adsorbent were carried out at atmospheric pressure. Adsorption performance was evaluated by measuring the carbon dioxide concentration at the inlet or outlet of the adsorption tube using a gas chromatograph (Younglin 600D, packed column chromosorb-104).

실시예 1Example 1

첨부 도면 중 도 5는 본 발명에 의한 제 1이산화탄소 고정화 흡착제의 이산화탄소 흡착 성능 결과를 나타낸 그래프이다. 도 5에서 5% LiOH는 종래의 기술에 의한 이산화탄소 고정화 흡착제로서, 표면 개질이 안된 활성탄에 상기 활성탄의 무게 대비 5%의 수산화리튬을 첨착시킨 것이다. 2% LiOH(질산)은 본 발명에 의한 제 1이산화탄소 고정화 흡착제로서, 종래의 기술에 의한 이산화탄소 고정화 흡착에 사용한 활성탄과 동일한 활성탄의 표면을 1N의 질산을 이용하여 개질하고 여기에 상기 활성탄의 무게 대비 2%의 수산화리튬을 첨착한 것이다. 5 is a graph showing the carbon dioxide adsorption performance results of the first carbon dioxide immobilized adsorbent according to the present invention. In FIG. 5, 5% LiOH is a carbon dioxide immobilized adsorbent according to the prior art, in which 5% lithium hydroxide is added to the activated carbon having no surface modification, compared to the weight of the activated carbon. 2% LiOH (nitric acid) is the first carbon dioxide immobilized adsorbent according to the present invention, and the surface of the same activated carbon used for carbon dioxide immobilized adsorption according to the prior art is modified with 1 N nitric acid, and the weight of the activated carbon 2% of lithium hydroxide is impregnated.

본 발명에 의한 제 1이산화탄소 고정화 흡착제의 수산화리튬 첨착량이 적음에도 불구하고 오히려 이산화탄소는 늦게 파괴되고 있다. 이는 본 발명에 의한 제 1이산화탄소 고정화 흡착제의 이산화탄소에 대한 흡착 성능이 매우 우수함을 의미한다. 첨착된 수산화리튬 1g당 흡착된 이산화탄소의 흡착량(mol)에 있어서, 본 발명에 의한 제 1이산화탄소 고정화 흡착제의 이산화탄소 흡착량은 0.01481 mol/g이고 종래의 기술에 의한 이산화탄소 고정화 흡착제의 이산화탄소 흡착량은 0.00514 mol/g으로 약 3배 정도 크게 나타났다. In spite of the small amount of lithium hydroxide adhering of the first carbon dioxide immobilized adsorbent according to the present invention, the carbon dioxide is slowly destroyed. This means that the adsorption performance on carbon dioxide of the first carbon dioxide immobilized adsorbent according to the present invention is very excellent. Adsorption amount of carbon dioxide adsorbed per mol of lithium hydroxide impregnated (mol), the carbon dioxide adsorption amount of the first carbon dioxide immobilized adsorbent according to the present invention is 0.01481 mol / g and the carbon dioxide adsorption amount of the carbon dioxide immobilized adsorbent according to the prior art is It was about three times as large as 0.00514 mol / g.

실시예 2Example 2

도 6은 본 발명에 의한 제 2이산화탄소 고정화 흡착제의 이산화탄소 흡착 성능 결과를 나타낸 그래프이다. 도 6에서 i50%는 종래의 기술에 의한 이산화탄소 고정화 흡착제로서, 표면 개질이 안된 활성탄에 상기 활성탄의 무게 대비 50%의 수산화리튬을 첨착시킨 것이다. p50%는 본 발명에 의한 제 2이산화탄소 고정화 흡착제 로서, 종래의 기술에 의한 이산화탄소 고정화 흡착에 사용한 활성탄과 동일한 활성탄과 수산화리튬 분말을 기계적 혼합을 통해 제조한 것이다. 본 발명에 의한 제 2이산화탄소 고정화 흡착제에서 이산화탄소가 늦게 파괴되고 있다. 이는 본 발명에 의한 제 2이산화탄소 고정화 흡착제의 이산화탄소에 대한 흡착 성능이 우수함을 의미하며, 종래의 기술에 의한 이산화탄소 흡착제는 다량의 수산화리튬이 세공 내에서 성장하여 세공을 막아 주로 이산화탄소의 흡착이 세공 외부에서만 이루어지기 때문이다. 수산화리튬 1g당 흡착된 이산화탄소의 흡착량(mol)에 있어서, 본 발명에 의한 제 2이산화탄소 고정화 흡착제의 이산화탄소 흡착량은 0.03235 mol/g이고 종래의 기술에 의한 이산화탄소 고정화 흡착제의 이산화탄소 흡착량은 0.01752 mol/g으로 약 2배 정도 크게 나타났다. 6 is a graph showing the carbon dioxide adsorption performance results of the second carbon dioxide immobilized adsorbent according to the present invention. In FIG. 6, i50% is a carbon dioxide immobilized adsorbent according to the prior art, in which 50% of lithium hydroxide is added to activated carbon without surface modification by weight of the activated carbon. p50% is the second carbon dioxide immobilized adsorbent according to the present invention, and is prepared by mechanical mixing of the same activated carbon and lithium hydroxide powder as the activated carbon used for carbon dioxide immobilized adsorption according to the prior art. In the second carbon dioxide immobilized adsorbent according to the present invention, carbon dioxide is destroyed late. This means that the adsorption performance of the second carbon dioxide immobilized adsorbent according to the present invention to the carbon dioxide is excellent, the carbon dioxide adsorbent according to the prior art, a large amount of lithium hydroxide grows in the pores to block the pores, so that the adsorption of carbon dioxide mainly outside the pores Because it is only made. In the adsorption amount (mol) of carbon dioxide adsorbed per 1 g of lithium hydroxide, the carbon dioxide adsorption amount of the second carbon dioxide immobilized adsorbent according to the present invention is 0.03235 mol / g, and the carbon dioxide adsorption amount of the carbon dioxide immobilized adsorbent according to the prior art is 0.01752 mol. It was twice as large as / g.

본 발명에 의한 이산화탄소 고정화 흡착제는 종래의 기술에 의한 이산화탄소 고정화 흡착제에 비해 이산화탄소의 흡착 성능이 현전히 개선되어 화력발전소 등과 같은 고정원과 자동차 등과 같은 이동원에서 배출되는 이산화탄소의 분리, 회수에 크게 기여할 것이다. The carbon dioxide immobilized adsorbent according to the present invention will significantly improve the adsorption performance of carbon dioxide compared to the conventional carbon dioxide immobilized adsorbent and will greatly contribute to the separation and recovery of carbon dioxide emitted from fixed sources such as thermal power plants and mobile sources such as automobiles. .

Claims (9)

이산화탄소의 흡착·고정화에 선택성이 뛰어난 수산화리튬(LiOH), 수산화바륨(Ba(OH)2), 수산화칼슘 (Ca(OH)2) 및 수산칼륨(KOH)으로 이루어진 군으로부터 선택된 적어도 하나의 친수성 흡착제 수용액에 활성탄을 투입하여 상기 친수성 흡착제를 상기 활성탄에 첨착시켜서 제조함을 특징으로 하는 이산화탄소 고정화 흡착제를 제조하는 방법에 있어서, 상기 친수성 흡착제 수용액에 상기 활성탄을 표면 개질하여 넣고, 30℃ 내지 130℃의 사이에서 10 rpm 내지 500 rpm으로 교반하거나, 상압 상태의 회분식 장치에 상기 활성탄을 넣고, 30℃ 내지 130℃에서 10 rpm 내지 500 rpm으로 회전시키면서 상기 친수성 흡착제 수용액을 스프레이 분사하는 방식으로 첨착을 수행한 후, 건조기에서 80 ℃ 내지 130℃ 사이의 온도에서 1시간 내지 10시간 동안 건조 증발하여서 제조함을 특징으로 하는 이산화탄소 고정화 흡착제의 제조방법.At least one hydrophilic adsorbent aqueous solution selected from the group consisting of lithium hydroxide (LiOH), barium hydroxide (Ba (OH) 2 ), calcium hydroxide (Ca (OH) 2 ) and potassium hydroxide (KOH) with excellent selectivity for adsorption and fixation of carbon dioxide In the method for producing a carbon dioxide immobilized adsorbent, the activated carbon is prepared by attaching activated carbon to the activated carbon and adhering the hydrophilic adsorbent to the activated carbon. The activated carbon is surface-modified in the aqueous solution of the hydrophilic adsorbent, and between 30 ° C and 130 ° C. After stirring at 10 rpm to 500 rpm, or by putting the activated carbon in a batch of atmospheric pressure device, and spraying the aqueous solution of the hydrophilic adsorbent while rotating at 10 rpm to 500 rpm at 30 ℃ to 130 ℃ Prepared by drying and evaporating for 1 to 10 hours at a temperature between 80 and 130 The method of fixing carbon dioxide adsorbent for the gong. 이산화탄소의 흡착·고정화에 선택성이 뛰어난 수산화리튬(LiOH), 수산화바륨(Ba(OH)2), 수산화칼슘 (Ca(OH)2) 및 수산칼륨(KOH)으로 이루어진 군으로부터 선택된 적어도 하나의 친수성 흡착제 분말을 활성탄에 첨착시켜서 이산화탄소 고정화 흡착제를 제조하는 방법에 있어서, 상기 친수성 흡착제 분말을 표면 개질하거나 표면 개질이 되지 않은 활성탄과 감압 증발기 또는 회분식 장치에서 30℃ 내지 130℃에서 10 rpm 내지 500 rpm의 회전속도로 교반하는 기계적 혼합을 통해서 상기 활성탄의 세공 내에 상기 흡착제를 첨착시켜서 제조함을 특징으로 하는 이산화탄소 고정화 흡착제의 제조방법.At least one hydrophilic adsorbent powder selected from the group consisting of lithium hydroxide (LiOH), barium hydroxide (Ba (OH) 2 ), calcium hydroxide (Ca (OH) 2 ) and potassium hydroxide (KOH) with excellent selectivity for adsorption and fixation of carbon dioxide In the method for producing a carbon dioxide immobilized adsorbent by adhering the activated carbon to the activated carbon, a rotation speed of 10 rpm to 500 rpm at 30 ° C. to 130 ° C. in activated carbon and a reduced pressure evaporator or a batch device which surface-modifies or does not surface-modify the hydrophilic adsorbent powder. Method of producing a carbon dioxide immobilized adsorbent, characterized in that by adsorbing the adsorbent in the pores of the activated carbon through mechanical mixing with stirring. 제 1항 또는 제 2항에 있어서, 상기 활성탄은 그의 표면을 0.01N에서 2N의 질산(HNO3), 초산(HCOOH), 황산(H2SO4), 인산(H3PO4), 옥살산[(COOH)₂ 2H2O], 과산화수소(H2O2) 또는 염산(HCl)의 산성 물질로 구성된 표면 개질제를 사용하여 개질하는 것을 특징으로 하는 이산화탄소 고정화 흡착제의 제조방법.The method according to claim 1 or 2, wherein the activated carbon has a surface of 0.01N to 2N nitric acid (HNO 3 ), acetic acid (HCOOH), sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ), oxalic acid [ (COOH) ₂ 2H 2 O], hydrogen peroxide (H 2 O 2 ) or hydrochloric acid (HCl) using a surface modifier composed of an acidic substance of the carbon dioxide immobilized adsorbent characterized in that the manufacturing method. 제 3항에 있어서, 상기 활성탄의 표면 개질은 감압증발기에서 표면 개질제에 활성탄을 넣고 30℃에서 130℃ 사이에서 10 rpm(분당회전속도)에서 500 rpm으로 교반하거나 또는 상압 상태의 회분식 장치에 활성탄을 넣고 30℃에서 130℃ 사이에서 10 rpm에서 500 rpm으로 회전시키면서 상기 농도의 표면 개질제를 스프레이로 분사하는 방식으로 수행하고 난 후 이를 건조기에 30℃에서 130℃ 사이에서 증발 건조하는 것을 특징으로 하는 이산화탄소 고정화 흡착제의 제조방법.The surface modification of the activated carbon is carried out by putting activated carbon in the surface modifier in a reduced pressure evaporator and stirring the activated carbon at 500 rpm at 10 rpm (rpm per minute) between 30 ° C. and 130 ° C. Carbon dioxide, characterized in that by performing a method of spraying the surface modifier of the concentration with a spray while rotating at 10 rpm to 500 rpm between 30 ℃ to 130 ℃ and then drying it in a dryer between 30 ℃ to 130 ℃ Method for preparing immobilized adsorbent. 삭제delete 삭제delete 제 1항 또는 제 2항에 있어서, 상기 친수성 흡착제 수용액 또는 분말은 상기 활성탄 무게 대비 0.1%에서 90%의 양을 사용하는 것을 특징으로 하는 이산화탄소 고정화 흡착제의 제조방법.The method of claim 1 or 2, wherein the hydrophilic adsorbent aqueous solution or powder is used in an amount of 0.1% to 90% by weight of the activated carbon. 제 7항에 있어서, 상기 친수성 흡착제 분말은 0.1 나노미터에서 10마이크로미터의 크기인 것을 특징으로 하는 이산화탄소 고정화 흡착제의 제조방법.8. The method of claim 7, wherein the hydrophilic adsorbent powder is 0.1 nanometer to 10 micrometers in size. 제 1항 내지 제 2항 중 어느 하나의 항에 의해 제조된 것을 특징으로 하는 이산화탄소 고정화 흡착제.A carbon dioxide immobilized adsorbent prepared by any one of claims 1 to 2.
KR1020030065121A 2003-09-19 2003-09-19 Carbon dioxide immobilized adsorbent and its manufacturing method KR100562020B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030065121A KR100562020B1 (en) 2003-09-19 2003-09-19 Carbon dioxide immobilized adsorbent and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030065121A KR100562020B1 (en) 2003-09-19 2003-09-19 Carbon dioxide immobilized adsorbent and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20050028624A KR20050028624A (en) 2005-03-23
KR100562020B1 true KR100562020B1 (en) 2006-03-16

Family

ID=37385539

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030065121A KR100562020B1 (en) 2003-09-19 2003-09-19 Carbon dioxide immobilized adsorbent and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100562020B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312341B1 (en) * 2011-03-11 2013-09-27 한국건설기술연구원 Carbon dioxide absorbent using recycled waste and concrete including the same
KR102663903B1 (en) 2023-07-19 2024-05-08 주식회사 미도크린테크 carbon dioxide reduction device for clean room

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100866642B1 (en) * 2007-03-19 2008-11-04 주식회사 엔버스 Method of measuring carbon dioxide concentration in air and cartridge for measurement
LU91685B1 (en) 2010-05-07 2011-11-08 Cppe Carbon Process & Plant Engineering S A Process for the catalytic removal of carbon dioxide and sulfur dioxide from exhaust gases
LU91900B1 (en) 2011-11-14 2013-05-15 Carbon Process & Plant Engineering S A Process for the catalytic removal of carbon dioxide NOx from exhaust gases
KR101305454B1 (en) * 2012-02-29 2013-09-06 충남대학교산학협력단 Carbon adsorbent codoped nitrogen, oxygen, fluorine for carbon dioxide adsorption and manufacturing method thereof
KR101588768B1 (en) 2014-10-27 2016-01-26 현대자동차 주식회사 Active carbon and method for preparation of the same
KR101845175B1 (en) * 2016-12-16 2018-04-03 계명대학교 산학협력단 Activated carbon materials for filter of vehicle interior treated with alkaline metal and preparing method thereof
KR102032387B1 (en) * 2019-04-05 2019-10-15 한국과학기술연구원 A catalyst for regenerating a carbon dioxide absorbent containing a modified activated carbon, a method for producing the same, and a method for capturing carbon dioxide using the catalyst
CN110510610A (en) * 2019-09-20 2019-11-29 安徽大学 A kind of method that hydrogen peroxide and phosphoric acid jointly modify active carbon electrode material
CN111099591B (en) * 2019-12-30 2022-04-01 四川大学 Surface-modified high-activity low-temperature denitration active coke and preparation method thereof
CN112044238B (en) * 2020-08-27 2022-07-15 临海市建新化工有限公司 Tail gas treatment system of methyl bromide
CN112546851B (en) * 2020-11-13 2022-04-26 中国科学院过程工程研究所 Activated carbon, preparation method thereof and application thereof in desulfurization
CN113244884A (en) * 2021-04-23 2021-08-13 福建韩研环保科技有限公司 Modified activated carbon for purifying VOCs (volatile organic compounds) and preparation method thereof
CN113318709A (en) * 2021-06-04 2021-08-31 董鹏 Oil stain adsorbent and preparation method thereof
CN115254032A (en) * 2022-04-15 2022-11-01 中国辐射防护研究院 Ionic liquid immobilized activated carbon and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312341B1 (en) * 2011-03-11 2013-09-27 한국건설기술연구원 Carbon dioxide absorbent using recycled waste and concrete including the same
KR102663903B1 (en) 2023-07-19 2024-05-08 주식회사 미도크린테크 carbon dioxide reduction device for clean room
KR20250015823A (en) 2023-07-19 2025-02-03 주식회사 미도크린테크 carbon dioxide reduction device for clean room

Also Published As

Publication number Publication date
KR20050028624A (en) 2005-03-23

Similar Documents

Publication Publication Date Title
KR100562020B1 (en) Carbon dioxide immobilized adsorbent and its manufacturing method
JP5212992B2 (en) Aluminum silicate complex and high performance adsorbent comprising the complex
US7887770B2 (en) Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range
US5670124A (en) Nitrogen-containing molecular sieving carbon, a process for preparing the same and use thereof
CN1125157A (en) Composite clay materials for removal of sox from gas streams
JP2007296463A (en) Hydroxyapatite silica composite porous material adsorbent and method for producing the same
US20220410119A1 (en) Activated carbon for adsorbing molecular polar substance
KR101845175B1 (en) Activated carbon materials for filter of vehicle interior treated with alkaline metal and preparing method thereof
US5169825A (en) Ammonium ion- and ammonia-selective adsorbent and process for preparation of same
Sharonov et al. Sorption of CO2 from humid gases on potassium carbonate supported by porous matrix
JP2778031B2 (en) Nitrogen oxide / sulfur oxide absorbent
JPH0268140A (en) Adsorbent for removal of iodine in gas
JPH11189481A (en) Porous functional material
JP2010235363A (en) Porous body, gas cleaning material and methods for producing them
Jeyaseelan et al. Microfabrication of covalent organic framework-based magnetic bio-ceramic beads for defluoridation of water
JP3398761B2 (en) Humidity control material showing excellent water absorption behavior under high humidity conditions
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP4711831B2 (en) Exhaust gas treatment agent, exhaust gas treatment method, and exhaust gas treatment apparatus
JPH074506B2 (en) Exhaust gas purification method
JP2006016270A (en) Basic metal compound-supported carbon and method for producing the same
JPH07275850A (en) Activated carbon for removing lead and manufacture of the same
JP2961260B1 (en) Recovery of specific gas components in flue gas
JP2002085535A (en) Humidifiable formaldehyde adsorbent
RU2414294C1 (en) Method of producing sorbent to remove iodine radioniuclides and/or its organic compounds
WO2022145217A1 (en) Method for reducing carbon dioxide in living space, and carbon dioxide adsorbent and production method therefor

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20030919

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20050628

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20051021

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20060309

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20060310

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20060313

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20090303

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20100303

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20110303

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20120313

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20130304

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20140227

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20140227

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20150302

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20160302

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20160302

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20170302

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20170302

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20180302

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20180302

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20190411

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20190411

Start annual number: 14

End annual number: 14

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20201221