JP3398761B2 - Humidity control material showing excellent water absorption behavior under high humidity conditions - Google Patents
Humidity control material showing excellent water absorption behavior under high humidity conditionsInfo
- Publication number
- JP3398761B2 JP3398761B2 JP2000240679A JP2000240679A JP3398761B2 JP 3398761 B2 JP3398761 B2 JP 3398761B2 JP 2000240679 A JP2000240679 A JP 2000240679A JP 2000240679 A JP2000240679 A JP 2000240679A JP 3398761 B2 JP3398761 B2 JP 3398761B2
- Authority
- JP
- Japan
- Prior art keywords
- control material
- humidity control
- under high
- humidity
- aluminum silicate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inorganic Fibers (AREA)
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高湿度条件下にお
いて優れた吸水挙動を示す調湿材料に関するものであ
り、更に詳しくは、特定のメソポア細孔を有する中空繊
維状アルミニウムシリケイトからなる、耐久性に優れ、
省エネルギーの観点から既存の結露防止材料に優る、結
露防止材料等として有用な、新規な調湿材料、及びその
製造方法に関するものである。TECHNICAL FIELD The present invention relates to a humidity control material which exhibits excellent water absorption behavior under high humidity conditions, and more specifically, it is composed of a hollow fibrous aluminum silicate having specific mesopore pores and is durable. Excellent in
The present invention relates to a novel humidity control material which is superior to existing dew condensation prevention materials from the viewpoint of energy saving and is useful as a dew condensation prevention material and the like, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】日本における最近の住居に関わる建築物
は、高断熱化・高気密化の促進により、内部結露の発生
及びそれに伴う壁面の濡れやシミの発生、カビやダニな
どの繁殖などの問題が生じている。このような居住空間
の変化に伴い、結露防止対策の技術の重要性はますます
高まっている。従来では、乾燥剤として生石灰(酸化カ
ルシウム)やシリカゲルなどを利用したり、除湿器、エ
アコン等の空調設備を運転することにより、結露の発生
を防いでいた。2. Description of the Related Art In recent years, buildings related to housing in Japan have been promoted to have high heat insulation and airtightness so that internal dew condensation may occur, resulting in wetting of wall surfaces and stains, and breeding of mold and mites. There is a problem. With such changes in living space, the technology for preventing dew condensation is becoming more important. Conventionally, quick lime (calcium oxide), silica gel, or the like is used as a desiccant, or dehumidifiers are prevented by operating air-conditioning equipment such as a dehumidifier and an air conditioner.
【0003】しかし、上記の乾燥剤は、いずれも吸湿力
が強く、除湿能力を制御しにくい。また、一度飽和点に
達すると吸湿機能が大幅に低下するため、吸湿有効期間
は短い。更に、一度吸収した水分を分離し吸湿機能を回
復させることが容易ではないため、繰り返し再利用する
ことが困難である。一方、除湿機、エアコン等の空調設
備の運転による除湿は、エネルギーを消費する点及び経
済性の点から好ましいものではない。However, each of the above desiccants has a strong hygroscopic force, and it is difficult to control the dehumidifying ability. Further, once the saturation point is reached, the moisture absorption function is significantly reduced, so that the moisture absorption effective period is short. Furthermore, since it is not easy to separate the water once absorbed and restore the moisture absorption function, it is difficult to reuse it repeatedly. On the other hand, dehumidification by operating an air conditioner such as a dehumidifier or an air conditioner is not preferable in terms of energy consumption and economical efficiency.
【0004】[0004]
【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、上記従来製
品の問題点を解消し得る新しい調湿材料を開発すること
を目標として鋭意研究を積み重ねた結果、特定のメソポ
ア細孔を有する中空繊維状アルミニウムシリケイトが、
高湿度条件下において優れた吸水挙動を示すことを見出
し、更に研究を重ねて、本発明を完成するに至った。即
ち、本発明は、高湿度条件下において多量の水蒸気を吸
着し、かつ通常の湿度条件下において吸着した水蒸気の
大部分を容易に放出することができ、それによって、繰
り返し利用可能な、結露防止材料として好適に用いるこ
とができる調湿材料、及びかかる調湿材料を比較的簡単
にかつ低コストで製造できる方法を提供することを目的
とするものである。Under these circumstances, the inventors of the present invention, in view of the above-mentioned prior art, aim to develop a new humidity control material capable of solving the problems of the above-mentioned conventional products. As a result of accumulating extensive research as a hollow fiber aluminum silicate having specific mesopore pores,
The inventors have found that they exhibit excellent water absorption behavior under high humidity conditions, and have conducted further research to complete the present invention. That is, the present invention is capable of adsorbing a large amount of water vapor under high humidity conditions and easily releasing most of the adsorbed water vapor under normal humidity conditions, thereby enabling repeated use and prevention of dew condensation. It is an object of the present invention to provide a humidity control material that can be suitably used as a material, and a method that can manufacture such a humidity control material relatively easily and at low cost.
【0005】[0005]
【課題を解決するための手段】前記課題を解決するため
に、本発明では、細孔半径20nm未満のメソポア細孔
を有する多孔質チューブ状アルミニウムシリケイトから
なる調湿材料であって、相対湿度90%以上の高湿度条
件下において自重の約200%以上の水蒸気を吸着し、
かつ相対湿度90%程度以下の通常の湿度条件下におい
て吸着した水蒸気の大部分を容易に放出することができ
る、繰り返し利用可能な、高湿度条件下において優れた
吸水挙動を示す調湿材料、が提供される。更に、弱酸性
条件下で合成される中空繊維状アルミニウムケイ酸塩を
水熱合成にて合成した後、アルカリ性水溶液を加え、生
成物を含む溶液全体をpHが8〜12程度のアルカリ性
にすることにより、生成物をゲル状物質として凝集させ
ることにより形成される特異な立体形状を利用し、それ
自体が熱分解しない程度の温度で乾燥することによっ
て、高湿度条件下において優れた吸水挙動を示す調湿材
料を得ることを特徴とする調湿材料の製造方法、が提供
される。In order to solve the above problems, the present invention provides a humidity control material comprising a porous tubular aluminum silicate having mesopore pores having a pore radius of less than 20 nm and having a relative humidity of 90. Adsorbs about 200% or more of water vapor of its own weight under high humidity conditions of
In addition, a humidity control material which can easily release most of the adsorbed water vapor under a normal humidity condition of about 90% or less of relative humidity and which can be repeatedly used and exhibits excellent water absorption behavior under a high humidity condition, Provided. Furthermore, after synthesizing hollow fibrous aluminum silicate synthesized under weakly acidic conditions by hydrothermal synthesis, an alkaline aqueous solution is added to make the entire solution containing the product alkaline with a pH of about 8-12. Exhibits a superior water absorption behavior under high humidity conditions by utilizing a unique three-dimensional shape formed by aggregating the product as a gel-like substance and drying it at a temperature at which it does not thermally decompose itself. A method for producing a humidity control material, which comprises obtaining the humidity control material.
【0006】[0006]
【発明の実施の形態】以下、本発明において更に詳細に
説明する。本発明の方法は、弱酸性条件下で合成した中
空繊維状アルミニウムケイ酸塩を水熱合成した後、アル
カリを加えることによって、中空繊維状アルミニウムケ
イ酸塩のゲル状物質を凝集させることにより形成される
特異な立体形状を利用し、それ自体が熱分解しない程度
の温度で乾燥することを特徴とするものである。その結
果、相対湿度90%以上の高湿度条件下において、自重
の約200%以上の水蒸気を吸着し、かつ相対湿度90
%程度以下の通常の湿度条件下において吸着した水蒸気
の大部分を容易に放出する優れた調湿機能を示す多孔質
材料が提供される。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. The method of the present invention is formed by hydrothermally synthesizing hollow fibrous aluminum silicate synthesized under a weakly acidic condition, and then adding alkali to agglomerate the hollow fibrous aluminum silicate gel substance. The peculiar three-dimensional shape described above is utilized, and the drying is performed at a temperature at which it does not thermally decompose. As a result, under high humidity conditions of 90% relative humidity or more, about 200% or more of water vapor of its own weight is adsorbed, and relative humidity of 90% or more.
Provided is a porous material exhibiting an excellent humidity control function that easily releases most of the adsorbed water vapor under a normal humidity condition of about 10% or less.
【0007】本発明の方法では、原料としてケイ素化合
物とアルミニウム化合物が用いられる。ケイ素源として
使用される試剤は、モノケイ酸であればよく、具体的に
は、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、
無定形コロイド状二酸化ケイ素(エアロジルなど)など
が好適なものとして挙げられる。また、上記ケイ酸分子
と結合させるアルミニウム源としては、アルミニウムイ
オンであればよく、具体的には、例えば、塩化アルミニ
ウム、硝酸アルミニウム、過塩素酸アルミニウムなどの
アルミニウム化合物が挙げられる。これらのケイ素源及
びアルミニウム源は、上記の化合物に限定されるもので
はなく、それらと同効のものであれば同様に使用するこ
とができる。In the method of the present invention, a silicon compound and an aluminum compound are used as raw materials. The reagent used as the silicon source may be monosilicic acid, and specifically, sodium orthosilicate, sodium metasilicate,
Amorphous colloidal silicon dioxide (such as Aerosil) is preferable. Further, the aluminum source to be bonded to the silicic acid molecules may be any aluminum ion, and specific examples thereof include aluminum compounds such as aluminum chloride, aluminum nitrate, and aluminum perchlorate. These silicon source and aluminum source are not limited to the above compounds, and may be similarly used as long as they have the same effect.
【0008】これらの原料を適切な水溶液に溶解させ、
所定の濃度の溶液を調製する。これらの溶液を任意の比
率で混合しても前駆体の形成において問題はないが、好
適にはケイ素/アルミニウム比は0.5〜1.0となる
ように混合する。溶液中のケイ素化合物の濃度は1〜1
000mmol/lでアルミニウム化合物の溶液の濃度
は1〜2000mmol/lであるが、好適な濃度とし
ては1〜500mmol/lのケイ素化合物溶液と1〜
1000mmol/lのアルミニウム化合物溶液を混合
することが好ましい。このアルミニウム化合物溶液にケ
イ素化合物溶液を混合した後、アルカリ性溶液を滴下
し、pHが弱酸性から中性付近なるように調整し、前駆
体を形成する。前駆体生成過程における中和反応に必要
なアルカリ性溶液としては、例えば、水酸化ナトリウ
ム、水酸化カリウム、アンモニアなどが挙げられる。前
駆体形成後、遠心分離、濾過、膜分離等により、溶液中
の共存イオンを取り除き、その後、回収した前駆体を純
水に分散させ、更に、副生成物の生成を抑制するため、
酸を滴下し、pHが3〜6の酸性溶液とする。好適には
pHが3.5〜4.5が望ましい。また、このときに用
いられる酸としては、例えば、塩酸、硝酸、過塩素酸な
どが挙げられる。These raw materials are dissolved in an appropriate aqueous solution,
Prepare a solution of a given concentration. There is no problem in forming the precursor even if these solutions are mixed in an arbitrary ratio, but preferably they are mixed so that the silicon / aluminum ratio is 0.5 to 1.0. The concentration of the silicon compound in the solution is 1 to 1
The concentration of the aluminum compound solution is 1 to 2000 mmol / l at 000 mmol / l, but the preferable concentration is 1 to 500 mmol / l of the silicon compound solution and 1 to 500 mmol / l.
It is preferable to mix an aluminum compound solution of 1000 mmol / l. After the silicon compound solution is mixed with this aluminum compound solution, an alkaline solution is added dropwise to adjust the pH so as to be slightly acidic to near neutral to form a precursor. Examples of the alkaline solution necessary for the neutralization reaction in the precursor formation process include sodium hydroxide, potassium hydroxide, ammonia and the like. After the precursor is formed, the coexisting ions in the solution are removed by centrifugation, filtration, membrane separation, etc., and then the recovered precursor is dispersed in pure water to further suppress the production of by-products.
Acid is added dropwise to obtain an acidic solution having a pH of 3-6. The pH is preferably 3.5 to 4.5. In addition, examples of the acid used at this time include hydrochloric acid, nitric acid, perchloric acid and the like.
【0009】この酸性水溶液に分散させた前駆体を2日
間加熱する。加熱の方法及び条件は、例えば、マントル
ヒーターやオートクレーブを用いて、水が蒸発しないよ
うに加熱を行えばよく、また、温度の範囲は50℃〜1
20℃であるが、好適には100℃前後が望ましい。加
熱後、生成物を含む水溶液にアルカリ性水溶液を加えp
Hを8〜12程度のアルカリ性にすることにより、生成
物をゲル状物質として凝集させる。このときに用いられ
るアルカリとしては、例えば、アンモニア、水酸化ナト
リウム、水酸化カリウムなどが挙げられる。遠心分離に
より余分な水を取り除いた後、それ自体が熱分解しない
程度の温度で乾燥することによって、繊維が複雑にから
み合うことによって形成される特異な立体形状を有する
中空繊維状アルミニウムケイ酸塩が分離回収される。乾
燥する温度は、中空繊維状アルミニウムケイ酸塩が分解
しない350℃以下であればよく、好適には50〜12
0℃である。上記方法により、細孔半径5nm未満のメ
ソポア細孔を有する中空繊維状アルミニウムシリケイト
が得られる。本発明の細孔半径5nm未満のメソポア細
孔を有する中空繊維状アルミニウムシリケイトからなる
調湿材料は、以下の特性を有する。相対湿度90%以上
の高湿度条件下において、自重の約200%以上の水蒸
気を吸着し、かつ相対湿度90%以下の湿度条件下にお
いて吸着した水蒸気の大部分を容易に放出することがで
きる。繰り返し利用可能な高湿度条件下において優れた
吸水挙動を示す。The precursor dispersed in this acidic aqueous solution is heated for 2 days. The heating method and conditions may be, for example, using a mantle heater or an autoclave so that the water does not evaporate, and the temperature range is 50 ° C to 1 ° C.
The temperature is 20 ° C., but preferably about 100 ° C. is desirable. After heating, add an alkaline aqueous solution to the aqueous solution containing the product.
By making H alkaline to about 8 to 12, the product is aggregated as a gel-like substance. Examples of the alkali used at this time include ammonia, sodium hydroxide, potassium hydroxide and the like. A hollow fibrous aluminum silicate having a peculiar three-dimensional shape formed by intricately entangled fibers by removing excess water by centrifugation and then drying at a temperature at which it does not thermally decompose. Are separated and collected. The drying temperature may be 350 ° C. or lower at which the hollow fibrous aluminum silicate is not decomposed, and preferably 50 to 12
It is 0 ° C. By the above method, a hollow fibrous aluminum silicate having mesopore pores having a pore radius of less than 5 nm can be obtained. The humidity control material of the present invention made of hollow fibrous aluminum silicate having mesopore pores having a pore radius of less than 5 nm has the following characteristics. It is possible to adsorb about 200% or more of its own weight of water vapor under high humidity conditions of 90% or more relative humidity, and to easily release most of the adsorbed water vapor under humidity conditions of 90% or less relative humidity. It exhibits excellent water absorption behavior under high humidity conditions where it can be used repeatedly.
【0010】[0010]
【実施例】次に、本発明を実施例に基づいて具体的に説
明するが、本発明は当該実施例によって何ら限定される
ものではない。
実施例
(1)合成方法
SiO2 濃度が100mmol/lになるように純水で
希釈したオルトケイ酸ナトリウム水溶液125mlを調
製した。また、これとは別に、塩化アルミニウムを純水
に溶解させ、150mmol/l水溶液125mlを調
製した。塩化アルミニウム水溶液にオルトケイ酸ナトリ
ウム水溶液を混合し、マグネティックスターラーで撹拌
した。このときのケイ素/アルミニウム比は0.67で
ある。更に、この混合溶液に1N水酸化ナトリウム水溶
液を22ml滴下し、pHが6前後になるように調整し
た。この溶液を遠心分離により前駆体を回収、更に、純
水で前駆体を2回遠心分離により洗浄した後、1000
mlの純水中に分散させた。前駆体を分散させた溶液に
5N塩酸を1.2ml加えpHを4前後となるように調
整する。この溶液をマントルヒーターにて100℃で2
日間加熱した。加熱終了後、遠心分離用セルに生成物を
含む50mlの水溶液を入れ、28%アンモニア水を数
滴加え、よく振った後、遠心分離を行った。これによっ
て得られたゲル状の生成物を、100℃の乾燥器で約2
日乾燥した。得られた試料を、めのう乳鉢にて解砕した
ものを測定試料として、以下の測定に供した。EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to the examples. Example (1) Synthetic method 125 ml of an aqueous solution of sodium orthosilicate was diluted with pure water so that the SiO2 concentration was 100 mmol / l. Separately from this, aluminum chloride was dissolved in pure water to prepare 125 ml of a 150 mmol / l aqueous solution. An aqueous solution of sodium orthosilicate was mixed with the aqueous solution of aluminum chloride, and the mixture was stirred with a magnetic stirrer. At this time, the silicon / aluminum ratio is 0.67. Furthermore, 22 ml of a 1N sodium hydroxide aqueous solution was added dropwise to this mixed solution to adjust the pH to around 6. The solution was centrifuged to collect the precursor, and the precursor was washed twice with pure water by centrifugation to obtain 1000
Dispersed in ml of pure water. To the solution in which the precursor is dispersed, 1.2 ml of 5N hydrochloric acid is added to adjust the pH to around 4. This solution is heated with a mantle heater at 100 ° C for 2
Heated for days. After completion of heating, 50 ml of an aqueous solution containing the product was placed in a centrifuge cell, a few drops of 28% ammonia water was added, and the mixture was shaken well and then centrifuged. The gel-like product thus obtained was dried in a dryer at 100 ° C. for about 2 minutes.
Day dried. The obtained sample was crushed in an agate mortar and used as the measurement sample for the following measurement.
【0011】(2)結果
得られた試料の同定は粉末X線回折測定により行った。
細孔分布は窒素吸着法を用いて測定した。また、吸・放
湿特性は、吸着平衡自動測定測定装置を用い、測定系内
の温度を一定(25℃)にして、水蒸気圧を変化させて
平衡状態に達したときの試料重量の変化から吸着量を求
める方法(重量法)により測定した。水蒸気吸着量は、
絶乾状態の試料重量に対する吸着水重量の割合を示す。
実施例で得られた試料の粉末X線回折パターンを図1に
示す。回折パターンは2θ=4,9.5,14,27,
40°付近にピークを有し、中空繊維状アルミニウムケ
イ酸塩特有のX線回折パターンを示している。また、実
施例で得られた試料の細孔分布曲線を図2に示す。得ら
れた試料の細孔分布は細孔半径約0.4nmにピークト
ップを示している。更に、実施例で得られた試料の吸・
放出特性(吸着等温線)を図3に示す。得られた試料の
吸着等温線は相対湿度約90%で急激に立ち上がり、脱
着等温線から相対湿度約90%において吸着していた水
蒸気の大部分を放湿していることがわかる。(2) The resulting sample was identified by powder X-ray diffraction measurement.
The pore distribution was measured using the nitrogen adsorption method. In addition, the absorption and desorption characteristics are measured from the change in the sample weight when the equilibrium state is reached by changing the water vapor pressure with the temperature inside the measurement system kept constant (25 ° C) using the adsorption equilibrium automatic measurement measuring device. The adsorption amount was measured by a method (gravimetric method). The amount of water vapor adsorption is
The ratio of the weight of adsorbed water to the weight of the sample in the absolutely dry state is shown.
The powder X-ray diffraction pattern of the sample obtained in the example is shown in FIG. The diffraction pattern is 2θ = 4, 9.5, 14, 27,
It has a peak near 40 ° and shows an X-ray diffraction pattern peculiar to hollow fiber aluminum silicate. The pore distribution curve of the sample obtained in the example is shown in FIG. The pore distribution of the obtained sample shows a peak top at a pore radius of about 0.4 nm. Furthermore, the absorption of the sample obtained in the example
The release characteristics (adsorption isotherm) are shown in FIG. The adsorption isotherm of the obtained sample rapidly rises at a relative humidity of about 90%, and it can be seen from the desorption isotherm that most of the adsorbed water vapor is released at a relative humidity of about 90%.
【0012】比較例
図4に、従来より乾燥剤として用いられてきた、酸化カ
ルシウム及びシリカゲルの吸・放湿特性(吸着等温線)
示す。酸化カルシウムは、吸水後、水酸化カルシウムに
変化するため、乾燥による再利用は困難である。また、
シリカゲルは相対湿度70%で飽和し、再利用する際に
は相対湿度20%以下で乾燥させる必要がある。このよ
うに、どちらも繰り返し利用する結露防止用途には不適
当であることがわかる。Comparative Example FIG. 4 shows the absorption and desorption characteristics (adsorption isotherm) of calcium oxide and silica gel, which have been conventionally used as desiccants.
Show. Calcium oxide changes to calcium hydroxide after absorbing water, and is difficult to reuse by drying. Also,
Silica gel is saturated at a relative humidity of 70% and needs to be dried at a relative humidity of 20% or less before reuse. Thus, it can be seen that neither of them is suitable for the purpose of preventing dew condensation that is repeatedly used.
【0013】[0013]
【発明の効果】以上にように、本発明の方法によれば、
1)結露防止材料として有用なゲル状物質として凝集さ
せた後、乾燥させて得られる繊維が複雑にからみ合うこ
とによって形成される特異な立体形状を有する中空繊維
状アルミニウムケイ酸塩からなる調湿材料を、比較的簡
単にかつ低コストで製造できる、2)前記したような優
れた水分吸着・脱着性能を有するため、極めて良好な結
露防止機能と、それの繰り返し利用が可能な材料を提供
することができる、という格別の効果が奏される。As described above, according to the method of the present invention,
1) Humidity control consisting of hollow fibrous aluminum silicate having a peculiar three-dimensional shape formed by intricately interlocking fibers obtained by aggregating as a gel substance useful as a dew condensation preventing material and then drying. It is possible to manufacture the material relatively easily and at low cost. 2) Since it has the excellent moisture adsorption / desorption performance as described above, it provides an extremely good dew condensation prevention function and a material that can be repeatedly used. The special effect of being able to do is exhibited.
【図1】本発明の実施例で得られた材料のX線回折パタ
ーンによる測定結果を示す。FIG. 1 shows the measurement results by X-ray diffraction pattern of the materials obtained in the examples of the present invention.
【図2】本発明の実施例で得られた材料の細孔分布を示
すグラフである。FIG. 2 is a graph showing the pore distribution of the materials obtained in the examples of the present invention.
【図3】本発明の実施例で得られた材料の水蒸気の吸着
・脱着等温線を示すグラフである。FIG. 3 is a graph showing water vapor adsorption / desorption isotherms of the materials obtained in the examples of the present invention.
【図4】本発明の比較例で提示された従来からの吸湿材
料(乾燥剤)の水蒸気の吸着・脱着等温線を示すグラフ
である。FIG. 4 is a graph showing adsorption / desorption isotherms of water vapor of a conventional hygroscopic material (desiccant) presented in a comparative example of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D01F 9/08 D01F 9/08 A (72)発明者 渡村 信治 愛知県名古屋市千種区南ヶ丘1−7−12 (56)参考文献 特開 平10−309458(JP,A) 特開 平9−294931(JP,A) 特開2000−189744(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 20/00 - 20/34 E04B 1/64 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI D01F 9/08 D01F 9/08 A (72) Inventor Shinji Watamura 1-7-12 Minamigaoka, Chikusa-ku, Nagoya-shi, Aichi ( 56) References JP 10-309458 (JP, A) JP 9-294931 (JP, A) JP 2000-189744 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB) (Name) B01J 20/00-20/34 E04B 1/64
Claims (2)
ルミニウムケイ酸塩を水熱合成にて合成した後、アルカ
リ性水溶液を加え、生成物を含む溶液全体をアルカリ性
にすることにより、生成物をゲル状物質として凝集させ
た後、それ自体が熱分解しない程度の温度で乾燥させて
得られる、細孔半径5nm未満のメソポア細孔を有する
中空繊維状アルミニウムシリケイトからなる調湿材料で
あって、相対湿度90%以上の高湿度条件下において自
重の約200%以上の水蒸気を吸着し、かつ相対湿度9
0%程度以下の湿度条件下において吸着した水蒸気の大
部分を容易に放出することができる、繰り返し利用可能
な、高湿度条件下において優れた吸水挙動を示す調湿材
料。1. A product obtained by hydrothermally synthesizing hollow fiber aluminum silicate synthesized under a weakly acidic condition and then adding an alkaline aqueous solution to make the entire solution containing the product alkaline. Which is a gel-like substance, and is dried at a temperature at which it does not thermally decompose itself, and is a humidity control material comprising hollow fibrous aluminum silicate having mesopore pores with a pore radius of less than 5 nm. Adsorbs about 200% or more of its own weight of water vapor under high humidity conditions of 90% or more relative humidity, and
A humidity control material that can easily release most of the adsorbed water vapor under a humidity condition of about 0% or less and that exhibits excellent water absorption behavior under high humidity conditions, which can be repeatedly used.
法であって、弱酸性条件下で合成される中空繊維状アル
ミニウムケイ酸塩を水熱合成にて合成した後、アルカリ
性水溶液を加え、生成物を含む溶液全体をアルカリ性に
することにより、生成物をゲル状物質として凝集させた
後、それ自体が熱分解しない程度の温度で乾燥させて得
られる、特異な立体形状を有する中空繊維状アルミニウ
ムシリケイトからなる調湿材料を得ることを特徴とす
る、高湿度条件下において優れた吸水挙動を示す調湿材
料の製造方法。2. The method for producing the humidity control material according to claim 1, wherein the hollow fibrous aluminum silicate synthesized under a weakly acidic condition is synthesized by hydrothermal synthesis, and then an alkaline aqueous solution is added. In addition, by making the entire solution containing the product alkaline, the product is aggregated as a gel-like substance and then dried at a temperature at which it does not decompose by itself. A method for producing a humidity control material exhibiting excellent water absorption behavior under high humidity conditions, which comprises obtaining a humidity control material made of fibrous aluminum silicate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000240679A JP3398761B2 (en) | 2000-08-09 | 2000-08-09 | Humidity control material showing excellent water absorption behavior under high humidity conditions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000240679A JP3398761B2 (en) | 2000-08-09 | 2000-08-09 | Humidity control material showing excellent water absorption behavior under high humidity conditions |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002052337A JP2002052337A (en) | 2002-02-19 |
JP3398761B2 true JP3398761B2 (en) | 2003-04-21 |
Family
ID=18732000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000240679A Expired - Lifetime JP3398761B2 (en) | 2000-08-09 | 2000-08-09 | Humidity control material showing excellent water absorption behavior under high humidity conditions |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3398761B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008081606A1 (en) * | 2006-12-27 | 2008-07-10 | National Institute Of Advanced Industrial Science And Technology | Amorphous aluminum silicate having excellent adsorption characteristics in high-humidity range and process for producing the same |
JP4386295B2 (en) | 2007-04-20 | 2009-12-16 | 株式会社日本自動車部品総合研究所 | Humidity sensor |
JP5435272B2 (en) * | 2009-11-24 | 2014-03-05 | 株式会社豊田中央研究所 | Method for producing spherical silica-based mesoporous material |
JP7010274B2 (en) * | 2019-10-23 | 2022-01-26 | 国立研究開発法人産業技術総合研究所 | Hazardous substance adsorbent containing aluminum silicate or aluminum hydrate, method for producing aluminum hydrate, aluminum silicate or aluminum hydrate, and method for removing harmful substances. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000189744A (en) | 1999-01-05 | 2000-07-11 | Agency Of Ind Science & Technol | Manufacturing method of humidity control material |
-
2000
- 2000-08-09 JP JP2000240679A patent/JP3398761B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000189744A (en) | 1999-01-05 | 2000-07-11 | Agency Of Ind Science & Technol | Manufacturing method of humidity control material |
Also Published As
Publication number | Publication date |
---|---|
JP2002052337A (en) | 2002-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4576616B2 (en) | Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range | |
JP5212992B2 (en) | Aluminum silicate complex and high performance adsorbent comprising the complex | |
CN102131734B (en) | Amorphous aluminum silicate salt manufacturing method, aluminum silicate salt obtained with said method, and adsorption agent using same | |
JP2006240956A (en) | Amorphous aluminum silicate, adsorbent having amorphous aluminum silicate, dehumidifying rotor and air conditioner | |
KR101641985B1 (en) | Honeycomb matrix comprising macroporous desiccant, process and use thereof | |
JP4936394B2 (en) | Amorphous aluminum silicate having excellent adsorption characteristics in high humidity region and method for producing the same | |
KR20050028624A (en) | Adsorbent for carbon dioxide fixation and method for preparing the same | |
Rajamani et al. | Bundled-firewood like AlOOH-CaCl2 nanocomposite desiccant | |
JP3398761B2 (en) | Humidity control material showing excellent water absorption behavior under high humidity conditions | |
JP6707743B2 (en) | Method for manufacturing desiccant | |
JP5392121B2 (en) | Method for producing hygroscopic agent | |
JP2011255331A (en) | High performance water vapor adsorbent having alminosilicate compound material as base material | |
JP4113943B2 (en) | Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same | |
JP3869136B2 (en) | Manufacturing method of humidity control material | |
JP3793809B2 (en) | Porous material comprising hollow fiber aluminum silicate and method for producing the same | |
JP3089395B2 (en) | Porous material with autonomous humidity control function | |
JP3375927B2 (en) | Humidity control deodorant material using siliceous shale | |
JP5140278B2 (en) | Desiccant material and air dehumidification method using the same | |
JP5495054B2 (en) | Method for producing aluminum silicate composite | |
JP3554752B2 (en) | Reusable humidity control material and method for producing the same | |
JP3837464B2 (en) | Anti-condensation material consisting of hollow spherical silicate clusters with autonomous humidity control function | |
JP4631022B2 (en) | Novel aluminum silicate and its synthesis method | |
JP5354561B2 (en) | Amorphous substance composed of composite of protoimogolite and phosphoric acid, and desiccant air-conditioning adsorbent and anti-condensation agent using the same | |
JP3871174B2 (en) | Method for producing humidity conditioning material having antibacterial function | |
JP3921526B2 (en) | Porous material effective as anti-condensation material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R150 | Certificate of patent or registration of utility model |
Ref document number: 3398761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |